1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/objects.h"
6
7 #include <cmath>
8 #include <iomanip>
9 #include <sstream>
10
11 #include "src/objects-inl.h"
12
13 #include "src/accessors.h"
14 #include "src/allocation-site-scopes.h"
15 #include "src/api-arguments-inl.h"
16 #include "src/api-natives.h"
17 #include "src/api.h"
18 #include "src/base/bits.h"
19 #include "src/base/utils/random-number-generator.h"
20 #include "src/bootstrapper.h"
21 #include "src/code-stubs.h"
22 #include "src/codegen.h"
23 #include "src/compilation-dependencies.h"
24 #include "src/compiler.h"
25 #include "src/counters-inl.h"
26 #include "src/counters.h"
27 #include "src/date.h"
28 #include "src/debug/debug.h"
29 #include "src/deoptimizer.h"
30 #include "src/elements.h"
31 #include "src/execution.h"
32 #include "src/field-index-inl.h"
33 #include "src/field-index.h"
34 #include "src/field-type.h"
35 #include "src/frames-inl.h"
36 #include "src/full-codegen/full-codegen.h"
37 #include "src/ic/ic.h"
38 #include "src/identity-map.h"
39 #include "src/interpreter/bytecode-array-iterator.h"
40 #include "src/interpreter/interpreter.h"
41 #include "src/interpreter/source-position-table.h"
42 #include "src/isolate-inl.h"
43 #include "src/keys.h"
44 #include "src/list.h"
45 #include "src/log.h"
46 #include "src/lookup.h"
47 #include "src/macro-assembler.h"
48 #include "src/messages.h"
49 #include "src/objects-body-descriptors-inl.h"
50 #include "src/property-descriptor.h"
51 #include "src/prototype.h"
52 #include "src/regexp/jsregexp.h"
53 #include "src/safepoint-table.h"
54 #include "src/string-builder.h"
55 #include "src/string-search.h"
56 #include "src/string-stream.h"
57 #include "src/utils.h"
58 #include "src/zone.h"
59
60 #ifdef ENABLE_DISASSEMBLER
61 #include "src/disasm.h"
62 #include "src/disassembler.h"
63 #endif
64
65 namespace v8 {
66 namespace internal {
67
operator <<(std::ostream & os,InstanceType instance_type)68 std::ostream& operator<<(std::ostream& os, InstanceType instance_type) {
69 switch (instance_type) {
70 #define WRITE_TYPE(TYPE) \
71 case TYPE: \
72 return os << #TYPE;
73 INSTANCE_TYPE_LIST(WRITE_TYPE)
74 #undef WRITE_TYPE
75 }
76 UNREACHABLE();
77 return os << "UNKNOWN"; // Keep the compiler happy.
78 }
79
OptimalType(Isolate * isolate,Representation representation)80 Handle<FieldType> Object::OptimalType(Isolate* isolate,
81 Representation representation) {
82 if (representation.IsNone()) return FieldType::None(isolate);
83 if (FLAG_track_field_types) {
84 if (representation.IsHeapObject() && IsHeapObject()) {
85 // We can track only JavaScript objects with stable maps.
86 Handle<Map> map(HeapObject::cast(this)->map(), isolate);
87 if (map->is_stable() && map->IsJSReceiverMap()) {
88 return FieldType::Class(map, isolate);
89 }
90 }
91 }
92 return FieldType::Any(isolate);
93 }
94
95
ToObject(Isolate * isolate,Handle<Object> object,Handle<Context> native_context)96 MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
97 Handle<Object> object,
98 Handle<Context> native_context) {
99 if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
100 Handle<JSFunction> constructor;
101 if (object->IsSmi()) {
102 constructor = handle(native_context->number_function(), isolate);
103 } else {
104 int constructor_function_index =
105 Handle<HeapObject>::cast(object)->map()->GetConstructorFunctionIndex();
106 if (constructor_function_index == Map::kNoConstructorFunctionIndex) {
107 THROW_NEW_ERROR(isolate,
108 NewTypeError(MessageTemplate::kUndefinedOrNullToObject),
109 JSReceiver);
110 }
111 constructor = handle(
112 JSFunction::cast(native_context->get(constructor_function_index)),
113 isolate);
114 }
115 Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
116 Handle<JSValue>::cast(result)->set_value(*object);
117 return result;
118 }
119
120 // ES6 section 9.2.1.2, OrdinaryCallBindThis for sloppy callee.
121 // static
ConvertReceiver(Isolate * isolate,Handle<Object> object)122 MaybeHandle<JSReceiver> Object::ConvertReceiver(Isolate* isolate,
123 Handle<Object> object) {
124 if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
125 if (*object == isolate->heap()->null_value() ||
126 object->IsUndefined(isolate)) {
127 return isolate->global_proxy();
128 }
129 return Object::ToObject(isolate, object);
130 }
131
132 // static
ToNumber(Handle<Object> input)133 MaybeHandle<Object> Object::ToNumber(Handle<Object> input) {
134 while (true) {
135 if (input->IsNumber()) {
136 return input;
137 }
138 if (input->IsString()) {
139 return String::ToNumber(Handle<String>::cast(input));
140 }
141 if (input->IsOddball()) {
142 return Oddball::ToNumber(Handle<Oddball>::cast(input));
143 }
144 Isolate* const isolate = Handle<HeapObject>::cast(input)->GetIsolate();
145 if (input->IsSymbol()) {
146 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToNumber),
147 Object);
148 }
149 if (input->IsSimd128Value()) {
150 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSimdToNumber),
151 Object);
152 }
153 ASSIGN_RETURN_ON_EXCEPTION(
154 isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input),
155 ToPrimitiveHint::kNumber),
156 Object);
157 }
158 }
159
160
161 // static
ToInteger(Isolate * isolate,Handle<Object> input)162 MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) {
163 ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
164 return isolate->factory()->NewNumber(DoubleToInteger(input->Number()));
165 }
166
167
168 // static
ToInt32(Isolate * isolate,Handle<Object> input)169 MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) {
170 ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
171 return isolate->factory()->NewNumberFromInt(DoubleToInt32(input->Number()));
172 }
173
174
175 // static
ToUint32(Isolate * isolate,Handle<Object> input)176 MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) {
177 ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
178 return isolate->factory()->NewNumberFromUint(DoubleToUint32(input->Number()));
179 }
180
181
182 // static
ConvertToName(Isolate * isolate,Handle<Object> input)183 MaybeHandle<Name> Object::ConvertToName(Isolate* isolate,
184 Handle<Object> input) {
185 ASSIGN_RETURN_ON_EXCEPTION(
186 isolate, input, Object::ToPrimitive(input, ToPrimitiveHint::kString),
187 Name);
188 if (input->IsName()) return Handle<Name>::cast(input);
189 return ToString(isolate, input);
190 }
191
192 // static
ToString(Isolate * isolate,Handle<Object> input)193 MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) {
194 while (true) {
195 if (input->IsString()) {
196 return Handle<String>::cast(input);
197 }
198 if (input->IsOddball()) {
199 return handle(Handle<Oddball>::cast(input)->to_string(), isolate);
200 }
201 if (input->IsNumber()) {
202 return isolate->factory()->NumberToString(input);
203 }
204 if (input->IsSymbol()) {
205 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToString),
206 String);
207 }
208 if (input->IsSimd128Value()) {
209 return Simd128Value::ToString(Handle<Simd128Value>::cast(input));
210 }
211 ASSIGN_RETURN_ON_EXCEPTION(
212 isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input),
213 ToPrimitiveHint::kString),
214 String);
215 }
216 }
217
218
219 // static
ToLength(Isolate * isolate,Handle<Object> input)220 MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) {
221 ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
222 double len = DoubleToInteger(input->Number());
223 if (len <= 0.0) {
224 len = 0.0;
225 } else if (len >= kMaxSafeInteger) {
226 len = kMaxSafeInteger;
227 }
228 return isolate->factory()->NewNumber(len);
229 }
230
231
BooleanValue()232 bool Object::BooleanValue() {
233 if (IsSmi()) return Smi::cast(this)->value() != 0;
234 DCHECK(IsHeapObject());
235 Isolate* isolate = HeapObject::cast(this)->GetIsolate();
236 if (IsBoolean()) return IsTrue(isolate);
237 if (IsUndefined(isolate) || IsNull(isolate)) return false;
238 if (IsUndetectable()) return false; // Undetectable object is false.
239 if (IsString()) return String::cast(this)->length() != 0;
240 if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue();
241 return true;
242 }
243
244
245 namespace {
246
247 // TODO(bmeurer): Maybe we should introduce a marker interface Number,
248 // where we put all these methods at some point?
NumberCompare(double x,double y)249 ComparisonResult NumberCompare(double x, double y) {
250 if (std::isnan(x) || std::isnan(y)) {
251 return ComparisonResult::kUndefined;
252 } else if (x < y) {
253 return ComparisonResult::kLessThan;
254 } else if (x > y) {
255 return ComparisonResult::kGreaterThan;
256 } else {
257 return ComparisonResult::kEqual;
258 }
259 }
260
261
NumberEquals(double x,double y)262 bool NumberEquals(double x, double y) {
263 // Must check explicitly for NaN's on Windows, but -0 works fine.
264 if (std::isnan(x)) return false;
265 if (std::isnan(y)) return false;
266 return x == y;
267 }
268
269
NumberEquals(const Object * x,const Object * y)270 bool NumberEquals(const Object* x, const Object* y) {
271 return NumberEquals(x->Number(), y->Number());
272 }
273
274
NumberEquals(Handle<Object> x,Handle<Object> y)275 bool NumberEquals(Handle<Object> x, Handle<Object> y) {
276 return NumberEquals(*x, *y);
277 }
278
279 } // namespace
280
281
282 // static
Compare(Handle<Object> x,Handle<Object> y)283 Maybe<ComparisonResult> Object::Compare(Handle<Object> x, Handle<Object> y) {
284 // ES6 section 7.2.11 Abstract Relational Comparison step 3 and 4.
285 if (!Object::ToPrimitive(x, ToPrimitiveHint::kNumber).ToHandle(&x) ||
286 !Object::ToPrimitive(y, ToPrimitiveHint::kNumber).ToHandle(&y)) {
287 return Nothing<ComparisonResult>();
288 }
289 if (x->IsString() && y->IsString()) {
290 // ES6 section 7.2.11 Abstract Relational Comparison step 5.
291 return Just(
292 String::Compare(Handle<String>::cast(x), Handle<String>::cast(y)));
293 }
294 // ES6 section 7.2.11 Abstract Relational Comparison step 6.
295 if (!Object::ToNumber(x).ToHandle(&x) || !Object::ToNumber(y).ToHandle(&y)) {
296 return Nothing<ComparisonResult>();
297 }
298 return Just(NumberCompare(x->Number(), y->Number()));
299 }
300
301
302 // static
Equals(Handle<Object> x,Handle<Object> y)303 Maybe<bool> Object::Equals(Handle<Object> x, Handle<Object> y) {
304 // This is the generic version of Abstract Equality Comparison; a version in
305 // JavaScript land is available in the EqualStub and NotEqualStub. Whenever
306 // you change something functionality wise in here, remember to update the
307 // TurboFan code stubs as well.
308 while (true) {
309 if (x->IsNumber()) {
310 if (y->IsNumber()) {
311 return Just(NumberEquals(x, y));
312 } else if (y->IsBoolean()) {
313 return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number()));
314 } else if (y->IsString()) {
315 return Just(NumberEquals(x, String::ToNumber(Handle<String>::cast(y))));
316 } else if (y->IsJSReceiver()) {
317 if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
318 .ToHandle(&y)) {
319 return Nothing<bool>();
320 }
321 } else {
322 return Just(false);
323 }
324 } else if (x->IsString()) {
325 if (y->IsString()) {
326 return Just(
327 String::Equals(Handle<String>::cast(x), Handle<String>::cast(y)));
328 } else if (y->IsNumber()) {
329 x = String::ToNumber(Handle<String>::cast(x));
330 return Just(NumberEquals(x, y));
331 } else if (y->IsBoolean()) {
332 x = String::ToNumber(Handle<String>::cast(x));
333 return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number()));
334 } else if (y->IsJSReceiver()) {
335 if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
336 .ToHandle(&y)) {
337 return Nothing<bool>();
338 }
339 } else {
340 return Just(false);
341 }
342 } else if (x->IsBoolean()) {
343 if (y->IsOddball()) {
344 return Just(x.is_identical_to(y));
345 } else if (y->IsNumber()) {
346 return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y));
347 } else if (y->IsString()) {
348 y = String::ToNumber(Handle<String>::cast(y));
349 return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y));
350 } else if (y->IsJSReceiver()) {
351 if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
352 .ToHandle(&y)) {
353 return Nothing<bool>();
354 }
355 x = Oddball::ToNumber(Handle<Oddball>::cast(x));
356 } else {
357 return Just(false);
358 }
359 } else if (x->IsSymbol()) {
360 if (y->IsSymbol()) {
361 return Just(x.is_identical_to(y));
362 } else if (y->IsJSReceiver()) {
363 if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
364 .ToHandle(&y)) {
365 return Nothing<bool>();
366 }
367 } else {
368 return Just(false);
369 }
370 } else if (x->IsSimd128Value()) {
371 if (y->IsSimd128Value()) {
372 return Just(Simd128Value::Equals(Handle<Simd128Value>::cast(x),
373 Handle<Simd128Value>::cast(y)));
374 } else if (y->IsJSReceiver()) {
375 if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
376 .ToHandle(&y)) {
377 return Nothing<bool>();
378 }
379 } else {
380 return Just(false);
381 }
382 } else if (x->IsJSReceiver()) {
383 if (y->IsJSReceiver()) {
384 return Just(x.is_identical_to(y));
385 } else if (y->IsUndetectable()) {
386 return Just(x->IsUndetectable());
387 } else if (y->IsBoolean()) {
388 y = Oddball::ToNumber(Handle<Oddball>::cast(y));
389 } else if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(x))
390 .ToHandle(&x)) {
391 return Nothing<bool>();
392 }
393 } else {
394 return Just(x->IsUndetectable() && y->IsUndetectable());
395 }
396 }
397 }
398
399
StrictEquals(Object * that)400 bool Object::StrictEquals(Object* that) {
401 if (this->IsNumber()) {
402 if (!that->IsNumber()) return false;
403 return NumberEquals(this, that);
404 } else if (this->IsString()) {
405 if (!that->IsString()) return false;
406 return String::cast(this)->Equals(String::cast(that));
407 } else if (this->IsSimd128Value()) {
408 if (!that->IsSimd128Value()) return false;
409 return Simd128Value::cast(this)->Equals(Simd128Value::cast(that));
410 }
411 return this == that;
412 }
413
414
415 // static
TypeOf(Isolate * isolate,Handle<Object> object)416 Handle<String> Object::TypeOf(Isolate* isolate, Handle<Object> object) {
417 if (object->IsNumber()) return isolate->factory()->number_string();
418 if (object->IsOddball()) return handle(Oddball::cast(*object)->type_of());
419 if (object->IsUndetectable()) {
420 return isolate->factory()->undefined_string();
421 }
422 if (object->IsString()) return isolate->factory()->string_string();
423 if (object->IsSymbol()) return isolate->factory()->symbol_string();
424 if (object->IsString()) return isolate->factory()->string_string();
425 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
426 if (object->Is##Type()) return isolate->factory()->type##_string();
427 SIMD128_TYPES(SIMD128_TYPE)
428 #undef SIMD128_TYPE
429 if (object->IsCallable()) return isolate->factory()->function_string();
430 return isolate->factory()->object_string();
431 }
432
433
434 // static
Multiply(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)435 MaybeHandle<Object> Object::Multiply(Isolate* isolate, Handle<Object> lhs,
436 Handle<Object> rhs) {
437 if (!lhs->IsNumber() || !rhs->IsNumber()) {
438 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
439 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
440 }
441 return isolate->factory()->NewNumber(lhs->Number() * rhs->Number());
442 }
443
444
445 // static
Divide(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)446 MaybeHandle<Object> Object::Divide(Isolate* isolate, Handle<Object> lhs,
447 Handle<Object> rhs) {
448 if (!lhs->IsNumber() || !rhs->IsNumber()) {
449 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
450 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
451 }
452 return isolate->factory()->NewNumber(lhs->Number() / rhs->Number());
453 }
454
455
456 // static
Modulus(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)457 MaybeHandle<Object> Object::Modulus(Isolate* isolate, Handle<Object> lhs,
458 Handle<Object> rhs) {
459 if (!lhs->IsNumber() || !rhs->IsNumber()) {
460 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
461 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
462 }
463 return isolate->factory()->NewNumber(modulo(lhs->Number(), rhs->Number()));
464 }
465
466
467 // static
Add(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)468 MaybeHandle<Object> Object::Add(Isolate* isolate, Handle<Object> lhs,
469 Handle<Object> rhs) {
470 if (lhs->IsNumber() && rhs->IsNumber()) {
471 return isolate->factory()->NewNumber(lhs->Number() + rhs->Number());
472 } else if (lhs->IsString() && rhs->IsString()) {
473 return isolate->factory()->NewConsString(Handle<String>::cast(lhs),
474 Handle<String>::cast(rhs));
475 }
476 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToPrimitive(lhs), Object);
477 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToPrimitive(rhs), Object);
478 if (lhs->IsString() || rhs->IsString()) {
479 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToString(isolate, rhs),
480 Object);
481 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToString(isolate, lhs),
482 Object);
483 return isolate->factory()->NewConsString(Handle<String>::cast(lhs),
484 Handle<String>::cast(rhs));
485 }
486 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
487 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
488 return isolate->factory()->NewNumber(lhs->Number() + rhs->Number());
489 }
490
491
492 // static
Subtract(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)493 MaybeHandle<Object> Object::Subtract(Isolate* isolate, Handle<Object> lhs,
494 Handle<Object> rhs) {
495 if (!lhs->IsNumber() || !rhs->IsNumber()) {
496 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
497 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
498 }
499 return isolate->factory()->NewNumber(lhs->Number() - rhs->Number());
500 }
501
502
503 // static
ShiftLeft(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)504 MaybeHandle<Object> Object::ShiftLeft(Isolate* isolate, Handle<Object> lhs,
505 Handle<Object> rhs) {
506 if (!lhs->IsNumber() || !rhs->IsNumber()) {
507 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
508 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
509 }
510 return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs)
511 << (NumberToUint32(*rhs) & 0x1F));
512 }
513
514
515 // static
ShiftRight(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)516 MaybeHandle<Object> Object::ShiftRight(Isolate* isolate, Handle<Object> lhs,
517 Handle<Object> rhs) {
518 if (!lhs->IsNumber() || !rhs->IsNumber()) {
519 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
520 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
521 }
522 return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) >>
523 (NumberToUint32(*rhs) & 0x1F));
524 }
525
526
527 // static
ShiftRightLogical(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)528 MaybeHandle<Object> Object::ShiftRightLogical(Isolate* isolate,
529 Handle<Object> lhs,
530 Handle<Object> rhs) {
531 if (!lhs->IsNumber() || !rhs->IsNumber()) {
532 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
533 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
534 }
535 return isolate->factory()->NewNumberFromUint(NumberToUint32(*lhs) >>
536 (NumberToUint32(*rhs) & 0x1F));
537 }
538
539
540 // static
BitwiseAnd(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)541 MaybeHandle<Object> Object::BitwiseAnd(Isolate* isolate, Handle<Object> lhs,
542 Handle<Object> rhs) {
543 if (!lhs->IsNumber() || !rhs->IsNumber()) {
544 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
545 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
546 }
547 return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) &
548 NumberToInt32(*rhs));
549 }
550
551
552 // static
BitwiseOr(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)553 MaybeHandle<Object> Object::BitwiseOr(Isolate* isolate, Handle<Object> lhs,
554 Handle<Object> rhs) {
555 if (!lhs->IsNumber() || !rhs->IsNumber()) {
556 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
557 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
558 }
559 return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) |
560 NumberToInt32(*rhs));
561 }
562
563
564 // static
BitwiseXor(Isolate * isolate,Handle<Object> lhs,Handle<Object> rhs)565 MaybeHandle<Object> Object::BitwiseXor(Isolate* isolate, Handle<Object> lhs,
566 Handle<Object> rhs) {
567 if (!lhs->IsNumber() || !rhs->IsNumber()) {
568 ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
569 ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
570 }
571 return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) ^
572 NumberToInt32(*rhs));
573 }
574
575 // static
OrdinaryHasInstance(Isolate * isolate,Handle<Object> callable,Handle<Object> object)576 MaybeHandle<Object> Object::OrdinaryHasInstance(Isolate* isolate,
577 Handle<Object> callable,
578 Handle<Object> object) {
579 // The {callable} must have a [[Call]] internal method.
580 if (!callable->IsCallable()) return isolate->factory()->false_value();
581
582 // Check if {callable} is a bound function, and if so retrieve its
583 // [[BoundTargetFunction]] and use that instead of {callable}.
584 if (callable->IsJSBoundFunction()) {
585 Handle<Object> bound_callable(
586 Handle<JSBoundFunction>::cast(callable)->bound_target_function(),
587 isolate);
588 return Object::InstanceOf(isolate, object, bound_callable);
589 }
590
591 // If {object} is not a receiver, return false.
592 if (!object->IsJSReceiver()) return isolate->factory()->false_value();
593
594 // Get the "prototype" of {callable}; raise an error if it's not a receiver.
595 Handle<Object> prototype;
596 ASSIGN_RETURN_ON_EXCEPTION(
597 isolate, prototype,
598 Object::GetProperty(callable, isolate->factory()->prototype_string()),
599 Object);
600 if (!prototype->IsJSReceiver()) {
601 THROW_NEW_ERROR(
602 isolate,
603 NewTypeError(MessageTemplate::kInstanceofNonobjectProto, prototype),
604 Object);
605 }
606
607 // Return whether or not {prototype} is in the prototype chain of {object}.
608 Maybe<bool> result = JSReceiver::HasInPrototypeChain(
609 isolate, Handle<JSReceiver>::cast(object), prototype);
610 if (result.IsNothing()) return MaybeHandle<Object>();
611 return isolate->factory()->ToBoolean(result.FromJust());
612 }
613
614 // static
InstanceOf(Isolate * isolate,Handle<Object> object,Handle<Object> callable)615 MaybeHandle<Object> Object::InstanceOf(Isolate* isolate, Handle<Object> object,
616 Handle<Object> callable) {
617 // The {callable} must be a receiver.
618 if (!callable->IsJSReceiver()) {
619 THROW_NEW_ERROR(isolate,
620 NewTypeError(MessageTemplate::kNonObjectInInstanceOfCheck),
621 Object);
622 }
623
624 // Lookup the @@hasInstance method on {callable}.
625 Handle<Object> inst_of_handler;
626 ASSIGN_RETURN_ON_EXCEPTION(
627 isolate, inst_of_handler,
628 JSReceiver::GetMethod(Handle<JSReceiver>::cast(callable),
629 isolate->factory()->has_instance_symbol()),
630 Object);
631 if (!inst_of_handler->IsUndefined(isolate)) {
632 // Call the {inst_of_handler} on the {callable}.
633 Handle<Object> result;
634 ASSIGN_RETURN_ON_EXCEPTION(
635 isolate, result,
636 Execution::Call(isolate, inst_of_handler, callable, 1, &object),
637 Object);
638 return isolate->factory()->ToBoolean(result->BooleanValue());
639 }
640
641 // The {callable} must have a [[Call]] internal method.
642 if (!callable->IsCallable()) {
643 THROW_NEW_ERROR(
644 isolate, NewTypeError(MessageTemplate::kNonCallableInInstanceOfCheck),
645 Object);
646 }
647
648 // Fall back to OrdinaryHasInstance with {callable} and {object}.
649 Handle<Object> result;
650 ASSIGN_RETURN_ON_EXCEPTION(
651 isolate, result,
652 JSReceiver::OrdinaryHasInstance(isolate, callable, object), Object);
653 return result;
654 }
655
IsArray(Handle<Object> object)656 Maybe<bool> Object::IsArray(Handle<Object> object) {
657 if (object->IsJSArray()) return Just(true);
658 if (object->IsJSProxy()) {
659 Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
660 Isolate* isolate = proxy->GetIsolate();
661 if (proxy->IsRevoked()) {
662 isolate->Throw(*isolate->factory()->NewTypeError(
663 MessageTemplate::kProxyRevoked,
664 isolate->factory()->NewStringFromAsciiChecked("IsArray")));
665 return Nothing<bool>();
666 }
667 return Object::IsArray(handle(proxy->target(), isolate));
668 }
669 return Just(false);
670 }
671
672
673 // static
GetMethod(Handle<JSReceiver> receiver,Handle<Name> name)674 MaybeHandle<Object> Object::GetMethod(Handle<JSReceiver> receiver,
675 Handle<Name> name) {
676 Handle<Object> func;
677 Isolate* isolate = receiver->GetIsolate();
678 ASSIGN_RETURN_ON_EXCEPTION(isolate, func,
679 JSReceiver::GetProperty(receiver, name), Object);
680 if (func->IsNull(isolate) || func->IsUndefined(isolate)) {
681 return isolate->factory()->undefined_value();
682 }
683 if (!func->IsCallable()) {
684 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kPropertyNotFunction,
685 func, name, receiver),
686 Object);
687 }
688 return func;
689 }
690
691
692 // static
CreateListFromArrayLike(Isolate * isolate,Handle<Object> object,ElementTypes element_types)693 MaybeHandle<FixedArray> Object::CreateListFromArrayLike(
694 Isolate* isolate, Handle<Object> object, ElementTypes element_types) {
695 // 1. ReturnIfAbrupt(object).
696 // 2. (default elementTypes -- not applicable.)
697 // 3. If Type(obj) is not Object, throw a TypeError exception.
698 if (!object->IsJSReceiver()) {
699 THROW_NEW_ERROR(isolate,
700 NewTypeError(MessageTemplate::kCalledOnNonObject,
701 isolate->factory()->NewStringFromAsciiChecked(
702 "CreateListFromArrayLike")),
703 FixedArray);
704 }
705 // 4. Let len be ? ToLength(? Get(obj, "length")).
706 Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(object);
707 Handle<Object> raw_length_number;
708 ASSIGN_RETURN_ON_EXCEPTION(isolate, raw_length_number,
709 Object::GetLengthFromArrayLike(isolate, receiver),
710 FixedArray);
711 uint32_t len;
712 if (!raw_length_number->ToUint32(&len) ||
713 len > static_cast<uint32_t>(FixedArray::kMaxLength)) {
714 THROW_NEW_ERROR(isolate,
715 NewRangeError(MessageTemplate::kInvalidArrayLength),
716 FixedArray);
717 }
718 // 5. Let list be an empty List.
719 Handle<FixedArray> list = isolate->factory()->NewFixedArray(len);
720 // 6. Let index be 0.
721 // 7. Repeat while index < len:
722 for (uint32_t index = 0; index < len; ++index) {
723 // 7a. Let indexName be ToString(index).
724 // 7b. Let next be ? Get(obj, indexName).
725 Handle<Object> next;
726 ASSIGN_RETURN_ON_EXCEPTION(isolate, next,
727 JSReceiver::GetElement(isolate, receiver, index),
728 FixedArray);
729 switch (element_types) {
730 case ElementTypes::kAll:
731 // Nothing to do.
732 break;
733 case ElementTypes::kStringAndSymbol: {
734 // 7c. If Type(next) is not an element of elementTypes, throw a
735 // TypeError exception.
736 if (!next->IsName()) {
737 THROW_NEW_ERROR(isolate,
738 NewTypeError(MessageTemplate::kNotPropertyName, next),
739 FixedArray);
740 }
741 // 7d. Append next as the last element of list.
742 // Internalize on the fly so we can use pointer identity later.
743 next = isolate->factory()->InternalizeName(Handle<Name>::cast(next));
744 break;
745 }
746 }
747 list->set(index, *next);
748 // 7e. Set index to index + 1. (See loop header.)
749 }
750 // 8. Return list.
751 return list;
752 }
753
754
755 // static
GetLengthFromArrayLike(Isolate * isolate,Handle<Object> object)756 MaybeHandle<Object> Object::GetLengthFromArrayLike(Isolate* isolate,
757 Handle<Object> object) {
758 Handle<Object> val;
759 Handle<Object> key = isolate->factory()->length_string();
760 ASSIGN_RETURN_ON_EXCEPTION(
761 isolate, val, Runtime::GetObjectProperty(isolate, object, key), Object);
762 return Object::ToLength(isolate, val);
763 }
764
765 // static
HasProperty(LookupIterator * it)766 Maybe<bool> JSReceiver::HasProperty(LookupIterator* it) {
767 for (; it->IsFound(); it->Next()) {
768 switch (it->state()) {
769 case LookupIterator::NOT_FOUND:
770 case LookupIterator::TRANSITION:
771 UNREACHABLE();
772 case LookupIterator::JSPROXY:
773 return JSProxy::HasProperty(it->isolate(), it->GetHolder<JSProxy>(),
774 it->GetName());
775 case LookupIterator::INTERCEPTOR: {
776 Maybe<PropertyAttributes> result =
777 JSObject::GetPropertyAttributesWithInterceptor(it);
778 if (result.IsNothing()) return Nothing<bool>();
779 if (result.FromJust() != ABSENT) return Just(true);
780 break;
781 }
782 case LookupIterator::ACCESS_CHECK: {
783 if (it->HasAccess()) break;
784 Maybe<PropertyAttributes> result =
785 JSObject::GetPropertyAttributesWithFailedAccessCheck(it);
786 if (result.IsNothing()) return Nothing<bool>();
787 return Just(result.FromJust() != ABSENT);
788 }
789 case LookupIterator::INTEGER_INDEXED_EXOTIC:
790 // TypedArray out-of-bounds access.
791 return Just(false);
792 case LookupIterator::ACCESSOR:
793 case LookupIterator::DATA:
794 return Just(true);
795 }
796 }
797 return Just(false);
798 }
799
800
801 // static
GetProperty(LookupIterator * it)802 MaybeHandle<Object> Object::GetProperty(LookupIterator* it) {
803 for (; it->IsFound(); it->Next()) {
804 switch (it->state()) {
805 case LookupIterator::NOT_FOUND:
806 case LookupIterator::TRANSITION:
807 UNREACHABLE();
808 case LookupIterator::JSPROXY: {
809 bool was_found;
810 MaybeHandle<Object> result =
811 JSProxy::GetProperty(it->isolate(), it->GetHolder<JSProxy>(),
812 it->GetName(), it->GetReceiver(), &was_found);
813 if (!was_found) it->NotFound();
814 return result;
815 }
816 case LookupIterator::INTERCEPTOR: {
817 bool done;
818 Handle<Object> result;
819 ASSIGN_RETURN_ON_EXCEPTION(
820 it->isolate(), result,
821 JSObject::GetPropertyWithInterceptor(it, &done), Object);
822 if (done) return result;
823 break;
824 }
825 case LookupIterator::ACCESS_CHECK:
826 if (it->HasAccess()) break;
827 return JSObject::GetPropertyWithFailedAccessCheck(it);
828 case LookupIterator::ACCESSOR:
829 return GetPropertyWithAccessor(it);
830 case LookupIterator::INTEGER_INDEXED_EXOTIC:
831 return ReadAbsentProperty(it);
832 case LookupIterator::DATA:
833 return it->GetDataValue();
834 }
835 }
836 return ReadAbsentProperty(it);
837 }
838
839
840 // static
GetProperty(Isolate * isolate,Handle<JSProxy> proxy,Handle<Name> name,Handle<Object> receiver,bool * was_found)841 MaybeHandle<Object> JSProxy::GetProperty(Isolate* isolate,
842 Handle<JSProxy> proxy,
843 Handle<Name> name,
844 Handle<Object> receiver,
845 bool* was_found) {
846 *was_found = true;
847 if (receiver->IsJSGlobalObject()) {
848 THROW_NEW_ERROR(
849 isolate,
850 NewTypeError(MessageTemplate::kReadGlobalReferenceThroughProxy, name),
851 Object);
852 }
853
854 DCHECK(!name->IsPrivate());
855 STACK_CHECK(isolate, MaybeHandle<Object>());
856 Handle<Name> trap_name = isolate->factory()->get_string();
857 // 1. Assert: IsPropertyKey(P) is true.
858 // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
859 Handle<Object> handler(proxy->handler(), isolate);
860 // 3. If handler is null, throw a TypeError exception.
861 // 4. Assert: Type(handler) is Object.
862 if (proxy->IsRevoked()) {
863 THROW_NEW_ERROR(isolate,
864 NewTypeError(MessageTemplate::kProxyRevoked, trap_name),
865 Object);
866 }
867 // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
868 Handle<JSReceiver> target(proxy->target(), isolate);
869 // 6. Let trap be ? GetMethod(handler, "get").
870 Handle<Object> trap;
871 ASSIGN_RETURN_ON_EXCEPTION(
872 isolate, trap,
873 Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name), Object);
874 // 7. If trap is undefined, then
875 if (trap->IsUndefined(isolate)) {
876 // 7.a Return target.[[Get]](P, Receiver).
877 LookupIterator it =
878 LookupIterator::PropertyOrElement(isolate, receiver, name, target);
879 MaybeHandle<Object> result = Object::GetProperty(&it);
880 *was_found = it.IsFound();
881 return result;
882 }
883 // 8. Let trapResult be ? Call(trap, handler, «target, P, Receiver»).
884 Handle<Object> trap_result;
885 Handle<Object> args[] = {target, name, receiver};
886 ASSIGN_RETURN_ON_EXCEPTION(
887 isolate, trap_result,
888 Execution::Call(isolate, trap, handler, arraysize(args), args), Object);
889 // 9. Let targetDesc be ? target.[[GetOwnProperty]](P).
890 PropertyDescriptor target_desc;
891 Maybe<bool> target_found =
892 JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
893 MAYBE_RETURN_NULL(target_found);
894 // 10. If targetDesc is not undefined, then
895 if (target_found.FromJust()) {
896 // 10.a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is
897 // false and targetDesc.[[Writable]] is false, then
898 // 10.a.i. If SameValue(trapResult, targetDesc.[[Value]]) is false,
899 // throw a TypeError exception.
900 bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) &&
901 !target_desc.configurable() &&
902 !target_desc.writable() &&
903 !trap_result->SameValue(*target_desc.value());
904 if (inconsistent) {
905 THROW_NEW_ERROR(
906 isolate, NewTypeError(MessageTemplate::kProxyGetNonConfigurableData,
907 name, target_desc.value(), trap_result),
908 Object);
909 }
910 // 10.b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]]
911 // is false and targetDesc.[[Get]] is undefined, then
912 // 10.b.i. If trapResult is not undefined, throw a TypeError exception.
913 inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) &&
914 !target_desc.configurable() &&
915 target_desc.get()->IsUndefined(isolate) &&
916 !trap_result->IsUndefined(isolate);
917 if (inconsistent) {
918 THROW_NEW_ERROR(
919 isolate,
920 NewTypeError(MessageTemplate::kProxyGetNonConfigurableAccessor, name,
921 trap_result),
922 Object);
923 }
924 }
925 // 11. Return trap_result
926 return trap_result;
927 }
928
929
GetDataProperty(LookupIterator * it)930 Handle<Object> JSReceiver::GetDataProperty(LookupIterator* it) {
931 for (; it->IsFound(); it->Next()) {
932 switch (it->state()) {
933 case LookupIterator::INTERCEPTOR:
934 case LookupIterator::NOT_FOUND:
935 case LookupIterator::TRANSITION:
936 UNREACHABLE();
937 case LookupIterator::ACCESS_CHECK:
938 // Support calling this method without an active context, but refuse
939 // access to access-checked objects in that case.
940 if (it->isolate()->context() != nullptr && it->HasAccess()) continue;
941 // Fall through.
942 case LookupIterator::JSPROXY:
943 it->NotFound();
944 return it->isolate()->factory()->undefined_value();
945 case LookupIterator::ACCESSOR:
946 // TODO(verwaest): For now this doesn't call into AccessorInfo, since
947 // clients don't need it. Update once relevant.
948 it->NotFound();
949 return it->isolate()->factory()->undefined_value();
950 case LookupIterator::INTEGER_INDEXED_EXOTIC:
951 return it->isolate()->factory()->undefined_value();
952 case LookupIterator::DATA:
953 return it->GetDataValue();
954 }
955 }
956 return it->isolate()->factory()->undefined_value();
957 }
958
959
ToInt32(int32_t * value)960 bool Object::ToInt32(int32_t* value) {
961 if (IsSmi()) {
962 *value = Smi::cast(this)->value();
963 return true;
964 }
965 if (IsHeapNumber()) {
966 double num = HeapNumber::cast(this)->value();
967 if (FastI2D(FastD2I(num)) == num) {
968 *value = FastD2I(num);
969 return true;
970 }
971 }
972 return false;
973 }
974
GetOrCreateSharedFunctionInfo(Isolate * isolate,Handle<FunctionTemplateInfo> info)975 Handle<SharedFunctionInfo> FunctionTemplateInfo::GetOrCreateSharedFunctionInfo(
976 Isolate* isolate, Handle<FunctionTemplateInfo> info) {
977 Object* current_info = info->shared_function_info();
978 if (current_info->IsSharedFunctionInfo()) {
979 return handle(SharedFunctionInfo::cast(current_info), isolate);
980 }
981
982 Handle<Object> class_name(info->class_name(), isolate);
983 Handle<String> name = class_name->IsString()
984 ? Handle<String>::cast(class_name)
985 : isolate->factory()->empty_string();
986 Handle<Code> code;
987 if (info->call_code()->IsCallHandlerInfo() &&
988 CallHandlerInfo::cast(info->call_code())->fast_handler()->IsCode()) {
989 code = isolate->builtins()->HandleFastApiCall();
990 } else {
991 code = isolate->builtins()->HandleApiCall();
992 }
993 bool is_constructor = !info->remove_prototype();
994 Handle<SharedFunctionInfo> result =
995 isolate->factory()->NewSharedFunctionInfo(name, code, is_constructor);
996 if (is_constructor) {
997 result->set_construct_stub(*isolate->builtins()->JSConstructStubApi());
998 }
999
1000 result->set_length(info->length());
1001 if (class_name->IsString()) result->set_instance_class_name(*class_name);
1002 result->set_api_func_data(*info);
1003 result->DontAdaptArguments();
1004 DCHECK(result->IsApiFunction());
1005
1006 info->set_shared_function_info(*result);
1007 return result;
1008 }
1009
IsTemplateFor(Map * map)1010 bool FunctionTemplateInfo::IsTemplateFor(Map* map) {
1011 // There is a constraint on the object; check.
1012 if (!map->IsJSObjectMap()) return false;
1013 // Fetch the constructor function of the object.
1014 Object* cons_obj = map->GetConstructor();
1015 if (!cons_obj->IsJSFunction()) return false;
1016 JSFunction* fun = JSFunction::cast(cons_obj);
1017 // Iterate through the chain of inheriting function templates to
1018 // see if the required one occurs.
1019 for (Object* type = fun->shared()->function_data();
1020 type->IsFunctionTemplateInfo();
1021 type = FunctionTemplateInfo::cast(type)->parent_template()) {
1022 if (type == this) return true;
1023 }
1024 // Didn't find the required type in the inheritance chain.
1025 return false;
1026 }
1027
1028
1029 // static
New(Handle<JSFunction> constructor,Handle<JSReceiver> new_target,Handle<AllocationSite> site)1030 MaybeHandle<JSObject> JSObject::New(Handle<JSFunction> constructor,
1031 Handle<JSReceiver> new_target,
1032 Handle<AllocationSite> site) {
1033 // If called through new, new.target can be:
1034 // - a subclass of constructor,
1035 // - a proxy wrapper around constructor, or
1036 // - the constructor itself.
1037 // If called through Reflect.construct, it's guaranteed to be a constructor.
1038 Isolate* const isolate = constructor->GetIsolate();
1039 DCHECK(constructor->IsConstructor());
1040 DCHECK(new_target->IsConstructor());
1041 DCHECK(!constructor->has_initial_map() ||
1042 constructor->initial_map()->instance_type() != JS_FUNCTION_TYPE);
1043
1044 Handle<Map> initial_map;
1045 ASSIGN_RETURN_ON_EXCEPTION(
1046 isolate, initial_map,
1047 JSFunction::GetDerivedMap(isolate, constructor, new_target), JSObject);
1048 Handle<JSObject> result =
1049 isolate->factory()->NewJSObjectFromMap(initial_map, NOT_TENURED, site);
1050 isolate->counters()->constructed_objects()->Increment();
1051 isolate->counters()->constructed_objects_runtime()->Increment();
1052 return result;
1053 }
1054
EnsureWritableFastElements(Handle<JSObject> object)1055 void JSObject::EnsureWritableFastElements(Handle<JSObject> object) {
1056 DCHECK(object->HasFastSmiOrObjectElements() ||
1057 object->HasFastStringWrapperElements());
1058 FixedArray* raw_elems = FixedArray::cast(object->elements());
1059 Heap* heap = object->GetHeap();
1060 if (raw_elems->map() != heap->fixed_cow_array_map()) return;
1061 Isolate* isolate = heap->isolate();
1062 Handle<FixedArray> elems(raw_elems, isolate);
1063 Handle<FixedArray> writable_elems = isolate->factory()->CopyFixedArrayWithMap(
1064 elems, isolate->factory()->fixed_array_map());
1065 object->set_elements(*writable_elems);
1066 isolate->counters()->cow_arrays_converted()->Increment();
1067 }
1068
1069
1070 // ES6 9.5.1
1071 // static
GetPrototype(Handle<JSProxy> proxy)1072 MaybeHandle<Object> JSProxy::GetPrototype(Handle<JSProxy> proxy) {
1073 Isolate* isolate = proxy->GetIsolate();
1074 Handle<String> trap_name = isolate->factory()->getPrototypeOf_string();
1075
1076 STACK_CHECK(isolate, MaybeHandle<Object>());
1077
1078 // 1. Let handler be the value of the [[ProxyHandler]] internal slot.
1079 // 2. If handler is null, throw a TypeError exception.
1080 // 3. Assert: Type(handler) is Object.
1081 // 4. Let target be the value of the [[ProxyTarget]] internal slot.
1082 if (proxy->IsRevoked()) {
1083 THROW_NEW_ERROR(isolate,
1084 NewTypeError(MessageTemplate::kProxyRevoked, trap_name),
1085 Object);
1086 }
1087 Handle<JSReceiver> target(proxy->target(), isolate);
1088 Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
1089
1090 // 5. Let trap be ? GetMethod(handler, "getPrototypeOf").
1091 Handle<Object> trap;
1092 ASSIGN_RETURN_ON_EXCEPTION(isolate, trap, GetMethod(handler, trap_name),
1093 Object);
1094 // 6. If trap is undefined, then return target.[[GetPrototypeOf]]().
1095 if (trap->IsUndefined(isolate)) {
1096 return JSReceiver::GetPrototype(isolate, target);
1097 }
1098 // 7. Let handlerProto be ? Call(trap, handler, «target»).
1099 Handle<Object> argv[] = {target};
1100 Handle<Object> handler_proto;
1101 ASSIGN_RETURN_ON_EXCEPTION(
1102 isolate, handler_proto,
1103 Execution::Call(isolate, trap, handler, arraysize(argv), argv), Object);
1104 // 8. If Type(handlerProto) is neither Object nor Null, throw a TypeError.
1105 if (!(handler_proto->IsJSReceiver() || handler_proto->IsNull(isolate))) {
1106 THROW_NEW_ERROR(isolate,
1107 NewTypeError(MessageTemplate::kProxyGetPrototypeOfInvalid),
1108 Object);
1109 }
1110 // 9. Let extensibleTarget be ? IsExtensible(target).
1111 Maybe<bool> is_extensible = JSReceiver::IsExtensible(target);
1112 MAYBE_RETURN_NULL(is_extensible);
1113 // 10. If extensibleTarget is true, return handlerProto.
1114 if (is_extensible.FromJust()) return handler_proto;
1115 // 11. Let targetProto be ? target.[[GetPrototypeOf]]().
1116 Handle<Object> target_proto;
1117 ASSIGN_RETURN_ON_EXCEPTION(isolate, target_proto,
1118 JSReceiver::GetPrototype(isolate, target), Object);
1119 // 12. If SameValue(handlerProto, targetProto) is false, throw a TypeError.
1120 if (!handler_proto->SameValue(*target_proto)) {
1121 THROW_NEW_ERROR(
1122 isolate,
1123 NewTypeError(MessageTemplate::kProxyGetPrototypeOfNonExtensible),
1124 Object);
1125 }
1126 // 13. Return handlerProto.
1127 return handler_proto;
1128 }
1129
GetPropertyWithAccessor(LookupIterator * it)1130 MaybeHandle<Object> Object::GetPropertyWithAccessor(LookupIterator* it) {
1131 Isolate* isolate = it->isolate();
1132 Handle<Object> structure = it->GetAccessors();
1133 Handle<Object> receiver = it->GetReceiver();
1134
1135 // We should never get here to initialize a const with the hole value since a
1136 // const declaration would conflict with the getter.
1137 DCHECK(!structure->IsForeign());
1138
1139 // API style callbacks.
1140 if (structure->IsAccessorInfo()) {
1141 Handle<JSObject> holder = it->GetHolder<JSObject>();
1142 Handle<Name> name = it->GetName();
1143 Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure);
1144 if (!info->IsCompatibleReceiver(*receiver)) {
1145 THROW_NEW_ERROR(isolate,
1146 NewTypeError(MessageTemplate::kIncompatibleMethodReceiver,
1147 name, receiver),
1148 Object);
1149 }
1150
1151 v8::AccessorNameGetterCallback call_fun =
1152 v8::ToCData<v8::AccessorNameGetterCallback>(info->getter());
1153 if (call_fun == nullptr) return isolate->factory()->undefined_value();
1154
1155 if (info->is_sloppy() && !receiver->IsJSReceiver()) {
1156 ASSIGN_RETURN_ON_EXCEPTION(isolate, receiver,
1157 Object::ConvertReceiver(isolate, receiver),
1158 Object);
1159 }
1160
1161 PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder,
1162 Object::DONT_THROW);
1163 Handle<Object> result = args.Call(call_fun, name);
1164 RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
1165 if (result.is_null()) return ReadAbsentProperty(isolate, receiver, name);
1166 // Rebox handle before return.
1167 return handle(*result, isolate);
1168 }
1169
1170 // Regular accessor.
1171 Handle<Object> getter(AccessorPair::cast(*structure)->getter(), isolate);
1172 if (getter->IsFunctionTemplateInfo()) {
1173 return Builtins::InvokeApiFunction(
1174 isolate, Handle<FunctionTemplateInfo>::cast(getter), receiver, 0,
1175 nullptr);
1176 } else if (getter->IsCallable()) {
1177 // TODO(rossberg): nicer would be to cast to some JSCallable here...
1178 return Object::GetPropertyWithDefinedGetter(
1179 receiver, Handle<JSReceiver>::cast(getter));
1180 }
1181 // Getter is not a function.
1182 return ReadAbsentProperty(isolate, receiver, it->GetName());
1183 }
1184
1185 // static
redirect(Isolate * isolate,Address address,AccessorComponent component)1186 Address AccessorInfo::redirect(Isolate* isolate, Address address,
1187 AccessorComponent component) {
1188 ApiFunction fun(address);
1189 DCHECK_EQ(ACCESSOR_GETTER, component);
1190 ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL;
1191 return ExternalReference(&fun, type, isolate).address();
1192 }
1193
redirected_getter() const1194 Address AccessorInfo::redirected_getter() const {
1195 Address accessor = v8::ToCData<Address>(getter());
1196 if (accessor == nullptr) return nullptr;
1197 return redirect(GetIsolate(), accessor, ACCESSOR_GETTER);
1198 }
1199
IsCompatibleReceiverMap(Isolate * isolate,Handle<AccessorInfo> info,Handle<Map> map)1200 bool AccessorInfo::IsCompatibleReceiverMap(Isolate* isolate,
1201 Handle<AccessorInfo> info,
1202 Handle<Map> map) {
1203 if (!info->HasExpectedReceiverType()) return true;
1204 if (!map->IsJSObjectMap()) return false;
1205 return FunctionTemplateInfo::cast(info->expected_receiver_type())
1206 ->IsTemplateFor(*map);
1207 }
1208
SetPropertyWithAccessor(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)1209 Maybe<bool> Object::SetPropertyWithAccessor(LookupIterator* it,
1210 Handle<Object> value,
1211 ShouldThrow should_throw) {
1212 Isolate* isolate = it->isolate();
1213 Handle<Object> structure = it->GetAccessors();
1214 Handle<Object> receiver = it->GetReceiver();
1215
1216 // We should never get here to initialize a const with the hole value since a
1217 // const declaration would conflict with the setter.
1218 DCHECK(!structure->IsForeign());
1219
1220 // API style callbacks.
1221 if (structure->IsAccessorInfo()) {
1222 Handle<JSObject> holder = it->GetHolder<JSObject>();
1223 Handle<Name> name = it->GetName();
1224 Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure);
1225 if (!info->IsCompatibleReceiver(*receiver)) {
1226 isolate->Throw(*isolate->factory()->NewTypeError(
1227 MessageTemplate::kIncompatibleMethodReceiver, name, receiver));
1228 return Nothing<bool>();
1229 }
1230
1231 v8::AccessorNameSetterCallback call_fun =
1232 v8::ToCData<v8::AccessorNameSetterCallback>(info->setter());
1233 // TODO(verwaest): We should not get here anymore once all AccessorInfos are
1234 // marked as special_data_property. They cannot both be writable and not
1235 // have a setter.
1236 if (call_fun == nullptr) return Just(true);
1237
1238 if (info->is_sloppy() && !receiver->IsJSReceiver()) {
1239 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
1240 isolate, receiver, Object::ConvertReceiver(isolate, receiver),
1241 Nothing<bool>());
1242 }
1243
1244 PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder,
1245 should_throw);
1246 args.Call(call_fun, name, value);
1247 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
1248 return Just(true);
1249 }
1250
1251 // Regular accessor.
1252 Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate);
1253 if (setter->IsFunctionTemplateInfo()) {
1254 Handle<Object> argv[] = {value};
1255 RETURN_ON_EXCEPTION_VALUE(
1256 isolate, Builtins::InvokeApiFunction(
1257 isolate, Handle<FunctionTemplateInfo>::cast(setter),
1258 receiver, arraysize(argv), argv),
1259 Nothing<bool>());
1260 return Just(true);
1261 } else if (setter->IsCallable()) {
1262 // TODO(rossberg): nicer would be to cast to some JSCallable here...
1263 return SetPropertyWithDefinedSetter(
1264 receiver, Handle<JSReceiver>::cast(setter), value, should_throw);
1265 }
1266
1267 RETURN_FAILURE(isolate, should_throw,
1268 NewTypeError(MessageTemplate::kNoSetterInCallback,
1269 it->GetName(), it->GetHolder<JSObject>()));
1270 }
1271
1272
GetPropertyWithDefinedGetter(Handle<Object> receiver,Handle<JSReceiver> getter)1273 MaybeHandle<Object> Object::GetPropertyWithDefinedGetter(
1274 Handle<Object> receiver,
1275 Handle<JSReceiver> getter) {
1276 Isolate* isolate = getter->GetIsolate();
1277
1278 // Platforms with simulators like arm/arm64 expose a funny issue. If the
1279 // simulator has a separate JS stack pointer from the C++ stack pointer, it
1280 // can miss C++ stack overflows in the stack guard at the start of JavaScript
1281 // functions. It would be very expensive to check the C++ stack pointer at
1282 // that location. The best solution seems to be to break the impasse by
1283 // adding checks at possible recursion points. What's more, we don't put
1284 // this stack check behind the USE_SIMULATOR define in order to keep
1285 // behavior the same between hardware and simulators.
1286 StackLimitCheck check(isolate);
1287 if (check.JsHasOverflowed()) {
1288 isolate->StackOverflow();
1289 return MaybeHandle<Object>();
1290 }
1291
1292 return Execution::Call(isolate, getter, receiver, 0, NULL);
1293 }
1294
1295
SetPropertyWithDefinedSetter(Handle<Object> receiver,Handle<JSReceiver> setter,Handle<Object> value,ShouldThrow should_throw)1296 Maybe<bool> Object::SetPropertyWithDefinedSetter(Handle<Object> receiver,
1297 Handle<JSReceiver> setter,
1298 Handle<Object> value,
1299 ShouldThrow should_throw) {
1300 Isolate* isolate = setter->GetIsolate();
1301
1302 Handle<Object> argv[] = { value };
1303 RETURN_ON_EXCEPTION_VALUE(isolate, Execution::Call(isolate, setter, receiver,
1304 arraysize(argv), argv),
1305 Nothing<bool>());
1306 return Just(true);
1307 }
1308
1309
1310 // static
AllCanRead(LookupIterator * it)1311 bool JSObject::AllCanRead(LookupIterator* it) {
1312 // Skip current iteration, it's in state ACCESS_CHECK or INTERCEPTOR, both of
1313 // which have already been checked.
1314 DCHECK(it->state() == LookupIterator::ACCESS_CHECK ||
1315 it->state() == LookupIterator::INTERCEPTOR);
1316 for (it->Next(); it->IsFound(); it->Next()) {
1317 if (it->state() == LookupIterator::ACCESSOR) {
1318 auto accessors = it->GetAccessors();
1319 if (accessors->IsAccessorInfo()) {
1320 if (AccessorInfo::cast(*accessors)->all_can_read()) return true;
1321 }
1322 } else if (it->state() == LookupIterator::INTERCEPTOR) {
1323 if (it->GetInterceptor()->all_can_read()) return true;
1324 } else if (it->state() == LookupIterator::JSPROXY) {
1325 // Stop lookupiterating. And no, AllCanNotRead.
1326 return false;
1327 }
1328 }
1329 return false;
1330 }
1331
1332 namespace {
1333
GetPropertyWithInterceptorInternal(LookupIterator * it,Handle<InterceptorInfo> interceptor,bool * done)1334 MaybeHandle<Object> GetPropertyWithInterceptorInternal(
1335 LookupIterator* it, Handle<InterceptorInfo> interceptor, bool* done) {
1336 *done = false;
1337 Isolate* isolate = it->isolate();
1338 // Make sure that the top context does not change when doing callbacks or
1339 // interceptor calls.
1340 AssertNoContextChange ncc(isolate);
1341
1342 if (interceptor->getter()->IsUndefined(isolate)) {
1343 return isolate->factory()->undefined_value();
1344 }
1345
1346 Handle<JSObject> holder = it->GetHolder<JSObject>();
1347 Handle<Object> result;
1348 Handle<Object> receiver = it->GetReceiver();
1349 if (!receiver->IsJSReceiver()) {
1350 ASSIGN_RETURN_ON_EXCEPTION(
1351 isolate, receiver, Object::ConvertReceiver(isolate, receiver), Object);
1352 }
1353 PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
1354 *holder, Object::DONT_THROW);
1355
1356 if (it->IsElement()) {
1357 uint32_t index = it->index();
1358 v8::IndexedPropertyGetterCallback getter =
1359 v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
1360 result = args.Call(getter, index);
1361 } else {
1362 Handle<Name> name = it->name();
1363 DCHECK(!name->IsPrivate());
1364
1365 if (name->IsSymbol() && !interceptor->can_intercept_symbols()) {
1366 return isolate->factory()->undefined_value();
1367 }
1368
1369 v8::GenericNamedPropertyGetterCallback getter =
1370 v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
1371 interceptor->getter());
1372 result = args.Call(getter, name);
1373 }
1374
1375 RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
1376 if (result.is_null()) return isolate->factory()->undefined_value();
1377 *done = true;
1378 // Rebox handle before return
1379 return handle(*result, isolate);
1380 }
1381
GetPropertyAttributesWithInterceptorInternal(LookupIterator * it,Handle<InterceptorInfo> interceptor)1382 Maybe<PropertyAttributes> GetPropertyAttributesWithInterceptorInternal(
1383 LookupIterator* it, Handle<InterceptorInfo> interceptor) {
1384 Isolate* isolate = it->isolate();
1385 // Make sure that the top context does not change when doing
1386 // callbacks or interceptor calls.
1387 AssertNoContextChange ncc(isolate);
1388 HandleScope scope(isolate);
1389
1390 Handle<JSObject> holder = it->GetHolder<JSObject>();
1391 if (!it->IsElement() && it->name()->IsSymbol() &&
1392 !interceptor->can_intercept_symbols()) {
1393 return Just(ABSENT);
1394 }
1395 Handle<Object> receiver = it->GetReceiver();
1396 if (!receiver->IsJSReceiver()) {
1397 ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
1398 Object::ConvertReceiver(isolate, receiver),
1399 Nothing<PropertyAttributes>());
1400 }
1401 PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
1402 *holder, Object::DONT_THROW);
1403 if (!interceptor->query()->IsUndefined(isolate)) {
1404 Handle<Object> result;
1405 if (it->IsElement()) {
1406 uint32_t index = it->index();
1407 v8::IndexedPropertyQueryCallback query =
1408 v8::ToCData<v8::IndexedPropertyQueryCallback>(interceptor->query());
1409 result = args.Call(query, index);
1410 } else {
1411 Handle<Name> name = it->name();
1412 DCHECK(!name->IsPrivate());
1413 v8::GenericNamedPropertyQueryCallback query =
1414 v8::ToCData<v8::GenericNamedPropertyQueryCallback>(
1415 interceptor->query());
1416 result = args.Call(query, name);
1417 }
1418 if (!result.is_null()) {
1419 int32_t value;
1420 CHECK(result->ToInt32(&value));
1421 return Just(static_cast<PropertyAttributes>(value));
1422 }
1423 } else if (!interceptor->getter()->IsUndefined(isolate)) {
1424 // TODO(verwaest): Use GetPropertyWithInterceptor?
1425 Handle<Object> result;
1426 if (it->IsElement()) {
1427 uint32_t index = it->index();
1428 v8::IndexedPropertyGetterCallback getter =
1429 v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
1430 result = args.Call(getter, index);
1431 } else {
1432 Handle<Name> name = it->name();
1433 DCHECK(!name->IsPrivate());
1434 v8::GenericNamedPropertyGetterCallback getter =
1435 v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
1436 interceptor->getter());
1437 result = args.Call(getter, name);
1438 }
1439 if (!result.is_null()) return Just(DONT_ENUM);
1440 }
1441
1442 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
1443 return Just(ABSENT);
1444 }
1445
SetPropertyWithInterceptorInternal(LookupIterator * it,Handle<InterceptorInfo> interceptor,Object::ShouldThrow should_throw,Handle<Object> value)1446 Maybe<bool> SetPropertyWithInterceptorInternal(
1447 LookupIterator* it, Handle<InterceptorInfo> interceptor,
1448 Object::ShouldThrow should_throw, Handle<Object> value) {
1449 Isolate* isolate = it->isolate();
1450 // Make sure that the top context does not change when doing callbacks or
1451 // interceptor calls.
1452 AssertNoContextChange ncc(isolate);
1453
1454 if (interceptor->setter()->IsUndefined(isolate)) return Just(false);
1455
1456 Handle<JSObject> holder = it->GetHolder<JSObject>();
1457 bool result;
1458 Handle<Object> receiver = it->GetReceiver();
1459 if (!receiver->IsJSReceiver()) {
1460 ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
1461 Object::ConvertReceiver(isolate, receiver),
1462 Nothing<bool>());
1463 }
1464 PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
1465 *holder, should_throw);
1466
1467 if (it->IsElement()) {
1468 uint32_t index = it->index();
1469 v8::IndexedPropertySetterCallback setter =
1470 v8::ToCData<v8::IndexedPropertySetterCallback>(interceptor->setter());
1471 // TODO(neis): In the future, we may want to actually return the
1472 // interceptor's result, which then should be a boolean.
1473 result = !args.Call(setter, index, value).is_null();
1474 } else {
1475 Handle<Name> name = it->name();
1476 DCHECK(!name->IsPrivate());
1477
1478 if (name->IsSymbol() && !interceptor->can_intercept_symbols()) {
1479 return Just(false);
1480 }
1481
1482 v8::GenericNamedPropertySetterCallback setter =
1483 v8::ToCData<v8::GenericNamedPropertySetterCallback>(
1484 interceptor->setter());
1485 result = !args.Call(setter, name, value).is_null();
1486 }
1487
1488 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
1489 return Just(result);
1490 }
1491
1492 } // namespace
1493
GetPropertyWithFailedAccessCheck(LookupIterator * it)1494 MaybeHandle<Object> JSObject::GetPropertyWithFailedAccessCheck(
1495 LookupIterator* it) {
1496 Isolate* isolate = it->isolate();
1497 Handle<JSObject> checked = it->GetHolder<JSObject>();
1498 Handle<InterceptorInfo> interceptor =
1499 it->GetInterceptorForFailedAccessCheck();
1500 if (interceptor.is_null()) {
1501 while (AllCanRead(it)) {
1502 if (it->state() == LookupIterator::ACCESSOR) {
1503 return GetPropertyWithAccessor(it);
1504 }
1505 DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
1506 bool done;
1507 Handle<Object> result;
1508 ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
1509 GetPropertyWithInterceptor(it, &done), Object);
1510 if (done) return result;
1511 }
1512 } else {
1513 MaybeHandle<Object> result;
1514 bool done;
1515 result = GetPropertyWithInterceptorInternal(it, interceptor, &done);
1516 RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
1517 if (done) return result;
1518 }
1519
1520 // Cross-Origin [[Get]] of Well-Known Symbols does not throw, and returns
1521 // undefined.
1522 Handle<Name> name = it->GetName();
1523 if (name->IsSymbol() && Symbol::cast(*name)->is_well_known_symbol()) {
1524 return it->factory()->undefined_value();
1525 }
1526
1527 isolate->ReportFailedAccessCheck(checked);
1528 RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
1529 return it->factory()->undefined_value();
1530 }
1531
1532
GetPropertyAttributesWithFailedAccessCheck(LookupIterator * it)1533 Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithFailedAccessCheck(
1534 LookupIterator* it) {
1535 Isolate* isolate = it->isolate();
1536 Handle<JSObject> checked = it->GetHolder<JSObject>();
1537 Handle<InterceptorInfo> interceptor =
1538 it->GetInterceptorForFailedAccessCheck();
1539 if (interceptor.is_null()) {
1540 while (AllCanRead(it)) {
1541 if (it->state() == LookupIterator::ACCESSOR) {
1542 return Just(it->property_attributes());
1543 }
1544 DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
1545 auto result = GetPropertyAttributesWithInterceptor(it);
1546 if (isolate->has_scheduled_exception()) break;
1547 if (result.IsJust() && result.FromJust() != ABSENT) return result;
1548 }
1549 } else {
1550 Maybe<PropertyAttributes> result =
1551 GetPropertyAttributesWithInterceptorInternal(it, interceptor);
1552 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
1553 if (result.FromMaybe(ABSENT) != ABSENT) return result;
1554 }
1555 isolate->ReportFailedAccessCheck(checked);
1556 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
1557 return Just(ABSENT);
1558 }
1559
1560
1561 // static
AllCanWrite(LookupIterator * it)1562 bool JSObject::AllCanWrite(LookupIterator* it) {
1563 for (; it->IsFound() && it->state() != LookupIterator::JSPROXY; it->Next()) {
1564 if (it->state() == LookupIterator::ACCESSOR) {
1565 Handle<Object> accessors = it->GetAccessors();
1566 if (accessors->IsAccessorInfo()) {
1567 if (AccessorInfo::cast(*accessors)->all_can_write()) return true;
1568 }
1569 }
1570 }
1571 return false;
1572 }
1573
1574
SetPropertyWithFailedAccessCheck(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)1575 Maybe<bool> JSObject::SetPropertyWithFailedAccessCheck(
1576 LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) {
1577 Isolate* isolate = it->isolate();
1578 Handle<JSObject> checked = it->GetHolder<JSObject>();
1579 Handle<InterceptorInfo> interceptor =
1580 it->GetInterceptorForFailedAccessCheck();
1581 if (interceptor.is_null()) {
1582 if (AllCanWrite(it)) {
1583 return SetPropertyWithAccessor(it, value, should_throw);
1584 }
1585 } else {
1586 Maybe<bool> result = SetPropertyWithInterceptorInternal(
1587 it, interceptor, should_throw, value);
1588 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
1589 if (result.IsJust()) return result;
1590 }
1591
1592 isolate->ReportFailedAccessCheck(checked);
1593 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
1594 return Just(true);
1595 }
1596
1597
SetNormalizedProperty(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyDetails details)1598 void JSObject::SetNormalizedProperty(Handle<JSObject> object,
1599 Handle<Name> name,
1600 Handle<Object> value,
1601 PropertyDetails details) {
1602 DCHECK(!object->HasFastProperties());
1603 if (!name->IsUniqueName()) {
1604 name = object->GetIsolate()->factory()->InternalizeString(
1605 Handle<String>::cast(name));
1606 }
1607
1608 if (object->IsJSGlobalObject()) {
1609 Handle<GlobalDictionary> property_dictionary(object->global_dictionary());
1610
1611 int entry = property_dictionary->FindEntry(name);
1612 if (entry == GlobalDictionary::kNotFound) {
1613 Isolate* isolate = object->GetIsolate();
1614 auto cell = isolate->factory()->NewPropertyCell();
1615 cell->set_value(*value);
1616 auto cell_type = value->IsUndefined(isolate)
1617 ? PropertyCellType::kUndefined
1618 : PropertyCellType::kConstant;
1619 details = details.set_cell_type(cell_type);
1620 value = cell;
1621 property_dictionary =
1622 GlobalDictionary::Add(property_dictionary, name, value, details);
1623 object->set_properties(*property_dictionary);
1624 } else {
1625 PropertyCell::UpdateCell(property_dictionary, entry, value, details);
1626 }
1627 } else {
1628 Handle<NameDictionary> property_dictionary(object->property_dictionary());
1629
1630 int entry = property_dictionary->FindEntry(name);
1631 if (entry == NameDictionary::kNotFound) {
1632 property_dictionary =
1633 NameDictionary::Add(property_dictionary, name, value, details);
1634 object->set_properties(*property_dictionary);
1635 } else {
1636 PropertyDetails original_details = property_dictionary->DetailsAt(entry);
1637 int enumeration_index = original_details.dictionary_index();
1638 DCHECK(enumeration_index > 0);
1639 details = details.set_index(enumeration_index);
1640 property_dictionary->SetEntry(entry, name, value, details);
1641 }
1642 }
1643 }
1644
1645 // static
HasInPrototypeChain(Isolate * isolate,Handle<JSReceiver> object,Handle<Object> proto)1646 Maybe<bool> JSReceiver::HasInPrototypeChain(Isolate* isolate,
1647 Handle<JSReceiver> object,
1648 Handle<Object> proto) {
1649 PrototypeIterator iter(isolate, object, kStartAtReceiver);
1650 while (true) {
1651 if (!iter.AdvanceFollowingProxies()) return Nothing<bool>();
1652 if (iter.IsAtEnd()) return Just(false);
1653 if (PrototypeIterator::GetCurrent(iter).is_identical_to(proto)) {
1654 return Just(true);
1655 }
1656 }
1657 }
1658
GetRootMap(Isolate * isolate)1659 Map* Object::GetRootMap(Isolate* isolate) {
1660 DisallowHeapAllocation no_alloc;
1661 if (IsSmi()) {
1662 Context* native_context = isolate->context()->native_context();
1663 return native_context->number_function()->initial_map();
1664 }
1665
1666 // The object is either a number, a string, a symbol, a boolean, a SIMD value,
1667 // a real JS object, or a Harmony proxy.
1668 HeapObject* heap_object = HeapObject::cast(this);
1669 if (heap_object->IsJSReceiver()) {
1670 return heap_object->map();
1671 }
1672 int constructor_function_index =
1673 heap_object->map()->GetConstructorFunctionIndex();
1674 if (constructor_function_index != Map::kNoConstructorFunctionIndex) {
1675 Context* native_context = isolate->context()->native_context();
1676 JSFunction* constructor_function =
1677 JSFunction::cast(native_context->get(constructor_function_index));
1678 return constructor_function->initial_map();
1679 }
1680 return isolate->heap()->null_value()->map();
1681 }
1682
1683 namespace {
1684
1685 // Returns a non-SMI for JSObjects, but returns the hash code for simple
1686 // objects. This avoids a double lookup in the cases where we know we will
1687 // add the hash to the JSObject if it does not already exist.
GetSimpleHash(Object * object)1688 Object* GetSimpleHash(Object* object) {
1689 // The object is either a Smi, a HeapNumber, a name, an odd-ball,
1690 // a SIMD value type, a real JS object, or a Harmony proxy.
1691 if (object->IsSmi()) {
1692 uint32_t hash =
1693 ComputeIntegerHash(Smi::cast(object)->value(), kZeroHashSeed);
1694 return Smi::FromInt(hash & Smi::kMaxValue);
1695 }
1696 if (object->IsHeapNumber()) {
1697 double num = HeapNumber::cast(object)->value();
1698 if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue);
1699 if (i::IsMinusZero(num)) num = 0;
1700 if (IsSmiDouble(num)) {
1701 return Smi::FromInt(FastD2I(num))->GetHash();
1702 }
1703 uint32_t hash = ComputeLongHash(double_to_uint64(num));
1704 return Smi::FromInt(hash & Smi::kMaxValue);
1705 }
1706 if (object->IsName()) {
1707 uint32_t hash = Name::cast(object)->Hash();
1708 return Smi::FromInt(hash);
1709 }
1710 if (object->IsOddball()) {
1711 uint32_t hash = Oddball::cast(object)->to_string()->Hash();
1712 return Smi::FromInt(hash);
1713 }
1714 if (object->IsSimd128Value()) {
1715 uint32_t hash = Simd128Value::cast(object)->Hash();
1716 return Smi::FromInt(hash & Smi::kMaxValue);
1717 }
1718 DCHECK(object->IsJSReceiver());
1719 // Simply return the receiver as it is guaranteed to not be a SMI.
1720 return object;
1721 }
1722
1723 } // namespace
1724
GetHash()1725 Object* Object::GetHash() {
1726 Object* hash = GetSimpleHash(this);
1727 if (hash->IsSmi()) return hash;
1728
1729 DisallowHeapAllocation no_gc;
1730 DCHECK(IsJSReceiver());
1731 JSReceiver* receiver = JSReceiver::cast(this);
1732 Isolate* isolate = receiver->GetIsolate();
1733 return JSReceiver::GetIdentityHash(isolate, handle(receiver, isolate));
1734 }
1735
GetOrCreateHash(Isolate * isolate,Handle<Object> object)1736 Smi* Object::GetOrCreateHash(Isolate* isolate, Handle<Object> object) {
1737 Object* hash = GetSimpleHash(*object);
1738 if (hash->IsSmi()) return Smi::cast(hash);
1739
1740 DCHECK(object->IsJSReceiver());
1741 return JSReceiver::GetOrCreateIdentityHash(isolate,
1742 Handle<JSReceiver>::cast(object));
1743 }
1744
1745
SameValue(Object * other)1746 bool Object::SameValue(Object* other) {
1747 if (other == this) return true;
1748
1749 // The object is either a number, a name, an odd-ball,
1750 // a real JS object, or a Harmony proxy.
1751 if (IsNumber() && other->IsNumber()) {
1752 double this_value = Number();
1753 double other_value = other->Number();
1754 // SameValue(NaN, NaN) is true.
1755 if (this_value != other_value) {
1756 return std::isnan(this_value) && std::isnan(other_value);
1757 }
1758 // SameValue(0.0, -0.0) is false.
1759 return (std::signbit(this_value) == std::signbit(other_value));
1760 }
1761 if (IsString() && other->IsString()) {
1762 return String::cast(this)->Equals(String::cast(other));
1763 }
1764 if (IsFloat32x4() && other->IsFloat32x4()) {
1765 Float32x4* a = Float32x4::cast(this);
1766 Float32x4* b = Float32x4::cast(other);
1767 for (int i = 0; i < 4; i++) {
1768 float x = a->get_lane(i);
1769 float y = b->get_lane(i);
1770 // Implements the ES5 SameValue operation for floating point types.
1771 // http://www.ecma-international.org/ecma-262/6.0/#sec-samevalue
1772 if (x != y && !(std::isnan(x) && std::isnan(y))) return false;
1773 if (std::signbit(x) != std::signbit(y)) return false;
1774 }
1775 return true;
1776 } else if (IsSimd128Value() && other->IsSimd128Value()) {
1777 Simd128Value* a = Simd128Value::cast(this);
1778 Simd128Value* b = Simd128Value::cast(other);
1779 return a->map() == b->map() && a->BitwiseEquals(b);
1780 }
1781 return false;
1782 }
1783
1784
SameValueZero(Object * other)1785 bool Object::SameValueZero(Object* other) {
1786 if (other == this) return true;
1787
1788 // The object is either a number, a name, an odd-ball,
1789 // a real JS object, or a Harmony proxy.
1790 if (IsNumber() && other->IsNumber()) {
1791 double this_value = Number();
1792 double other_value = other->Number();
1793 // +0 == -0 is true
1794 return this_value == other_value ||
1795 (std::isnan(this_value) && std::isnan(other_value));
1796 }
1797 if (IsString() && other->IsString()) {
1798 return String::cast(this)->Equals(String::cast(other));
1799 }
1800 if (IsFloat32x4() && other->IsFloat32x4()) {
1801 Float32x4* a = Float32x4::cast(this);
1802 Float32x4* b = Float32x4::cast(other);
1803 for (int i = 0; i < 4; i++) {
1804 float x = a->get_lane(i);
1805 float y = b->get_lane(i);
1806 // Implements the ES6 SameValueZero operation for floating point types.
1807 // http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero
1808 if (x != y && !(std::isnan(x) && std::isnan(y))) return false;
1809 // SameValueZero doesn't distinguish between 0 and -0.
1810 }
1811 return true;
1812 } else if (IsSimd128Value() && other->IsSimd128Value()) {
1813 Simd128Value* a = Simd128Value::cast(this);
1814 Simd128Value* b = Simd128Value::cast(other);
1815 return a->map() == b->map() && a->BitwiseEquals(b);
1816 }
1817 return false;
1818 }
1819
1820
ArraySpeciesConstructor(Isolate * isolate,Handle<Object> original_array)1821 MaybeHandle<Object> Object::ArraySpeciesConstructor(
1822 Isolate* isolate, Handle<Object> original_array) {
1823 Handle<Object> default_species = isolate->array_function();
1824 if (original_array->IsJSArray() &&
1825 Handle<JSArray>::cast(original_array)->HasArrayPrototype(isolate) &&
1826 isolate->IsArraySpeciesLookupChainIntact()) {
1827 return default_species;
1828 }
1829 Handle<Object> constructor = isolate->factory()->undefined_value();
1830 Maybe<bool> is_array = Object::IsArray(original_array);
1831 MAYBE_RETURN_NULL(is_array);
1832 if (is_array.FromJust()) {
1833 ASSIGN_RETURN_ON_EXCEPTION(
1834 isolate, constructor,
1835 Object::GetProperty(original_array,
1836 isolate->factory()->constructor_string()),
1837 Object);
1838 if (constructor->IsConstructor()) {
1839 Handle<Context> constructor_context;
1840 ASSIGN_RETURN_ON_EXCEPTION(
1841 isolate, constructor_context,
1842 JSReceiver::GetFunctionRealm(Handle<JSReceiver>::cast(constructor)),
1843 Object);
1844 if (*constructor_context != *isolate->native_context() &&
1845 *constructor == constructor_context->array_function()) {
1846 constructor = isolate->factory()->undefined_value();
1847 }
1848 }
1849 if (constructor->IsJSReceiver()) {
1850 ASSIGN_RETURN_ON_EXCEPTION(
1851 isolate, constructor,
1852 JSReceiver::GetProperty(Handle<JSReceiver>::cast(constructor),
1853 isolate->factory()->species_symbol()),
1854 Object);
1855 if (constructor->IsNull(isolate)) {
1856 constructor = isolate->factory()->undefined_value();
1857 }
1858 }
1859 }
1860 if (constructor->IsUndefined(isolate)) {
1861 return default_species;
1862 } else {
1863 if (!constructor->IsConstructor()) {
1864 THROW_NEW_ERROR(isolate,
1865 NewTypeError(MessageTemplate::kSpeciesNotConstructor),
1866 Object);
1867 }
1868 return constructor;
1869 }
1870 }
1871
1872
ShortPrint(FILE * out)1873 void Object::ShortPrint(FILE* out) {
1874 OFStream os(out);
1875 os << Brief(this);
1876 }
1877
1878
ShortPrint(StringStream * accumulator)1879 void Object::ShortPrint(StringStream* accumulator) {
1880 std::ostringstream os;
1881 os << Brief(this);
1882 accumulator->Add(os.str().c_str());
1883 }
1884
1885
ShortPrint(std::ostream & os)1886 void Object::ShortPrint(std::ostream& os) { os << Brief(this); }
1887
1888
operator <<(std::ostream & os,const Brief & v)1889 std::ostream& operator<<(std::ostream& os, const Brief& v) {
1890 if (v.value->IsSmi()) {
1891 Smi::cast(v.value)->SmiPrint(os);
1892 } else {
1893 // TODO(svenpanne) Const-correct HeapObjectShortPrint!
1894 HeapObject* obj = const_cast<HeapObject*>(HeapObject::cast(v.value));
1895 obj->HeapObjectShortPrint(os);
1896 }
1897 return os;
1898 }
1899
1900
SmiPrint(std::ostream & os) const1901 void Smi::SmiPrint(std::ostream& os) const { // NOLINT
1902 os << value();
1903 }
1904
1905
1906 // Should a word be prefixed by 'a' or 'an' in order to read naturally in
1907 // English? Returns false for non-ASCII or words that don't start with
1908 // a capital letter. The a/an rule follows pronunciation in English.
1909 // We don't use the BBC's overcorrect "an historic occasion" though if
1910 // you speak a dialect you may well say "an 'istoric occasion".
AnWord(String * str)1911 static bool AnWord(String* str) {
1912 if (str->length() == 0) return false; // A nothing.
1913 int c0 = str->Get(0);
1914 int c1 = str->length() > 1 ? str->Get(1) : 0;
1915 if (c0 == 'U') {
1916 if (c1 > 'Z') {
1917 return true; // An Umpire, but a UTF8String, a U.
1918 }
1919 } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
1920 return true; // An Ape, an ABCBook.
1921 } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
1922 (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
1923 c0 == 'S' || c0 == 'X')) {
1924 return true; // An MP3File, an M.
1925 }
1926 return false;
1927 }
1928
1929
SlowFlatten(Handle<ConsString> cons,PretenureFlag pretenure)1930 Handle<String> String::SlowFlatten(Handle<ConsString> cons,
1931 PretenureFlag pretenure) {
1932 DCHECK(AllowHeapAllocation::IsAllowed());
1933 DCHECK(cons->second()->length() != 0);
1934 Isolate* isolate = cons->GetIsolate();
1935 int length = cons->length();
1936 PretenureFlag tenure = isolate->heap()->InNewSpace(*cons) ? pretenure
1937 : TENURED;
1938 Handle<SeqString> result;
1939 if (cons->IsOneByteRepresentation()) {
1940 Handle<SeqOneByteString> flat = isolate->factory()->NewRawOneByteString(
1941 length, tenure).ToHandleChecked();
1942 DisallowHeapAllocation no_gc;
1943 WriteToFlat(*cons, flat->GetChars(), 0, length);
1944 result = flat;
1945 } else {
1946 Handle<SeqTwoByteString> flat = isolate->factory()->NewRawTwoByteString(
1947 length, tenure).ToHandleChecked();
1948 DisallowHeapAllocation no_gc;
1949 WriteToFlat(*cons, flat->GetChars(), 0, length);
1950 result = flat;
1951 }
1952 cons->set_first(*result);
1953 cons->set_second(isolate->heap()->empty_string());
1954 DCHECK(result->IsFlat());
1955 return result;
1956 }
1957
1958
1959
MakeExternal(v8::String::ExternalStringResource * resource)1960 bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
1961 // Externalizing twice leaks the external resource, so it's
1962 // prohibited by the API.
