1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <inttypes.h>
18 #include <limits>
19 #include <sstream>
20
21 #include "time_utils.h"
22
23 #include "base/logging.h"
24 #include "base/stringprintf.h"
25
26 #if defined(__APPLE__)
27 #include <sys/time.h>
28 #endif
29
30 namespace art {
31
PrettyDuration(uint64_t nano_duration,size_t max_fraction_digits)32 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits) {
33 if (nano_duration == 0) {
34 return "0";
35 } else {
36 return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration),
37 max_fraction_digits);
38 }
39 }
40
GetAppropriateTimeUnit(uint64_t nano_duration)41 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
42 const uint64_t one_sec = 1000 * 1000 * 1000;
43 const uint64_t one_ms = 1000 * 1000;
44 const uint64_t one_us = 1000;
45 if (nano_duration >= one_sec) {
46 return kTimeUnitSecond;
47 } else if (nano_duration >= one_ms) {
48 return kTimeUnitMillisecond;
49 } else if (nano_duration >= one_us) {
50 return kTimeUnitMicrosecond;
51 } else {
52 return kTimeUnitNanosecond;
53 }
54 }
55
GetNsToTimeUnitDivisor(TimeUnit time_unit)56 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
57 const uint64_t one_sec = 1000 * 1000 * 1000;
58 const uint64_t one_ms = 1000 * 1000;
59 const uint64_t one_us = 1000;
60
61 switch (time_unit) {
62 case kTimeUnitSecond:
63 return one_sec;
64 case kTimeUnitMillisecond:
65 return one_ms;
66 case kTimeUnitMicrosecond:
67 return one_us;
68 case kTimeUnitNanosecond:
69 return 1;
70 }
71 return 0;
72 }
73
FormatDuration(uint64_t nano_duration,TimeUnit time_unit,size_t max_fraction_digits)74 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
75 size_t max_fraction_digits) {
76 const char* unit = nullptr;
77 uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
78 switch (time_unit) {
79 case kTimeUnitSecond:
80 unit = "s";
81 break;
82 case kTimeUnitMillisecond:
83 unit = "ms";
84 break;
85 case kTimeUnitMicrosecond:
86 unit = "us";
87 break;
88 case kTimeUnitNanosecond:
89 unit = "ns";
90 break;
91 }
92 const uint64_t whole_part = nano_duration / divisor;
93 uint64_t fractional_part = nano_duration % divisor;
94 if (fractional_part == 0) {
95 return StringPrintf("%" PRIu64 "%s", whole_part, unit);
96 } else {
97 static constexpr size_t kMaxDigits = 30;
98 size_t avail_digits = kMaxDigits;
99 char fraction_buffer[kMaxDigits];
100 char* ptr = fraction_buffer;
101 uint64_t multiplier = 10;
102 // This infinite loops if fractional part is 0.
103 while (avail_digits > 1 && fractional_part * multiplier < divisor) {
104 multiplier *= 10;
105 *ptr++ = '0';
106 avail_digits--;
107 }
108 snprintf(ptr, avail_digits, "%" PRIu64, fractional_part);
109 fraction_buffer[std::min(kMaxDigits - 1, max_fraction_digits)] = '\0';
110 return StringPrintf("%" PRIu64 ".%s%s", whole_part, fraction_buffer, unit);
111 }
112 }
113
GetIsoDate()114 std::string GetIsoDate() {
115 time_t now = time(nullptr);
116 tm tmbuf;
117 tm* ptm = localtime_r(&now, &tmbuf);
118 return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
119 ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
120 ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
121 }
122
MilliTime()123 uint64_t MilliTime() {
124 #if defined(__linux__)
125 timespec now;
126 clock_gettime(CLOCK_MONOTONIC, &now);
127 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000);
128 #else // __APPLE__
129 timeval now;
130 gettimeofday(&now, nullptr);
131 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000);
132 #endif
133 }
134
MicroTime()135 uint64_t MicroTime() {
136 #if defined(__linux__)
137 timespec now;
138 clock_gettime(CLOCK_MONOTONIC, &now);
139 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
140 #else // __APPLE__
141 timeval now;
142 gettimeofday(&now, nullptr);
143 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec;
144 #endif
145 }
146
NanoTime()147 uint64_t NanoTime() {
148 #if defined(__linux__)
149 timespec now;
150 clock_gettime(CLOCK_MONOTONIC, &now);
151 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
152 #else // __APPLE__
153 timeval now;
154 gettimeofday(&now, nullptr);
155 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000);
156 #endif
157 }
158
ThreadCpuNanoTime()159 uint64_t ThreadCpuNanoTime() {
160 #if defined(__linux__)
161 timespec now;
162 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
163 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
164 #else // __APPLE__
165 UNIMPLEMENTED(WARNING);
166 return -1;
167 #endif
168 }
169
NanoSleep(uint64_t ns)170 void NanoSleep(uint64_t ns) {
171 timespec tm;
172 tm.tv_sec = ns / MsToNs(1000);
173 tm.tv_nsec = ns - static_cast<uint64_t>(tm.tv_sec) * MsToNs(1000);
174 nanosleep(&tm, nullptr);
175 }
176
InitTimeSpec(bool absolute,int clock,int64_t ms,int32_t ns,timespec * ts)177 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
178 if (absolute) {
179 #if !defined(__APPLE__)
180 clock_gettime(clock, ts);
181 #else
182 UNUSED(clock);
183 timeval tv;
184 gettimeofday(&tv, nullptr);
185 ts->tv_sec = tv.tv_sec;
186 ts->tv_nsec = tv.tv_usec * 1000;
187 #endif
188 } else {
189 ts->tv_sec = 0;
190 ts->tv_nsec = 0;
191 }
192
193 int64_t end_sec = ts->tv_sec + ms / 1000;
194 constexpr int32_t int32_max = std::numeric_limits<int32_t>::max();
195 if (UNLIKELY(end_sec >= int32_max)) {
196 // Either ms was intended to denote an infinite timeout, or we have a
197 // problem. The former generally uses the largest possible millisecond
198 // or nanosecond value. Log only in the latter case.
199 constexpr int64_t int64_max = std::numeric_limits<int64_t>::max();
200 if (ms != int64_max && ms != int64_max / (1000 * 1000)) {
201 LOG(INFO) << "Note: end time exceeds INT32_MAX: " << end_sec;
202 }
203 end_sec = int32_max - 1; // Allow for increment below.
204 }
205 ts->tv_sec = end_sec;
206 ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
207
208 // Catch rollover.
209 if (ts->tv_nsec >= 1000000000L) {
210 ts->tv_sec++;
211 ts->tv_nsec -= 1000000000L;
212 }
213 }
214
215 } // namespace art
216