1963 DCHECK(!this->IsExternalString());
1964 DCHECK(!resource->IsCompressible());
1965 #ifdef ENABLE_SLOW_DCHECKS
1966 if (FLAG_enable_slow_asserts) {
1967 // Assert that the resource and the string are equivalent.
1968 DCHECK(static_cast<size_t>(this->length()) == resource->length());
1969 ScopedVector<uc16> smart_chars(this->length());
1970 String::WriteToFlat(this, smart_chars.start(), 0, this->length());
1971 DCHECK(memcmp(smart_chars.start(),
1972 resource->data(),
1973 resource->length() * sizeof(smart_chars[0])) == 0);
1974 }
1975 #endif // DEBUG
1976 int size = this->Size(); // Byte size of the original string.
1977 // Abort if size does not allow in-place conversion.
1978 if (size < ExternalString::kShortSize) return false;
1979 Heap* heap = GetHeap();
1980 bool is_one_byte = this->IsOneByteRepresentation();
1981 bool is_internalized = this->IsInternalizedString();
1982
1983 // Morph the string to an external string by replacing the map and
1984 // reinitializing the fields. This won't work if the space the existing
1985 // string occupies is too small for a regular external string.
1986 // Instead, we resort to a short external string instead, omitting
1987 // the field caching the address of the backing store. When we encounter
1988 // short external strings in generated code, we need to bailout to runtime.
1989 Map* new_map;
1990 if (size < ExternalString::kSize) {
1991 new_map = is_internalized
1992 ? (is_one_byte
1993 ? heap->short_external_internalized_string_with_one_byte_data_map()
1994 : heap->short_external_internalized_string_map())
1995 : (is_one_byte ? heap->short_external_string_with_one_byte_data_map()
1996 : heap->short_external_string_map());
1997 } else {
1998 new_map = is_internalized
1999 ? (is_one_byte
2000 ? heap->external_internalized_string_with_one_byte_data_map()
2001 : heap->external_internalized_string_map())
2002 : (is_one_byte ? heap->external_string_with_one_byte_data_map()
2003 : heap->external_string_map());
2004 }
2005
2006 // Byte size of the external String object.
2007 int new_size = this->SizeFromMap(new_map);
2008 heap->CreateFillerObjectAt(this->address() + new_size, size - new_size,
2009 ClearRecordedSlots::kNo);
2010
2011 // We are storing the new map using release store after creating a filler for
2012 // the left-over space to avoid races with the sweeper thread.
2013 this->synchronized_set_map(new_map);
2014
2015 ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
2016 self->set_resource(resource);
2017 if (is_internalized) self->Hash(); // Force regeneration of the hash value.
2018
2019 heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER);
2020 return true;
2021 }
2022
2023
MakeExternal(v8::String::ExternalOneByteStringResource * resource)2024 bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) {
2025 // Externalizing twice leaks the external resource, so it's
2026 // prohibited by the API.
2027 DCHECK(!this->IsExternalString());
2028 DCHECK(!resource->IsCompressible());
2029 #ifdef ENABLE_SLOW_DCHECKS
2030 if (FLAG_enable_slow_asserts) {
2031 // Assert that the resource and the string are equivalent.
2032 DCHECK(static_cast<size_t>(this->length()) == resource->length());
2033 if (this->IsTwoByteRepresentation()) {
2034 ScopedVector<uint16_t> smart_chars(this->length());
2035 String::WriteToFlat(this, smart_chars.start(), 0, this->length());
2036 DCHECK(String::IsOneByte(smart_chars.start(), this->length()));
2037 }
2038 ScopedVector<char> smart_chars(this->length());
2039 String::WriteToFlat(this, smart_chars.start(), 0, this->length());
2040 DCHECK(memcmp(smart_chars.start(),
2041 resource->data(),
2042 resource->length() * sizeof(smart_chars[0])) == 0);
2043 }
2044 #endif // DEBUG
2045 int size = this->Size(); // Byte size of the original string.
2046 // Abort if size does not allow in-place conversion.
2047 if (size < ExternalString::kShortSize) return false;
2048 Heap* heap = GetHeap();
2049 bool is_internalized = this->IsInternalizedString();
2050
2051 // Morph the string to an external string by replacing the map and
2052 // reinitializing the fields. This won't work if the space the existing
2053 // string occupies is too small for a regular external string.
2054 // Instead, we resort to a short external string instead, omitting
2055 // the field caching the address of the backing store. When we encounter
2056 // short external strings in generated code, we need to bailout to runtime.
2057 Map* new_map;
2058 if (size < ExternalString::kSize) {
2059 new_map = is_internalized
2060 ? heap->short_external_one_byte_internalized_string_map()
2061 : heap->short_external_one_byte_string_map();
2062 } else {
2063 new_map = is_internalized
2064 ? heap->external_one_byte_internalized_string_map()
2065 : heap->external_one_byte_string_map();
2066 }
2067
2068 // Byte size of the external String object.
2069 int new_size = this->SizeFromMap(new_map);
2070 heap->CreateFillerObjectAt(this->address() + new_size, size - new_size,
2071 ClearRecordedSlots::kNo);
2072
2073 // We are storing the new map using release store after creating a filler for
2074 // the left-over space to avoid races with the sweeper thread.
2075 this->synchronized_set_map(new_map);
2076
2077 ExternalOneByteString* self = ExternalOneByteString::cast(this);
2078 self->set_resource(resource);
2079 if (is_internalized) self->Hash(); // Force regeneration of the hash value.
2080
2081 heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER);
2082 return true;
2083 }
2084
StringShortPrint(StringStream * accumulator,bool show_details)2085 void String::StringShortPrint(StringStream* accumulator, bool show_details) {
2086 int len = length();
2087 if (len > kMaxShortPrintLength) {
2088 accumulator->Add("<Very long string[%u]>", len);
2089 return;
2090 }
2091
2092 if (!LooksValid()) {
2093 accumulator->Add("<Invalid String>");
2094 return;
2095 }
2096
2097 StringCharacterStream stream(this);
2098
2099 bool truncated = false;
2100 if (len > kMaxShortPrintLength) {
2101 len = kMaxShortPrintLength;
2102 truncated = true;
2103 }
2104 bool one_byte = true;
2105 for (int i = 0; i < len; i++) {
2106 uint16_t c = stream.GetNext();
2107
2108 if (c < 32 || c >= 127) {
2109 one_byte = false;
2110 }
2111 }
2112 stream.Reset(this);
2113 if (one_byte) {
2114 if (show_details) accumulator->Add("<String[%u]: ", length());
2115 for (int i = 0; i < len; i++) {
2116 accumulator->Put(static_cast<char>(stream.GetNext()));
2117 }
2118 if (show_details) accumulator->Put('>');
2119 } else {
2120 // Backslash indicates that the string contains control
2121 // characters and that backslashes are therefore escaped.
2122 if (show_details) accumulator->Add("<String[%u]\\: ", length());
2123 for (int i = 0; i < len; i++) {
2124 uint16_t c = stream.GetNext();
2125 if (c == '\n') {
2126 accumulator->Add("\\n");
2127 } else if (c == '\r') {
2128 accumulator->Add("\\r");
2129 } else if (c == '\\') {
2130 accumulator->Add("\\\\");
2131 } else if (c < 32 || c > 126) {
2132 accumulator->Add("\\x%02x", c);
2133 } else {
2134 accumulator->Put(static_cast<char>(c));
2135 }
2136 }
2137 if (truncated) {
2138 accumulator->Put('.');
2139 accumulator->Put('.');
2140 accumulator->Put('.');
2141 }
2142 if (show_details) accumulator->Put('>');
2143 }
2144 return;
2145 }
2146
2147
PrintUC16(std::ostream & os,int start,int end)2148 void String::PrintUC16(std::ostream& os, int start, int end) { // NOLINT
2149 if (end < 0) end = length();
2150 StringCharacterStream stream(this, start);
2151 for (int i = start; i < end && stream.HasMore(); i++) {
2152 os << AsUC16(stream.GetNext());
2153 }
2154 }
2155
2156
JSObjectShortPrint(StringStream * accumulator)2157 void JSObject::JSObjectShortPrint(StringStream* accumulator) {
2158 switch (map()->instance_type()) {
2159 case JS_ARRAY_TYPE: {
2160 double length = JSArray::cast(this)->length()->IsUndefined(GetIsolate())
2161 ? 0
2162 : JSArray::cast(this)->length()->Number();
2163 accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length));
2164 break;
2165 }
2166 case JS_BOUND_FUNCTION_TYPE: {
2167 JSBoundFunction* bound_function = JSBoundFunction::cast(this);
2168 accumulator->Add("<JS BoundFunction");
2169 accumulator->Add(
2170 " (BoundTargetFunction %p)>",
2171 reinterpret_cast<void*>(bound_function->bound_target_function()));
2172 break;
2173 }
2174 case JS_WEAK_MAP_TYPE: {
2175 accumulator->Add("<JS WeakMap>");
2176 break;
2177 }
2178 case JS_WEAK_SET_TYPE: {
2179 accumulator->Add("<JS WeakSet>");
2180 break;
2181 }
2182 case JS_REGEXP_TYPE: {
2183 accumulator->Add("<JS RegExp>");
2184 break;
2185 }
2186 case JS_FUNCTION_TYPE: {
2187 JSFunction* function = JSFunction::cast(this);
2188 Object* fun_name = function->shared()->DebugName();
2189 bool printed = false;
2190 if (fun_name->IsString()) {
2191 String* str = String::cast(fun_name);
2192 if (str->length() > 0) {
2193 accumulator->Add("<JS Function ");
2194 accumulator->Put(str);
2195 printed = true;
2196 }
2197 }
2198 if (!printed) {
2199 accumulator->Add("<JS Function");
2200 }
2201 if (FLAG_trace_file_names) {
2202 Object* source_name =
2203 Script::cast(function->shared()->script())->name();
2204 if (source_name->IsString()) {
2205 String* str = String::cast(source_name);
2206 if (str->length() > 0) {
2207 accumulator->Add(" <");
2208 accumulator->Put(str);
2209 accumulator->Add(">");
2210 }
2211 }
2212 }
2213 accumulator->Add(" (SharedFunctionInfo %p)",
2214 reinterpret_cast<void*>(function->shared()));
2215 accumulator->Put('>');
2216 break;
2217 }
2218 case JS_GENERATOR_OBJECT_TYPE: {
2219 accumulator->Add("<JS Generator>");
2220 break;
2221 }
2222 case JS_MODULE_TYPE: {
2223 accumulator->Add("<JS Module>");
2224 break;
2225 }
2226 // All other JSObjects are rather similar to each other (JSObject,
2227 // JSGlobalProxy, JSGlobalObject, JSUndetectable, JSValue).
2228 default: {
2229 Map* map_of_this = map();
2230 Heap* heap = GetHeap();
2231 Object* constructor = map_of_this->GetConstructor();
2232 bool printed = false;
2233 if (constructor->IsHeapObject() &&
2234 !heap->Contains(HeapObject::cast(constructor))) {
2235 accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
2236 } else {
2237 bool global_object = IsJSGlobalProxy();
2238 if (constructor->IsJSFunction()) {
2239 if (!heap->Contains(JSFunction::cast(constructor)->shared())) {
2240 accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
2241 } else {
2242 Object* constructor_name =
2243 JSFunction::cast(constructor)->shared()->name();
2244 if (constructor_name->IsString()) {
2245 String* str = String::cast(constructor_name);
2246 if (str->length() > 0) {
2247 bool vowel = AnWord(str);
2248 accumulator->Add("<%sa%s ",
2249 global_object ? "Global Object: " : "",
2250 vowel ? "n" : "");
2251 accumulator->Put(str);
2252 accumulator->Add(" with %smap %p",
2253 map_of_this->is_deprecated() ? "deprecated " : "",
2254 map_of_this);
2255 printed = true;
2256 }
2257 }
2258 }
2259 }
2260 if (!printed) {
2261 accumulator->Add("<JS %sObject", global_object ? "Global " : "");
2262 }
2263 }
2264 if (IsJSValue()) {
2265 accumulator->Add(" value = ");
2266 JSValue::cast(this)->value()->ShortPrint(accumulator);
2267 }
2268 accumulator->Put('>');
2269 break;
2270 }
2271 }
2272 }
2273
2274
PrintElementsTransition(FILE * file,Handle<JSObject> object,ElementsKind from_kind,Handle<FixedArrayBase> from_elements,ElementsKind to_kind,Handle<FixedArrayBase> to_elements)2275 void JSObject::PrintElementsTransition(
2276 FILE* file, Handle<JSObject> object,
2277 ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
2278 ElementsKind to_kind, Handle<FixedArrayBase> to_elements) {
2279 if (from_kind != to_kind) {
2280 OFStream os(file);
2281 os << "elements transition [" << ElementsKindToString(from_kind) << " -> "
2282 << ElementsKindToString(to_kind) << "] in ";
2283 JavaScriptFrame::PrintTop(object->GetIsolate(), file, false, true);
2284 PrintF(file, " for ");
2285 object->ShortPrint(file);
2286 PrintF(file, " from ");
2287 from_elements->ShortPrint(file);
2288 PrintF(file, " to ");
2289 to_elements->ShortPrint(file);
2290 PrintF(file, "\n");
2291 }
2292 }
2293
2294
2295 // static
GetConstructorFunction(Handle<Map> map,Handle<Context> native_context)2296 MaybeHandle<JSFunction> Map::GetConstructorFunction(
2297 Handle<Map> map, Handle<Context> native_context) {
2298 if (map->IsPrimitiveMap()) {
2299 int const constructor_function_index = map->GetConstructorFunctionIndex();
2300 if (constructor_function_index != kNoConstructorFunctionIndex) {
2301 return handle(
2302 JSFunction::cast(native_context->get(constructor_function_index)));
2303 }
2304 }
2305 return MaybeHandle<JSFunction>();
2306 }
2307
2308
PrintReconfiguration(FILE * file,int modify_index,PropertyKind kind,PropertyAttributes attributes)2309 void Map::PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
2310 PropertyAttributes attributes) {
2311 OFStream os(file);
2312 os << "[reconfiguring]";
2313 Name* name = instance_descriptors()->GetKey(modify_index);
2314 if (name->IsString()) {
2315 String::cast(name)->PrintOn(file);
2316 } else {
2317 os << "{symbol " << static_cast<void*>(name) << "}";
2318 }
2319 os << ": " << (kind == kData ? "kData" : "ACCESSORS") << ", attrs: ";
2320 os << attributes << " [";
2321 JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
2322 os << "]\n";
2323 }
2324
PrintGeneralization(FILE * file,const char * reason,int modify_index,int split,int descriptors,bool constant_to_field,Representation old_representation,Representation new_representation,MaybeHandle<FieldType> old_field_type,MaybeHandle<Object> old_value,MaybeHandle<FieldType> new_field_type,MaybeHandle<Object> new_value)2325 void Map::PrintGeneralization(
2326 FILE* file, const char* reason, int modify_index, int split,
2327 int descriptors, bool constant_to_field, Representation old_representation,
2328 Representation new_representation, MaybeHandle<FieldType> old_field_type,
2329 MaybeHandle<Object> old_value, MaybeHandle<FieldType> new_field_type,
2330 MaybeHandle<Object> new_value) {
2331 OFStream os(file);
2332 os << "[generalizing]";
2333 Name* name = instance_descriptors()->GetKey(modify_index);
2334 if (name->IsString()) {
2335 String::cast(name)->PrintOn(file);
2336 } else {
2337 os << "{symbol " << static_cast<void*>(name) << "}";
2338 }
2339 os << ":";
2340 if (constant_to_field) {
2341 os << "c";
2342 } else {
2343 os << old_representation.Mnemonic() << "{";
2344 if (old_field_type.is_null()) {
2345 os << Brief(*(old_value.ToHandleChecked()));
2346 } else {
2347 old_field_type.ToHandleChecked()->PrintTo(os);
2348 }
2349 os << "}";
2350 }
2351 os << "->" << new_representation.Mnemonic() << "{";
2352 if (new_field_type.is_null()) {
2353 os << Brief(*(new_value.ToHandleChecked()));
2354 } else {
2355 new_field_type.ToHandleChecked()->PrintTo(os);
2356 }
2357 os << "} (";
2358 if (strlen(reason) > 0) {
2359 os << reason;
2360 } else {
2361 os << "+" << (descriptors - split) << " maps";
2362 }
2363 os << ") [";
2364 JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
2365 os << "]\n";
2366 }
2367
2368
PrintInstanceMigration(FILE * file,Map * original_map,Map * new_map)2369 void JSObject::PrintInstanceMigration(FILE* file,
2370 Map* original_map,
2371 Map* new_map) {
2372 PrintF(file, "[migrating]");
2373 DescriptorArray* o = original_map->instance_descriptors();
2374 DescriptorArray* n = new_map->instance_descriptors();
2375 for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) {
2376 Representation o_r = o->GetDetails(i).representation();
2377 Representation n_r = n->GetDetails(i).representation();
2378 if (!o_r.Equals(n_r)) {
2379 String::cast(o->GetKey(i))->PrintOn(file);
2380 PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic());
2381 } else if (o->GetDetails(i).type() == DATA_CONSTANT &&
2382 n->GetDetails(i).type() == DATA) {
2383 Name* name = o->GetKey(i);
2384 if (name->IsString()) {
2385 String::cast(name)->PrintOn(file);
2386 } else {
2387 PrintF(file, "{symbol %p}", static_cast<void*>(name));
2388 }
2389 PrintF(file, " ");
2390 }
2391 }
2392 PrintF(file, "\n");
2393 }
2394
2395
HeapObjectShortPrint(std::ostream & os)2396 void HeapObject::HeapObjectShortPrint(std::ostream& os) { // NOLINT
2397 Heap* heap = GetHeap();
2398 Isolate* isolate = heap->isolate();
2399 if (!heap->Contains(this)) {
2400 os << "!!!INVALID POINTER!!!";
2401 return;
2402 }
2403 if (!heap->Contains(map())) {
2404 os << "!!!INVALID MAP!!!";
2405 return;
2406 }
2407
2408 os << this << " ";
2409
2410 if (IsString()) {
2411 HeapStringAllocator allocator;
2412 StringStream accumulator(&allocator);
2413 String::cast(this)->StringShortPrint(&accumulator);
2414 os << accumulator.ToCString().get();
2415 return;
2416 }
2417 if (IsJSObject()) {
2418 HeapStringAllocator allocator;
2419 StringStream accumulator(&allocator);
2420 JSObject::cast(this)->JSObjectShortPrint(&accumulator);
2421 os << accumulator.ToCString().get();
2422 return;
2423 }
2424 switch (map()->instance_type()) {
2425 case MAP_TYPE:
2426 os << "<Map(" << ElementsKindToString(Map::cast(this)->elements_kind())
2427 << ")>";
2428 break;
2429 case FIXED_ARRAY_TYPE:
2430 os << "<FixedArray[" << FixedArray::cast(this)->length() << "]>";
2431 break;
2432 case FIXED_DOUBLE_ARRAY_TYPE:
2433 os << "<FixedDoubleArray[" << FixedDoubleArray::cast(this)->length()
2434 << "]>";
2435 break;
2436 case BYTE_ARRAY_TYPE:
2437 os << "<ByteArray[" << ByteArray::cast(this)->length() << "]>";
2438 break;
2439 case BYTECODE_ARRAY_TYPE:
2440 os << "<BytecodeArray[" << BytecodeArray::cast(this)->length() << "]>";
2441 break;
2442 case TRANSITION_ARRAY_TYPE:
2443 os << "<TransitionArray[" << TransitionArray::cast(this)->length()
2444 << "]>";
2445 break;
2446 case FREE_SPACE_TYPE:
2447 os << "<FreeSpace[" << FreeSpace::cast(this)->size() << "]>";
2448 break;
2449 #define TYPED_ARRAY_SHORT_PRINT(Type, type, TYPE, ctype, size) \
2450 case FIXED_##TYPE##_ARRAY_TYPE: \
2451 os << "<Fixed" #Type "Array[" << Fixed##Type##Array::cast(this)->length() \
2452 << "]>"; \
2453 break;
2454
2455 TYPED_ARRAYS(TYPED_ARRAY_SHORT_PRINT)
2456 #undef TYPED_ARRAY_SHORT_PRINT
2457
2458 case SHARED_FUNCTION_INFO_TYPE: {
2459 SharedFunctionInfo* shared = SharedFunctionInfo::cast(this);
2460 base::SmartArrayPointer<char> debug_name =
2461 shared->DebugName()->ToCString();
2462 if (debug_name[0] != 0) {
2463 os << "<SharedFunctionInfo " << debug_name.get() << ">";
2464 } else {
2465 os << "<SharedFunctionInfo>";
2466 }
2467 break;
2468 }
2469 case JS_MESSAGE_OBJECT_TYPE:
2470 os << "<JSMessageObject>";
2471 break;
2472 #define MAKE_STRUCT_CASE(NAME, Name, name) \
2473 case NAME##_TYPE: \
2474 os << "<" #Name ">"; \
2475 break;
2476 STRUCT_LIST(MAKE_STRUCT_CASE)
2477 #undef MAKE_STRUCT_CASE
2478 case CODE_TYPE: {
2479 Code* code = Code::cast(this);
2480 os << "<Code: " << Code::Kind2String(code->kind()) << ">";
2481 break;
2482 }
2483 case ODDBALL_TYPE: {
2484 if (IsUndefined(isolate)) {
2485 os << "<undefined>";
2486 } else if (IsTheHole(isolate)) {
2487 os << "<the hole>";
2488 } else if (IsNull(isolate)) {
2489 os << "<null>";
2490 } else if (IsTrue(isolate)) {
2491 os << "<true>";
2492 } else if (IsFalse(isolate)) {
2493 os << "<false>";
2494 } else {
2495 os << "<Odd Oddball: ";
2496 os << Oddball::cast(this)->to_string()->ToCString().get();
2497 os << ">";
2498 }
2499 break;
2500 }
2501 case SYMBOL_TYPE: {
2502 Symbol* symbol = Symbol::cast(this);
2503 symbol->SymbolShortPrint(os);
2504 break;
2505 }
2506 case HEAP_NUMBER_TYPE: {
2507 os << "<Number: ";
2508 HeapNumber::cast(this)->HeapNumberPrint(os);
2509 os << ">";
2510 break;
2511 }
2512 case MUTABLE_HEAP_NUMBER_TYPE: {
2513 os << "<MutableNumber: ";
2514 HeapNumber::cast(this)->HeapNumberPrint(os);
2515 os << '>';
2516 break;
2517 }
2518 case SIMD128_VALUE_TYPE: {
2519 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
2520 if (Is##Type()) { \
2521 os << "<" #Type ">"; \
2522 break; \
2523 }
2524 SIMD128_TYPES(SIMD128_TYPE)
2525 #undef SIMD128_TYPE
2526 UNREACHABLE();
2527 break;
2528 }
2529 case JS_PROXY_TYPE:
2530 os << "<JSProxy>";
2531 break;
2532 case FOREIGN_TYPE:
2533 os << "<Foreign>";
2534 break;
2535 case CELL_TYPE: {
2536 os << "Cell for ";
2537 HeapStringAllocator allocator;
2538 StringStream accumulator(&allocator);
2539 Cell::cast(this)->value()->ShortPrint(&accumulator);
2540 os << accumulator.ToCString().get();
2541 break;
2542 }
2543 case PROPERTY_CELL_TYPE: {
2544 os << "PropertyCell for ";
2545 HeapStringAllocator allocator;
2546 StringStream accumulator(&allocator);
2547 PropertyCell* cell = PropertyCell::cast(this);
2548 cell->value()->ShortPrint(&accumulator);
2549 os << accumulator.ToCString().get();
2550 break;
2551 }
2552 case WEAK_CELL_TYPE: {
2553 os << "WeakCell for ";
2554 HeapStringAllocator allocator;
2555 StringStream accumulator(&allocator);
2556 WeakCell::cast(this)->value()->ShortPrint(&accumulator);
2557 os << accumulator.ToCString().get();
2558 break;
2559 }
2560 default:
2561 os << "<Other heap object (" << map()->instance_type() << ")>";
2562 break;
2563 }
2564 }
2565
2566
Iterate(ObjectVisitor * v)2567 void HeapObject::Iterate(ObjectVisitor* v) { IterateFast<ObjectVisitor>(v); }
2568
2569
IterateBody(ObjectVisitor * v)2570 void HeapObject::IterateBody(ObjectVisitor* v) {
2571 Map* m = map();
2572 IterateBodyFast<ObjectVisitor>(m->instance_type(), SizeFromMap(m), v);
2573 }
2574
2575
IterateBody(InstanceType type,int object_size,ObjectVisitor * v)2576 void HeapObject::IterateBody(InstanceType type, int object_size,
2577 ObjectVisitor* v) {
2578 IterateBodyFast<ObjectVisitor>(type, object_size, v);
2579 }
2580
2581
2582 struct CallIsValidSlot {
2583 template <typename BodyDescriptor>
applyv8::internal::CallIsValidSlot2584 static bool apply(HeapObject* obj, int offset, int) {
2585 return BodyDescriptor::IsValidSlot(obj, offset);
2586 }
2587 };
2588
2589
IsValidSlot(int offset)2590 bool HeapObject::IsValidSlot(int offset) {
2591 DCHECK_NE(0, offset);
2592 return BodyDescriptorApply<CallIsValidSlot, bool>(map()->instance_type(),
2593 this, offset, 0);
2594 }
2595
2596
HeapNumberBooleanValue()2597 bool HeapNumber::HeapNumberBooleanValue() {
2598 return DoubleToBoolean(value());
2599 }
2600
2601
HeapNumberPrint(std::ostream & os)2602 void HeapNumber::HeapNumberPrint(std::ostream& os) { // NOLINT
2603 os << value();
2604 }
2605
2606
2607 #define FIELD_ADDR_CONST(p, offset) \
2608 (reinterpret_cast<const byte*>(p) + offset - kHeapObjectTag)
2609
2610 #define READ_INT32_FIELD(p, offset) \
2611 (*reinterpret_cast<const int32_t*>(FIELD_ADDR_CONST(p, offset)))
2612
2613 #define READ_INT64_FIELD(p, offset) \
2614 (*reinterpret_cast<const int64_t*>(FIELD_ADDR_CONST(p, offset)))
2615
2616 #define READ_BYTE_FIELD(p, offset) \
2617 (*reinterpret_cast<const byte*>(FIELD_ADDR_CONST(p, offset)))
2618
2619
2620 // static
ToString(Handle<Simd128Value> input)2621 Handle<String> Simd128Value::ToString(Handle<Simd128Value> input) {
2622 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
2623 if (input->Is##Type()) return Type::ToString(Handle<Type>::cast(input));
2624 SIMD128_TYPES(SIMD128_TYPE)
2625 #undef SIMD128_TYPE
2626 UNREACHABLE();
2627 return Handle<String>::null();
2628 }
2629
2630
2631 // static
ToString(Handle<Float32x4> input)2632 Handle<String> Float32x4::ToString(Handle<Float32x4> input) {
2633 Isolate* const isolate = input->GetIsolate();
2634 char arr[100];
2635 Vector<char> buffer(arr, arraysize(arr));
2636 std::ostringstream os;
2637 os << "SIMD.Float32x4("
2638 << std::string(DoubleToCString(input->get_lane(0), buffer)) << ", "
2639 << std::string(DoubleToCString(input->get_lane(1), buffer)) << ", "
2640 << std::string(DoubleToCString(input->get_lane(2), buffer)) << ", "
2641 << std::string(DoubleToCString(input->get_lane(3), buffer)) << ")";
2642 return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str());
2643 }
2644
2645
2646 #define SIMD128_BOOL_TO_STRING(Type, lane_count) \
2647 Handle<String> Type::ToString(Handle<Type> input) { \
2648 Isolate* const isolate = input->GetIsolate(); \
2649 std::ostringstream os; \
2650 os << "SIMD." #Type "("; \
2651 os << (input->get_lane(0) ? "true" : "false"); \
2652 for (int i = 1; i < lane_count; i++) { \
2653 os << ", " << (input->get_lane(i) ? "true" : "false"); \
2654 } \
2655 os << ")"; \
2656 return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \
2657 }
2658 SIMD128_BOOL_TO_STRING(Bool32x4, 4)
2659 SIMD128_BOOL_TO_STRING(Bool16x8, 8)
2660 SIMD128_BOOL_TO_STRING(Bool8x16, 16)
2661 #undef SIMD128_BOOL_TO_STRING
2662
2663
2664 #define SIMD128_INT_TO_STRING(Type, lane_count) \
2665 Handle<String> Type::ToString(Handle<Type> input) { \
2666 Isolate* const isolate = input->GetIsolate(); \
2667 char arr[100]; \
2668 Vector<char> buffer(arr, arraysize(arr)); \
2669 std::ostringstream os; \
2670 os << "SIMD." #Type "("; \
2671 os << IntToCString(input->get_lane(0), buffer); \
2672 for (int i = 1; i < lane_count; i++) { \
2673 os << ", " << IntToCString(input->get_lane(i), buffer); \
2674 } \
2675 os << ")"; \
2676 return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \
2677 }
2678 SIMD128_INT_TO_STRING(Int32x4, 4)
2679 SIMD128_INT_TO_STRING(Uint32x4, 4)
2680 SIMD128_INT_TO_STRING(Int16x8, 8)
2681 SIMD128_INT_TO_STRING(Uint16x8, 8)
2682 SIMD128_INT_TO_STRING(Int8x16, 16)
2683 SIMD128_INT_TO_STRING(Uint8x16, 16)
2684 #undef SIMD128_INT_TO_STRING
2685
2686
BitwiseEquals(const Simd128Value * other) const2687 bool Simd128Value::BitwiseEquals(const Simd128Value* other) const {
2688 return READ_INT64_FIELD(this, kValueOffset) ==
2689 READ_INT64_FIELD(other, kValueOffset) &&
2690 READ_INT64_FIELD(this, kValueOffset + kInt64Size) ==
2691 READ_INT64_FIELD(other, kValueOffset + kInt64Size);
2692 }
2693
2694
Hash() const2695 uint32_t Simd128Value::Hash() const {
2696 uint32_t seed = v8::internal::kZeroHashSeed;
2697 uint32_t hash;
2698 hash = ComputeIntegerHash(READ_INT32_FIELD(this, kValueOffset), seed);
2699 hash = ComputeIntegerHash(
2700 READ_INT32_FIELD(this, kValueOffset + 1 * kInt32Size), hash * 31);
2701 hash = ComputeIntegerHash(
2702 READ_INT32_FIELD(this, kValueOffset + 2 * kInt32Size), hash * 31);
2703 hash = ComputeIntegerHash(
2704 READ_INT32_FIELD(this, kValueOffset + 3 * kInt32Size), hash * 31);
2705 return hash;
2706 }
2707
2708
CopyBits(void * destination) const2709 void Simd128Value::CopyBits(void* destination) const {
2710 memcpy(destination, &READ_BYTE_FIELD(this, kValueOffset), kSimd128Size);
2711 }
2712
2713
class_name()2714 String* JSReceiver::class_name() {
2715 if (IsFunction()) {
2716 return GetHeap()->Function_string();
2717 }
2718 Object* maybe_constructor = map()->GetConstructor();
2719 if (maybe_constructor->IsJSFunction()) {
2720 JSFunction* constructor = JSFunction::cast(maybe_constructor);
2721 return String::cast(constructor->shared()->instance_class_name());
2722 }
2723 // If the constructor is not present, return "Object".
2724 return GetHeap()->Object_string();
2725 }
2726
2727
2728 // static
GetConstructorName(Handle<JSReceiver> receiver)2729 Handle<String> JSReceiver::GetConstructorName(Handle<JSReceiver> receiver) {
2730 Isolate* isolate = receiver->GetIsolate();
2731
2732 // If the object was instantiated simply with base == new.target, the
2733 // constructor on the map provides the most accurate name.
2734 // Don't provide the info for prototypes, since their constructors are
2735 // reclaimed and replaced by Object in OptimizeAsPrototype.
2736 if (!receiver->IsJSProxy() && receiver->map()->new_target_is_base() &&
2737 !receiver->map()->is_prototype_map()) {
2738 Object* maybe_constructor = receiver->map()->GetConstructor();
2739 if (maybe_constructor->IsJSFunction()) {
2740 JSFunction* constructor = JSFunction::cast(maybe_constructor);
2741 String* name = String::cast(constructor->shared()->name());
2742 if (name->length() == 0) name = constructor->shared()->inferred_name();
2743 if (name->length() != 0 &&
2744 !name->Equals(isolate->heap()->Object_string())) {
2745 return handle(name, isolate);
2746 }
2747 }
2748 }
2749
2750 Handle<Object> maybe_tag = JSReceiver::GetDataProperty(
2751 receiver, isolate->factory()->to_string_tag_symbol());
2752 if (maybe_tag->IsString()) return Handle<String>::cast(maybe_tag);
2753
2754 PrototypeIterator iter(isolate, receiver);
2755 if (iter.IsAtEnd()) return handle(receiver->class_name());
2756 Handle<JSReceiver> start = PrototypeIterator::GetCurrent<JSReceiver>(iter);
2757 LookupIterator it(receiver, isolate->factory()->constructor_string(), start,
2758 LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
2759 Handle<Object> maybe_constructor = JSReceiver::GetDataProperty(&it);
2760 Handle<String> result = isolate->factory()->Object_string();
2761 if (maybe_constructor->IsJSFunction()) {
2762 JSFunction* constructor = JSFunction::cast(*maybe_constructor);
2763 String* name = String::cast(constructor->shared()->name());
2764 if (name->length() == 0) name = constructor->shared()->inferred_name();
2765 if (name->length() > 0) result = handle(name, isolate);
2766 }
2767
2768 return result.is_identical_to(isolate->factory()->Object_string())
2769 ? handle(receiver->class_name())
2770 : result;
2771 }
2772
2773
GetCreationContext()2774 Context* JSReceiver::GetCreationContext() {
2775 JSReceiver* receiver = this;
2776 while (receiver->IsJSBoundFunction()) {
2777 receiver = JSBoundFunction::cast(receiver)->bound_target_function();
2778 }
2779 Object* constructor = receiver->map()->GetConstructor();
2780 JSFunction* function;
2781 if (constructor->IsJSFunction()) {
2782 function = JSFunction::cast(constructor);
2783 } else {
2784 // Functions have null as a constructor,
2785 // but any JSFunction knows its context immediately.
2786 CHECK(receiver->IsJSFunction());
2787 function = JSFunction::cast(receiver);
2788 }
2789
2790 return function->context()->native_context();
2791 }
2792
WrapType(Handle<FieldType> type)2793 static Handle<Object> WrapType(Handle<FieldType> type) {
2794 if (type->IsClass()) return Map::WeakCellForMap(type->AsClass());
2795 return type;
2796 }
2797
CopyWithField(Handle<Map> map,Handle<Name> name,Handle<FieldType> type,PropertyAttributes attributes,Representation representation,TransitionFlag flag)2798 MaybeHandle<Map> Map::CopyWithField(Handle<Map> map, Handle<Name> name,
2799 Handle<FieldType> type,
2800 PropertyAttributes attributes,
2801 Representation representation,
2802 TransitionFlag flag) {
2803 DCHECK(DescriptorArray::kNotFound ==
2804 map->instance_descriptors()->Search(
2805 *name, map->NumberOfOwnDescriptors()));
2806
2807 // Ensure the descriptor array does not get too big.
2808 if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) {
2809 return MaybeHandle<Map>();
2810 }
2811
2812 Isolate* isolate = map->GetIsolate();
2813
2814 // Compute the new index for new field.
2815 int index = map->NextFreePropertyIndex();
2816
2817 if (map->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE) {
2818 representation = Representation::Tagged();
2819 type = FieldType::Any(isolate);
2820 }
2821
2822 Handle<Object> wrapped_type(WrapType(type));
2823
2824 DataDescriptor new_field_desc(name, index, wrapped_type, attributes,
2825 representation);
2826 Handle<Map> new_map = Map::CopyAddDescriptor(map, &new_field_desc, flag);
2827 int unused_property_fields = new_map->unused_property_fields() - 1;
2828 if (unused_property_fields < 0) {
2829 unused_property_fields += JSObject::kFieldsAdded;
2830 }
2831 new_map->set_unused_property_fields(unused_property_fields);
2832 return new_map;
2833 }
2834
2835
CopyWithConstant(Handle<Map> map,Handle<Name> name,Handle<Object> constant,PropertyAttributes attributes,TransitionFlag flag)2836 MaybeHandle<Map> Map::CopyWithConstant(Handle<Map> map,
2837 Handle<Name> name,
2838 Handle<Object> constant,
2839 PropertyAttributes attributes,
2840 TransitionFlag flag) {
2841 // Ensure the descriptor array does not get too big.
2842 if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) {
2843 return MaybeHandle<Map>();
2844 }
2845
2846 // Allocate new instance descriptors with (name, constant) added.
2847 DataConstantDescriptor new_constant_desc(name, constant, attributes);
2848 return Map::CopyAddDescriptor(map, &new_constant_desc, flag);
2849 }
2850
2851
AddSlowProperty(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes)2852 void JSObject::AddSlowProperty(Handle<JSObject> object,
2853 Handle<Name> name,
2854 Handle<Object> value,
2855 PropertyAttributes attributes) {
2856 DCHECK(!object->HasFastProperties());
2857 Isolate* isolate = object->GetIsolate();
2858 if (object->IsJSGlobalObject()) {
2859 Handle<GlobalDictionary> dict(object->global_dictionary());
2860 PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell);
2861 int entry = dict->FindEntry(name);
2862 // If there's a cell there, just invalidate and set the property.
2863 if (entry != GlobalDictionary::kNotFound) {
2864 PropertyCell::UpdateCell(dict, entry, value, details);
2865 // TODO(ishell): move this to UpdateCell.
2866 // Need to adjust the details.
2867 int index = dict->NextEnumerationIndex();
2868 dict->SetNextEnumerationIndex(index + 1);
2869 PropertyCell* cell = PropertyCell::cast(dict->ValueAt(entry));
2870 details = cell->property_details().set_index(index);
2871 cell->set_property_details(details);
2872
2873 } else {
2874 auto cell = isolate->factory()->NewPropertyCell();
2875 cell->set_value(*value);
2876 auto cell_type = value->IsUndefined(isolate)
2877 ? PropertyCellType::kUndefined
2878 : PropertyCellType::kConstant;
2879 details = details.set_cell_type(cell_type);
2880 value = cell;
2881
2882 Handle<GlobalDictionary> result =
2883 GlobalDictionary::Add(dict, name, value, details);
2884 if (*dict != *result) object->set_properties(*result);
2885 }
2886 } else {
2887 Handle<NameDictionary> dict(object->property_dictionary());
2888 PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell);
2889 Handle<NameDictionary> result =
2890 NameDictionary::Add(dict, name, value, details);
2891 if (*dict != *result) object->set_properties(*result);
2892 }
2893 }
2894
2895
Mnemonic() const2896 const char* Representation::Mnemonic() const {
2897 switch (kind_) {
2898 case kNone: return "v";
2899 case kTagged: return "t";
2900 case kSmi: return "s";
2901 case kDouble: return "d";
2902 case kInteger32: return "i";
2903 case kHeapObject: return "h";
2904 case kExternal: return "x";
2905 default:
2906 UNREACHABLE();
2907 return NULL;
2908 }
2909 }
2910
InstancesNeedRewriting(Map * target)2911 bool Map::InstancesNeedRewriting(Map* target) {
2912 int target_number_of_fields = target->NumberOfFields();
2913 int target_inobject = target->GetInObjectProperties();
2914 int target_unused = target->unused_property_fields();
2915 int old_number_of_fields;
2916
2917 return InstancesNeedRewriting(target, target_number_of_fields,
2918 target_inobject, target_unused,
2919 &old_number_of_fields);
2920 }
2921
InstancesNeedRewriting(Map * target,int target_number_of_fields,int target_inobject,int target_unused,int * old_number_of_fields)2922 bool Map::InstancesNeedRewriting(Map* target, int target_number_of_fields,
2923 int target_inobject, int target_unused,
2924 int* old_number_of_fields) {
2925 // If fields were added (or removed), rewrite the instance.
2926 *old_number_of_fields = NumberOfFields();
2927 DCHECK(target_number_of_fields >= *old_number_of_fields);
2928 if (target_number_of_fields != *old_number_of_fields) return true;
2929
2930 // If smi descriptors were replaced by double descriptors, rewrite.
2931 DescriptorArray* old_desc = instance_descriptors();
2932 DescriptorArray* new_desc = target->instance_descriptors();
2933 int limit = NumberOfOwnDescriptors();
2934 for (int i = 0; i < limit; i++) {
2935 if (new_desc->GetDetails(i).representation().IsDouble() !=
2936 old_desc->GetDetails(i).representation().IsDouble()) {
2937 return true;
2938 }
2939 }
2940
2941 // If no fields were added, and no inobject properties were removed, setting
2942 // the map is sufficient.
2943 if (target_inobject == GetInObjectProperties()) return false;
2944 // In-object slack tracking may have reduced the object size of the new map.
2945 // In that case, succeed if all existing fields were inobject, and they still
2946 // fit within the new inobject size.
2947 DCHECK(target_inobject < GetInObjectProperties());
2948 if (target_number_of_fields <= target_inobject) {
2949 DCHECK(target_number_of_fields + target_unused == target_inobject);
2950 return false;
2951 }
2952 // Otherwise, properties will need to be moved to the backing store.
2953 return true;
2954 }
2955
2956
2957 // static
UpdatePrototypeUserRegistration(Handle<Map> old_map,Handle<Map> new_map,Isolate * isolate)2958 void JSObject::UpdatePrototypeUserRegistration(Handle<Map> old_map,
2959 Handle<Map> new_map,
2960 Isolate* isolate) {
2961 if (!old_map->is_prototype_map()) return;
2962 DCHECK(new_map->is_prototype_map());
2963 bool was_registered = JSObject::UnregisterPrototypeUser(old_map, isolate);
2964 new_map->set_prototype_info(old_map->prototype_info());
2965 old_map->set_prototype_info(Smi::FromInt(0));
2966 if (FLAG_trace_prototype_users) {
2967 PrintF("Moving prototype_info %p from map %p to map %p.\n",
2968 reinterpret_cast<void*>(new_map->prototype_info()),
2969 reinterpret_cast<void*>(*old_map),
2970 reinterpret_cast<void*>(*new_map));
2971 }
2972 if (was_registered) {
2973 if (new_map->prototype_info()->IsPrototypeInfo()) {
2974 // The new map isn't registered with its prototype yet; reflect this fact
2975 // in the PrototypeInfo it just inherited from the old map.
2976 PrototypeInfo::cast(new_map->prototype_info())
2977 ->set_registry_slot(PrototypeInfo::UNREGISTERED);
2978 }
2979 JSObject::LazyRegisterPrototypeUser(new_map, isolate);
2980 }
2981 }
2982
2983 namespace {
2984 // To migrate a fast instance to a fast map:
2985 // - First check whether the instance needs to be rewritten. If not, simply
2986 // change the map.
2987 // - Otherwise, allocate a fixed array large enough to hold all fields, in
2988 // addition to unused space.
2989 // - Copy all existing properties in, in the following order: backing store
2990 // properties, unused fields, inobject properties.
2991 // - If all allocation succeeded, commit the state atomically:
2992 // * Copy inobject properties from the backing store back into the object.
2993 // * Trim the difference in instance size of the object. This also cleanly
2994 // frees inobject properties that moved to the backing store.
2995 // * If there are properties left in the backing store, trim of the space used
2996 // to temporarily store the inobject properties.
2997 // * If there are properties left in the backing store, install the backing
2998 // store.
MigrateFastToFast(Handle<JSObject> object,Handle<Map> new_map)2999 void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map) {
3000 Isolate* isolate = object->GetIsolate();
3001 Handle<Map> old_map(object->map());
3002 // In case of a regular transition.
3003 if (new_map->GetBackPointer() == *old_map) {
3004 // If the map does not add named properties, simply set the map.
3005 if (old_map->NumberOfOwnDescriptors() ==
3006 new_map->NumberOfOwnDescriptors()) {
3007 object->synchronized_set_map(*new_map);
3008 return;
3009 }
3010
3011 PropertyDetails details = new_map->GetLastDescriptorDetails();
3012 // Either new_map adds an kDescriptor property, or a kField property for
3013 // which there is still space, and which does not require a mutable double
3014 // box (an out-of-object double).
3015 if (details.location() == kDescriptor ||
3016 (old_map->unused_property_fields() > 0 &&
3017 ((FLAG_unbox_double_fields && object->properties()->length() == 0) ||
3018 !details.representation().IsDouble()))) {
3019 object->synchronized_set_map(*new_map);
3020 return;
3021 }
3022
3023 // If there is still space in the object, we need to allocate a mutable
3024 // double box.
3025 if (old_map->unused_property_fields() > 0) {
3026 FieldIndex index =
3027 FieldIndex::ForDescriptor(*new_map, new_map->LastAdded());
3028 DCHECK(details.representation().IsDouble());
3029 DCHECK(!new_map->IsUnboxedDoubleField(index));
3030 Handle<Object> value = isolate->factory()->NewHeapNumber(0, MUTABLE);
3031 object->RawFastPropertyAtPut(index, *value);
3032 object->synchronized_set_map(*new_map);
3033 return;
3034 }
3035
3036 // This migration is a transition from a map that has run out of property
3037 // space. Extend the backing store.
3038 int grow_by = new_map->unused_property_fields() + 1;
3039 Handle<FixedArray> old_storage = handle(object->properties(), isolate);
3040 Handle<FixedArray> new_storage =
3041 isolate->factory()->CopyFixedArrayAndGrow(old_storage, grow_by);
3042
3043 // Properly initialize newly added property.
3044 Handle<Object> value;
3045 if (details.representation().IsDouble()) {
3046 value = isolate->factory()->NewHeapNumber(0, MUTABLE);
3047 } else {
3048 value = isolate->factory()->uninitialized_value();
3049 }
3050 DCHECK_EQ(DATA, details.type());
3051 int target_index = details.field_index() - new_map->GetInObjectProperties();
3052 DCHECK(target_index >= 0); // Must be a backing store index.
3053 new_storage->set(target_index, *value);
3054
3055 // From here on we cannot fail and we shouldn't GC anymore.
3056 DisallowHeapAllocation no_allocation;
3057
3058 // Set the new property value and do the map transition.
3059 object->set_properties(*new_storage);
3060 object->synchronized_set_map(*new_map);
3061 return;
3062 }
3063
3064 int old_number_of_fields;
3065 int number_of_fields = new_map->NumberOfFields();
3066 int inobject = new_map->GetInObjectProperties();
3067 int unused = new_map->unused_property_fields();
3068
3069 // Nothing to do if no functions were converted to fields and no smis were
3070 // converted to doubles.
3071 if (!old_map->InstancesNeedRewriting(*new_map, number_of_fields, inobject,
3072 unused, &old_number_of_fields)) {
3073 object->synchronized_set_map(*new_map);
3074 return;
3075 }
3076
3077 int total_size = number_of_fields + unused;
3078 int external = total_size - inobject;
3079
3080 Handle<FixedArray> array = isolate->factory()->NewFixedArray(total_size);
3081
3082 Handle<DescriptorArray> old_descriptors(old_map->instance_descriptors());
3083 Handle<DescriptorArray> new_descriptors(new_map->instance_descriptors());
3084 int old_nof = old_map->NumberOfOwnDescriptors();
3085 int new_nof = new_map->NumberOfOwnDescriptors();
3086
3087 // This method only supports generalizing instances to at least the same
3088 // number of properties.
3089 DCHECK(old_nof <= new_nof);
3090
3091 for (int i = 0; i < old_nof; i++) {
3092 PropertyDetails details = new_descriptors->GetDetails(i);
3093 if (details.type() != DATA) continue;
3094 PropertyDetails old_details = old_descriptors->GetDetails(i);
3095 Representation old_representation = old_details.representation();
3096 Representation representation = details.representation();
3097 Handle<Object> value;
3098 if (old_details.type() == ACCESSOR_CONSTANT) {
3099 // In case of kAccessor -> kData property reconfiguration, the property
3100 // must already be prepared for data or certain type.
3101 DCHECK(!details.representation().IsNone());
3102 if (details.representation().IsDouble()) {
3103 value = isolate->factory()->NewHeapNumber(0, MUTABLE);
3104 } else {
3105 value = isolate->factory()->uninitialized_value();
3106 }
3107 } else if (old_details.type() == DATA_CONSTANT) {
3108 value = handle(old_descriptors->GetValue(i), isolate);
3109 DCHECK(!old_representation.IsDouble() && !representation.IsDouble());
3110 } else {
3111 FieldIndex index = FieldIndex::ForDescriptor(*old_map, i);
3112 if (object->IsUnboxedDoubleField(index)) {
3113 double old = object->RawFastDoublePropertyAt(index);
3114 value = isolate->factory()->NewHeapNumber(
3115 old, representation.IsDouble() ? MUTABLE : IMMUTABLE);
3116
3117 } else {
3118 value = handle(object->RawFastPropertyAt(index), isolate);
3119 if (!old_representation.IsDouble() && representation.IsDouble()) {
3120 if (old_representation.IsNone()) {
3121 value = handle(Smi::FromInt(0), isolate);
3122 }
3123 value = Object::NewStorageFor(isolate, value, representation);
3124 } else if (old_representation.IsDouble() &&
3125 !representation.IsDouble()) {
3126 value = Object::WrapForRead(isolate, value, old_representation);
3127 }
3128 }
3129 }
3130 DCHECK(!(representation.IsDouble() && value->IsSmi()));
3131 int target_index = new_descriptors->GetFieldIndex(i) - inobject;
3132 if (target_index < 0) target_index += total_size;
3133 array->set(target_index, *value);
3134 }
3135
3136 for (int i = old_nof; i < new_nof; i++) {
3137 PropertyDetails details = new_descriptors->GetDetails(i);
3138 if (details.type() != DATA) continue;
3139 Handle<Object> value;
3140 if (details.representation().IsDouble()) {
3141 value = isolate->factory()->NewHeapNumber(0, MUTABLE);
3142 } else {
3143 value = isolate->factory()->uninitialized_value();
3144 }
3145 int target_index = new_descriptors->GetFieldIndex(i) - inobject;
3146 if (target_index < 0) target_index += total_size;
3147 array->set(target_index, *value);
3148 }
3149
3150 // From here on we cannot fail and we shouldn't GC anymore.
3151 DisallowHeapAllocation no_allocation;
3152
3153 Heap* heap = isolate->heap();
3154
3155 // Copy (real) inobject properties. If necessary, stop at number_of_fields to
3156 // avoid overwriting |one_pointer_filler_map|.
3157 int limit = Min(inobject, number_of_fields);
3158 for (int i = 0; i < limit; i++) {
3159 FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i);
3160 Object* value = array->get(external + i);
3161 // Can't use JSObject::FastPropertyAtPut() because proper map was not set
3162 // yet.
3163 if (new_map->IsUnboxedDoubleField(index)) {
3164 DCHECK(value->IsMutableHeapNumber());
3165 object->RawFastDoublePropertyAtPut(index,
3166 HeapNumber::cast(value)->value());
3167 if (i < old_number_of_fields && !old_map->IsUnboxedDoubleField(index)) {
3168 // Transition from tagged to untagged slot.
3169 heap->ClearRecordedSlot(*object,
3170 HeapObject::RawField(*object, index.offset()));
3171 }
3172 } else {
3173 object->RawFastPropertyAtPut(index, value);
3174 }
3175 }
3176
3177
3178 // If there are properties in the new backing store, trim it to the correct
3179 // size and install the backing store into the object.
3180 if (external > 0) {
3181 heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(*array, inobject);
3182 object->set_properties(*array);
3183 }
3184
3185 // Create filler object past the new instance size.
3186 int new_instance_size = new_map->instance_size();
3187 int instance_size_delta = old_map->instance_size() - new_instance_size;
3188 DCHECK(instance_size_delta >= 0);
3189
3190 if (instance_size_delta > 0) {
3191 Address address = object->address();
3192 heap->CreateFillerObjectAt(address + new_instance_size, instance_size_delta,
3193 ClearRecordedSlots::kYes);
3194 heap->AdjustLiveBytes(*object, -instance_size_delta,
3195 Heap::CONCURRENT_TO_SWEEPER);
3196 }
3197
3198 // We are storing the new map using release store after creating a filler for
3199 // the left-over space to avoid races with the sweeper thread.
3200 object->synchronized_set_map(*new_map);
3201 }
3202
MigrateFastToSlow(Handle<JSObject> object,Handle<Map> new_map,int expected_additional_properties)3203 void MigrateFastToSlow(Handle<JSObject> object, Handle<Map> new_map,
3204 int expected_additional_properties) {
3205 // The global object is always normalized.
3206 DCHECK(!object->IsJSGlobalObject());
3207 // JSGlobalProxy must never be normalized
3208 DCHECK(!object->IsJSGlobalProxy());
3209
3210 Isolate* isolate = object->GetIsolate();
3211 HandleScope scope(isolate);
3212 Handle<Map> map(object->map());
3213
3214 // Allocate new content.
3215 int real_size = map->NumberOfOwnDescriptors();
3216 int property_count = real_size;
3217 if (expected_additional_properties > 0) {
3218 property_count += expected_additional_properties;
3219 } else {
3220 property_count += 2; // Make space for two more properties.
3221 }
3222 Handle<NameDictionary> dictionary =
3223 NameDictionary::New(isolate, property_count);
3224
3225 Handle<DescriptorArray> descs(map->instance_descriptors());
3226 for (int i = 0; i < real_size; i++) {
3227 PropertyDetails details = descs->GetDetails(i);
3228 Handle<Name> key(descs->GetKey(i));
3229 switch (details.type()) {
3230 case DATA_CONSTANT: {
3231 Handle<Object> value(descs->GetConstant(i), isolate);
3232 PropertyDetails d(details.attributes(), DATA, i + 1,
3233 PropertyCellType::kNoCell);
3234 dictionary = NameDictionary::Add(dictionary, key, value, d);
3235 break;
3236 }
3237 case DATA: {
3238 FieldIndex index = FieldIndex::ForDescriptor(*map, i);
3239 Handle<Object> value;
3240 if (object->IsUnboxedDoubleField(index)) {
3241 double old_value = object->RawFastDoublePropertyAt(index);
3242 value = isolate->factory()->NewHeapNumber(old_value);
3243 } else {
3244 value = handle(object->RawFastPropertyAt(index), isolate);
3245 if (details.representation().IsDouble()) {
3246 DCHECK(value->IsMutableHeapNumber());
3247 Handle<HeapNumber> old = Handle<HeapNumber>::cast(value);
3248 value = isolate->factory()->NewHeapNumber(old->value());
3249 }
3250 }
3251 PropertyDetails d(details.attributes(), DATA, i + 1,
3252 PropertyCellType::kNoCell);
3253 dictionary = NameDictionary::Add(dictionary, key, value, d);
3254 break;
3255 }
3256 case ACCESSOR: {
3257 FieldIndex index = FieldIndex::ForDescriptor(*map, i);
3258 Handle<Object> value(object->RawFastPropertyAt(index), isolate);
3259 PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
3260 PropertyCellType::kNoCell);
3261 dictionary = NameDictionary::Add(dictionary, key, value, d);
3262 break;
3263 }
3264 case ACCESSOR_CONSTANT: {
3265 Handle<Object> value(descs->GetCallbacksObject(i), isolate);
3266 PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
3267 PropertyCellType::kNoCell);
3268 dictionary = NameDictionary::Add(dictionary, key, value, d);
3269 break;
3270 }
3271 }
3272 }
3273
3274 // Copy the next enumeration index from instance descriptor.
3275 dictionary->SetNextEnumerationIndex(real_size + 1);
3276
3277 // From here on we cannot fail and we shouldn't GC anymore.
3278 DisallowHeapAllocation no_allocation;
3279
3280 // Resize the object in the heap if necessary.
3281 int new_instance_size = new_map->instance_size();
3282 int instance_size_delta = map->instance_size() - new_instance_size;
3283 DCHECK(instance_size_delta >= 0);
3284
3285 if (instance_size_delta > 0) {
3286 Heap* heap = isolate->heap();
3287 heap->CreateFillerObjectAt(object->address() + new_instance_size,
3288 instance_size_delta, ClearRecordedSlots::kYes);
3289 heap->AdjustLiveBytes(*object, -instance_size_delta,
3290 Heap::CONCURRENT_TO_SWEEPER);
3291 }
3292
3293 // We are storing the new map using release store after creating a filler for
3294 // the left-over space to avoid races with the sweeper thread.
3295 object->synchronized_set_map(*new_map);
3296
3297 object->set_properties(*dictionary);
3298
3299 // Ensure that in-object space of slow-mode object does not contain random
3300 // garbage.
3301 int inobject_properties = new_map->GetInObjectProperties();
3302 for (int i = 0; i < inobject_properties; i++) {
3303 FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i);
3304 object->RawFastPropertyAtPut(index, Smi::FromInt(0));
3305 }
3306
3307 isolate->counters()->props_to_dictionary()->Increment();
3308
3309 #ifdef DEBUG
3310 if (FLAG_trace_normalization) {
3311 OFStream os(stdout);
3312 os << "Object properties have been normalized:\n";
3313 object->Print(os);
3314 }
3315 #endif
3316 }
3317
3318 } // namespace
3319
MigrateToMap(Handle<JSObject> object,Handle<Map> new_map,int expected_additional_properties)3320 void JSObject::MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
3321 int expected_additional_properties) {
3322 if (object->map() == *new_map) return;
3323 Handle<Map> old_map(object->map());
3324 if (old_map->is_prototype_map()) {
3325 // If this object is a prototype (the callee will check), invalidate any
3326 // prototype chains involving it.
3327 InvalidatePrototypeChains(object->map());
3328
3329 // If the map was registered with its prototype before, ensure that it
3330 // registers with its new prototype now. This preserves the invariant that
3331 // when a map on a prototype chain is registered with its prototype, then
3332 // all prototypes further up the chain are also registered with their
3333 // respective prototypes.
3334 UpdatePrototypeUserRegistration(old_map, new_map, new_map->GetIsolate());
3335 }
3336
3337 if (old_map->is_dictionary_map()) {
3338 // For slow-to-fast migrations JSObject::MigrateSlowToFast()
3339 // must be used instead.
3340 CHECK(new_map->is_dictionary_map());
3341
3342 // Slow-to-slow migration is trivial.
3343 object->set_map(*new_map);
3344 } else if (!new_map->is_dictionary_map()) {
3345 MigrateFastToFast(object, new_map);
3346 if (old_map->is_prototype_map()) {
3347 DCHECK(!old_map->is_stable());
3348 DCHECK(new_map->is_stable());
3349 // Clear out the old descriptor array to avoid problems to sharing
3350 // the descriptor array without using an explicit.
3351 old_map->InitializeDescriptors(
3352 old_map->GetHeap()->empty_descriptor_array(),
3353 LayoutDescriptor::FastPointerLayout());
3354 // Ensure that no transition was inserted for prototype migrations.
3355 DCHECK_EQ(
3356 0, TransitionArray::NumberOfTransitions(old_map->raw_transitions()));
3357 DCHECK(new_map->GetBackPointer()->IsUndefined(new_map->GetIsolate()));
3358 }
3359 } else {
3360 MigrateFastToSlow(object, new_map, expected_additional_properties);
3361 }
3362
3363 // Careful: Don't allocate here!
3364 // For some callers of this method, |object| might be in an inconsistent
3365 // state now: the new map might have a new elements_kind, but the object's
3366 // elements pointer hasn't been updated yet. Callers will fix this, but in
3367 // the meantime, (indirectly) calling JSObjectVerify() must be avoided.
3368 // When adding code here, add a DisallowHeapAllocation too.
3369 }
3370
NumberOfFields()3371 int Map::NumberOfFields() {
3372 DescriptorArray* descriptors = instance_descriptors();
3373 int result = 0;
3374 for (int i = 0; i < NumberOfOwnDescriptors(); i++) {
3375 if (descriptors->GetDetails(i).location() == kField) result++;
3376 }
3377 return result;
3378 }
3379
CopyGeneralizeAllRepresentations(Handle<Map> map,ElementsKind elements_kind,int modify_index,StoreMode store_mode,PropertyKind kind,PropertyAttributes attributes,const char * reason)3380 Handle<Map> Map::CopyGeneralizeAllRepresentations(
3381 Handle<Map> map, ElementsKind elements_kind, int modify_index,
3382 StoreMode store_mode, PropertyKind kind, PropertyAttributes attributes,
3383 const char* reason) {
3384 Isolate* isolate = map->GetIsolate();
3385 Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate);
3386 int number_of_own_descriptors = map->NumberOfOwnDescriptors();
3387 Handle<DescriptorArray> descriptors =
3388 DescriptorArray::CopyUpTo(old_descriptors, number_of_own_descriptors);
3389
3390 for (int i = 0; i < number_of_own_descriptors; i++) {
3391 descriptors->SetRepresentation(i, Representation::Tagged());
3392 if (descriptors->GetDetails(i).type() == DATA) {
3393 descriptors->SetValue(i, FieldType::Any());
3394 }
3395 }
3396
3397 Handle<LayoutDescriptor> new_layout_descriptor(
3398 LayoutDescriptor::FastPointerLayout(), isolate);
3399 Handle<Map> new_map = CopyReplaceDescriptors(
3400 map, descriptors, new_layout_descriptor, OMIT_TRANSITION,
3401 MaybeHandle<Name>(), reason, SPECIAL_TRANSITION);
3402
3403 // Unless the instance is being migrated, ensure that modify_index is a field.
3404 if (modify_index >= 0) {
3405 PropertyDetails details = descriptors->GetDetails(modify_index);
3406 if (store_mode == FORCE_FIELD &&
3407 (details.type() != DATA || details.attributes() != attributes)) {
3408 int field_index = details.type() == DATA ? details.field_index()
3409 : new_map->NumberOfFields();
3410 DataDescriptor d(handle(descriptors->GetKey(modify_index), isolate),
3411 field_index, attributes, Representation::Tagged());
3412 descriptors->Replace(modify_index, &d);
3413 if (details.type() != DATA) {
3414 int unused_property_fields = new_map->unused_property_fields() - 1;
3415 if (unused_property_fields < 0) {
3416 unused_property_fields += JSObject::kFieldsAdded;
3417 }
3418 new_map->set_unused_property_fields(unused_property_fields);
3419 }
3420 } else {
3421 DCHECK(details.attributes() == attributes);
3422 }
3423
3424 if (FLAG_trace_generalization) {
3425 MaybeHandle<FieldType> field_type = FieldType::None(isolate);
3426 if (details.type() == DATA) {
3427 field_type = handle(
3428 map->instance_descriptors()->GetFieldType(modify_index), isolate);
3429 }
3430 map->PrintGeneralization(
3431 stdout, reason, modify_index, new_map->NumberOfOwnDescriptors(),
3432 new_map->NumberOfOwnDescriptors(),
3433 details.type() == DATA_CONSTANT && store_mode == FORCE_FIELD,
3434 details.representation(), Representation::Tagged(), field_type,
3435 MaybeHandle<Object>(), FieldType::Any(isolate),
3436 MaybeHandle<Object>());
3437 }
3438 }
3439 new_map->set_elements_kind(elements_kind);
3440 return new_map;
3441 }
3442
3443
DeprecateTransitionTree()3444 void Map::DeprecateTransitionTree() {
3445 if (is_deprecated()) return;
3446 Object* transitions = raw_transitions();
3447 int num_transitions = TransitionArray::NumberOfTransitions(transitions);
3448 for (int i = 0; i < num_transitions; ++i) {
3449 TransitionArray::GetTarget(transitions, i)->DeprecateTransitionTree();
3450 }
3451 deprecate();
3452 dependent_code()->DeoptimizeDependentCodeGroup(
3453 GetIsolate(), DependentCode::kTransitionGroup);
3454 NotifyLeafMapLayoutChange();
3455 }
3456
3457
EqualImmutableValues(Object * obj1,Object * obj2)3458 static inline bool EqualImmutableValues(Object* obj1, Object* obj2) {
3459 if (obj1 == obj2) return true; // Valid for both kData and kAccessor kinds.
3460 // TODO(ishell): compare AccessorPairs.
3461 return false;
3462 }
3463
3464
3465 // Installs |new_descriptors| over the current instance_descriptors to ensure
3466 // proper sharing of descriptor arrays.
ReplaceDescriptors(DescriptorArray * new_descriptors,LayoutDescriptor * new_layout_descriptor)3467 void Map::ReplaceDescriptors(DescriptorArray* new_descriptors,
3468 LayoutDescriptor* new_layout_descriptor) {
3469 Isolate* isolate = GetIsolate();
3470 // Don't overwrite the empty descriptor array or initial map's descriptors.
3471 if (NumberOfOwnDescriptors() == 0 || GetBackPointer()->IsUndefined(isolate)) {
3472 return;
3473 }
3474
3475 DescriptorArray* to_replace = instance_descriptors();
3476 isolate->heap()->incremental_marking()->IterateBlackObject(to_replace);
3477 Map* current = this;
3478 while (current->instance_descriptors() == to_replace) {
3479 Object* next = current->GetBackPointer();
3480 if (next->IsUndefined(isolate)) break; // Stop overwriting at initial map.
3481 current->SetEnumLength(kInvalidEnumCacheSentinel);
3482 current->UpdateDescriptors(new_descriptors, new_layout_descriptor);
3483 current = Map::cast(next);
3484 }
3485 set_owns_descriptors(false);
3486 }
3487
3488
FindRootMap()3489 Map* Map::FindRootMap() {
3490 Map* result = this;
3491 Isolate* isolate = GetIsolate();
3492 while (true) {
3493 Object* back = result->GetBackPointer();
3494 if (back->IsUndefined(isolate)) {
3495 // Initial map always owns descriptors and doesn't have unused entries
3496 // in the descriptor array.
3497 DCHECK(result->owns_descriptors());
3498 DCHECK_EQ(result->NumberOfOwnDescriptors(),
3499 result->instance_descriptors()->number_of_descriptors());
3500 return result;
3501 }
3502 result = Map::cast(back);
3503 }
3504 }
3505
3506
FindLastMatchMap(int verbatim,int length,DescriptorArray * descriptors)3507 Map* Map::FindLastMatchMap(int verbatim,
3508 int length,
3509 DescriptorArray* descriptors) {
3510 DisallowHeapAllocation no_allocation;
3511
3512 // This can only be called on roots of transition trees.
3513 DCHECK_EQ(verbatim, NumberOfOwnDescriptors());
3514
3515 Map* current = this;
3516
3517 for (int i = verbatim; i < length; i++) {
3518 Name* name = descriptors->GetKey(i);
3519 PropertyDetails details = descriptors->GetDetails(i);
3520 Map* next = TransitionArray::SearchTransition(current, details.kind(), name,
3521 details.attributes());
3522 if (next == NULL) break;
3523 DescriptorArray* next_descriptors = next->instance_descriptors();
3524
3525 PropertyDetails next_details = next_descriptors->GetDetails(i);
3526 DCHECK_EQ(details.kind(), next_details.kind());
3527 DCHECK_EQ(details.attributes(), next_details.attributes());
3528 if (details.location() != next_details.location()) break;
3529 if (!details.representation().Equals(next_details.representation())) break;
3530
3531 if (next_details.location() == kField) {
3532 FieldType* next_field_type = next_descriptors->GetFieldType(i);
3533 if (!descriptors->GetFieldType(i)->NowIs(next_field_type)) {
3534 break;
3535 }
3536 } else {
3537 if (!EqualImmutableValues(descriptors->GetValue(i),
3538 next_descriptors->GetValue(i))) {
3539 break;
3540 }
3541 }
3542 current = next;
3543 }
3544 return current;
3545 }
3546
3547
FindFieldOwner(int descriptor)3548 Map* Map::FindFieldOwner(int descriptor) {
3549 DisallowHeapAllocation no_allocation;
3550 DCHECK_EQ(DATA, instance_descriptors()->GetDetails(descriptor).type());
3551 Map* result = this;
3552 Isolate* isolate = GetIsolate();
3553 while (true) {
3554 Object* back = result->GetBackPointer();
3555 if (back->IsUndefined(isolate)) break;
3556 Map* parent = Map::cast(back);
3557 if (parent->NumberOfOwnDescriptors() <= descriptor) break;
3558 result = parent;
3559 }
3560 return result;
3561 }
3562
3563
UpdateFieldType(int descriptor,Handle<Name> name,Representation new_representation,Handle<Object> new_wrapped_type)3564 void Map::UpdateFieldType(int descriptor, Handle<Name> name,
3565 Representation new_representation,
3566 Handle<Object> new_wrapped_type) {
3567 DCHECK(new_wrapped_type->IsSmi() || new_wrapped_type->IsWeakCell());
3568 // We store raw pointers in the queue, so no allocations are allowed.
3569 DisallowHeapAllocation no_allocation;
3570 PropertyDetails details = instance_descriptors()->GetDetails(descriptor);
3571 if (details.type() != DATA) return;
3572
3573 Zone zone(GetIsolate()->allocator());
3574 ZoneQueue<Map*> backlog(&zone);
3575 backlog.push(this);
3576
3577 while (!backlog.empty()) {
3578 Map* current = backlog.front();
3579 backlog.pop();
3580
3581 Object* transitions = current->raw_transitions();
3582 int num_transitions = TransitionArray::NumberOfTransitions(transitions);
3583 for (int i = 0; i < num_transitions; ++i) {
3584 Map* target = TransitionArray::GetTarget(transitions, i);
3585 backlog.push(target);
3586 }
3587 DescriptorArray* descriptors = current->instance_descriptors();
3588 PropertyDetails details = descriptors->GetDetails(descriptor);
3589
3590 // It is allowed to change representation here only from None to something.
3591 DCHECK(details.representation().Equals(new_representation) ||
3592 details.representation().IsNone());
3593
3594 // Skip if already updated the shared descriptor.
3595 if (descriptors->GetValue(descriptor) != *new_wrapped_type) {
3596 DataDescriptor d(name, descriptors->GetFieldIndex(descriptor),
3597 new_wrapped_type, details.attributes(),
3598 new_representation);
3599 descriptors->Replace(descriptor, &d);
3600 }
3601 }
3602 }
3603
FieldTypeIsCleared(Representation rep,FieldType * type)3604 bool FieldTypeIsCleared(Representation rep, FieldType* type) {
3605 return type->IsNone() && rep.IsHeapObject();
3606 }
3607
3608
3609 // static
GeneralizeFieldType(Representation rep1,Handle<FieldType> type1,Representation rep2,Handle<FieldType> type2,Isolate * isolate)3610 Handle<FieldType> Map::GeneralizeFieldType(Representation rep1,
3611 Handle<FieldType> type1,
3612 Representation rep2,
3613 Handle<FieldType> type2,
3614 Isolate* isolate) {
3615 // Cleared field types need special treatment. They represent lost knowledge,
3616 // so we must be conservative, so their generalization with any other type
3617 // is "Any".
3618 if (FieldTypeIsCleared(rep1, *type1) || FieldTypeIsCleared(rep2, *type2)) {
3619 return FieldType::Any(isolate);
3620 }
3621 if (type1->NowIs(type2)) return type2;
3622 if (type2->NowIs(type1)) return type1;
3623 return FieldType::Any(isolate);
3624 }
3625
3626
3627 // static
GeneralizeFieldType(Handle<Map> map,int modify_index,Representation new_representation,Handle<FieldType> new_field_type)3628 void Map::GeneralizeFieldType(Handle<Map> map, int modify_index,
3629 Representation new_representation,
3630 Handle<FieldType> new_field_type) {
3631 Isolate* isolate = map->GetIsolate();
3632
3633 // Check if we actually need to generalize the field type at all.
3634 Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate);
3635 Representation old_representation =
3636 old_descriptors->GetDetails(modify_index).representation();
3637 Handle<FieldType> old_field_type(old_descriptors->GetFieldType(modify_index),
3638 isolate);
3639
3640 if (old_representation.Equals(new_representation) &&
3641 !FieldTypeIsCleared(new_representation, *new_field_type) &&
3642 // Checking old_field_type for being cleared is not necessary because
3643 // the NowIs check below would fail anyway in that case.
3644 new_field_type->NowIs(old_field_type)) {
3645 DCHECK(Map::GeneralizeFieldType(old_representation, old_field_type,
3646 new_representation, new_field_type, isolate)
3647 ->NowIs(old_field_type));
3648 return;
3649 }
3650
3651 // Determine the field owner.
3652 Handle<Map> field_owner(map->FindFieldOwner(modify_index), isolate);
3653 Handle<DescriptorArray> descriptors(
3654 field_owner->instance_descriptors(), isolate);
3655 DCHECK_EQ(*old_field_type, descriptors->GetFieldType(modify_index));
3656
3657 new_field_type =
3658 Map::GeneralizeFieldType(old_representation, old_field_type,
3659 new_representation, new_field_type, isolate);
3660
3661 PropertyDetails details = descriptors->GetDetails(modify_index);
3662 Handle<Name> name(descriptors->GetKey(modify_index));
3663
3664 Handle<Object> wrapped_type(WrapType(new_field_type));
3665 field_owner->UpdateFieldType(modify_index, name, new_representation,
3666 wrapped_type);
3667 field_owner->dependent_code()->DeoptimizeDependentCodeGroup(
3668 isolate, DependentCode::kFieldTypeGroup);
3669
3670 if (FLAG_trace_generalization) {
3671 map->PrintGeneralization(
3672 stdout, "field type generalization", modify_index,
3673 map->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors(), false,
3674 details.representation(), details.representation(), old_field_type,
3675 MaybeHandle<Object>(), new_field_type, MaybeHandle<Object>());
3676 }
3677 }
3678
GetFieldType(Isolate * isolate,Handle<DescriptorArray> descriptors,int descriptor,PropertyLocation location,Representation representation)3679 static inline Handle<FieldType> GetFieldType(
3680 Isolate* isolate, Handle<DescriptorArray> descriptors, int descriptor,
3681 PropertyLocation location, Representation representation) {
3682 #ifdef DEBUG
3683 PropertyDetails details = descriptors->GetDetails(descriptor);
3684 DCHECK_EQ(kData, details.kind());
3685 DCHECK_EQ(details.location(), location);
3686 #endif
3687 if (location == kField) {
3688 return handle(descriptors->GetFieldType(descriptor), isolate);
3689 } else {
3690 return descriptors->GetValue(descriptor)
3691 ->OptimalType(isolate, representation);
3692 }
3693 }
3694
3695 // Reconfigures elements kind to |new_elements_kind| and/or property at
3696 // |modify_index| with |new_kind|, |new_attributes|, |store_mode| and/or
3697 // |new_representation|/|new_field_type|.
3698 // If |modify_index| is negative then no properties are reconfigured but the
3699 // map is migrated to the up-to-date non-deprecated state.
3700 //
3701 // This method rewrites or completes the transition tree to reflect the new
3702 // change. To avoid high degrees over polymorphism, and to stabilize quickly,
3703 // on every rewrite the new type is deduced by merging the current type with
3704 // any potential new (partial) version of the type in the transition tree.
3705 // To do this, on each rewrite:
3706 // - Search the root of the transition tree using FindRootMap.
3707 // - Find/create a |root_map| with requested |new_elements_kind|.
3708 // - Find |target_map|, the newest matching version of this map using the
3709 // virtually "enhanced" |old_map|'s descriptor array (i.e. whose entry at
3710 // |modify_index| is considered to be of |new_kind| and having
3711 // |new_attributes|) to walk the transition tree.
3712 // - Merge/generalize the "enhanced" descriptor array of the |old_map| and
3713 // descriptor array of the |target_map|.
3714 // - Generalize the |modify_index| descriptor using |new_representation| and
3715 // |new_field_type|.
3716 // - Walk the tree again starting from the root towards |target_map|. Stop at
3717 // |split_map|, the first map who's descriptor array does not match the merged
3718 // descriptor array.
3719 // - If |target_map| == |split_map|, |target_map| is in the expected state.
3720 // Return it.
3721 // - Otherwise, invalidate the outdated transition target from |target_map|, and
3722 // replace its transition tree with a new branch for the updated descriptors.
Reconfigure(Handle<Map> old_map,ElementsKind new_elements_kind,int modify_index,PropertyKind new_kind,PropertyAttributes new_attributes,Representation new_representation,Handle<FieldType> new_field_type,StoreMode store_mode)3723 Handle<Map> Map::Reconfigure(Handle<Map> old_map,
3724 ElementsKind new_elements_kind, int modify_index,
3725 PropertyKind new_kind,
3726 PropertyAttributes new_attributes,
3727 Representation new_representation,
3728 Handle<FieldType> new_field_type,
3729 StoreMode store_mode) {
3730 DCHECK_NE(kAccessor, new_kind); // TODO(ishell): not supported yet.
3731 DCHECK(store_mode != FORCE_FIELD || modify_index >= 0);
3732 Isolate* isolate = old_map->GetIsolate();
3733
3734 Handle<DescriptorArray> old_descriptors(
3735 old_map->instance_descriptors(), isolate);
3736 int old_nof = old_map->NumberOfOwnDescriptors();
3737
3738 // If it's just a representation generalization case (i.e. property kind and
3739 // attributes stays unchanged) it's fine to transition from None to anything
3740 // but double without any modification to the object, because the default
3741 // uninitialized value for representation None can be overwritten by both
3742 // smi and tagged values. Doubles, however, would require a box allocation.
3743 if (modify_index >= 0 && !new_representation.IsNone() &&
3744 !new_representation.IsDouble() &&
3745 old_map->elements_kind() == new_elements_kind) {
3746 PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
3747 Representation old_representation = old_details.representation();
3748
3749 if (old_representation.IsNone()) {
3750 DCHECK_EQ(new_kind, old_details.kind());
3751 DCHECK_EQ(new_attributes, old_details.attributes());
3752 DCHECK_EQ(DATA, old_details.type());
3753 if (FLAG_trace_generalization) {
3754 old_map->PrintGeneralization(
3755 stdout, "uninitialized field", modify_index,
3756 old_map->NumberOfOwnDescriptors(),
3757 old_map->NumberOfOwnDescriptors(), false, old_representation,
3758 new_representation,
3759 handle(old_descriptors->GetFieldType(modify_index), isolate),
3760 MaybeHandle<Object>(), new_field_type, MaybeHandle<Object>());
3761 }
3762 Handle<Map> field_owner(old_map->FindFieldOwner(modify_index), isolate);
3763
3764 GeneralizeFieldType(field_owner, modify_index, new_representation,
3765 new_field_type);
3766 DCHECK(old_descriptors->GetDetails(modify_index)
3767 .representation()
3768 .Equals(new_representation));
3769 DCHECK(
3770 old_descriptors->GetFieldType(modify_index)->NowIs(new_field_type));
3771 return old_map;
3772 }
3773 }
3774
3775 // Check the state of the root map.
3776 Handle<Map> root_map(old_map->FindRootMap(), isolate);
3777 if (!old_map->EquivalentToForTransition(*root_map)) {
3778 return CopyGeneralizeAllRepresentations(
3779 old_map, new_elements_kind, modify_index, store_mode, new_kind,
3780 new_attributes, "GenAll_NotEquivalent");
3781 }
3782
3783 ElementsKind from_kind = root_map->elements_kind();
3784 ElementsKind to_kind = new_elements_kind;
3785 // TODO(ishell): Add a test for SLOW_SLOPPY_ARGUMENTS_ELEMENTS.
3786 if (from_kind != to_kind && to_kind != DICTIONARY_ELEMENTS &&
3787 to_kind != SLOW_STRING_WRAPPER_ELEMENTS &&
3788 to_kind != SLOW_SLOPPY_ARGUMENTS_ELEMENTS &&
3789 !(IsTransitionableFastElementsKind(from_kind) &&
3790 IsMoreGeneralElementsKindTransition(from_kind, to_kind))) {
3791 return CopyGeneralizeAllRepresentations(
3792 old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3793 "GenAll_InvalidElementsTransition");
3794 }
3795 int root_nof = root_map->NumberOfOwnDescriptors();
3796 if (modify_index >= 0 && modify_index < root_nof) {
3797 PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
3798 if (old_details.kind() != new_kind ||
3799 old_details.attributes() != new_attributes) {
3800 return CopyGeneralizeAllRepresentations(
3801 old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3802 "GenAll_RootModification1");
3803 }
3804 if ((old_details.type() != DATA && store_mode == FORCE_FIELD) ||
3805 (old_details.type() == DATA &&
3806 (!new_field_type->NowIs(old_descriptors->GetFieldType(modify_index)) ||
3807 !new_representation.fits_into(old_details.representation())))) {
3808 return CopyGeneralizeAllRepresentations(
3809 old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3810 "GenAll_RootModification2");
3811 }
3812 }
3813
3814 // From here on, use the map with correct elements kind as root map.
3815 if (from_kind != to_kind) {
3816 root_map = Map::AsElementsKind(root_map, to_kind);
3817 }
3818
3819 Handle<Map> target_map = root_map;
3820 for (int i = root_nof; i < old_nof; ++i) {
3821 PropertyDetails old_details = old_descriptors->GetDetails(i);
3822 PropertyKind next_kind;
3823 PropertyLocation next_location;
3824 PropertyAttributes next_attributes;
3825 Representation next_representation;
3826 bool property_kind_reconfiguration = false;
3827
3828 if (modify_index == i) {
3829 DCHECK_EQ(FORCE_FIELD, store_mode);
3830 property_kind_reconfiguration = old_details.kind() != new_kind;
3831
3832 next_kind = new_kind;
3833 next_location = kField;
3834 next_attributes = new_attributes;
3835 // If property kind is not reconfigured merge the result with
3836 // representation/field type from the old descriptor.
3837 next_representation = new_representation;
3838 if (!property_kind_reconfiguration) {
3839 next_representation =
3840 next_representation.generalize(old_details.representation());
3841 }
3842
3843 } else {
3844 next_kind = old_details.kind();
3845 next_location = old_details.location();
3846 next_attributes = old_details.attributes();
3847 next_representation = old_details.representation();
3848 }
3849 Map* transition = TransitionArray::SearchTransition(
3850 *target_map, next_kind, old_descriptors->GetKey(i), next_attributes);
3851 if (transition == NULL) break;
3852 Handle<Map> tmp_map(transition, isolate);
3853
3854 Handle<DescriptorArray> tmp_descriptors = handle(
3855 tmp_map->instance_descriptors(), isolate);
3856
3857 // Check if target map is incompatible.
3858 PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
3859 DCHECK_EQ(next_kind, tmp_details.kind());
3860 DCHECK_EQ(next_attributes, tmp_details.attributes());
3861 if (next_kind == kAccessor &&
3862 !EqualImmutableValues(old_descriptors->GetValue(i),
3863 tmp_descriptors->GetValue(i))) {
3864 return CopyGeneralizeAllRepresentations(
3865 old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3866 "GenAll_Incompatible");
3867 }
3868 if (next_location == kField && tmp_details.location() == kDescriptor) break;
3869
3870 Representation tmp_representation = tmp_details.representation();
3871 if (!next_representation.fits_into(tmp_representation)) break;
3872
3873 PropertyLocation old_location = old_details.location();
3874 PropertyLocation tmp_location = tmp_details.location();
3875 if (tmp_location == kField) {
3876 if (next_kind == kData) {
3877 Handle<FieldType> next_field_type;
3878 if (modify_index == i) {
3879 next_field_type = new_field_type;
3880 if (!property_kind_reconfiguration) {
3881 Handle<FieldType> old_field_type =
3882 GetFieldType(isolate, old_descriptors, i,
3883 old_details.location(), tmp_representation);
3884 Representation old_representation = old_details.representation();
3885 next_field_type = GeneralizeFieldType(
3886 old_representation, old_field_type, new_representation,
3887 next_field_type, isolate);
3888 }
3889 } else {
3890 Handle<FieldType> old_field_type =
3891 GetFieldType(isolate, old_descriptors, i, old_details.location(),
3892 tmp_representation);
3893 next_field_type = old_field_type;
3894 }
3895 GeneralizeFieldType(tmp_map, i, tmp_representation, next_field_type);
3896 }
3897 } else if (old_location == kField ||
3898 !EqualImmutableValues(old_descriptors->GetValue(i),
3899 tmp_descriptors->GetValue(i))) {
3900 break;
3901 }
3902 DCHECK(!tmp_map->is_deprecated());
3903 target_map = tmp_map;
3904 }
3905
3906 // Directly change the map if the target map is more general.
3907 Handle<DescriptorArray> target_descriptors(
3908 target_map->instance_descriptors(), isolate);
3909 int target_nof = target_map->NumberOfOwnDescriptors();
3910 if (target_nof == old_nof &&
3911 (store_mode != FORCE_FIELD ||
3912 (modify_index >= 0 &&
3913 target_descriptors->GetDetails(modify_index).location() == kField))) {
3914 #ifdef DEBUG
3915 if (modify_index >= 0) {
3916 PropertyDetails details = target_descriptors->GetDetails(modify_index);
3917 DCHECK_EQ(new_kind, details.kind());
3918 DCHECK_EQ(new_attributes, details.attributes());
3919 DCHECK(new_representation.fits_into(details.representation()));
3920 DCHECK(details.location() != kField ||
3921 new_field_type->NowIs(
3922 target_descriptors->GetFieldType(modify_index)));
3923 }
3924 #endif
3925 if (*target_map != *old_map) {
3926 old_map->NotifyLeafMapLayoutChange();
3927 }
3928 return target_map;
3929 }
3930
3931 // Find the last compatible target map in the transition tree.
3932 for (int i = target_nof; i < old_nof; ++i) {
3933 PropertyDetails old_details = old_descriptors->GetDetails(i);
3934 PropertyKind next_kind;
3935 PropertyAttributes next_attributes;
3936 if (modify_index == i) {
3937 next_kind = new_kind;
3938 next_attributes = new_attributes;
3939 } else {
3940 next_kind = old_details.kind();
3941 next_attributes = old_details.attributes();
3942 }
3943 Map* transition = TransitionArray::SearchTransition(
3944 *target_map, next_kind, old_descriptors->GetKey(i), next_attributes);
3945 if (transition == NULL) break;
3946 Handle<Map> tmp_map(transition, isolate);
3947 Handle<DescriptorArray> tmp_descriptors(
3948 tmp_map->instance_descriptors(), isolate);
3949
3950 // Check if target map is compatible.
3951 #ifdef DEBUG
3952 PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
3953 DCHECK_EQ(next_kind, tmp_details.kind());
3954 DCHECK_EQ(next_attributes, tmp_details.attributes());
3955 #endif
3956 if (next_kind == kAccessor &&
3957 !EqualImmutableValues(old_descriptors->GetValue(i),
3958 tmp_descriptors->GetValue(i))) {
3959 return CopyGeneralizeAllRepresentations(
3960 old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
3961 "GenAll_Incompatible");
3962 }
3963 DCHECK(!tmp_map->is_deprecated());
3964 target_map = tmp_map;
3965 }
3966 target_nof = target_map->NumberOfOwnDescriptors();
3967 target_descriptors = handle(target_map->instance_descriptors(), isolate);
3968
3969 // Allocate a new descriptor array large enough to hold the required
3970 // descriptors, with minimally the exact same size as the old descriptor
3971 // array.
3972 int new_slack = Max(
3973 old_nof, old_descriptors->number_of_descriptors()) - old_nof;
3974 Handle<DescriptorArray> new_descriptors = DescriptorArray::Allocate(
3975 isolate, old_nof, new_slack);
3976 DCHECK(new_descriptors->length() > target_descriptors->length() ||
3977 new_descriptors->NumberOfSlackDescriptors() > 0 ||
3978 new_descriptors->number_of_descriptors() ==
3979 old_descriptors->number_of_descriptors());
3980 DCHECK(new_descriptors->number_of_descriptors() == old_nof);
3981
3982 // 0 -> |root_nof|
3983 int current_offset = 0;
3984 for (int i = 0; i < root_nof; ++i) {
3985 PropertyDetails old_details = old_descriptors->GetDetails(i);
3986 if (old_details.location() == kField) {
3987 current_offset += old_details.field_width_in_words();
3988 }
3989 Descriptor d(handle(old_descriptors->GetKey(i), isolate),
3990 handle(old_descriptors->GetValue(i), isolate),
3991 old_details);
3992 new_descriptors->Set(i, &d);
3993 }
3994
3995 // |root_nof| -> |target_nof|
3996 for (int i = root_nof; i < target_nof; ++i) {
3997 Handle<Name> target_key(target_descriptors->GetKey(i), isolate);
3998 PropertyDetails old_details = old_descriptors->GetDetails(i);
3999 PropertyDetails target_details = target_descriptors->GetDetails(i);
4000
4001 PropertyKind next_kind;
4002 PropertyAttributes next_attributes;
4003 PropertyLocation next_location;
4004 Representation next_representation;
4005 bool property_kind_reconfiguration = false;
4006
4007 if (modify_index == i) {
4008 DCHECK_EQ(FORCE_FIELD, store_mode);
4009 property_kind_reconfiguration = old_details.kind() != new_kind;
4010
4011 next_kind = new_kind;
4012 next_attributes = new_attributes;
4013 next_location = kField;
4014
4015 // Merge new representation/field type with ones from the target
4016 // descriptor. If property kind is not reconfigured merge the result with
4017 // representation/field type from the old descriptor.
4018 next_representation =
4019 new_representation.generalize(target_details.representation());
4020 if (!property_kind_reconfiguration) {
4021 next_representation =
4022 next_representation.generalize(old_details.representation());
4023 }
4024 } else {
4025 // Merge old_descriptor and target_descriptor entries.
4026 DCHECK_EQ(target_details.kind(), old_details.kind());
4027 next_kind = target_details.kind();
4028 next_attributes = target_details.attributes();
4029 next_location =
4030 old_details.location() == kField ||
4031 target_details.location() == kField ||
4032 !EqualImmutableValues(target_descriptors->GetValue(i),
4033 old_descriptors->GetValue(i))
4034 ? kField
4035 : kDescriptor;
4036
4037 next_representation = old_details.representation().generalize(
4038 target_details.representation());
4039 }
4040 DCHECK_EQ(next_kind, target_details.kind());
4041 DCHECK_EQ(next_attributes, target_details.attributes());
4042
4043 if (next_location == kField) {
4044 if (next_kind == kData) {
4045 Handle<FieldType> target_field_type =
4046 GetFieldType(isolate, target_descriptors, i,
4047 target_details.location(), next_representation);
4048
4049 Handle<FieldType> next_field_type;
4050 if (modify_index == i) {
4051 next_field_type = GeneralizeFieldType(
4052 target_details.representation(), target_field_type,
4053 new_representation, new_field_type, isolate);
4054 if (!property_kind_reconfiguration) {
4055 Handle<FieldType> old_field_type =
4056 GetFieldType(isolate, old_descriptors, i,
4057 old_details.location(), next_representation);
4058 next_field_type = GeneralizeFieldType(
4059 old_details.representation(), old_field_type,
4060 next_representation, next_field_type, isolate);
4061 }
4062 } else {
4063 Handle<FieldType> old_field_type =
4064 GetFieldType(isolate, old_descriptors, i, old_details.location(),
4065 next_representation);
4066 next_field_type = GeneralizeFieldType(
4067 old_details.representation(), old_field_type, next_representation,
4068 target_field_type, isolate);
4069 }
4070 Handle<Object> wrapped_type(WrapType(next_field_type));
4071 DataDescriptor d(target_key, current_offset, wrapped_type,
4072 next_attributes, next_representation);
4073 current_offset += d.GetDetails().field_width_in_words();
4074 new_descriptors->Set(i, &d);
4075 } else {
4076 UNIMPLEMENTED(); // TODO(ishell): implement.
4077 }
4078 } else {
4079 PropertyDetails details(next_attributes, next_kind, next_location,
4080 next_representation);
4081 Descriptor d(target_key, handle(target_descriptors->GetValue(i), isolate),
4082 details);
4083 new_descriptors->Set(i, &d);
4084 }
4085 }
4086
4087 // |target_nof| -> |old_nof|
4088 for (int i = target_nof; i < old_nof; ++i) {
4089 PropertyDetails old_details = old_descriptors->GetDetails(i);
4090 Handle<Name> old_key(old_descriptors->GetKey(i), isolate);
4091
4092 // Merge old_descriptor entry and modified details together.
4093 PropertyKind next_kind;
4094 PropertyAttributes next_attributes;
4095 PropertyLocation next_location;
4096 Representation next_representation;
4097 bool property_kind_reconfiguration = false;
4098
4099 if (modify_index == i) {
4100 DCHECK_EQ(FORCE_FIELD, store_mode);
4101 // In case of property kind reconfiguration it is not necessary to
4102 // take into account representation/field type of the old descriptor.
4103 property_kind_reconfiguration = old_details.kind() != new_kind;
4104
4105 next_kind = new_kind;
4106 next_attributes = new_attributes;
4107 next_location = kField;
4108 next_representation = new_representation;
4109 if (!property_kind_reconfiguration) {
4110 next_representation =
4111 next_representation.generalize(old_details.representation());
4112 }
4113 } else {
4114 next_kind = old_details.kind();
4115 next_attributes = old_details.attributes();
4116 next_location = old_details.location();
4117 next_representation = old_details.representation();
4118 }
4119
4120 if (next_location == kField) {
4121 if (next_kind == kData) {
4122 Handle<FieldType> next_field_type;
4123 if (modify_index == i) {
4124 next_field_type = new_field_type;
4125 if (!property_kind_reconfiguration) {
4126 Handle<FieldType> old_field_type =
4127 GetFieldType(isolate, old_descriptors, i,
4128 old_details.location(), next_representation);
4129 next_field_type = GeneralizeFieldType(
4130 old_details.representation(), old_field_type,
4131 next_representation, next_field_type, isolate);
4132 }
4133 } else {
4134 Handle<FieldType> old_field_type =
4135 GetFieldType(isolate, old_descriptors, i, old_details.location(),
4136 next_representation);
4137 next_field_type = old_field_type;
4138 }
4139
4140 Handle<Object> wrapped_type(WrapType(next_field_type));
4141
4142 DataDescriptor d(old_key, current_offset, wrapped_type, next_attributes,
4143 next_representation);
4144 current_offset += d.GetDetails().field_width_in_words();
4145 new_descriptors->Set(i, &d);
4146 } else {
4147 UNIMPLEMENTED(); // TODO(ishell): implement.
4148 }
4149 } else {
4150 PropertyDetails details(next_attributes, next_kind, next_location,
4151 next_representation);
4152 Descriptor d(old_key, handle(old_descriptors->GetValue(i), isolate),
4153 details);
4154 new_descriptors->Set(i, &d);
4155 }
4156 }
4157
4158 new_descriptors->Sort();
4159
4160 DCHECK(store_mode != FORCE_FIELD ||
4161 new_descriptors->GetDetails(modify_index).location() == kField);
4162
4163 Handle<Map> split_map(root_map->FindLastMatchMap(
4164 root_nof, old_nof, *new_descriptors), isolate);
4165 int split_nof = split_map->NumberOfOwnDescriptors();
4166 DCHECK_NE(old_nof, split_nof);
4167
4168 PropertyKind split_kind;
4169 PropertyAttributes split_attributes;
4170 if (modify_index == split_nof) {
4171 split_kind = new_kind;
4172 split_attributes = new_attributes;
4173 } else {
4174 PropertyDetails split_prop_details = old_descriptors->GetDetails(split_nof);
4175 split_kind = split_prop_details.kind();
4176 split_attributes = split_prop_details.attributes();
4177 }
4178
4179 // Invalidate a transition target at |key|.
4180 Map* maybe_transition = TransitionArray::SearchTransition(
4181 *split_map, split_kind, old_descriptors->GetKey(split_nof),
4182 split_attributes);
4183 if (maybe_transition != NULL) {
4184 maybe_transition->DeprecateTransitionTree();
4185 }
4186
4187 // If |maybe_transition| is not NULL then the transition array already
4188 // contains entry for given descriptor. This means that the transition
4189 // could be inserted regardless of whether transitions array is full or not.
4190 if (maybe_transition == NULL &&
4191 !TransitionArray::CanHaveMoreTransitions(split_map)) {
4192 return CopyGeneralizeAllRepresentations(
4193 old_map, to_kind, modify_index, store_mode, new_kind, new_attributes,
4194 "GenAll_CantHaveMoreTransitions");
4195 }
4196
4197 old_map->NotifyLeafMapLayoutChange();
4198
4199 if (FLAG_trace_generalization && modify_index >= 0) {
4200 PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
4201 PropertyDetails new_details = new_descriptors->GetDetails(modify_index);
4202 MaybeHandle<FieldType> old_field_type;
4203 MaybeHandle<FieldType> new_field_type;
4204 MaybeHandle<Object> old_value;
4205 MaybeHandle<Object> new_value;
4206 if (old_details.type() == DATA) {
4207 old_field_type =
4208 handle(old_descriptors->GetFieldType(modify_index), isolate);
4209 } else {
4210 old_value = handle(old_descriptors->GetValue(modify_index), isolate);
4211 }
4212 if (new_details.type() == DATA) {
4213 new_field_type =
4214 handle(new_descriptors->GetFieldType(modify_index), isolate);
4215 } else {
4216 new_value = handle(new_descriptors->GetValue(modify_index), isolate);
4217 }
4218
4219 old_map->PrintGeneralization(
4220 stdout, "", modify_index, split_nof, old_nof,
4221 old_details.location() == kDescriptor && store_mode == FORCE_FIELD,
4222 old_details.representation(), new_details.representation(),
4223 old_field_type, old_value, new_field_type, new_value);
4224 }
4225
4226 Handle<LayoutDescriptor> new_layout_descriptor =
4227 LayoutDescriptor::New(split_map, new_descriptors, old_nof);
4228
4229 Handle<Map> new_map =
4230 AddMissingTransitions(split_map, new_descriptors, new_layout_descriptor);
4231
4232 // Deprecated part of the transition tree is no longer reachable, so replace
4233 // current instance descriptors in the "survived" part of the tree with
4234 // the new descriptors to maintain descriptors sharing invariant.
4235 split_map->ReplaceDescriptors(*new_descriptors, *new_layout_descriptor);
4236 return new_map;
4237 }
4238
4239
4240 // Generalize the representation of all DATA descriptors.
GeneralizeAllFieldRepresentations(Handle<Map> map)4241 Handle<Map> Map::GeneralizeAllFieldRepresentations(
4242 Handle<Map> map) {
4243 Handle<DescriptorArray> descriptors(map->instance_descriptors());
4244 for (int i = 0; i < map->NumberOfOwnDescriptors(); ++i) {
4245 PropertyDetails details = descriptors->GetDetails(i);
4246 if (details.type() == DATA) {
4247 map = ReconfigureProperty(map, i, kData, details.attributes(),
4248 Representation::Tagged(),
4249 FieldType::Any(map->GetIsolate()), FORCE_FIELD);
4250 }
4251 }
4252 return map;
4253 }
4254
4255
4256 // static
TryUpdate(Handle<Map> old_map)4257 MaybeHandle<Map> Map::TryUpdate(Handle<Map> old_map) {
4258 DisallowHeapAllocation no_allocation;
4259 DisallowDeoptimization no_deoptimization(old_map->GetIsolate());
4260
4261 if (!old_map->is_deprecated()) return old_map;
4262
4263 // Check the state of the root map.
4264 Map* root_map = old_map->FindRootMap();
4265 if (!old_map->EquivalentToForTransition(root_map)) return MaybeHandle<Map>();
4266
4267 ElementsKind from_kind = root_map->elements_kind();
4268 ElementsKind to_kind = old_map->elements_kind();
4269 if (from_kind != to_kind) {
4270 // Try to follow existing elements kind transitions.
4271 root_map = root_map->LookupElementsTransitionMap(to_kind);
4272 if (root_map == NULL) return MaybeHandle<Map>();
4273 // From here on, use the map with correct elements kind as root map.
4274 }
4275 Map* new_map = root_map->TryReplayPropertyTransitions(*old_map);
4276 if (new_map == nullptr) return MaybeHandle<Map>();
4277 return handle(new_map);
4278 }
4279
TryReplayPropertyTransitions(Map * old_map)4280 Map* Map::TryReplayPropertyTransitions(Map* old_map) {
4281 DisallowHeapAllocation no_allocation;
4282 DisallowDeoptimization no_deoptimization(GetIsolate());
4283
4284 int root_nof = NumberOfOwnDescriptors();
4285
4286 int old_nof = old_map->NumberOfOwnDescriptors();
4287 DescriptorArray* old_descriptors = old_map->instance_descriptors();
4288
4289 Map* new_map = this;
4290 for (int i = root_nof; i < old_nof; ++i) {
4291 PropertyDetails old_details = old_descriptors->GetDetails(i);
4292 Map* transition = TransitionArray::SearchTransition(
4293 new_map, old_details.kind(), old_descriptors->GetKey(i),
4294 old_details.attributes());
4295 if (transition == NULL) return nullptr;
4296 new_map = transition;
4297 DescriptorArray* new_descriptors = new_map->instance_descriptors();
4298
4299 PropertyDetails new_details = new_descriptors->GetDetails(i);
4300 DCHECK_EQ(old_details.kind(), new_details.kind());
4301 DCHECK_EQ(old_details.attributes(), new_details.attributes());
4302 if (!old_details.representation().fits_into(new_details.representation())) {
4303 return nullptr;
4304 }
4305 switch (new_details.type()) {
4306 case DATA: {
4307 FieldType* new_type = new_descriptors->GetFieldType(i);
4308 // Cleared field types need special treatment. They represent lost
4309 // knowledge, so we must first generalize the new_type to "Any".
4310 if (FieldTypeIsCleared(new_details.representation(), new_type)) {
4311 return nullptr;
4312 }
4313 PropertyType old_property_type = old_details.type();
4314 if (old_property_type == DATA) {
4315 FieldType* old_type = old_descriptors->GetFieldType(i);
4316 if (FieldTypeIsCleared(old_details.representation(), old_type) ||
4317 !old_type->NowIs(new_type)) {
4318 return nullptr;
4319 }
4320 } else {
4321 DCHECK(old_property_type == DATA_CONSTANT);
4322 Object* old_value = old_descriptors->GetValue(i);
4323 if (!new_type->NowContains(old_value)) {
4324 return nullptr;
4325 }
4326 }
4327 break;
4328 }
4329 case ACCESSOR: {
4330 #ifdef DEBUG
4331 FieldType* new_type = new_descriptors->GetFieldType(i);
4332 DCHECK(new_type->IsAny());
4333 #endif
4334 break;
4335 }
4336
4337 case DATA_CONSTANT:
4338 case ACCESSOR_CONSTANT: {
4339 Object* old_value = old_descriptors->GetValue(i);
4340 Object* new_value = new_descriptors->GetValue(i);
4341 if (old_details.location() == kField || old_value != new_value) {
4342 return nullptr;
4343 }
4344 break;
4345 }
4346 }
4347 }
4348 if (new_map->NumberOfOwnDescriptors() != old_nof) return nullptr;
4349 return new_map;
4350 }
4351
4352
4353 // static
Update(Handle<Map> map)4354 Handle<Map> Map::Update(Handle<Map> map) {
4355 if (!map->is_deprecated()) return map;
4356 return ReconfigureProperty(map, -1, kData, NONE, Representation::None(),
4357 FieldType::None(map->GetIsolate()),
4358 ALLOW_IN_DESCRIPTOR);
4359 }
4360
SetPropertyWithInterceptor(LookupIterator * it,ShouldThrow should_throw,Handle<Object> value)4361 Maybe<bool> JSObject::SetPropertyWithInterceptor(LookupIterator* it,
4362 ShouldThrow should_throw,
4363 Handle<Object> value) {
4364 DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
4365 return SetPropertyWithInterceptorInternal(it, it->GetInterceptor(),
4366 should_throw, value);
4367 }
4368
SetProperty(Handle<Object> object,Handle<Name> name,Handle<Object> value,LanguageMode language_mode,StoreFromKeyed store_mode)4369 MaybeHandle<Object> Object::SetProperty(Handle<Object> object,
4370 Handle<Name> name, Handle<Object> value,
4371 LanguageMode language_mode,
4372 StoreFromKeyed store_mode) {
4373 LookupIterator it(object, name);
4374 MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode));
4375 return value;
4376 }
4377
4378
SetPropertyInternal(LookupIterator * it,Handle<Object> value,LanguageMode language_mode,StoreFromKeyed store_mode,bool * found)4379 Maybe<bool> Object::SetPropertyInternal(LookupIterator* it,
4380 Handle<Object> value,
4381 LanguageMode language_mode,
4382 StoreFromKeyed store_mode,
4383 bool* found) {
4384 it->UpdateProtector();
4385 DCHECK(it->IsFound());
4386 ShouldThrow should_throw =
4387 is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
4388
4389 // Make sure that the top context does not change when doing callbacks or
4390 // interceptor calls.
4391 AssertNoContextChange ncc(it->isolate());
4392
4393 do {
4394 switch (it->state()) {
4395 case LookupIterator::NOT_FOUND:
4396 UNREACHABLE();
4397
4398 case LookupIterator::ACCESS_CHECK:
4399 if (it->HasAccess()) break;
4400 // Check whether it makes sense to reuse the lookup iterator. Here it
4401 // might still call into setters up the prototype chain.
4402 return JSObject::SetPropertyWithFailedAccessCheck(it, value,
4403 should_throw);
4404
4405 case LookupIterator::JSPROXY:
4406 return JSProxy::SetProperty(it->GetHolder<JSProxy>(), it->GetName(),
4407 value, it->GetReceiver(), language_mode);
4408
4409 case LookupIterator::INTERCEPTOR: {
4410 Handle<Map> store_target_map;
4411 if (it->GetReceiver()->IsJSObject()) {
4412 store_target_map = handle(it->GetStoreTarget()->map(), it->isolate());
4413 }
4414 if (it->HolderIsReceiverOrHiddenPrototype()) {
4415 Maybe<bool> result =
4416 JSObject::SetPropertyWithInterceptor(it, should_throw, value);
4417 if (result.IsNothing() || result.FromJust()) return result;
4418 // Interceptor modified the store target but failed to set the
4419 // property.
4420 Utils::ApiCheck(store_target_map.is_null() ||
4421 *store_target_map == it->GetStoreTarget()->map(),
4422 it->IsElement() ? "v8::IndexedPropertySetterCallback"
4423 : "v8::NamedPropertySetterCallback",
4424 "Interceptor silently changed store target.");
4425 } else {
4426 Maybe<PropertyAttributes> maybe_attributes =
4427 JSObject::GetPropertyAttributesWithInterceptor(it);
4428 if (!maybe_attributes.IsJust()) return Nothing<bool>();
4429 if ((maybe_attributes.FromJust() & READ_ONLY) != 0) {
4430 return WriteToReadOnlyProperty(it, value, should_throw);
4431 }
4432 // Interceptor modified the store target but failed to set the
4433 // property.
4434 Utils::ApiCheck(store_target_map.is_null() ||
4435 *store_target_map == it->GetStoreTarget()->map(),
4436 it->IsElement() ? "v8::IndexedPropertySetterCallback"
4437 : "v8::NamedPropertySetterCallback",
4438 "Interceptor silently changed store target.");
4439 if (maybe_attributes.FromJust() == ABSENT) break;
4440 *found = false;
4441 return Nothing<bool>();
4442 }
4443 break;
4444 }
4445
4446 case LookupIterator::ACCESSOR: {
4447 if (it->IsReadOnly()) {
4448 return WriteToReadOnlyProperty(it, value, should_throw);
4449 }
4450 Handle<Object> accessors = it->GetAccessors();
4451 if (accessors->IsAccessorInfo() &&
4452 !it->HolderIsReceiverOrHiddenPrototype() &&
4453 AccessorInfo::cast(*accessors)->is_special_data_property()) {
4454 *found = false;
4455 return Nothing<bool>();
4456 }
4457 return SetPropertyWithAccessor(it, value, should_throw);
4458 }
4459 case LookupIterator::INTEGER_INDEXED_EXOTIC:
4460 // TODO(verwaest): We should throw an exception if holder is receiver.
4461 return Just(true);
4462
4463 case LookupIterator::DATA:
4464 if (it->IsReadOnly()) {
4465 return WriteToReadOnlyProperty(it, value, should_throw);
4466 }
4467 if (it->HolderIsReceiverOrHiddenPrototype()) {
4468 return SetDataProperty(it, value);
4469 }
4470 // Fall through.
4471 case LookupIterator::TRANSITION:
4472 *found = false;
4473 return Nothing<bool>();
4474 }
4475 it->Next();
4476 } while (it->IsFound());
4477
4478 *found = false;
4479 return Nothing<bool>();
4480 }
4481
4482
SetProperty(LookupIterator * it,Handle<Object> value,LanguageMode language_mode,StoreFromKeyed store_mode)4483 Maybe<bool> Object::SetProperty(LookupIterator* it, Handle<Object> value,
4484 LanguageMode language_mode,
4485 StoreFromKeyed store_mode) {
4486 if (it->IsFound()) {
4487 bool found = true;
4488 Maybe<bool> result =
4489 SetPropertyInternal(it, value, language_mode, store_mode, &found);
4490 if (found) return result;
4491 }
4492
4493 // If the receiver is the JSGlobalObject, the store was contextual. In case
4494 // the property did not exist yet on the global object itself, we have to
4495 // throw a reference error in strict mode. In sloppy mode, we continue.
4496 if (is_strict(language_mode) && it->GetReceiver()->IsJSGlobalObject()) {
4497 it->isolate()->Throw(*it->isolate()->factory()->NewReferenceError(
4498 MessageTemplate::kNotDefined, it->name()));
4499 return Nothing<bool>();
4500 }
4501
4502 ShouldThrow should_throw =
4503 is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
4504 return AddDataProperty(it, value, NONE, should_throw, store_mode);
4505 }
4506
4507
SetSuperProperty(LookupIterator * it,Handle<Object> value,LanguageMode language_mode,StoreFromKeyed store_mode)4508 Maybe<bool> Object::SetSuperProperty(LookupIterator* it, Handle<Object> value,
4509 LanguageMode language_mode,
4510 StoreFromKeyed store_mode) {
4511 Isolate* isolate = it->isolate();
4512
4513 if (it->IsFound()) {
4514 bool found = true;
4515 Maybe<bool> result =
4516 SetPropertyInternal(it, value, language_mode, store_mode, &found);
4517 if (found) return result;
4518 }
4519
4520 it->UpdateProtector();
4521
4522 // The property either doesn't exist on the holder or exists there as a data
4523 // property.
4524
4525 ShouldThrow should_throw =
4526 is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
4527
4528 if (!it->GetReceiver()->IsJSReceiver()) {
4529 return WriteToReadOnlyProperty(it, value, should_throw);
4530 }
4531 Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
4532
4533 LookupIterator::Configuration c = LookupIterator::OWN;
4534 LookupIterator own_lookup =
4535 it->IsElement() ? LookupIterator(isolate, receiver, it->index(), c)
4536 : LookupIterator(receiver, it->name(), c);
4537
4538 for (; own_lookup.IsFound(); own_lookup.Next()) {
4539 switch (own_lookup.state()) {
4540 case LookupIterator::ACCESS_CHECK:
4541 if (!own_lookup.HasAccess()) {
4542 return JSObject::SetPropertyWithFailedAccessCheck(&own_lookup, value,
4543 should_throw);
4544 }
4545 break;
4546
4547 case LookupIterator::ACCESSOR:
4548 if (own_lookup.GetAccessors()->IsAccessorInfo()) {
4549 if (own_lookup.IsReadOnly()) {
4550 return WriteToReadOnlyProperty(&own_lookup, value, should_throw);
4551 }
4552 return JSObject::SetPropertyWithAccessor(&own_lookup, value,
4553 should_throw);
4554 }
4555 // Fall through.
4556 case LookupIterator::INTEGER_INDEXED_EXOTIC:
4557 return RedefineIncompatibleProperty(isolate, it->GetName(), value,
4558 should_throw);
4559
4560 case LookupIterator::DATA: {
4561 if (own_lookup.IsReadOnly()) {
4562 return WriteToReadOnlyProperty(&own_lookup, value, should_throw);
4563 }
4564 return SetDataProperty(&own_lookup, value);
4565 }
4566
4567 case LookupIterator::INTERCEPTOR:
4568 case LookupIterator::JSPROXY: {
4569 PropertyDescriptor desc;
4570 Maybe<bool> owned =
4571 JSReceiver::GetOwnPropertyDescriptor(&own_lookup, &desc);
4572 MAYBE_RETURN(owned, Nothing<bool>());
4573 if (!owned.FromJust()) {
4574 return JSReceiver::CreateDataProperty(&own_lookup, value,
4575 should_throw);
4576 }
4577 if (PropertyDescriptor::IsAccessorDescriptor(&desc) ||
4578 !desc.writable()) {
4579 return RedefineIncompatibleProperty(isolate, it->GetName(), value,
4580 should_throw);
4581 }
4582
4583 PropertyDescriptor value_desc;
4584 value_desc.set_value(value);
4585 return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(),
4586 &value_desc, should_throw);
4587 }
4588
4589 case LookupIterator::NOT_FOUND:
4590 case LookupIterator::TRANSITION:
4591 UNREACHABLE();
4592 }
4593 }
4594
4595 return AddDataProperty(&own_lookup, value, NONE, should_throw, store_mode);
4596 }
4597
ReadAbsentProperty(LookupIterator * it)4598 MaybeHandle<Object> Object::ReadAbsentProperty(LookupIterator* it) {
4599 return it->isolate()->factory()->undefined_value();
4600 }
4601
ReadAbsentProperty(Isolate * isolate,Handle<Object> receiver,Handle<Object> name)4602 MaybeHandle<Object> Object::ReadAbsentProperty(Isolate* isolate,
4603 Handle<Object> receiver,
4604 Handle<Object> name) {
4605 return isolate->factory()->undefined_value();
4606 }
4607
4608
CannotCreateProperty(Isolate * isolate,Handle<Object> receiver,Handle<Object> name,Handle<Object> value,ShouldThrow should_throw)4609 Maybe<bool> Object::CannotCreateProperty(Isolate* isolate,
4610 Handle<Object> receiver,
4611 Handle<Object> name,
4612 Handle<Object> value,
4613 ShouldThrow should_throw) {
4614 RETURN_FAILURE(
4615 isolate, should_throw,
4616 NewTypeError(MessageTemplate::kStrictCannotCreateProperty, name,
4617 Object::TypeOf(isolate, receiver), receiver));
4618 }
4619
4620
WriteToReadOnlyProperty(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)4621 Maybe<bool> Object::WriteToReadOnlyProperty(LookupIterator* it,
4622 Handle<Object> value,
4623 ShouldThrow should_throw) {
4624 return WriteToReadOnlyProperty(it->isolate(), it->GetReceiver(),
4625 it->GetName(), value, should_throw);
4626 }
4627
4628
WriteToReadOnlyProperty(Isolate * isolate,Handle<Object> receiver,Handle<Object> name,Handle<Object> value,ShouldThrow should_throw)4629 Maybe<bool> Object::WriteToReadOnlyProperty(Isolate* isolate,
4630 Handle<Object> receiver,
4631 Handle<Object> name,
4632 Handle<Object> value,
4633 ShouldThrow should_throw) {
4634 RETURN_FAILURE(isolate, should_throw,
4635 NewTypeError(MessageTemplate::kStrictReadOnlyProperty, name,
4636 Object::TypeOf(isolate, receiver), receiver));
4637 }
4638
4639
RedefineIncompatibleProperty(Isolate * isolate,Handle<Object> name,Handle<Object> value,ShouldThrow should_throw)4640 Maybe<bool> Object::RedefineIncompatibleProperty(Isolate* isolate,
4641 Handle<Object> name,
4642 Handle<Object> value,
4643 ShouldThrow should_throw) {
4644 RETURN_FAILURE(isolate, should_throw,
4645 NewTypeError(MessageTemplate::kRedefineDisallowed, name));
4646 }
4647
4648
SetDataProperty(LookupIterator * it,Handle<Object> value)4649 Maybe<bool> Object::SetDataProperty(LookupIterator* it, Handle<Object> value) {
4650 // Proxies are handled elsewhere. Other non-JSObjects cannot have own
4651 // properties.
4652 Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver());
4653
4654 // Store on the holder which may be hidden behind the receiver.
4655 DCHECK(it->HolderIsReceiverOrHiddenPrototype());
4656
4657 Handle<Object> to_assign = value;
4658 // Convert the incoming value to a number for storing into typed arrays.
4659 if (it->IsElement() && receiver->HasFixedTypedArrayElements()) {
4660 if (!value->IsNumber() && !value->IsUndefined(it->isolate())) {
4661 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
4662 it->isolate(), to_assign, Object::ToNumber(value), Nothing<bool>());
4663 // We have to recheck the length. However, it can only change if the
4664 // underlying buffer was neutered, so just check that.
4665 if (Handle<JSArrayBufferView>::cast(receiver)->WasNeutered()) {
4666 return Just(true);
4667 // TODO(neis): According to the spec, this should throw a TypeError.
4668 }
4669 }
4670 }
4671
4672 // Possibly migrate to the most up-to-date map that will be able to store
4673 // |value| under it->name().
4674 it->PrepareForDataProperty(to_assign);
4675
4676 // Write the property value.
4677 it->WriteDataValue(to_assign);
4678
4679 #if VERIFY_HEAP
4680 if (FLAG_verify_heap) {
4681 receiver->JSObjectVerify();
4682 }
4683 #endif
4684 return Just(true);
4685 }
4686
4687
AddDataProperty(LookupIterator * it,Handle<Object> value,PropertyAttributes attributes,ShouldThrow should_throw,StoreFromKeyed store_mode)4688 Maybe<bool> Object::AddDataProperty(LookupIterator* it, Handle<Object> value,
4689 PropertyAttributes attributes,
4690 ShouldThrow should_throw,
4691 StoreFromKeyed store_mode) {
4692 if (!it->GetReceiver()->IsJSObject()) {
4693 if (it->GetReceiver()->IsJSProxy() && it->GetName()->IsPrivate()) {
4694 RETURN_FAILURE(it->isolate(), should_throw,
4695 NewTypeError(MessageTemplate::kProxyPrivate));
4696 }
4697 return CannotCreateProperty(it->isolate(), it->GetReceiver(), it->GetName(),
4698 value, should_throw);
4699 }
4700
4701 DCHECK_NE(LookupIterator::INTEGER_INDEXED_EXOTIC, it->state());
4702
4703 Handle<JSObject> receiver = it->GetStoreTarget();
4704
4705 // If the receiver is a JSGlobalProxy, store on the prototype (JSGlobalObject)
4706 // instead. If the prototype is Null, the proxy is detached.
4707 if (receiver->IsJSGlobalProxy()) return Just(true);
4708
4709 Isolate* isolate = it->isolate();
4710
4711 if (it->ExtendingNonExtensible(receiver)) {
4712 RETURN_FAILURE(
4713 isolate, should_throw,
4714 NewTypeError(MessageTemplate::kObjectNotExtensible, it->GetName()));
4715 }
4716
4717 if (it->IsElement()) {
4718 if (receiver->IsJSArray()) {
4719 Handle<JSArray> array = Handle<JSArray>::cast(receiver);
4720 if (JSArray::WouldChangeReadOnlyLength(array, it->index())) {
4721 RETURN_FAILURE(array->GetIsolate(), should_throw,
4722 NewTypeError(MessageTemplate::kStrictReadOnlyProperty,
4723 isolate->factory()->length_string(),
4724 Object::TypeOf(isolate, array), array));
4725 }
4726
4727 if (FLAG_trace_external_array_abuse &&
4728 array->HasFixedTypedArrayElements()) {
4729 CheckArrayAbuse(array, "typed elements write", it->index(), true);
4730 }
4731
4732 if (FLAG_trace_js_array_abuse && !array->HasFixedTypedArrayElements()) {
4733 CheckArrayAbuse(array, "elements write", it->index(), false);
4734 }
4735 }
4736
4737 Maybe<bool> result = JSObject::AddDataElement(receiver, it->index(), value,
4738 attributes, should_throw);
4739 JSObject::ValidateElements(receiver);
4740 return result;
4741 } else {
4742 it->UpdateProtector();
4743 // Migrate to the most up-to-date map that will be able to store |value|
4744 // under it->name() with |attributes|.
4745 it->PrepareTransitionToDataProperty(receiver, value, attributes,
4746 store_mode);
4747 DCHECK_EQ(LookupIterator::TRANSITION, it->state());
4748 it->ApplyTransitionToDataProperty(receiver);
4749
4750 // TODO(verwaest): Encapsulate dictionary handling better.
4751 if (receiver->map()->is_dictionary_map()) {
4752 // TODO(dcarney): just populate TransitionPropertyCell here?
4753 JSObject::AddSlowProperty(receiver, it->name(), value, attributes);
4754 } else {
4755 // Write the property value.
4756 it->WriteDataValue(value);
4757 }
4758
4759 #if VERIFY_HEAP
4760 if (FLAG_verify_heap) {
4761 receiver->JSObjectVerify();
4762 }
4763 #endif
4764 }
4765
4766 return Just(true);
4767 }
4768
4769
EnsureDescriptorSlack(Handle<Map> map,int slack)4770 void Map::EnsureDescriptorSlack(Handle<Map> map, int slack) {
4771 // Only supports adding slack to owned descriptors.
4772 DCHECK(map->owns_descriptors());
4773
4774 Handle<DescriptorArray> descriptors(map->instance_descriptors());
4775 int old_size = map->NumberOfOwnDescriptors();
4776 if (slack <= descriptors->NumberOfSlackDescriptors()) return;
4777
4778 Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(
4779 descriptors, old_size, slack);
4780
4781 DisallowHeapAllocation no_allocation;
4782 // The descriptors are still the same, so keep the layout descriptor.
4783 LayoutDescriptor* layout_descriptor = map->GetLayoutDescriptor();
4784
4785 if (old_size == 0) {
4786 map->UpdateDescriptors(*new_descriptors, layout_descriptor);
4787 return;
4788 }
4789
4790 // If the source descriptors had an enum cache we copy it. This ensures
4791 // that the maps to which we push the new descriptor array back can rely
4792 // on a cache always being available once it is set. If the map has more
4793 // enumerated descriptors than available in the original cache, the cache
4794 // will be lazily replaced by the extended cache when needed.
4795 if (descriptors->HasEnumCache()) {
4796 new_descriptors->CopyEnumCacheFrom(*descriptors);
4797 }
4798
4799 Isolate* isolate = map->GetIsolate();
4800 // Replace descriptors by new_descriptors in all maps that share it.
4801 isolate->heap()->incremental_marking()->IterateBlackObject(*descriptors);
4802
4803 Map* current = *map;
4804 while (current->instance_descriptors() == *descriptors) {
4805 Object* next = current->GetBackPointer();
4806 if (next->IsUndefined(isolate)) break; // Stop overwriting at initial map.
4807 current->UpdateDescriptors(*new_descriptors, layout_descriptor);
4808 current = Map::cast(next);
4809 }
4810 map->UpdateDescriptors(*new_descriptors, layout_descriptor);
4811 }
4812
4813
4814 template<class T>
AppendUniqueCallbacks(NeanderArray * callbacks,Handle<typename T::Array> array,int valid_descriptors)4815 static int AppendUniqueCallbacks(NeanderArray* callbacks,
4816 Handle<typename T::Array> array,
4817 int valid_descriptors) {
4818 int nof_callbacks = callbacks->length();
4819
4820 Isolate* isolate = array->GetIsolate();
4821 // Ensure the keys are unique names before writing them into the
4822 // instance descriptor. Since it may cause a GC, it has to be done before we
4823 // temporarily put the heap in an invalid state while appending descriptors.
4824 for (int i = 0; i < nof_callbacks; ++i) {
4825 Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
4826 if (entry->name()->IsUniqueName()) continue;
4827 Handle<String> key =
4828 isolate->factory()->InternalizeString(
4829 Handle<String>(String::cast(entry->name())));
4830 entry->set_name(*key);
4831 }
4832
4833 // Fill in new callback descriptors. Process the callbacks from
4834 // back to front so that the last callback with a given name takes
4835 // precedence over previously added callbacks with that name.
4836 for (int i = nof_callbacks - 1; i >= 0; i--) {
4837 Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
4838 Handle<Name> key(Name::cast(entry->name()));
4839 // Check if a descriptor with this name already exists before writing.
4840 if (!T::Contains(key, entry, valid_descriptors, array)) {
4841 T::Insert(key, entry, valid_descriptors, array);
4842 valid_descriptors++;
4843 }
4844 }
4845
4846 return valid_descriptors;
4847 }
4848
4849 struct DescriptorArrayAppender {
4850 typedef DescriptorArray Array;
Containsv8::internal::DescriptorArrayAppender4851 static bool Contains(Handle<Name> key,
4852 Handle<AccessorInfo> entry,
4853 int valid_descriptors,
4854 Handle<DescriptorArray> array) {
4855 DisallowHeapAllocation no_gc;
4856 return array->Search(*key, valid_descriptors) != DescriptorArray::kNotFound;
4857 }
Insertv8::internal::DescriptorArrayAppender4858 static void Insert(Handle<Name> key,
4859 Handle<AccessorInfo> entry,
4860 int valid_descriptors,
4861 Handle<DescriptorArray> array) {
4862 DisallowHeapAllocation no_gc;
4863 AccessorConstantDescriptor desc(key, entry, entry->property_attributes());
4864 array->Append(&desc);
4865 }
4866 };
4867
4868
4869 struct FixedArrayAppender {
4870 typedef FixedArray Array;
Containsv8::internal::FixedArrayAppender4871 static bool Contains(Handle<Name> key,
4872 Handle<AccessorInfo> entry,
4873 int valid_descriptors,
4874 Handle<FixedArray> array) {
4875 for (int i = 0; i < valid_descriptors; i++) {
4876 if (*key == AccessorInfo::cast(array->get(i))->name()) return true;
4877 }
4878 return false;
4879 }
Insertv8::internal::FixedArrayAppender4880 static void Insert(Handle<Name> key,
4881 Handle<AccessorInfo> entry,
4882 int valid_descriptors,
4883 Handle<FixedArray> array) {
4884 DisallowHeapAllocation no_gc;
4885 array->set(valid_descriptors, *entry);
4886 }
4887 };
4888
4889
AppendCallbackDescriptors(Handle<Map> map,Handle<Object> descriptors)4890 void Map::AppendCallbackDescriptors(Handle<Map> map,
4891 Handle<Object> descriptors) {
4892 int nof = map->NumberOfOwnDescriptors();
4893 Handle<DescriptorArray> array(map->instance_descriptors());
4894 NeanderArray callbacks(descriptors);
4895 DCHECK(array->NumberOfSlackDescriptors() >= callbacks.length());
4896 nof = AppendUniqueCallbacks<DescriptorArrayAppender>(&callbacks, array, nof);
4897 map->SetNumberOfOwnDescriptors(nof);
4898 }
4899
4900
AppendUnique(Handle<Object> descriptors,Handle<FixedArray> array,int valid_descriptors)4901 int AccessorInfo::AppendUnique(Handle<Object> descriptors,
4902 Handle<FixedArray> array,
4903 int valid_descriptors) {
4904 NeanderArray callbacks(descriptors);
4905 DCHECK(array->length() >= callbacks.length() + valid_descriptors);
4906 return AppendUniqueCallbacks<FixedArrayAppender>(&callbacks,
4907 array,
4908 valid_descriptors);
4909 }
4910
4911
ContainsMap(MapHandleList * maps,Map * map)4912 static bool ContainsMap(MapHandleList* maps, Map* map) {
4913 DCHECK_NOT_NULL(map);
4914 for (int i = 0; i < maps->length(); ++i) {
4915 if (!maps->at(i).is_null() && *maps->at(i) == map) return true;
4916 }
4917 return false;
4918 }
4919
FindElementsKindTransitionedMap(MapHandleList * candidates)4920 Map* Map::FindElementsKindTransitionedMap(MapHandleList* candidates) {
4921 DisallowHeapAllocation no_allocation;
4922 DisallowDeoptimization no_deoptimization(GetIsolate());
4923
4924 ElementsKind kind = elements_kind();
4925 bool packed = IsFastPackedElementsKind(kind);
4926
4927 Map* transition = nullptr;
4928 if (IsTransitionableFastElementsKind(kind)) {
4929 // Check the state of the root map.
4930 Map* root_map = FindRootMap();
4931 if (!EquivalentToForTransition(root_map)) return nullptr;
4932 root_map = root_map->LookupElementsTransitionMap(kind);
4933 DCHECK_NOT_NULL(root_map);
4934 // Starting from the next existing elements kind transition try to
4935 // replay the property transitions that does not involve instance rewriting
4936 // (ElementsTransitionAndStoreStub does not support that).
4937 for (root_map = root_map->ElementsTransitionMap();
4938 root_map != nullptr && root_map->has_fast_elements();
4939 root_map = root_map->ElementsTransitionMap()) {
4940 Map* current = root_map->TryReplayPropertyTransitions(this);
4941 if (current == nullptr) continue;
4942 if (InstancesNeedRewriting(current)) continue;
4943
4944 if (ContainsMap(candidates, current) &&
4945 (packed || !IsFastPackedElementsKind(current->elements_kind()))) {
4946 transition = current;
4947 packed = packed && IsFastPackedElementsKind(current->elements_kind());
4948 }
4949 }
4950 }
4951 return transition;
4952 }
4953
4954
FindClosestElementsTransition(Map * map,ElementsKind to_kind)4955 static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) {
4956 // Ensure we are requested to search elements kind transition "near the root".
4957 DCHECK_EQ(map->FindRootMap()->NumberOfOwnDescriptors(),
4958 map->NumberOfOwnDescriptors());
4959 Map* current_map = map;
4960
4961 ElementsKind kind = map->elements_kind();
4962 while (kind != to_kind) {
4963 Map* next_map = current_map->ElementsTransitionMap();
4964 if (next_map == nullptr) return current_map;
4965 kind = next_map->elements_kind();
4966 current_map = next_map;
4967 }
4968
4969 DCHECK_EQ(to_kind, current_map->elements_kind());
4970 return current_map;
4971 }
4972
4973
LookupElementsTransitionMap(ElementsKind to_kind)4974 Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) {
4975 Map* to_map = FindClosestElementsTransition(this, to_kind);
4976 if (to_map->elements_kind() == to_kind) return to_map;
4977 return nullptr;
4978 }
4979
4980
IsMapInArrayPrototypeChain()4981 bool Map::IsMapInArrayPrototypeChain() {
4982 Isolate* isolate = GetIsolate();
4983 if (isolate->initial_array_prototype()->map() == this) {
4984 return true;
4985 }
4986
4987 if (isolate->initial_object_prototype()->map() == this) {
4988 return true;
4989 }
4990
4991 return false;
4992 }
4993
4994
WeakCellForMap(Handle<Map> map)4995 Handle<WeakCell> Map::WeakCellForMap(Handle<Map> map) {
4996 Isolate* isolate = map->GetIsolate();
4997 if (map->weak_cell_cache()->IsWeakCell()) {
4998 return Handle<WeakCell>(WeakCell::cast(map->weak_cell_cache()));
4999 }
5000 Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(map);
5001 map->set_weak_cell_cache(*weak_cell);
5002 return weak_cell;
5003 }
5004
5005
AddMissingElementsTransitions(Handle<Map> map,ElementsKind to_kind)5006 static Handle<Map> AddMissingElementsTransitions(Handle<Map> map,
5007 ElementsKind to_kind) {
5008 DCHECK(IsTransitionElementsKind(map->elements_kind()));
5009
5010 Handle<Map> current_map = map;
5011
5012 ElementsKind kind = map->elements_kind();
5013 TransitionFlag flag;
5014 if (map->is_prototype_map()) {
5015 flag = OMIT_TRANSITION;
5016 } else {
5017 flag = INSERT_TRANSITION;
5018 if (IsFastElementsKind(kind)) {
5019 while (kind != to_kind && !IsTerminalElementsKind(kind)) {
5020 kind = GetNextTransitionElementsKind(kind);
5021 current_map = Map::CopyAsElementsKind(current_map, kind, flag);
5022 }
5023 }
5024 }
5025
5026 // In case we are exiting the fast elements kind system, just add the map in
5027 // the end.
5028 if (kind != to_kind) {
5029 current_map = Map::CopyAsElementsKind(current_map, to_kind, flag);
5030 }
5031
5032 DCHECK(current_map->elements_kind() == to_kind);
5033 return current_map;
5034 }
5035
5036
TransitionElementsTo(Handle<Map> map,ElementsKind to_kind)5037 Handle<Map> Map::TransitionElementsTo(Handle<Map> map,
5038 ElementsKind to_kind) {
5039 ElementsKind from_kind = map->elements_kind();
5040 if (from_kind == to_kind) return map;
5041
5042 Isolate* isolate = map->GetIsolate();
5043 Context* native_context = isolate->context()->native_context();
5044 if (from_kind == FAST_SLOPPY_ARGUMENTS_ELEMENTS) {
5045 if (*map == native_context->fast_aliased_arguments_map()) {
5046 DCHECK_EQ(SLOW_SLOPPY_ARGUMENTS_ELEMENTS, to_kind);
5047 return handle(native_context->slow_aliased_arguments_map());
5048 }
5049 } else if (from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS) {
5050 if (*map == native_context->slow_aliased_arguments_map()) {
5051 DCHECK_EQ(FAST_SLOPPY_ARGUMENTS_ELEMENTS, to_kind);
5052 return handle(native_context->fast_aliased_arguments_map());
5053 }
5054 } else if (IsFastElementsKind(from_kind) && IsFastElementsKind(to_kind)) {
5055 // Reuse map transitions for JSArrays.
5056 DisallowHeapAllocation no_gc;
5057 if (native_context->get(Context::ArrayMapIndex(from_kind)) == *map) {
5058 Object* maybe_transitioned_map =
5059 native_context->get(Context::ArrayMapIndex(to_kind));
5060 if (maybe_transitioned_map->IsMap()) {
5061 return handle(Map::cast(maybe_transitioned_map), isolate);
5062 }
5063 }
5064 }
5065
5066 DCHECK(!map->IsUndefined(isolate));
5067 // Check if we can go back in the elements kind transition chain.
5068 if (IsHoleyElementsKind(from_kind) &&
5069 to_kind == GetPackedElementsKind(from_kind) &&
5070 map->GetBackPointer()->IsMap() &&
5071 Map::cast(map->GetBackPointer())->elements_kind() == to_kind) {
5072 return handle(Map::cast(map->GetBackPointer()));
5073 }
5074
5075 bool allow_store_transition = IsTransitionElementsKind(from_kind);
5076 // Only store fast element maps in ascending generality.
5077 if (IsFastElementsKind(to_kind)) {
5078 allow_store_transition =
5079 allow_store_transition && IsTransitionableFastElementsKind(from_kind) &&
5080 IsMoreGeneralElementsKindTransition(from_kind, to_kind);
5081 }
5082
5083 if (!allow_store_transition) {
5084 return Map::CopyAsElementsKind(map, to_kind, OMIT_TRANSITION);
5085 }
5086
5087 return Map::ReconfigureElementsKind(map, to_kind);
5088 }
5089
5090
5091 // static
AsElementsKind(Handle<Map> map,ElementsKind kind)5092 Handle<Map> Map::AsElementsKind(Handle<Map> map, ElementsKind kind) {
5093 Handle<Map> closest_map(FindClosestElementsTransition(*map, kind));
5094
5095 if (closest_map->elements_kind() == kind) {
5096 return closest_map;
5097 }
5098
5099 return AddMissingElementsTransitions(closest_map, kind);
5100 }
5101
5102
GetElementsTransitionMap(Handle<JSObject> object,ElementsKind to_kind)5103 Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object,
5104 ElementsKind to_kind) {
5105 Handle<Map> map(object->map());
5106 return Map::TransitionElementsTo(map, to_kind);
5107 }
5108
5109
Revoke(Handle<JSProxy> proxy)5110 void JSProxy::Revoke(Handle<JSProxy> proxy) {
5111 Isolate* isolate = proxy->GetIsolate();
5112 if (!proxy->IsRevoked()) proxy->set_handler(isolate->heap()->null_value());
5113 DCHECK(proxy->IsRevoked());
5114 }
5115
5116
HasProperty(Isolate * isolate,Handle<JSProxy> proxy,Handle<Name> name)5117 Maybe<bool> JSProxy::HasProperty(Isolate* isolate, Handle<JSProxy> proxy,
5118 Handle<Name> name) {
5119 DCHECK(!name->IsPrivate());
5120 STACK_CHECK(isolate, Nothing<bool>());
5121 // 1. (Assert)
5122 // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
5123 Handle<Object> handler(proxy->handler(), isolate);
5124 // 3. If handler is null, throw a TypeError exception.
5125 // 4. Assert: Type(handler) is Object.
5126 if (proxy->IsRevoked()) {
5127 isolate->Throw(*isolate->factory()->NewTypeError(
5128 MessageTemplate::kProxyRevoked, isolate->factory()->has_string()));
5129 return Nothing<bool>();
5130 }
5131 // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
5132 Handle<JSReceiver> target(proxy->target(), isolate);
5133 // 6. Let trap be ? GetMethod(handler, "has").
5134 Handle<Object> trap;
5135 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5136 isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler),
5137 isolate->factory()->has_string()),
5138 Nothing<bool>());
5139 // 7. If trap is undefined, then
5140 if (trap->IsUndefined(isolate)) {
5141 // 7a. Return target.[[HasProperty]](P).
5142 return JSReceiver::HasProperty(target, name);
5143 }
5144 // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, «target, P»)).
5145 Handle<Object> trap_result_obj;
5146 Handle<Object> args[] = {target, name};
5147 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5148 isolate, trap_result_obj,
5149 Execution::Call(isolate, trap, handler, arraysize(args), args),
5150 Nothing<bool>());
5151 bool boolean_trap_result = trap_result_obj->BooleanValue();
5152 // 9. If booleanTrapResult is false, then:
5153 if (!boolean_trap_result) {
5154 // 9a. Let targetDesc be ? target.[[GetOwnProperty]](P).
5155 PropertyDescriptor target_desc;
5156 Maybe<bool> target_found = JSReceiver::GetOwnPropertyDescriptor(
5157 isolate, target, name, &target_desc);
5158 MAYBE_RETURN(target_found, Nothing<bool>());
5159 // 9b. If targetDesc is not undefined, then:
5160 if (target_found.FromJust()) {
5161 // 9b i. If targetDesc.[[Configurable]] is false, throw a TypeError
5162 // exception.
5163 if (!target_desc.configurable()) {
5164 isolate->Throw(*isolate->factory()->NewTypeError(
5165 MessageTemplate::kProxyHasNonConfigurable, name));
5166 return Nothing<bool>();
5167 }
5168 // 9b ii. Let extensibleTarget be ? IsExtensible(target).
5169 Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
5170 MAYBE_RETURN(extensible_target, Nothing<bool>());
5171 // 9b iii. If extensibleTarget is false, throw a TypeError exception.
5172 if (!extensible_target.FromJust()) {
5173 isolate->Throw(*isolate->factory()->NewTypeError(
5174 MessageTemplate::kProxyHasNonExtensible, name));
5175 return Nothing<bool>();
5176 }
5177 }
5178 }
5179 // 10. Return booleanTrapResult.
5180 return Just(boolean_trap_result);
5181 }
5182
5183
SetProperty(Handle<JSProxy> proxy,Handle<Name> name,Handle<Object> value,Handle<Object> receiver,LanguageMode language_mode)5184 Maybe<bool> JSProxy::SetProperty(Handle<JSProxy> proxy, Handle<Name> name,
5185 Handle<Object> value, Handle<Object> receiver,
5186 LanguageMode language_mode) {
5187 DCHECK(!name->IsPrivate());
5188 Isolate* isolate = proxy->GetIsolate();
5189 STACK_CHECK(isolate, Nothing<bool>());
5190 Factory* factory = isolate->factory();
5191 Handle<String> trap_name = factory->set_string();
5192 ShouldThrow should_throw =
5193 is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
5194
5195 if (proxy->IsRevoked()) {
5196 isolate->Throw(
5197 *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
5198 return Nothing<bool>();
5199 }
5200 Handle<JSReceiver> target(proxy->target(), isolate);
5201 Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
5202
5203 Handle<Object> trap;
5204 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5205 isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
5206 if (trap->IsUndefined(isolate)) {
5207 LookupIterator it =
5208 LookupIterator::PropertyOrElement(isolate, receiver, name, target);
5209 return Object::SetSuperProperty(&it, value, language_mode,
5210 Object::MAY_BE_STORE_FROM_KEYED);
5211 }
5212
5213 Handle<Object> trap_result;
5214 Handle<Object> args[] = {target, name, value, receiver};
5215 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5216 isolate, trap_result,
5217 Execution::Call(isolate, trap, handler, arraysize(args), args),
5218 Nothing<bool>());
5219 if (!trap_result->BooleanValue()) {
5220 RETURN_FAILURE(isolate, should_throw,
5221 NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
5222 trap_name, name));
5223 }
5224
5225 // Enforce the invariant.
5226 PropertyDescriptor target_desc;
5227 Maybe<bool> owned =
5228 JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
5229 MAYBE_RETURN(owned, Nothing<bool>());
5230 if (owned.FromJust()) {
5231 bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) &&
5232 !target_desc.configurable() &&
5233 !target_desc.writable() &&
5234 !value->SameValue(*target_desc.value());
5235 if (inconsistent) {
5236 isolate->Throw(*isolate->factory()->NewTypeError(
5237 MessageTemplate::kProxySetFrozenData, name));
5238 return Nothing<bool>();
5239 }
5240 inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) &&
5241 !target_desc.configurable() &&
5242 target_desc.set()->IsUndefined(isolate);
5243 if (inconsistent) {
5244 isolate->Throw(*isolate->factory()->NewTypeError(
5245 MessageTemplate::kProxySetFrozenAccessor, name));
5246 return Nothing<bool>();
5247 }
5248 }
5249 return Just(true);
5250 }
5251
5252
DeletePropertyOrElement(Handle<JSProxy> proxy,Handle<Name> name,LanguageMode language_mode)5253 Maybe<bool> JSProxy::DeletePropertyOrElement(Handle<JSProxy> proxy,
5254 Handle<Name> name,
5255 LanguageMode language_mode) {
5256 DCHECK(!name->IsPrivate());
5257 ShouldThrow should_throw =
5258 is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
5259 Isolate* isolate = proxy->GetIsolate();
5260 STACK_CHECK(isolate, Nothing<bool>());
5261 Factory* factory = isolate->factory();
5262 Handle<String> trap_name = factory->deleteProperty_string();
5263
5264 if (proxy->IsRevoked()) {
5265 isolate->Throw(
5266 *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
5267 return Nothing<bool>();
5268 }
5269 Handle<JSReceiver> target(proxy->target(), isolate);
5270 Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
5271
5272 Handle<Object> trap;
5273 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5274 isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
5275 if (trap->IsUndefined(isolate)) {
5276 return JSReceiver::DeletePropertyOrElement(target, name, language_mode);
5277 }
5278
5279 Handle<Object> trap_result;
5280 Handle<Object> args[] = {target, name};
5281 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
5282 isolate, trap_result,
5283 Execution::Call(isolate, trap, handler, arraysize(args), args),
5284 Nothing<bool>());
5285 if (!trap_result->BooleanValue()) {
5286 RETURN_FAILURE(isolate, should_throw,
5287 NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
5288 trap_name, name));
5289 }
5290
5291 // Enforce the invariant.
5292 PropertyDescriptor target_desc;
5293 Maybe<bool> owned =
5294 JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
5295 MAYBE_RETURN(owned, Nothing<bool>());
5296 if (owned.FromJust() && !target_desc.configurable()) {
5297 isolate->Throw(*factory->NewTypeError(
5298 MessageTemplate::kProxyDeletePropertyNonConfigurable, name));
5299 return Nothing<bool>();
5300 }
5301 return Just(true);
5302 }
5303
5304
5305 // static
New(Isolate * isolate,Handle<Object> target,Handle<Object> handler)5306 MaybeHandle<JSProxy> JSProxy::New(Isolate* isolate, Handle<Object> target,
5307 Handle<Object> handler) {
5308 if (!target->IsJSReceiver()) {
5309 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject),
5310 JSProxy);
5311 }
5312 if (target->IsJSProxy() && JSProxy::cast(*target)->IsRevoked()) {
5313 THROW_NEW_ERROR(isolate,
5314 NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
5315 JSProxy);
5316 }
5317 if (!handler->IsJSReceiver()) {
5318 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject),
5319 JSProxy);
5320 }
5321 if (handler->IsJSProxy() && JSProxy::cast(*handler)->IsRevoked()) {
5322 THROW_NEW_ERROR(isolate,
5323 NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
5324 JSProxy);
5325 }
5326 return isolate->factory()->NewJSProxy(Handle<JSReceiver>::cast(target),
5327 Handle<JSReceiver>::cast(handler));
5328 }
5329
5330
5331 // static
GetFunctionRealm(Handle<JSProxy> proxy)5332 MaybeHandle<Context> JSProxy::GetFunctionRealm(Handle<JSProxy> proxy) {
5333 DCHECK(proxy->map()->is_constructor());
5334 if (proxy->IsRevoked()) {
5335 THROW_NEW_ERROR(proxy->GetIsolate(),
5336 NewTypeError(MessageTemplate::kProxyRevoked), Context);
5337 }
5338 Handle<JSReceiver> target(JSReceiver::cast(proxy->target()));
5339 return JSReceiver::GetFunctionRealm(target);
5340 }
5341
5342
5343 // static
GetFunctionRealm(Handle<JSBoundFunction> function)5344 MaybeHandle<Context> JSBoundFunction::GetFunctionRealm(
5345 Handle<JSBoundFunction> function) {
5346 DCHECK(function->map()->is_constructor());
5347 return JSReceiver::GetFunctionRealm(
5348 handle(function->bound_target_function()));
5349 }
5350
5351 // static
GetName(Isolate * isolate,Handle<JSBoundFunction> function)5352 MaybeHandle<String> JSBoundFunction::GetName(Isolate* isolate,
5353 Handle<JSBoundFunction> function) {
5354 Handle<String> prefix = isolate->factory()->bound__string();
5355 if (!function->bound_target_function()->IsJSFunction()) return prefix;
5356 Handle<JSFunction> target(JSFunction::cast(function->bound_target_function()),
5357 isolate);
5358 Handle<Object> target_name = JSFunction::GetName(isolate, target);
5359 if (!target_name->IsString()) return prefix;
5360 Factory* factory = isolate->factory();
5361 return factory->NewConsString(prefix, Handle<String>::cast(target_name));
5362 }
5363
5364 // static
GetName(Isolate * isolate,Handle<JSFunction> function)5365 Handle<Object> JSFunction::GetName(Isolate* isolate,
5366 Handle<JSFunction> function) {
5367 if (function->shared()->name_should_print_as_anonymous()) {
5368 return isolate->factory()->anonymous_string();
5369 }
5370 return handle(function->shared()->name(), isolate);
5371 }
5372
5373 // static
GetLength(Isolate * isolate,Handle<JSFunction> function)5374 MaybeHandle<Smi> JSFunction::GetLength(Isolate* isolate,
5375 Handle<JSFunction> function) {
5376 int length = 0;
5377 if (function->shared()->is_compiled()) {
5378 length = function->shared()->length();
5379 } else {
5380 // If the function isn't compiled yet, the length is not computed
5381 // correctly yet. Compile it now and return the right length.
5382 if (Compiler::Compile(function, Compiler::KEEP_EXCEPTION)) {
5383 length = function->shared()->length();
5384 }
5385 if (isolate->has_pending_exception()) return MaybeHandle<Smi>();
5386 }
5387 return handle(Smi::FromInt(length), isolate);
5388 }
5389
5390 // static
GetFunctionRealm(Handle<JSFunction> function)5391 Handle<Context> JSFunction::GetFunctionRealm(Handle<JSFunction> function) {
5392 DCHECK(function->map()->is_constructor());
5393 return handle(function->context()->native_context());
5394 }
5395
5396
5397 // static
GetFunctionRealm(Handle<JSObject> object)5398 MaybeHandle<Context> JSObject::GetFunctionRealm(Handle<JSObject> object) {
5399 DCHECK(object->map()->is_constructor());
5400 DCHECK(!object->IsJSFunction());
5401 return handle(object->GetCreationContext());
5402 }
5403
5404
5405 // static
GetFunctionRealm(Handle<JSReceiver> receiver)5406 MaybeHandle<Context> JSReceiver::GetFunctionRealm(Handle<JSReceiver> receiver) {
5407 if (receiver->IsJSProxy()) {
5408 return JSProxy::GetFunctionRealm(Handle<JSProxy>::cast(receiver));
5409 }
5410
5411 if (receiver->IsJSFunction()) {
5412 return JSFunction::GetFunctionRealm(Handle<JSFunction>::cast(receiver));
5413 }
5414
5415 if (receiver->IsJSBoundFunction()) {
5416 return JSBoundFunction::GetFunctionRealm(
5417 Handle<JSBoundFunction>::cast(receiver));
5418 }
5419
5420 return JSObject::GetFunctionRealm(Handle<JSObject>::cast(receiver));
5421 }
5422
5423
GetPropertyAttributes(LookupIterator * it)5424 Maybe<PropertyAttributes> JSProxy::GetPropertyAttributes(LookupIterator* it) {
5425 PropertyDescriptor desc;
5426 Maybe<bool> found = JSProxy::GetOwnPropertyDescriptor(
5427 it->isolate(), it->GetHolder<JSProxy>(), it->GetName(), &desc);
5428 MAYBE_RETURN(found, Nothing<PropertyAttributes>());
5429 if (!found.FromJust()) return Just(ABSENT);
5430 return Just(desc.ToAttributes());
5431 }
5432
5433
AllocateStorageForMap(Handle<JSObject> object,Handle<Map> map)5434 void JSObject::AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map) {
5435 DCHECK(object->map()->GetInObjectProperties() ==
5436 map->GetInObjectProperties());
5437 ElementsKind obj_kind = object->map()->elements_kind();
5438 ElementsKind map_kind = map->elements_kind();
5439 if (map_kind != obj_kind) {
5440 ElementsKind to_kind = GetMoreGeneralElementsKind(map_kind, obj_kind);
5441 if (IsDictionaryElementsKind(obj_kind)) {
5442 to_kind = obj_kind;
5443 }
5444 if (IsDictionaryElementsKind(to_kind)) {
5445 NormalizeElements(object);
5446 } else {
5447 TransitionElementsKind(object, to_kind);
5448 }
5449 map = Map::ReconfigureElementsKind(map, to_kind);
5450 }
5451 JSObject::MigrateToMap(object, map);
5452 }
5453
5454
MigrateInstance(Handle<JSObject> object)5455 void JSObject::MigrateInstance(Handle<JSObject> object) {
5456 Handle<Map> original_map(object->map());
5457 Handle<Map> map = Map::Update(original_map);
5458 map->set_migration_target(true);
5459 MigrateToMap(object, map);
5460 if (FLAG_trace_migration) {
5461 object->PrintInstanceMigration(stdout, *original_map, *map);
5462 }
5463 #if VERIFY_HEAP
5464 if (FLAG_verify_heap) {
5465 object->JSObjectVerify();
5466 }
5467 #endif
5468 }
5469
5470
5471 // static
TryMigrateInstance(Handle<JSObject> object)5472 bool JSObject::TryMigrateInstance(Handle<JSObject> object) {
5473 Isolate* isolate = object->GetIsolate();
5474 DisallowDeoptimization no_deoptimization(isolate);
5475 Handle<Map> original_map(object->map(), isolate);
5476 Handle<Map> new_map;
5477 if (!Map::TryUpdate(original_map).ToHandle(&new_map)) {
5478 return false;
5479 }
5480 JSObject::MigrateToMap(object, new_map);
5481 if (FLAG_trace_migration) {
5482 object->PrintInstanceMigration(stdout, *original_map, object->map());
5483 }
5484 #if VERIFY_HEAP
5485 if (FLAG_verify_heap) {
5486 object->JSObjectVerify();
5487 }
5488 #endif
5489 return true;
5490 }
5491
5492
AddProperty(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes)5493 void JSObject::AddProperty(Handle<JSObject> object, Handle<Name> name,
5494 Handle<Object> value,
5495 PropertyAttributes attributes) {
5496 LookupIterator it(object, name, object, LookupIterator::OWN_SKIP_INTERCEPTOR);
5497 CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());
5498 #ifdef DEBUG
5499 uint32_t index;
5500 DCHECK(!object->IsJSProxy());
5501 DCHECK(!name->AsArrayIndex(&index));
5502 Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it);
5503 DCHECK(maybe.IsJust());
5504 DCHECK(!it.IsFound());
5505 DCHECK(object->map()->is_extensible() || name->IsPrivate());
5506 #endif
5507 CHECK(AddDataProperty(&it, value, attributes, THROW_ON_ERROR,
5508 CERTAINLY_NOT_STORE_FROM_KEYED)
5509 .IsJust());
5510 }
5511
5512
5513 // Reconfigures a property to a data property with attributes, even if it is not
5514 // reconfigurable.
5515 // Requires a LookupIterator that does not look at the prototype chain beyond
5516 // hidden prototypes.
DefineOwnPropertyIgnoreAttributes(LookupIterator * it,Handle<Object> value,PropertyAttributes attributes,AccessorInfoHandling handling)5517 MaybeHandle<Object> JSObject::DefineOwnPropertyIgnoreAttributes(
5518 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
5519 AccessorInfoHandling handling) {
5520 MAYBE_RETURN_NULL(DefineOwnPropertyIgnoreAttributes(
5521 it, value, attributes, THROW_ON_ERROR, handling));
5522 return value;
5523 }
5524
5525
DefineOwnPropertyIgnoreAttributes(LookupIterator * it,Handle<Object> value,PropertyAttributes attributes,ShouldThrow should_throw,AccessorInfoHandling handling)5526 Maybe<bool> JSObject::DefineOwnPropertyIgnoreAttributes(
5527 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
5528 ShouldThrow should_throw, AccessorInfoHandling handling) {
5529 it->UpdateProtector();
5530 Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
5531
5532 for (; it->IsFound(); it->Next()) {
5533 switch (it->state()) {
5534 case LookupIterator::JSPROXY:
5535 case LookupIterator::NOT_FOUND:
5536 case LookupIterator::TRANSITION:
5537 UNREACHABLE();
5538
5539 case LookupIterator::ACCESS_CHECK:
5540 if (!it->HasAccess()) {
5541 it->isolate()->ReportFailedAccessCheck(it->GetHolder<JSObject>());
5542 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
5543 return Just(true);
5544 }
5545 break;
5546
5547 // If there's an interceptor, try to store the property with the
5548 // interceptor.
5549 // In case of success, the attributes will have been reset to the default
5550 // attributes of the interceptor, rather than the incoming attributes.
5551 //
5552 // TODO(verwaest): JSProxy afterwards verify the attributes that the
5553 // JSProxy claims it has, and verifies that they are compatible. If not,
5554 // they throw. Here we should do the same.
5555 case LookupIterator::INTERCEPTOR:
5556 if (handling == DONT_FORCE_FIELD) {
5557 Maybe<bool> result =
5558 JSObject::SetPropertyWithInterceptor(it, should_throw, value);
5559 if (result.IsNothing() || result.FromJust()) return result;
5560 }
5561 break;
5562
5563 case LookupIterator::ACCESSOR: {
5564 Handle<Object> accessors = it->GetAccessors();
5565
5566 // Special handling for AccessorInfo, which behaves like a data
5567 // property.
5568 if (accessors->IsAccessorInfo() && handling == DONT_FORCE_FIELD) {
5569 PropertyAttributes current_attributes = it->property_attributes();
5570 // Ensure the context isn't changed after calling into accessors.
5571 AssertNoContextChange ncc(it->isolate());
5572
5573 // Update the attributes before calling the setter. The setter may
5574 // later change the shape of the property.
5575 if (current_attributes != attributes) {
5576 it->TransitionToAccessorPair(accessors, attributes);
5577 }
5578
5579 Maybe<bool> result =
5580 JSObject::SetPropertyWithAccessor(it, value, should_throw);
5581
5582 if (current_attributes == attributes || result.IsNothing()) {
5583 return result;
5584 }
5585
5586 } else {
5587 it->ReconfigureDataProperty(value, attributes);
5588 }
5589
5590 return Just(true);
5591 }
5592 case LookupIterator::INTEGER_INDEXED_EXOTIC:
5593 return RedefineIncompatibleProperty(it->isolate(), it->GetName(), value,
5594 should_throw);
5595
5596 case LookupIterator::DATA: {
5597 // Regular property update if the attributes match.
5598 if (it->property_attributes() == attributes) {
5599 return SetDataProperty(it, value);
5600 }
5601
5602 // Special case: properties of typed arrays cannot be reconfigured to
5603 // non-writable nor to non-enumerable.
5604 if (it->IsElement() && object->HasFixedTypedArrayElements()) {
5605 return RedefineIncompatibleProperty(it->isolate(), it->GetName(),
5606 value, should_throw);
5607 }
5608
5609 // Reconfigure the data property if the attributes mismatch.
5610 it->ReconfigureDataProperty(value, attributes);
5611
5612 return Just(true);
5613 }
5614 }
5615 }
5616
5617 return AddDataProperty(it, value, attributes, should_throw,
5618 CERTAINLY_NOT_STORE_FROM_KEYED);
5619 }
5620
SetOwnPropertyIgnoreAttributes(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes)5621 MaybeHandle<Object> JSObject::SetOwnPropertyIgnoreAttributes(
5622 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
5623 PropertyAttributes attributes) {
5624 DCHECK(!value->IsTheHole(object->GetIsolate()));
5625 LookupIterator it(object, name, object, LookupIterator::OWN);
5626 return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
5627 }
5628
SetOwnElementIgnoreAttributes(Handle<JSObject> object,uint32_t index,Handle<Object> value,PropertyAttributes attributes)5629 MaybeHandle<Object> JSObject::SetOwnElementIgnoreAttributes(
5630 Handle<JSObject> object, uint32_t index, Handle<Object> value,
5631 PropertyAttributes attributes) {
5632 Isolate* isolate = object->GetIsolate();
5633 LookupIterator it(isolate, object, index, object, LookupIterator::OWN);
5634 return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
5635 }
5636
DefinePropertyOrElementIgnoreAttributes(Handle<JSObject> object,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes)5637 MaybeHandle<Object> JSObject::DefinePropertyOrElementIgnoreAttributes(
5638 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
5639 PropertyAttributes attributes) {
5640 Isolate* isolate = object->GetIsolate();
5641 LookupIterator it = LookupIterator::PropertyOrElement(
5642 isolate, object, name, object, LookupIterator::OWN);
5643 return DefineOwnPropertyIgnoreAttributes(&it, value, attributes);
5644 }
5645
GetPropertyAttributesWithInterceptor(LookupIterator * it)5646 Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithInterceptor(
5647 LookupIterator* it) {
5648 return GetPropertyAttributesWithInterceptorInternal(it, it->GetInterceptor());
5649 }
5650
GetPropertyAttributes(LookupIterator * it)5651 Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes(
5652 LookupIterator* it) {
5653 for (; it->IsFound(); it->Next()) {
5654 switch (it->state()) {
5655 case LookupIterator::NOT_FOUND:
5656 case LookupIterator::TRANSITION:
5657 UNREACHABLE();
5658 case LookupIterator::JSPROXY:
5659 return JSProxy::GetPropertyAttributes(it);
5660 case LookupIterator::INTERCEPTOR: {
5661 Maybe<PropertyAttributes> result =
5662 JSObject::GetPropertyAttributesWithInterceptor(it);
5663 if (!result.IsJust()) return result;
5664 if (result.FromJust() != ABSENT) return result;
5665 break;
5666 }
5667 case LookupIterator::ACCESS_CHECK:
5668 if (it->HasAccess()) break;
5669 return JSObject::GetPropertyAttributesWithFailedAccessCheck(it);
5670 case LookupIterator::INTEGER_INDEXED_EXOTIC:
5671 return Just(ABSENT);
5672 case LookupIterator::ACCESSOR:
5673 case LookupIterator::DATA:
5674 return Just(it->property_attributes());
5675 }
5676 }
5677 return Just(ABSENT);
5678 }
5679
5680
New(Isolate * isolate)5681 Handle<NormalizedMapCache> NormalizedMapCache::New(Isolate* isolate) {
5682 Handle<FixedArray> array(
5683 isolate->factory()->NewFixedArray(kEntries, TENURED));
5684 return Handle<NormalizedMapCache>::cast(array);
5685 }
5686
5687
Get(Handle<Map> fast_map,PropertyNormalizationMode mode)5688 MaybeHandle<Map> NormalizedMapCache::Get(Handle<Map> fast_map,
5689 PropertyNormalizationMode mode) {
5690 DisallowHeapAllocation no_gc;
5691 Object* value = FixedArray::get(GetIndex(fast_map));
5692 if (!value->IsMap() ||
5693 !Map::cast(value)->EquivalentToForNormalization(*fast_map, mode)) {
5694 return MaybeHandle<Map>();
5695 }
5696 return handle(Map::cast(value));
5697 }
5698
5699
Set(Handle<Map> fast_map,Handle<Map> normalized_map)5700 void NormalizedMapCache::Set(Handle<Map> fast_map,
5701 Handle<Map> normalized_map) {
5702 DisallowHeapAllocation no_gc;
5703 DCHECK(normalized_map->is_dictionary_map());
5704 FixedArray::set(GetIndex(fast_map), *normalized_map);
5705 }
5706
5707
Clear()5708 void NormalizedMapCache::Clear() {
5709 int entries = length();
5710 for (int i = 0; i != entries; i++) {
5711 set_undefined(i);
5712 }
5713 }
5714
5715
UpdateMapCodeCache(Handle<HeapObject> object,Handle<Name> name,Handle<Code> code)5716 void HeapObject::UpdateMapCodeCache(Handle<HeapObject> object,
5717 Handle<Name> name,
5718 Handle<Code> code) {
5719 Handle<Map> map(object->map());
5720 Map::UpdateCodeCache(map, name, code);
5721 }
5722
5723
NormalizeProperties(Handle<JSObject> object,PropertyNormalizationMode mode,int expected_additional_properties,const char * reason)5724 void JSObject::NormalizeProperties(Handle<JSObject> object,
5725 PropertyNormalizationMode mode,
5726 int expected_additional_properties,
5727 const char* reason) {
5728 if (!object->HasFastProperties()) return;
5729
5730 Handle<Map> map(object->map());
5731 Handle<Map> new_map = Map::Normalize(map, mode, reason);
5732
5733 MigrateToMap(object, new_map, expected_additional_properties);
5734 }
5735
5736
MigrateSlowToFast(Handle<JSObject> object,int unused_property_fields,const char * reason)5737 void JSObject::MigrateSlowToFast(Handle<JSObject> object,
5738 int unused_property_fields,
5739 const char* reason) {
5740 if (object->HasFastProperties()) return;
5741 DCHECK(!object->IsJSGlobalObject());
5742 Isolate* isolate = object->GetIsolate();
5743 Factory* factory = isolate->factory();
5744 Handle<NameDictionary> dictionary(object->property_dictionary());
5745
5746 // Make sure we preserve dictionary representation if there are too many
5747 // descriptors.
5748 int number_of_elements = dictionary->NumberOfElements();
5749 if (number_of_elements > kMaxNumberOfDescriptors) return;
5750
5751 Handle<FixedArray> iteration_order;
5752 if (number_of_elements != dictionary->NextEnumerationIndex()) {
5753 iteration_order =
5754 NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
5755 } else {
5756 iteration_order = NameDictionary::BuildIterationIndicesArray(dictionary);
5757 }
5758
5759 int instance_descriptor_length = iteration_order->length();
5760 int number_of_fields = 0;
5761
5762 // Compute the length of the instance descriptor.
5763 for (int i = 0; i < instance_descriptor_length; i++) {
5764 int index = Smi::cast(iteration_order->get(i))->value();
5765 DCHECK(dictionary->IsKey(isolate, dictionary->KeyAt(index)));
5766
5767 Object* value = dictionary->ValueAt(index);
5768 PropertyType type = dictionary->DetailsAt(index).type();
5769 if (type == DATA && !value->IsJSFunction()) {
5770 number_of_fields += 1;
5771 }
5772 }
5773
5774 Handle<Map> old_map(object->map(), isolate);
5775
5776 int inobject_props = old_map->GetInObjectProperties();
5777
5778 // Allocate new map.
5779 Handle<Map> new_map = Map::CopyDropDescriptors(old_map);
5780 new_map->set_dictionary_map(false);
5781
5782 UpdatePrototypeUserRegistration(old_map, new_map, isolate);
5783
5784 #if TRACE_MAPS
5785 if (FLAG_trace_maps) {
5786 PrintF("[TraceMaps: SlowToFast from= %p to= %p reason= %s ]\n",
5787 reinterpret_cast<void*>(*old_map), reinterpret_cast<void*>(*new_map),
5788 reason);
5789 }
5790 #endif
5791
5792 if (instance_descriptor_length == 0) {
5793 DisallowHeapAllocation no_gc;
5794 DCHECK_LE(unused_property_fields, inobject_props);
5795 // Transform the object.
5796 new_map->set_unused_property_fields(inobject_props);
5797 object->synchronized_set_map(*new_map);
5798 object->set_properties(isolate->heap()->empty_fixed_array());
5799 // Check that it really works.
5800 DCHECK(object->HasFastProperties());
5801 return;
5802 }
5803
5804 // Allocate the instance descriptor.
5805 Handle<DescriptorArray> descriptors = DescriptorArray::Allocate(
5806 isolate, instance_descriptor_length, 0, TENURED);
5807
5808 int number_of_allocated_fields =
5809 number_of_fields + unused_property_fields - inobject_props;
5810 if (number_of_allocated_fields < 0) {
5811 // There is enough inobject space for all fields (including unused).
5812 number_of_allocated_fields = 0;
5813 unused_property_fields = inobject_props - number_of_fields;
5814 }
5815
5816 // Allocate the fixed array for the fields.
5817 Handle<FixedArray> fields = factory->NewFixedArray(
5818 number_of_allocated_fields);
5819
5820 // Fill in the instance descriptor and the fields.
5821 int current_offset = 0;
5822 for (int i = 0; i < instance_descriptor_length; i++) {
5823 int index = Smi::cast(iteration_order->get(i))->value();
5824 Object* k = dictionary->KeyAt(index);
5825 DCHECK(dictionary->IsKey(k));
5826 // Dictionary keys are internalized upon insertion.
5827 // TODO(jkummerow): Turn this into a DCHECK if it's not hit in the wild.
5828 CHECK(k->IsUniqueName());
5829 Handle<Name> key(Name::cast(k), isolate);
5830
5831 Object* value = dictionary->ValueAt(index);
5832
5833 PropertyDetails details = dictionary->DetailsAt(index);
5834 int enumeration_index = details.dictionary_index();
5835 PropertyType type = details.type();
5836
5837 if (value->IsJSFunction()) {
5838 DataConstantDescriptor d(key, handle(value, isolate),
5839 details.attributes());
5840 descriptors->Set(enumeration_index - 1, &d);
5841 } else if (type == DATA) {
5842 if (current_offset < inobject_props) {
5843 object->InObjectPropertyAtPut(current_offset, value,
5844 UPDATE_WRITE_BARRIER);
5845 } else {
5846 int offset = current_offset - inobject_props;
5847 fields->set(offset, value);
5848 }
5849 DataDescriptor d(key, current_offset, details.attributes(),
5850 // TODO(verwaest): value->OptimalRepresentation();
5851 Representation::Tagged());
5852 current_offset += d.GetDetails().field_width_in_words();
5853 descriptors->Set(enumeration_index - 1, &d);
5854 } else if (type == ACCESSOR_CONSTANT) {
5855 AccessorConstantDescriptor d(key, handle(value, isolate),
5856 details.attributes());
5857 descriptors->Set(enumeration_index - 1, &d);
5858 } else {
5859 UNREACHABLE();
5860 }
5861 }
5862 DCHECK(current_offset == number_of_fields);
5863
5864 descriptors->Sort();
5865
5866 Handle<LayoutDescriptor> layout_descriptor = LayoutDescriptor::New(
5867 new_map, descriptors, descriptors->number_of_descriptors());
5868
5869 DisallowHeapAllocation no_gc;
5870 new_map->InitializeDescriptors(*descriptors, *layout_descriptor);
5871 new_map->set_unused_property_fields(unused_property_fields);
5872
5873 // Transform the object.
5874 object->synchronized_set_map(*new_map);
5875
5876 object->set_properties(*fields);
5877 DCHECK(object->IsJSObject());
5878
5879 // Check that it really works.
5880 DCHECK(object->HasFastProperties());
5881 }
5882
5883
ResetElements(Handle<JSObject> object)5884 void JSObject::ResetElements(Handle<JSObject> object) {
5885 Isolate* isolate = object->GetIsolate();
5886 CHECK(object->map() != isolate->heap()->sloppy_arguments_elements_map());
5887 if (object->map()->has_dictionary_elements()) {
5888 Handle<SeededNumberDictionary> new_elements =
5889 SeededNumberDictionary::New(isolate, 0);
5890 object->set_elements(*new_elements);
5891 } else {
5892 object->set_elements(object->map()->GetInitialElements());
5893 }
5894 }
5895
5896
RequireSlowElements(SeededNumberDictionary * dictionary)5897 void JSObject::RequireSlowElements(SeededNumberDictionary* dictionary) {
5898 if (dictionary->requires_slow_elements()) return;
5899 dictionary->set_requires_slow_elements();
5900 // TODO(verwaest): Remove this hack.
5901 if (map()->is_prototype_map()) {
5902 TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate());
5903 }
5904 }
5905
5906
NormalizeElements(Handle<JSObject> object)5907 Handle<SeededNumberDictionary> JSObject::NormalizeElements(
5908 Handle<JSObject> object) {
5909 DCHECK(!object->HasFixedTypedArrayElements());
5910 Isolate* isolate = object->GetIsolate();
5911 bool is_arguments = object->HasSloppyArgumentsElements();
5912 {
5913 DisallowHeapAllocation no_gc;
5914 FixedArrayBase* elements = object->elements();
5915
5916 if (is_arguments) {
5917 FixedArray* parameter_map = FixedArray::cast(elements);
5918 elements = FixedArrayBase::cast(parameter_map->get(1));
5919 }
5920
5921 if (elements->IsDictionary()) {
5922 return handle(SeededNumberDictionary::cast(elements), isolate);
5923 }
5924 }
5925
5926 DCHECK(object->HasFastSmiOrObjectElements() ||
5927 object->HasFastDoubleElements() ||
5928 object->HasFastArgumentsElements() ||
5929 object->HasFastStringWrapperElements());
5930
5931 Handle<SeededNumberDictionary> dictionary =
5932 object->GetElementsAccessor()->Normalize(object);
5933
5934 // Switch to using the dictionary as the backing storage for elements.
5935 ElementsKind target_kind = is_arguments
5936 ? SLOW_SLOPPY_ARGUMENTS_ELEMENTS
5937 : object->HasFastStringWrapperElements()
5938 ? SLOW_STRING_WRAPPER_ELEMENTS
5939 : DICTIONARY_ELEMENTS;
5940 Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, target_kind);
5941 // Set the new map first to satify the elements type assert in set_elements().
5942 JSObject::MigrateToMap(object, new_map);
5943
5944 if (is_arguments) {
5945 FixedArray::cast(object->elements())->set(1, *dictionary);
5946 } else {
5947 object->set_elements(*dictionary);
5948 }
5949
5950 isolate->counters()->elements_to_dictionary()->Increment();
5951
5952 #ifdef DEBUG
5953 if (FLAG_trace_normalization) {
5954 OFStream os(stdout);
5955 os << "Object elements have been normalized:\n";
5956 object->Print(os);
5957 }
5958 #endif
5959
5960 DCHECK(object->HasDictionaryElements() ||
5961 object->HasSlowArgumentsElements() ||
5962 object->HasSlowStringWrapperElements());
5963 return dictionary;
5964 }
5965
5966
GenerateIdentityHash(Isolate * isolate)5967 static Smi* GenerateIdentityHash(Isolate* isolate) {
5968 int hash_value;
5969 int attempts = 0;
5970 do {
5971 // Generate a random 32-bit hash value but limit range to fit
5972 // within a smi.
5973 hash_value = isolate->random_number_generator()->NextInt() & Smi::kMaxValue;
5974 attempts++;
5975 } while (hash_value == 0 && attempts < 30);
5976 hash_value = hash_value != 0 ? hash_value : 1; // never return 0
5977
5978 return Smi::FromInt(hash_value);
5979 }
5980
5981 template <typename ProxyType>
GetOrCreateIdentityHashHelper(Isolate * isolate,Handle<ProxyType> proxy)5982 static Smi* GetOrCreateIdentityHashHelper(Isolate* isolate,
5983 Handle<ProxyType> proxy) {
5984 Object* maybe_hash = proxy->hash();
5985 if (maybe_hash->IsSmi()) return Smi::cast(maybe_hash);
5986
5987 Smi* hash = GenerateIdentityHash(isolate);
5988 proxy->set_hash(hash);
5989 return hash;
5990 }
5991
5992 // static
GetIdentityHash(Isolate * isolate,Handle<JSObject> object)5993 Object* JSObject::GetIdentityHash(Isolate* isolate, Handle<JSObject> object) {
5994 if (object->IsJSGlobalProxy()) {
5995 return JSGlobalProxy::cast(*object)->hash();
5996 }
5997 Handle<Name> hash_code_symbol = isolate->factory()->hash_code_symbol();
5998 return *JSReceiver::GetDataProperty(object, hash_code_symbol);
5999 }
6000
6001 // static
GetOrCreateIdentityHash(Isolate * isolate,Handle<JSObject> object)6002 Smi* JSObject::GetOrCreateIdentityHash(Isolate* isolate,
6003 Handle<JSObject> object) {
6004 if (object->IsJSGlobalProxy()) {
6005 return GetOrCreateIdentityHashHelper(isolate,
6006 Handle<JSGlobalProxy>::cast(object));
6007 }
6008
6009 Handle<Name> hash_code_symbol = isolate->factory()->hash_code_symbol();
6010 LookupIterator it(object, hash_code_symbol, object, LookupIterator::OWN);
6011 if (it.IsFound()) {
6012 DCHECK_EQ(LookupIterator::DATA, it.state());
6013 Object* maybe_hash = *it.GetDataValue();
6014 if (maybe_hash->IsSmi()) return Smi::cast(maybe_hash);
6015 }
6016
6017 Smi* hash = GenerateIdentityHash(isolate);
6018 CHECK(AddDataProperty(&it, handle(hash, isolate), NONE, THROW_ON_ERROR,
6019 CERTAINLY_NOT_STORE_FROM_KEYED)
6020 .IsJust());
6021 return hash;
6022 }
6023
6024 // static
GetIdentityHash(Handle<JSProxy> proxy)6025 Object* JSProxy::GetIdentityHash(Handle<JSProxy> proxy) {
6026 return proxy->hash();
6027 }
6028
GetOrCreateIdentityHash(Isolate * isolate,Handle<JSProxy> proxy)6029 Smi* JSProxy::GetOrCreateIdentityHash(Isolate* isolate, Handle<JSProxy> proxy) {
6030 return GetOrCreateIdentityHashHelper(isolate, proxy);
6031 }
6032
6033
DeletePropertyWithInterceptor(LookupIterator * it,ShouldThrow should_throw)6034 Maybe<bool> JSObject::DeletePropertyWithInterceptor(LookupIterator* it,
6035 ShouldThrow should_throw) {
6036 Isolate* isolate = it->isolate();
6037 // Make sure that the top context does not change when doing callbacks or
6038 // interceptor calls.
6039 AssertNoContextChange ncc(isolate);
6040
6041 DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
6042 Handle<InterceptorInfo> interceptor(it->GetInterceptor());
6043 if (interceptor->deleter()->IsUndefined(isolate)) return Nothing<bool>();
6044
6045 Handle<JSObject> holder = it->GetHolder<JSObject>();
6046 Handle<Object> receiver = it->GetReceiver();
6047 if (!receiver->IsJSReceiver()) {
6048 ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, receiver,
6049 Object::ConvertReceiver(isolate, receiver),
6050 Nothing<bool>());
6051 }
6052
6053 PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
6054 *holder, should_throw);
6055 Handle<Object> result;
6056 if (it->IsElement()) {
6057 uint32_t index = it->index();
6058 v8::IndexedPropertyDeleterCallback deleter =
6059 v8::ToCData<v8::IndexedPropertyDeleterCallback>(interceptor->deleter());
6060 result = args.Call(deleter, index);
6061 } else if (it->name()->IsSymbol() && !interceptor->can_intercept_symbols()) {
6062 return Nothing<bool>();
6063 } else {
6064 Handle<Name> name = it->name();
6065 DCHECK(!name->IsPrivate());
6066 v8::GenericNamedPropertyDeleterCallback deleter =
6067 v8::ToCData<v8::GenericNamedPropertyDeleterCallback>(
6068 interceptor->deleter());
6069 result = args.Call(deleter, name);
6070 }
6071
6072 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
6073 if (result.is_null()) return Nothing<bool>();
6074
6075 DCHECK(result->IsBoolean());
6076 // Rebox CustomArguments::kReturnValueOffset before returning.
6077 return Just(result->IsTrue(isolate));
6078 }
6079
6080
DeleteNormalizedProperty(Handle<JSReceiver> object,Handle<Name> name,int entry)6081 void JSReceiver::DeleteNormalizedProperty(Handle<JSReceiver> object,
6082 Handle<Name> name, int entry) {
6083 DCHECK(!object->HasFastProperties());
6084 Isolate* isolate = object->GetIsolate();
6085
6086 if (object->IsJSGlobalObject()) {
6087 // If we have a global object, invalidate the cell and swap in a new one.
6088 Handle<GlobalDictionary> dictionary(
6089 JSObject::cast(*object)->global_dictionary());
6090 DCHECK_NE(GlobalDictionary::kNotFound, entry);
6091
6092 auto cell = PropertyCell::InvalidateEntry(dictionary, entry);
6093 cell->set_value(isolate->heap()->the_hole_value());
6094 // TODO(ishell): InvalidateForDelete
6095 cell->set_property_details(
6096 cell->property_details().set_cell_type(PropertyCellType::kInvalidated));
6097 } else {
6098 Handle<NameDictionary> dictionary(object->property_dictionary());
6099 DCHECK_NE(NameDictionary::kNotFound, entry);
6100
6101 NameDictionary::DeleteProperty(dictionary, entry);
6102 Handle<NameDictionary> new_properties =
6103 NameDictionary::Shrink(dictionary, name);
6104 object->set_properties(*new_properties);
6105 }
6106 }
6107
6108
DeleteProperty(LookupIterator * it,LanguageMode language_mode)6109 Maybe<bool> JSReceiver::DeleteProperty(LookupIterator* it,
6110 LanguageMode language_mode) {
6111 it->UpdateProtector();
6112
6113 Isolate* isolate = it->isolate();
6114
6115 if (it->state() == LookupIterator::JSPROXY) {
6116 return JSProxy::DeletePropertyOrElement(it->GetHolder<JSProxy>(),
6117 it->GetName(), language_mode);
6118 }
6119
6120 if (it->GetReceiver()->IsJSProxy()) {
6121 if (it->state() != LookupIterator::NOT_FOUND) {
6122 DCHECK_EQ(LookupIterator::DATA, it->state());
6123 DCHECK(it->name()->IsPrivate());
6124 it->Delete();
6125 }
6126 return Just(true);
6127 }
6128 Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver());
6129
6130 for (; it->IsFound(); it->Next()) {
6131 switch (it->state()) {
6132 case LookupIterator::JSPROXY:
6133 case LookupIterator::NOT_FOUND:
6134 case LookupIterator::TRANSITION:
6135 UNREACHABLE();
6136 case LookupIterator::ACCESS_CHECK:
6137 if (it->HasAccess()) break;
6138 isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>());
6139 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
6140 return Just(false);
6141 case LookupIterator::INTERCEPTOR: {
6142 ShouldThrow should_throw =
6143 is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
6144 Maybe<bool> result =
6145 JSObject::DeletePropertyWithInterceptor(it, should_throw);
6146 // An exception was thrown in the interceptor. Propagate.
6147 if (isolate->has_pending_exception()) return Nothing<bool>();
6148 // Delete with interceptor succeeded. Return result.
6149 // TODO(neis): In strict mode, we should probably throw if the
6150 // interceptor returns false.
6151 if (result.IsJust()) return result;
6152 break;
6153 }
6154 case LookupIterator::INTEGER_INDEXED_EXOTIC:
6155 return Just(true);
6156 case LookupIterator::DATA:
6157 case LookupIterator::ACCESSOR: {
6158 if (!it->IsConfigurable()) {
6159 // Fail if the property is not configurable.
6160 if (is_strict(language_mode)) {
6161 isolate->Throw(*isolate->factory()->NewTypeError(
6162 MessageTemplate::kStrictDeleteProperty, it->GetName(),
6163 receiver));
6164 return Nothing<bool>();
6165 }
6166 return Just(false);
6167 }
6168
6169 it->Delete();
6170
6171 return Just(true);
6172 }
6173 }
6174 }
6175
6176 return Just(true);
6177 }
6178
6179
DeleteElement(Handle<JSReceiver> object,uint32_t index,LanguageMode language_mode)6180 Maybe<bool> JSReceiver::DeleteElement(Handle<JSReceiver> object, uint32_t index,
6181 LanguageMode language_mode) {
6182 LookupIterator it(object->GetIsolate(), object, index, object,
6183 LookupIterator::OWN);
6184 return DeleteProperty(&it, language_mode);
6185 }
6186
6187
DeleteProperty(Handle<JSReceiver> object,Handle<Name> name,LanguageMode language_mode)6188 Maybe<bool> JSReceiver::DeleteProperty(Handle<JSReceiver> object,
6189 Handle<Name> name,
6190 LanguageMode language_mode) {
6191 LookupIterator it(object, name, object, LookupIterator::OWN);
6192 return DeleteProperty(&it, language_mode);
6193 }
6194
6195
DeletePropertyOrElement(Handle<JSReceiver> object,Handle<Name> name,LanguageMode language_mode)6196 Maybe<bool> JSReceiver::DeletePropertyOrElement(Handle<JSReceiver> object,
6197 Handle<Name> name,
6198 LanguageMode language_mode) {
6199 LookupIterator it = LookupIterator::PropertyOrElement(
6200 name->GetIsolate(), object, name, object, LookupIterator::OWN);
6201 return DeleteProperty(&it, language_mode);
6202 }
6203
6204
6205 // ES6 7.1.14
6206 // static
ToPropertyKey(Isolate * isolate,Handle<Object> value)6207 MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate,
6208 Handle<Object> value) {
6209 // 1. Let key be ToPrimitive(argument, hint String).
6210 MaybeHandle<Object> maybe_key =
6211 Object::ToPrimitive(value, ToPrimitiveHint::kString);
6212 // 2. ReturnIfAbrupt(key).
6213 Handle<Object> key;
6214 if (!maybe_key.ToHandle(&key)) return key;
6215 // 3. If Type(key) is Symbol, then return key.
6216 if (key->IsSymbol()) return key;
6217 // 4. Return ToString(key).
6218 // Extending spec'ed behavior, we'd be happy to return an element index.
6219 if (key->IsSmi()) return key;
6220 if (key->IsHeapNumber()) {
6221 uint32_t uint_value;
6222 if (value->ToArrayLength(&uint_value) &&
6223 uint_value <= static_cast<uint32_t>(Smi::kMaxValue)) {
6224 return handle(Smi::FromInt(static_cast<int>(uint_value)), isolate);
6225 }
6226 }
6227 return Object::ToString(isolate, key);
6228 }
6229
6230
6231 // ES6 19.1.2.4
6232 // static
DefineProperty(Isolate * isolate,Handle<Object> object,Handle<Object> key,Handle<Object> attributes)6233 Object* JSReceiver::DefineProperty(Isolate* isolate, Handle<Object> object,
6234 Handle<Object> key,
6235 Handle<Object> attributes) {
6236 // 1. If Type(O) is not Object, throw a TypeError exception.
6237 if (!object->IsJSReceiver()) {
6238 Handle<String> fun_name =
6239 isolate->factory()->InternalizeUtf8String("Object.defineProperty");
6240 THROW_NEW_ERROR_RETURN_FAILURE(
6241 isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name));
6242 }
6243 // 2. Let key be ToPropertyKey(P).
6244 // 3. ReturnIfAbrupt(key).
6245 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key, ToPropertyKey(isolate, key));
6246 // 4. Let desc be ToPropertyDescriptor(Attributes).
6247 // 5. ReturnIfAbrupt(desc).
6248 PropertyDescriptor desc;
6249 if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) {
6250 return isolate->heap()->exception();
6251 }
6252 // 6. Let success be DefinePropertyOrThrow(O,key, desc).
6253 Maybe<bool> success = DefineOwnProperty(
6254 isolate, Handle<JSReceiver>::cast(object), key, &desc, THROW_ON_ERROR);
6255 // 7. ReturnIfAbrupt(success).
6256 MAYBE_RETURN(success, isolate->heap()->exception());
6257 CHECK(success.FromJust());
6258 // 8. Return O.
6259 return *object;
6260 }
6261
6262
6263 // ES6 19.1.2.3.1
6264 // static
DefineProperties(Isolate * isolate,Handle<Object> object,Handle<Object> properties)6265 MaybeHandle<Object> JSReceiver::DefineProperties(Isolate* isolate,
6266 Handle<Object> object,
6267 Handle<Object> properties) {
6268 // 1. If Type(O) is not Object, throw a TypeError exception.
6269 if (!object->IsJSReceiver()) {
6270 Handle<String> fun_name =
6271 isolate->factory()->InternalizeUtf8String("Object.defineProperties");
6272 THROW_NEW_ERROR(isolate,
6273 NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name),
6274 Object);
6275 }
6276 // 2. Let props be ToObject(Properties).
6277 // 3. ReturnIfAbrupt(props).
6278 Handle<JSReceiver> props;
6279 if (!Object::ToObject(isolate, properties).ToHandle(&props)) {
6280 THROW_NEW_ERROR(isolate,
6281 NewTypeError(MessageTemplate::kUndefinedOrNullToObject),
6282 Object);
6283 }
6284 // 4. Let keys be props.[[OwnPropertyKeys]]().
6285 // 5. ReturnIfAbrupt(keys).
6286 Handle<FixedArray> keys;
6287 ASSIGN_RETURN_ON_EXCEPTION(
6288 isolate, keys, KeyAccumulator::GetKeys(props, KeyCollectionMode::kOwnOnly,
6289 ALL_PROPERTIES),
6290 Object);
6291 // 6. Let descriptors be an empty List.
6292 int capacity = keys->length();
6293 std::vector<PropertyDescriptor> descriptors(capacity);
6294 size_t descriptors_index = 0;
6295 // 7. Repeat for each element nextKey of keys in List order,
6296 for (int i = 0; i < keys->length(); ++i) {
6297 Handle<Object> next_key(keys->get(i), isolate);
6298 // 7a. Let propDesc be props.[[GetOwnProperty]](nextKey).
6299 // 7b. ReturnIfAbrupt(propDesc).
6300 bool success = false;
6301 LookupIterator it = LookupIterator::PropertyOrElement(
6302 isolate, props, next_key, &success, LookupIterator::OWN);
6303 DCHECK(success);
6304 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
6305 if (!maybe.IsJust()) return MaybeHandle<Object>();
6306 PropertyAttributes attrs = maybe.FromJust();
6307 // 7c. If propDesc is not undefined and propDesc.[[Enumerable]] is true:
6308 if (attrs == ABSENT) continue;
6309 if (attrs & DONT_ENUM) continue;
6310 // 7c i. Let descObj be Get(props, nextKey).
6311 // 7c ii. ReturnIfAbrupt(descObj).
6312 Handle<Object> desc_obj;
6313 ASSIGN_RETURN_ON_EXCEPTION(isolate, desc_obj, Object::GetProperty(&it),
6314 Object);
6315 // 7c iii. Let desc be ToPropertyDescriptor(descObj).
6316 success = PropertyDescriptor::ToPropertyDescriptor(
6317 isolate, desc_obj, &descriptors[descriptors_index]);
6318 // 7c iv. ReturnIfAbrupt(desc).
6319 if (!success) return MaybeHandle<Object>();
6320 // 7c v. Append the pair (a two element List) consisting of nextKey and
6321 // desc to the end of descriptors.
6322 descriptors[descriptors_index].set_name(next_key);
6323 descriptors_index++;
6324 }
6325 // 8. For each pair from descriptors in list order,
6326 for (size_t i = 0; i < descriptors_index; ++i) {
6327 PropertyDescriptor* desc = &descriptors[i];
6328 // 8a. Let P be the first element of pair.
6329 // 8b. Let desc be the second element of pair.
6330 // 8c. Let status be DefinePropertyOrThrow(O, P, desc).
6331 Maybe<bool> status =
6332 DefineOwnProperty(isolate, Handle<JSReceiver>::cast(object),
6333 desc->name(), desc, THROW_ON_ERROR);
6334 // 8d. ReturnIfAbrupt(status).
6335 if (!status.IsJust()) return MaybeHandle<Object>();
6336 CHECK(status.FromJust());
6337 }
6338 // 9. Return o.
6339 return object;
6340 }
6341
6342
6343 // static
DefineOwnProperty(Isolate * isolate,Handle<JSReceiver> object,Handle<Object> key,PropertyDescriptor * desc,ShouldThrow should_throw)6344 Maybe<bool> JSReceiver::DefineOwnProperty(Isolate* isolate,
6345 Handle<JSReceiver> object,
6346 Handle<Object> key,
6347 PropertyDescriptor* desc,
6348 ShouldThrow should_throw) {
6349 if (object->IsJSArray()) {
6350 return JSArray::DefineOwnProperty(isolate, Handle<JSArray>::cast(object),
6351 key, desc, should_throw);
6352 }
6353 if (object->IsJSProxy()) {
6354 return JSProxy::DefineOwnProperty(isolate, Handle<JSProxy>::cast(object),
6355 key, desc, should_throw);
6356 }
6357 // TODO(jkummerow): Support Modules (ES6 9.4.6.6)
6358
6359 // OrdinaryDefineOwnProperty, by virtue of calling
6360 // DefineOwnPropertyIgnoreAttributes, can handle arguments (ES6 9.4.4.2)
6361 // and IntegerIndexedExotics (ES6 9.4.5.3), with one exception:
6362 // TODO(jkummerow): Setting an indexed accessor on a typed array should throw.
6363 return OrdinaryDefineOwnProperty(isolate, Handle<JSObject>::cast(object), key,
6364 desc, should_throw);
6365 }
6366
6367
6368 // static
OrdinaryDefineOwnProperty(Isolate * isolate,Handle<JSObject> object,Handle<Object> key,PropertyDescriptor * desc,ShouldThrow should_throw)6369 Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(Isolate* isolate,
6370 Handle<JSObject> object,
6371 Handle<Object> key,
6372 PropertyDescriptor* desc,
6373 ShouldThrow should_throw) {
6374 bool success = false;
6375 DCHECK(key->IsName() || key->IsNumber()); // |key| is a PropertyKey...
6376 LookupIterator it = LookupIterator::PropertyOrElement(
6377 isolate, object, key, &success, LookupIterator::OWN);
6378 DCHECK(success); // ...so creating a LookupIterator can't fail.
6379
6380 // Deal with access checks first.
6381 if (it.state() == LookupIterator::ACCESS_CHECK) {
6382 if (!it.HasAccess()) {
6383 isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>());
6384 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
6385 return Just(true);
6386 }
6387 it.Next();
6388 }
6389
6390 return OrdinaryDefineOwnProperty(&it, desc, should_throw);
6391 }
6392
6393
6394 // ES6 9.1.6.1
6395 // static
OrdinaryDefineOwnProperty(LookupIterator * it,PropertyDescriptor * desc,ShouldThrow should_throw)6396 Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(LookupIterator* it,
6397 PropertyDescriptor* desc,
6398 ShouldThrow should_throw) {
6399 Isolate* isolate = it->isolate();
6400 // 1. Let current be O.[[GetOwnProperty]](P).
6401 // 2. ReturnIfAbrupt(current).
6402 PropertyDescriptor current;
6403 MAYBE_RETURN(GetOwnPropertyDescriptor(it, ¤t), Nothing<bool>());
6404
6405 // TODO(jkummerow/verwaest): It would be nice if we didn't have to reset
6406 // the iterator every time. Currently, the reasons why we need it are:
6407 // - handle interceptors correctly
6408 // - handle accessors correctly (which might change the holder's map)
6409 it->Restart();
6410 // 3. Let extensible be the value of the [[Extensible]] internal slot of O.
6411 Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
6412 bool extensible = JSObject::IsExtensible(object);
6413
6414 return ValidateAndApplyPropertyDescriptor(isolate, it, extensible, desc,
6415 ¤t, should_throw);
6416 }
6417
6418
6419 // ES6 9.1.6.2
6420 // static
IsCompatiblePropertyDescriptor(Isolate * isolate,bool extensible,PropertyDescriptor * desc,PropertyDescriptor * current,Handle<Name> property_name,ShouldThrow should_throw)6421 Maybe<bool> JSReceiver::IsCompatiblePropertyDescriptor(
6422 Isolate* isolate, bool extensible, PropertyDescriptor* desc,
6423 PropertyDescriptor* current, Handle<Name> property_name,
6424 ShouldThrow should_throw) {
6425 // 1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined,
6426 // Extensible, Desc, Current).
6427 return ValidateAndApplyPropertyDescriptor(
6428 isolate, NULL, extensible, desc, current, should_throw, property_name);
6429 }
6430
6431
6432 // ES6 9.1.6.3
6433 // static
ValidateAndApplyPropertyDescriptor(Isolate * isolate,LookupIterator * it,bool extensible,PropertyDescriptor * desc,PropertyDescriptor * current,ShouldThrow should_throw,Handle<Name> property_name)6434 Maybe<bool> JSReceiver::ValidateAndApplyPropertyDescriptor(
6435 Isolate* isolate, LookupIterator* it, bool extensible,
6436 PropertyDescriptor* desc, PropertyDescriptor* current,
6437 ShouldThrow should_throw, Handle<Name> property_name) {
6438 // We either need a LookupIterator, or a property name.
6439 DCHECK((it == NULL) != property_name.is_null());
6440 Handle<JSObject> object;
6441 if (it != NULL) object = Handle<JSObject>::cast(it->GetReceiver());
6442 bool desc_is_data_descriptor = PropertyDescriptor::IsDataDescriptor(desc);
6443 bool desc_is_accessor_descriptor =
6444 PropertyDescriptor::IsAccessorDescriptor(desc);
6445 bool desc_is_generic_descriptor =
6446 PropertyDescriptor::IsGenericDescriptor(desc);
6447 // 1. (Assert)
6448 // 2. If current is undefined, then
6449 if (current->is_empty()) {
6450 // 2a. If extensible is false, return false.
6451 if (!extensible) {
6452 RETURN_FAILURE(isolate, should_throw,
6453 NewTypeError(MessageTemplate::kDefineDisallowed,
6454 it != NULL ? it->GetName() : property_name));
6455 }
6456 // 2c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then:
6457 // (This is equivalent to !IsAccessorDescriptor(desc).)
6458 DCHECK((desc_is_generic_descriptor || desc_is_data_descriptor) ==
6459 !desc_is_accessor_descriptor);
6460 if (!desc_is_accessor_descriptor) {
6461 // 2c i. If O is not undefined, create an own data property named P of
6462 // object O whose [[Value]], [[Writable]], [[Enumerable]] and
6463 // [[Configurable]] attribute values are described by Desc. If the value
6464 // of an attribute field of Desc is absent, the attribute of the newly
6465 // created property is set to its default value.
6466 if (it != NULL) {
6467 if (!desc->has_writable()) desc->set_writable(false);
6468 if (!desc->has_enumerable()) desc->set_enumerable(false);
6469 if (!desc->has_configurable()) desc->set_configurable(false);
6470 Handle<Object> value(
6471 desc->has_value()
6472 ? desc->value()
6473 : Handle<Object>::cast(isolate->factory()->undefined_value()));
6474 MaybeHandle<Object> result =
6475 JSObject::DefineOwnPropertyIgnoreAttributes(it, value,
6476 desc->ToAttributes());
6477 if (result.is_null()) return Nothing<bool>();
6478 }
6479 } else {
6480 // 2d. Else Desc must be an accessor Property Descriptor,
6481 DCHECK(desc_is_accessor_descriptor);
6482 // 2d i. If O is not undefined, create an own accessor property named P
6483 // of object O whose [[Get]], [[Set]], [[Enumerable]] and
6484 // [[Configurable]] attribute values are described by Desc. If the value
6485 // of an attribute field of Desc is absent, the attribute of the newly
6486 // created property is set to its default value.
6487 if (it != NULL) {
6488 if (!desc->has_enumerable()) desc->set_enumerable(false);
6489 if (!desc->has_configurable()) desc->set_configurable(false);
6490 Handle<Object> getter(
6491 desc->has_get()
6492 ? desc->get()
6493 : Handle<Object>::cast(isolate->factory()->null_value()));
6494 Handle<Object> setter(
6495 desc->has_set()
6496 ? desc->set()
6497 : Handle<Object>::cast(isolate->factory()->null_value()));
6498 MaybeHandle<Object> result =
6499 JSObject::DefineAccessor(it, getter, setter, desc->ToAttributes());
6500 if (result.is_null()) return Nothing<bool>();
6501 }
6502 }
6503 // 2e. Return true.
6504 return Just(true);
6505 }
6506 // 3. Return true, if every field in Desc is absent.
6507 // 4. Return true, if every field in Desc also occurs in current and the
6508 // value of every field in Desc is the same value as the corresponding field
6509 // in current when compared using the SameValue algorithm.
6510 if ((!desc->has_enumerable() ||
6511 desc->enumerable() == current->enumerable()) &&
6512 (!desc->has_configurable() ||
6513 desc->configurable() == current->configurable()) &&
6514 (!desc->has_value() ||
6515 (current->has_value() && current->value()->SameValue(*desc->value()))) &&
6516 (!desc->has_writable() ||
6517 (current->has_writable() && current->writable() == desc->writable())) &&
6518 (!desc->has_get() ||
6519 (current->has_get() && current->get()->SameValue(*desc->get()))) &&
6520 (!desc->has_set() ||
6521 (current->has_set() && current->set()->SameValue(*desc->set())))) {
6522 return Just(true);
6523 }
6524 // 5. If the [[Configurable]] field of current is false, then
6525 if (!current->configurable()) {
6526 // 5a. Return false, if the [[Configurable]] field of Desc is true.
6527 if (desc->has_configurable() && desc->configurable()) {
6528 RETURN_FAILURE(isolate, should_throw,
6529 NewTypeError(MessageTemplate::kRedefineDisallowed,
6530 it != NULL ? it->GetName() : property_name));
6531 }
6532 // 5b. Return false, if the [[Enumerable]] field of Desc is present and the
6533 // [[Enumerable]] fields of current and Desc are the Boolean negation of
6534 // each other.
6535 if (desc->has_enumerable() && desc->enumerable() != current->enumerable()) {
6536 RETURN_FAILURE(isolate, should_throw,
6537 NewTypeError(MessageTemplate::kRedefineDisallowed,
6538 it != NULL ? it->GetName() : property_name));
6539 }
6540 }
6541
6542 bool current_is_data_descriptor =
6543 PropertyDescriptor::IsDataDescriptor(current);
6544 // 6. If IsGenericDescriptor(Desc) is true, no further validation is required.
6545 if (desc_is_generic_descriptor) {
6546 // Nothing to see here.
6547
6548 // 7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have
6549 // different results, then:
6550 } else if (current_is_data_descriptor != desc_is_data_descriptor) {
6551 // 7a. Return false, if the [[Configurable]] field of current is false.
6552 if (!current->configurable()) {
6553 RETURN_FAILURE(isolate, should_throw,
6554 NewTypeError(MessageTemplate::kRedefineDisallowed,
6555 it != NULL ? it->GetName() : property_name));
6556 }
6557 // 7b. If IsDataDescriptor(current) is true, then:
6558 if (current_is_data_descriptor) {
6559 // 7b i. If O is not undefined, convert the property named P of object O
6560 // from a data property to an accessor property. Preserve the existing
6561 // values of the converted property's [[Configurable]] and [[Enumerable]]
6562 // attributes and set the rest of the property's attributes to their
6563 // default values.
6564 // --> Folded into step 10.
6565 } else {
6566 // 7c i. If O is not undefined, convert the property named P of object O
6567 // from an accessor property to a data property. Preserve the existing
6568 // values of the converted property’s [[Configurable]] and [[Enumerable]]
6569 // attributes and set the rest of the property’s attributes to their
6570 // default values.
6571 // --> Folded into step 10.
6572 }
6573
6574 // 8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both
6575 // true, then:
6576 } else if (current_is_data_descriptor && desc_is_data_descriptor) {
6577 // 8a. If the [[Configurable]] field of current is false, then:
6578 if (!current->configurable()) {
6579 // 8a i. Return false, if the [[Writable]] field of current is false and
6580 // the [[Writable]] field of Desc is true.
6581 if (!current->writable() && desc->has_writable() && desc->writable()) {
6582 RETURN_FAILURE(
6583 isolate, should_throw,
6584 NewTypeError(MessageTemplate::kRedefineDisallowed,
6585 it != NULL ? it->GetName() : property_name));
6586 }
6587 // 8a ii. If the [[Writable]] field of current is false, then:
6588 if (!current->writable()) {
6589 // 8a ii 1. Return false, if the [[Value]] field of Desc is present and
6590 // SameValue(Desc.[[Value]], current.[[Value]]) is false.
6591 if (desc->has_value() && !desc->value()->SameValue(*current->value())) {
6592 RETURN_FAILURE(
6593 isolate, should_throw,
6594 NewTypeError(MessageTemplate::kRedefineDisallowed,
6595 it != NULL ? it->GetName() : property_name));
6596 }
6597 }
6598 }
6599 } else {
6600 // 9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc)
6601 // are both true,
6602 DCHECK(PropertyDescriptor::IsAccessorDescriptor(current) &&
6603 desc_is_accessor_descriptor);
6604 // 9a. If the [[Configurable]] field of current is false, then:
6605 if (!current->configurable()) {
6606 // 9a i. Return false, if the [[Set]] field of Desc is present and
6607 // SameValue(Desc.[[Set]], current.[[Set]]) is false.
6608 if (desc->has_set() && !desc->set()->SameValue(*current->set())) {
6609 RETURN_FAILURE(
6610 isolate, should_throw,
6611 NewTypeError(MessageTemplate::kRedefineDisallowed,
6612 it != NULL ? it->GetName() : property_name));
6613 }
6614 // 9a ii. Return false, if the [[Get]] field of Desc is present and
6615 // SameValue(Desc.[[Get]], current.[[Get]]) is false.
6616 if (desc->has_get() && !desc->get()->SameValue(*current->get())) {
6617 RETURN_FAILURE(
6618 isolate, should_throw,
6619 NewTypeError(MessageTemplate::kRedefineDisallowed,
6620 it != NULL ? it->GetName() : property_name));
6621 }
6622 }
6623 }
6624
6625 // 10. If O is not undefined, then:
6626 if (it != NULL) {
6627 // 10a. For each field of Desc that is present, set the corresponding
6628 // attribute of the property named P of object O to the value of the field.
6629 PropertyAttributes attrs = NONE;
6630
6631 if (desc->has_enumerable()) {
6632 attrs = static_cast<PropertyAttributes>(
6633 attrs | (desc->enumerable() ? NONE : DONT_ENUM));
6634 } else {
6635 attrs = static_cast<PropertyAttributes>(
6636 attrs | (current->enumerable() ? NONE : DONT_ENUM));
6637 }
6638 if (desc->has_configurable()) {
6639 attrs = static_cast<PropertyAttributes>(
6640 attrs | (desc->configurable() ? NONE : DONT_DELETE));
6641 } else {
6642 attrs = static_cast<PropertyAttributes>(
6643 attrs | (current->configurable() ? NONE : DONT_DELETE));
6644 }
6645 if (desc_is_data_descriptor ||
6646 (desc_is_generic_descriptor && current_is_data_descriptor)) {
6647 if (desc->has_writable()) {
6648 attrs = static_cast<PropertyAttributes>(
6649 attrs | (desc->writable() ? NONE : READ_ONLY));
6650 } else {
6651 attrs = static_cast<PropertyAttributes>(
6652 attrs | (current->writable() ? NONE : READ_ONLY));
6653 }
6654 Handle<Object> value(
6655 desc->has_value() ? desc->value()
6656 : current->has_value()
6657 ? current->value()
6658 : Handle<Object>::cast(
6659 isolate->factory()->undefined_value()));
6660 MaybeHandle<Object> result =
6661 JSObject::DefineOwnPropertyIgnoreAttributes(it, value, attrs);
6662 if (result.is_null()) return Nothing<bool>();
6663 } else {
6664 DCHECK(desc_is_accessor_descriptor ||
6665 (desc_is_generic_descriptor &&
6666 PropertyDescriptor::IsAccessorDescriptor(current)));
6667 Handle<Object> getter(
6668 desc->has_get()
6669 ? desc->get()
6670 : current->has_get()
6671 ? current->get()
6672 : Handle<Object>::cast(isolate->factory()->null_value()));
6673 Handle<Object> setter(
6674 desc->has_set()
6675 ? desc->set()
6676 : current->has_set()
6677 ? current->set()
6678 : Handle<Object>::cast(isolate->factory()->null_value()));
6679 MaybeHandle<Object> result =
6680 JSObject::DefineAccessor(it, getter, setter, attrs);
6681 if (result.is_null()) return Nothing<bool>();
6682 }
6683 }
6684
6685 // 11. Return true.
6686 return Just(true);
6687 }
6688
6689
6690 // static
CreateDataProperty(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)6691 Maybe<bool> JSReceiver::CreateDataProperty(LookupIterator* it,
6692 Handle<Object> value,
6693 ShouldThrow should_throw) {
6694 DCHECK(!it->check_prototype_chain());
6695 Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
6696 Isolate* isolate = receiver->GetIsolate();
6697
6698 if (receiver->IsJSObject()) {
6699 return JSObject::CreateDataProperty(it, value, should_throw); // Shortcut.
6700 }
6701
6702 PropertyDescriptor new_desc;
6703 new_desc.set_value(value);
6704 new_desc.set_writable(true);
6705 new_desc.set_enumerable(true);
6706 new_desc.set_configurable(true);
6707
6708 return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(),
6709 &new_desc, should_throw);
6710 }
6711
CreateDataProperty(LookupIterator * it,Handle<Object> value,ShouldThrow should_throw)6712 Maybe<bool> JSObject::CreateDataProperty(LookupIterator* it,
6713 Handle<Object> value,
6714 ShouldThrow should_throw) {
6715 DCHECK(it->GetReceiver()->IsJSObject());
6716 MAYBE_RETURN(JSReceiver::GetPropertyAttributes(it), Nothing<bool>());
6717 Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
6718 Isolate* isolate = receiver->GetIsolate();
6719
6720 if (it->IsFound()) {
6721 Maybe<PropertyAttributes> attributes = GetPropertyAttributes(it);
6722 MAYBE_RETURN(attributes, Nothing<bool>());
6723 if ((attributes.FromJust() & DONT_DELETE) != 0) {
6724 RETURN_FAILURE(
6725 isolate, should_throw,
6726 NewTypeError(MessageTemplate::kRedefineDisallowed, it->GetName()));
6727 }
6728 } else {
6729 if (!JSObject::IsExtensible(Handle<JSObject>::cast(it->GetReceiver()))) {
6730 RETURN_FAILURE(
6731 isolate, should_throw,
6732 NewTypeError(MessageTemplate::kDefineDisallowed, it->GetName()));
6733 }
6734 }
6735
6736 RETURN_ON_EXCEPTION_VALUE(it->isolate(),
6737 DefineOwnPropertyIgnoreAttributes(it, value, NONE),
6738 Nothing<bool>());
6739
6740 return Just(true);
6741 }
6742
6743
6744 // TODO(jkummerow): Consider unification with FastAsArrayLength() in
6745 // accessors.cc.
PropertyKeyToArrayLength(Handle<Object> value,uint32_t * length)6746 bool PropertyKeyToArrayLength(Handle<Object> value, uint32_t* length) {
6747 DCHECK(value->IsNumber() || value->IsName());
6748 if (value->ToArrayLength(length)) return true;
6749 if (value->IsString()) return String::cast(*value)->AsArrayIndex(length);
6750 return false;
6751 }
6752
6753
PropertyKeyToArrayIndex(Handle<Object> index_obj,uint32_t * output)6754 bool PropertyKeyToArrayIndex(Handle<Object> index_obj, uint32_t* output) {
6755 return PropertyKeyToArrayLength(index_obj, output) && *output != kMaxUInt32;
6756 }
6757
6758
6759 // ES6 9.4.2.1
6760 // static
DefineOwnProperty(Isolate * isolate,Handle<JSArray> o,Handle<Object> name,PropertyDescriptor * desc,ShouldThrow should_throw)6761 Maybe<bool> JSArray::DefineOwnProperty(Isolate* isolate, Handle<JSArray> o,
6762 Handle<Object> name,
6763 PropertyDescriptor* desc,
6764 ShouldThrow should_throw) {
6765 // 1. Assert: IsPropertyKey(P) is true. ("P" is |name|.)
6766 // 2. If P is "length", then:
6767 // TODO(jkummerow): Check if we need slow string comparison.
6768 if (*name == isolate->heap()->length_string()) {
6769 // 2a. Return ArraySetLength(A, Desc).
6770 return ArraySetLength(isolate, o, desc, should_throw);
6771 }
6772 // 3. Else if P is an array index, then:
6773 uint32_t index = 0;
6774 if (PropertyKeyToArrayIndex(name, &index)) {
6775 // 3a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
6776 PropertyDescriptor old_len_desc;
6777 Maybe<bool> success = GetOwnPropertyDescriptor(
6778 isolate, o, isolate->factory()->length_string(), &old_len_desc);
6779 // 3b. (Assert)
6780 DCHECK(success.FromJust());
6781 USE(success);
6782 // 3c. Let oldLen be oldLenDesc.[[Value]].
6783 uint32_t old_len = 0;
6784 CHECK(old_len_desc.value()->ToArrayLength(&old_len));
6785 // 3d. Let index be ToUint32(P).
6786 // (Already done above.)
6787 // 3e. (Assert)
6788 // 3f. If index >= oldLen and oldLenDesc.[[Writable]] is false,
6789 // return false.
6790 if (index >= old_len && old_len_desc.has_writable() &&
6791 !old_len_desc.writable()) {
6792 RETURN_FAILURE(isolate, should_throw,
6793 NewTypeError(MessageTemplate::kDefineDisallowed, name));
6794 }
6795 // 3g. Let succeeded be OrdinaryDefineOwnProperty(A, P, Desc).
6796 Maybe<bool> succeeded =
6797 OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw);
6798 // 3h. Assert: succeeded is not an abrupt completion.
6799 // In our case, if should_throw == THROW_ON_ERROR, it can be!
6800 // 3i. If succeeded is false, return false.
6801 if (succeeded.IsNothing() || !succeeded.FromJust()) return succeeded;
6802 // 3j. If index >= oldLen, then:
6803 if (index >= old_len) {
6804 // 3j i. Set oldLenDesc.[[Value]] to index + 1.
6805 old_len_desc.set_value(isolate->factory()->NewNumberFromUint(index + 1));
6806 // 3j ii. Let succeeded be
6807 // OrdinaryDefineOwnProperty(A, "length", oldLenDesc).
6808 succeeded = OrdinaryDefineOwnProperty(isolate, o,
6809 isolate->factory()->length_string(),
6810 &old_len_desc, should_throw);
6811 // 3j iii. Assert: succeeded is true.
6812 DCHECK(succeeded.FromJust());
6813 USE(succeeded);
6814 }
6815 // 3k. Return true.
6816 return Just(true);
6817 }
6818
6819 // 4. Return OrdinaryDefineOwnProperty(A, P, Desc).
6820 return OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw);
6821 }
6822
6823
6824 // Part of ES6 9.4.2.4 ArraySetLength.
6825 // static
AnythingToArrayLength(Isolate * isolate,Handle<Object> length_object,uint32_t * output)6826 bool JSArray::AnythingToArrayLength(Isolate* isolate,
6827 Handle<Object> length_object,
6828 uint32_t* output) {
6829 // Fast path: check numbers and strings that can be converted directly
6830 // and unobservably.
6831 if (length_object->ToArrayLength(output)) return true;
6832 if (length_object->IsString() &&
6833 Handle<String>::cast(length_object)->AsArrayIndex(output)) {
6834 return true;
6835 }
6836 // Slow path: follow steps in ES6 9.4.2.4 "ArraySetLength".
6837 // 3. Let newLen be ToUint32(Desc.[[Value]]).
6838 Handle<Object> uint32_v;
6839 if (!Object::ToUint32(isolate, length_object).ToHandle(&uint32_v)) {
6840 // 4. ReturnIfAbrupt(newLen).
6841 return false;
6842 }
6843 // 5. Let numberLen be ToNumber(Desc.[[Value]]).
6844 Handle<Object> number_v;
6845 if (!Object::ToNumber(length_object).ToHandle(&number_v)) {
6846 // 6. ReturnIfAbrupt(newLen).
6847 return false;
6848 }
6849 // 7. If newLen != numberLen, throw a RangeError exception.
6850 if (uint32_v->Number() != number_v->Number()) {
6851 Handle<Object> exception =
6852 isolate->factory()->NewRangeError(MessageTemplate::kInvalidArrayLength);
6853 isolate->Throw(*exception);
6854 return false;
6855 }
6856 CHECK(uint32_v->ToArrayLength(output));
6857 return true;
6858 }
6859
6860
6861 // ES6 9.4.2.4
6862 // static
ArraySetLength(Isolate * isolate,Handle<JSArray> a,PropertyDescriptor * desc,ShouldThrow should_throw)6863 Maybe<bool> JSArray::ArraySetLength(Isolate* isolate, Handle<JSArray> a,
6864 PropertyDescriptor* desc,
6865 ShouldThrow should_throw) {
6866 // 1. If the [[Value]] field of Desc is absent, then
6867 if (!desc->has_value()) {
6868 // 1a. Return OrdinaryDefineOwnProperty(A, "length", Desc).
6869 return OrdinaryDefineOwnProperty(
6870 isolate, a, isolate->factory()->length_string(), desc, should_throw);
6871 }
6872 // 2. Let newLenDesc be a copy of Desc.
6873 // (Actual copying is not necessary.)
6874 PropertyDescriptor* new_len_desc = desc;
6875 // 3. - 7. Convert Desc.[[Value]] to newLen.
6876 uint32_t new_len = 0;
6877 if (!AnythingToArrayLength(isolate, desc->value(), &new_len)) {
6878 DCHECK(isolate->has_pending_exception());
6879 return Nothing<bool>();
6880 }
6881 // 8. Set newLenDesc.[[Value]] to newLen.
6882 // (Done below, if needed.)
6883 // 9. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
6884 PropertyDescriptor old_len_desc;
6885 Maybe<bool> success = GetOwnPropertyDescriptor(
6886 isolate, a, isolate->factory()->length_string(), &old_len_desc);
6887 // 10. (Assert)
6888 DCHECK(success.FromJust());
6889 USE(success);
6890 // 11. Let oldLen be oldLenDesc.[[Value]].
6891 uint32_t old_len = 0;
6892 CHECK(old_len_desc.value()->ToArrayLength(&old_len));
6893 // 12. If newLen >= oldLen, then
6894 if (new_len >= old_len) {
6895 // 8. Set newLenDesc.[[Value]] to newLen.
6896 // 12a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc).
6897 new_len_desc->set_value(isolate->factory()->NewNumberFromUint(new_len));
6898 return OrdinaryDefineOwnProperty(isolate, a,
6899 isolate->factory()->length_string(),
6900 new_len_desc, should_throw);
6901 }
6902 // 13. If oldLenDesc.[[Writable]] is false, return false.
6903 if (!old_len_desc.writable()) {
6904 RETURN_FAILURE(isolate, should_throw,
6905 NewTypeError(MessageTemplate::kRedefineDisallowed,
6906 isolate->factory()->length_string()));
6907 }
6908 // 14. If newLenDesc.[[Writable]] is absent or has the value true,
6909 // let newWritable be true.
6910 bool new_writable = false;
6911 if (!new_len_desc->has_writable() || new_len_desc->writable()) {
6912 new_writable = true;
6913 } else {
6914 // 15. Else,
6915 // 15a. Need to defer setting the [[Writable]] attribute to false in case
6916 // any elements cannot be deleted.
6917 // 15b. Let newWritable be false. (It's initialized as "false" anyway.)
6918 // 15c. Set newLenDesc.[[Writable]] to true.
6919 // (Not needed.)
6920 }
6921 // Most of steps 16 through 19 is implemented by JSArray::SetLength.
6922 JSArray::SetLength(a, new_len);
6923 // Steps 19d-ii, 20.
6924 if (!new_writable) {
6925 PropertyDescriptor readonly;
6926 readonly.set_writable(false);
6927 Maybe<bool> success = OrdinaryDefineOwnProperty(
6928 isolate, a, isolate->factory()->length_string(), &readonly,
6929 should_throw);
6930 DCHECK(success.FromJust());
6931 USE(success);
6932 }
6933 uint32_t actual_new_len = 0;
6934 CHECK(a->length()->ToArrayLength(&actual_new_len));
6935 // Steps 19d-v, 21. Return false if there were non-deletable elements.
6936 bool result = actual_new_len == new_len;
6937 if (!result) {
6938 RETURN_FAILURE(
6939 isolate, should_throw,
6940 NewTypeError(MessageTemplate::kStrictDeleteProperty,
6941 isolate->factory()->NewNumberFromUint(actual_new_len - 1),
6942 a));
6943 }
6944 return Just(result);
6945 }
6946
6947
6948 // ES6 9.5.6
6949 // static
DefineOwnProperty(Isolate * isolate,Handle<JSProxy> proxy,Handle<Object> key,PropertyDescriptor * desc,ShouldThrow should_throw)6950 Maybe<bool> JSProxy::DefineOwnProperty(Isolate* isolate, Handle<JSProxy> proxy,
6951 Handle<Object> key,
6952 PropertyDescriptor* desc,
6953 ShouldThrow should_throw) {
6954 STACK_CHECK(isolate, Nothing<bool>());
6955 if (key->IsSymbol() && Handle<Symbol>::cast(key)->IsPrivate()) {
6956 return SetPrivateProperty(isolate, proxy, Handle<Symbol>::cast(key), desc,
6957 should_throw);
6958 }
6959 Handle<String> trap_name = isolate->factory()->defineProperty_string();
6960 // 1. Assert: IsPropertyKey(P) is true.
6961 DCHECK(key->IsName() || key->IsNumber());
6962 // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
6963 Handle<Object> handler(proxy->handler(), isolate);
6964 // 3. If handler is null, throw a TypeError exception.
6965 // 4. Assert: Type(handler) is Object.
6966 if (proxy->IsRevoked()) {
6967 isolate->Throw(*isolate->factory()->NewTypeError(
6968 MessageTemplate::kProxyRevoked, trap_name));
6969 return Nothing<bool>();
6970 }
6971 // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
6972 Handle<JSReceiver> target(proxy->target(), isolate);
6973 // 6. Let trap be ? GetMethod(handler, "defineProperty").
6974 Handle<Object> trap;
6975 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
6976 isolate, trap,
6977 Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
6978 Nothing<bool>());
6979 // 7. If trap is undefined, then:
6980 if (trap->IsUndefined(isolate)) {
6981 // 7a. Return target.[[DefineOwnProperty]](P, Desc).
6982 return JSReceiver::DefineOwnProperty(isolate, target, key, desc,
6983 should_throw);
6984 }
6985 // 8. Let descObj be FromPropertyDescriptor(Desc).
6986 Handle<Object> desc_obj = desc->ToObject(isolate);
6987 // 9. Let booleanTrapResult be
6988 // ToBoolean(? Call(trap, handler, «target, P, descObj»)).
6989 Handle<Name> property_name =
6990 key->IsName()
6991 ? Handle<Name>::cast(key)
6992 : Handle<Name>::cast(isolate->factory()->NumberToString(key));
6993 // Do not leak private property names.
6994 DCHECK(!property_name->IsPrivate());
6995 Handle<Object> trap_result_obj;
6996 Handle<Object> args[] = {target, property_name, desc_obj};
6997 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
6998 isolate, trap_result_obj,
6999 Execution::Call(isolate, trap, handler, arraysize(args), args),
7000 Nothing<bool>());
7001 // 10. If booleanTrapResult is false, return false.
7002 if (!trap_result_obj->BooleanValue()) {
7003 RETURN_FAILURE(isolate, should_throw,
7004 NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
7005 trap_name, property_name));
7006 }
7007 // 11. Let targetDesc be ? target.[[GetOwnProperty]](P).
7008 PropertyDescriptor target_desc;
7009 Maybe<bool> target_found =
7010 JSReceiver::GetOwnPropertyDescriptor(isolate, target, key, &target_desc);
7011 MAYBE_RETURN(target_found, Nothing<bool>());
7012 // 12. Let extensibleTarget be ? IsExtensible(target).
7013 Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target);
7014 MAYBE_RETURN(maybe_extensible, Nothing<bool>());
7015 bool extensible_target = maybe_extensible.FromJust();
7016 // 13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]]
7017 // is false, then:
7018 // 13a. Let settingConfigFalse be true.
7019 // 14. Else let settingConfigFalse be false.
7020 bool setting_config_false = desc->has_configurable() && !desc->configurable();
7021 // 15. If targetDesc is undefined, then
7022 if (!target_found.FromJust()) {
7023 // 15a. If extensibleTarget is false, throw a TypeError exception.
7024 if (!extensible_target) {
7025 isolate->Throw(*isolate->factory()->NewTypeError(
7026 MessageTemplate::kProxyDefinePropertyNonExtensible, property_name));
7027 return Nothing<bool>();
7028 }
7029 // 15b. If settingConfigFalse is true, throw a TypeError exception.
7030 if (setting_config_false) {
7031 isolate->Throw(*isolate->factory()->NewTypeError(
7032 MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name));
7033 return Nothing<bool>();
7034 }
7035 } else {
7036 // 16. Else targetDesc is not undefined,
7037 // 16a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc,
7038 // targetDesc) is false, throw a TypeError exception.
7039 Maybe<bool> valid =
7040 IsCompatiblePropertyDescriptor(isolate, extensible_target, desc,
7041 &target_desc, property_name, DONT_THROW);
7042 MAYBE_RETURN(valid, Nothing<bool>());
7043 if (!valid.FromJust()) {
7044 isolate->Throw(*isolate->factory()->NewTypeError(
7045 MessageTemplate::kProxyDefinePropertyIncompatible, property_name));
7046 return Nothing<bool>();
7047 }
7048 // 16b. If settingConfigFalse is true and targetDesc.[[Configurable]] is
7049 // true, throw a TypeError exception.
7050 if (setting_config_false && target_desc.configurable()) {
7051 isolate->Throw(*isolate->factory()->NewTypeError(
7052 MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name));
7053 return Nothing<bool>();
7054 }
7055 }
7056 // 17. Return true.
7057 return Just(true);
7058 }
7059
7060
7061 // static
SetPrivateProperty(Isolate * isolate,Handle<JSProxy> proxy,Handle<Symbol> private_name,PropertyDescriptor * desc,ShouldThrow should_throw)7062 Maybe<bool> JSProxy::SetPrivateProperty(Isolate* isolate, Handle<JSProxy> proxy,
7063 Handle<Symbol> private_name,
7064 PropertyDescriptor* desc,
7065 ShouldThrow should_throw) {
7066 // Despite the generic name, this can only add private data properties.
7067 if (!PropertyDescriptor::IsDataDescriptor(desc) ||
7068 desc->ToAttributes() != DONT_ENUM) {
7069 RETURN_FAILURE(isolate, should_throw,
7070 NewTypeError(MessageTemplate::kProxyPrivate));
7071 }
7072 DCHECK(proxy->map()->is_dictionary_map());
7073 Handle<Object> value =
7074 desc->has_value()
7075 ? desc->value()
7076 : Handle<Object>::cast(isolate->factory()->undefined_value());
7077
7078 LookupIterator it(proxy, private_name, proxy);
7079
7080 if (it.IsFound()) {
7081 DCHECK_EQ(LookupIterator::DATA, it.state());
7082 DCHECK_EQ(DONT_ENUM, it.property_attributes());
7083 it.WriteDataValue(value);
7084 return Just(true);
7085 }
7086
7087 Handle<NameDictionary> dict(proxy->property_dictionary());
7088 PropertyDetails details(DONT_ENUM, DATA, 0, PropertyCellType::kNoCell);
7089 Handle<NameDictionary> result =
7090 NameDictionary::Add(dict, private_name, value, details);
7091 if (!dict.is_identical_to(result)) proxy->set_properties(*result);
7092 return Just(true);
7093 }
7094
7095
7096 // static
GetOwnPropertyDescriptor(Isolate * isolate,Handle<JSReceiver> object,Handle<Object> key,PropertyDescriptor * desc)7097 Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(Isolate* isolate,
7098 Handle<JSReceiver> object,
7099 Handle<Object> key,
7100 PropertyDescriptor* desc) {
7101 bool success = false;
7102 DCHECK(key->IsName() || key->IsNumber()); // |key| is a PropertyKey...
7103 LookupIterator it = LookupIterator::PropertyOrElement(
7104 isolate, object, key, &success, LookupIterator::OWN);
7105 DCHECK(success); // ...so creating a LookupIterator can't fail.
7106 return GetOwnPropertyDescriptor(&it, desc);
7107 }
7108
7109
7110 // ES6 9.1.5.1
7111 // Returns true on success, false if the property didn't exist, nothing if
7112 // an exception was thrown.
7113 // static
GetOwnPropertyDescriptor(LookupIterator * it,PropertyDescriptor * desc)7114 Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(LookupIterator* it,
7115 PropertyDescriptor* desc) {
7116 Isolate* isolate = it->isolate();
7117 // "Virtual" dispatch.
7118 if (it->IsFound() && it->GetHolder<JSReceiver>()->IsJSProxy()) {
7119 return JSProxy::GetOwnPropertyDescriptor(isolate, it->GetHolder<JSProxy>(),
7120 it->GetName(), desc);
7121 }
7122
7123 // 1. (Assert)
7124 // 2. If O does not have an own property with key P, return undefined.
7125 Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(it);
7126 MAYBE_RETURN(maybe, Nothing<bool>());
7127 PropertyAttributes attrs = maybe.FromJust();
7128 if (attrs == ABSENT) return Just(false);
7129 DCHECK(!isolate->has_pending_exception());
7130
7131 // 3. Let D be a newly created Property Descriptor with no fields.
7132 DCHECK(desc->is_empty());
7133 // 4. Let X be O's own property whose key is P.
7134 // 5. If X is a data property, then
7135 bool is_accessor_pair = it->state() == LookupIterator::ACCESSOR &&
7136 it->GetAccessors()->IsAccessorPair();
7137 if (!is_accessor_pair) {
7138 // 5a. Set D.[[Value]] to the value of X's [[Value]] attribute.
7139 Handle<Object> value;
7140 if (!Object::GetProperty(it).ToHandle(&value)) {
7141 DCHECK(isolate->has_pending_exception());
7142 return Nothing<bool>();
7143 }
7144 desc->set_value(value);
7145 // 5b. Set D.[[Writable]] to the value of X's [[Writable]] attribute
7146 desc->set_writable((attrs & READ_ONLY) == 0);
7147 } else {
7148 // 6. Else X is an accessor property, so
7149 Handle<AccessorPair> accessors =
7150 Handle<AccessorPair>::cast(it->GetAccessors());
7151 // 6a. Set D.[[Get]] to the value of X's [[Get]] attribute.
7152 desc->set_get(AccessorPair::GetComponent(accessors, ACCESSOR_GETTER));
7153 // 6b. Set D.[[Set]] to the value of X's [[Set]] attribute.
7154 desc->set_set(AccessorPair::GetComponent(accessors, ACCESSOR_SETTER));
7155 }
7156
7157 // 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
7158 desc->set_enumerable((attrs & DONT_ENUM) == 0);
7159 // 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
7160 desc->set_configurable((attrs & DONT_DELETE) == 0);
7161 // 9. Return D.
7162 DCHECK(PropertyDescriptor::IsAccessorDescriptor(desc) !=
7163 PropertyDescriptor::IsDataDescriptor(desc));
7164 return Just(true);
7165 }
7166
7167
7168 // ES6 9.5.5
7169 // static
GetOwnPropertyDescriptor(Isolate * isolate,Handle<JSProxy> proxy,Handle<Name> name,PropertyDescriptor * desc)7170 Maybe<bool> JSProxy::GetOwnPropertyDescriptor(Isolate* isolate,
7171 Handle<JSProxy> proxy,
7172 Handle<Name> name,
7173 PropertyDescriptor* desc) {
7174 DCHECK(!name->IsPrivate());
7175 STACK_CHECK(isolate, Nothing<bool>());
7176
7177 Handle<String> trap_name =
7178 isolate->factory()->getOwnPropertyDescriptor_string();
7179 // 1. (Assert)
7180 // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
7181 Handle<Object> handler(proxy->handler(), isolate);
7182 // 3. If handler is null, throw a TypeError exception.
7183 // 4. Assert: Type(handler) is Object.
7184 if (proxy->IsRevoked()) {
7185 isolate->Throw(*isolate->factory()->NewTypeError(
7186 MessageTemplate::kProxyRevoked, trap_name));
7187 return Nothing<bool>();
7188 }
7189 // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
7190 Handle<JSReceiver> target(proxy->target(), isolate);
7191 // 6. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor").
7192 Handle<Object> trap;
7193 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7194 isolate, trap,
7195 Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
7196 Nothing<bool>());
7197 // 7. If trap is undefined, then
7198 if (trap->IsUndefined(isolate)) {
7199 // 7a. Return target.[[GetOwnProperty]](P).
7200 return JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, desc);
7201 }
7202 // 8. Let trapResultObj be ? Call(trap, handler, «target, P»).
7203 Handle<Object> trap_result_obj;
7204 Handle<Object> args[] = {target, name};
7205 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7206 isolate, trap_result_obj,
7207 Execution::Call(isolate, trap, handler, arraysize(args), args),
7208 Nothing<bool>());
7209 // 9. If Type(trapResultObj) is neither Object nor Undefined, throw a
7210 // TypeError exception.
7211 if (!trap_result_obj->IsJSReceiver() &&
7212 !trap_result_obj->IsUndefined(isolate)) {
7213 isolate->Throw(*isolate->factory()->NewTypeError(
7214 MessageTemplate::kProxyGetOwnPropertyDescriptorInvalid, name));
7215 return Nothing<bool>();
7216 }
7217 // 10. Let targetDesc be ? target.[[GetOwnProperty]](P).
7218 PropertyDescriptor target_desc;
7219 Maybe<bool> found =
7220 JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
7221 MAYBE_RETURN(found, Nothing<bool>());
7222 // 11. If trapResultObj is undefined, then
7223 if (trap_result_obj->IsUndefined(isolate)) {
7224 // 11a. If targetDesc is undefined, return undefined.
7225 if (!found.FromJust()) return Just(false);
7226 // 11b. If targetDesc.[[Configurable]] is false, throw a TypeError
7227 // exception.
7228 if (!target_desc.configurable()) {
7229 isolate->Throw(*isolate->factory()->NewTypeError(
7230 MessageTemplate::kProxyGetOwnPropertyDescriptorUndefined, name));
7231 return Nothing<bool>();
7232 }
7233 // 11c. Let extensibleTarget be ? IsExtensible(target).
7234 Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
7235 MAYBE_RETURN(extensible_target, Nothing<bool>());
7236 // 11d. (Assert)
7237 // 11e. If extensibleTarget is false, throw a TypeError exception.
7238 if (!extensible_target.FromJust()) {
7239 isolate->Throw(*isolate->factory()->NewTypeError(
7240 MessageTemplate::kProxyGetOwnPropertyDescriptorNonExtensible, name));
7241 return Nothing<bool>();
7242 }
7243 // 11f. Return undefined.
7244 return Just(false);
7245 }
7246 // 12. Let extensibleTarget be ? IsExtensible(target).
7247 Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
7248 MAYBE_RETURN(extensible_target, Nothing<bool>());
7249 // 13. Let resultDesc be ? ToPropertyDescriptor(trapResultObj).
7250 if (!PropertyDescriptor::ToPropertyDescriptor(isolate, trap_result_obj,
7251 desc)) {
7252 DCHECK(isolate->has_pending_exception());
7253 return Nothing<bool>();
7254 }
7255 // 14. Call CompletePropertyDescriptor(resultDesc).
7256 PropertyDescriptor::CompletePropertyDescriptor(isolate, desc);
7257 // 15. Let valid be IsCompatiblePropertyDescriptor (extensibleTarget,
7258 // resultDesc, targetDesc).
7259 Maybe<bool> valid =
7260 IsCompatiblePropertyDescriptor(isolate, extensible_target.FromJust(),
7261 desc, &target_desc, name, DONT_THROW);
7262 MAYBE_RETURN(valid, Nothing<bool>());
7263 // 16. If valid is false, throw a TypeError exception.
7264 if (!valid.FromJust()) {
7265 isolate->Throw(*isolate->factory()->NewTypeError(
7266 MessageTemplate::kProxyGetOwnPropertyDescriptorIncompatible, name));
7267 return Nothing<bool>();
7268 }
7269 // 17. If resultDesc.[[Configurable]] is false, then
7270 if (!desc->configurable()) {
7271 // 17a. If targetDesc is undefined or targetDesc.[[Configurable]] is true:
7272 if (target_desc.is_empty() || target_desc.configurable()) {
7273 // 17a i. Throw a TypeError exception.
7274 isolate->Throw(*isolate->factory()->NewTypeError(
7275 MessageTemplate::kProxyGetOwnPropertyDescriptorNonConfigurable,
7276 name));
7277 return Nothing<bool>();
7278 }
7279 }
7280 // 18. Return resultDesc.
7281 return Just(true);
7282 }
7283
7284
ReferencesObjectFromElements(FixedArray * elements,ElementsKind kind,Object * object)7285 bool JSObject::ReferencesObjectFromElements(FixedArray* elements,
7286 ElementsKind kind,
7287 Object* object) {
7288 Isolate* isolate = elements->GetIsolate();
7289 if (IsFastObjectElementsKind(kind) || kind == FAST_STRING_WRAPPER_ELEMENTS) {
7290 int length = IsJSArray()
7291 ? Smi::cast(JSArray::cast(this)->length())->value()
7292 : elements->length();
7293 for (int i = 0; i < length; ++i) {
7294 Object* element = elements->get(i);
7295 if (!element->IsTheHole(isolate) && element == object) return true;
7296 }
7297 } else {
7298 DCHECK(kind == DICTIONARY_ELEMENTS || kind == SLOW_STRING_WRAPPER_ELEMENTS);
7299 Object* key =
7300 SeededNumberDictionary::cast(elements)->SlowReverseLookup(object);
7301 if (!key->IsUndefined(isolate)) return true;
7302 }
7303 return false;
7304 }
7305
7306
7307 // Check whether this object references another object.
ReferencesObject(Object * obj)7308 bool JSObject::ReferencesObject(Object* obj) {
7309 Map* map_of_this = map();
7310 Heap* heap = GetHeap();
7311 DisallowHeapAllocation no_allocation;
7312
7313 // Is the object the constructor for this object?
7314 if (map_of_this->GetConstructor() == obj) {
7315 return true;
7316 }
7317
7318 // Is the object the prototype for this object?
7319 if (map_of_this->prototype() == obj) {
7320 return true;
7321 }
7322
7323 // Check if the object is among the named properties.
7324 Object* key = SlowReverseLookup(obj);
7325 if (!key->IsUndefined(heap->isolate())) {
7326 return true;
7327 }
7328
7329 // Check if the object is among the indexed properties.
7330 ElementsKind kind = GetElementsKind();
7331 switch (kind) {
7332 // Raw pixels and external arrays do not reference other
7333 // objects.
7334 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
7335 case TYPE##_ELEMENTS: \
7336 break;
7337
7338 TYPED_ARRAYS(TYPED_ARRAY_CASE)
7339 #undef TYPED_ARRAY_CASE
7340
7341 case FAST_DOUBLE_ELEMENTS:
7342 case FAST_HOLEY_DOUBLE_ELEMENTS:
7343 break;
7344 case FAST_SMI_ELEMENTS:
7345 case FAST_HOLEY_SMI_ELEMENTS:
7346 break;
7347 case FAST_ELEMENTS:
7348 case FAST_HOLEY_ELEMENTS:
7349 case DICTIONARY_ELEMENTS:
7350 case FAST_STRING_WRAPPER_ELEMENTS:
7351 case SLOW_STRING_WRAPPER_ELEMENTS: {
7352 FixedArray* elements = FixedArray::cast(this->elements());
7353 if (ReferencesObjectFromElements(elements, kind, obj)) return true;
7354 break;
7355 }
7356 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
7357 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
7358 FixedArray* parameter_map = FixedArray::cast(elements());
7359 // Check the mapped parameters.
7360 int length = parameter_map->length();
7361 for (int i = 2; i < length; ++i) {
7362 Object* value = parameter_map->get(i);
7363 if (!value->IsTheHole(heap->isolate()) && value == obj) return true;
7364 }
7365 // Check the arguments.
7366 FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
7367 kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS :
7368 FAST_HOLEY_ELEMENTS;
7369 if (ReferencesObjectFromElements(arguments, kind, obj)) return true;
7370 break;
7371 }
7372 case NO_ELEMENTS:
7373 break;
7374 }
7375
7376 // For functions check the context.
7377 if (IsJSFunction()) {
7378 // Get the constructor function for arguments array.
7379 Map* arguments_map =
7380 heap->isolate()->context()->native_context()->sloppy_arguments_map();
7381 JSFunction* arguments_function =
7382 JSFunction::cast(arguments_map->GetConstructor());
7383
7384 // Get the context and don't check if it is the native context.
7385 JSFunction* f = JSFunction::cast(this);
7386 Context* context = f->context();
7387 if (context->IsNativeContext()) {
7388 return false;
7389 }
7390
7391 // Check the non-special context slots.
7392 for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
7393 // Only check JS objects.
7394 if (context->get(i)->IsJSObject()) {
7395 JSObject* ctxobj = JSObject::cast(context->get(i));
7396 // If it is an arguments array check the content.
7397 if (ctxobj->map()->GetConstructor() == arguments_function) {
7398 if (ctxobj->ReferencesObject(obj)) {
7399 return true;
7400 }
7401 } else if (ctxobj == obj) {
7402 return true;
7403 }
7404 }
7405 }
7406
7407 // Check the context extension (if any) if it can have references.
7408 if (context->has_extension() && !context->IsCatchContext()) {
7409 // With harmony scoping, a JSFunction may have a script context.
7410 // TODO(mvstanton): walk into the ScopeInfo.
7411 if (context->IsScriptContext()) {
7412 return false;
7413 }
7414
7415 return context->extension_object()->ReferencesObject(obj);
7416 }
7417 }
7418
7419 // No references to object.
7420 return false;
7421 }
7422
7423
SetIntegrityLevel(Handle<JSReceiver> receiver,IntegrityLevel level,ShouldThrow should_throw)7424 Maybe<bool> JSReceiver::SetIntegrityLevel(Handle<JSReceiver> receiver,
7425 IntegrityLevel level,
7426 ShouldThrow should_throw) {
7427 DCHECK(level == SEALED || level == FROZEN);
7428
7429 if (receiver->IsJSObject()) {
7430 Handle<JSObject> object = Handle<JSObject>::cast(receiver);
7431 if (!object->HasSloppyArgumentsElements()) { // Fast path.
7432 if (level == SEALED) {
7433 return JSObject::PreventExtensionsWithTransition<SEALED>(object,
7434 should_throw);
7435 } else {
7436 return JSObject::PreventExtensionsWithTransition<FROZEN>(object,
7437 should_throw);
7438 }
7439 }
7440 }
7441
7442 Isolate* isolate = receiver->GetIsolate();
7443
7444 MAYBE_RETURN(JSReceiver::PreventExtensions(receiver, should_throw),
7445 Nothing<bool>());
7446
7447 Handle<FixedArray> keys;
7448 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7449 isolate, keys, JSReceiver::OwnPropertyKeys(receiver), Nothing<bool>());
7450
7451 PropertyDescriptor no_conf;
7452 no_conf.set_configurable(false);
7453
7454 PropertyDescriptor no_conf_no_write;
7455 no_conf_no_write.set_configurable(false);
7456 no_conf_no_write.set_writable(false);
7457
7458 if (level == SEALED) {
7459 for (int i = 0; i < keys->length(); ++i) {
7460 Handle<Object> key(keys->get(i), isolate);
7461 MAYBE_RETURN(
7462 DefineOwnProperty(isolate, receiver, key, &no_conf, THROW_ON_ERROR),
7463 Nothing<bool>());
7464 }
7465 return Just(true);
7466 }
7467
7468 for (int i = 0; i < keys->length(); ++i) {
7469 Handle<Object> key(keys->get(i), isolate);
7470 PropertyDescriptor current_desc;
7471 Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(
7472 isolate, receiver, key, ¤t_desc);
7473 MAYBE_RETURN(owned, Nothing<bool>());
7474 if (owned.FromJust()) {
7475 PropertyDescriptor desc =
7476 PropertyDescriptor::IsAccessorDescriptor(¤t_desc)
7477 ? no_conf
7478 : no_conf_no_write;
7479 MAYBE_RETURN(
7480 DefineOwnProperty(isolate, receiver, key, &desc, THROW_ON_ERROR),
7481 Nothing<bool>());
7482 }
7483 }
7484 return Just(true);
7485 }
7486
7487
TestIntegrityLevel(Handle<JSReceiver> object,IntegrityLevel level)7488 Maybe<bool> JSReceiver::TestIntegrityLevel(Handle<JSReceiver> object,
7489 IntegrityLevel level) {
7490 DCHECK(level == SEALED || level == FROZEN);
7491 Isolate* isolate = object->GetIsolate();
7492
7493 Maybe<bool> extensible = JSReceiver::IsExtensible(object);
7494 MAYBE_RETURN(extensible, Nothing<bool>());
7495 if (extensible.FromJust()) return Just(false);
7496
7497 Handle<FixedArray> keys;
7498 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7499 isolate, keys, JSReceiver::OwnPropertyKeys(object), Nothing<bool>());
7500
7501 for (int i = 0; i < keys->length(); ++i) {
7502 Handle<Object> key(keys->get(i), isolate);
7503 PropertyDescriptor current_desc;
7504 Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(
7505 isolate, object, key, ¤t_desc);
7506 MAYBE_RETURN(owned, Nothing<bool>());
7507 if (owned.FromJust()) {
7508 if (current_desc.configurable()) return Just(false);
7509 if (level == FROZEN &&
7510 PropertyDescriptor::IsDataDescriptor(¤t_desc) &&
7511 current_desc.writable()) {
7512 return Just(false);
7513 }
7514 }
7515 }
7516 return Just(true);
7517 }
7518
7519
PreventExtensions(Handle<JSReceiver> object,ShouldThrow should_throw)7520 Maybe<bool> JSReceiver::PreventExtensions(Handle<JSReceiver> object,
7521 ShouldThrow should_throw) {
7522 if (object->IsJSProxy()) {
7523 return JSProxy::PreventExtensions(Handle<JSProxy>::cast(object),
7524 should_throw);
7525 }
7526 DCHECK(object->IsJSObject());
7527 return JSObject::PreventExtensions(Handle<JSObject>::cast(object),
7528 should_throw);
7529 }
7530
7531
PreventExtensions(Handle<JSProxy> proxy,ShouldThrow should_throw)7532 Maybe<bool> JSProxy::PreventExtensions(Handle<JSProxy> proxy,
7533 ShouldThrow should_throw) {
7534 Isolate* isolate = proxy->GetIsolate();
7535 STACK_CHECK(isolate, Nothing<bool>());
7536 Factory* factory = isolate->factory();
7537 Handle<String> trap_name = factory->preventExtensions_string();
7538
7539 if (proxy->IsRevoked()) {
7540 isolate->Throw(
7541 *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
7542 return Nothing<bool>();
7543 }
7544 Handle<JSReceiver> target(proxy->target(), isolate);
7545 Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
7546
7547 Handle<Object> trap;
7548 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7549 isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
7550 if (trap->IsUndefined(isolate)) {
7551 return JSReceiver::PreventExtensions(target, should_throw);
7552 }
7553
7554 Handle<Object> trap_result;
7555 Handle<Object> args[] = {target};
7556 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7557 isolate, trap_result,
7558 Execution::Call(isolate, trap, handler, arraysize(args), args),
7559 Nothing<bool>());
7560 if (!trap_result->BooleanValue()) {
7561 RETURN_FAILURE(
7562 isolate, should_throw,
7563 NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
7564 }
7565
7566 // Enforce the invariant.
7567 Maybe<bool> target_result = JSReceiver::IsExtensible(target);
7568 MAYBE_RETURN(target_result, Nothing<bool>());
7569 if (target_result.FromJust()) {
7570 isolate->Throw(*factory->NewTypeError(
7571 MessageTemplate::kProxyPreventExtensionsExtensible));
7572 return Nothing<bool>();
7573 }
7574 return Just(true);
7575 }
7576
7577
PreventExtensions(Handle<JSObject> object,ShouldThrow should_throw)7578 Maybe<bool> JSObject::PreventExtensions(Handle<JSObject> object,
7579 ShouldThrow should_throw) {
7580 Isolate* isolate = object->GetIsolate();
7581
7582 if (!object->HasSloppyArgumentsElements()) {
7583 return PreventExtensionsWithTransition<NONE>(object, should_throw);
7584 }
7585
7586 if (object->IsAccessCheckNeeded() &&
7587 !isolate->MayAccess(handle(isolate->context()), object)) {
7588 isolate->ReportFailedAccessCheck(object);
7589 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
7590 RETURN_FAILURE(isolate, should_throw,
7591 NewTypeError(MessageTemplate::kNoAccess));
7592 }
7593
7594 if (!object->map()->is_extensible()) return Just(true);
7595
7596 if (object->IsJSGlobalProxy()) {
7597 PrototypeIterator iter(isolate, object);
7598 if (iter.IsAtEnd()) return Just(true);
7599 DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
7600 return PreventExtensions(PrototypeIterator::GetCurrent<JSObject>(iter),
7601 should_throw);
7602 }
7603
7604 if (!object->HasFixedTypedArrayElements()) {
7605 // If there are fast elements we normalize.
7606 Handle<SeededNumberDictionary> dictionary = NormalizeElements(object);
7607 DCHECK(object->HasDictionaryElements() ||
7608 object->HasSlowArgumentsElements());
7609
7610 // Make sure that we never go back to fast case.
7611 object->RequireSlowElements(*dictionary);
7612 }
7613
7614 // Do a map transition, other objects with this map may still
7615 // be extensible.
7616 // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
7617 Handle<Map> new_map = Map::Copy(handle(object->map()), "PreventExtensions");
7618
7619 new_map->set_is_extensible(false);
7620 JSObject::MigrateToMap(object, new_map);
7621 DCHECK(!object->map()->is_extensible());
7622
7623 return Just(true);
7624 }
7625
7626
IsExtensible(Handle<JSReceiver> object)7627 Maybe<bool> JSReceiver::IsExtensible(Handle<JSReceiver> object) {
7628 if (object->IsJSProxy()) {
7629 return JSProxy::IsExtensible(Handle<JSProxy>::cast(object));
7630 }
7631 return Just(JSObject::IsExtensible(Handle<JSObject>::cast(object)));
7632 }
7633
7634
IsExtensible(Handle<JSProxy> proxy)7635 Maybe<bool> JSProxy::IsExtensible(Handle<JSProxy> proxy) {
7636 Isolate* isolate = proxy->GetIsolate();
7637 STACK_CHECK(isolate, Nothing<bool>());
7638 Factory* factory = isolate->factory();
7639 Handle<String> trap_name = factory->isExtensible_string();
7640
7641 if (proxy->IsRevoked()) {
7642 isolate->Throw(
7643 *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
7644 return Nothing<bool>();
7645 }
7646 Handle<JSReceiver> target(proxy->target(), isolate);
7647 Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
7648
7649 Handle<Object> trap;
7650 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7651 isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
7652 if (trap->IsUndefined(isolate)) {
7653 return JSReceiver::IsExtensible(target);
7654 }
7655
7656 Handle<Object> trap_result;
7657 Handle<Object> args[] = {target};
7658 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
7659 isolate, trap_result,
7660 Execution::Call(isolate, trap, handler, arraysize(args), args),
7661 Nothing<bool>());
7662
7663 // Enforce the invariant.
7664 Maybe<bool> target_result = JSReceiver::IsExtensible(target);
7665 MAYBE_RETURN(target_result, Nothing<bool>());
7666 if (target_result.FromJust() != trap_result->BooleanValue()) {
7667 isolate->Throw(
7668 *factory->NewTypeError(MessageTemplate::kProxyIsExtensibleInconsistent,
7669 factory->ToBoolean(target_result.FromJust())));
7670 return Nothing<bool>();
7671 }
7672 return target_result;
7673 }
7674
7675
IsExtensible(Handle<JSObject> object)7676 bool JSObject::IsExtensible(Handle<JSObject> object) {
7677 Isolate* isolate = object->GetIsolate();
7678 if (object->IsAccessCheckNeeded() &&
7679 !isolate->MayAccess(handle(isolate->context()), object)) {
7680 return true;
7681 }
7682 if (object->IsJSGlobalProxy()) {
7683 PrototypeIterator iter(isolate, *object);
7684 if (iter.IsAtEnd()) return false;
7685 DCHECK(iter.GetCurrent()->IsJSGlobalObject());
7686 return iter.GetCurrent<JSObject>()->map()->is_extensible();
7687 }
7688 return object->map()->is_extensible();
7689 }
7690
7691
7692 template <typename Dictionary>
ApplyAttributesToDictionary(Dictionary * dictionary,const PropertyAttributes attributes)7693 static void ApplyAttributesToDictionary(Dictionary* dictionary,
7694 const PropertyAttributes attributes) {
7695 int capacity = dictionary->Capacity();
7696 Isolate* isolate = dictionary->GetIsolate();
7697 for (int i = 0; i < capacity; i++) {
7698 Object* k = dictionary->KeyAt(i);
7699 if (dictionary->IsKey(isolate, k) &&
7700 !(k->IsSymbol() && Symbol::cast(k)->is_private())) {
7701 PropertyDetails details = dictionary->DetailsAt(i);
7702 int attrs = attributes;
7703 // READ_ONLY is an invalid attribute for JS setters/getters.
7704 if ((attributes & READ_ONLY) && details.type() == ACCESSOR_CONSTANT) {
7705 Object* v = dictionary->ValueAt(i);
7706 if (v->IsPropertyCell()) v = PropertyCell::cast(v)->value();
7707 if (v->IsAccessorPair()) attrs &= ~READ_ONLY;
7708 }
7709 details = details.CopyAddAttributes(
7710 static_cast<PropertyAttributes>(attrs));
7711 dictionary->DetailsAtPut(i, details);
7712 }
7713 }
7714 }
7715
7716
7717 template <PropertyAttributes attrs>
PreventExtensionsWithTransition(Handle<JSObject> object,ShouldThrow should_throw)7718 Maybe<bool> JSObject::PreventExtensionsWithTransition(
7719 Handle<JSObject> object, ShouldThrow should_throw) {
7720 STATIC_ASSERT(attrs == NONE || attrs == SEALED || attrs == FROZEN);
7721
7722 // Sealing/freezing sloppy arguments should be handled elsewhere.
7723 DCHECK(!object->HasSloppyArgumentsElements());
7724
7725 Isolate* isolate = object->GetIsolate();
7726 if (object->IsAccessCheckNeeded() &&
7727 !isolate->MayAccess(handle(isolate->context()), object)) {
7728 isolate->ReportFailedAccessCheck(object);
7729 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
7730 RETURN_FAILURE(isolate, should_throw,
7731 NewTypeError(MessageTemplate::kNoAccess));
7732 }
7733
7734 if (attrs == NONE && !object->map()->is_extensible()) return Just(true);
7735
7736 if (object->IsJSGlobalProxy()) {
7737 PrototypeIterator iter(isolate, object);
7738 if (iter.IsAtEnd()) return Just(true);
7739 DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
7740 return PreventExtensionsWithTransition<attrs>(
7741 PrototypeIterator::GetCurrent<JSObject>(iter), should_throw);
7742 }
7743
7744 Handle<SeededNumberDictionary> new_element_dictionary;
7745 if (!object->HasFixedTypedArrayElements() &&
7746 !object->HasDictionaryElements() &&
7747 !object->HasSlowStringWrapperElements()) {
7748 int length =
7749 object->IsJSArray()
7750 ? Smi::cast(Handle<JSArray>::cast(object)->length())->value()
7751 : object->elements()->length();
7752 new_element_dictionary =
7753 length == 0 ? isolate->factory()->empty_slow_element_dictionary()
7754 : object->GetElementsAccessor()->Normalize(object);
7755 }
7756
7757 Handle<Symbol> transition_marker;
7758 if (attrs == NONE) {
7759 transition_marker = isolate->factory()->nonextensible_symbol();
7760 } else if (attrs == SEALED) {
7761 transition_marker = isolate->factory()->sealed_symbol();
7762 } else {
7763 DCHECK(attrs == FROZEN);
7764 transition_marker = isolate->factory()->frozen_symbol();
7765 }
7766
7767 Handle<Map> old_map(object->map(), isolate);
7768 Map* transition =
7769 TransitionArray::SearchSpecial(*old_map, *transition_marker);
7770 if (transition != NULL) {
7771 Handle<Map> transition_map(transition, isolate);
7772 DCHECK(transition_map->has_dictionary_elements() ||
7773 transition_map->has_fixed_typed_array_elements() ||
7774 transition_map->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS);
7775 DCHECK(!transition_map->is_extensible());
7776 JSObject::MigrateToMap(object, transition_map);
7777 } else if (TransitionArray::CanHaveMoreTransitions(old_map)) {
7778 // Create a new descriptor array with the appropriate property attributes
7779 Handle<Map> new_map = Map::CopyForPreventExtensions(
7780 old_map, attrs, transition_marker, "CopyForPreventExtensions");
7781 JSObject::MigrateToMap(object, new_map);
7782 } else {
7783 DCHECK(old_map->is_dictionary_map() || !old_map->is_prototype_map());
7784 // Slow path: need to normalize properties for safety
7785 NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0,
7786 "SlowPreventExtensions");
7787
7788 // Create a new map, since other objects with this map may be extensible.
7789 // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
7790 Handle<Map> new_map =
7791 Map::Copy(handle(object->map()), "SlowCopyForPreventExtensions");
7792 new_map->set_is_extensible(false);
7793 if (!new_element_dictionary.is_null()) {
7794 ElementsKind new_kind =
7795 IsStringWrapperElementsKind(old_map->elements_kind())
7796 ? SLOW_STRING_WRAPPER_ELEMENTS
7797 : DICTIONARY_ELEMENTS;
7798 new_map->set_elements_kind(new_kind);
7799 }
7800 JSObject::MigrateToMap(object, new_map);
7801
7802 if (attrs != NONE) {
7803 if (object->IsJSGlobalObject()) {
7804 ApplyAttributesToDictionary(object->global_dictionary(), attrs);
7805 } else {
7806 ApplyAttributesToDictionary(object->property_dictionary(), attrs);
7807 }
7808 }
7809 }
7810
7811 // Both seal and preventExtensions always go through without modifications to
7812 // typed array elements. Freeze works only if there are no actual elements.
7813 if (object->HasFixedTypedArrayElements()) {
7814 if (attrs == FROZEN &&
7815 JSArrayBufferView::cast(*object)->byte_length()->Number() > 0) {
7816 isolate->Throw(*isolate->factory()->NewTypeError(
7817 MessageTemplate::kCannotFreezeArrayBufferView));
7818 return Nothing<bool>();
7819 }
7820 return Just(true);
7821 }
7822
7823 DCHECK(object->map()->has_dictionary_elements() ||
7824 object->map()->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS);
7825 if (!new_element_dictionary.is_null()) {
7826 object->set_elements(*new_element_dictionary);
7827 }
7828
7829 if (object->elements() != isolate->heap()->empty_slow_element_dictionary()) {
7830 SeededNumberDictionary* dictionary = object->element_dictionary();
7831 // Make sure we never go back to the fast case
7832 object->RequireSlowElements(dictionary);
7833 if (attrs != NONE) {
7834 ApplyAttributesToDictionary(dictionary, attrs);
7835 }
7836 }
7837
7838 return Just(true);
7839 }
7840
7841
FastPropertyAt(Handle<JSObject> object,Representation representation,FieldIndex index)7842 Handle<Object> JSObject::FastPropertyAt(Handle<JSObject> object,
7843 Representation representation,
7844 FieldIndex index) {
7845 Isolate* isolate = object->GetIsolate();
7846 if (object->IsUnboxedDoubleField(index)) {
7847 double value = object->RawFastDoublePropertyAt(index);
7848 return isolate->factory()->NewHeapNumber(value);
7849 }
7850 Handle<Object> raw_value(object->RawFastPropertyAt(index), isolate);
7851 return Object::WrapForRead(isolate, raw_value, representation);
7852 }
7853
7854 template <class ContextObject>
7855 class JSObjectWalkVisitor {
7856 public:
JSObjectWalkVisitor(ContextObject * site_context,bool copying,JSObject::DeepCopyHints hints)7857 JSObjectWalkVisitor(ContextObject* site_context, bool copying,
7858 JSObject::DeepCopyHints hints)
7859 : site_context_(site_context),
7860 copying_(copying),
7861 hints_(hints) {}
7862
7863 MUST_USE_RESULT MaybeHandle<JSObject> StructureWalk(Handle<JSObject> object);
7864
7865 protected:
VisitElementOrProperty(Handle<JSObject> object,Handle<JSObject> value)7866 MUST_USE_RESULT inline MaybeHandle<JSObject> VisitElementOrProperty(
7867 Handle<JSObject> object,
7868 Handle<JSObject> value) {
7869 Handle<AllocationSite> current_site = site_context()->EnterNewScope();
7870 MaybeHandle<JSObject> copy_of_value = StructureWalk(value);
7871 site_context()->ExitScope(current_site, value);
7872 return copy_of_value;
7873 }
7874
site_context()7875 inline ContextObject* site_context() { return site_context_; }
isolate()7876 inline Isolate* isolate() { return site_context()->isolate(); }
7877
copying() const7878 inline bool copying() const { return copying_; }
7879
7880 private:
7881 ContextObject* site_context_;
7882 const bool copying_;
7883 const JSObject::DeepCopyHints hints_;
7884 };
7885
7886 template <class ContextObject>
StructureWalk(Handle<JSObject> object)7887 MaybeHandle<JSObject> JSObjectWalkVisitor<ContextObject>::StructureWalk(
7888 Handle<JSObject> object) {
7889 Isolate* isolate = this->isolate();
7890 bool copying = this->copying();
7891 bool shallow = hints_ == JSObject::kObjectIsShallow;
7892
7893 if (!shallow) {
7894 StackLimitCheck check(isolate);
7895
7896 if (check.HasOverflowed()) {
7897 isolate->StackOverflow();
7898 return MaybeHandle<JSObject>();
7899 }
7900 }
7901
7902 if (object->map()->is_deprecated()) {
7903 JSObject::MigrateInstance(object);
7904 }
7905
7906 Handle<JSObject> copy;
7907 if (copying) {
7908 // JSFunction objects are not allowed to be in normal boilerplates at all.
7909 DCHECK(!object->IsJSFunction());
7910 Handle<AllocationSite> site_to_pass;
7911 if (site_context()->ShouldCreateMemento(object)) {
7912 site_to_pass = site_context()->current();
7913 }
7914 copy = isolate->factory()->CopyJSObjectWithAllocationSite(
7915 object, site_to_pass);
7916 } else {
7917 copy = object;
7918 }
7919
7920 DCHECK(copying || copy.is_identical_to(object));
7921
7922 ElementsKind kind = copy->GetElementsKind();
7923 if (copying && IsFastSmiOrObjectElementsKind(kind) &&
7924 FixedArray::cast(copy->elements())->map() ==
7925 isolate->heap()->fixed_cow_array_map()) {
7926 isolate->counters()->cow_arrays_created_runtime()->Increment();
7927 }
7928
7929 if (!shallow) {
7930 HandleScope scope(isolate);
7931
7932 // Deep copy own properties.
7933 if (copy->HasFastProperties()) {
7934 Handle<DescriptorArray> descriptors(copy->map()->instance_descriptors());
7935 int limit = copy->map()->NumberOfOwnDescriptors();
7936 for (int i = 0; i < limit; i++) {
7937 PropertyDetails details = descriptors->GetDetails(i);
7938 if (details.type() != DATA) continue;
7939 FieldIndex index = FieldIndex::ForDescriptor(copy->map(), i);
7940 if (object->IsUnboxedDoubleField(index)) {
7941 if (copying) {
7942 double value = object->RawFastDoublePropertyAt(index);
7943 copy->RawFastDoublePropertyAtPut(index, value);
7944 }
7945 } else {
7946 Handle<Object> value(object->RawFastPropertyAt(index), isolate);
7947 if (value->IsJSObject()) {
7948 ASSIGN_RETURN_ON_EXCEPTION(
7949 isolate, value,
7950 VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
7951 JSObject);
7952 if (copying) {
7953 copy->FastPropertyAtPut(index, *value);
7954 }
7955 } else {
7956 if (copying) {
7957 Representation representation = details.representation();
7958 value = Object::NewStorageFor(isolate, value, representation);
7959 copy->FastPropertyAtPut(index, *value);
7960 }
7961 }
7962 }
7963 }
7964 } else {
7965 // Only deep copy fields from the object literal expression.
7966 // In particular, don't try to copy the length attribute of
7967 // an array.
7968 PropertyFilter filter = static_cast<PropertyFilter>(
7969 ONLY_WRITABLE | ONLY_ENUMERABLE | ONLY_CONFIGURABLE);
7970 KeyAccumulator accumulator(isolate, KeyCollectionMode::kOwnOnly, filter);
7971 accumulator.CollectOwnPropertyNames(copy, copy);
7972 Handle<FixedArray> names = accumulator.GetKeys();
7973 for (int i = 0; i < names->length(); i++) {
7974 DCHECK(names->get(i)->IsName());
7975 Handle<Name> name(Name::cast(names->get(i)));
7976 Handle<Object> value =
7977 JSObject::GetProperty(copy, name).ToHandleChecked();
7978 if (value->IsJSObject()) {
7979 Handle<JSObject> result;
7980 ASSIGN_RETURN_ON_EXCEPTION(
7981 isolate, result,
7982 VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
7983 JSObject);
7984 if (copying) {
7985 // Creating object copy for literals. No strict mode needed.
7986 JSObject::SetProperty(copy, name, result, SLOPPY).Assert();
7987 }
7988 }
7989 }
7990 }
7991
7992 // Deep copy own elements.
7993 switch (kind) {
7994 case FAST_ELEMENTS:
7995 case FAST_HOLEY_ELEMENTS: {
7996 Handle<FixedArray> elements(FixedArray::cast(copy->elements()));
7997 if (elements->map() == isolate->heap()->fixed_cow_array_map()) {
7998 #ifdef DEBUG
7999 for (int i = 0; i < elements->length(); i++) {
8000 DCHECK(!elements->get(i)->IsJSObject());
8001 }
8002 #endif
8003 } else {
8004 for (int i = 0; i < elements->length(); i++) {
8005 Handle<Object> value(elements->get(i), isolate);
8006 if (value->IsJSObject()) {
8007 Handle<JSObject> result;
8008 ASSIGN_RETURN_ON_EXCEPTION(
8009 isolate, result,
8010 VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
8011 JSObject);
8012 if (copying) {
8013 elements->set(i, *result);
8014 }
8015 }
8016 }
8017 }
8018 break;
8019 }
8020 case DICTIONARY_ELEMENTS: {
8021 Handle<SeededNumberDictionary> element_dictionary(
8022 copy->element_dictionary());
8023 int capacity = element_dictionary->Capacity();
8024 for (int i = 0; i < capacity; i++) {
8025 Object* k = element_dictionary->KeyAt(i);
8026 if (element_dictionary->IsKey(isolate, k)) {
8027 Handle<Object> value(element_dictionary->ValueAt(i), isolate);
8028 if (value->IsJSObject()) {
8029 Handle<JSObject> result;
8030 ASSIGN_RETURN_ON_EXCEPTION(
8031 isolate, result,
8032 VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
8033 JSObject);
8034 if (copying) {
8035 element_dictionary->ValueAtPut(i, *result);
8036 }
8037 }
8038 }
8039 }
8040 break;
8041 }
8042 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
8043 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
8044 UNIMPLEMENTED();
8045 break;
8046 case FAST_STRING_WRAPPER_ELEMENTS:
8047 case SLOW_STRING_WRAPPER_ELEMENTS:
8048 UNREACHABLE();
8049 break;
8050
8051 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
8052 case TYPE##_ELEMENTS: \
8053
8054 TYPED_ARRAYS(TYPED_ARRAY_CASE)
8055 #undef TYPED_ARRAY_CASE
8056 // Typed elements cannot be created using an object literal.
8057 UNREACHABLE();
8058 break;
8059
8060 case FAST_SMI_ELEMENTS:
8061 case FAST_HOLEY_SMI_ELEMENTS:
8062 case FAST_DOUBLE_ELEMENTS:
8063 case FAST_HOLEY_DOUBLE_ELEMENTS:
8064 case NO_ELEMENTS:
8065 // No contained objects, nothing to do.
8066 break;
8067 }
8068 }
8069
8070 return copy;
8071 }
8072
8073
DeepWalk(Handle<JSObject> object,AllocationSiteCreationContext * site_context)8074 MaybeHandle<JSObject> JSObject::DeepWalk(
8075 Handle<JSObject> object,
8076 AllocationSiteCreationContext* site_context) {
8077 JSObjectWalkVisitor<AllocationSiteCreationContext> v(site_context, false,
8078 kNoHints);
8079 MaybeHandle<JSObject> result = v.StructureWalk(object);
8080 Handle<JSObject> for_assert;
8081 DCHECK(!result.ToHandle(&for_assert) || for_assert.is_identical_to(object));
8082 return result;
8083 }
8084
8085
DeepCopy(Handle<JSObject> object,AllocationSiteUsageContext * site_context,DeepCopyHints hints)8086 MaybeHandle<JSObject> JSObject::DeepCopy(
8087 Handle<JSObject> object,
8088 AllocationSiteUsageContext* site_context,
8089 DeepCopyHints hints) {
8090 JSObjectWalkVisitor<AllocationSiteUsageContext> v(site_context, true, hints);
8091 MaybeHandle<JSObject> copy = v.StructureWalk(object);
8092 Handle<JSObject> for_assert;
8093 DCHECK(!copy.ToHandle(&for_assert) || !for_assert.is_identical_to(object));
8094 return copy;
8095 }
8096
8097 // static
ToPrimitive(Handle<JSReceiver> receiver,ToPrimitiveHint hint)8098 MaybeHandle<Object> JSReceiver::ToPrimitive(Handle<JSReceiver> receiver,
8099 ToPrimitiveHint hint) {
8100 Isolate* const isolate = receiver->GetIsolate();
8101 Handle<Object> exotic_to_prim;
8102 ASSIGN_RETURN_ON_EXCEPTION(
8103 isolate, exotic_to_prim,
8104 GetMethod(receiver, isolate->factory()->to_primitive_symbol()), Object);
8105 if (!exotic_to_prim->IsUndefined(isolate)) {
8106 Handle<Object> hint_string;
8107 switch (hint) {
8108 case ToPrimitiveHint::kDefault:
8109 hint_string = isolate->factory()->default_string();
8110 break;
8111 case ToPrimitiveHint::kNumber:
8112 hint_string = isolate->factory()->number_string();
8113 break;
8114 case ToPrimitiveHint::kString:
8115 hint_string = isolate->factory()->string_string();
8116 break;
8117 }
8118 Handle<Object> result;
8119 ASSIGN_RETURN_ON_EXCEPTION(
8120 isolate, result,
8121 Execution::Call(isolate, exotic_to_prim, receiver, 1, &hint_string),
8122 Object);
8123 if (result->IsPrimitive()) return result;
8124 THROW_NEW_ERROR(isolate,
8125 NewTypeError(MessageTemplate::kCannotConvertToPrimitive),
8126 Object);
8127 }
8128 return OrdinaryToPrimitive(receiver, (hint == ToPrimitiveHint::kString)
8129 ? OrdinaryToPrimitiveHint::kString
8130 : OrdinaryToPrimitiveHint::kNumber);
8131 }
8132
8133
8134 // static
OrdinaryToPrimitive(Handle<JSReceiver> receiver,OrdinaryToPrimitiveHint hint)8135 MaybeHandle<Object> JSReceiver::OrdinaryToPrimitive(
8136 Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint) {
8137 Isolate* const isolate = receiver->GetIsolate();
8138 Handle<String> method_names[2];
8139 switch (hint) {
8140 case OrdinaryToPrimitiveHint::kNumber:
8141 method_names[0] = isolate->factory()->valueOf_string();
8142 method_names[1] = isolate->factory()->toString_string();
8143 break;
8144 case OrdinaryToPrimitiveHint::kString:
8145 method_names[0] = isolate->factory()->toString_string();
8146 method_names[1] = isolate->factory()->valueOf_string();
8147 break;
8148 }
8149 for (Handle<String> name : method_names) {
8150 Handle<Object> method;
8151 ASSIGN_RETURN_ON_EXCEPTION(isolate, method,
8152 JSReceiver::GetProperty(receiver, name), Object);
8153 if (method->IsCallable()) {
8154 Handle<Object> result;
8155 ASSIGN_RETURN_ON_EXCEPTION(
8156 isolate, result, Execution::Call(isolate, method, receiver, 0, NULL),
8157 Object);
8158 if (result->IsPrimitive()) return result;
8159 }
8160 }
8161 THROW_NEW_ERROR(isolate,
8162 NewTypeError(MessageTemplate::kCannotConvertToPrimitive),
8163 Object);
8164 }
8165
8166
8167 // TODO(cbruni/jkummerow): Consider moving this into elements.cc.
HasEnumerableElements()8168 bool JSObject::HasEnumerableElements() {
8169 // TODO(cbruni): cleanup
8170 JSObject* object = this;
8171 switch (object->GetElementsKind()) {
8172 case FAST_SMI_ELEMENTS:
8173 case FAST_ELEMENTS:
8174 case FAST_DOUBLE_ELEMENTS: {
8175 int length = object->IsJSArray()
8176 ? Smi::cast(JSArray::cast(object)->length())->value()
8177 : object->elements()->length();
8178 return length > 0;
8179 }
8180 case FAST_HOLEY_SMI_ELEMENTS:
8181 case FAST_HOLEY_ELEMENTS: {
8182 FixedArray* elements = FixedArray::cast(object->elements());
8183 int length = object->IsJSArray()
8184 ? Smi::cast(JSArray::cast(object)->length())->value()
8185 : elements->length();
8186 for (int i = 0; i < length; i++) {
8187 if (!elements->is_the_hole(i)) return true;
8188 }
8189 return false;
8190 }
8191 case FAST_HOLEY_DOUBLE_ELEMENTS: {
8192 int length = object->IsJSArray()
8193 ? Smi::cast(JSArray::cast(object)->length())->value()
8194 : object->elements()->length();
8195 // Zero-length arrays would use the empty FixedArray...
8196 if (length == 0) return false;
8197 // ...so only cast to FixedDoubleArray otherwise.
8198 FixedDoubleArray* elements = FixedDoubleArray::cast(object->elements());
8199 for (int i = 0; i < length; i++) {
8200 if (!elements->is_the_hole(i)) return true;
8201 }
8202 return false;
8203 }
8204 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
8205 case TYPE##_ELEMENTS:
8206
8207 TYPED_ARRAYS(TYPED_ARRAY_CASE)
8208 #undef TYPED_ARRAY_CASE
8209 {
8210 int length = object->elements()->length();
8211 return length > 0;
8212 }
8213 case DICTIONARY_ELEMENTS: {
8214 SeededNumberDictionary* elements =
8215 SeededNumberDictionary::cast(object->elements());
8216 return elements->NumberOfElementsFilterAttributes(ONLY_ENUMERABLE) > 0;
8217 }
8218 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
8219 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
8220 // We're approximating non-empty arguments objects here.
8221 return true;
8222 case FAST_STRING_WRAPPER_ELEMENTS:
8223 case SLOW_STRING_WRAPPER_ELEMENTS:
8224 if (String::cast(JSValue::cast(object)->value())->length() > 0) {
8225 return true;
8226 }
8227 return object->elements()->length() > 0;
8228 case NO_ELEMENTS:
8229 return false;
8230 }
8231 UNREACHABLE();
8232 return true;
8233 }
8234
8235
NumberOfDescribedProperties(DescriptorFlag which,PropertyFilter filter)8236 int Map::NumberOfDescribedProperties(DescriptorFlag which,
8237 PropertyFilter filter) {
8238 int result = 0;
8239 DescriptorArray* descs = instance_descriptors();
8240 int limit = which == ALL_DESCRIPTORS
8241 ? descs->number_of_descriptors()
8242 : NumberOfOwnDescriptors();
8243 for (int i = 0; i < limit; i++) {
8244 if ((descs->GetDetails(i).attributes() & filter) == 0 &&
8245 !descs->GetKey(i)->FilterKey(filter)) {
8246 result++;
8247 }
8248 }
8249 return result;
8250 }
8251
8252
NextFreePropertyIndex()8253 int Map::NextFreePropertyIndex() {
8254 int free_index = 0;
8255 int number_of_own_descriptors = NumberOfOwnDescriptors();
8256 DescriptorArray* descs = instance_descriptors();
8257 for (int i = 0; i < number_of_own_descriptors; i++) {
8258 PropertyDetails details = descs->GetDetails(i);
8259 if (details.location() == kField) {
8260 int candidate = details.field_index() + details.field_width_in_words();
8261 if (candidate > free_index) free_index = candidate;
8262 }
8263 }
8264 return free_index;
8265 }
8266
8267
OnlyHasSimpleProperties()8268 bool Map::OnlyHasSimpleProperties() {
8269 // Wrapped string elements aren't explicitly stored in the elements backing
8270 // store, but are loaded indirectly from the underlying string.
8271 return !IsStringWrapperElementsKind(elements_kind()) &&
8272 instance_type() > LAST_SPECIAL_RECEIVER_TYPE &&
8273 !has_hidden_prototype() && !is_dictionary_map();
8274 }
8275
FastGetOwnValuesOrEntries(Isolate * isolate,Handle<JSReceiver> receiver,bool get_entries,Handle<FixedArray> * result)8276 MUST_USE_RESULT Maybe<bool> FastGetOwnValuesOrEntries(
8277 Isolate* isolate, Handle<JSReceiver> receiver, bool get_entries,
8278 Handle<FixedArray>* result) {
8279 Handle<Map> map(JSReceiver::cast(*receiver)->map(), isolate);
8280
8281 if (!map->IsJSObjectMap()) return Just(false);
8282 if (!map->OnlyHasSimpleProperties()) return Just(false);
8283
8284 Handle<JSObject> object(JSObject::cast(*receiver));
8285
8286 Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate);
8287 int number_of_own_descriptors = map->NumberOfOwnDescriptors();
8288 int number_of_own_elements =
8289 object->GetElementsAccessor()->GetCapacity(*object, object->elements());
8290 Handle<FixedArray> values_or_entries = isolate->factory()->NewFixedArray(
8291 number_of_own_descriptors + number_of_own_elements);
8292 int count = 0;
8293
8294 if (object->elements() != isolate->heap()->empty_fixed_array()) {
8295 MAYBE_RETURN(object->GetElementsAccessor()->CollectValuesOrEntries(
8296 isolate, object, values_or_entries, get_entries, &count,
8297 ENUMERABLE_STRINGS),
8298 Nothing<bool>());
8299 }
8300
8301 bool stable = object->map() == *map;
8302
8303 for (int index = 0; index < number_of_own_descriptors; index++) {
8304 Handle<Name> next_key(descriptors->GetKey(index), isolate);
8305 if (!next_key->IsString()) continue;
8306 Handle<Object> prop_value;
8307
8308 // Directly decode from the descriptor array if |from| did not change shape.
8309 if (stable) {
8310 PropertyDetails details = descriptors->GetDetails(index);
8311 if (!details.IsEnumerable()) continue;
8312 if (details.kind() == kData) {
8313 if (details.location() == kDescriptor) {
8314 prop_value = handle(descriptors->GetValue(index), isolate);
8315 } else {
8316 Representation representation = details.representation();
8317 FieldIndex field_index = FieldIndex::ForDescriptor(*map, index);
8318 prop_value =
8319 JSObject::FastPropertyAt(object, representation, field_index);
8320 }
8321 } else {
8322 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
8323 isolate, prop_value, JSReceiver::GetProperty(object, next_key),
8324 Nothing<bool>());
8325 stable = object->map() == *map;
8326 }
8327 } else {
8328 // If the map did change, do a slower lookup. We are still guaranteed that
8329 // the object has a simple shape, and that the key is a name.
8330 LookupIterator it(object, next_key, LookupIterator::OWN_SKIP_INTERCEPTOR);
8331 if (!it.IsFound()) continue;
8332 DCHECK(it.state() == LookupIterator::DATA ||
8333 it.state() == LookupIterator::ACCESSOR);
8334 if (!it.IsEnumerable()) continue;
8335 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
8336 isolate, prop_value, Object::GetProperty(&it), Nothing<bool>());
8337 }
8338
8339 if (get_entries) {
8340 prop_value = MakeEntryPair(isolate, next_key, prop_value);
8341 }
8342
8343 values_or_entries->set(count, *prop_value);
8344 count++;
8345 }
8346
8347 if (count < values_or_entries->length()) values_or_entries->Shrink(count);
8348 *result = values_or_entries;
8349 return Just(true);
8350 }
8351
GetOwnValuesOrEntries(Isolate * isolate,Handle<JSReceiver> object,PropertyFilter filter,bool get_entries)8352 MaybeHandle<FixedArray> GetOwnValuesOrEntries(Isolate* isolate,
8353 Handle<JSReceiver> object,
8354 PropertyFilter filter,
8355 bool get_entries) {
8356 Handle<FixedArray> values_or_entries;
8357 if (filter == ENUMERABLE_STRINGS) {
8358 Maybe<bool> fast_values_or_entries = FastGetOwnValuesOrEntries(
8359 isolate, object, get_entries, &values_or_entries);
8360 if (fast_values_or_entries.IsNothing()) return MaybeHandle<FixedArray>();
8361 if (fast_values_or_entries.FromJust()) return values_or_entries;
8362 }
8363
8364 PropertyFilter key_filter =
8365 static_cast<PropertyFilter>(filter & ~ONLY_ENUMERABLE);
8366
8367 Handle<FixedArray> keys;
8368 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
8369 isolate, keys,
8370 KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly, key_filter,
8371 GetKeysConversion::kConvertToString),
8372 MaybeHandle<FixedArray>());
8373
8374 values_or_entries = isolate->factory()->NewFixedArray(keys->length());
8375 int length = 0;
8376
8377 for (int i = 0; i < keys->length(); ++i) {
8378 Handle<Name> key = Handle<Name>::cast(handle(keys->get(i), isolate));
8379
8380 if (filter & ONLY_ENUMERABLE) {
8381 PropertyDescriptor descriptor;
8382 Maybe<bool> did_get_descriptor = JSReceiver::GetOwnPropertyDescriptor(
8383 isolate, object, key, &descriptor);
8384 MAYBE_RETURN(did_get_descriptor, MaybeHandle<FixedArray>());
8385 if (!did_get_descriptor.FromJust() || !descriptor.enumerable()) continue;
8386 }
8387
8388 Handle<Object> value;
8389 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
8390 isolate, value, JSReceiver::GetPropertyOrElement(object, key),
8391 MaybeHandle<FixedArray>());
8392
8393 if (get_entries) {
8394 Handle<FixedArray> entry_storage =
8395 isolate->factory()->NewUninitializedFixedArray(2);
8396 entry_storage->set(0, *key);
8397 entry_storage->set(1, *value);
8398 value = isolate->factory()->NewJSArrayWithElements(entry_storage,
8399 FAST_ELEMENTS, 2);
8400 }
8401
8402 values_or_entries->set(length, *value);
8403 length++;
8404 }
8405 if (length < values_or_entries->length()) values_or_entries->Shrink(length);
8406 return values_or_entries;
8407 }
8408
GetOwnValues(Handle<JSReceiver> object,PropertyFilter filter)8409 MaybeHandle<FixedArray> JSReceiver::GetOwnValues(Handle<JSReceiver> object,
8410 PropertyFilter filter) {
8411 return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, false);
8412 }
8413
GetOwnEntries(Handle<JSReceiver> object,PropertyFilter filter)8414 MaybeHandle<FixedArray> JSReceiver::GetOwnEntries(Handle<JSReceiver> object,
8415 PropertyFilter filter) {
8416 return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, true);
8417 }
8418
DictionaryElementsInPrototypeChainOnly()8419 bool Map::DictionaryElementsInPrototypeChainOnly() {
8420 if (IsDictionaryElementsKind(elements_kind())) {
8421 return false;
8422 }
8423
8424 for (PrototypeIterator iter(this); !iter.IsAtEnd(); iter.Advance()) {
8425 // Be conservative, don't walk into proxies.
8426 if (iter.GetCurrent()->IsJSProxy()) return true;
8427 // String wrappers have non-configurable, non-writable elements.
8428 if (iter.GetCurrent()->IsStringWrapper()) return true;
8429 JSObject* current = iter.GetCurrent<JSObject>();
8430
8431 if (current->HasDictionaryElements() &&
8432 current->element_dictionary()->requires_slow_elements()) {
8433 return true;
8434 }
8435
8436 if (current->HasSlowArgumentsElements()) {
8437 FixedArray* parameter_map = FixedArray::cast(current->elements());
8438 Object* arguments = parameter_map->get(1);
8439 if (SeededNumberDictionary::cast(arguments)->requires_slow_elements()) {
8440 return true;
8441 }
8442 }
8443 }
8444
8445 return false;
8446 }
8447
8448
DefineAccessor(Handle<JSObject> object,Handle<Name> name,Handle<Object> getter,Handle<Object> setter,PropertyAttributes attributes)8449 MaybeHandle<Object> JSObject::DefineAccessor(Handle<JSObject> object,
8450 Handle<Name> name,
8451 Handle<Object> getter,
8452 Handle<Object> setter,
8453 PropertyAttributes attributes) {
8454 Isolate* isolate = object->GetIsolate();
8455
8456 LookupIterator it = LookupIterator::PropertyOrElement(
8457 isolate, object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
8458 return DefineAccessor(&it, getter, setter, attributes);
8459 }
8460
8461
DefineAccessor(LookupIterator * it,Handle<Object> getter,Handle<Object> setter,PropertyAttributes attributes)8462 MaybeHandle<Object> JSObject::DefineAccessor(LookupIterator* it,
8463 Handle<Object> getter,
8464 Handle<Object> setter,
8465 PropertyAttributes attributes) {
8466 Isolate* isolate = it->isolate();
8467
8468 it->UpdateProtector();
8469
8470 if (it->state() == LookupIterator::ACCESS_CHECK) {
8471 if (!it->HasAccess()) {
8472 isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>());
8473 RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
8474 return isolate->factory()->undefined_value();
8475 }
8476 it->Next();
8477 }
8478
8479 Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
8480 // Ignore accessors on typed arrays.
8481 if (it->IsElement() && object->HasFixedTypedArrayElements()) {
8482 return it->factory()->undefined_value();
8483 }
8484
8485 DCHECK(getter->IsCallable() || getter->IsUndefined(isolate) ||
8486 getter->IsNull(isolate) || getter->IsFunctionTemplateInfo());
8487 DCHECK(setter->IsCallable() || setter->IsUndefined(isolate) ||
8488 setter->IsNull(isolate) || getter->IsFunctionTemplateInfo());
8489 it->TransitionToAccessorProperty(getter, setter, attributes);
8490
8491 return isolate->factory()->undefined_value();
8492 }
8493
8494
SetAccessor(Handle<JSObject> object,Handle<AccessorInfo> info)8495 MaybeHandle<Object> JSObject::SetAccessor(Handle<JSObject> object,
8496 Handle<AccessorInfo> info) {
8497 Isolate* isolate = object->GetIsolate();
8498 Handle<Name> name(Name::cast(info->name()), isolate);
8499
8500 LookupIterator it = LookupIterator::PropertyOrElement(
8501 isolate, object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
8502
8503 // Duplicate ACCESS_CHECK outside of GetPropertyAttributes for the case that
8504 // the FailedAccessCheckCallbackFunction doesn't throw an exception.
8505 //
8506 // TODO(verwaest): Force throw an exception if the callback doesn't, so we can
8507 // remove reliance on default return values.
8508 if (it.state() == LookupIterator::ACCESS_CHECK) {
8509 if (!it.HasAccess()) {
8510 isolate->ReportFailedAccessCheck(object);
8511 RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
8512 return it.factory()->undefined_value();
8513 }
8514 it.Next();
8515 }
8516
8517 // Ignore accessors on typed arrays.
8518 if (it.IsElement() && object->HasFixedTypedArrayElements()) {
8519 return it.factory()->undefined_value();
8520 }
8521
8522 CHECK(GetPropertyAttributes(&it).IsJust());
8523
8524 // ES5 forbids turning a property into an accessor if it's not
8525 // configurable. See 8.6.1 (Table 5).
8526 if (it.IsFound() && !it.IsConfigurable()) {
8527 return it.factory()->undefined_value();
8528 }
8529
8530 it.TransitionToAccessorPair(info, info->property_attributes());
8531
8532 return object;
8533 }
8534
SlowReverseLookup(Object * value)8535 Object* JSObject::SlowReverseLookup(Object* value) {
8536 if (HasFastProperties()) {
8537 int number_of_own_descriptors = map()->NumberOfOwnDescriptors();
8538 DescriptorArray* descs = map()->instance_descriptors();
8539 bool value_is_number = value->IsNumber();
8540 for (int i = 0; i < number_of_own_descriptors; i++) {
8541 if (descs->GetType(i) == DATA) {
8542 FieldIndex field_index = FieldIndex::ForDescriptor(map(), i);
8543 if (IsUnboxedDoubleField(field_index)) {
8544 if (value_is_number) {
8545 double property = RawFastDoublePropertyAt(field_index);
8546 if (property == value->Number()) {
8547 return descs->GetKey(i);
8548 }
8549 }
8550 } else {
8551 Object* property = RawFastPropertyAt(field_index);
8552 if (field_index.is_double()) {
8553 DCHECK(property->IsMutableHeapNumber());
8554 if (value_is_number && property->Number() == value->Number()) {
8555 return descs->GetKey(i);
8556 }
8557 } else if (property == value) {
8558 return descs->GetKey(i);
8559 }
8560 }
8561 } else if (descs->GetType(i) == DATA_CONSTANT) {
8562 if (descs->GetConstant(i) == value) {
8563 return descs->GetKey(i);
8564 }
8565 }
8566 }
8567 return GetHeap()->undefined_value();
8568 } else if (IsJSGlobalObject()) {
8569 return global_dictionary()->SlowReverseLookup(value);
8570 } else {
8571 return property_dictionary()->SlowReverseLookup(value);
8572 }
8573 }
8574
8575
RawCopy(Handle<Map> map,int instance_size)8576 Handle<Map> Map::RawCopy(Handle<Map> map, int instance_size) {
8577 Isolate* isolate = map->GetIsolate();
8578 Handle<Map> result =
8579 isolate->factory()->NewMap(map->instance_type(), instance_size);
8580 Handle<Object> prototype(map->prototype(), isolate);
8581 Map::SetPrototype(result, prototype);
8582 result->set_constructor_or_backpointer(map->GetConstructor());
8583 result->set_bit_field(map->bit_field());
8584 result->set_bit_field2(map->bit_field2());
8585 int new_bit_field3 = map->bit_field3();
8586 new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true);
8587 new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0);
8588 new_bit_field3 = EnumLengthBits::update(new_bit_field3,
8589 kInvalidEnumCacheSentinel);
8590 new_bit_field3 = Deprecated::update(new_bit_field3, false);
8591 if (!map->is_dictionary_map()) {
8592 new_bit_field3 = IsUnstable::update(new_bit_field3, false);
8593 }
8594 result->set_bit_field3(new_bit_field3);
8595 return result;
8596 }
8597
8598
Normalize(Handle<Map> fast_map,PropertyNormalizationMode mode,const char * reason)8599 Handle<Map> Map::Normalize(Handle<Map> fast_map, PropertyNormalizationMode mode,
8600 const char* reason) {
8601 DCHECK(!fast_map->is_dictionary_map());
8602
8603 Isolate* isolate = fast_map->GetIsolate();
8604 Handle<Object> maybe_cache(isolate->native_context()->normalized_map_cache(),
8605 isolate);
8606 bool use_cache =
8607 !fast_map->is_prototype_map() && !maybe_cache->IsUndefined(isolate);
8608 Handle<NormalizedMapCache> cache;
8609 if (use_cache) cache = Handle<NormalizedMapCache>::cast(maybe_cache);
8610
8611 Handle<Map> new_map;
8612 if (use_cache && cache->Get(fast_map, mode).ToHandle(&new_map)) {
8613 #ifdef VERIFY_HEAP
8614 if (FLAG_verify_heap) new_map->DictionaryMapVerify();
8615 #endif
8616 #ifdef ENABLE_SLOW_DCHECKS
8617 if (FLAG_enable_slow_asserts) {
8618 // The cached map should match newly created normalized map bit-by-bit,
8619 // except for the code cache, which can contain some ics which can be
8620 // applied to the shared map, dependent code and weak cell cache.
8621 Handle<Map> fresh = Map::CopyNormalized(fast_map, mode);
8622
8623 if (new_map->is_prototype_map()) {
8624 // For prototype maps, the PrototypeInfo is not copied.
8625 DCHECK(memcmp(fresh->address(), new_map->address(),
8626 kTransitionsOrPrototypeInfoOffset) == 0);
8627 DCHECK(fresh->raw_transitions() == Smi::FromInt(0));
8628 STATIC_ASSERT(kDescriptorsOffset ==
8629 kTransitionsOrPrototypeInfoOffset + kPointerSize);
8630 DCHECK(memcmp(HeapObject::RawField(*fresh, kDescriptorsOffset),
8631 HeapObject::RawField(*new_map, kDescriptorsOffset),
8632 kCodeCacheOffset - kDescriptorsOffset) == 0);
8633 } else {
8634 DCHECK(memcmp(fresh->address(), new_map->address(),
8635 Map::kCodeCacheOffset) == 0);
8636 }
8637 STATIC_ASSERT(Map::kDependentCodeOffset ==
8638 Map::kCodeCacheOffset + kPointerSize);
8639 STATIC_ASSERT(Map::kWeakCellCacheOffset ==
8640 Map::kDependentCodeOffset + kPointerSize);
8641 int offset = Map::kWeakCellCacheOffset + kPointerSize;
8642 DCHECK(memcmp(fresh->address() + offset,
8643 new_map->address() + offset,
8644 Map::kSize - offset) == 0);
8645 }
8646 #endif
8647 } else {
8648 new_map = Map::CopyNormalized(fast_map, mode);
8649 if (use_cache) {
8650 cache->Set(fast_map, new_map);
8651 isolate->counters()->maps_normalized()->Increment();
8652 }
8653 #if TRACE_MAPS
8654 if (FLAG_trace_maps) {
8655 PrintF("[TraceMaps: Normalize from= %p to= %p reason= %s ]\n",
8656 reinterpret_cast<void*>(*fast_map),
8657 reinterpret_cast<void*>(*new_map), reason);
8658 }
8659 #endif
8660 }
8661 fast_map->NotifyLeafMapLayoutChange();
8662 return new_map;
8663 }
8664
8665
CopyNormalized(Handle<Map> map,PropertyNormalizationMode mode)8666 Handle<Map> Map::CopyNormalized(Handle<Map> map,
8667 PropertyNormalizationMode mode) {
8668 int new_instance_size = map->instance_size();
8669 if (mode == CLEAR_INOBJECT_PROPERTIES) {
8670 new_instance_size -= map->GetInObjectProperties() * kPointerSize;
8671 }
8672
8673 Handle<Map> result = RawCopy(map, new_instance_size);
8674
8675 if (mode != CLEAR_INOBJECT_PROPERTIES) {
8676 result->SetInObjectProperties(map->GetInObjectProperties());
8677 }
8678
8679 result->set_dictionary_map(true);
8680 result->set_migration_target(false);
8681 result->set_construction_counter(kNoSlackTracking);
8682
8683 #ifdef VERIFY_HEAP
8684 if (FLAG_verify_heap) result->DictionaryMapVerify();
8685 #endif
8686
8687 return result;
8688 }
8689
8690
CopyInitialMap(Handle<Map> map,int instance_size,int in_object_properties,int unused_property_fields)8691 Handle<Map> Map::CopyInitialMap(Handle<Map> map, int instance_size,
8692 int in_object_properties,
8693 int unused_property_fields) {
8694 #ifdef DEBUG
8695 Isolate* isolate = map->GetIsolate();
8696 // Strict function maps have Function as a constructor but the
8697 // Function's initial map is a sloppy function map. Same holds for
8698 // GeneratorFunction and its initial map.
8699 Object* constructor = map->GetConstructor();
8700 DCHECK(constructor->IsJSFunction());
8701 DCHECK(*map == JSFunction::cast(constructor)->initial_map() ||
8702 *map == *isolate->strict_function_map() ||
8703 *map == *isolate->strict_generator_function_map());
8704 #endif
8705 // Initial maps must always own their descriptors and it's descriptor array
8706 // does not contain descriptors that do not belong to the map.
8707 DCHECK(map->owns_descriptors());
8708 DCHECK_EQ(map->NumberOfOwnDescriptors(),
8709 map->instance_descriptors()->number_of_descriptors());
8710
8711 Handle<Map> result = RawCopy(map, instance_size);
8712
8713 // Please note instance_type and instance_size are set when allocated.
8714 result->SetInObjectProperties(in_object_properties);
8715 result->set_unused_property_fields(unused_property_fields);
8716
8717 int number_of_own_descriptors = map->NumberOfOwnDescriptors();
8718 if (number_of_own_descriptors > 0) {
8719 // The copy will use the same descriptors array.
8720 result->UpdateDescriptors(map->instance_descriptors(),
8721 map->GetLayoutDescriptor());
8722 result->SetNumberOfOwnDescriptors(number_of_own_descriptors);
8723
8724 DCHECK_EQ(result->NumberOfFields(),
8725 in_object_properties - unused_property_fields);
8726 }
8727
8728 return result;
8729 }
8730
8731
CopyDropDescriptors(Handle<Map> map)8732 Handle<Map> Map::CopyDropDescriptors(Handle<Map> map) {
8733 Handle<Map> result = RawCopy(map, map->instance_size());
8734
8735 // Please note instance_type and instance_size are set when allocated.
8736 if (map->IsJSObjectMap()) {
8737 result->SetInObjectProperties(map->GetInObjectProperties());
8738 result->set_unused_property_fields(map->unused_property_fields());
8739 }
8740 result->ClearCodeCache(map->GetHeap());
8741 map->NotifyLeafMapLayoutChange();
8742 return result;
8743 }
8744
8745
ShareDescriptor(Handle<Map> map,Handle<DescriptorArray> descriptors,Descriptor * descriptor)8746 Handle<Map> Map::ShareDescriptor(Handle<Map> map,
8747 Handle<DescriptorArray> descriptors,
8748 Descriptor* descriptor) {
8749 // Sanity check. This path is only to be taken if the map owns its descriptor
8750 // array, implying that its NumberOfOwnDescriptors equals the number of
8751 // descriptors in the descriptor array.
8752 DCHECK_EQ(map->NumberOfOwnDescriptors(),
8753 map->instance_descriptors()->number_of_descriptors());
8754
8755 Handle<Map> result = CopyDropDescriptors(map);
8756 Handle<Name> name = descriptor->GetKey();
8757
8758 // Ensure there's space for the new descriptor in the shared descriptor array.
8759 if (descriptors->NumberOfSlackDescriptors() == 0) {
8760 int old_size = descriptors->number_of_descriptors();
8761 if (old_size == 0) {
8762 descriptors = DescriptorArray::Allocate(map->GetIsolate(), 0, 1);
8763 } else {
8764 int slack = SlackForArraySize(old_size, kMaxNumberOfDescriptors);
8765 EnsureDescriptorSlack(map, slack);
8766 descriptors = handle(map->instance_descriptors());
8767 }
8768 }
8769
8770 Handle<LayoutDescriptor> layout_descriptor =
8771 FLAG_unbox_double_fields
8772 ? LayoutDescriptor::ShareAppend(map, descriptor->GetDetails())
8773 : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());
8774
8775 {
8776 DisallowHeapAllocation no_gc;
8777 descriptors->Append(descriptor);
8778 result->InitializeDescriptors(*descriptors, *layout_descriptor);
8779 }
8780
8781 DCHECK(result->NumberOfOwnDescriptors() == map->NumberOfOwnDescriptors() + 1);
8782 ConnectTransition(map, result, name, SIMPLE_PROPERTY_TRANSITION);
8783
8784 return result;
8785 }
8786
8787
8788 #if TRACE_MAPS
8789
8790 // static
TraceTransition(const char * what,Map * from,Map * to,Name * name)8791 void Map::TraceTransition(const char* what, Map* from, Map* to, Name* name) {
8792 if (FLAG_trace_maps) {
8793 PrintF("[TraceMaps: %s from= %p to= %p name= ", what,
8794 reinterpret_cast<void*>(from), reinterpret_cast<void*>(to));
8795 name->NameShortPrint();
8796 PrintF(" ]\n");
8797 }
8798 }
8799
8800
8801 // static
TraceAllTransitions(Map * map)8802 void Map::TraceAllTransitions(Map* map) {
8803 Object* transitions = map->raw_transitions();
8804 int num_transitions = TransitionArray::NumberOfTransitions(transitions);
8805 for (int i = -0; i < num_transitions; ++i) {
8806 Map* target = TransitionArray::GetTarget(transitions, i);
8807 Name* key = TransitionArray::GetKey(transitions, i);
8808 Map::TraceTransition("Transition", map, target, key);
8809 Map::TraceAllTransitions(target);
8810 }
8811 }
8812
8813 #endif // TRACE_MAPS
8814
8815
ConnectTransition(Handle<Map> parent,Handle<Map> child,Handle<Name> name,SimpleTransitionFlag flag)8816 void Map::ConnectTransition(Handle<Map> parent, Handle<Map> child,
8817 Handle<Name> name, SimpleTransitionFlag flag) {
8818 if (!parent->GetBackPointer()->IsUndefined(parent->GetIsolate())) {
8819 parent->set_owns_descriptors(false);
8820 } else {
8821 // |parent| is initial map and it must keep the ownership, there must be no
8822 // descriptors in the descriptors array that do not belong to the map.
8823 DCHECK(parent->owns_descriptors());
8824 DCHECK_EQ(parent->NumberOfOwnDescriptors(),
8825 parent->instance_descriptors()->number_of_descriptors());
8826 }
8827 if (parent->is_prototype_map()) {
8828 DCHECK(child->is_prototype_map());
8829 #if TRACE_MAPS
8830 Map::TraceTransition("NoTransition", *parent, *child, *name);
8831 #endif
8832 } else {
8833 TransitionArray::Insert(parent, name, child, flag);
8834 #if TRACE_MAPS
8835 Map::TraceTransition("Transition", *parent, *child, *name);
8836 #endif
8837 }
8838 }
8839
8840
CopyReplaceDescriptors(Handle<Map> map,Handle<DescriptorArray> descriptors,Handle<LayoutDescriptor> layout_descriptor,TransitionFlag flag,MaybeHandle<Name> maybe_name,const char * reason,SimpleTransitionFlag simple_flag)8841 Handle<Map> Map::CopyReplaceDescriptors(
8842 Handle<Map> map, Handle<DescriptorArray> descriptors,
8843 Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
8844 MaybeHandle<Name> maybe_name, const char* reason,
8845 SimpleTransitionFlag simple_flag) {
8846 DCHECK(descriptors->IsSortedNoDuplicates());
8847
8848 Handle<Map> result = CopyDropDescriptors(map);
8849
8850 if (!map->is_prototype_map()) {
8851 if (flag == INSERT_TRANSITION &&
8852 TransitionArray::CanHaveMoreTransitions(map)) {
8853 result->InitializeDescriptors(*descriptors, *layout_descriptor);
8854
8855 Handle<Name> name;
8856 CHECK(maybe_name.ToHandle(&name));
8857 ConnectTransition(map, result, name, simple_flag);
8858 } else {
8859 int length = descriptors->number_of_descriptors();
8860 for (int i = 0; i < length; i++) {
8861 descriptors->SetRepresentation(i, Representation::Tagged());
8862 if (descriptors->GetDetails(i).type() == DATA) {
8863 descriptors->SetValue(i, FieldType::Any());
8864 }
8865 }
8866 result->InitializeDescriptors(*descriptors,
8867 LayoutDescriptor::FastPointerLayout());
8868 }
8869 } else {
8870 result->InitializeDescriptors(*descriptors, *layout_descriptor);
8871 }
8872 #if TRACE_MAPS
8873 if (FLAG_trace_maps &&
8874 // Mirror conditions above that did not call ConnectTransition().
8875 (map->is_prototype_map() ||
8876 !(flag == INSERT_TRANSITION &&
8877 TransitionArray::CanHaveMoreTransitions(map)))) {
8878 PrintF("[TraceMaps: ReplaceDescriptors from= %p to= %p reason= %s ]\n",
8879 reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*result),
8880 reason);
8881 }
8882 #endif
8883
8884 return result;
8885 }
8886
8887
8888 // Creates transition tree starting from |split_map| and adding all descriptors
8889 // starting from descriptor with index |split_map|.NumberOfOwnDescriptors().
8890 // The way how it is done is tricky because of GC and special descriptors
8891 // marking logic.
AddMissingTransitions(Handle<Map> split_map,Handle<DescriptorArray> descriptors,Handle<LayoutDescriptor> full_layout_descriptor)8892 Handle<Map> Map::AddMissingTransitions(
8893 Handle<Map> split_map, Handle<DescriptorArray> descriptors,
8894 Handle<LayoutDescriptor> full_layout_descriptor) {
8895 DCHECK(descriptors->IsSortedNoDuplicates());
8896 int split_nof = split_map->NumberOfOwnDescriptors();
8897 int nof_descriptors = descriptors->number_of_descriptors();
8898 DCHECK_LT(split_nof, nof_descriptors);
8899
8900 // Start with creating last map which will own full descriptors array.
8901 // This is necessary to guarantee that GC will mark the whole descriptor
8902 // array if any of the allocations happening below fail.
8903 // Number of unused properties is temporarily incorrect and the layout
8904 // descriptor could unnecessarily be in slow mode but we will fix after
8905 // all the other intermediate maps are created.
8906 Handle<Map> last_map = CopyDropDescriptors(split_map);
8907 last_map->InitializeDescriptors(*descriptors, *full_layout_descriptor);
8908 last_map->set_unused_property_fields(0);
8909
8910 // During creation of intermediate maps we violate descriptors sharing
8911 // invariant since the last map is not yet connected to the transition tree
8912 // we create here. But it is safe because GC never trims map's descriptors
8913 // if there are no dead transitions from that map and this is exactly the
8914 // case for all the intermediate maps we create here.
8915 Handle<Map> map = split_map;
8916 for (int i = split_nof; i < nof_descriptors - 1; ++i) {
8917 Handle<Map> new_map = CopyDropDescriptors(map);
8918 InstallDescriptors(map, new_map, i, descriptors, full_layout_descriptor);
8919 map = new_map;
8920 }
8921 map->NotifyLeafMapLayoutChange();
8922 InstallDescriptors(map, last_map, nof_descriptors - 1, descriptors,
8923 full_layout_descriptor);
8924 return last_map;
8925 }
8926
8927
8928 // Since this method is used to rewrite an existing transition tree, it can
8929 // always insert transitions without checking.
InstallDescriptors(Handle<Map> parent,Handle<Map> child,int new_descriptor,Handle<DescriptorArray> descriptors,Handle<LayoutDescriptor> full_layout_descriptor)8930 void Map::InstallDescriptors(Handle<Map> parent, Handle<Map> child,
8931 int new_descriptor,
8932 Handle<DescriptorArray> descriptors,
8933 Handle<LayoutDescriptor> full_layout_descriptor) {
8934 DCHECK(descriptors->IsSortedNoDuplicates());
8935
8936 child->set_instance_descriptors(*descriptors);
8937 child->SetNumberOfOwnDescriptors(new_descriptor + 1);
8938
8939 int unused_property_fields = parent->unused_property_fields();
8940 PropertyDetails details = descriptors->GetDetails(new_descriptor);
8941 if (details.location() == kField) {
8942 unused_property_fields = parent->unused_property_fields() - 1;
8943 if (unused_property_fields < 0) {
8944 unused_property_fields += JSObject::kFieldsAdded;
8945 }
8946 }
8947 child->set_unused_property_fields(unused_property_fields);
8948
8949 if (FLAG_unbox_double_fields) {
8950 Handle<LayoutDescriptor> layout_descriptor =
8951 LayoutDescriptor::AppendIfFastOrUseFull(parent, details,
8952 full_layout_descriptor);
8953 child->set_layout_descriptor(*layout_descriptor);
8954 #ifdef VERIFY_HEAP
8955 // TODO(ishell): remove these checks from VERIFY_HEAP mode.
8956 if (FLAG_verify_heap) {
8957 CHECK(child->layout_descriptor()->IsConsistentWithMap(*child));
8958 }
8959 #else
8960 SLOW_DCHECK(child->layout_descriptor()->IsConsistentWithMap(*child));
8961 #endif
8962 child->set_visitor_id(Heap::GetStaticVisitorIdForMap(*child));
8963 }
8964
8965 Handle<Name> name = handle(descriptors->GetKey(new_descriptor));
8966 ConnectTransition(parent, child, name, SIMPLE_PROPERTY_TRANSITION);
8967 }
8968
8969
CopyAsElementsKind(Handle<Map> map,ElementsKind kind,TransitionFlag flag)8970 Handle<Map> Map::CopyAsElementsKind(Handle<Map> map, ElementsKind kind,
8971 TransitionFlag flag) {
8972 Map* maybe_elements_transition_map = NULL;
8973 if (flag == INSERT_TRANSITION) {
8974 // Ensure we are requested to add elements kind transition "near the root".
8975 DCHECK_EQ(map->FindRootMap()->NumberOfOwnDescriptors(),
8976 map->NumberOfOwnDescriptors());
8977
8978 maybe_elements_transition_map = map->ElementsTransitionMap();
8979 DCHECK(maybe_elements_transition_map == NULL ||
8980 (maybe_elements_transition_map->elements_kind() ==
8981 DICTIONARY_ELEMENTS &&
8982 kind == DICTIONARY_ELEMENTS));
8983 DCHECK(!IsFastElementsKind(kind) ||
8984 IsMoreGeneralElementsKindTransition(map->elements_kind(), kind));
8985 DCHECK(kind != map->elements_kind());
8986 }
8987
8988 bool insert_transition = flag == INSERT_TRANSITION &&
8989 TransitionArray::CanHaveMoreTransitions(map) &&
8990 maybe_elements_transition_map == NULL;
8991
8992 if (insert_transition) {
8993 Handle<Map> new_map = CopyForTransition(map, "CopyAsElementsKind");
8994 new_map->set_elements_kind(kind);
8995
8996 Isolate* isolate = map->GetIsolate();
8997 Handle<Name> name = isolate->factory()->elements_transition_symbol();
8998 ConnectTransition(map, new_map, name, SPECIAL_TRANSITION);
8999 return new_map;
9000 }
9001
9002 // Create a new free-floating map only if we are not allowed to store it.
9003 Handle<Map> new_map = Copy(map, "CopyAsElementsKind");
9004 new_map->set_elements_kind(kind);
9005 return new_map;
9006 }
9007
9008
AsLanguageMode(Handle<Map> initial_map,LanguageMode language_mode,FunctionKind kind)9009 Handle<Map> Map::AsLanguageMode(Handle<Map> initial_map,
9010 LanguageMode language_mode, FunctionKind kind) {
9011 DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
9012 // Initial map for sloppy mode function is stored in the function
9013 // constructor. Initial maps for strict mode are cached as special transitions
9014 // using |strict_function_transition_symbol| as a key.
9015 if (language_mode == SLOPPY) return initial_map;
9016 Isolate* isolate = initial_map->GetIsolate();
9017 Factory* factory = isolate->factory();
9018 Handle<Symbol> transition_symbol;
9019
9020 int map_index = Context::FunctionMapIndex(language_mode, kind);
9021 Handle<Map> function_map(
9022 Map::cast(isolate->native_context()->get(map_index)));
9023
9024 STATIC_ASSERT(LANGUAGE_END == 3);
9025 switch (language_mode) {
9026 case STRICT:
9027 transition_symbol = factory->strict_function_transition_symbol();
9028 break;
9029 default:
9030 UNREACHABLE();
9031 break;
9032 }
9033 Map* maybe_transition =
9034 TransitionArray::SearchSpecial(*initial_map, *transition_symbol);
9035 if (maybe_transition != NULL) {
9036 return handle(maybe_transition, isolate);
9037 }
9038 initial_map->NotifyLeafMapLayoutChange();
9039
9040 // Create new map taking descriptors from the |function_map| and all
9041 // the other details from the |initial_map|.
9042 Handle<Map> map =
9043 Map::CopyInitialMap(function_map, initial_map->instance_size(),
9044 initial_map->GetInObjectProperties(),
9045 initial_map->unused_property_fields());
9046 map->SetConstructor(initial_map->GetConstructor());
9047 map->set_prototype(initial_map->prototype());
9048
9049 if (TransitionArray::CanHaveMoreTransitions(initial_map)) {
9050 Map::ConnectTransition(initial_map, map, transition_symbol,
9051 SPECIAL_TRANSITION);
9052 }
9053 return map;
9054 }
9055
9056
CopyForTransition(Handle<Map> map,const char * reason)9057 Handle<Map> Map::CopyForTransition(Handle<Map> map, const char* reason) {
9058 DCHECK(!map->is_prototype_map());
9059 Handle<Map> new_map = CopyDropDescriptors(map);
9060
9061 if (map->owns_descriptors()) {
9062 // In case the map owned its own descriptors, share the descriptors and
9063 // transfer ownership to the new map.
9064 // The properties did not change, so reuse descriptors.
9065 new_map->InitializeDescriptors(map->instance_descriptors(),
9066 map->GetLayoutDescriptor());
9067 } else {
9068 // In case the map did not own its own descriptors, a split is forced by
9069 // copying the map; creating a new descriptor array cell.
9070 Handle<DescriptorArray> descriptors(map->instance_descriptors());
9071 int number_of_own_descriptors = map->NumberOfOwnDescriptors();
9072 Handle<DescriptorArray> new_descriptors =
9073 DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors);
9074 Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
9075 map->GetIsolate());
9076 new_map->InitializeDescriptors(*new_descriptors, *new_layout_descriptor);
9077 }
9078
9079 #if TRACE_MAPS
9080 if (FLAG_trace_maps) {
9081 PrintF("[TraceMaps: CopyForTransition from= %p to= %p reason= %s ]\n",
9082 reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*new_map),
9083 reason);
9084 }
9085 #endif
9086
9087 return new_map;
9088 }
9089
9090
Copy(Handle<Map> map,const char * reason)9091 Handle<Map> Map::Copy(Handle<Map> map, const char* reason) {
9092 Handle<DescriptorArray> descriptors(map->instance_descriptors());
9093 int number_of_own_descriptors = map->NumberOfOwnDescriptors();
9094 Handle<DescriptorArray> new_descriptors =
9095 DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors);
9096 Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
9097 map->GetIsolate());
9098 return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
9099 OMIT_TRANSITION, MaybeHandle<Name>(), reason,
9100 SPECIAL_TRANSITION);
9101 }
9102
9103
Create(Isolate * isolate,int inobject_properties)9104 Handle<Map> Map::Create(Isolate* isolate, int inobject_properties) {
9105 Handle<Map> copy =
9106 Copy(handle(isolate->object_function()->initial_map()), "MapCreate");
9107
9108 // Check that we do not overflow the instance size when adding the extra
9109 // inobject properties. If the instance size overflows, we allocate as many
9110 // properties as we can as inobject properties.
9111 int max_extra_properties =
9112 (JSObject::kMaxInstanceSize - JSObject::kHeaderSize) >> kPointerSizeLog2;
9113
9114 if (inobject_properties > max_extra_properties) {
9115 inobject_properties = max_extra_properties;
9116 }
9117
9118 int new_instance_size =
9119 JSObject::kHeaderSize + kPointerSize * inobject_properties;
9120
9121 // Adjust the map with the extra inobject properties.
9122 copy->SetInObjectProperties(inobject_properties);
9123 copy->set_unused_property_fields(inobject_properties);
9124 copy->set_instance_size(new_instance_size);
9125 copy->set_visitor_id(Heap::GetStaticVisitorIdForMap(*copy));
9126 return copy;
9127 }
9128
9129
CopyForPreventExtensions(Handle<Map> map,PropertyAttributes attrs_to_add,Handle<Symbol> transition_marker,const char * reason)9130 Handle<Map> Map::CopyForPreventExtensions(Handle<Map> map,
9131 PropertyAttributes attrs_to_add,
9132 Handle<Symbol> transition_marker,
9133 const char* reason) {
9134 int num_descriptors = map->NumberOfOwnDescriptors();
9135 Isolate* isolate = map->GetIsolate();
9136 Handle<DescriptorArray> new_desc = DescriptorArray::CopyUpToAddAttributes(
9137 handle(map->instance_descriptors(), isolate), num_descriptors,
9138 attrs_to_add);
9139 Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
9140 isolate);
9141 Handle<Map> new_map = CopyReplaceDescriptors(
9142 map, new_desc, new_layout_descriptor, INSERT_TRANSITION,
9143 transition_marker, reason, SPECIAL_TRANSITION);
9144 new_map->set_is_extensible(false);
9145 if (!IsFixedTypedArrayElementsKind(map->elements_kind())) {
9146 ElementsKind new_kind = IsStringWrapperElementsKind(map->elements_kind())
9147 ? SLOW_STRING_WRAPPER_ELEMENTS
9148 : DICTIONARY_ELEMENTS;
9149 new_map->set_elements_kind(new_kind);
9150 }
9151 return new_map;
9152 }
9153
GetFieldType(int descriptor_number)9154 FieldType* DescriptorArray::GetFieldType(int descriptor_number) {
9155 DCHECK(GetDetails(descriptor_number).location() == kField);
9156 Object* value = GetValue(descriptor_number);
9157 if (value->IsWeakCell()) {
9158 if (WeakCell::cast(value)->cleared()) return FieldType::None();
9159 value = WeakCell::cast(value)->value();
9160 }
9161 return FieldType::cast(value);
9162 }
9163
9164 namespace {
9165
CanHoldValue(DescriptorArray * descriptors,int descriptor,Object * value)9166 bool CanHoldValue(DescriptorArray* descriptors, int descriptor, Object* value) {
9167 PropertyDetails details = descriptors->GetDetails(descriptor);
9168 switch (details.type()) {
9169 case DATA:
9170 return value->FitsRepresentation(details.representation()) &&
9171 descriptors->GetFieldType(descriptor)->NowContains(value);
9172
9173 case DATA_CONSTANT:
9174 DCHECK(descriptors->GetConstant(descriptor) != value ||
9175 value->FitsRepresentation(details.representation()));
9176 return descriptors->GetConstant(descriptor) == value;
9177
9178 case ACCESSOR:
9179 case ACCESSOR_CONSTANT:
9180 return false;
9181 }
9182
9183 UNREACHABLE();
9184 return false;
9185 }
9186
UpdateDescriptorForValue(Handle<Map> map,int descriptor,Handle<Object> value)9187 Handle<Map> UpdateDescriptorForValue(Handle<Map> map, int descriptor,
9188 Handle<Object> value) {
9189 if (CanHoldValue(map->instance_descriptors(), descriptor, *value)) return map;
9190
9191 Isolate* isolate = map->GetIsolate();
9192 PropertyAttributes attributes =
9193 map->instance_descriptors()->GetDetails(descriptor).attributes();
9194 Representation representation = value->OptimalRepresentation();
9195 Handle<FieldType> type = value->OptimalType(isolate, representation);
9196
9197 return Map::ReconfigureProperty(map, descriptor, kData, attributes,
9198 representation, type, FORCE_FIELD);
9199 }
9200
9201 } // namespace
9202
9203 // static
PrepareForDataProperty(Handle<Map> map,int descriptor,Handle<Object> value)9204 Handle<Map> Map::PrepareForDataProperty(Handle<Map> map, int descriptor,
9205 Handle<Object> value) {
9206 // Dictionaries can store any property value.
9207 DCHECK(!map->is_dictionary_map());
9208 // Update to the newest map before storing the property.
9209 return UpdateDescriptorForValue(Update(map), descriptor, value);
9210 }
9211
9212
TransitionToDataProperty(Handle<Map> map,Handle<Name> name,Handle<Object> value,PropertyAttributes attributes,StoreFromKeyed store_mode)9213 Handle<Map> Map::TransitionToDataProperty(Handle<Map> map, Handle<Name> name,
9214 Handle<Object> value,
9215 PropertyAttributes attributes,
9216 StoreFromKeyed store_mode) {
9217 RuntimeCallTimerScope stats_scope(
9218 *map, map->is_prototype_map()
9219 ? &RuntimeCallStats::PrototypeMap_TransitionToDataProperty
9220 : &RuntimeCallStats::Map_TransitionToDataProperty);
9221
9222 DCHECK(name->IsUniqueName());
9223 DCHECK(!map->is_dictionary_map());
9224
9225 // Migrate to the newest map before storing the property.
9226 map = Update(map);
9227
9228 Map* maybe_transition =
9229 TransitionArray::SearchTransition(*map, kData, *name, attributes);
9230 if (maybe_transition != NULL) {
9231 Handle<Map> transition(maybe_transition);
9232 int descriptor = transition->LastAdded();
9233
9234 DCHECK_EQ(attributes, transition->instance_descriptors()
9235 ->GetDetails(descriptor)
9236 .attributes());
9237
9238 return UpdateDescriptorForValue(transition, descriptor, value);
9239 }
9240
9241 TransitionFlag flag = INSERT_TRANSITION;
9242 MaybeHandle<Map> maybe_map;
9243 if (value->IsJSFunction()) {
9244 maybe_map = Map::CopyWithConstant(map, name, value, attributes, flag);
9245 } else if (!map->TooManyFastProperties(store_mode)) {
9246 Isolate* isolate = name->GetIsolate();
9247 Representation representation = value->OptimalRepresentation();
9248 Handle<FieldType> type = value->OptimalType(isolate, representation);
9249 maybe_map =
9250 Map::CopyWithField(map, name, type, attributes, representation, flag);
9251 }
9252
9253 Handle<Map> result;
9254 if (!maybe_map.ToHandle(&result)) {
9255 #if TRACE_MAPS
9256 if (FLAG_trace_maps) {
9257 Vector<char> name_buffer = Vector<char>::New(100);
9258 name->NameShortPrint(name_buffer);
9259 Vector<char> buffer = Vector<char>::New(128);
9260 SNPrintF(buffer, "TooManyFastProperties %s", name_buffer.start());
9261 return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, buffer.start());
9262 }
9263 #endif
9264 return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES,
9265 "TooManyFastProperties");
9266 }
9267
9268 return result;
9269 }
9270
9271
ReconfigureExistingProperty(Handle<Map> map,int descriptor,PropertyKind kind,PropertyAttributes attributes)9272 Handle<Map> Map::ReconfigureExistingProperty(Handle<Map> map, int descriptor,
9273 PropertyKind kind,
9274 PropertyAttributes attributes) {
9275 // Dictionaries have to be reconfigured in-place.
9276 DCHECK(!map->is_dictionary_map());
9277
9278 if (!map->GetBackPointer()->IsMap()) {
9279 // There is no benefit from reconstructing transition tree for maps without
9280 // back pointers.
9281 return CopyGeneralizeAllRepresentations(
9282 map, map->elements_kind(), descriptor, FORCE_FIELD, kind, attributes,
9283 "GenAll_AttributesMismatchProtoMap");
9284 }
9285
9286 if (FLAG_trace_generalization) {
9287 map->PrintReconfiguration(stdout, descriptor, kind, attributes);
9288 }
9289
9290 Isolate* isolate = map->GetIsolate();
9291 Handle<Map> new_map = ReconfigureProperty(
9292 map, descriptor, kind, attributes, Representation::None(),
9293 FieldType::None(isolate), FORCE_FIELD);
9294 return new_map;
9295 }
9296
TransitionToAccessorProperty(Isolate * isolate,Handle<Map> map,Handle<Name> name,int descriptor,Handle<Object> getter,Handle<Object> setter,PropertyAttributes attributes)9297 Handle<Map> Map::TransitionToAccessorProperty(Isolate* isolate, Handle<Map> map,
9298 Handle<Name> name, int descriptor,
9299 Handle<Object> getter,
9300 Handle<Object> setter,
9301 PropertyAttributes attributes) {
9302 RuntimeCallTimerScope stats_scope(
9303 isolate,
9304 map->is_prototype_map()
9305 ? &RuntimeCallStats::PrototypeMap_TransitionToAccessorProperty
9306 : &RuntimeCallStats::Map_TransitionToAccessorProperty);
9307
9308 // At least one of the accessors needs to be a new value.
9309 DCHECK(!getter->IsNull(isolate) || !setter->IsNull(isolate));
9310 DCHECK(name->IsUniqueName());
9311
9312 // Dictionary maps can always have additional data properties.
9313 if (map->is_dictionary_map()) return map;
9314
9315 // Migrate to the newest map before transitioning to the new property.
9316 map = Update(map);
9317
9318 PropertyNormalizationMode mode = map->is_prototype_map()
9319 ? KEEP_INOBJECT_PROPERTIES
9320 : CLEAR_INOBJECT_PROPERTIES;
9321
9322 Map* maybe_transition =
9323 TransitionArray::SearchTransition(*map, kAccessor, *name, attributes);
9324 if (maybe_transition != NULL) {
9325 Handle<Map> transition(maybe_transition, isolate);
9326 DescriptorArray* descriptors = transition->instance_descriptors();
9327 int descriptor = transition->LastAdded();
9328 DCHECK(descriptors->GetKey(descriptor)->Equals(*name));
9329
9330 DCHECK_EQ(kAccessor, descriptors->GetDetails(descriptor).kind());
9331 DCHECK_EQ(attributes, descriptors->GetDetails(descriptor).attributes());
9332
9333 Handle<Object> maybe_pair(descriptors->GetValue(descriptor), isolate);
9334 if (!maybe_pair->IsAccessorPair()) {
9335 return Map::Normalize(map, mode, "TransitionToAccessorFromNonPair");
9336 }
9337
9338 Handle<AccessorPair> pair = Handle<AccessorPair>::cast(maybe_pair);
9339 if (!pair->Equals(*getter, *setter)) {
9340 return Map::Normalize(map, mode, "TransitionToDifferentAccessor");
9341 }
9342
9343 return transition;
9344 }
9345
9346 Handle<AccessorPair> pair;
9347 DescriptorArray* old_descriptors = map->instance_descriptors();
9348 if (descriptor != DescriptorArray::kNotFound) {
9349 if (descriptor != map->LastAdded()) {
9350 return Map::Normalize(map, mode, "AccessorsOverwritingNonLast");
9351 }
9352 PropertyDetails old_details = old_descriptors->GetDetails(descriptor);
9353 if (old_details.type() != ACCESSOR_CONSTANT) {
9354 return Map::Normalize(map, mode, "AccessorsOverwritingNonAccessors");
9355 }
9356
9357 if (old_details.attributes() != attributes) {
9358 return Map::Normalize(map, mode, "AccessorsWithAttributes");
9359 }
9360
9361 Handle<Object> maybe_pair(old_descriptors->GetValue(descriptor), isolate);
9362 if (!maybe_pair->IsAccessorPair()) {
9363 return Map::Normalize(map, mode, "AccessorsOverwritingNonPair");
9364 }
9365
9366 Handle<AccessorPair> current_pair = Handle<AccessorPair>::cast(maybe_pair);
9367 if (current_pair->Equals(*getter, *setter)) return map;
9368
9369 bool overwriting_accessor = false;
9370 if (!getter->IsNull(isolate) &&
9371 !current_pair->get(ACCESSOR_GETTER)->IsNull(isolate) &&
9372 current_pair->get(ACCESSOR_GETTER) != *getter) {
9373 overwriting_accessor = true;
9374 }
9375 if (!setter->IsNull(isolate) &&
9376 !current_pair->get(ACCESSOR_SETTER)->IsNull(isolate) &&
9377 current_pair->get(ACCESSOR_SETTER) != *setter) {
9378 overwriting_accessor = true;
9379 }
9380 if (overwriting_accessor) {
9381 return Map::Normalize(map, mode, "AccessorsOverwritingAccessors");
9382 }
9383
9384 pair = AccessorPair::Copy(Handle<AccessorPair>::cast(maybe_pair));
9385 } else if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors ||
9386 map->TooManyFastProperties(CERTAINLY_NOT_STORE_FROM_KEYED)) {
9387 return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, "TooManyAccessors");
9388 } else {
9389 pair = isolate->factory()->NewAccessorPair();
9390 }
9391
9392 pair->SetComponents(*getter, *setter);
9393
9394 TransitionFlag flag = INSERT_TRANSITION;
9395 AccessorConstantDescriptor new_desc(name, pair, attributes);
9396 return Map::CopyInsertDescriptor(map, &new_desc, flag);
9397 }
9398
9399
CopyAddDescriptor(Handle<Map> map,Descriptor * descriptor,TransitionFlag flag)9400 Handle<Map> Map::CopyAddDescriptor(Handle<Map> map,
9401 Descriptor* descriptor,
9402 TransitionFlag flag) {
9403 Handle<DescriptorArray> descriptors(map->instance_descriptors());
9404
9405 // Share descriptors only if map owns descriptors and it not an initial map.
9406 if (flag == INSERT_TRANSITION && map->owns_descriptors() &&
9407 !map->GetBackPointer()->IsUndefined(map->GetIsolate()) &&
9408 TransitionArray::CanHaveMoreTransitions(map)) {
9409 return ShareDescriptor(map, descriptors, descriptor);
9410 }
9411
9412 int nof = map->NumberOfOwnDescriptors();
9413 Handle<DescriptorArray> new_descriptors =
9414 DescriptorArray::CopyUpTo(descriptors, nof, 1);
9415 new_descriptors->Append(descriptor);
9416
9417 Handle<LayoutDescriptor> new_layout_descriptor =
9418 FLAG_unbox_double_fields
9419 ? LayoutDescriptor::New(map, new_descriptors, nof + 1)
9420 : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());
9421
9422 return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
9423 flag, descriptor->GetKey(), "CopyAddDescriptor",
9424 SIMPLE_PROPERTY_TRANSITION);
9425 }
9426
9427
CopyInsertDescriptor(Handle<Map> map,Descriptor * descriptor,TransitionFlag flag)9428 Handle<Map> Map::CopyInsertDescriptor(Handle<Map> map,
9429 Descriptor* descriptor,
9430 TransitionFlag flag) {
9431 Handle<DescriptorArray> old_descriptors(map->instance_descriptors());
9432
9433 // We replace the key if it is already present.
9434 int index = old_descriptors->SearchWithCache(map->GetIsolate(),
9435 *descriptor->GetKey(), *map);
9436 if (index != DescriptorArray::kNotFound) {
9437 return CopyReplaceDescriptor(map, old_descriptors, descriptor, index, flag);
9438 }
9439 return CopyAddDescriptor(map, descriptor, flag);
9440 }
9441
9442
CopyUpTo(Handle<DescriptorArray> desc,int enumeration_index,int slack)9443 Handle<DescriptorArray> DescriptorArray::CopyUpTo(
9444 Handle<DescriptorArray> desc,
9445 int enumeration_index,
9446 int slack) {
9447 return DescriptorArray::CopyUpToAddAttributes(
9448 desc, enumeration_index, NONE, slack);
9449 }
9450
9451
CopyUpToAddAttributes(Handle<DescriptorArray> desc,int enumeration_index,PropertyAttributes attributes,int slack)9452 Handle<DescriptorArray> DescriptorArray::CopyUpToAddAttributes(
9453 Handle<DescriptorArray> desc,
9454 int enumeration_index,
9455 PropertyAttributes attributes,
9456 int slack) {
9457 if (enumeration_index + slack == 0) {
9458 return desc->GetIsolate()->factory()->empty_descriptor_array();
9459 }
9460
9461 int size = enumeration_index;
9462
9463 Handle<DescriptorArray> descriptors =
9464 DescriptorArray::Allocate(desc->GetIsolate(), size, slack);
9465
9466 if (attributes != NONE) {
9467 for (int i = 0; i < size; ++i) {
9468 Object* value = desc->GetValue(i);
9469 Name* key = desc->GetKey(i);
9470 PropertyDetails details = desc->GetDetails(i);
9471 // Bulk attribute changes never affect private properties.
9472 if (!key->IsPrivate()) {
9473 int mask = DONT_DELETE | DONT_ENUM;
9474 // READ_ONLY is an invalid attribute for JS setters/getters.
9475 if (details.type() != ACCESSOR_CONSTANT || !value->IsAccessorPair()) {
9476 mask |= READ_ONLY;
9477 }
9478 details = details.CopyAddAttributes(
9479 static_cast<PropertyAttributes>(attributes & mask));
9480 }
9481 Descriptor inner_desc(
9482 handle(key), handle(value, desc->GetIsolate()), details);
9483 descriptors->SetDescriptor(i, &inner_desc);
9484 }
9485 } else {
9486 for (int i = 0; i < size; ++i) {
9487 descriptors->CopyFrom(i, *desc);
9488 }
9489 }
9490
9491 if (desc->number_of_descriptors() != enumeration_index) descriptors->Sort();
9492
9493 return descriptors;
9494 }
9495
9496
IsEqualUpTo(DescriptorArray * desc,int nof_descriptors)9497 bool DescriptorArray::IsEqualUpTo(DescriptorArray* desc, int nof_descriptors) {
9498 for (int i = 0; i < nof_descriptors; i++) {
9499 if (GetKey(i) != desc->GetKey(i) || GetValue(i) != desc->GetValue(i)) {
9500 return false;
9501 }
9502 PropertyDetails details = GetDetails(i);
9503 PropertyDetails other_details = desc->GetDetails(i);
9504 if (details.type() != other_details.type() ||
9505 !details.representation().Equals(other_details.representation())) {
9506 return false;
9507 }
9508 }
9509 return true;
9510 }
9511
9512
CopyReplaceDescriptor(Handle<Map> map,Handle<DescriptorArray> descriptors,Descriptor * descriptor,int insertion_index,TransitionFlag flag)9513 Handle<Map> Map::CopyReplaceDescriptor(Handle<Map> map,
9514 Handle<DescriptorArray> descriptors,
9515 Descriptor* descriptor,
9516 int insertion_index,
9517 TransitionFlag flag) {
9518 Handle<Name> key = descriptor->GetKey();
9519 DCHECK(*key == descriptors->GetKey(insertion_index));
9520
9521 Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(
9522 descriptors, map->NumberOfOwnDescriptors());
9523
9524 new_descriptors->Replace(insertion_index, descriptor);
9525 Handle<LayoutDescriptor> new_layout_descriptor = LayoutDescriptor::New(
9526 map, new_descriptors, new_descriptors->number_of_descriptors());
9527
9528 SimpleTransitionFlag simple_flag =
9529 (insertion_index == descriptors->number_of_descriptors() - 1)
9530 ? SIMPLE_PROPERTY_TRANSITION
9531 : PROPERTY_TRANSITION;
9532 return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
9533 flag, key, "CopyReplaceDescriptor",
9534 simple_flag);
9535 }
9536
9537 // Helper class to manage a Map's code cache. The layout depends on the number
9538 // of entries; this is worthwhile because most code caches are very small,
9539 // but some are huge (thousands of entries).
9540 // For zero entries, the EmptyFixedArray is used.
9541 // For one entry, we use a 2-element FixedArray containing [name, code].
9542 // For 2..100 entries, we use a FixedArray with linear lookups, the layout is:
9543 // [0] - number of slots that are currently in use
9544 // [1] - first name
9545 // [2] - first code
9546 // [3] - second name
9547 // [4] - second code
9548 // etc.
9549 // For more than 128 entries, we use a CodeCacheHashTable.
9550 class CodeCache : public AllStatic {
9551 public:
9552 // Returns the new cache, to be stored on the map.
Put(Isolate * isolate,Handle<FixedArray> cache,Handle<Name> name,Handle<Code> code)9553 static Handle<FixedArray> Put(Isolate* isolate, Handle<FixedArray> cache,
9554 Handle<Name> name, Handle<Code> code) {
9555 int length = cache->length();
9556 if (length == 0) return PutFirstElement(isolate, name, code);
9557 if (length == kEntrySize) {
9558 return PutSecondElement(isolate, cache, name, code);
9559 }
9560 if (length <= kLinearMaxSize) {
9561 Handle<FixedArray> result = PutLinearElement(isolate, cache, name, code);
9562 if (!result.is_null()) return result;
9563 // Fall through if linear storage is getting too large.
9564 }
9565 return PutHashTableElement(isolate, cache, name, code);
9566 }
9567
Lookup(FixedArray * cache,Name * name,Code::Flags flags)9568 static Code* Lookup(FixedArray* cache, Name* name, Code::Flags flags) {
9569 int length = cache->length();
9570 if (length == 0) return nullptr;
9571 if (length == kEntrySize) return OneElementLookup(cache, name, flags);
9572 if (!cache->IsCodeCacheHashTable()) {
9573 return LinearLookup(cache, name, flags);
9574 } else {
9575 return CodeCacheHashTable::cast(cache)->Lookup(name, flags);
9576 }
9577 }
9578
9579 private:
9580 static const int kNameIndex = 0;
9581 static const int kCodeIndex = 1;
9582 static const int kEntrySize = 2;
9583
9584 static const int kLinearUsageIndex = 0;
9585 static const int kLinearReservedSlots = 1;
9586 static const int kLinearInitialCapacity = 2;
9587 static const int kLinearMaxSize = 257; // == LinearSizeFor(128);
9588
9589 static const int kHashTableInitialCapacity = 200; // Number of entries.
9590
LinearSizeFor(int entries)9591 static int LinearSizeFor(int entries) {
9592 return kLinearReservedSlots + kEntrySize * entries;
9593 }
9594
LinearNewSize(int old_size)9595 static int LinearNewSize(int old_size) {
9596 int old_entries = (old_size - kLinearReservedSlots) / kEntrySize;
9597 return LinearSizeFor(old_entries * 2);
9598 }
9599
OneElementLookup(FixedArray * cache,Name * name,Code::Flags flags)9600 static Code* OneElementLookup(FixedArray* cache, Name* name,
9601 Code::Flags flags) {
9602 DCHECK_EQ(cache->length(), kEntrySize);
9603 if (cache->get(kNameIndex) != name) return nullptr;
9604 Code* maybe_code = Code::cast(cache->get(kCodeIndex));
9605 if (maybe_code->flags() != flags) return nullptr;
9606 return maybe_code;
9607 }
9608
LinearLookup(FixedArray * cache,Name * name,Code::Flags flags)9609 static Code* LinearLookup(FixedArray* cache, Name* name, Code::Flags flags) {
9610 DCHECK_GE(cache->length(), kEntrySize);
9611 DCHECK(!cache->IsCodeCacheHashTable());
9612 int usage = GetLinearUsage(cache);
9613 for (int i = kLinearReservedSlots; i < usage; i += kEntrySize) {
9614 if (cache->get(i + kNameIndex) != name) continue;
9615 Code* code = Code::cast(cache->get(i + kCodeIndex));
9616 if (code->flags() == flags) return code;
9617 }
9618 return nullptr;
9619 }
9620
PutFirstElement(Isolate * isolate,Handle<Name> name,Handle<Code> code)9621 static Handle<FixedArray> PutFirstElement(Isolate* isolate, Handle<Name> name,
9622 Handle<Code> code) {
9623 Handle<FixedArray> cache = isolate->factory()->NewFixedArray(kEntrySize);
9624 cache->set(kNameIndex, *name);
9625 cache->set(kCodeIndex, *code);
9626 return cache;
9627 }
9628
PutSecondElement(Isolate * isolate,Handle<FixedArray> cache,Handle<Name> name,Handle<Code> code)9629 static Handle<FixedArray> PutSecondElement(Isolate* isolate,
9630 Handle<FixedArray> cache,
9631 Handle<Name> name,
9632 Handle<Code> code) {
9633 DCHECK_EQ(cache->length(), kEntrySize);
9634 Handle<FixedArray> new_cache = isolate->factory()->NewFixedArray(
9635 LinearSizeFor(kLinearInitialCapacity));
9636 new_cache->set(kLinearReservedSlots + kNameIndex, cache->get(kNameIndex));
9637 new_cache->set(kLinearReservedSlots + kCodeIndex, cache->get(kCodeIndex));
9638 new_cache->set(LinearSizeFor(1) + kNameIndex, *name);
9639 new_cache->set(LinearSizeFor(1) + kCodeIndex, *code);
9640 new_cache->set(kLinearUsageIndex, Smi::FromInt(LinearSizeFor(2)));
9641 return new_cache;
9642 }
9643
PutLinearElement(Isolate * isolate,Handle<FixedArray> cache,Handle<Name> name,Handle<Code> code)9644 static Handle<FixedArray> PutLinearElement(Isolate* isolate,
9645 Handle<FixedArray> cache,
9646 Handle<Name> name,
9647 Handle<Code> code) {
9648 int length = cache->length();
9649 int usage = GetLinearUsage(*cache);
9650 DCHECK_LE(usage, length);
9651 // Check if we need to grow.
9652 if (usage == length) {
9653 int new_length = LinearNewSize(length);
9654 if (new_length > kLinearMaxSize) return Handle<FixedArray>::null();
9655 Handle<FixedArray> new_cache =
9656 isolate->factory()->NewFixedArray(new_length);
9657 for (int i = kLinearReservedSlots; i < length; i++) {
9658 new_cache->set(i, cache->get(i));
9659 }
9660 cache = new_cache;
9661 }
9662 // Store new entry.
9663 DCHECK_GE(cache->length(), usage + kEntrySize);
9664 cache->set(usage + kNameIndex, *name);
9665 cache->set(usage + kCodeIndex, *code);
9666 cache->set(kLinearUsageIndex, Smi::FromInt(usage + kEntrySize));
9667 return cache;
9668 }
9669
PutHashTableElement(Isolate * isolate,Handle<FixedArray> cache,Handle<Name> name,Handle<Code> code)9670 static Handle<FixedArray> PutHashTableElement(Isolate* isolate,
9671 Handle<FixedArray> cache,
9672 Handle<Name> name,
9673 Handle<Code> code) {
9674 // Check if we need to transition from linear to hash table storage.
9675 if (!cache->IsCodeCacheHashTable()) {
9676 // Check that the initial hash table capacity is large enough.
9677 DCHECK_EQ(kLinearMaxSize, LinearSizeFor(128));
9678 STATIC_ASSERT(kHashTableInitialCapacity > 128);
9679
9680 int length = cache->length();
9681 // Only migrate from linear storage when it's full.
9682 DCHECK_EQ(length, GetLinearUsage(*cache));
9683 DCHECK_EQ(length, kLinearMaxSize);
9684 Handle<CodeCacheHashTable> table =
9685 CodeCacheHashTable::New(isolate, kHashTableInitialCapacity);
9686 HandleScope scope(isolate);
9687 for (int i = kLinearReservedSlots; i < length; i += kEntrySize) {
9688 Handle<Name> old_name(Name::cast(cache->get(i + kNameIndex)), isolate);
9689 Handle<Code> old_code(Code::cast(cache->get(i + kCodeIndex)), isolate);
9690 CodeCacheHashTable::Put(table, old_name, old_code);
9691 }
9692 cache = table;
9693 }
9694 // Store new entry.
9695 DCHECK(cache->IsCodeCacheHashTable());
9696 return CodeCacheHashTable::Put(Handle<CodeCacheHashTable>::cast(cache),
9697 name, code);
9698 }
9699
GetLinearUsage(FixedArray * linear_cache)9700 static inline int GetLinearUsage(FixedArray* linear_cache) {
9701 DCHECK_GT(linear_cache->length(), kEntrySize);
9702 return Smi::cast(linear_cache->get(kLinearUsageIndex))->value();
9703 }
9704 };
9705
UpdateCodeCache(Handle<Map> map,Handle<Name> name,Handle<Code> code)9706 void Map::UpdateCodeCache(Handle<Map> map,
9707 Handle<Name> name,
9708 Handle<Code> code) {
9709 Isolate* isolate = map->GetIsolate();
9710 Handle<FixedArray> cache(map->code_cache(), isolate);
9711 Handle<FixedArray> new_cache = CodeCache::Put(isolate, cache, name, code);
9712 map->set_code_cache(*new_cache);
9713 }
9714
LookupInCodeCache(Name * name,Code::Flags flags)9715 Code* Map::LookupInCodeCache(Name* name, Code::Flags flags) {
9716 return CodeCache::Lookup(code_cache(), name, flags);
9717 }
9718
9719
9720 // The key in the code cache hash table consists of the property name and the
9721 // code object. The actual match is on the name and the code flags. If a key
9722 // is created using the flags and not a code object it can only be used for
9723 // lookup not to create a new entry.
9724 class CodeCacheHashTableKey : public HashTableKey {
9725 public:
CodeCacheHashTableKey(Handle<Name> name,Code::Flags flags)9726 CodeCacheHashTableKey(Handle<Name> name, Code::Flags flags)
9727 : name_(name), flags_(flags), code_() {
9728 DCHECK(name_->IsUniqueName());
9729 }
9730
CodeCacheHashTableKey(Handle<Name> name,Handle<Code> code)9731 CodeCacheHashTableKey(Handle<Name> name, Handle<Code> code)
9732 : name_(name), flags_(code->flags()), code_(code) {
9733 DCHECK(name_->IsUniqueName());
9734 }
9735
IsMatch(Object * other)9736 bool IsMatch(Object* other) override {
9737 DCHECK(other->IsFixedArray());
9738 FixedArray* pair = FixedArray::cast(other);
9739 Name* name = Name::cast(pair->get(0));
9740 Code::Flags flags = Code::cast(pair->get(1))->flags();
9741 if (flags != flags_) return false;
9742 DCHECK(name->IsUniqueName());
9743 return *name_ == name;
9744 }
9745
NameFlagsHashHelper(Name * name,Code::Flags flags)9746 static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) {
9747 return name->Hash() ^ flags;
9748 }
9749
Hash()9750 uint32_t Hash() override { return NameFlagsHashHelper(*name_, flags_); }
9751
HashForObject(Object * obj)9752 uint32_t HashForObject(Object* obj) override {
9753 FixedArray* pair = FixedArray::cast(obj);
9754 Name* name = Name::cast(pair->get(0));
9755 Code* code = Code::cast(pair->get(1));
9756 return NameFlagsHashHelper(name, code->flags());
9757 }
9758
AsHandle(Isolate * isolate)9759 MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
9760 Handle<Code> code = code_.ToHandleChecked();
9761 Handle<FixedArray> pair = isolate->factory()->NewFixedArray(2);
9762 pair->set(0, *name_);
9763 pair->set(1, *code);
9764 return pair;
9765 }
9766
9767 private:
9768 Handle<Name> name_;
9769 Code::Flags flags_;
9770 // TODO(jkummerow): We should be able to get by without this.
9771 MaybeHandle<Code> code_;
9772 };
9773
9774
Put(Handle<CodeCacheHashTable> cache,Handle<Name> name,Handle<Code> code)9775 Handle<CodeCacheHashTable> CodeCacheHashTable::Put(
9776 Handle<CodeCacheHashTable> cache, Handle<Name> name, Handle<Code> code) {
9777 CodeCacheHashTableKey key(name, code);
9778
9779 Handle<CodeCacheHashTable> new_cache = EnsureCapacity(cache, 1, &key);
9780
9781 int entry = new_cache->FindInsertionEntry(key.Hash());
9782 Handle<Object> k = key.AsHandle(cache->GetIsolate());
9783
9784 new_cache->set(EntryToIndex(entry), *k);
9785 new_cache->ElementAdded();
9786 return new_cache;
9787 }
9788
Lookup(Name * name,Code::Flags flags)9789 Code* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) {
9790 DisallowHeapAllocation no_alloc;
9791 CodeCacheHashTableKey key(handle(name), flags);
9792 int entry = FindEntry(&key);
9793 if (entry == kNotFound) return nullptr;
9794 return Code::cast(FixedArray::cast(get(EntryToIndex(entry)))->get(1));
9795 }
9796
Shrink(int new_length)9797 void FixedArray::Shrink(int new_length) {
9798 DCHECK(0 <= new_length && new_length <= length());
9799 if (new_length < length()) {
9800 GetHeap()->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(
9801 this, length() - new_length);
9802 }
9803 }
9804
9805
CopyTo(int pos,FixedArray * dest,int dest_pos,int len)9806 void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
9807 DisallowHeapAllocation no_gc;
9808 WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc);
9809 for (int index = 0; index < len; index++) {
9810 dest->set(dest_pos+index, get(pos+index), mode);
9811 }
9812 }
9813
9814
9815 #ifdef DEBUG
IsEqualTo(FixedArray * other)9816 bool FixedArray::IsEqualTo(FixedArray* other) {
9817 if (length() != other->length()) return false;
9818 for (int i = 0 ; i < length(); ++i) {
9819 if (get(i) != other->get(i)) return false;
9820 }
9821 return true;
9822 }
9823 #endif
9824
9825
9826 // static
Set(Handle<WeakFixedArray> array,int index,Handle<HeapObject> value)9827 void WeakFixedArray::Set(Handle<WeakFixedArray> array, int index,
9828 Handle<HeapObject> value) {
9829 DCHECK(array->IsEmptySlot(index)); // Don't overwrite anything.
9830 Handle<WeakCell> cell =
9831 value->IsMap() ? Map::WeakCellForMap(Handle<Map>::cast(value))
9832 : array->GetIsolate()->factory()->NewWeakCell(value);
9833 Handle<FixedArray>::cast(array)->set(index + kFirstIndex, *cell);
9834 if (FLAG_trace_weak_arrays) {
9835 PrintF("[WeakFixedArray: storing at index %d ]\n", index);
9836 }
9837 array->set_last_used_index(index);
9838 }
9839
9840
9841 // static
Add(Handle<Object> maybe_array,Handle<HeapObject> value,int * assigned_index)9842 Handle<WeakFixedArray> WeakFixedArray::Add(Handle<Object> maybe_array,
9843 Handle<HeapObject> value,
9844 int* assigned_index) {
9845 Handle<WeakFixedArray> array =
9846 (maybe_array.is_null() || !maybe_array->IsWeakFixedArray())
9847 ? Allocate(value->GetIsolate(), 1, Handle<WeakFixedArray>::null())
9848 : Handle<WeakFixedArray>::cast(maybe_array);
9849 // Try to store the new entry if there's room. Optimize for consecutive
9850 // accesses.
9851 int first_index = array->last_used_index();
9852 int length = array->Length();
9853 if (length > 0) {
9854 for (int i = first_index;;) {
9855 if (array->IsEmptySlot((i))) {
9856 WeakFixedArray::Set(array, i, value);
9857 if (assigned_index != NULL) *assigned_index = i;
9858 return array;
9859 }
9860 if (FLAG_trace_weak_arrays) {
9861 PrintF("[WeakFixedArray: searching for free slot]\n");
9862 }
9863 i = (i + 1) % length;
9864 if (i == first_index) break;
9865 }
9866 }
9867
9868 // No usable slot found, grow the array.
9869 int new_length = length == 0 ? 1 : length + (length >> 1) + 4;
9870 Handle<WeakFixedArray> new_array =
9871 Allocate(array->GetIsolate(), new_length, array);
9872 if (FLAG_trace_weak_arrays) {
9873 PrintF("[WeakFixedArray: growing to size %d ]\n", new_length);
9874 }
9875 WeakFixedArray::Set(new_array, length, value);
9876 if (assigned_index != NULL) *assigned_index = length;
9877 return new_array;
9878 }
9879
9880
9881 template <class CompactionCallback>
Compact()9882 void WeakFixedArray::Compact() {
9883 FixedArray* array = FixedArray::cast(this);
9884 int new_length = kFirstIndex;
9885 for (int i = kFirstIndex; i < array->length(); i++) {
9886 Object* element = array->get(i);
9887 if (element->IsSmi()) continue;
9888 if (WeakCell::cast(element)->cleared()) continue;
9889 Object* value = WeakCell::cast(element)->value();
9890 CompactionCallback::Callback(value, i - kFirstIndex,
9891 new_length - kFirstIndex);
9892 array->set(new_length++, element);
9893 }
9894 array->Shrink(new_length);
9895 set_last_used_index(0);
9896 }
9897
9898
Reset(Object * maybe_array)9899 void WeakFixedArray::Iterator::Reset(Object* maybe_array) {
9900 if (maybe_array->IsWeakFixedArray()) {
9901 list_ = WeakFixedArray::cast(maybe_array);
9902 index_ = 0;
9903 #ifdef DEBUG
9904 last_used_index_ = list_->last_used_index();
9905 #endif // DEBUG
9906 }
9907 }
9908
9909
Callback(Object * value,int old_index,int new_index)9910 void JSObject::PrototypeRegistryCompactionCallback::Callback(Object* value,
9911 int old_index,
9912 int new_index) {
9913 DCHECK(value->IsMap() && Map::cast(value)->is_prototype_map());
9914 Map* map = Map::cast(value);
9915 DCHECK(map->prototype_info()->IsPrototypeInfo());
9916 PrototypeInfo* proto_info = PrototypeInfo::cast(map->prototype_info());
9917 DCHECK_EQ(old_index, proto_info->registry_slot());
9918 proto_info->set_registry_slot(new_index);
9919 }
9920
9921
9922 template void WeakFixedArray::Compact<WeakFixedArray::NullCallback>();
9923 template void
9924 WeakFixedArray::Compact<JSObject::PrototypeRegistryCompactionCallback>();
9925
9926
Remove(Handle<HeapObject> value)9927 bool WeakFixedArray::Remove(Handle<HeapObject> value) {
9928 if (Length() == 0) return false;
9929 // Optimize for the most recently added element to be removed again.
9930 int first_index = last_used_index();
9931 for (int i = first_index;;) {
9932 if (Get(i) == *value) {
9933 Clear(i);
9934 // Users of WeakFixedArray should make sure that there are no duplicates.
9935 return true;
9936 }
9937 i = (i + 1) % Length();
9938 if (i == first_index) return false;
9939 }
9940 UNREACHABLE();
9941 }
9942
9943
9944 // static
Allocate(Isolate * isolate,int size,Handle<WeakFixedArray> initialize_from)9945 Handle<WeakFixedArray> WeakFixedArray::Allocate(
9946 Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from) {
9947 DCHECK(0 <= size);
9948 Handle<FixedArray> result =
9949 isolate->factory()->NewUninitializedFixedArray(size + kFirstIndex);
9950 int index = 0;
9951 if (!initialize_from.is_null()) {
9952 DCHECK(initialize_from->Length() <= size);
9953 Handle<FixedArray> raw_source = Handle<FixedArray>::cast(initialize_from);
9954 // Copy the entries without compacting, since the PrototypeInfo relies on
9955 // the index of the entries not to change.
9956 while (index < raw_source->length()) {
9957 result->set(index, raw_source->get(index));
9958 index++;
9959 }
9960 }
9961 while (index < result->length()) {
9962 result->set(index, Smi::FromInt(0));
9963 index++;
9964 }
9965 return Handle<WeakFixedArray>::cast(result);
9966 }
9967
9968
Add(Handle<ArrayList> array,Handle<Object> obj,AddMode mode)9969 Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj,
9970 AddMode mode) {
9971 int length = array->Length();
9972 array = EnsureSpace(array, length + 1);
9973 if (mode == kReloadLengthAfterAllocation) {
9974 DCHECK(array->Length() <= length);
9975 length = array->Length();
9976 }
9977 array->Set(length, *obj);
9978 array->SetLength(length + 1);
9979 return array;
9980 }
9981
Add(Handle<ArrayList> array,Handle<Object> obj1,Handle<Object> obj2,AddMode mode)9982 Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj1,
9983 Handle<Object> obj2, AddMode mode) {
9984 int length = array->Length();
9985 array = EnsureSpace(array, length + 2);
9986 if (mode == kReloadLengthAfterAllocation) {
9987 length = array->Length();
9988 }
9989 array->Set(length, *obj1);
9990 array->Set(length + 1, *obj2);
9991 array->SetLength(length + 2);
9992 return array;
9993 }
9994
9995
IsFull()9996 bool ArrayList::IsFull() {
9997 int capacity = length();
9998 return kFirstIndex + Length() == capacity;
9999 }
10000
10001
EnsureSpace(Handle<ArrayList> array,int length)10002 Handle<ArrayList> ArrayList::EnsureSpace(Handle<ArrayList> array, int length) {
10003 int capacity = array->length();
10004 bool empty = (capacity == 0);
10005 if (capacity < kFirstIndex + length) {
10006 Isolate* isolate = array->GetIsolate();
10007 int new_capacity = kFirstIndex + length;
10008 new_capacity = new_capacity + Max(new_capacity / 2, 2);
10009 int grow_by = new_capacity - capacity;
10010 array = Handle<ArrayList>::cast(
10011 isolate->factory()->CopyFixedArrayAndGrow(array, grow_by));
10012 if (empty) array->SetLength(0);
10013 }
10014 return array;
10015 }
10016
Allocate(Isolate * isolate,int number_of_descriptors,int slack,PretenureFlag pretenure)10017 Handle<DescriptorArray> DescriptorArray::Allocate(Isolate* isolate,
10018 int number_of_descriptors,
10019 int slack,
10020 PretenureFlag pretenure) {
10021 DCHECK(0 <= number_of_descriptors);
10022 Factory* factory = isolate->factory();
10023 // Do not use DescriptorArray::cast on incomplete object.
10024 int size = number_of_descriptors + slack;
10025 if (size == 0) return factory->empty_descriptor_array();
10026 // Allocate the array of keys.
10027 Handle<FixedArray> result =
10028 factory->NewFixedArray(LengthFor(size), pretenure);
10029
10030 result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors));
10031 result->set(kEnumCacheIndex, Smi::FromInt(0));
10032 return Handle<DescriptorArray>::cast(result);
10033 }
10034
10035
ClearEnumCache()10036 void DescriptorArray::ClearEnumCache() {
10037 set(kEnumCacheIndex, Smi::FromInt(0));
10038 }
10039
10040
Replace(int index,Descriptor * descriptor)10041 void DescriptorArray::Replace(int index, Descriptor* descriptor) {
10042 descriptor->SetSortedKeyIndex(GetSortedKeyIndex(index));
10043 Set(index, descriptor);
10044 }
10045
10046
10047 // static
SetEnumCache(Handle<DescriptorArray> descriptors,Isolate * isolate,Handle<FixedArray> new_cache,Handle<FixedArray> new_index_cache)10048 void DescriptorArray::SetEnumCache(Handle<DescriptorArray> descriptors,
10049 Isolate* isolate,
10050 Handle<FixedArray> new_cache,
10051 Handle<FixedArray> new_index_cache) {
10052 DCHECK(!descriptors->IsEmpty());
10053 FixedArray* bridge_storage;
10054 bool needs_new_enum_cache = !descriptors->HasEnumCache();
10055 if (needs_new_enum_cache) {
10056 bridge_storage = *isolate->factory()->NewFixedArray(
10057 DescriptorArray::kEnumCacheBridgeLength);
10058 } else {
10059 bridge_storage = FixedArray::cast(descriptors->get(kEnumCacheIndex));
10060 }
10061 bridge_storage->set(kEnumCacheBridgeCacheIndex, *new_cache);
10062 bridge_storage->set(kEnumCacheBridgeIndicesCacheIndex,
10063 new_index_cache.is_null() ? Object::cast(Smi::FromInt(0))
10064 : *new_index_cache);
10065 if (needs_new_enum_cache) {
10066 descriptors->set(kEnumCacheIndex, bridge_storage);
10067 }
10068 }
10069
10070
CopyFrom(int index,DescriptorArray * src)10071 void DescriptorArray::CopyFrom(int index, DescriptorArray* src) {
10072 Object* value = src->GetValue(index);
10073 PropertyDetails details = src->GetDetails(index);
10074 Descriptor desc(handle(src->GetKey(index)),
10075 handle(value, src->GetIsolate()),
10076 details);
10077 SetDescriptor(index, &desc);
10078 }
10079
10080
Sort()10081 void DescriptorArray::Sort() {
10082 // In-place heap sort.
10083 int len = number_of_descriptors();
10084 // Reset sorting since the descriptor array might contain invalid pointers.
10085 for (int i = 0; i < len; ++i) SetSortedKey(i, i);
10086 // Bottom-up max-heap construction.
10087 // Index of the last node with children
10088 const int max_parent_index = (len / 2) - 1;
10089 for (int i = max_parent_index; i >= 0; --i) {
10090 int parent_index = i;
10091 const uint32_t parent_hash = GetSortedKey(i)->Hash();
10092 while (parent_index <= max_parent_index) {
10093 int child_index = 2 * parent_index + 1;
10094 uint32_t child_hash = GetSortedKey(child_index)->Hash();
10095 if (child_index + 1 < len) {
10096 uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
10097 if (right_child_hash > child_hash) {
10098 child_index++;
10099 child_hash = right_child_hash;
10100 }
10101 }
10102 if (child_hash <= parent_hash) break;
10103 SwapSortedKeys(parent_index, child_index);
10104 // Now element at child_index could be < its children.
10105 parent_index = child_index; // parent_hash remains correct.
10106 }
10107 }
10108
10109 // Extract elements and create sorted array.
10110 for (int i = len - 1; i > 0; --i) {
10111 // Put max element at the back of the array.
10112 SwapSortedKeys(0, i);
10113 // Shift down the new top element.
10114 int parent_index = 0;
10115 const uint32_t parent_hash = GetSortedKey(parent_index)->Hash();
10116 const int max_parent_index = (i / 2) - 1;
10117 while (parent_index <= max_parent_index) {
10118 int child_index = parent_index * 2 + 1;
10119 uint32_t child_hash = GetSortedKey(child_index)->Hash();
10120 if (child_index + 1 < i) {
10121 uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
10122 if (right_child_hash > child_hash) {
10123 child_index++;
10124 child_hash = right_child_hash;
10125 }
10126 }
10127 if (child_hash <= parent_hash) break;
10128 SwapSortedKeys(parent_index, child_index);
10129 parent_index = child_index;
10130 }
10131 }
10132 DCHECK(IsSortedNoDuplicates());
10133 }
10134
10135
Copy(Handle<AccessorPair> pair)10136 Handle<AccessorPair> AccessorPair::Copy(Handle<AccessorPair> pair) {
10137 Handle<AccessorPair> copy = pair->GetIsolate()->factory()->NewAccessorPair();
10138 copy->set_getter(pair->getter());
10139 copy->set_setter(pair->setter());
10140 return copy;
10141 }
10142
GetComponent(Handle<AccessorPair> accessor_pair,AccessorComponent component)10143 Handle<Object> AccessorPair::GetComponent(Handle<AccessorPair> accessor_pair,
10144 AccessorComponent component) {
10145 Object* accessor = accessor_pair->get(component);
10146 if (accessor->IsFunctionTemplateInfo()) {
10147 return ApiNatives::InstantiateFunction(
10148 handle(FunctionTemplateInfo::cast(accessor)))
10149 .ToHandleChecked();
10150 }
10151 Isolate* isolate = accessor_pair->GetIsolate();
10152 if (accessor->IsNull(isolate)) {
10153 return isolate->factory()->undefined_value();
10154 }
10155 return handle(accessor, isolate);
10156 }
10157
New(Isolate * isolate,int deopt_entry_count,PretenureFlag pretenure)10158 Handle<DeoptimizationInputData> DeoptimizationInputData::New(
10159 Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure) {
10160 return Handle<DeoptimizationInputData>::cast(
10161 isolate->factory()->NewFixedArray(LengthFor(deopt_entry_count),
10162 pretenure));
10163 }
10164
10165
New(Isolate * isolate,int number_of_deopt_points,PretenureFlag pretenure)10166 Handle<DeoptimizationOutputData> DeoptimizationOutputData::New(
10167 Isolate* isolate,
10168 int number_of_deopt_points,
10169 PretenureFlag pretenure) {
10170 Handle<FixedArray> result;
10171 if (number_of_deopt_points == 0) {
10172 result = isolate->factory()->empty_fixed_array();
10173 } else {
10174 result = isolate->factory()->NewFixedArray(
10175 LengthOfFixedArray(number_of_deopt_points), pretenure);
10176 }
10177 return Handle<DeoptimizationOutputData>::cast(result);
10178 }
10179
10180 const int LiteralsArray::kFeedbackVectorOffset =
10181 LiteralsArray::OffsetOfElementAt(LiteralsArray::kVectorIndex);
10182
10183 const int LiteralsArray::kOffsetToFirstLiteral =
10184 LiteralsArray::OffsetOfElementAt(LiteralsArray::kFirstLiteralIndex);
10185
10186 // static
New(Isolate * isolate,Handle<TypeFeedbackVector> vector,int number_of_literals,PretenureFlag pretenure)10187 Handle<LiteralsArray> LiteralsArray::New(Isolate* isolate,
10188 Handle<TypeFeedbackVector> vector,
10189 int number_of_literals,
10190 PretenureFlag pretenure) {
10191 if (vector->is_empty() && number_of_literals == 0) {
10192 return Handle<LiteralsArray>::cast(
10193 isolate->factory()->empty_literals_array());
10194 }
10195 Handle<FixedArray> literals = isolate->factory()->NewFixedArray(
10196 number_of_literals + kFirstLiteralIndex, pretenure);
10197 Handle<LiteralsArray> casted_literals = Handle<LiteralsArray>::cast(literals);
10198 casted_literals->set_feedback_vector(*vector);
10199 return casted_literals;
10200 }
10201
LookupRange(int pc_offset,int * data_out,CatchPrediction * prediction_out)10202 int HandlerTable::LookupRange(int pc_offset, int* data_out,
10203 CatchPrediction* prediction_out) {
10204 int innermost_handler = -1;
10205 #ifdef DEBUG
10206 // Assuming that ranges are well nested, we don't need to track the innermost
10207 // offsets. This is just to verify that the table is actually well nested.
10208 int innermost_start = std::numeric_limits<int>::min();
10209 int innermost_end = std::numeric_limits<int>::max();
10210 #endif
10211 for (int i = 0; i < length(); i += kRangeEntrySize) {
10212 int start_offset = Smi::cast(get(i + kRangeStartIndex))->value();
10213 int end_offset = Smi::cast(get(i + kRangeEndIndex))->value();
10214 int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value();
10215 int handler_offset = HandlerOffsetField::decode(handler_field);
10216 CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
10217 int handler_data = Smi::cast(get(i + kRangeDataIndex))->value();
10218 if (pc_offset > start_offset && pc_offset <= end_offset) {
10219 DCHECK_GE(start_offset, innermost_start);
10220 DCHECK_LT(end_offset, innermost_end);
10221 innermost_handler = handler_offset;
10222 #ifdef DEBUG
10223 innermost_start = start_offset;
10224 innermost_end = end_offset;
10225 #endif
10226 if (data_out) *data_out = handler_data;
10227 if (prediction_out) *prediction_out = prediction;
10228 }
10229 }
10230 return innermost_handler;
10231 }
10232
10233
10234 // TODO(turbofan): Make sure table is sorted and use binary search.
LookupReturn(int pc_offset,CatchPrediction * prediction_out)10235 int HandlerTable::LookupReturn(int pc_offset, CatchPrediction* prediction_out) {
10236 for (int i = 0; i < length(); i += kReturnEntrySize) {
10237 int return_offset = Smi::cast(get(i + kReturnOffsetIndex))->value();
10238 int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value();
10239 if (pc_offset == return_offset) {
10240 if (prediction_out) {
10241 *prediction_out = HandlerPredictionField::decode(handler_field);
10242 }
10243 return HandlerOffsetField::decode(handler_field);
10244 }
10245 }
10246 return -1;
10247 }
10248
10249
10250 #ifdef DEBUG
IsEqualTo(DescriptorArray * other)10251 bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
10252 if (IsEmpty()) return other->IsEmpty();
10253 if (other->IsEmpty()) return false;
10254 if (length() != other->length()) return false;
10255 for (int i = 0; i < length(); ++i) {
10256 if (get(i) != other->get(i)) return false;
10257 }
10258 return true;
10259 }
10260 #endif
10261
10262 // static
Trim(Handle<String> string,TrimMode mode)10263 Handle<String> String::Trim(Handle<String> string, TrimMode mode) {
10264 Isolate* const isolate = string->GetIsolate();
10265 string = String::Flatten(string);
10266 int const length = string->length();
10267
10268 // Perform left trimming if requested.
10269 int left = 0;
10270 UnicodeCache* unicode_cache = isolate->unicode_cache();
10271 if (mode == kTrim || mode == kTrimLeft) {
10272 while (left < length &&
10273 unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
10274 left++;
10275 }
10276 }
10277
10278 // Perform right trimming if requested.
10279 int right = length;
10280 if (mode == kTrim || mode == kTrimRight) {
10281 while (
10282 right > left &&
10283 unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) {
10284 right--;
10285 }
10286 }
10287
10288 return isolate->factory()->NewSubString(string, left, right);
10289 }
10290
LooksValid()10291 bool String::LooksValid() {
10292 if (!GetIsolate()->heap()->Contains(this)) return false;
10293 return true;
10294 }
10295
10296
10297 // static
ToFunctionName(Handle<Name> name)10298 MaybeHandle<String> Name::ToFunctionName(Handle<Name> name) {
10299 if (name->IsString()) return Handle<String>::cast(name);
10300 // ES6 section 9.2.11 SetFunctionName, step 4.
10301 Isolate* const isolate = name->GetIsolate();
10302 Handle<Object> description(Handle<Symbol>::cast(name)->name(), isolate);
10303 if (description->IsUndefined(isolate)) {
10304 return isolate->factory()->empty_string();
10305 }
10306 IncrementalStringBuilder builder(isolate);
10307 builder.AppendCharacter('[');
10308 builder.AppendString(Handle<String>::cast(description));
10309 builder.AppendCharacter(']');
10310 return builder.Finish();
10311 }
10312
10313 // static
ToFunctionName(Handle<Name> name,Handle<String> prefix)10314 MaybeHandle<String> Name::ToFunctionName(Handle<Name> name,
10315 Handle<String> prefix) {
10316 Handle<String> name_string;
10317 Isolate* const isolate = name->GetIsolate();
10318 ASSIGN_RETURN_ON_EXCEPTION(isolate, name_string, ToFunctionName(name),
10319 String);
10320 IncrementalStringBuilder builder(isolate);
10321 builder.AppendString(prefix);
10322 builder.AppendCharacter(' ');
10323 builder.AppendString(name_string);
10324 return builder.Finish();
10325 }
10326
10327 namespace {
10328
AreDigits(const uint8_t * s,int from,int to)10329 bool AreDigits(const uint8_t* s, int from, int to) {
10330 for (int i = from; i < to; i++) {
10331 if (s[i] < '0' || s[i] > '9') return false;
10332 }
10333
10334 return true;
10335 }
10336
10337
ParseDecimalInteger(const uint8_t * s,int from,int to)10338 int ParseDecimalInteger(const uint8_t* s, int from, int to) {
10339 DCHECK(to - from < 10); // Overflow is not possible.
10340 DCHECK(from < to);
10341 int d = s[from] - '0';
10342
10343 for (int i = from + 1; i < to; i++) {
10344 d = 10 * d + (s[i] - '0');
10345 }
10346
10347 return d;
10348 }
10349
10350 } // namespace
10351
10352
10353 // static
ToNumber(Handle<String> subject)10354 Handle<Object> String::ToNumber(Handle<String> subject) {
10355 Isolate* const isolate = subject->GetIsolate();
10356
10357 // Flatten {subject} string first.
10358 subject = String::Flatten(subject);
10359
10360 // Fast array index case.
10361 uint32_t index;
10362 if (subject->AsArrayIndex(&index)) {
10363 return isolate->factory()->NewNumberFromUint(index);
10364 }
10365
10366 // Fast case: short integer or some sorts of junk values.
10367 if (subject->IsSeqOneByteString()) {
10368 int len = subject->length();
10369 if (len == 0) return handle(Smi::FromInt(0), isolate);
10370
10371 DisallowHeapAllocation no_gc;
10372 uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
10373 bool minus = (data[0] == '-');
10374 int start_pos = (minus ? 1 : 0);
10375
10376 if (start_pos == len) {
10377 return isolate->factory()->nan_value();
10378 } else if (data[start_pos] > '9') {
10379 // Fast check for a junk value. A valid string may start from a
10380 // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
10381 // or the 'I' character ('Infinity'). All of that have codes not greater
10382 // than '9' except 'I' and .
10383 if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
10384 return isolate->factory()->nan_value();
10385 }
10386 } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
10387 // The maximal/minimal smi has 10 digits. If the string has less digits
10388 // we know it will fit into the smi-data type.
10389 int d = ParseDecimalInteger(data, start_pos, len);
10390 if (minus) {
10391 if (d == 0) return isolate->factory()->minus_zero_value();
10392 d = -d;
10393 } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
10394 (len == 1 || data[0] != '0')) {
10395 // String hash is not calculated yet but all the data are present.
10396 // Update the hash field to speed up sequential convertions.
10397 uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
10398 #ifdef DEBUG
10399 subject->Hash(); // Force hash calculation.
10400 DCHECK_EQ(static_cast<int>(subject->hash_field()),
10401 static_cast<int>(hash));
10402 #endif
10403 subject->set_hash_field(hash);
10404 }
10405 return handle(Smi::FromInt(d), isolate);
10406 }
10407 }
10408
10409 // Slower case.
10410 int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY;
10411 return isolate->factory()->NewNumber(
10412 StringToDouble(isolate->unicode_cache(), subject, flags));
10413 }
10414
10415
GetFlatContent()10416 String::FlatContent String::GetFlatContent() {
10417 DCHECK(!AllowHeapAllocation::IsAllowed());
10418 int length = this->length();
10419 StringShape shape(this);
10420 String* string = this;
10421 int offset = 0;
10422 if (shape.representation_tag() == kConsStringTag) {
10423 ConsString* cons = ConsString::cast(string);
10424 if (cons->second()->length() != 0) {
10425 return FlatContent();
10426 }
10427 string = cons->first();
10428 shape = StringShape(string);
10429 }
10430 if (shape.representation_tag() == kSlicedStringTag) {
10431 SlicedString* slice = SlicedString::cast(string);
10432 offset = slice->offset();
10433 string = slice->parent();
10434 shape = StringShape(string);
10435 DCHECK(shape.representation_tag() != kConsStringTag &&
10436 shape.representation_tag() != kSlicedStringTag);
10437 }
10438 if (shape.encoding_tag() == kOneByteStringTag) {
10439 const uint8_t* start;
10440 if (shape.representation_tag() == kSeqStringTag) {
10441 start = SeqOneByteString::cast(string)->GetChars();
10442 } else {
10443 start = ExternalOneByteString::cast(string)->GetChars();
10444 }
10445 return FlatContent(start + offset, length);
10446 } else {
10447 DCHECK(shape.encoding_tag() == kTwoByteStringTag);
10448 const uc16* start;
10449 if (shape.representation_tag() == kSeqStringTag) {
10450 start = SeqTwoByteString::cast(string)->GetChars();
10451 } else {
10452 start = ExternalTwoByteString::cast(string)->GetChars();
10453 }
10454 return FlatContent(start + offset, length);
10455 }
10456 }
10457
10458
ToCString(AllowNullsFlag allow_nulls,RobustnessFlag robust_flag,int offset,int length,int * length_return)10459 base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
10460 RobustnessFlag robust_flag,
10461 int offset, int length,
10462 int* length_return) {
10463 if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
10464 return base::SmartArrayPointer<char>(NULL);
10465 }
10466 // Negative length means the to the end of the string.
10467 if (length < 0) length = kMaxInt - offset;
10468
10469 // Compute the size of the UTF-8 string. Start at the specified offset.
10470 StringCharacterStream stream(this, offset);
10471 int character_position = offset;
10472 int utf8_bytes = 0;
10473 int last = unibrow::Utf16::kNoPreviousCharacter;
10474 while (stream.HasMore() && character_position++ < offset + length) {
10475 uint16_t character = stream.GetNext();
10476 utf8_bytes += unibrow::Utf8::Length(character, last);
10477 last = character;
10478 }
10479
10480 if (length_return) {
10481 *length_return = utf8_bytes;
10482 }
10483
10484 char* result = NewArray<char>(utf8_bytes + 1);
10485
10486 // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
10487 stream.Reset(this, offset);
10488 character_position = offset;
10489 int utf8_byte_position = 0;
10490 last = unibrow::Utf16::kNoPreviousCharacter;
10491 while (stream.HasMore() && character_position++ < offset + length) {
10492 uint16_t character = stream.GetNext();
10493 if (allow_nulls == DISALLOW_NULLS && character == 0) {
10494 character = ' ';
10495 }
10496 utf8_byte_position +=
10497 unibrow::Utf8::Encode(result + utf8_byte_position, character, last);
10498 last = character;
10499 }
10500 result[utf8_byte_position] = 0;
10501 return base::SmartArrayPointer<char>(result);
10502 }
10503
10504
ToCString(AllowNullsFlag allow_nulls,RobustnessFlag robust_flag,int * length_return)10505 base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
10506 RobustnessFlag robust_flag,
10507 int* length_return) {
10508 return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
10509 }
10510
10511
GetTwoByteData(unsigned start)10512 const uc16* String::GetTwoByteData(unsigned start) {
10513 DCHECK(!IsOneByteRepresentationUnderneath());
10514 switch (StringShape(this).representation_tag()) {
10515 case kSeqStringTag:
10516 return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
10517 case kExternalStringTag:
10518 return ExternalTwoByteString::cast(this)->
10519 ExternalTwoByteStringGetData(start);
10520 case kSlicedStringTag: {
10521 SlicedString* slice = SlicedString::cast(this);
10522 return slice->parent()->GetTwoByteData(start + slice->offset());
10523 }
10524 case kConsStringTag:
10525 UNREACHABLE();
10526 return NULL;
10527 }
10528 UNREACHABLE();
10529 return NULL;
10530 }
10531
10532
SeqTwoByteStringGetData(unsigned start)10533 const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
10534 return reinterpret_cast<uc16*>(
10535 reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
10536 }
10537
10538
PostGarbageCollectionProcessing(Isolate * isolate)10539 void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) {
10540 Relocatable* current = isolate->relocatable_top();
10541 while (current != NULL) {
10542 current->PostGarbageCollection();
10543 current = current->prev_;
10544 }
10545 }
10546
10547
10548 // Reserve space for statics needing saving and restoring.
ArchiveSpacePerThread()10549 int Relocatable::ArchiveSpacePerThread() {
10550 return sizeof(Relocatable*); // NOLINT
10551 }
10552
10553
10554 // Archive statics that are thread-local.
ArchiveState(Isolate * isolate,char * to)10555 char* Relocatable::ArchiveState(Isolate* isolate, char* to) {
10556 *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top();
10557 isolate->set_relocatable_top(NULL);
10558 return to + ArchiveSpacePerThread();
10559 }
10560
10561
10562 // Restore statics that are thread-local.
RestoreState(Isolate * isolate,char * from)10563 char* Relocatable::RestoreState(Isolate* isolate, char* from) {
10564 isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from));
10565 return from + ArchiveSpacePerThread();
10566 }
10567
10568
Iterate(ObjectVisitor * v,char * thread_storage)10569 char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) {
10570 Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage);
10571 Iterate(v, top);
10572 return thread_storage + ArchiveSpacePerThread();
10573 }
10574
10575
Iterate(Isolate * isolate,ObjectVisitor * v)10576 void Relocatable::Iterate(Isolate* isolate, ObjectVisitor* v) {
10577 Iterate(v, isolate->relocatable_top());
10578 }
10579
10580
Iterate(ObjectVisitor * v,Relocatable * top)10581 void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) {
10582 Relocatable* current = top;
10583 while (current != NULL) {
10584 current->IterateInstance(v);
10585 current = current->prev_;
10586 }
10587 }
10588
10589
FlatStringReader(Isolate * isolate,Handle<String> str)10590 FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
10591 : Relocatable(isolate),
10592 str_(str.location()),
10593 length_(str->length()) {
10594 PostGarbageCollection();
10595 }
10596
10597
FlatStringReader(Isolate * isolate,Vector<const char> input)10598 FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input)
10599 : Relocatable(isolate),
10600 str_(0),
10601 is_one_byte_(true),
10602 length_(input.length()),
10603 start_(input.start()) {}
10604
10605
PostGarbageCollection()10606 void FlatStringReader::PostGarbageCollection() {
10607 if (str_ == NULL) return;
10608 Handle<String> str(str_);
10609 DCHECK(str->IsFlat());
10610 DisallowHeapAllocation no_gc;
10611 // This does not actually prevent the vector from being relocated later.
10612 String::FlatContent content = str->GetFlatContent();
10613 DCHECK(content.IsFlat());
10614 is_one_byte_ = content.IsOneByte();
10615 if (is_one_byte_) {
10616 start_ = content.ToOneByteVector().start();
10617 } else {
10618 start_ = content.ToUC16Vector().start();
10619 }
10620 }
10621
10622
Initialize(ConsString * cons_string,int offset)10623 void ConsStringIterator::Initialize(ConsString* cons_string, int offset) {
10624 DCHECK(cons_string != NULL);
10625 root_ = cons_string;
10626 consumed_ = offset;
10627 // Force stack blown condition to trigger restart.
10628 depth_ = 1;
10629 maximum_depth_ = kStackSize + depth_;
10630 DCHECK(StackBlown());
10631 }
10632
10633
Continue(int * offset_out)10634 String* ConsStringIterator::Continue(int* offset_out) {
10635 DCHECK(depth_ != 0);
10636 DCHECK_EQ(0, *offset_out);
10637 bool blew_stack = StackBlown();
10638 String* string = NULL;
10639 // Get the next leaf if there is one.
10640 if (!blew_stack) string = NextLeaf(&blew_stack);
10641 // Restart search from root.
10642 if (blew_stack) {
10643 DCHECK(string == NULL);
10644 string = Search(offset_out);
10645 }
10646 // Ensure future calls return null immediately.
10647 if (string == NULL) Reset(NULL);
10648 return string;
10649 }
10650
10651
Search(int * offset_out)10652 String* ConsStringIterator::Search(int* offset_out) {
10653 ConsString* cons_string = root_;
10654 // Reset the stack, pushing the root string.
10655 depth_ = 1;
10656 maximum_depth_ = 1;
10657 frames_[0] = cons_string;
10658 const int consumed = consumed_;
10659 int offset = 0;
10660 while (true) {
10661 // Loop until the string is found which contains the target offset.
10662 String* string = cons_string->first();
10663 int length = string->length();
10664 int32_t type;
10665 if (consumed < offset + length) {
10666 // Target offset is in the left branch.
10667 // Keep going if we're still in a ConString.
10668 type = string->map()->instance_type();
10669 if ((type & kStringRepresentationMask) == kConsStringTag) {
10670 cons_string = ConsString::cast(string);
10671 PushLeft(cons_string);
10672 continue;
10673 }
10674 // Tell the stack we're done descending.
10675 AdjustMaximumDepth();
10676 } else {
10677 // Descend right.
10678 // Update progress through the string.
10679 offset += length;
10680 // Keep going if we're still in a ConString.
10681 string = cons_string->second();
10682 type = string->map()->instance_type();
10683 if ((type & kStringRepresentationMask) == kConsStringTag) {
10684 cons_string = ConsString::cast(string);
10685 PushRight(cons_string);
10686 continue;
10687 }
10688 // Need this to be updated for the current string.
10689 length = string->length();
10690 // Account for the possibility of an empty right leaf.
10691 // This happens only if we have asked for an offset outside the string.
10692 if (length == 0) {
10693 // Reset so future operations will return null immediately.
10694 Reset(NULL);
10695 return NULL;
10696 }
10697 // Tell the stack we're done descending.
10698 AdjustMaximumDepth();
10699 // Pop stack so next iteration is in correct place.
10700 Pop();
10701 }
10702 DCHECK(length != 0);
10703 // Adjust return values and exit.
10704 consumed_ = offset + length;
10705 *offset_out = consumed - offset;
10706 return string;
10707 }
10708 UNREACHABLE();
10709 return NULL;
10710 }
10711
10712
NextLeaf(bool * blew_stack)10713 String* ConsStringIterator::NextLeaf(bool* blew_stack) {
10714 while (true) {
10715 // Tree traversal complete.
10716 if (depth_ == 0) {
10717 *blew_stack = false;
10718 return NULL;
10719 }
10720 // We've lost track of higher nodes.
10721 if (StackBlown()) {
10722 *blew_stack = true;
10723 return NULL;
10724 }
10725 // Go right.
10726 ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)];
10727 String* string = cons_string->second();
10728 int32_t type = string->map()->instance_type();
10729 if ((type & kStringRepresentationMask) != kConsStringTag) {
10730 // Pop stack so next iteration is in correct place.
10731 Pop();
10732 int length = string->length();
10733 // Could be a flattened ConsString.
10734 if (length == 0) continue;
10735 consumed_ += length;
10736 return string;
10737 }
10738 cons_string = ConsString::cast(string);
10739 PushRight(cons_string);
10740 // Need to traverse all the way left.
10741 while (true) {
10742 // Continue left.
10743 string = cons_string->first();
10744 type = string->map()->instance_type();
10745 if ((type & kStringRepresentationMask) != kConsStringTag) {
10746 AdjustMaximumDepth();
10747 int length = string->length();
10748 DCHECK(length != 0);
10749 consumed_ += length;
10750 return string;
10751 }
10752 cons_string = ConsString::cast(string);
10753 PushLeft(cons_string);
10754 }
10755 }
10756 UNREACHABLE();
10757 return NULL;
10758 }
10759
10760
ConsStringGet(int index)10761 uint16_t ConsString::ConsStringGet(int index) {
10762 DCHECK(index >= 0 && index < this->length());
10763
10764 // Check for a flattened cons string
10765 if (second()->length() == 0) {
10766 String* left = first();
10767 return left->Get(index);
10768 }
10769
10770 String* string = String::cast(this);
10771
10772 while (true) {
10773 if (StringShape(string).IsCons()) {
10774 ConsString* cons_string = ConsString::cast(string);
10775 String* left = cons_string->first();
10776 if (left->length() > index) {
10777 string = left;
10778 } else {
10779 index -= left->length();
10780 string = cons_string->second();
10781 }
10782 } else {
10783 return string->Get(index);
10784 }
10785 }
10786
10787 UNREACHABLE();
10788 return 0;
10789 }
10790
10791
SlicedStringGet(int index)10792 uint16_t SlicedString::SlicedStringGet(int index) {
10793 return parent()->Get(offset() + index);
10794 }
10795
10796
10797 template <typename sinkchar>
WriteToFlat(String * src,sinkchar * sink,int f,int t)10798 void String::WriteToFlat(String* src,
10799 sinkchar* sink,
10800 int f,
10801 int t) {
10802 String* source = src;
10803 int from = f;
10804 int to = t;
10805 while (true) {
10806 DCHECK(0 <= from && from <= to && to <= source->length());
10807 switch (StringShape(source).full_representation_tag()) {
10808 case kOneByteStringTag | kExternalStringTag: {
10809 CopyChars(sink, ExternalOneByteString::cast(source)->GetChars() + from,
10810 to - from);
10811 return;
10812 }
10813 case kTwoByteStringTag | kExternalStringTag: {
10814 const uc16* data =
10815 ExternalTwoByteString::cast(source)->GetChars();
10816 CopyChars(sink,
10817 data + from,
10818 to - from);
10819 return;
10820 }
10821 case kOneByteStringTag | kSeqStringTag: {
10822 CopyChars(sink,
10823 SeqOneByteString::cast(source)->GetChars() + from,
10824 to - from);
10825 return;
10826 }
10827 case kTwoByteStringTag | kSeqStringTag: {
10828 CopyChars(sink,
10829 SeqTwoByteString::cast(source)->GetChars() + from,
10830 to - from);
10831 return;
10832 }
10833 case kOneByteStringTag | kConsStringTag:
10834 case kTwoByteStringTag | kConsStringTag: {
10835 ConsString* cons_string = ConsString::cast(source);
10836 String* first = cons_string->first();
10837 int boundary = first->length();
10838 if (to - boundary >= boundary - from) {
10839 // Right hand side is longer. Recurse over left.
10840 if (from < boundary) {
10841 WriteToFlat(first, sink, from, boundary);
10842 if (from == 0 && cons_string->second() == first) {
10843 CopyChars(sink + boundary, sink, boundary);
10844 return;
10845 }
10846 sink += boundary - from;
10847 from = 0;
10848 } else {
10849 from -= boundary;
10850 }
10851 to -= boundary;
10852 source = cons_string->second();
10853 } else {
10854 // Left hand side is longer. Recurse over right.
10855 if (to > boundary) {
10856 String* second = cons_string->second();
10857 // When repeatedly appending to a string, we get a cons string that
10858 // is unbalanced to the left, a list, essentially. We inline the
10859 // common case of sequential one-byte right child.
10860 if (to - boundary == 1) {
10861 sink[boundary - from] = static_cast<sinkchar>(second->Get(0));
10862 } else if (second->IsSeqOneByteString()) {
10863 CopyChars(sink + boundary - from,
10864 SeqOneByteString::cast(second)->GetChars(),
10865 to - boundary);
10866 } else {
10867 WriteToFlat(second,
10868 sink + boundary - from,
10869 0,
10870 to - boundary);
10871 }
10872 to = boundary;
10873 }
10874 source = first;
10875 }
10876 break;
10877 }
10878 case kOneByteStringTag | kSlicedStringTag:
10879 case kTwoByteStringTag | kSlicedStringTag: {
10880 SlicedString* slice = SlicedString::cast(source);
10881 unsigned offset = slice->offset();
10882 WriteToFlat(slice->parent(), sink, from + offset, to + offset);
10883 return;
10884 }
10885 }
10886 }
10887 }
10888
10889
10890
10891 template <typename SourceChar>
CalculateLineEndsImpl(Isolate * isolate,List<int> * line_ends,Vector<const SourceChar> src,bool include_ending_line)10892 static void CalculateLineEndsImpl(Isolate* isolate,
10893 List<int>* line_ends,
10894 Vector<const SourceChar> src,
10895 bool include_ending_line) {
10896 const int src_len = src.length();
10897 UnicodeCache* cache = isolate->unicode_cache();
10898 for (int i = 0; i < src_len - 1; i++) {
10899 SourceChar current = src[i];
10900 SourceChar next = src[i + 1];
10901 if (cache->IsLineTerminatorSequence(current, next)) line_ends->Add(i);
10902 }
10903
10904 if (src_len > 0 && cache->IsLineTerminatorSequence(src[src_len - 1], 0)) {
10905 line_ends->Add(src_len - 1);
10906 }
10907 if (include_ending_line) {
10908 // Include one character beyond the end of script. The rewriter uses that
10909 // position for the implicit return statement.
10910 line_ends->Add(src_len);
10911 }
10912 }
10913
10914
CalculateLineEnds(Handle<String> src,bool include_ending_line)10915 Handle<FixedArray> String::CalculateLineEnds(Handle<String> src,
10916 bool include_ending_line) {
10917 src = Flatten(src);
10918 // Rough estimate of line count based on a roughly estimated average
10919 // length of (unpacked) code.
10920 int line_count_estimate = src->length() >> 4;
10921 List<int> line_ends(line_count_estimate);
10922 Isolate* isolate = src->GetIsolate();
10923 { DisallowHeapAllocation no_allocation; // ensure vectors stay valid.
10924 // Dispatch on type of strings.
10925 String::FlatContent content = src->GetFlatContent();
10926 DCHECK(content.IsFlat());
10927 if (content.IsOneByte()) {
10928 CalculateLineEndsImpl(isolate,
10929 &line_ends,
10930 content.ToOneByteVector(),
10931 include_ending_line);
10932 } else {
10933 CalculateLineEndsImpl(isolate,
10934 &line_ends,
10935 content.ToUC16Vector(),
10936 include_ending_line);
10937 }
10938 }
10939 int line_count = line_ends.length();
10940 Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
10941 for (int i = 0; i < line_count; i++) {
10942 array->set(i, Smi::FromInt(line_ends[i]));
10943 }
10944 return array;
10945 }
10946
10947
10948 // Compares the contents of two strings by reading and comparing
10949 // int-sized blocks of characters.
10950 template <typename Char>
CompareRawStringContents(const Char * const a,const Char * const b,int length)10951 static inline bool CompareRawStringContents(const Char* const a,
10952 const Char* const b,
10953 int length) {
10954 return CompareChars(a, b, length) == 0;
10955 }
10956
10957
10958 template<typename Chars1, typename Chars2>
10959 class RawStringComparator : public AllStatic {
10960 public:
compare(const Chars1 * a,const Chars2 * b,int len)10961 static inline bool compare(const Chars1* a, const Chars2* b, int len) {
10962 DCHECK(sizeof(Chars1) != sizeof(Chars2));
10963 for (int i = 0; i < len; i++) {
10964 if (a[i] != b[i]) {
10965 return false;
10966 }
10967 }
10968 return true;
10969 }
10970 };
10971
10972
10973 template<>
10974 class RawStringComparator<uint16_t, uint16_t> {
10975 public:
compare(const uint16_t * a,const uint16_t * b,int len)10976 static inline bool compare(const uint16_t* a, const uint16_t* b, int len) {
10977 return CompareRawStringContents(a, b, len);
10978 }
10979 };
10980
10981
10982 template<>
10983 class RawStringComparator<uint8_t, uint8_t> {
10984 public:
compare(const uint8_t * a,const uint8_t * b,int len)10985 static inline bool compare(const uint8_t* a, const uint8_t* b, int len) {
10986 return CompareRawStringContents(a, b, len);
10987 }
10988 };
10989
10990
10991 class StringComparator {
10992 class State {
10993 public:
State()10994 State() : is_one_byte_(true), length_(0), buffer8_(NULL) {}
10995
Init(String * string)10996 void Init(String* string) {
10997 ConsString* cons_string = String::VisitFlat(this, string);
10998 iter_.Reset(cons_string);
10999 if (cons_string != NULL) {
11000 int offset;
11001 string = iter_.Next(&offset);
11002 String::VisitFlat(this, string, offset);
11003 }
11004 }
11005
VisitOneByteString(const uint8_t * chars,int length)11006 inline void VisitOneByteString(const uint8_t* chars, int length) {
11007 is_one_byte_ = true;
11008 buffer8_ = chars;
11009 length_ = length;
11010 }
11011
VisitTwoByteString(const uint16_t * chars,int length)11012 inline void VisitTwoByteString(const uint16_t* chars, int length) {
11013 is_one_byte_ = false;
11014 buffer16_ = chars;
11015 length_ = length;
11016 }
11017
Advance(int consumed)11018 void Advance(int consumed) {
11019 DCHECK(consumed <= length_);
11020 // Still in buffer.
11021 if (length_ != consumed) {
11022 if (is_one_byte_) {
11023 buffer8_ += consumed;
11024 } else {
11025 buffer16_ += consumed;
11026 }
11027 length_ -= consumed;
11028 return;
11029 }
11030 // Advance state.
11031 int offset;
11032 String* next = iter_.Next(&offset);
11033 DCHECK_EQ(0, offset);
11034 DCHECK(next != NULL);
11035 String::VisitFlat(this, next);
11036 }
11037
11038 ConsStringIterator iter_;
11039 bool is_one_byte_;
11040 int length_;
11041 union {
11042 const uint8_t* buffer8_;
11043 const uint16_t* buffer16_;
11044 };
11045
11046 private:
11047 DISALLOW_COPY_AND_ASSIGN(State);
11048 };
11049
11050 public:
StringComparator()11051 inline StringComparator() {}
11052
11053 template<typename Chars1, typename Chars2>
Equals(State * state_1,State * state_2,int to_check)11054 static inline bool Equals(State* state_1, State* state_2, int to_check) {
11055 const Chars1* a = reinterpret_cast<const Chars1*>(state_1->buffer8_);
11056 const Chars2* b = reinterpret_cast<const Chars2*>(state_2->buffer8_);
11057 return RawStringComparator<Chars1, Chars2>::compare(a, b, to_check);
11058 }
11059
Equals(String * string_1,String * string_2)11060 bool Equals(String* string_1, String* string_2) {
11061 int length = string_1->length();
11062 state_1_.Init(string_1);
11063 state_2_.Init(string_2);
11064 while (true) {
11065 int to_check = Min(state_1_.length_, state_2_.length_);
11066 DCHECK(to_check > 0 && to_check <= length);
11067 bool is_equal;
11068 if (state_1_.is_one_byte_) {
11069 if (state_2_.is_one_byte_) {
11070 is_equal = Equals<uint8_t, uint8_t>(&state_1_, &state_2_, to_check);
11071 } else {
11072 is_equal = Equals<uint8_t, uint16_t>(&state_1_, &state_2_, to_check);
11073 }
11074 } else {
11075 if (state_2_.is_one_byte_) {
11076 is_equal = Equals<uint16_t, uint8_t>(&state_1_, &state_2_, to_check);
11077 } else {
11078 is_equal = Equals<uint16_t, uint16_t>(&state_1_, &state_2_, to_check);
11079 }
11080 }
11081 // Looping done.
11082 if (!is_equal) return false;
11083 length -= to_check;
11084 // Exit condition. Strings are equal.
11085 if (length == 0) return true;
11086 state_1_.Advance(to_check);
11087 state_2_.Advance(to_check);
11088 }
11089 }
11090
11091 private:
11092 State state_1_;
11093 State state_2_;
11094
11095 DISALLOW_COPY_AND_ASSIGN(StringComparator);
11096 };
11097
11098
SlowEquals(String * other)11099 bool String::SlowEquals(String* other) {
11100 DisallowHeapAllocation no_gc;
11101 // Fast check: negative check with lengths.
11102 int len = length();
11103 if (len != other->length()) return false;
11104 if (len == 0) return true;
11105
11106 // Fast check: if hash code is computed for both strings
11107 // a fast negative check can be performed.
11108 if (HasHashCode() && other->HasHashCode()) {
11109 #ifdef ENABLE_SLOW_DCHECKS
11110 if (FLAG_enable_slow_asserts) {
11111 if (Hash() != other->Hash()) {
11112 bool found_difference = false;
11113 for (int i = 0; i < len; i++) {
11114 if (Get(i) != other->Get(i)) {
11115 found_difference = true;
11116 break;
11117 }
11118 }
11119 DCHECK(found_difference);
11120 }
11121 }
11122 #endif
11123 if (Hash() != other->Hash()) return false;
11124 }
11125
11126 // We know the strings are both non-empty. Compare the first chars
11127 // before we try to flatten the strings.
11128 if (this->Get(0) != other->Get(0)) return false;
11129
11130 if (IsSeqOneByteString() && other->IsSeqOneByteString()) {
11131 const uint8_t* str1 = SeqOneByteString::cast(this)->GetChars();
11132 const uint8_t* str2 = SeqOneByteString::cast(other)->GetChars();
11133 return CompareRawStringContents(str1, str2, len);
11134 }
11135
11136 StringComparator comparator;
11137 return comparator.Equals(this, other);
11138 }
11139
11140
SlowEquals(Handle<String> one,Handle<String> two)11141 bool String::SlowEquals(Handle<String> one, Handle<String> two) {
11142 // Fast check: negative check with lengths.
11143 int one_length = one->length();
11144 if (one_length != two->length()) return false;
11145 if (one_length == 0) return true;
11146
11147 // Fast check: if hash code is computed for both strings
11148 // a fast negative check can be performed.
11149 if (one->HasHashCode() && two->HasHashCode()) {
11150 #ifdef ENABLE_SLOW_DCHECKS
11151 if (FLAG_enable_slow_asserts) {
11152 if (one->Hash() != two->Hash()) {
11153 bool found_difference = false;
11154 for (int i = 0; i < one_length; i++) {
11155 if (one->Get(i) != two->Get(i)) {
11156 found_difference = true;
11157 break;
11158 }
11159 }
11160 DCHECK(found_difference);
11161 }
11162 }
11163 #endif
11164 if (one->Hash() != two->Hash()) return false;
11165 }
11166
11167 // We know the strings are both non-empty. Compare the first chars
11168 // before we try to flatten the strings.
11169 if (one->Get(0) != two->Get(0)) return false;
11170
11171 one = String::Flatten(one);
11172 two = String::Flatten(two);
11173
11174 DisallowHeapAllocation no_gc;
11175 String::FlatContent flat1 = one->GetFlatContent();
11176 String::FlatContent flat2 = two->GetFlatContent();
11177
11178 if (flat1.IsOneByte() && flat2.IsOneByte()) {
11179 return CompareRawStringContents(flat1.ToOneByteVector().start(),
11180 flat2.ToOneByteVector().start(),
11181 one_length);
11182 } else {
11183 for (int i = 0; i < one_length; i++) {
11184 if (flat1.Get(i) != flat2.Get(i)) return false;
11185 }
11186 return true;
11187 }
11188 }
11189
11190
11191 // static
Compare(Handle<String> x,Handle<String> y)11192 ComparisonResult String::Compare(Handle<String> x, Handle<String> y) {
11193 // A few fast case tests before we flatten.
11194 if (x.is_identical_to(y)) {
11195 return ComparisonResult::kEqual;
11196 } else if (y->length() == 0) {
11197 return x->length() == 0 ? ComparisonResult::kEqual
11198 : ComparisonResult::kGreaterThan;
11199 } else if (x->length() == 0) {
11200 return ComparisonResult::kLessThan;
11201 }
11202
11203 int const d = x->Get(0) - y->Get(0);
11204 if (d < 0) {
11205 return ComparisonResult::kLessThan;
11206 } else if (d > 0) {
11207 return ComparisonResult::kGreaterThan;
11208 }
11209
11210 // Slow case.
11211 x = String::Flatten(x);
11212 y = String::Flatten(y);
11213
11214 DisallowHeapAllocation no_gc;
11215 ComparisonResult result = ComparisonResult::kEqual;
11216 int prefix_length = x->length();
11217 if (y->length() < prefix_length) {
11218 prefix_length = y->length();
11219 result = ComparisonResult::kGreaterThan;
11220 } else if (y->length() > prefix_length) {
11221 result = ComparisonResult::kLessThan;
11222 }
11223 int r;
11224 String::FlatContent x_content = x->GetFlatContent();
11225 String::FlatContent y_content = y->GetFlatContent();
11226 if (x_content.IsOneByte()) {
11227 Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
11228 if (y_content.IsOneByte()) {
11229 Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
11230 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
11231 } else {
11232 Vector<const uc16> y_chars = y_content.ToUC16Vector();
11233 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
11234 }
11235 } else {
11236 Vector<const uc16> x_chars = x_content.ToUC16Vector();
11237 if (y_content.IsOneByte()) {
11238 Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
11239 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
11240 } else {
11241 Vector<const uc16> y_chars = y_content.ToUC16Vector();
11242 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
11243 }
11244 }
11245 if (r < 0) {
11246 result = ComparisonResult::kLessThan;
11247 } else if (r > 0) {
11248 result = ComparisonResult::kGreaterThan;
11249 }
11250 return result;
11251 }
11252
11253
IsUtf8EqualTo(Vector<const char> str,bool allow_prefix_match)11254 bool String::IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match) {
11255 int slen = length();
11256 // Can't check exact length equality, but we can check bounds.
11257 int str_len = str.length();
11258 if (!allow_prefix_match &&
11259 (str_len < slen ||
11260 str_len > slen*static_cast<int>(unibrow::Utf8::kMaxEncodedSize))) {
11261 return false;
11262 }
11263 int i;
11264 size_t remaining_in_str = static_cast<size_t>(str_len);
11265 const uint8_t* utf8_data = reinterpret_cast<const uint8_t*>(str.start());
11266 for (i = 0; i < slen && remaining_in_str > 0; i++) {
11267 size_t cursor = 0;
11268 uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor);
11269 DCHECK(cursor > 0 && cursor <= remaining_in_str);
11270 if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) {
11271 if (i > slen - 1) return false;
11272 if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false;
11273 if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false;
11274 } else {
11275 if (Get(i) != r) return false;
11276 }
11277 utf8_data += cursor;
11278 remaining_in_str -= cursor;
11279 }
11280 return (allow_prefix_match || i == slen) && remaining_in_str == 0;
11281 }
11282
11283
IsOneByteEqualTo(Vector<const uint8_t> str)11284 bool String::IsOneByteEqualTo(Vector<const uint8_t> str) {
11285 int slen = length();
11286 if (str.length() != slen) return false;
11287 DisallowHeapAllocation no_gc;
11288 FlatContent content = GetFlatContent();
11289 if (content.IsOneByte()) {
11290 return CompareChars(content.ToOneByteVector().start(),
11291 str.start(), slen) == 0;
11292 }
11293 for (int i = 0; i < slen; i++) {
11294 if (Get(i) != static_cast<uint16_t>(str[i])) return false;
11295 }
11296 return true;
11297 }
11298
11299
IsTwoByteEqualTo(Vector<const uc16> str)11300 bool String::IsTwoByteEqualTo(Vector<const uc16> str) {
11301 int slen = length();
11302 if (str.length() != slen) return false;
11303 DisallowHeapAllocation no_gc;
11304 FlatContent content = GetFlatContent();
11305 if (content.IsTwoByte()) {
11306 return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0;
11307 }
11308 for (int i = 0; i < slen; i++) {
11309 if (Get(i) != str[i]) return false;
11310 }
11311 return true;
11312 }
11313
11314
ComputeAndSetHash()11315 uint32_t String::ComputeAndSetHash() {
11316 // Should only be called if hash code has not yet been computed.
11317 DCHECK(!HasHashCode());
11318
11319 // Store the hash code in the object.
11320 uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed());
11321 set_hash_field(field);
11322
11323 // Check the hash code is there.
11324 DCHECK(HasHashCode());
11325 uint32_t result = field >> kHashShift;
11326 DCHECK(result != 0); // Ensure that the hash value of 0 is never computed.
11327 return result;
11328 }
11329
11330
ComputeArrayIndex(uint32_t * index)11331 bool String::ComputeArrayIndex(uint32_t* index) {
11332 int length = this->length();
11333 if (length == 0 || length > kMaxArrayIndexSize) return false;
11334 StringCharacterStream stream(this);
11335 return StringToArrayIndex(&stream, index);
11336 }
11337
11338
SlowAsArrayIndex(uint32_t * index)11339 bool String::SlowAsArrayIndex(uint32_t* index) {
11340 if (length() <= kMaxCachedArrayIndexLength) {
11341 Hash(); // force computation of hash code
11342 uint32_t field = hash_field();
11343 if ((field & kIsNotArrayIndexMask) != 0) return false;
11344 // Isolate the array index form the full hash field.
11345 *index = ArrayIndexValueBits::decode(field);
11346 return true;
11347 } else {
11348 return ComputeArrayIndex(index);
11349 }
11350 }
11351
11352
Truncate(Handle<SeqString> string,int new_length)11353 Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) {
11354 int new_size, old_size;
11355 int old_length = string->length();
11356 if (old_length <= new_length) return string;
11357
11358 if (string->IsSeqOneByteString()) {
11359 old_size = SeqOneByteString::SizeFor(old_length);
11360 new_size = SeqOneByteString::SizeFor(new_length);
11361 } else {
11362 DCHECK(string->IsSeqTwoByteString());
11363 old_size = SeqTwoByteString::SizeFor(old_length);
11364 new_size = SeqTwoByteString::SizeFor(new_length);
11365 }
11366
11367 int delta = old_size - new_size;
11368
11369 Address start_of_string = string->address();
11370 DCHECK_OBJECT_ALIGNED(start_of_string);
11371 DCHECK_OBJECT_ALIGNED(start_of_string + new_size);
11372
11373 Heap* heap = string->GetHeap();
11374 // Sizes are pointer size aligned, so that we can use filler objects
11375 // that are a multiple of pointer size.
11376 heap->CreateFillerObjectAt(start_of_string + new_size, delta,
11377 ClearRecordedSlots::kNo);
11378 heap->AdjustLiveBytes(*string, -delta, Heap::CONCURRENT_TO_SWEEPER);
11379
11380 // We are storing the new length using release store after creating a filler
11381 // for the left-over space to avoid races with the sweeper thread.
11382 string->synchronized_set_length(new_length);
11383
11384 if (new_length == 0) return heap->isolate()->factory()->empty_string();
11385 return string;
11386 }
11387
11388
MakeArrayIndexHash(uint32_t value,int length)11389 uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) {
11390 // For array indexes mix the length into the hash as an array index could
11391 // be zero.
11392 DCHECK(length > 0);
11393 DCHECK(length <= String::kMaxArrayIndexSize);
11394 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
11395 (1 << String::kArrayIndexValueBits));
11396
11397 value <<= String::ArrayIndexValueBits::kShift;
11398 value |= length << String::ArrayIndexLengthBits::kShift;
11399
11400 DCHECK((value & String::kIsNotArrayIndexMask) == 0);
11401 DCHECK_EQ(length <= String::kMaxCachedArrayIndexLength,
11402 (value & String::kContainsCachedArrayIndexMask) == 0);
11403 return value;
11404 }
11405
11406
GetHashField()11407 uint32_t StringHasher::GetHashField() {
11408 if (length_ <= String::kMaxHashCalcLength) {
11409 if (is_array_index_) {
11410 return MakeArrayIndexHash(array_index_, length_);
11411 }
11412 return (GetHashCore(raw_running_hash_) << String::kHashShift) |
11413 String::kIsNotArrayIndexMask;
11414 } else {
11415 return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask;
11416 }
11417 }
11418
11419
ComputeUtf8Hash(Vector<const char> chars,uint32_t seed,int * utf16_length_out)11420 uint32_t StringHasher::ComputeUtf8Hash(Vector<const char> chars,
11421 uint32_t seed,
11422 int* utf16_length_out) {
11423 int vector_length = chars.length();
11424 // Handle some edge cases
11425 if (vector_length <= 1) {
11426 DCHECK(vector_length == 0 ||
11427 static_cast<uint8_t>(chars.start()[0]) <=
11428 unibrow::Utf8::kMaxOneByteChar);
11429 *utf16_length_out = vector_length;
11430 return HashSequentialString(chars.start(), vector_length, seed);
11431 }
11432 // Start with a fake length which won't affect computation.
11433 // It will be updated later.
11434 StringHasher hasher(String::kMaxArrayIndexSize, seed);
11435 size_t remaining = static_cast<size_t>(vector_length);
11436 const uint8_t* stream = reinterpret_cast<const uint8_t*>(chars.start());
11437 int utf16_length = 0;
11438 bool is_index = true;
11439 DCHECK(hasher.is_array_index_);
11440 while (remaining > 0) {
11441 size_t consumed = 0;
11442 uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed);
11443 DCHECK(consumed > 0 && consumed <= remaining);
11444 stream += consumed;
11445 remaining -= consumed;
11446 bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode;
11447 utf16_length += is_two_characters ? 2 : 1;
11448 // No need to keep hashing. But we do need to calculate utf16_length.
11449 if (utf16_length > String::kMaxHashCalcLength) continue;
11450 if (is_two_characters) {
11451 uint16_t c1 = unibrow::Utf16::LeadSurrogate(c);
11452 uint16_t c2 = unibrow::Utf16::TrailSurrogate(c);
11453 hasher.AddCharacter(c1);
11454 hasher.AddCharacter(c2);
11455 if (is_index) is_index = hasher.UpdateIndex(c1);
11456 if (is_index) is_index = hasher.UpdateIndex(c2);
11457 } else {
11458 hasher.AddCharacter(c);
11459 if (is_index) is_index = hasher.UpdateIndex(c);
11460 }
11461 }
11462 *utf16_length_out = static_cast<int>(utf16_length);
11463 // Must set length here so that hash computation is correct.
11464 hasher.length_ = utf16_length;
11465 return hasher.GetHashField();
11466 }
11467
11468
VisitConsString(ConsString * cons_string)11469 void IteratingStringHasher::VisitConsString(ConsString* cons_string) {
11470 // Run small ConsStrings through ConsStringIterator.
11471 if (cons_string->length() < 64) {
11472 ConsStringIterator iter(cons_string);
11473 int offset;
11474 String* string;
11475 while (nullptr != (string = iter.Next(&offset))) {
11476 DCHECK_EQ(0, offset);
11477 String::VisitFlat(this, string, 0);
11478 }
11479 return;
11480 }
11481 // Slow case.
11482 const int max_length = String::kMaxHashCalcLength;
11483 int length = std::min(cons_string->length(), max_length);
11484 if (cons_string->HasOnlyOneByteChars()) {
11485 uint8_t* buffer = new uint8_t[length];
11486 String::WriteToFlat(cons_string, buffer, 0, length);
11487 AddCharacters(buffer, length);
11488 delete[] buffer;
11489 } else {
11490 uint16_t* buffer = new uint16_t[length];
11491 String::WriteToFlat(cons_string, buffer, 0, length);
11492 AddCharacters(buffer, length);
11493 delete[] buffer;
11494 }
11495 }
11496
11497
PrintOn(FILE * file)11498 void String::PrintOn(FILE* file) {
11499 int length = this->length();
11500 for (int i = 0; i < length; i++) {
11501 PrintF(file, "%c", Get(i));
11502 }
11503 }
11504
11505
Hash()11506 int Map::Hash() {
11507 // For performance reasons we only hash the 3 most variable fields of a map:
11508 // constructor, prototype and bit_field2. For predictability reasons we
11509 // use objects' offsets in respective pages for hashing instead of raw
11510 // addresses.
11511
11512 // Shift away the tag.
11513 int hash = ObjectAddressForHashing(GetConstructor()) >> 2;
11514
11515 // XOR-ing the prototype and constructor directly yields too many zero bits
11516 // when the two pointers are close (which is fairly common).
11517 // To avoid this we shift the prototype bits relatively to the constructor.
11518 hash ^= ObjectAddressForHashing(prototype()) << (32 - kPageSizeBits);
11519
11520 return hash ^ (hash >> 16) ^ bit_field2();
11521 }
11522
11523
11524 namespace {
11525
CheckEquivalent(Map * first,Map * second)11526 bool CheckEquivalent(Map* first, Map* second) {
11527 return first->GetConstructor() == second->GetConstructor() &&
11528 first->prototype() == second->prototype() &&
11529 first->instance_type() == second->instance_type() &&
11530 first->bit_field() == second->bit_field() &&
11531 first->is_extensible() == second->is_extensible() &&
11532 first->new_target_is_base() == second->new_target_is_base() &&
11533 first->has_hidden_prototype() == second->has_hidden_prototype();
11534 }
11535
11536 } // namespace
11537
11538
EquivalentToForTransition(Map * other)11539 bool Map::EquivalentToForTransition(Map* other) {
11540 if (!CheckEquivalent(this, other)) return false;
11541 if (instance_type() == JS_FUNCTION_TYPE) {
11542 // JSFunctions require more checks to ensure that sloppy function is
11543 // not equvalent to strict function.
11544 int nof = Min(NumberOfOwnDescriptors(), other->NumberOfOwnDescriptors());
11545 return instance_descriptors()->IsEqualUpTo(other->instance_descriptors(),
11546 nof);
11547 }
11548 return true;
11549 }
11550
11551
EquivalentToForNormalization(Map * other,PropertyNormalizationMode mode)11552 bool Map::EquivalentToForNormalization(Map* other,
11553 PropertyNormalizationMode mode) {
11554 int properties =
11555 mode == CLEAR_INOBJECT_PROPERTIES ? 0 : other->GetInObjectProperties();
11556 return CheckEquivalent(this, other) && bit_field2() == other->bit_field2() &&
11557 GetInObjectProperties() == properties;
11558 }
11559
11560
Inlines(SharedFunctionInfo * candidate)11561 bool JSFunction::Inlines(SharedFunctionInfo* candidate) {
11562 DisallowHeapAllocation no_gc;
11563 if (shared() == candidate) return true;
11564 if (code()->kind() != Code::OPTIMIZED_FUNCTION) return false;
11565 DeoptimizationInputData* const data =
11566 DeoptimizationInputData::cast(code()->deoptimization_data());
11567 if (data->length() == 0) return false;
11568 FixedArray* const literals = data->LiteralArray();
11569 int const inlined_count = data->InlinedFunctionCount()->value();
11570 for (int i = 0; i < inlined_count; ++i) {
11571 if (SharedFunctionInfo::cast(literals->get(i)) == candidate) {
11572 return true;
11573 }
11574 }
11575 return false;
11576 }
11577
MarkForBaseline()11578 void JSFunction::MarkForBaseline() {
11579 Isolate* isolate = GetIsolate();
11580 set_code_no_write_barrier(
11581 isolate->builtins()->builtin(Builtins::kCompileBaseline));
11582 // No write barrier required, since the builtin is part of the root set.
11583 }
11584
MarkForOptimization()11585 void JSFunction::MarkForOptimization() {
11586 Isolate* isolate = GetIsolate();
11587 DCHECK(!IsOptimized());
11588 DCHECK(shared()->allows_lazy_compilation() ||
11589 !shared()->optimization_disabled());
11590 set_code_no_write_barrier(
11591 isolate->builtins()->builtin(Builtins::kCompileOptimized));
11592 // No write barrier required, since the builtin is part of the root set.
11593 }
11594
11595
AttemptConcurrentOptimization()11596 void JSFunction::AttemptConcurrentOptimization() {
11597 Isolate* isolate = GetIsolate();
11598 if (!isolate->concurrent_recompilation_enabled() ||
11599 isolate->bootstrapper()->IsActive()) {
11600 MarkForOptimization();
11601 return;
11602 }
11603 DCHECK(!IsInOptimizationQueue());
11604 DCHECK(!IsOptimized());
11605 DCHECK(shared()->allows_lazy_compilation() ||
11606 !shared()->optimization_disabled());
11607 DCHECK(isolate->concurrent_recompilation_enabled());
11608 if (FLAG_trace_concurrent_recompilation) {
11609 PrintF(" ** Marking ");
11610 ShortPrint();
11611 PrintF(" for concurrent recompilation.\n");
11612 }
11613 set_code_no_write_barrier(
11614 isolate->builtins()->builtin(Builtins::kCompileOptimizedConcurrent));
11615 // No write barrier required, since the builtin is part of the root set.
11616 }
11617
11618 // static
FindOrCreateLiterals(Handle<SharedFunctionInfo> shared,Handle<Context> native_context)11619 Handle<LiteralsArray> SharedFunctionInfo::FindOrCreateLiterals(
11620 Handle<SharedFunctionInfo> shared, Handle<Context> native_context) {
11621 Isolate* isolate = shared->GetIsolate();
11622 CodeAndLiterals result =
11623 shared->SearchOptimizedCodeMap(*native_context, BailoutId::None());
11624 if (result.literals != nullptr) {
11625 DCHECK(shared->feedback_metadata()->is_empty() ||
11626 !result.literals->feedback_vector()->is_empty());
11627 return handle(result.literals, isolate);
11628 }
11629
11630 Handle<TypeFeedbackVector> feedback_vector =
11631 TypeFeedbackVector::New(isolate, handle(shared->feedback_metadata()));
11632 Handle<LiteralsArray> literals = LiteralsArray::New(
11633 isolate, feedback_vector, shared->num_literals(), TENURED);
11634 Handle<Code> code;
11635 if (result.code != nullptr) {
11636 code = Handle<Code>(result.code, isolate);
11637 }
11638 AddToOptimizedCodeMap(shared, native_context, code, literals,
11639 BailoutId::None());
11640 return literals;
11641 }
11642
AddSharedCodeToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,Handle<Code> code)11643 void SharedFunctionInfo::AddSharedCodeToOptimizedCodeMap(
11644 Handle<SharedFunctionInfo> shared, Handle<Code> code) {
11645 Isolate* isolate = shared->GetIsolate();
11646 if (isolate->serializer_enabled()) return;
11647 DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
11648 // Empty code maps are unsupported.
11649 if (!shared->OptimizedCodeMapIsCleared()) {
11650 Handle<WeakCell> cell = isolate->factory()->NewWeakCell(code);
11651 // A collection may have occured and cleared the optimized code map in the
11652 // allocation above.
11653 if (!shared->OptimizedCodeMapIsCleared()) {
11654 shared->optimized_code_map()->set(kSharedCodeIndex, *cell);
11655 }
11656 }
11657 }
11658
11659 // static
AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,Handle<Context> native_context,MaybeHandle<Code> code,Handle<LiteralsArray> literals,BailoutId osr_ast_id)11660 void SharedFunctionInfo::AddToOptimizedCodeMap(
11661 Handle<SharedFunctionInfo> shared, Handle<Context> native_context,
11662 MaybeHandle<Code> code, Handle<LiteralsArray> literals,
11663 BailoutId osr_ast_id) {
11664 Isolate* isolate = shared->GetIsolate();
11665 if (isolate->serializer_enabled()) return;
11666 DCHECK(code.is_null() ||
11667 code.ToHandleChecked()->kind() == Code::OPTIMIZED_FUNCTION);
11668 DCHECK(native_context->IsNativeContext());
11669 STATIC_ASSERT(kEntryLength == 4);
11670 Handle<FixedArray> new_code_map;
11671 int entry;
11672
11673 if (shared->OptimizedCodeMapIsCleared()) {
11674 new_code_map = isolate->factory()->NewFixedArray(kInitialLength, TENURED);
11675 new_code_map->set(kSharedCodeIndex, *isolate->factory()->empty_weak_cell(),
11676 SKIP_WRITE_BARRIER);
11677 entry = kEntriesStart;
11678 } else {
11679 Handle<FixedArray> old_code_map(shared->optimized_code_map(), isolate);
11680 entry = shared->SearchOptimizedCodeMapEntry(*native_context, osr_ast_id);
11681 if (entry > kSharedCodeIndex) {
11682 // Just set the code and literals of the entry.
11683 if (!code.is_null()) {
11684 Handle<WeakCell> code_cell =
11685 isolate->factory()->NewWeakCell(code.ToHandleChecked());
11686 old_code_map->set(entry + kCachedCodeOffset, *code_cell);
11687 }
11688 if (literals->literals_count() == 0) {
11689 old_code_map->set(entry + kLiteralsOffset, *literals);
11690 } else {
11691 Handle<WeakCell> literals_cell =
11692 isolate->factory()->NewWeakCell(literals);
11693 old_code_map->set(entry + kLiteralsOffset, *literals_cell);
11694 }
11695 return;
11696 }
11697
11698 // Can we reuse an entry?
11699 DCHECK(entry < kEntriesStart);
11700 int length = old_code_map->length();
11701 for (int i = kEntriesStart; i < length; i += kEntryLength) {
11702 if (WeakCell::cast(old_code_map->get(i + kContextOffset))->cleared()) {
11703 new_code_map = old_code_map;
11704 entry = i;
11705 break;
11706 }
11707 }
11708
11709 if (entry < kEntriesStart) {
11710 // Copy old optimized code map and append one new entry.
11711 new_code_map = isolate->factory()->CopyFixedArrayAndGrow(
11712 old_code_map, kEntryLength, TENURED);
11713 // TODO(mstarzinger): Temporary workaround. The allocation above might
11714 // have flushed the optimized code map and the copy we created is full of
11715 // holes. For now we just give up on adding the entry and pretend it got
11716 // flushed.
11717 if (shared->OptimizedCodeMapIsCleared()) return;
11718 entry = old_code_map->length();
11719 }
11720 }
11721
11722 Handle<WeakCell> code_cell =
11723 code.is_null() ? isolate->factory()->empty_weak_cell()
11724 : isolate->factory()->NewWeakCell(code.ToHandleChecked());
11725 WeakCell* context_cell = native_context->self_weak_cell();
11726
11727 new_code_map->set(entry + kContextOffset, context_cell);
11728 new_code_map->set(entry + kCachedCodeOffset, *code_cell);
11729
11730 if (literals->literals_count() == 0) {
11731 new_code_map->set(entry + kLiteralsOffset, *literals);
11732 } else {
11733 Handle<WeakCell> literals_cell = isolate->factory()->NewWeakCell(literals);
11734 new_code_map->set(entry + kLiteralsOffset, *literals_cell);
11735 }
11736
11737 new_code_map->set(entry + kOsrAstIdOffset, Smi::FromInt(osr_ast_id.ToInt()));
11738
11739 #ifdef DEBUG
11740 for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) {
11741 WeakCell* cell = WeakCell::cast(new_code_map->get(i + kContextOffset));
11742 DCHECK(cell->cleared() || cell->value()->IsNativeContext());
11743 cell = WeakCell::cast(new_code_map->get(i + kCachedCodeOffset));
11744 DCHECK(cell->cleared() ||
11745 (cell->value()->IsCode() &&
11746 Code::cast(cell->value())->kind() == Code::OPTIMIZED_FUNCTION));
11747 Object* lits = new_code_map->get(i + kLiteralsOffset);
11748 if (lits->IsWeakCell()) {
11749 cell = WeakCell::cast(lits);
11750 DCHECK(cell->cleared() ||
11751 (cell->value()->IsLiteralsArray() &&
11752 LiteralsArray::cast(cell->value())->literals_count() > 0));
11753 } else {
11754 DCHECK(lits->IsLiteralsArray() &&
11755 LiteralsArray::cast(lits)->literals_count() == 0);
11756 }
11757 DCHECK(new_code_map->get(i + kOsrAstIdOffset)->IsSmi());
11758 }
11759 #endif
11760
11761 FixedArray* old_code_map = shared->optimized_code_map();
11762 if (old_code_map != *new_code_map) {
11763 shared->set_optimized_code_map(*new_code_map);
11764 }
11765 }
11766
11767
ClearOptimizedCodeMap()11768 void SharedFunctionInfo::ClearOptimizedCodeMap() {
11769 FixedArray* cleared_map = GetHeap()->cleared_optimized_code_map();
11770 set_optimized_code_map(cleared_map, SKIP_WRITE_BARRIER);
11771 }
11772
11773
EvictFromOptimizedCodeMap(Code * optimized_code,const char * reason)11774 void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code,
11775 const char* reason) {
11776 DisallowHeapAllocation no_gc;
11777 if (OptimizedCodeMapIsCleared()) return;
11778
11779 Heap* heap = GetHeap();
11780 FixedArray* code_map = optimized_code_map();
11781 int dst = kEntriesStart;
11782 int length = code_map->length();
11783 for (int src = kEntriesStart; src < length; src += kEntryLength) {
11784 DCHECK(WeakCell::cast(code_map->get(src))->cleared() ||
11785 WeakCell::cast(code_map->get(src))->value()->IsNativeContext());
11786 if (WeakCell::cast(code_map->get(src + kCachedCodeOffset))->value() ==
11787 optimized_code) {
11788 BailoutId osr(Smi::cast(code_map->get(src + kOsrAstIdOffset))->value());
11789 if (FLAG_trace_opt) {
11790 PrintF("[evicting entry from optimizing code map (%s) for ", reason);
11791 ShortPrint();
11792 if (osr.IsNone()) {
11793 PrintF("]\n");
11794 } else {
11795 PrintF(" (osr ast id %d)]\n", osr.ToInt());
11796 }
11797 }
11798 if (!osr.IsNone()) {
11799 // Evict the src entry by not copying it to the dst entry.
11800 continue;
11801 }
11802 // In case of non-OSR entry just clear the code in order to proceed
11803 // sharing literals.
11804 code_map->set(src + kCachedCodeOffset, heap->empty_weak_cell(),
11805 SKIP_WRITE_BARRIER);
11806 }
11807
11808 // Keep the src entry by copying it to the dst entry.
11809 if (dst != src) {
11810 code_map->set(dst + kContextOffset, code_map->get(src + kContextOffset));
11811 code_map->set(dst + kCachedCodeOffset,
11812 code_map->get(src + kCachedCodeOffset));
11813 code_map->set(dst + kLiteralsOffset,
11814 code_map->get(src + kLiteralsOffset));
11815 code_map->set(dst + kOsrAstIdOffset,
11816 code_map->get(src + kOsrAstIdOffset));
11817 }
11818 dst += kEntryLength;
11819 }
11820 if (WeakCell::cast(code_map->get(kSharedCodeIndex))->value() ==
11821 optimized_code) {
11822 // Evict context-independent code as well.
11823 code_map->set(kSharedCodeIndex, heap->empty_weak_cell(),
11824 SKIP_WRITE_BARRIER);
11825 if (FLAG_trace_opt) {
11826 PrintF("[evicting entry from optimizing code map (%s) for ", reason);
11827 ShortPrint();
11828 PrintF(" (context-independent code)]\n");
11829 }
11830 }
11831 if (dst != length) {
11832 // Always trim even when array is cleared because of heap verifier.
11833 heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(code_map,
11834 length - dst);
11835 if (code_map->length() == kEntriesStart &&
11836 WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) {
11837 ClearOptimizedCodeMap();
11838 }
11839 }
11840 }
11841
11842
TrimOptimizedCodeMap(int shrink_by)11843 void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) {
11844 FixedArray* code_map = optimized_code_map();
11845 DCHECK(shrink_by % kEntryLength == 0);
11846 DCHECK(shrink_by <= code_map->length() - kEntriesStart);
11847 // Always trim even when array is cleared because of heap verifier.
11848 GetHeap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(code_map,
11849 shrink_by);
11850 if (code_map->length() == kEntriesStart &&
11851 WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) {
11852 ClearOptimizedCodeMap();
11853 }
11854 }
11855
11856 // static
EnsureLiterals(Handle<JSFunction> function)11857 void JSFunction::EnsureLiterals(Handle<JSFunction> function) {
11858 Handle<SharedFunctionInfo> shared(function->shared());
11859 Handle<Context> native_context(function->context()->native_context());
11860 if (function->literals() ==
11861 function->GetIsolate()->heap()->empty_literals_array()) {
11862 Handle<LiteralsArray> literals =
11863 SharedFunctionInfo::FindOrCreateLiterals(shared, native_context);
11864 function->set_literals(*literals);
11865 }
11866 }
11867
GetMinInobjectSlack(Map * map,void * data)11868 static void GetMinInobjectSlack(Map* map, void* data) {
11869 int slack = map->unused_property_fields();
11870 if (*reinterpret_cast<int*>(data) > slack) {
11871 *reinterpret_cast<int*>(data) = slack;
11872 }
11873 }
11874
11875
ShrinkInstanceSize(Map * map,void * data)11876 static void ShrinkInstanceSize(Map* map, void* data) {
11877 int slack = *reinterpret_cast<int*>(data);
11878 map->SetInObjectProperties(map->GetInObjectProperties() - slack);
11879 map->set_unused_property_fields(map->unused_property_fields() - slack);
11880 map->set_instance_size(map->instance_size() - slack * kPointerSize);
11881 map->set_construction_counter(Map::kNoSlackTracking);
11882
11883 // Visitor id might depend on the instance size, recalculate it.
11884 map->set_visitor_id(Heap::GetStaticVisitorIdForMap(map));
11885 }
11886
StopSlackTracking(Map * map,void * data)11887 static void StopSlackTracking(Map* map, void* data) {
11888 map->set_construction_counter(Map::kNoSlackTracking);
11889 }
11890
CompleteInobjectSlackTracking()11891 void Map::CompleteInobjectSlackTracking() {
11892 // Has to be an initial map.
11893 DCHECK(GetBackPointer()->IsUndefined(GetIsolate()));
11894
11895 int slack = unused_property_fields();
11896 TransitionArray::TraverseTransitionTree(this, &GetMinInobjectSlack, &slack);
11897 if (slack != 0) {
11898 // Resize the initial map and all maps in its transition tree.
11899 TransitionArray::TraverseTransitionTree(this, &ShrinkInstanceSize, &slack);
11900 } else {
11901 TransitionArray::TraverseTransitionTree(this, &StopSlackTracking, nullptr);
11902 }
11903 }
11904
11905
PrototypeBenefitsFromNormalization(Handle<JSObject> object)11906 static bool PrototypeBenefitsFromNormalization(Handle<JSObject> object) {
11907 DisallowHeapAllocation no_gc;
11908 if (!object->HasFastProperties()) return false;
11909 Map* map = object->map();
11910 if (map->is_prototype_map()) return false;
11911 DescriptorArray* descriptors = map->instance_descriptors();
11912 for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
11913 PropertyDetails details = descriptors->GetDetails(i);
11914 if (details.location() == kDescriptor) continue;
11915 if (details.representation().IsHeapObject() ||
11916 details.representation().IsTagged()) {
11917 FieldIndex index = FieldIndex::ForDescriptor(map, i);
11918 if (object->RawFastPropertyAt(index)->IsJSFunction()) return true;
11919 }
11920 }
11921 return false;
11922 }
11923
11924 // static
MakePrototypesFast(Handle<Object> receiver,WhereToStart where_to_start,Isolate * isolate)11925 void JSObject::MakePrototypesFast(Handle<Object> receiver,
11926 WhereToStart where_to_start,
11927 Isolate* isolate) {
11928 if (!receiver->IsJSReceiver()) return;
11929 for (PrototypeIterator iter(isolate, Handle<JSReceiver>::cast(receiver),
11930 where_to_start);
11931 !iter.IsAtEnd(); iter.Advance()) {
11932 Handle<Object> current = PrototypeIterator::GetCurrent(iter);
11933 if (!current->IsJSObject()) return;
11934 Handle<JSObject> current_obj = Handle<JSObject>::cast(current);
11935 Map* current_map = current_obj->map();
11936 if (current_map->is_prototype_map() &&
11937 !current_map->should_be_fast_prototype_map()) {
11938 Handle<Map> map(current_map);
11939 Map::SetShouldBeFastPrototypeMap(map, true, isolate);
11940 JSObject::OptimizeAsPrototype(current_obj, FAST_PROTOTYPE);
11941 }
11942 }
11943 }
11944
11945 // static
OptimizeAsPrototype(Handle<JSObject> object,PrototypeOptimizationMode mode)11946 void JSObject::OptimizeAsPrototype(Handle<JSObject> object,
11947 PrototypeOptimizationMode mode) {
11948 if (object->IsJSGlobalObject()) return;
11949 if (mode == FAST_PROTOTYPE && PrototypeBenefitsFromNormalization(object)) {
11950 // First normalize to ensure all JSFunctions are DATA_CONSTANT.
11951 JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0,
11952 "NormalizeAsPrototype");
11953 }
11954 Handle<Map> previous_map(object->map());
11955 if (object->map()->is_prototype_map()) {
11956 if (object->map()->should_be_fast_prototype_map() &&
11957 !object->HasFastProperties()) {
11958 JSObject::MigrateSlowToFast(object, 0, "OptimizeAsPrototype");
11959 }
11960 } else {
11961 if (object->map() == *previous_map) {
11962 Handle<Map> new_map = Map::Copy(handle(object->map()), "CopyAsPrototype");
11963 JSObject::MigrateToMap(object, new_map);
11964 }
11965 object->map()->set_is_prototype_map(true);
11966
11967 // Replace the pointer to the exact constructor with the Object function
11968 // from the same context if undetectable from JS. This is to avoid keeping
11969 // memory alive unnecessarily.
11970 Object* maybe_constructor = object->map()->GetConstructor();
11971 if (maybe_constructor->IsJSFunction()) {
11972 JSFunction* constructor = JSFunction::cast(maybe_constructor);
11973 Isolate* isolate = object->GetIsolate();
11974 if (!constructor->shared()->IsApiFunction() &&
11975 object->class_name() == isolate->heap()->Object_string()) {
11976 Context* context = constructor->context()->native_context();
11977 JSFunction* object_function = context->object_function();
11978 object->map()->SetConstructor(object_function);
11979 }
11980 }
11981 }
11982 }
11983
11984
11985 // static
ReoptimizeIfPrototype(Handle<JSObject> object)11986 void JSObject::ReoptimizeIfPrototype(Handle<JSObject> object) {
11987 if (!object->map()->is_prototype_map()) return;
11988 if (!object->map()->should_be_fast_prototype_map()) return;
11989 OptimizeAsPrototype(object, FAST_PROTOTYPE);
11990 }
11991
11992
11993 // static
LazyRegisterPrototypeUser(Handle<Map> user,Isolate * isolate)11994 void JSObject::LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate) {
11995 // Contract: In line with InvalidatePrototypeChains()'s requirements,
11996 // leaf maps don't need to register as users, only prototypes do.
11997 DCHECK(user->is_prototype_map());
11998
11999 Handle<Map> current_user = user;
12000 Handle<PrototypeInfo> current_user_info =
12001 Map::GetOrCreatePrototypeInfo(user, isolate);
12002 for (PrototypeIterator iter(user); !iter.IsAtEnd(); iter.Advance()) {
12003 // Walk up the prototype chain as far as links haven't been registered yet.
12004 if (current_user_info->registry_slot() != PrototypeInfo::UNREGISTERED) {
12005 break;
12006 }
12007 Handle<Object> maybe_proto = PrototypeIterator::GetCurrent(iter);
12008 // Proxies on the prototype chain are not supported. They make it
12009 // impossible to make any assumptions about the prototype chain anyway.
12010 if (maybe_proto->IsJSProxy()) return;
12011 Handle<JSObject> proto = Handle<JSObject>::cast(maybe_proto);
12012 Handle<PrototypeInfo> proto_info =
12013 Map::GetOrCreatePrototypeInfo(proto, isolate);
12014 Handle<Object> maybe_registry(proto_info->prototype_users(), isolate);
12015 int slot = 0;
12016 Handle<WeakFixedArray> new_array =
12017 WeakFixedArray::Add(maybe_registry, current_user, &slot);
12018 current_user_info->set_registry_slot(slot);
12019 if (!maybe_registry.is_identical_to(new_array)) {
12020 proto_info->set_prototype_users(*new_array);
12021 }
12022 if (FLAG_trace_prototype_users) {
12023 PrintF("Registering %p as a user of prototype %p (map=%p).\n",
12024 reinterpret_cast<void*>(*current_user),
12025 reinterpret_cast<void*>(*proto),
12026 reinterpret_cast<void*>(proto->map()));
12027 }
12028
12029 current_user = handle(proto->map(), isolate);
12030 current_user_info = proto_info;
12031 }
12032 }
12033
12034
12035 // Can be called regardless of whether |user| was actually registered with
12036 // |prototype|. Returns true when there was a registration.
12037 // static
UnregisterPrototypeUser(Handle<Map> user,Isolate * isolate)12038 bool JSObject::UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate) {
12039 DCHECK(user->is_prototype_map());
12040 // If it doesn't have a PrototypeInfo, it was never registered.
12041 if (!user->prototype_info()->IsPrototypeInfo()) return false;
12042 // If it had no prototype before, see if it had users that might expect
12043 // registration.
12044 if (!user->prototype()->IsJSObject()) {
12045 Object* users =
12046 PrototypeInfo::cast(user->prototype_info())->prototype_users();
12047 return users->IsWeakFixedArray();
12048 }
12049 Handle<JSObject> prototype(JSObject::cast(user->prototype()), isolate);
12050 Handle<PrototypeInfo> user_info =
12051 Map::GetOrCreatePrototypeInfo(user, isolate);
12052 int slot = user_info->registry_slot();
12053 if (slot == PrototypeInfo::UNREGISTERED) return false;
12054 DCHECK(prototype->map()->is_prototype_map());
12055 Object* maybe_proto_info = prototype->map()->prototype_info();
12056 // User knows its registry slot, prototype info and user registry must exist.
12057 DCHECK(maybe_proto_info->IsPrototypeInfo());
12058 Handle<PrototypeInfo> proto_info(PrototypeInfo::cast(maybe_proto_info),
12059 isolate);
12060 Object* maybe_registry = proto_info->prototype_users();
12061 DCHECK(maybe_registry->IsWeakFixedArray());
12062 DCHECK(WeakFixedArray::cast(maybe_registry)->Get(slot) == *user);
12063 WeakFixedArray::cast(maybe_registry)->Clear(slot);
12064 if (FLAG_trace_prototype_users) {
12065 PrintF("Unregistering %p as a user of prototype %p.\n",
12066 reinterpret_cast<void*>(*user), reinterpret_cast<void*>(*prototype));
12067 }
12068 return true;
12069 }
12070
12071
InvalidatePrototypeChainsInternal(Map * map)12072 static void InvalidatePrototypeChainsInternal(Map* map) {
12073 if (!map->is_prototype_map()) return;
12074 if (FLAG_trace_prototype_users) {
12075 PrintF("Invalidating prototype map %p 's cell\n",
12076 reinterpret_cast<void*>(map));
12077 }
12078 Object* maybe_proto_info = map->prototype_info();
12079 if (!maybe_proto_info->IsPrototypeInfo()) return;
12080 PrototypeInfo* proto_info = PrototypeInfo::cast(maybe_proto_info);
12081 Object* maybe_cell = proto_info->validity_cell();
12082 if (maybe_cell->IsCell()) {
12083 // Just set the value; the cell will be replaced lazily.
12084 Cell* cell = Cell::cast(maybe_cell);
12085 cell->set_value(Smi::FromInt(Map::kPrototypeChainInvalid));
12086 }
12087
12088 WeakFixedArray::Iterator iterator(proto_info->prototype_users());
12089 // For now, only maps register themselves as users.
12090 Map* user;
12091 while ((user = iterator.Next<Map>())) {
12092 // Walk the prototype chain (backwards, towards leaf objects) if necessary.
12093 InvalidatePrototypeChainsInternal(user);
12094 }
12095 }
12096
12097
12098 // static
InvalidatePrototypeChains(Map * map)12099 void JSObject::InvalidatePrototypeChains(Map* map) {
12100 DisallowHeapAllocation no_gc;
12101 InvalidatePrototypeChainsInternal(map);
12102 }
12103
12104
12105 // static
GetOrCreatePrototypeInfo(Handle<JSObject> prototype,Isolate * isolate)12106 Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<JSObject> prototype,
12107 Isolate* isolate) {
12108 Object* maybe_proto_info = prototype->map()->prototype_info();
12109 if (maybe_proto_info->IsPrototypeInfo()) {
12110 return handle(PrototypeInfo::cast(maybe_proto_info), isolate);
12111 }
12112 Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo();
12113 prototype->map()->set_prototype_info(*proto_info);
12114 return proto_info;
12115 }
12116
12117
12118 // static
GetOrCreatePrototypeInfo(Handle<Map> prototype_map,Isolate * isolate)12119 Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<Map> prototype_map,
12120 Isolate* isolate) {
12121 Object* maybe_proto_info = prototype_map->prototype_info();
12122 if (maybe_proto_info->IsPrototypeInfo()) {
12123 return handle(PrototypeInfo::cast(maybe_proto_info), isolate);
12124 }
12125 Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo();
12126 prototype_map->set_prototype_info(*proto_info);
12127 return proto_info;
12128 }
12129
12130 // static
SetShouldBeFastPrototypeMap(Handle<Map> map,bool value,Isolate * isolate)12131 void Map::SetShouldBeFastPrototypeMap(Handle<Map> map, bool value,
12132 Isolate* isolate) {
12133 if (value == false && !map->prototype_info()->IsPrototypeInfo()) {
12134 // "False" is the implicit default value, so there's nothing to do.
12135 return;
12136 }
12137 GetOrCreatePrototypeInfo(map, isolate)->set_should_be_fast_map(value);
12138 }
12139
12140 // static
GetOrCreatePrototypeChainValidityCell(Handle<Map> map,Isolate * isolate)12141 Handle<Cell> Map::GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
12142 Isolate* isolate) {
12143 Handle<Object> maybe_prototype(map->prototype(), isolate);
12144 if (!maybe_prototype->IsJSObject()) return Handle<Cell>::null();
12145 Handle<JSObject> prototype = Handle<JSObject>::cast(maybe_prototype);
12146 // Ensure the prototype is registered with its own prototypes so its cell
12147 // will be invalidated when necessary.
12148 JSObject::LazyRegisterPrototypeUser(handle(prototype->map(), isolate),
12149 isolate);
12150 Handle<PrototypeInfo> proto_info =
12151 GetOrCreatePrototypeInfo(prototype, isolate);
12152 Object* maybe_cell = proto_info->validity_cell();
12153 // Return existing cell if it's still valid.
12154 if (maybe_cell->IsCell()) {
12155 Handle<Cell> cell(Cell::cast(maybe_cell), isolate);
12156 if (cell->value() == Smi::FromInt(Map::kPrototypeChainValid)) {
12157 return cell;
12158 }
12159 }
12160 // Otherwise create a new cell.
12161 Handle<Cell> cell = isolate->factory()->NewCell(
12162 handle(Smi::FromInt(Map::kPrototypeChainValid), isolate));
12163 proto_info->set_validity_cell(*cell);
12164 return cell;
12165 }
12166
12167
12168 // static
SetPrototype(Handle<Map> map,Handle<Object> prototype,PrototypeOptimizationMode proto_mode)12169 void Map::SetPrototype(Handle<Map> map, Handle<Object> prototype,
12170 PrototypeOptimizationMode proto_mode) {
12171 RuntimeCallTimerScope stats_scope(*map, &RuntimeCallStats::Map_SetPrototype);
12172
12173 bool is_hidden = false;
12174 if (prototype->IsJSObject()) {
12175 Handle<JSObject> prototype_jsobj = Handle<JSObject>::cast(prototype);
12176 JSObject::OptimizeAsPrototype(prototype_jsobj, proto_mode);
12177
12178 Object* maybe_constructor = prototype_jsobj->map()->GetConstructor();
12179 if (maybe_constructor->IsJSFunction()) {
12180 JSFunction* constructor = JSFunction::cast(maybe_constructor);
12181 Object* data = constructor->shared()->function_data();
12182 is_hidden = (data->IsFunctionTemplateInfo() &&
12183 FunctionTemplateInfo::cast(data)->hidden_prototype()) ||
12184 prototype->IsJSGlobalObject();
12185 }
12186 }
12187 map->set_has_hidden_prototype(is_hidden);
12188
12189 WriteBarrierMode wb_mode = prototype->IsNull(map->GetIsolate())
12190 ? SKIP_WRITE_BARRIER
12191 : UPDATE_WRITE_BARRIER;
12192 map->set_prototype(*prototype, wb_mode);
12193 }
12194
12195
CacheInitialJSArrayMaps(Handle<Context> native_context,Handle<Map> initial_map)12196 Handle<Object> CacheInitialJSArrayMaps(
12197 Handle<Context> native_context, Handle<Map> initial_map) {
12198 // Replace all of the cached initial array maps in the native context with
12199 // the appropriate transitioned elements kind maps.
12200 Handle<Map> current_map = initial_map;
12201 ElementsKind kind = current_map->elements_kind();
12202 DCHECK_EQ(GetInitialFastElementsKind(), kind);
12203 native_context->set(Context::ArrayMapIndex(kind), *current_map);
12204 for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1;
12205 i < kFastElementsKindCount; ++i) {
12206 Handle<Map> new_map;
12207 ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i);
12208 if (Map* maybe_elements_transition = current_map->ElementsTransitionMap()) {
12209 new_map = handle(maybe_elements_transition);
12210 } else {
12211 new_map = Map::CopyAsElementsKind(
12212 current_map, next_kind, INSERT_TRANSITION);
12213 }
12214 DCHECK_EQ(next_kind, new_map->elements_kind());
12215 native_context->set(Context::ArrayMapIndex(next_kind), *new_map);
12216 current_map = new_map;
12217 }
12218 return initial_map;
12219 }
12220
12221
SetInstancePrototype(Handle<JSFunction> function,Handle<Object> value)12222 void JSFunction::SetInstancePrototype(Handle<JSFunction> function,
12223 Handle<Object> value) {
12224 Isolate* isolate = function->GetIsolate();
12225
12226 DCHECK(value->IsJSReceiver());
12227
12228 // Now some logic for the maps of the objects that are created by using this
12229 // function as a constructor.
12230 if (function->has_initial_map()) {
12231 // If the function has allocated the initial map replace it with a
12232 // copy containing the new prototype. Also complete any in-object
12233 // slack tracking that is in progress at this point because it is
12234 // still tracking the old copy.
12235 function->CompleteInobjectSlackTrackingIfActive();
12236
12237 Handle<Map> initial_map(function->initial_map(), isolate);
12238
12239 if (!initial_map->GetIsolate()->bootstrapper()->IsActive() &&
12240 initial_map->instance_type() == JS_OBJECT_TYPE) {
12241 // Put the value in the initial map field until an initial map is needed.
12242 // At that point, a new initial map is created and the prototype is put
12243 // into the initial map where it belongs.
12244 function->set_prototype_or_initial_map(*value);
12245 } else {
12246 Handle<Map> new_map = Map::Copy(initial_map, "SetInstancePrototype");
12247 JSFunction::SetInitialMap(function, new_map, value);
12248
12249 // If the function is used as the global Array function, cache the
12250 // updated initial maps (and transitioned versions) in the native context.
12251 Handle<Context> native_context(function->context()->native_context(),
12252 isolate);
12253 Handle<Object> array_function(
12254 native_context->get(Context::ARRAY_FUNCTION_INDEX), isolate);
12255 if (array_function->IsJSFunction() &&
12256 *function == JSFunction::cast(*array_function)) {
12257 CacheInitialJSArrayMaps(native_context, new_map);
12258 }
12259 }
12260
12261 // Deoptimize all code that embeds the previous initial map.
12262 initial_map->dependent_code()->DeoptimizeDependentCodeGroup(
12263 isolate, DependentCode::kInitialMapChangedGroup);
12264 } else {
12265 // Put the value in the initial map field until an initial map is
12266 // needed. At that point, a new initial map is created and the
12267 // prototype is put into the initial map where it belongs.
12268 function->set_prototype_or_initial_map(*value);
12269 if (value->IsJSObject()) {
12270 // Optimize as prototype to detach it from its transition tree.
12271 JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value),
12272 FAST_PROTOTYPE);
12273 }
12274 }
12275 isolate->heap()->ClearInstanceofCache();
12276 }
12277
12278
SetPrototype(Handle<JSFunction> function,Handle<Object> value)12279 void JSFunction::SetPrototype(Handle<JSFunction> function,
12280 Handle<Object> value) {
12281 DCHECK(function->IsConstructor() ||
12282 IsGeneratorFunction(function->shared()->kind()));
12283 Handle<Object> construct_prototype = value;
12284
12285 // If the value is not a JSReceiver, store the value in the map's
12286 // constructor field so it can be accessed. Also, set the prototype
12287 // used for constructing objects to the original object prototype.
12288 // See ECMA-262 13.2.2.
12289 if (!value->IsJSReceiver()) {
12290 // Copy the map so this does not affect unrelated functions.
12291 // Remove map transitions because they point to maps with a
12292 // different prototype.
12293 Handle<Map> new_map = Map::Copy(handle(function->map()), "SetPrototype");
12294
12295 JSObject::MigrateToMap(function, new_map);
12296 new_map->SetConstructor(*value);
12297 new_map->set_non_instance_prototype(true);
12298 Isolate* isolate = new_map->GetIsolate();
12299
12300 construct_prototype = handle(
12301 IsGeneratorFunction(function->shared()->kind())
12302 ? function->context()
12303 ->native_context()
12304 ->initial_generator_prototype()
12305 : function->context()->native_context()->initial_object_prototype(),
12306 isolate);
12307 } else {
12308 function->map()->set_non_instance_prototype(false);
12309 }
12310
12311 return SetInstancePrototype(function, construct_prototype);
12312 }
12313
12314
RemovePrototype()12315 bool JSFunction::RemovePrototype() {
12316 Context* native_context = context()->native_context();
12317 Map* no_prototype_map =
12318 is_strict(shared()->language_mode())
12319 ? native_context->strict_function_without_prototype_map()
12320 : native_context->sloppy_function_without_prototype_map();
12321
12322 if (map() == no_prototype_map) return true;
12323
12324 #ifdef DEBUG
12325 if (map() != (is_strict(shared()->language_mode())
12326 ? native_context->strict_function_map()
12327 : native_context->sloppy_function_map())) {
12328 return false;
12329 }
12330 #endif
12331
12332 set_map(no_prototype_map);
12333 set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value());
12334 return true;
12335 }
12336
12337
SetInitialMap(Handle<JSFunction> function,Handle<Map> map,Handle<Object> prototype)12338 void JSFunction::SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
12339 Handle<Object> prototype) {
12340 if (map->prototype() != *prototype) {
12341 Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
12342 }
12343 function->set_prototype_or_initial_map(*map);
12344 map->SetConstructor(*function);
12345 #if TRACE_MAPS
12346 if (FLAG_trace_maps) {
12347 PrintF("[TraceMaps: InitialMap map= %p SFI= %d_%s ]\n",
12348 reinterpret_cast<void*>(*map), function->shared()->unique_id(),
12349 function->shared()->DebugName()->ToCString().get());
12350 }
12351 #endif
12352 }
12353
12354
12355 #ifdef DEBUG
12356 namespace {
12357
CanSubclassHaveInobjectProperties(InstanceType instance_type)12358 bool CanSubclassHaveInobjectProperties(InstanceType instance_type) {
12359 switch (instance_type) {
12360 case JS_API_OBJECT_TYPE:
12361 case JS_ARRAY_BUFFER_TYPE:
12362 case JS_ARRAY_TYPE:
12363 case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
12364 case JS_DATA_VIEW_TYPE:
12365 case JS_DATE_TYPE:
12366 case JS_FUNCTION_TYPE:
12367 case JS_GENERATOR_OBJECT_TYPE:
12368 case JS_MAP_ITERATOR_TYPE:
12369 case JS_MAP_TYPE:
12370 case JS_MESSAGE_OBJECT_TYPE:
12371 case JS_MODULE_TYPE:
12372 case JS_OBJECT_TYPE:
12373 case JS_ERROR_TYPE:
12374 case JS_ARGUMENTS_TYPE:
12375 case JS_PROMISE_TYPE:
12376 case JS_REGEXP_TYPE:
12377 case JS_SET_ITERATOR_TYPE:
12378 case JS_SET_TYPE:
12379 case JS_SPECIAL_API_OBJECT_TYPE:
12380 case JS_TYPED_ARRAY_TYPE:
12381 case JS_VALUE_TYPE:
12382 case JS_WEAK_MAP_TYPE:
12383 case JS_WEAK_SET_TYPE:
12384 return true;
12385
12386 case BYTECODE_ARRAY_TYPE:
12387 case BYTE_ARRAY_TYPE:
12388 case CELL_TYPE:
12389 case CODE_TYPE:
12390 case FILLER_TYPE:
12391 case FIXED_ARRAY_TYPE:
12392 case FIXED_DOUBLE_ARRAY_TYPE:
12393 case FOREIGN_TYPE:
12394 case FREE_SPACE_TYPE:
12395 case HEAP_NUMBER_TYPE:
12396 case JS_BOUND_FUNCTION_TYPE:
12397 case JS_GLOBAL_OBJECT_TYPE:
12398 case JS_GLOBAL_PROXY_TYPE:
12399 case JS_PROXY_TYPE:
12400 case MAP_TYPE:
12401 case MUTABLE_HEAP_NUMBER_TYPE:
12402 case ODDBALL_TYPE:
12403 case PROPERTY_CELL_TYPE:
12404 case SHARED_FUNCTION_INFO_TYPE:
12405 case SIMD128_VALUE_TYPE:
12406 case SYMBOL_TYPE:
12407 case WEAK_CELL_TYPE:
12408
12409 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
12410 case FIXED_##TYPE##_ARRAY_TYPE:
12411 #undef TYPED_ARRAY_CASE
12412
12413 #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE:
12414 STRUCT_LIST(MAKE_STRUCT_CASE)
12415 #undef MAKE_STRUCT_CASE
12416 // We must not end up here for these instance types at all.
12417 UNREACHABLE();
12418 // Fall through.
12419 default:
12420 return false;
12421 }
12422 }
12423
12424 } // namespace
12425 #endif
12426
12427
EnsureHasInitialMap(Handle<JSFunction> function)12428 void JSFunction::EnsureHasInitialMap(Handle<JSFunction> function) {
12429 DCHECK(function->IsConstructor() || function->shared()->is_resumable());
12430 if (function->has_initial_map()) return;
12431 Isolate* isolate = function->GetIsolate();
12432
12433 // The constructor should be compiled for the optimization hints to be
12434 // available.
12435 Compiler::Compile(function, Compiler::CLEAR_EXCEPTION);
12436
12437 // First create a new map with the size and number of in-object properties
12438 // suggested by the function.
12439 InstanceType instance_type;
12440 if (function->shared()->is_resumable()) {
12441 instance_type = JS_GENERATOR_OBJECT_TYPE;
12442 } else {
12443 instance_type = JS_OBJECT_TYPE;
12444 }
12445 int instance_size;
12446 int in_object_properties;
12447 function->CalculateInstanceSize(instance_type, 0, &instance_size,
12448 &in_object_properties);
12449
12450 Handle<Map> map = isolate->factory()->NewMap(instance_type, instance_size);
12451
12452 // Fetch or allocate prototype.
12453 Handle<Object> prototype;
12454 if (function->has_instance_prototype()) {
12455 prototype = handle(function->instance_prototype(), isolate);
12456 } else {
12457 prototype = isolate->factory()->NewFunctionPrototype(function);
12458 }
12459 map->SetInObjectProperties(in_object_properties);
12460 map->set_unused_property_fields(in_object_properties);
12461 DCHECK(map->has_fast_object_elements());
12462
12463 // Finally link initial map and constructor function.
12464 DCHECK(prototype->IsJSReceiver());
12465 JSFunction::SetInitialMap(function, map, prototype);
12466 map->StartInobjectSlackTracking();
12467 }
12468
12469
12470 // static
GetDerivedMap(Isolate * isolate,Handle<JSFunction> constructor,Handle<JSReceiver> new_target)12471 MaybeHandle<Map> JSFunction::GetDerivedMap(Isolate* isolate,
12472 Handle<JSFunction> constructor,
12473 Handle<JSReceiver> new_target) {
12474 EnsureHasInitialMap(constructor);
12475
12476 Handle<Map> constructor_initial_map(constructor->initial_map(), isolate);
12477 if (*new_target == *constructor) return constructor_initial_map;
12478
12479 // Fast case, new.target is a subclass of constructor. The map is cacheable
12480 // (and may already have been cached). new.target.prototype is guaranteed to
12481 // be a JSReceiver.
12482 if (new_target->IsJSFunction()) {
12483 Handle<JSFunction> function = Handle<JSFunction>::cast(new_target);
12484
12485 // Check that |function|'s initial map still in sync with the |constructor|,
12486 // otherwise we must create a new initial map for |function|.
12487 if (function->has_initial_map() &&
12488 function->initial_map()->GetConstructor() == *constructor) {
12489 return handle(function->initial_map(), isolate);
12490 }
12491
12492 // Create a new map with the size and number of in-object properties
12493 // suggested by |function|.
12494
12495 // Link initial map and constructor function if the new.target is actually a
12496 // subclass constructor.
12497 if (IsSubclassConstructor(function->shared()->kind())) {
12498 Handle<Object> prototype(function->instance_prototype(), isolate);
12499 InstanceType instance_type = constructor_initial_map->instance_type();
12500 DCHECK(CanSubclassHaveInobjectProperties(instance_type));
12501 int internal_fields =
12502 JSObject::GetInternalFieldCount(*constructor_initial_map);
12503 int pre_allocated = constructor_initial_map->GetInObjectProperties() -
12504 constructor_initial_map->unused_property_fields();
12505 int instance_size;
12506 int in_object_properties;
12507 function->CalculateInstanceSizeForDerivedClass(
12508 instance_type, internal_fields, &instance_size,
12509 &in_object_properties);
12510
12511 int unused_property_fields = in_object_properties - pre_allocated;
12512 Handle<Map> map =
12513 Map::CopyInitialMap(constructor_initial_map, instance_size,
12514 in_object_properties, unused_property_fields);
12515 map->set_new_target_is_base(false);
12516
12517 JSFunction::SetInitialMap(function, map, prototype);
12518 map->SetConstructor(*constructor);
12519 map->set_construction_counter(Map::kNoSlackTracking);
12520 map->StartInobjectSlackTracking();
12521 return map;
12522 }
12523 }
12524
12525 // Slow path, new.target is either a proxy or can't cache the map.
12526 // new.target.prototype is not guaranteed to be a JSReceiver, and may need to
12527 // fall back to the intrinsicDefaultProto.
12528 Handle<Object> prototype;
12529 if (new_target->IsJSFunction()) {
12530 Handle<JSFunction> function = Handle<JSFunction>::cast(new_target);
12531 // Make sure the new.target.prototype is cached.
12532 EnsureHasInitialMap(function);
12533 prototype = handle(function->prototype(), isolate);
12534 } else {
12535 Handle<String> prototype_string = isolate->factory()->prototype_string();
12536 ASSIGN_RETURN_ON_EXCEPTION(
12537 isolate, prototype,
12538 JSReceiver::GetProperty(new_target, prototype_string), Map);
12539 // The above prototype lookup might change the constructor and its
12540 // prototype, hence we have to reload the initial map.
12541 EnsureHasInitialMap(constructor);
12542 constructor_initial_map = handle(constructor->initial_map(), isolate);
12543 }
12544
12545 // If prototype is not a JSReceiver, fetch the intrinsicDefaultProto from the
12546 // correct realm. Rather than directly fetching the .prototype, we fetch the
12547 // constructor that points to the .prototype. This relies on
12548 // constructor.prototype being FROZEN for those constructors.
12549 if (!prototype->IsJSReceiver()) {
12550 Handle<Context> context;
12551 ASSIGN_RETURN_ON_EXCEPTION(isolate, context,
12552 JSReceiver::GetFunctionRealm(new_target), Map);
12553 DCHECK(context->IsNativeContext());
12554 Handle<Object> maybe_index = JSReceiver::GetDataProperty(
12555 constructor, isolate->factory()->native_context_index_symbol());
12556 int index = maybe_index->IsSmi() ? Smi::cast(*maybe_index)->value()
12557 : Context::OBJECT_FUNCTION_INDEX;
12558 Handle<JSFunction> realm_constructor(JSFunction::cast(context->get(index)));
12559 prototype = handle(realm_constructor->prototype(), isolate);
12560 }
12561
12562 Handle<Map> map = Map::CopyInitialMap(constructor_initial_map);
12563 map->set_new_target_is_base(false);
12564 DCHECK(prototype->IsJSReceiver());
12565 if (map->prototype() != *prototype) {
12566 Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
12567 }
12568 map->SetConstructor(*constructor);
12569 return map;
12570 }
12571
12572
PrintName(FILE * out)12573 void JSFunction::PrintName(FILE* out) {
12574 base::SmartArrayPointer<char> name = shared()->DebugName()->ToCString();
12575 PrintF(out, "%s", name.get());
12576 }
12577
12578
GetName(Handle<JSFunction> function)12579 Handle<String> JSFunction::GetName(Handle<JSFunction> function) {
12580 Isolate* isolate = function->GetIsolate();
12581 Handle<Object> name =
12582 JSReceiver::GetDataProperty(function, isolate->factory()->name_string());
12583 if (name->IsString()) return Handle<String>::cast(name);
12584 return handle(function->shared()->DebugName(), isolate);
12585 }
12586
12587
GetDebugName(Handle<JSFunction> function)12588 Handle<String> JSFunction::GetDebugName(Handle<JSFunction> function) {
12589 Isolate* isolate = function->GetIsolate();
12590 Handle<Object> name = JSReceiver::GetDataProperty(
12591 function, isolate->factory()->display_name_string());
12592 if (name->IsString()) return Handle<String>::cast(name);
12593 return JSFunction::GetName(function);
12594 }
12595
SetName(Handle<JSFunction> function,Handle<Name> name,Handle<String> prefix)12596 void JSFunction::SetName(Handle<JSFunction> function, Handle<Name> name,
12597 Handle<String> prefix) {
12598 Isolate* isolate = function->GetIsolate();
12599 Handle<String> function_name = Name::ToFunctionName(name).ToHandleChecked();
12600 if (prefix->length() > 0) {
12601 IncrementalStringBuilder builder(isolate);
12602 builder.AppendString(prefix);
12603 builder.AppendCharacter(' ');
12604 builder.AppendString(function_name);
12605 function_name = builder.Finish().ToHandleChecked();
12606 }
12607 JSObject::DefinePropertyOrElementIgnoreAttributes(
12608 function, isolate->factory()->name_string(), function_name,
12609 static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY))
12610 .ToHandleChecked();
12611 }
12612
12613 namespace {
12614
12615 char const kNativeCodeSource[] = "function () { [native code] }";
12616
12617
NativeCodeFunctionSourceString(Handle<SharedFunctionInfo> shared_info)12618 Handle<String> NativeCodeFunctionSourceString(
12619 Handle<SharedFunctionInfo> shared_info) {
12620 Isolate* const isolate = shared_info->GetIsolate();
12621 if (shared_info->name()->IsString()) {
12622 IncrementalStringBuilder builder(isolate);
12623 builder.AppendCString("function ");
12624 builder.AppendString(handle(String::cast(shared_info->name()), isolate));
12625 builder.AppendCString("() { [native code] }");
12626 return builder.Finish().ToHandleChecked();
12627 }
12628 return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource);
12629 }
12630
12631 } // namespace
12632
12633
12634 // static
ToString(Handle<JSBoundFunction> function)12635 Handle<String> JSBoundFunction::ToString(Handle<JSBoundFunction> function) {
12636 Isolate* const isolate = function->GetIsolate();
12637 return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource);
12638 }
12639
12640
12641 // static
ToString(Handle<JSFunction> function)12642 Handle<String> JSFunction::ToString(Handle<JSFunction> function) {
12643 Isolate* const isolate = function->GetIsolate();
12644 Handle<SharedFunctionInfo> shared_info(function->shared(), isolate);
12645
12646 // Check if {function} should hide its source code.
12647 if (!shared_info->script()->IsScript() ||
12648 Script::cast(shared_info->script())->hide_source()) {
12649 return NativeCodeFunctionSourceString(shared_info);
12650 }
12651
12652 // Check if we should print {function} as a class.
12653 Handle<Object> class_start_position = JSReceiver::GetDataProperty(
12654 function, isolate->factory()->class_start_position_symbol());
12655 if (class_start_position->IsSmi()) {
12656 Handle<Object> class_end_position = JSReceiver::GetDataProperty(
12657 function, isolate->factory()->class_end_position_symbol());
12658 Handle<String> script_source(
12659 String::cast(Script::cast(shared_info->script())->source()), isolate);
12660 return isolate->factory()->NewSubString(
12661 script_source, Handle<Smi>::cast(class_start_position)->value(),
12662 Handle<Smi>::cast(class_end_position)->value());
12663 }
12664
12665 // Check if we have source code for the {function}.
12666 if (!shared_info->HasSourceCode()) {
12667 return NativeCodeFunctionSourceString(shared_info);
12668 }
12669
12670 IncrementalStringBuilder builder(isolate);
12671 if (!shared_info->is_arrow()) {
12672 if (shared_info->is_concise_method()) {
12673 if (shared_info->is_generator()) {
12674 builder.AppendCharacter('*');
12675 } else if (shared_info->is_async()) {
12676 builder.AppendCString("async ");
12677 }
12678 } else {
12679 if (shared_info->is_generator()) {
12680 builder.AppendCString("function* ");
12681 } else if (shared_info->is_async()) {
12682 builder.AppendCString("async function ");
12683 } else {
12684 builder.AppendCString("function ");
12685 }
12686 }
12687 if (shared_info->name_should_print_as_anonymous()) {
12688 builder.AppendCString("anonymous");
12689 } else if (!shared_info->is_anonymous_expression()) {
12690 builder.AppendString(handle(String::cast(shared_info->name()), isolate));
12691 }
12692 }
12693 builder.AppendString(Handle<String>::cast(shared_info->GetSourceCode()));
12694 return builder.Finish().ToHandleChecked();
12695 }
12696
Initialize(Isolate * isolate,Handle<Oddball> oddball,const char * to_string,Handle<Object> to_number,bool to_boolean,const char * type_of,byte kind)12697 void Oddball::Initialize(Isolate* isolate, Handle<Oddball> oddball,
12698 const char* to_string, Handle<Object> to_number,
12699 bool to_boolean, const char* type_of, byte kind) {
12700 Handle<String> internalized_to_string =
12701 isolate->factory()->InternalizeUtf8String(to_string);
12702 Handle<String> internalized_type_of =
12703 isolate->factory()->InternalizeUtf8String(type_of);
12704 oddball->set_to_number_raw(to_number->Number());
12705 oddball->set_to_boolean(isolate->heap()->ToBoolean(to_boolean));
12706 oddball->set_to_number(*to_number);
12707 oddball->set_to_string(*internalized_to_string);
12708 oddball->set_type_of(*internalized_type_of);
12709 oddball->set_kind(kind);
12710 }
12711
SetEvalOrigin(Handle<Script> script,Handle<SharedFunctionInfo> outer_info,int eval_position)12712 void Script::SetEvalOrigin(Handle<Script> script,
12713 Handle<SharedFunctionInfo> outer_info,
12714 int eval_position) {
12715 if (eval_position == RelocInfo::kNoPosition) {
12716 // If the position is missing, attempt to get the code offset from the
12717 // current activation. Do not translate the code offset into source
12718 // position, but store it as negative value for lazy translation.
12719 StackTraceFrameIterator it(script->GetIsolate());
12720 if (!it.done() && it.is_javascript()) {
12721 FrameSummary summary = FrameSummary::GetFirst(it.javascript_frame());
12722 script->set_eval_from_shared(summary.function()->shared());
12723 script->set_eval_from_position(-summary.code_offset());
12724 return;
12725 }
12726 eval_position = 0;
12727 }
12728 script->set_eval_from_shared(*outer_info);
12729 script->set_eval_from_position(eval_position);
12730 }
12731
GetEvalPosition()12732 int Script::GetEvalPosition() {
12733 DisallowHeapAllocation no_gc;
12734 DCHECK(compilation_type() == Script::COMPILATION_TYPE_EVAL);
12735 int position = eval_from_position();
12736 if (position < 0) {
12737 // Due to laziness, the position may not have been translated from code
12738 // offset yet, which would be encoded as negative integer. In that case,
12739 // translate and set the position.
12740 if (eval_from_shared()->IsUndefined(GetIsolate())) {
12741 position = 0;
12742 } else {
12743 SharedFunctionInfo* shared = SharedFunctionInfo::cast(eval_from_shared());
12744 position = shared->abstract_code()->SourcePosition(-position);
12745 }
12746 DCHECK(position >= 0);
12747 set_eval_from_position(position);
12748 }
12749 return position;
12750 }
12751
InitLineEnds(Handle<Script> script)12752 void Script::InitLineEnds(Handle<Script> script) {
12753 Isolate* isolate = script->GetIsolate();
12754 if (!script->line_ends()->IsUndefined(isolate)) return;
12755
12756 if (!script->source()->IsString()) {
12757 DCHECK(script->source()->IsUndefined(isolate));
12758 Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
12759 script->set_line_ends(*empty);
12760 DCHECK(script->line_ends()->IsFixedArray());
12761 return;
12762 }
12763
12764 Handle<String> src(String::cast(script->source()), isolate);
12765
12766 Handle<FixedArray> array = String::CalculateLineEnds(src, true);
12767
12768 if (*array != isolate->heap()->empty_fixed_array()) {
12769 array->set_map(isolate->heap()->fixed_cow_array_map());
12770 }
12771
12772 script->set_line_ends(*array);
12773 DCHECK(script->line_ends()->IsFixedArray());
12774 }
12775
12776 #define SMI_VALUE(x) (Smi::cast(x)->value())
GetPositionInfo(int position,PositionInfo * info,OffsetFlag offset_flag)12777 bool Script::GetPositionInfo(int position, PositionInfo* info,
12778 OffsetFlag offset_flag) {
12779 Handle<Script> script(this);
12780 InitLineEnds(script);
12781
12782 DisallowHeapAllocation no_allocation;
12783
12784 DCHECK(script->line_ends()->IsFixedArray());
12785 FixedArray* ends = FixedArray::cast(script->line_ends());
12786
12787 const int ends_len = ends->length();
12788 if (ends_len == 0) return false;
12789
12790 // Return early on invalid positions. Negative positions behave as if 0 was
12791 // passed, and positions beyond the end of the script return as failure.
12792 if (position < 0) {
12793 position = 0;
12794 } else if (position > SMI_VALUE(ends->get(ends_len - 1))) {
12795 return false;
12796 }
12797
12798 // Determine line number by doing a binary search on the line ends array.
12799 if (SMI_VALUE(ends->get(0)) >= position) {
12800 info->line = 0;
12801 info->line_start = 0;
12802 info->column = position;
12803 } else {
12804 int left = 0;
12805 int right = ends_len - 1;
12806
12807 while (right > 0) {
12808 DCHECK_LE(left, right);
12809 const int mid = (left + right) / 2;
12810 if (position > SMI_VALUE(ends->get(mid))) {
12811 left = mid + 1;
12812 } else if (position <= SMI_VALUE(ends->get(mid - 1))) {
12813 right = mid - 1;
12814 } else {
12815 info->line = mid;
12816 break;
12817 }
12818 }
12819 DCHECK(SMI_VALUE(ends->get(info->line)) >= position &&
12820 SMI_VALUE(ends->get(info->line - 1)) < position);
12821 info->line_start = SMI_VALUE(ends->get(info->line - 1)) + 1;
12822 info->column = position - info->line_start;
12823 }
12824
12825 // Line end is position of the linebreak character.
12826 info->line_end = SMI_VALUE(ends->get(info->line));
12827 if (info->line_end > 0) {
12828 DCHECK(script->source()->IsString());
12829 Handle<String> src(String::cast(script->source()));
12830 if (src->Get(info->line_end - 1) == '\r') {
12831 info->line_end--;
12832 }
12833 }
12834
12835 // Add offsets if requested.
12836 if (offset_flag == WITH_OFFSET) {
12837 if (info->line == 0) {
12838 info->column += script->column_offset();
12839 }
12840 info->line += script->line_offset();
12841 }
12842
12843 return true;
12844 }
12845 #undef SMI_VALUE
12846
GetColumnNumber(Handle<Script> script,int code_pos)12847 int Script::GetColumnNumber(Handle<Script> script, int code_pos) {
12848 PositionInfo info;
12849 if (!script->GetPositionInfo(code_pos, &info, WITH_OFFSET)) {
12850 return -1;
12851 }
12852
12853 return info.column;
12854 }
12855
GetLineNumberWithArray(int code_pos)12856 int Script::GetLineNumberWithArray(int code_pos) {
12857 PositionInfo info;
12858 if (!GetPositionInfo(code_pos, &info, WITH_OFFSET)) {
12859 return -1;
12860 }
12861
12862 return info.line;
12863 }
12864
12865
GetLineNumber(Handle<Script> script,int code_pos)12866 int Script::GetLineNumber(Handle<Script> script, int code_pos) {
12867 InitLineEnds(script);
12868 return script->GetLineNumberWithArray(code_pos);
12869 }
12870
12871
GetLineNumber(int code_pos)12872 int Script::GetLineNumber(int code_pos) {
12873 DisallowHeapAllocation no_allocation;
12874 if (!line_ends()->IsUndefined(GetIsolate())) {
12875 return GetLineNumberWithArray(code_pos);
12876 }
12877
12878 // Slow mode: we do not have line_ends. We have to iterate through source.
12879 if (!source()->IsString()) return -1;
12880
12881 String* source_string = String::cast(source());
12882 int line = 0;
12883 int len = source_string->length();
12884 for (int pos = 0; pos < len; pos++) {
12885 if (pos == code_pos) break;
12886 if (source_string->Get(pos) == '\n') line++;
12887 }
12888 return line;
12889 }
12890
12891
GetNameOrSourceURL(Handle<Script> script)12892 Handle<Object> Script::GetNameOrSourceURL(Handle<Script> script) {
12893 Isolate* isolate = script->GetIsolate();
12894 Handle<String> name_or_source_url_key =
12895 isolate->factory()->InternalizeOneByteString(
12896 STATIC_CHAR_VECTOR("nameOrSourceURL"));
12897 Handle<JSObject> script_wrapper = Script::GetWrapper(script);
12898 Handle<Object> property =
12899 JSReceiver::GetProperty(script_wrapper, name_or_source_url_key)
12900 .ToHandleChecked();
12901 DCHECK(property->IsJSFunction());
12902 Handle<Object> result;
12903 // Do not check against pending exception, since this function may be called
12904 // when an exception has already been pending.
12905 if (!Execution::TryCall(isolate, property, script_wrapper, 0, NULL)
12906 .ToHandle(&result)) {
12907 return isolate->factory()->undefined_value();
12908 }
12909 return result;
12910 }
12911
12912
GetWrapper(Handle<Script> script)12913 Handle<JSObject> Script::GetWrapper(Handle<Script> script) {
12914 Isolate* isolate = script->GetIsolate();
12915 if (!script->wrapper()->IsUndefined(isolate)) {
12916 DCHECK(script->wrapper()->IsWeakCell());
12917 Handle<WeakCell> cell(WeakCell::cast(script->wrapper()));
12918 if (!cell->cleared()) {
12919 // Return a handle for the existing script wrapper from the cache.
12920 return handle(JSObject::cast(cell->value()));
12921 }
12922 // If we found an empty WeakCell, that means the script wrapper was
12923 // GCed. We are not notified directly of that, so we decrement here
12924 // so that we at least don't count double for any given script.
12925 isolate->counters()->script_wrappers()->Decrement();
12926 }
12927 // Construct a new script wrapper.
12928 isolate->counters()->script_wrappers()->Increment();
12929 Handle<JSFunction> constructor = isolate->script_function();
12930 Handle<JSValue> result =
12931 Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
12932 result->set_value(*script);
12933 Handle<WeakCell> cell = isolate->factory()->NewWeakCell(result);
12934 script->set_wrapper(*cell);
12935 return result;
12936 }
12937
12938
FindSharedFunctionInfo(FunctionLiteral * fun)12939 MaybeHandle<SharedFunctionInfo> Script::FindSharedFunctionInfo(
12940 FunctionLiteral* fun) {
12941 WeakFixedArray::Iterator iterator(shared_function_infos());
12942 SharedFunctionInfo* shared;
12943 while ((shared = iterator.Next<SharedFunctionInfo>())) {
12944 if (fun->function_token_position() == shared->function_token_position() &&
12945 fun->start_position() == shared->start_position() &&
12946 fun->end_position() == shared->end_position()) {
12947 return Handle<SharedFunctionInfo>(shared);
12948 }
12949 }
12950 return MaybeHandle<SharedFunctionInfo>();
12951 }
12952
12953
Iterator(Isolate * isolate)12954 Script::Iterator::Iterator(Isolate* isolate)
12955 : iterator_(isolate->heap()->script_list()) {}
12956
12957
Next()12958 Script* Script::Iterator::Next() { return iterator_.Next<Script>(); }
12959
12960
Iterator(Isolate * isolate)12961 SharedFunctionInfo::Iterator::Iterator(Isolate* isolate)
12962 : script_iterator_(isolate),
12963 sfi_iterator_(isolate->heap()->noscript_shared_function_infos()) {}
12964
12965
NextScript()12966 bool SharedFunctionInfo::Iterator::NextScript() {
12967 Script* script = script_iterator_.Next();
12968 if (script == NULL) return false;
12969 sfi_iterator_.Reset(script->shared_function_infos());
12970 return true;
12971 }
12972
12973
Next()12974 SharedFunctionInfo* SharedFunctionInfo::Iterator::Next() {
12975 do {
12976 SharedFunctionInfo* next = sfi_iterator_.Next<SharedFunctionInfo>();
12977 if (next != NULL) return next;
12978 } while (NextScript());
12979 return NULL;
12980 }
12981
12982
SetScript(Handle<SharedFunctionInfo> shared,Handle<Object> script_object)12983 void SharedFunctionInfo::SetScript(Handle<SharedFunctionInfo> shared,
12984 Handle<Object> script_object) {
12985 if (shared->script() == *script_object) return;
12986 Isolate* isolate = shared->GetIsolate();
12987
12988 // Add shared function info to new script's list. If a collection occurs,
12989 // the shared function info may be temporarily in two lists.
12990 // This is okay because the gc-time processing of these lists can tolerate
12991 // duplicates.
12992 Handle<Object> list;
12993 if (script_object->IsScript()) {
12994 Handle<Script> script = Handle<Script>::cast(script_object);
12995 list = handle(script->shared_function_infos(), isolate);
12996 } else {
12997 list = isolate->factory()->noscript_shared_function_infos();
12998 }
12999
13000 #ifdef DEBUG
13001 if (FLAG_enable_slow_asserts) {
13002 WeakFixedArray::Iterator iterator(*list);
13003 SharedFunctionInfo* next;
13004 while ((next = iterator.Next<SharedFunctionInfo>())) {
13005 DCHECK_NE(next, *shared);
13006 }
13007 }
13008 #endif // DEBUG
13009 list = WeakFixedArray::Add(list, shared);
13010
13011 if (script_object->IsScript()) {
13012 Handle<Script> script = Handle<Script>::cast(script_object);
13013 script->set_shared_function_infos(*list);
13014 } else {
13015 isolate->heap()->SetRootNoScriptSharedFunctionInfos(*list);
13016 }
13017
13018 // Remove shared function info from old script's list.
13019 if (shared->script()->IsScript()) {
13020 Script* old_script = Script::cast(shared->script());
13021 if (old_script->shared_function_infos()->IsWeakFixedArray()) {
13022 WeakFixedArray* list =
13023 WeakFixedArray::cast(old_script->shared_function_infos());
13024 list->Remove(shared);
13025 }
13026 } else {
13027 // Remove shared function info from root array.
13028 Object* list = isolate->heap()->noscript_shared_function_infos();
13029 CHECK(WeakFixedArray::cast(list)->Remove(shared));
13030 }
13031
13032 // Finally set new script.
13033 shared->set_script(*script_object);
13034 }
13035
13036
DebugName()13037 String* SharedFunctionInfo::DebugName() {
13038 Object* n = name();
13039 if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name();
13040 return String::cast(n);
13041 }
13042
13043 // The filter is a pattern that matches function names in this way:
13044 // "*" all; the default
13045 // "-" all but the top-level function
13046 // "-name" all but the function "name"
13047 // "" only the top-level function
13048 // "name" only the function "name"
13049 // "name*" only functions starting with "name"
13050 // "~" none; the tilde is not an identifier
PassesFilter(const char * raw_filter)13051 bool SharedFunctionInfo::PassesFilter(const char* raw_filter) {
13052 if (*raw_filter == '*') return true;
13053 String* name = DebugName();
13054 Vector<const char> filter = CStrVector(raw_filter);
13055 if (filter.length() == 0) return name->length() == 0;
13056 if (filter[0] == '-') {
13057 // Negative filter.
13058 if (filter.length() == 1) {
13059 return (name->length() != 0);
13060 } else if (name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) {
13061 return false;
13062 }
13063 if (filter[filter.length() - 1] == '*' &&
13064 name->IsUtf8EqualTo(filter.SubVector(1, filter.length() - 1), true)) {
13065 return false;
13066 }
13067 return true;
13068
13069 } else if (name->IsUtf8EqualTo(filter)) {
13070 return true;
13071 }
13072 if (filter[filter.length() - 1] == '*' &&
13073 name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) {
13074 return true;
13075 }
13076 return false;
13077 }
13078
HasSourceCode() const13079 bool SharedFunctionInfo::HasSourceCode() const {
13080 Isolate* isolate = GetIsolate();
13081 return !script()->IsUndefined(isolate) &&
13082 !reinterpret_cast<Script*>(script())->source()->IsUndefined(isolate);
13083 }
13084
13085
GetSourceCode()13086 Handle<Object> SharedFunctionInfo::GetSourceCode() {
13087 if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value();
13088 Handle<String> source(String::cast(Script::cast(script())->source()));
13089 return GetIsolate()->factory()->NewSubString(
13090 source, start_position(), end_position());
13091 }
13092
13093
IsInlineable()13094 bool SharedFunctionInfo::IsInlineable() {
13095 // Check that the function has a script associated with it.
13096 if (!script()->IsScript()) return false;
13097 return !optimization_disabled();
13098 }
13099
13100
SourceSize()13101 int SharedFunctionInfo::SourceSize() {
13102 return end_position() - start_position();
13103 }
13104
CalculateInstanceSizeHelper(InstanceType instance_type,int requested_internal_fields,int requested_in_object_properties,int * instance_size,int * in_object_properties)13105 void JSFunction::CalculateInstanceSizeHelper(InstanceType instance_type,
13106 int requested_internal_fields,
13107 int requested_in_object_properties,
13108 int* instance_size,
13109 int* in_object_properties) {
13110 int header_size = JSObject::GetHeaderSize(instance_type);
13111 DCHECK_LE(requested_internal_fields,
13112 (JSObject::kMaxInstanceSize - header_size) >> kPointerSizeLog2);
13113 *instance_size =
13114 Min(header_size +
13115 ((requested_internal_fields + requested_in_object_properties)
13116 << kPointerSizeLog2),
13117 JSObject::kMaxInstanceSize);
13118 *in_object_properties = ((*instance_size - header_size) >> kPointerSizeLog2) -
13119 requested_internal_fields;
13120 }
13121
13122
CalculateInstanceSize(InstanceType instance_type,int requested_internal_fields,int * instance_size,int * in_object_properties)13123 void JSFunction::CalculateInstanceSize(InstanceType instance_type,
13124 int requested_internal_fields,
13125 int* instance_size,
13126 int* in_object_properties) {
13127 CalculateInstanceSizeHelper(instance_type, requested_internal_fields,
13128 shared()->expected_nof_properties(),
13129 instance_size, in_object_properties);
13130 }
13131
13132
CalculateInstanceSizeForDerivedClass(InstanceType instance_type,int requested_internal_fields,int * instance_size,int * in_object_properties)13133 void JSFunction::CalculateInstanceSizeForDerivedClass(
13134 InstanceType instance_type, int requested_internal_fields,
13135 int* instance_size, int* in_object_properties) {
13136 Isolate* isolate = GetIsolate();
13137 int expected_nof_properties = 0;
13138 for (PrototypeIterator iter(isolate, this, kStartAtReceiver); !iter.IsAtEnd();
13139 iter.Advance()) {
13140 JSReceiver* current = iter.GetCurrent<JSReceiver>();
13141 if (!current->IsJSFunction()) break;
13142 JSFunction* func = JSFunction::cast(current);
13143 SharedFunctionInfo* shared = func->shared();
13144 expected_nof_properties += shared->expected_nof_properties();
13145 if (!IsSubclassConstructor(shared->kind())) {
13146 break;
13147 }
13148 }
13149 CalculateInstanceSizeHelper(instance_type, requested_internal_fields,
13150 expected_nof_properties, instance_size,
13151 in_object_properties);
13152 }
13153
13154
13155 // Output the source code without any allocation in the heap.
operator <<(std::ostream & os,const SourceCodeOf & v)13156 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v) {
13157 const SharedFunctionInfo* s = v.value;
13158 // For some native functions there is no source.
13159 if (!s->HasSourceCode()) return os << "<No Source>";
13160
13161 // Get the source for the script which this function came from.
13162 // Don't use String::cast because we don't want more assertion errors while
13163 // we are already creating a stack dump.
13164 String* script_source =
13165 reinterpret_cast<String*>(Script::cast(s->script())->source());
13166
13167 if (!script_source->LooksValid()) return os << "<Invalid Source>";
13168
13169 if (!s->is_toplevel()) {
13170 os << "function ";
13171 Object* name = s->name();
13172 if (name->IsString() && String::cast(name)->length() > 0) {
13173 String::cast(name)->PrintUC16(os);
13174 }
13175 }
13176
13177 int len = s->end_position() - s->start_position();
13178 if (len <= v.max_length || v.max_length < 0) {
13179 script_source->PrintUC16(os, s->start_position(), s->end_position());
13180 return os;
13181 } else {
13182 script_source->PrintUC16(os, s->start_position(),
13183 s->start_position() + v.max_length);
13184 return os << "...\n";
13185 }
13186 }
13187
13188
IsCodeEquivalent(Code * code,Code * recompiled)13189 static bool IsCodeEquivalent(Code* code, Code* recompiled) {
13190 if (code->instruction_size() != recompiled->instruction_size()) return false;
13191 ByteArray* code_relocation = code->relocation_info();
13192 ByteArray* recompiled_relocation = recompiled->relocation_info();
13193 int length = code_relocation->length();
13194 if (length != recompiled_relocation->length()) return false;
13195 int compare = memcmp(code_relocation->GetDataStartAddress(),
13196 recompiled_relocation->GetDataStartAddress(),
13197 length);
13198 return compare == 0;
13199 }
13200
13201
EnableDeoptimizationSupport(Code * recompiled)13202 void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) {
13203 DCHECK(!has_deoptimization_support());
13204 DisallowHeapAllocation no_allocation;
13205 Code* code = this->code();
13206 if (IsCodeEquivalent(code, recompiled)) {
13207 // Copy the deoptimization data from the recompiled code.
13208 code->set_deoptimization_data(recompiled->deoptimization_data());
13209 code->set_has_deoptimization_support(true);
13210 } else {
13211 // TODO(3025757): In case the recompiled isn't equivalent to the
13212 // old code, we have to replace it. We should try to avoid this
13213 // altogether because it flushes valuable type feedback by
13214 // effectively resetting all IC state.
13215 ReplaceCode(recompiled);
13216 }
13217 DCHECK(has_deoptimization_support());
13218 }
13219
13220
DisableOptimization(BailoutReason reason)13221 void SharedFunctionInfo::DisableOptimization(BailoutReason reason) {
13222 // Disable optimization for the shared function info and mark the
13223 // code as non-optimizable. The marker on the shared function info
13224 // is there because we flush non-optimized code thereby loosing the
13225 // non-optimizable information for the code. When the code is
13226 // regenerated and set on the shared function info it is marked as
13227 // non-optimizable if optimization is disabled for the shared
13228 // function info.
13229 DCHECK(reason != kNoReason);
13230 set_optimization_disabled(true);
13231 set_disable_optimization_reason(reason);
13232 // Code should be the lazy compilation stub or else unoptimized.
13233 DCHECK(abstract_code()->kind() == AbstractCode::FUNCTION ||
13234 abstract_code()->kind() == AbstractCode::INTERPRETED_FUNCTION ||
13235 abstract_code()->kind() == AbstractCode::BUILTIN);
13236 PROFILE(GetIsolate(), CodeDisableOptEvent(abstract_code(), this));
13237 if (FLAG_trace_opt) {
13238 PrintF("[disabled optimization for ");
13239 ShortPrint();
13240 PrintF(", reason: %s]\n", GetBailoutReason(reason));
13241 }
13242 }
13243
13244 namespace {
13245
13246 // Sets the expected number of properties based on estimate from parser.
SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,FunctionLiteral * literal)13247 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
13248 FunctionLiteral* literal) {
13249 int estimate = literal->expected_property_count();
13250
13251 // If no properties are added in the constructor, they are more likely
13252 // to be added later.
13253 if (estimate == 0) estimate = 2;
13254
13255 // TODO(yangguo): check whether those heuristics are still up-to-date.
13256 // We do not shrink objects that go into a snapshot (yet), so we adjust
13257 // the estimate conservatively.
13258 if (shared->GetIsolate()->serializer_enabled()) {
13259 estimate += 2;
13260 } else {
13261 // Inobject slack tracking will reclaim redundant inobject space later,
13262 // so we can afford to adjust the estimate generously.
13263 estimate += 8;
13264 }
13265
13266 shared->set_expected_nof_properties(estimate);
13267 }
13268
13269 } // namespace
13270
InitFromFunctionLiteral(Handle<SharedFunctionInfo> shared_info,FunctionLiteral * lit)13271 void SharedFunctionInfo::InitFromFunctionLiteral(
13272 Handle<SharedFunctionInfo> shared_info, FunctionLiteral* lit) {
13273 shared_info->set_length(lit->scope()->default_function_length());
13274 shared_info->set_internal_formal_parameter_count(lit->parameter_count());
13275 shared_info->set_function_token_position(lit->function_token_position());
13276 shared_info->set_start_position(lit->start_position());
13277 shared_info->set_end_position(lit->end_position());
13278 shared_info->set_is_declaration(lit->is_declaration());
13279 shared_info->set_is_named_expression(lit->is_named_expression());
13280 shared_info->set_is_anonymous_expression(lit->is_anonymous_expression());
13281 shared_info->set_inferred_name(*lit->inferred_name());
13282 shared_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation());
13283 shared_info->set_allows_lazy_compilation_without_context(
13284 lit->AllowsLazyCompilationWithoutContext());
13285 shared_info->set_language_mode(lit->language_mode());
13286 shared_info->set_uses_arguments(lit->scope()->arguments() != NULL);
13287 shared_info->set_has_duplicate_parameters(lit->has_duplicate_parameters());
13288 shared_info->set_is_function(lit->is_function());
13289 shared_info->set_never_compiled(true);
13290 shared_info->set_kind(lit->kind());
13291 if (!IsConstructable(lit->kind(), lit->language_mode())) {
13292 shared_info->set_construct_stub(
13293 *shared_info->GetIsolate()->builtins()->ConstructedNonConstructable());
13294 }
13295 shared_info->set_needs_home_object(lit->scope()->NeedsHomeObject());
13296 shared_info->set_asm_function(lit->scope()->asm_function());
13297 SetExpectedNofPropertiesFromEstimate(shared_info, lit);
13298 }
13299
13300
VerifyBailoutId(BailoutId id)13301 bool SharedFunctionInfo::VerifyBailoutId(BailoutId id) {
13302 DCHECK(!id.IsNone());
13303 Code* unoptimized = code();
13304 DeoptimizationOutputData* data =
13305 DeoptimizationOutputData::cast(unoptimized->deoptimization_data());
13306 unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this);
13307 USE(ignore);
13308 return true; // Return true if there was no DCHECK.
13309 }
13310
13311
StartInobjectSlackTracking()13312 void Map::StartInobjectSlackTracking() {
13313 DCHECK(!IsInobjectSlackTrackingInProgress());
13314
13315 // No tracking during the snapshot construction phase.
13316 Isolate* isolate = GetIsolate();
13317 if (isolate->serializer_enabled()) return;
13318
13319 if (unused_property_fields() == 0) return;
13320
13321 set_construction_counter(Map::kSlackTrackingCounterStart);
13322 }
13323
13324
ResetForNewContext(int new_ic_age)13325 void SharedFunctionInfo::ResetForNewContext(int new_ic_age) {
13326 code()->ClearInlineCaches();
13327 set_ic_age(new_ic_age);
13328 if (code()->kind() == Code::FUNCTION) {
13329 code()->set_profiler_ticks(0);
13330 if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) {
13331 // Re-enable optimizations if they were disabled due to opt_count limit.
13332 set_optimization_disabled(false);
13333 }
13334 set_opt_count(0);
13335 set_deopt_count(0);
13336 } else if (code()->is_interpreter_trampoline_builtin()) {
13337 set_profiler_ticks(0);
13338 if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) {
13339 // Re-enable optimizations if they were disabled due to opt_count limit.
13340 set_optimization_disabled(false);
13341 }
13342 set_opt_count(0);
13343 set_deopt_count(0);
13344 }
13345 }
13346
13347
SearchOptimizedCodeMapEntry(Context * native_context,BailoutId osr_ast_id)13348 int SharedFunctionInfo::SearchOptimizedCodeMapEntry(Context* native_context,
13349 BailoutId osr_ast_id) {
13350 DisallowHeapAllocation no_gc;
13351 DCHECK(native_context->IsNativeContext());
13352 if (!OptimizedCodeMapIsCleared()) {
13353 FixedArray* optimized_code_map = this->optimized_code_map();
13354 int length = optimized_code_map->length();
13355 Smi* osr_ast_id_smi = Smi::FromInt(osr_ast_id.ToInt());
13356 for (int i = kEntriesStart; i < length; i += kEntryLength) {
13357 if (WeakCell::cast(optimized_code_map->get(i + kContextOffset))
13358 ->value() == native_context &&
13359 optimized_code_map->get(i + kOsrAstIdOffset) == osr_ast_id_smi) {
13360 return i;
13361 }
13362 }
13363 Object* shared_code =
13364 WeakCell::cast(optimized_code_map->get(kSharedCodeIndex))->value();
13365 if (shared_code->IsCode() && osr_ast_id.IsNone()) {
13366 return kSharedCodeIndex;
13367 }
13368 }
13369 return -1;
13370 }
13371
ClearCodeFromOptimizedCodeMap()13372 void SharedFunctionInfo::ClearCodeFromOptimizedCodeMap() {
13373 if (!OptimizedCodeMapIsCleared()) {
13374 FixedArray* optimized_code_map = this->optimized_code_map();
13375 int length = optimized_code_map->length();
13376 WeakCell* empty_weak_cell = GetHeap()->empty_weak_cell();
13377 for (int i = kEntriesStart; i < length; i += kEntryLength) {
13378 optimized_code_map->set(i + kCachedCodeOffset, empty_weak_cell,
13379 SKIP_WRITE_BARRIER);
13380 }
13381 optimized_code_map->set(kSharedCodeIndex, empty_weak_cell,
13382 SKIP_WRITE_BARRIER);
13383 }
13384 }
13385
SearchOptimizedCodeMap(Context * native_context,BailoutId osr_ast_id)13386 CodeAndLiterals SharedFunctionInfo::SearchOptimizedCodeMap(
13387 Context* native_context, BailoutId osr_ast_id) {
13388 CodeAndLiterals result = {nullptr, nullptr};
13389 int entry = SearchOptimizedCodeMapEntry(native_context, osr_ast_id);
13390 if (entry != kNotFound) {
13391 FixedArray* code_map = optimized_code_map();
13392 if (entry == kSharedCodeIndex) {
13393 // We know the weak cell isn't cleared because we made sure of it in
13394 // SearchOptimizedCodeMapEntry and performed no allocations since that
13395 // call.
13396 result = {
13397 Code::cast(WeakCell::cast(code_map->get(kSharedCodeIndex))->value()),
13398 nullptr};
13399 } else {
13400 DCHECK_LE(entry + kEntryLength, code_map->length());
13401 WeakCell* cell = WeakCell::cast(code_map->get(entry + kCachedCodeOffset));
13402 Object* lits = code_map->get(entry + kLiteralsOffset);
13403 LiteralsArray* literals = nullptr;
13404 if (lits->IsWeakCell()) {
13405 WeakCell* literal_cell = WeakCell::cast(lits);
13406 if (!literal_cell->cleared()) {
13407 literals = LiteralsArray::cast(literal_cell->value());
13408 }
13409 } else {
13410 literals = LiteralsArray::cast(lits);
13411 }
13412 result = {cell->cleared() ? nullptr : Code::cast(cell->value()),
13413 literals};
13414 }
13415 }
13416 return result;
13417 }
13418
13419
13420 #define DECLARE_TAG(ignore1, name, ignore2) name,
13421 const char* const VisitorSynchronization::kTags[
13422 VisitorSynchronization::kNumberOfSyncTags] = {
13423 VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
13424 };
13425 #undef DECLARE_TAG
13426
13427
13428 #define DECLARE_TAG(ignore1, ignore2, name) name,
13429 const char* const VisitorSynchronization::kTagNames[
13430 VisitorSynchronization::kNumberOfSyncTags] = {
13431 VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
13432 };
13433 #undef DECLARE_TAG
13434
13435
VisitCodeTarget(RelocInfo * rinfo)13436 void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
13437 DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
13438 Object* old_pointer = Code::GetCodeFromTargetAddress(rinfo->target_address());
13439 Object* new_pointer = old_pointer;
13440 VisitPointer(&new_pointer);
13441 DCHECK_EQ(old_pointer, new_pointer);
13442 }
13443
13444
VisitCodeAgeSequence(RelocInfo * rinfo)13445 void ObjectVisitor::VisitCodeAgeSequence(RelocInfo* rinfo) {
13446 DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
13447 Object* old_pointer = rinfo->code_age_stub();
13448 Object* new_pointer = old_pointer;
13449 if (old_pointer != nullptr) {
13450 VisitPointer(&new_pointer);
13451 DCHECK_EQ(old_pointer, new_pointer);
13452 }
13453 }
13454
13455
VisitCodeEntry(Address entry_address)13456 void ObjectVisitor::VisitCodeEntry(Address entry_address) {
13457 Object* old_pointer = Code::GetObjectFromEntryAddress(entry_address);
13458 Object* new_pointer = old_pointer;
13459 VisitPointer(&new_pointer);
13460 DCHECK_EQ(old_pointer, new_pointer);
13461 }
13462
13463
VisitCell(RelocInfo * rinfo)13464 void ObjectVisitor::VisitCell(RelocInfo* rinfo) {
13465 DCHECK(rinfo->rmode() == RelocInfo::CELL);
13466 Object* old_pointer = rinfo->target_cell();
13467 Object* new_pointer = old_pointer;
13468 VisitPointer(&new_pointer);
13469 DCHECK_EQ(old_pointer, new_pointer);
13470 }
13471
13472
VisitDebugTarget(RelocInfo * rinfo)13473 void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
13474 DCHECK(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
13475 rinfo->IsPatchedDebugBreakSlotSequence());
13476 Object* old_pointer =
13477 Code::GetCodeFromTargetAddress(rinfo->debug_call_address());
13478 Object* new_pointer = old_pointer;
13479 VisitPointer(&new_pointer);
13480 DCHECK_EQ(old_pointer, new_pointer);
13481 }
13482
13483
VisitEmbeddedPointer(RelocInfo * rinfo)13484 void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) {
13485 DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
13486 Object* old_pointer = rinfo->target_object();
13487 Object* new_pointer = old_pointer;
13488 VisitPointer(&new_pointer);
13489 DCHECK_EQ(old_pointer, new_pointer);
13490 }
13491
13492
VisitExternalReference(RelocInfo * rinfo)13493 void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) {
13494 Address old_reference = rinfo->target_external_reference();
13495 Address new_reference = old_reference;
13496 VisitExternalReference(&new_reference);
13497 DCHECK_EQ(old_reference, new_reference);
13498 }
13499
13500
InvalidateRelocation()13501 void Code::InvalidateRelocation() {
13502 InvalidateEmbeddedObjects();
13503 set_relocation_info(GetHeap()->empty_byte_array());
13504 }
13505
13506
InvalidateEmbeddedObjects()13507 void Code::InvalidateEmbeddedObjects() {
13508 Object* undefined = GetHeap()->undefined_value();
13509 Cell* undefined_cell = GetHeap()->undefined_cell();
13510 int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
13511 RelocInfo::ModeMask(RelocInfo::CELL);
13512 for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
13513 RelocInfo::Mode mode = it.rinfo()->rmode();
13514 if (mode == RelocInfo::EMBEDDED_OBJECT) {
13515 it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
13516 } else if (mode == RelocInfo::CELL) {
13517 it.rinfo()->set_target_cell(undefined_cell, SKIP_WRITE_BARRIER);
13518 }
13519 }
13520 }
13521
13522
Relocate(intptr_t delta)13523 void Code::Relocate(intptr_t delta) {
13524 for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
13525 it.rinfo()->apply(delta);
13526 }
13527 Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size());
13528 }
13529
13530
CopyFrom(const CodeDesc & desc)13531 void Code::CopyFrom(const CodeDesc& desc) {
13532 // copy code
13533 CopyBytes(instruction_start(), desc.buffer,
13534 static_cast<size_t>(desc.instr_size));
13535
13536 // copy unwinding info, if any
13537 if (desc.unwinding_info) {
13538 DCHECK_GT(desc.unwinding_info_size, 0);
13539 set_unwinding_info_size(desc.unwinding_info_size);
13540 CopyBytes(unwinding_info_start(), desc.unwinding_info,
13541 static_cast<size_t>(desc.unwinding_info_size));
13542 }
13543
13544 // copy reloc info
13545 CopyBytes(relocation_start(),
13546 desc.buffer + desc.buffer_size - desc.reloc_size,
13547 static_cast<size_t>(desc.reloc_size));
13548
13549 // unbox handles and relocate
13550 intptr_t delta = instruction_start() - desc.buffer;
13551 int mode_mask = RelocInfo::kCodeTargetMask |
13552 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
13553 RelocInfo::ModeMask(RelocInfo::CELL) |
13554 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
13555 RelocInfo::kApplyMask;
13556 // Needed to find target_object and runtime_entry on X64
13557 Assembler* origin = desc.origin;
13558 AllowDeferredHandleDereference embedding_raw_address;
13559 for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
13560 RelocInfo::Mode mode = it.rinfo()->rmode();
13561 if (mode == RelocInfo::EMBEDDED_OBJECT) {
13562 Handle<Object> p = it.rinfo()->target_object_handle(origin);
13563 it.rinfo()->set_target_object(*p, UPDATE_WRITE_BARRIER,
13564 SKIP_ICACHE_FLUSH);
13565 } else if (mode == RelocInfo::CELL) {
13566 Handle<Cell> cell = it.rinfo()->target_cell_handle();
13567 it.rinfo()->set_target_cell(*cell, UPDATE_WRITE_BARRIER,
13568 SKIP_ICACHE_FLUSH);
13569 } else if (RelocInfo::IsCodeTarget(mode)) {
13570 // rewrite code handles in inline cache targets to direct
13571 // pointers to the first instruction in the code object
13572 Handle<Object> p = it.rinfo()->target_object_handle(origin);
13573 Code* code = Code::cast(*p);
13574 it.rinfo()->set_target_address(code->instruction_start(),
13575 UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
13576 } else if (RelocInfo::IsRuntimeEntry(mode)) {
13577 Address p = it.rinfo()->target_runtime_entry(origin);
13578 it.rinfo()->set_target_runtime_entry(p, UPDATE_WRITE_BARRIER,
13579 SKIP_ICACHE_FLUSH);
13580 } else if (mode == RelocInfo::CODE_AGE_SEQUENCE) {
13581 Handle<Object> p = it.rinfo()->code_age_stub_handle(origin);
13582 Code* code = Code::cast(*p);
13583 it.rinfo()->set_code_age_stub(code, SKIP_ICACHE_FLUSH);
13584 } else {
13585 it.rinfo()->apply(delta);
13586 }
13587 }
13588 Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size());
13589 }
13590
13591 // Locate the source position which is closest to the code offset. This is
13592 // using the source position information embedded in the relocation info.
13593 // The position returned is relative to the beginning of the script where the
13594 // source for this function is found.
SourcePosition(int code_offset)13595 int Code::SourcePosition(int code_offset) {
13596 // Subtract one because the current PC is one instruction after the call site.
13597 Address pc = instruction_start() + code_offset - 1;
13598 int position = RelocInfo::kNoPosition; // Initially no position found.
13599 // Find the closest position attached to a pc lower or equal to the current.
13600 // Note that the pc of reloc infos grow monotonically.
13601 for (RelocIterator it(this, RelocInfo::kPositionMask);
13602 !it.done() && it.rinfo()->pc() <= pc; it.next()) {
13603 position = static_cast<int>(it.rinfo()->data());
13604 }
13605 DCHECK(kind() == FUNCTION || (is_optimized_code() && is_turbofanned()) ||
13606 is_wasm_code() || position == RelocInfo::kNoPosition);
13607 return position;
13608 }
13609
13610
13611 // Same as Code::SourcePosition above except it only looks for statement
13612 // positions.
SourceStatementPosition(int code_offset)13613 int Code::SourceStatementPosition(int code_offset) {
13614 // First find the closest position.
13615 int position = SourcePosition(code_offset);
13616 // Now find the closest statement position before the position.
13617 int statement_position = 0;
13618 for (RelocIterator it(this, RelocInfo::kPositionMask); !it.done();
13619 it.next()) {
13620 if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
13621 int p = static_cast<int>(it.rinfo()->data());
13622 if (statement_position < p && p <= position) {
13623 statement_position = p;
13624 }
13625 }
13626 }
13627 return statement_position;
13628 }
13629
13630
GetSafepointEntry(Address pc)13631 SafepointEntry Code::GetSafepointEntry(Address pc) {
13632 SafepointTable table(this);
13633 return table.FindEntry(pc);
13634 }
13635
13636
FindNthObject(int n,Map * match_map)13637 Object* Code::FindNthObject(int n, Map* match_map) {
13638 DCHECK(is_inline_cache_stub());
13639 DisallowHeapAllocation no_allocation;
13640 int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
13641 for (RelocIterator it(this, mask); !it.done(); it.next()) {
13642 RelocInfo* info = it.rinfo();
13643 Object* object = info->target_object();
13644 if (object->IsWeakCell()) object = WeakCell::cast(object)->value();
13645 if (object->IsHeapObject()) {
13646 if (HeapObject::cast(object)->map() == match_map) {
13647 if (--n == 0) return object;
13648 }
13649 }
13650 }
13651 return NULL;
13652 }
13653
13654
FindFirstAllocationSite()13655 AllocationSite* Code::FindFirstAllocationSite() {
13656 Object* result = FindNthObject(1, GetHeap()->allocation_site_map());
13657 return (result != NULL) ? AllocationSite::cast(result) : NULL;
13658 }
13659
13660
FindFirstMap()13661 Map* Code::FindFirstMap() {
13662 Object* result = FindNthObject(1, GetHeap()->meta_map());
13663 return (result != NULL) ? Map::cast(result) : NULL;
13664 }
13665
13666
FindAndReplace(const FindAndReplacePattern & pattern)13667 void Code::FindAndReplace(const FindAndReplacePattern& pattern) {
13668 DCHECK(is_inline_cache_stub() || is_handler());
13669 DisallowHeapAllocation no_allocation;
13670 int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
13671 STATIC_ASSERT(FindAndReplacePattern::kMaxCount < 32);
13672 int current_pattern = 0;
13673 for (RelocIterator it(this, mask); !it.done(); it.next()) {
13674 RelocInfo* info = it.rinfo();
13675 Object* object = info->target_object();
13676 if (object->IsHeapObject()) {
13677 if (object->IsWeakCell()) {
13678 object = HeapObject::cast(WeakCell::cast(object)->value());
13679 }
13680 Map* map = HeapObject::cast(object)->map();
13681 if (map == *pattern.find_[current_pattern]) {
13682 info->set_target_object(*pattern.replace_[current_pattern]);
13683 if (++current_pattern == pattern.count_) return;
13684 }
13685 }
13686 }
13687 UNREACHABLE();
13688 }
13689
13690
ClearInlineCaches()13691 void Code::ClearInlineCaches() {
13692 int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
13693 RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID);
13694 for (RelocIterator it(this, mask); !it.done(); it.next()) {
13695 RelocInfo* info = it.rinfo();
13696 Code* target(Code::GetCodeFromTargetAddress(info->target_address()));
13697 if (target->is_inline_cache_stub()) {
13698 IC::Clear(this->GetIsolate(), info->pc(), info->host()->constant_pool());
13699 }
13700 }
13701 }
13702
SourcePosition(int offset)13703 int AbstractCode::SourcePosition(int offset) {
13704 return IsBytecodeArray() ? GetBytecodeArray()->SourcePosition(offset)
13705 : GetCode()->SourcePosition(offset);
13706 }
13707
SourceStatementPosition(int offset)13708 int AbstractCode::SourceStatementPosition(int offset) {
13709 return IsBytecodeArray() ? GetBytecodeArray()->SourceStatementPosition(offset)
13710 : GetCode()->SourceStatementPosition(offset);
13711 }
13712
ClearTypeFeedbackInfo()13713 void JSFunction::ClearTypeFeedbackInfo() {
13714 feedback_vector()->ClearSlots(shared());
13715 }
13716
ClearTypeFeedbackInfoAtGCTime()13717 void JSFunction::ClearTypeFeedbackInfoAtGCTime() {
13718 feedback_vector()->ClearSlotsAtGCTime(shared());
13719 }
13720
TranslatePcOffsetToAstId(uint32_t pc_offset)13721 BailoutId Code::TranslatePcOffsetToAstId(uint32_t pc_offset) {
13722 DisallowHeapAllocation no_gc;
13723 DCHECK(kind() == FUNCTION);
13724 BackEdgeTable back_edges(this, &no_gc);
13725 for (uint32_t i = 0; i < back_edges.length(); i++) {
13726 if (back_edges.pc_offset(i) == pc_offset) return back_edges.ast_id(i);
13727 }
13728 return BailoutId::None();
13729 }
13730
13731
TranslateAstIdToPcOffset(BailoutId ast_id)13732 uint32_t Code::TranslateAstIdToPcOffset(BailoutId ast_id) {
13733 DisallowHeapAllocation no_gc;
13734 DCHECK(kind() == FUNCTION);
13735 BackEdgeTable back_edges(this, &no_gc);
13736 for (uint32_t i = 0; i < back_edges.length(); i++) {
13737 if (back_edges.ast_id(i) == ast_id) return back_edges.pc_offset(i);
13738 }
13739 UNREACHABLE(); // We expect to find the back edge.
13740 return 0;
13741 }
13742
13743
MakeCodeAgeSequenceYoung(byte * sequence,Isolate * isolate)13744 void Code::MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate) {
13745 PatchPlatformCodeAge(isolate, sequence, kNoAgeCodeAge, NO_MARKING_PARITY);
13746 }
13747
13748
MarkCodeAsExecuted(byte * sequence,Isolate * isolate)13749 void Code::MarkCodeAsExecuted(byte* sequence, Isolate* isolate) {
13750 PatchPlatformCodeAge(isolate, sequence, kExecutedOnceCodeAge,
13751 NO_MARKING_PARITY);
13752 }
13753
13754
13755 // NextAge defines the Code::Age state transitions during a GC cycle.
NextAge(Code::Age age)13756 static Code::Age NextAge(Code::Age age) {
13757 switch (age) {
13758 case Code::kNotExecutedCodeAge: // Keep, until we've been executed.
13759 case Code::kToBeExecutedOnceCodeAge: // Keep, until we've been executed.
13760 case Code::kLastCodeAge: // Clamp at last Code::Age value.
13761 return age;
13762 case Code::kExecutedOnceCodeAge:
13763 // Pre-age code that has only been executed once.
13764 return static_cast<Code::Age>(Code::kPreAgedCodeAge + 1);
13765 default:
13766 return static_cast<Code::Age>(age + 1); // Default case: Increase age.
13767 }
13768 }
13769
13770
13771 // IsOldAge defines the collection criteria for a Code object.
IsOldAge(Code::Age age)13772 static bool IsOldAge(Code::Age age) {
13773 return age >= Code::kIsOldCodeAge || age == Code::kNotExecutedCodeAge;
13774 }
13775
13776
MakeYoung(Isolate * isolate)13777 void Code::MakeYoung(Isolate* isolate) {
13778 byte* sequence = FindCodeAgeSequence();
13779 if (sequence != NULL) MakeCodeAgeSequenceYoung(sequence, isolate);
13780 }
13781
PreAge(Isolate * isolate)13782 void Code::PreAge(Isolate* isolate) {
13783 byte* sequence = FindCodeAgeSequence();
13784 if (sequence != NULL) {
13785 PatchPlatformCodeAge(isolate, sequence, kPreAgedCodeAge, NO_MARKING_PARITY);
13786 }
13787 }
13788
MarkToBeExecutedOnce(Isolate * isolate)13789 void Code::MarkToBeExecutedOnce(Isolate* isolate) {
13790 byte* sequence = FindCodeAgeSequence();
13791 if (sequence != NULL) {
13792 PatchPlatformCodeAge(isolate, sequence, kToBeExecutedOnceCodeAge,
13793 NO_MARKING_PARITY);
13794 }
13795 }
13796
MakeOlder(MarkingParity current_parity)13797 void Code::MakeOlder(MarkingParity current_parity) {
13798 byte* sequence = FindCodeAgeSequence();
13799 if (sequence != NULL) {
13800 Age age;
13801 MarkingParity code_parity;
13802 Isolate* isolate = GetIsolate();
13803 GetCodeAgeAndParity(isolate, sequence, &age, &code_parity);
13804 Age next_age = NextAge(age);
13805 if (age != next_age && code_parity != current_parity) {
13806 PatchPlatformCodeAge(isolate, sequence, next_age, current_parity);
13807 }
13808 }
13809 }
13810
13811
IsOld()13812 bool Code::IsOld() {
13813 return IsOldAge(GetAge());
13814 }
13815
13816
FindCodeAgeSequence()13817 byte* Code::FindCodeAgeSequence() {
13818 return FLAG_age_code &&
13819 prologue_offset() != Code::kPrologueOffsetNotSet &&
13820 (kind() == OPTIMIZED_FUNCTION ||
13821 (kind() == FUNCTION && !has_debug_break_slots()))
13822 ? instruction_start() + prologue_offset()
13823 : NULL;
13824 }
13825
13826
GetAge()13827 Code::Age Code::GetAge() {
13828 byte* sequence = FindCodeAgeSequence();
13829 if (sequence == NULL) {
13830 return kNoAgeCodeAge;
13831 }
13832 Age age;
13833 MarkingParity parity;
13834 GetCodeAgeAndParity(GetIsolate(), sequence, &age, &parity);
13835 return age;
13836 }
13837
13838
GetCodeAgeAndParity(Code * code,Age * age,MarkingParity * parity)13839 void Code::GetCodeAgeAndParity(Code* code, Age* age,
13840 MarkingParity* parity) {
13841 Isolate* isolate = code->GetIsolate();
13842 Builtins* builtins = isolate->builtins();
13843 Code* stub = NULL;
13844 #define HANDLE_CODE_AGE(AGE) \
13845 stub = *builtins->Make##AGE##CodeYoungAgainEvenMarking(); \
13846 if (code == stub) { \
13847 *age = k##AGE##CodeAge; \
13848 *parity = EVEN_MARKING_PARITY; \
13849 return; \
13850 } \
13851 stub = *builtins->Make##AGE##CodeYoungAgainOddMarking(); \
13852 if (code == stub) { \
13853 *age = k##AGE##CodeAge; \
13854 *parity = ODD_MARKING_PARITY; \
13855 return; \
13856 }
13857 CODE_AGE_LIST(HANDLE_CODE_AGE)
13858 #undef HANDLE_CODE_AGE
13859 stub = *builtins->MarkCodeAsExecutedOnce();
13860 if (code == stub) {
13861 *age = kNotExecutedCodeAge;
13862 *parity = NO_MARKING_PARITY;
13863 return;
13864 }
13865 stub = *builtins->MarkCodeAsExecutedTwice();
13866 if (code == stub) {
13867 *age = kExecutedOnceCodeAge;
13868 *parity = NO_MARKING_PARITY;
13869 return;
13870 }
13871 stub = *builtins->MarkCodeAsToBeExecutedOnce();
13872 if (code == stub) {
13873 *age = kToBeExecutedOnceCodeAge;
13874 *parity = NO_MARKING_PARITY;
13875 return;
13876 }
13877 UNREACHABLE();
13878 }
13879
13880
GetCodeAgeStub(Isolate * isolate,Age age,MarkingParity parity)13881 Code* Code::GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity) {
13882 Builtins* builtins = isolate->builtins();
13883 switch (age) {
13884 #define HANDLE_CODE_AGE(AGE) \
13885 case k##AGE##CodeAge: { \
13886 Code* stub = parity == EVEN_MARKING_PARITY \
13887 ? *builtins->Make##AGE##CodeYoungAgainEvenMarking() \
13888 : *builtins->Make##AGE##CodeYoungAgainOddMarking(); \
13889 return stub; \
13890 }
13891 CODE_AGE_LIST(HANDLE_CODE_AGE)
13892 #undef HANDLE_CODE_AGE
13893 case kNotExecutedCodeAge: {
13894 DCHECK(parity == NO_MARKING_PARITY);
13895 return *builtins->MarkCodeAsExecutedOnce();
13896 }
13897 case kExecutedOnceCodeAge: {
13898 DCHECK(parity == NO_MARKING_PARITY);
13899 return *builtins->MarkCodeAsExecutedTwice();
13900 }
13901 case kToBeExecutedOnceCodeAge: {
13902 DCHECK(parity == NO_MARKING_PARITY);
13903 return *builtins->MarkCodeAsToBeExecutedOnce();
13904 }
13905 default:
13906 UNREACHABLE();
13907 break;
13908 }
13909 return NULL;
13910 }
13911
13912
PrintDeoptLocation(FILE * out,Address pc)13913 void Code::PrintDeoptLocation(FILE* out, Address pc) {
13914 Deoptimizer::DeoptInfo info = Deoptimizer::GetDeoptInfo(this, pc);
13915 class SourcePosition pos = info.position;
13916 if (info.deopt_reason != Deoptimizer::kNoReason || !pos.IsUnknown()) {
13917 if (FLAG_hydrogen_track_positions) {
13918 PrintF(out, " ;;; deoptimize at %d_%d: %s\n",
13919 pos.inlining_id(), pos.position(),
13920 Deoptimizer::GetDeoptReason(info.deopt_reason));
13921 } else {
13922 PrintF(out, " ;;; deoptimize at %d: %s\n", pos.raw(),
13923 Deoptimizer::GetDeoptReason(info.deopt_reason));
13924 }
13925 }
13926 }
13927
13928
CanDeoptAt(Address pc)13929 bool Code::CanDeoptAt(Address pc) {
13930 DeoptimizationInputData* deopt_data =
13931 DeoptimizationInputData::cast(deoptimization_data());
13932 Address code_start_address = instruction_start();
13933 for (int i = 0; i < deopt_data->DeoptCount(); i++) {
13934 if (deopt_data->Pc(i)->value() == -1) continue;
13935 Address address = code_start_address + deopt_data->Pc(i)->value();
13936 if (address == pc && deopt_data->AstId(i) != BailoutId::None()) {
13937 return true;
13938 }
13939 }
13940 return false;
13941 }
13942
13943
13944 // Identify kind of code.
Kind2String(Kind kind)13945 const char* Code::Kind2String(Kind kind) {
13946 switch (kind) {
13947 #define CASE(name) case name: return #name;
13948 CODE_KIND_LIST(CASE)
13949 #undef CASE
13950 case NUMBER_OF_KINDS: break;
13951 }
13952 UNREACHABLE();
13953 return NULL;
13954 }
13955
13956 // Identify kind of code.
Kind2String(Kind kind)13957 const char* AbstractCode::Kind2String(Kind kind) {
13958 if (kind < AbstractCode::INTERPRETED_FUNCTION)
13959 return Code::Kind2String((Code::Kind)kind);
13960 if (kind == AbstractCode::INTERPRETED_FUNCTION) return "INTERPRETED_FUNCTION";
13961 UNREACHABLE();
13962 return NULL;
13963 }
13964
WeakCellFor(Handle<Code> code)13965 Handle<WeakCell> Code::WeakCellFor(Handle<Code> code) {
13966 DCHECK(code->kind() == OPTIMIZED_FUNCTION);
13967 WeakCell* raw_cell = code->CachedWeakCell();
13968 if (raw_cell != NULL) return Handle<WeakCell>(raw_cell);
13969 Handle<WeakCell> cell = code->GetIsolate()->factory()->NewWeakCell(code);
13970 DeoptimizationInputData::cast(code->deoptimization_data())
13971 ->SetWeakCellCache(*cell);
13972 return cell;
13973 }
13974
13975
CachedWeakCell()13976 WeakCell* Code::CachedWeakCell() {
13977 DCHECK(kind() == OPTIMIZED_FUNCTION);
13978 Object* weak_cell_cache =
13979 DeoptimizationInputData::cast(deoptimization_data())->WeakCellCache();
13980 if (weak_cell_cache->IsWeakCell()) {
13981 DCHECK(this == WeakCell::cast(weak_cell_cache)->value());
13982 return WeakCell::cast(weak_cell_cache);
13983 }
13984 return NULL;
13985 }
13986
13987 #ifdef ENABLE_DISASSEMBLER
13988
DeoptimizationInputDataPrint(std::ostream & os)13989 void DeoptimizationInputData::DeoptimizationInputDataPrint(
13990 std::ostream& os) { // NOLINT
13991 disasm::NameConverter converter;
13992 int const inlined_function_count = InlinedFunctionCount()->value();
13993 os << "Inlined functions (count = " << inlined_function_count << ")\n";
13994 for (int id = 0; id < inlined_function_count; ++id) {
13995 Object* info = LiteralArray()->get(id);
13996 os << " " << Brief(SharedFunctionInfo::cast(info)) << "\n";
13997 }
13998 os << "\n";
13999 int deopt_count = DeoptCount();
14000 os << "Deoptimization Input Data (deopt points = " << deopt_count << ")\n";
14001 if (0 != deopt_count) {
14002 os << " index ast id argc pc";
14003 if (FLAG_print_code_verbose) os << " commands";
14004 os << "\n";
14005 }
14006 for (int i = 0; i < deopt_count; i++) {
14007 os << std::setw(6) << i << " " << std::setw(6) << AstId(i).ToInt() << " "
14008 << std::setw(6) << ArgumentsStackHeight(i)->value() << " "
14009 << std::setw(6) << Pc(i)->value();
14010
14011 if (!FLAG_print_code_verbose) {
14012 os << "\n";
14013 continue;
14014 }
14015 // Print details of the frame translation.
14016 int translation_index = TranslationIndex(i)->value();
14017 TranslationIterator iterator(TranslationByteArray(), translation_index);
14018 Translation::Opcode opcode =
14019 static_cast<Translation::Opcode>(iterator.Next());
14020 DCHECK(Translation::BEGIN == opcode);
14021 int frame_count = iterator.Next();
14022 int jsframe_count = iterator.Next();
14023 os << " " << Translation::StringFor(opcode)
14024 << " {frame count=" << frame_count
14025 << ", js frame count=" << jsframe_count << "}\n";
14026
14027 while (iterator.HasNext() &&
14028 Translation::BEGIN !=
14029 (opcode = static_cast<Translation::Opcode>(iterator.Next()))) {
14030 os << std::setw(31) << " " << Translation::StringFor(opcode) << " ";
14031
14032 switch (opcode) {
14033 case Translation::BEGIN:
14034 UNREACHABLE();
14035 break;
14036
14037 case Translation::JS_FRAME: {
14038 int ast_id = iterator.Next();
14039 int shared_info_id = iterator.Next();
14040 unsigned height = iterator.Next();
14041 Object* shared_info = LiteralArray()->get(shared_info_id);
14042 os << "{ast_id=" << ast_id << ", function="
14043 << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
14044 << ", height=" << height << "}";
14045 break;
14046 }
14047
14048 case Translation::INTERPRETED_FRAME: {
14049 int bytecode_offset = iterator.Next();
14050 int shared_info_id = iterator.Next();
14051 unsigned height = iterator.Next();
14052 Object* shared_info = LiteralArray()->get(shared_info_id);
14053 os << "{bytecode_offset=" << bytecode_offset << ", function="
14054 << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
14055 << ", height=" << height << "}";
14056 break;
14057 }
14058
14059 case Translation::COMPILED_STUB_FRAME: {
14060 Code::Kind stub_kind = static_cast<Code::Kind>(iterator.Next());
14061 os << "{kind=" << stub_kind << "}";
14062 break;
14063 }
14064
14065 case Translation::ARGUMENTS_ADAPTOR_FRAME:
14066 case Translation::CONSTRUCT_STUB_FRAME: {
14067 int shared_info_id = iterator.Next();
14068 Object* shared_info = LiteralArray()->get(shared_info_id);
14069 unsigned height = iterator.Next();
14070 os << "{function="
14071 << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
14072 << ", height=" << height << "}";
14073 break;
14074 }
14075
14076 case Translation::TAIL_CALLER_FRAME: {
14077 int shared_info_id = iterator.Next();
14078 Object* shared_info = LiteralArray()->get(shared_info_id);
14079 os << "{function="
14080 << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
14081 << "}";
14082 break;
14083 }
14084
14085 case Translation::GETTER_STUB_FRAME:
14086 case Translation::SETTER_STUB_FRAME: {
14087 int shared_info_id = iterator.Next();
14088 Object* shared_info = LiteralArray()->get(shared_info_id);
14089 os << "{function=" << Brief(SharedFunctionInfo::cast(shared_info)
14090 ->DebugName()) << "}";
14091 break;
14092 }
14093
14094 case Translation::REGISTER: {
14095 int reg_code = iterator.Next();
14096 os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
14097 break;
14098 }
14099
14100 case Translation::INT32_REGISTER: {
14101 int reg_code = iterator.Next();
14102 os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
14103 break;
14104 }
14105
14106 case Translation::UINT32_REGISTER: {
14107 int reg_code = iterator.Next();
14108 os << "{input=" << converter.NameOfCPURegister(reg_code)
14109 << " (unsigned)}";
14110 break;
14111 }
14112
14113 case Translation::BOOL_REGISTER: {
14114 int reg_code = iterator.Next();
14115 os << "{input=" << converter.NameOfCPURegister(reg_code)
14116 << " (bool)}";
14117 break;
14118 }
14119
14120 case Translation::FLOAT_REGISTER: {
14121 int reg_code = iterator.Next();
14122 os << "{input="
14123 << RegisterConfiguration::Crankshaft()->GetFloatRegisterName(
14124 reg_code)
14125 << "}";
14126 break;
14127 }
14128
14129 case Translation::DOUBLE_REGISTER: {
14130 int reg_code = iterator.Next();
14131 os << "{input="
14132 << RegisterConfiguration::Crankshaft()->GetDoubleRegisterName(
14133 reg_code)
14134 << "}";
14135 break;
14136 }
14137
14138 case Translation::STACK_SLOT: {
14139 int input_slot_index = iterator.Next();
14140 os << "{input=" << input_slot_index << "}";
14141 break;
14142 }
14143
14144 case Translation::INT32_STACK_SLOT: {
14145 int input_slot_index = iterator.Next();
14146 os << "{input=" << input_slot_index << "}";
14147 break;
14148 }
14149
14150 case Translation::UINT32_STACK_SLOT: {
14151 int input_slot_index = iterator.Next();
14152 os << "{input=" << input_slot_index << " (unsigned)}";
14153 break;
14154 }
14155
14156 case Translation::BOOL_STACK_SLOT: {
14157 int input_slot_index = iterator.Next();
14158 os << "{input=" << input_slot_index << " (bool)}";
14159 break;
14160 }
14161
14162 case Translation::FLOAT_STACK_SLOT:
14163 case Translation::DOUBLE_STACK_SLOT: {
14164 int input_slot_index = iterator.Next();
14165 os << "{input=" << input_slot_index << "}";
14166 break;
14167 }
14168
14169 case Translation::LITERAL: {
14170 int literal_index = iterator.Next();
14171 Object* literal_value = LiteralArray()->get(literal_index);
14172 os << "{literal_id=" << literal_index << " (" << Brief(literal_value)
14173 << ")}";
14174 break;
14175 }
14176
14177 case Translation::DUPLICATED_OBJECT: {
14178 int object_index = iterator.Next();
14179 os << "{object_index=" << object_index << "}";
14180 break;
14181 }
14182
14183 case Translation::ARGUMENTS_OBJECT:
14184 case Translation::CAPTURED_OBJECT: {
14185 int args_length = iterator.Next();
14186 os << "{length=" << args_length << "}";
14187 break;
14188 }
14189 }
14190 os << "\n";
14191 }
14192 }
14193 }
14194
14195
DeoptimizationOutputDataPrint(std::ostream & os)14196 void DeoptimizationOutputData::DeoptimizationOutputDataPrint(
14197 std::ostream& os) { // NOLINT
14198 os << "Deoptimization Output Data (deopt points = " << this->DeoptPoints()
14199 << ")\n";
14200 if (this->DeoptPoints() == 0) return;
14201
14202 os << "ast id pc state\n";
14203 for (int i = 0; i < this->DeoptPoints(); i++) {
14204 int pc_and_state = this->PcAndState(i)->value();
14205 os << std::setw(6) << this->AstId(i).ToInt() << " " << std::setw(8)
14206 << FullCodeGenerator::PcField::decode(pc_and_state) << " "
14207 << Deoptimizer::BailoutStateToString(
14208 FullCodeGenerator::BailoutStateField::decode(pc_and_state))
14209 << "\n";
14210 }
14211 }
14212
14213
HandlerTableRangePrint(std::ostream & os)14214 void HandlerTable::HandlerTableRangePrint(std::ostream& os) {
14215 os << " from to hdlr\n";
14216 for (int i = 0; i < length(); i += kRangeEntrySize) {
14217 int pc_start = Smi::cast(get(i + kRangeStartIndex))->value();
14218 int pc_end = Smi::cast(get(i + kRangeEndIndex))->value();
14219 int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value();
14220 int handler_offset = HandlerOffsetField::decode(handler_field);
14221 CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
14222 int data = Smi::cast(get(i + kRangeDataIndex))->value();
14223 os << " (" << std::setw(4) << pc_start << "," << std::setw(4) << pc_end
14224 << ") -> " << std::setw(4) << handler_offset
14225 << " (prediction=" << prediction << ", data=" << data << ")\n";
14226 }
14227 }
14228
14229
HandlerTableReturnPrint(std::ostream & os)14230 void HandlerTable::HandlerTableReturnPrint(std::ostream& os) {
14231 os << " off hdlr (c)\n";
14232 for (int i = 0; i < length(); i += kReturnEntrySize) {
14233 int pc_offset = Smi::cast(get(i + kReturnOffsetIndex))->value();
14234 int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value();
14235 int handler_offset = HandlerOffsetField::decode(handler_field);
14236 CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
14237 os << " " << std::setw(4) << pc_offset << " -> " << std::setw(4)
14238 << handler_offset << " (prediction=" << prediction << ")\n";
14239 }
14240 }
14241
14242
ICState2String(InlineCacheState state)14243 const char* Code::ICState2String(InlineCacheState state) {
14244 switch (state) {
14245 case UNINITIALIZED: return "UNINITIALIZED";
14246 case PREMONOMORPHIC: return "PREMONOMORPHIC";
14247 case MONOMORPHIC: return "MONOMORPHIC";
14248 case RECOMPUTE_HANDLER:
14249 return "RECOMPUTE_HANDLER";
14250 case POLYMORPHIC: return "POLYMORPHIC";
14251 case MEGAMORPHIC: return "MEGAMORPHIC";
14252 case GENERIC: return "GENERIC";
14253 }
14254 UNREACHABLE();
14255 return NULL;
14256 }
14257
14258
PrintExtraICState(std::ostream & os,Kind kind,ExtraICState extra)14259 void Code::PrintExtraICState(std::ostream& os, // NOLINT
14260 Kind kind, ExtraICState extra) {
14261 os << "extra_ic_state = ";
14262 if ((kind == STORE_IC || kind == KEYED_STORE_IC) &&
14263 is_strict(static_cast<LanguageMode>(extra))) {
14264 os << "STRICT\n";
14265 } else {
14266 os << extra << "\n";
14267 }
14268 }
14269
14270
Disassemble(const char * name,std::ostream & os)14271 void Code::Disassemble(const char* name, std::ostream& os) { // NOLINT
14272 os << "kind = " << Kind2String(kind()) << "\n";
14273 if (IsCodeStubOrIC()) {
14274 const char* n = CodeStub::MajorName(CodeStub::GetMajorKey(this));
14275 os << "major_key = " << (n == NULL ? "null" : n) << "\n";
14276 }
14277 if (is_inline_cache_stub()) {
14278 if (!IC::ICUseVector(kind())) {
14279 InlineCacheState ic_state = IC::StateFromCode(this);
14280 os << "ic_state = " << ICState2String(ic_state) << "\n";
14281 }
14282 PrintExtraICState(os, kind(), extra_ic_state());
14283 if (is_compare_ic_stub()) {
14284 DCHECK(CodeStub::GetMajorKey(this) == CodeStub::CompareIC);
14285 CompareICStub stub(stub_key(), GetIsolate());
14286 os << "compare_state = " << CompareICState::GetStateName(stub.left())
14287 << "*" << CompareICState::GetStateName(stub.right()) << " -> "
14288 << CompareICState::GetStateName(stub.state()) << "\n";
14289 os << "compare_operation = " << Token::Name(stub.op()) << "\n";
14290 }
14291 }
14292 if ((name != nullptr) && (name[0] != '\0')) {
14293 os << "name = " << name << "\n";
14294 } else if (kind() == BUILTIN) {
14295 name = GetIsolate()->builtins()->Lookup(instruction_start());
14296 if (name != nullptr) {
14297 os << "name = " << name << "\n";
14298 }
14299 } else if (kind() == BYTECODE_HANDLER) {
14300 name = GetIsolate()->interpreter()->LookupNameOfBytecodeHandler(this);
14301 if (name != nullptr) {
14302 os << "name = " << name << "\n";
14303 }
14304 }
14305 if (kind() == OPTIMIZED_FUNCTION) {
14306 os << "stack_slots = " << stack_slots() << "\n";
14307 }
14308 os << "compiler = " << (is_turbofanned()
14309 ? "turbofan"
14310 : is_crankshafted() ? "crankshaft"
14311 : kind() == Code::FUNCTION
14312 ? "full-codegen"
14313 : "unknown") << "\n";
14314
14315 os << "Instructions (size = " << instruction_size() << ")\n";
14316 {
14317 Isolate* isolate = GetIsolate();
14318 int size = instruction_size();
14319 int safepoint_offset =
14320 is_crankshafted() ? static_cast<int>(safepoint_table_offset()) : size;
14321 int back_edge_offset = (kind() == Code::FUNCTION)
14322 ? static_cast<int>(back_edge_table_offset())
14323 : size;
14324 int constant_pool_offset = FLAG_enable_embedded_constant_pool
14325 ? this->constant_pool_offset()
14326 : size;
14327
14328 // Stop before reaching any embedded tables
14329 int code_size = Min(safepoint_offset, back_edge_offset);
14330 code_size = Min(code_size, constant_pool_offset);
14331 byte* begin = instruction_start();
14332 byte* end = begin + code_size;
14333 Disassembler::Decode(isolate, &os, begin, end, this);
14334
14335 if (constant_pool_offset < size) {
14336 int constant_pool_size = size - constant_pool_offset;
14337 DCHECK((constant_pool_size & kPointerAlignmentMask) == 0);
14338 os << "\nConstant Pool (size = " << constant_pool_size << ")\n";
14339 Vector<char> buf = Vector<char>::New(50);
14340 intptr_t* ptr = reinterpret_cast<intptr_t*>(begin + constant_pool_offset);
14341 for (int i = 0; i < constant_pool_size; i += kPointerSize, ptr++) {
14342 SNPrintF(buf, "%4d %08" V8PRIxPTR, i, *ptr);
14343 os << static_cast<const void*>(ptr) << " " << buf.start() << "\n";
14344 }
14345 }
14346 }
14347 os << "\n";
14348
14349 if (kind() == FUNCTION) {
14350 DeoptimizationOutputData* data =
14351 DeoptimizationOutputData::cast(this->deoptimization_data());
14352 data->DeoptimizationOutputDataPrint(os);
14353 } else if (kind() == OPTIMIZED_FUNCTION) {
14354 DeoptimizationInputData* data =
14355 DeoptimizationInputData::cast(this->deoptimization_data());
14356 data->DeoptimizationInputDataPrint(os);
14357 }
14358 os << "\n";
14359
14360 if (is_crankshafted()) {
14361 SafepointTable table(this);
14362 os << "Safepoints (size = " << table.size() << ")\n";
14363 for (unsigned i = 0; i < table.length(); i++) {
14364 unsigned pc_offset = table.GetPcOffset(i);
14365 os << static_cast<const void*>(instruction_start() + pc_offset) << " ";
14366 os << std::setw(4) << pc_offset << " ";
14367 table.PrintEntry(i, os);
14368 os << " (sp -> fp) ";
14369 SafepointEntry entry = table.GetEntry(i);
14370 if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
14371 os << std::setw(6) << entry.deoptimization_index();
14372 } else {
14373 os << "<none>";
14374 }
14375 if (entry.argument_count() > 0) {
14376 os << " argc: " << entry.argument_count();
14377 }
14378 os << "\n";
14379 }
14380 os << "\n";
14381 } else if (kind() == FUNCTION) {
14382 unsigned offset = back_edge_table_offset();
14383 // If there is no back edge table, the "table start" will be at or after
14384 // (due to alignment) the end of the instruction stream.
14385 if (static_cast<int>(offset) < instruction_size()) {
14386 DisallowHeapAllocation no_gc;
14387 BackEdgeTable back_edges(this, &no_gc);
14388
14389 os << "Back edges (size = " << back_edges.length() << ")\n";
14390 os << "ast_id pc_offset loop_depth\n";
14391
14392 for (uint32_t i = 0; i < back_edges.length(); i++) {
14393 os << std::setw(6) << back_edges.ast_id(i).ToInt() << " "
14394 << std::setw(9) << back_edges.pc_offset(i) << " " << std::setw(10)
14395 << back_edges.loop_depth(i) << "\n";
14396 }
14397
14398 os << "\n";
14399 }
14400 #ifdef OBJECT_PRINT
14401 if (!type_feedback_info()->IsUndefined(GetIsolate())) {
14402 TypeFeedbackInfo::cast(type_feedback_info())->TypeFeedbackInfoPrint(os);
14403 os << "\n";
14404 }
14405 #endif
14406 }
14407
14408 if (handler_table()->length() > 0) {
14409 os << "Handler Table (size = " << handler_table()->Size() << ")\n";
14410 if (kind() == FUNCTION) {
14411 HandlerTable::cast(handler_table())->HandlerTableRangePrint(os);
14412 } else if (kind() == OPTIMIZED_FUNCTION) {
14413 HandlerTable::cast(handler_table())->HandlerTableReturnPrint(os);
14414 }
14415 os << "\n";
14416 }
14417
14418 os << "RelocInfo (size = " << relocation_size() << ")\n";
14419 for (RelocIterator it(this); !it.done(); it.next()) {
14420 it.rinfo()->Print(GetIsolate(), os);
14421 }
14422 os << "\n";
14423 }
14424 #endif // ENABLE_DISASSEMBLER
14425
SourcePosition(int offset)14426 int BytecodeArray::SourcePosition(int offset) {
14427 int last_position = 0;
14428 for (interpreter::SourcePositionTableIterator iterator(
14429 source_position_table());
14430 !iterator.done() && iterator.bytecode_offset() <= offset;
14431 iterator.Advance()) {
14432 last_position = iterator.source_position();
14433 }
14434 return last_position;
14435 }
14436
SourceStatementPosition(int offset)14437 int BytecodeArray::SourceStatementPosition(int offset) {
14438 // First find the closest position.
14439 int position = SourcePosition(offset);
14440 // Now find the closest statement position before the position.
14441 int statement_position = 0;
14442 for (interpreter::SourcePositionTableIterator it(source_position_table());
14443 !it.done(); it.Advance()) {
14444 if (it.is_statement()) {
14445 int p = it.source_position();
14446 if (statement_position < p && p <= position) {
14447 statement_position = p;
14448 }
14449 }
14450 }
14451 return statement_position;
14452 }
14453
Disassemble(std::ostream & os)14454 void BytecodeArray::Disassemble(std::ostream& os) {
14455 os << "Parameter count " << parameter_count() << "\n";
14456 os << "Frame size " << frame_size() << "\n";
14457
14458 const uint8_t* base_address = GetFirstBytecodeAddress();
14459 interpreter::SourcePositionTableIterator source_positions(
14460 source_position_table());
14461
14462 interpreter::BytecodeArrayIterator iterator(handle(this));
14463 while (!iterator.done()) {
14464 if (!source_positions.done() &&
14465 iterator.current_offset() == source_positions.bytecode_offset()) {
14466 os << std::setw(5) << source_positions.source_position();
14467 os << (source_positions.is_statement() ? " S> " : " E> ");
14468 source_positions.Advance();
14469 } else {
14470 os << " ";
14471 }
14472 const uint8_t* current_address = base_address + iterator.current_offset();
14473 os << reinterpret_cast<const void*>(current_address) << " @ "
14474 << std::setw(4) << iterator.current_offset() << " : ";
14475 interpreter::Bytecodes::Decode(os, current_address, parameter_count());
14476 if (interpreter::Bytecodes::IsJump(iterator.current_bytecode())) {
14477 const void* jump_target = base_address + iterator.GetJumpTargetOffset();
14478 os << " (" << jump_target << " @ " << iterator.GetJumpTargetOffset()
14479 << ")";
14480 }
14481 os << std::endl;
14482 iterator.Advance();
14483 }
14484
14485 if (constant_pool()->length() > 0) {
14486 os << "Constant pool (size = " << constant_pool()->length() << ")\n";
14487 constant_pool()->Print();
14488 }
14489
14490 #ifdef ENABLE_DISASSEMBLER
14491 if (handler_table()->length() > 0) {
14492 os << "Handler Table (size = " << handler_table()->Size() << ")\n";
14493 HandlerTable::cast(handler_table())->HandlerTableRangePrint(os);
14494 }
14495 #endif
14496 }
14497
CopyBytecodesTo(BytecodeArray * to)14498 void BytecodeArray::CopyBytecodesTo(BytecodeArray* to) {
14499 BytecodeArray* from = this;
14500 DCHECK_EQ(from->length(), to->length());
14501 CopyBytes(to->GetFirstBytecodeAddress(), from->GetFirstBytecodeAddress(),
14502 from->length());
14503 }
14504
14505 // static
Initialize(Handle<JSArray> array,int capacity,int length)14506 void JSArray::Initialize(Handle<JSArray> array, int capacity, int length) {
14507 DCHECK(capacity >= 0);
14508 array->GetIsolate()->factory()->NewJSArrayStorage(
14509 array, length, capacity, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
14510 }
14511
SetLength(Handle<JSArray> array,uint32_t new_length)14512 void JSArray::SetLength(Handle<JSArray> array, uint32_t new_length) {
14513 // We should never end in here with a pixel or external array.
14514 DCHECK(array->AllowsSetLength());
14515 if (array->SetLengthWouldNormalize(new_length)) {
14516 JSObject::NormalizeElements(array);
14517 }
14518 array->GetElementsAccessor()->SetLength(array, new_length);
14519 }
14520
14521
14522 // static
AddDependentCode(Handle<Map> map,DependentCode::DependencyGroup group,Handle<Code> code)14523 void Map::AddDependentCode(Handle<Map> map,
14524 DependentCode::DependencyGroup group,
14525 Handle<Code> code) {
14526 Handle<WeakCell> cell = Code::WeakCellFor(code);
14527 Handle<DependentCode> codes = DependentCode::InsertWeakCode(
14528 Handle<DependentCode>(map->dependent_code()), group, cell);
14529 if (*codes != map->dependent_code()) map->set_dependent_code(*codes);
14530 }
14531
14532
InsertCompilationDependencies(Handle<DependentCode> entries,DependencyGroup group,Handle<Foreign> info)14533 Handle<DependentCode> DependentCode::InsertCompilationDependencies(
14534 Handle<DependentCode> entries, DependencyGroup group,
14535 Handle<Foreign> info) {
14536 return Insert(entries, group, info);
14537 }
14538
14539
InsertWeakCode(Handle<DependentCode> entries,DependencyGroup group,Handle<WeakCell> code_cell)14540 Handle<DependentCode> DependentCode::InsertWeakCode(
14541 Handle<DependentCode> entries, DependencyGroup group,
14542 Handle<WeakCell> code_cell) {
14543 return Insert(entries, group, code_cell);
14544 }
14545
14546
Insert(Handle<DependentCode> entries,DependencyGroup group,Handle<Object> object)14547 Handle<DependentCode> DependentCode::Insert(Handle<DependentCode> entries,
14548 DependencyGroup group,
14549 Handle<Object> object) {
14550 if (entries->length() == 0 || entries->group() > group) {
14551 // There is no such group.
14552 return DependentCode::New(group, object, entries);
14553 }
14554 if (entries->group() < group) {
14555 // The group comes later in the list.
14556 Handle<DependentCode> old_next(entries->next_link());
14557 Handle<DependentCode> new_next = Insert(old_next, group, object);
14558 if (!old_next.is_identical_to(new_next)) {
14559 entries->set_next_link(*new_next);
14560 }
14561 return entries;
14562 }
14563 DCHECK_EQ(group, entries->group());
14564 int count = entries->count();
14565 // Check for existing entry to avoid duplicates.
14566 for (int i = 0; i < count; i++) {
14567 if (entries->object_at(i) == *object) return entries;
14568 }
14569 if (entries->length() < kCodesStartIndex + count + 1) {
14570 entries = EnsureSpace(entries);
14571 // Count could have changed, reload it.
14572 count = entries->count();
14573 }
14574 entries->set_object_at(count, *object);
14575 entries->set_count(count + 1);
14576 return entries;
14577 }
14578
14579
New(DependencyGroup group,Handle<Object> object,Handle<DependentCode> next)14580 Handle<DependentCode> DependentCode::New(DependencyGroup group,
14581 Handle<Object> object,
14582 Handle<DependentCode> next) {
14583 Isolate* isolate = next->GetIsolate();
14584 Handle<DependentCode> result = Handle<DependentCode>::cast(
14585 isolate->factory()->NewFixedArray(kCodesStartIndex + 1, TENURED));
14586 result->set_next_link(*next);
14587 result->set_flags(GroupField::encode(group) | CountField::encode(1));
14588 result->set_object_at(0, *object);
14589 return result;
14590 }
14591
14592
EnsureSpace(Handle<DependentCode> entries)14593 Handle<DependentCode> DependentCode::EnsureSpace(
14594 Handle<DependentCode> entries) {
14595 if (entries->Compact()) return entries;
14596 Isolate* isolate = entries->GetIsolate();
14597 int capacity = kCodesStartIndex + DependentCode::Grow(entries->count());
14598 int grow_by = capacity - entries->length();
14599 return Handle<DependentCode>::cast(
14600 isolate->factory()->CopyFixedArrayAndGrow(entries, grow_by, TENURED));
14601 }
14602
14603
Compact()14604 bool DependentCode::Compact() {
14605 int old_count = count();
14606 int new_count = 0;
14607 for (int i = 0; i < old_count; i++) {
14608 Object* obj = object_at(i);
14609 if (!obj->IsWeakCell() || !WeakCell::cast(obj)->cleared()) {
14610 if (i != new_count) {
14611 copy(i, new_count);
14612 }
14613 new_count++;
14614 }
14615 }
14616 set_count(new_count);
14617 for (int i = new_count; i < old_count; i++) {
14618 clear_at(i);
14619 }
14620 return new_count < old_count;
14621 }
14622
14623
UpdateToFinishedCode(DependencyGroup group,Foreign * info,WeakCell * code_cell)14624 void DependentCode::UpdateToFinishedCode(DependencyGroup group, Foreign* info,
14625 WeakCell* code_cell) {
14626 if (this->length() == 0 || this->group() > group) {
14627 // There is no such group.
14628 return;
14629 }
14630 if (this->group() < group) {
14631 // The group comes later in the list.
14632 next_link()->UpdateToFinishedCode(group, info, code_cell);
14633 return;
14634 }
14635 DCHECK_EQ(group, this->group());
14636 DisallowHeapAllocation no_gc;
14637 int count = this->count();
14638 for (int i = 0; i < count; i++) {
14639 if (object_at(i) == info) {
14640 set_object_at(i, code_cell);
14641 break;
14642 }
14643 }
14644 #ifdef DEBUG
14645 for (int i = 0; i < count; i++) {
14646 DCHECK(object_at(i) != info);
14647 }
14648 #endif
14649 }
14650
14651
RemoveCompilationDependencies(DependentCode::DependencyGroup group,Foreign * info)14652 void DependentCode::RemoveCompilationDependencies(
14653 DependentCode::DependencyGroup group, Foreign* info) {
14654 if (this->length() == 0 || this->group() > group) {
14655 // There is no such group.
14656 return;
14657 }
14658 if (this->group() < group) {
14659 // The group comes later in the list.
14660 next_link()->RemoveCompilationDependencies(group, info);
14661 return;
14662 }
14663 DCHECK_EQ(group, this->group());
14664 DisallowHeapAllocation no_allocation;
14665 int old_count = count();
14666 // Find compilation info wrapper.
14667 int info_pos = -1;
14668 for (int i = 0; i < old_count; i++) {
14669 if (object_at(i) == info) {
14670 info_pos = i;
14671 break;
14672 }
14673 }
14674 if (info_pos == -1) return; // Not found.
14675 // Use the last code to fill the gap.
14676 if (info_pos < old_count - 1) {
14677 copy(old_count - 1, info_pos);
14678 }
14679 clear_at(old_count - 1);
14680 set_count(old_count - 1);
14681
14682 #ifdef DEBUG
14683 for (int i = 0; i < old_count - 1; i++) {
14684 DCHECK(object_at(i) != info);
14685 }
14686 #endif
14687 }
14688
14689
Contains(DependencyGroup group,WeakCell * code_cell)14690 bool DependentCode::Contains(DependencyGroup group, WeakCell* code_cell) {
14691 if (this->length() == 0 || this->group() > group) {
14692 // There is no such group.
14693 return false;
14694 }
14695 if (this->group() < group) {
14696 // The group comes later in the list.
14697 return next_link()->Contains(group, code_cell);
14698 }
14699 DCHECK_EQ(group, this->group());
14700 int count = this->count();
14701 for (int i = 0; i < count; i++) {
14702 if (object_at(i) == code_cell) return true;
14703 }
14704 return false;
14705 }
14706
14707
IsEmpty(DependencyGroup group)14708 bool DependentCode::IsEmpty(DependencyGroup group) {
14709 if (this->length() == 0 || this->group() > group) {
14710 // There is no such group.
14711 return true;
14712 }
14713 if (this->group() < group) {
14714 // The group comes later in the list.
14715 return next_link()->IsEmpty(group);
14716 }
14717 DCHECK_EQ(group, this->group());
14718 return count() == 0;
14719 }
14720
14721
MarkCodeForDeoptimization(Isolate * isolate,DependentCode::DependencyGroup group)14722 bool DependentCode::MarkCodeForDeoptimization(
14723 Isolate* isolate,
14724 DependentCode::DependencyGroup group) {
14725 if (this->length() == 0 || this->group() > group) {
14726 // There is no such group.
14727 return false;
14728 }
14729 if (this->group() < group) {
14730 // The group comes later in the list.
14731 return next_link()->MarkCodeForDeoptimization(isolate, group);
14732 }
14733 DCHECK_EQ(group, this->group());
14734 DisallowHeapAllocation no_allocation_scope;
14735 // Mark all the code that needs to be deoptimized.
14736 bool marked = false;
14737 bool invalidate_embedded_objects = group == kWeakCodeGroup;
14738 int count = this->count();
14739 for (int i = 0; i < count; i++) {
14740 Object* obj = object_at(i);
14741 if (obj->IsWeakCell()) {
14742 WeakCell* cell = WeakCell::cast(obj);
14743 if (cell->cleared()) continue;
14744 Code* code = Code::cast(cell->value());
14745 if (!code->marked_for_deoptimization()) {
14746 SetMarkedForDeoptimization(code, group);
14747 if (invalidate_embedded_objects) {
14748 code->InvalidateEmbeddedObjects();
14749 }
14750 marked = true;
14751 }
14752 } else {
14753 DCHECK(obj->IsForeign());
14754 CompilationDependencies* info =
14755 reinterpret_cast<CompilationDependencies*>(
14756 Foreign::cast(obj)->foreign_address());
14757 info->Abort();
14758 }
14759 }
14760 for (int i = 0; i < count; i++) {
14761 clear_at(i);
14762 }
14763 set_count(0);
14764 return marked;
14765 }
14766
14767
DeoptimizeDependentCodeGroup(Isolate * isolate,DependentCode::DependencyGroup group)14768 void DependentCode::DeoptimizeDependentCodeGroup(
14769 Isolate* isolate,
14770 DependentCode::DependencyGroup group) {
14771 DCHECK(AllowCodeDependencyChange::IsAllowed());
14772 DisallowHeapAllocation no_allocation_scope;
14773 bool marked = MarkCodeForDeoptimization(isolate, group);
14774 if (marked) Deoptimizer::DeoptimizeMarkedCode(isolate);
14775 }
14776
14777
SetMarkedForDeoptimization(Code * code,DependencyGroup group)14778 void DependentCode::SetMarkedForDeoptimization(Code* code,
14779 DependencyGroup group) {
14780 code->set_marked_for_deoptimization(true);
14781 if (FLAG_trace_deopt &&
14782 (code->deoptimization_data() != code->GetHeap()->empty_fixed_array())) {
14783 DeoptimizationInputData* deopt_data =
14784 DeoptimizationInputData::cast(code->deoptimization_data());
14785 CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
14786 PrintF(scope.file(), "[marking dependent code 0x%08" V8PRIxPTR
14787 " (opt #%d) for deoptimization, reason: %s]\n",
14788 reinterpret_cast<intptr_t>(code),
14789 deopt_data->OptimizationId()->value(), DependencyGroupName(group));
14790 }
14791 }
14792
14793
DependencyGroupName(DependencyGroup group)14794 const char* DependentCode::DependencyGroupName(DependencyGroup group) {
14795 switch (group) {
14796 case kWeakCodeGroup:
14797 return "weak-code";
14798 case kTransitionGroup:
14799 return "transition";
14800 case kPrototypeCheckGroup:
14801 return "prototype-check";
14802 case kPropertyCellChangedGroup:
14803 return "property-cell-changed";
14804 case kFieldTypeGroup:
14805 return "field-type";
14806 case kInitialMapChangedGroup:
14807 return "initial-map-changed";
14808 case kAllocationSiteTenuringChangedGroup:
14809 return "allocation-site-tenuring-changed";
14810 case kAllocationSiteTransitionChangedGroup:
14811 return "allocation-site-transition-changed";
14812 }
14813 UNREACHABLE();
14814 return "?";
14815 }
14816
14817
TransitionToPrototype(Handle<Map> map,Handle<Object> prototype,PrototypeOptimizationMode mode)14818 Handle<Map> Map::TransitionToPrototype(Handle<Map> map,
14819 Handle<Object> prototype,
14820 PrototypeOptimizationMode mode) {
14821 Handle<Map> new_map = TransitionArray::GetPrototypeTransition(map, prototype);
14822 if (new_map.is_null()) {
14823 new_map = Copy(map, "TransitionToPrototype");
14824 TransitionArray::PutPrototypeTransition(map, prototype, new_map);
14825 Map::SetPrototype(new_map, prototype, mode);
14826 }
14827 return new_map;
14828 }
14829
14830
SetPrototype(Handle<JSReceiver> object,Handle<Object> value,bool from_javascript,ShouldThrow should_throw)14831 Maybe<bool> JSReceiver::SetPrototype(Handle<JSReceiver> object,
14832 Handle<Object> value, bool from_javascript,
14833 ShouldThrow should_throw) {
14834 if (object->IsJSProxy()) {
14835 return JSProxy::SetPrototype(Handle<JSProxy>::cast(object), value,
14836 from_javascript, should_throw);
14837 }
14838 return JSObject::SetPrototype(Handle<JSObject>::cast(object), value,
14839 from_javascript, should_throw);
14840 }
14841
14842
14843 // ES6: 9.5.2 [[SetPrototypeOf]] (V)
14844 // static
SetPrototype(Handle<JSProxy> proxy,Handle<Object> value,bool from_javascript,ShouldThrow should_throw)14845 Maybe<bool> JSProxy::SetPrototype(Handle<JSProxy> proxy, Handle<Object> value,
14846 bool from_javascript,
14847 ShouldThrow should_throw) {
14848 Isolate* isolate = proxy->GetIsolate();
14849 STACK_CHECK(isolate, Nothing<bool>());
14850 Handle<Name> trap_name = isolate->factory()->setPrototypeOf_string();
14851 // 1. Assert: Either Type(V) is Object or Type(V) is Null.
14852 DCHECK(value->IsJSReceiver() || value->IsNull(isolate));
14853 // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
14854 Handle<Object> handler(proxy->handler(), isolate);
14855 // 3. If handler is null, throw a TypeError exception.
14856 // 4. Assert: Type(handler) is Object.
14857 if (proxy->IsRevoked()) {
14858 isolate->Throw(*isolate->factory()->NewTypeError(
14859 MessageTemplate::kProxyRevoked, trap_name));
14860 return Nothing<bool>();
14861 }
14862 // 5. Let target be the value of the [[ProxyTarget]] internal slot.
14863 Handle<JSReceiver> target(proxy->target(), isolate);
14864 // 6. Let trap be ? GetMethod(handler, "getPrototypeOf").
14865 Handle<Object> trap;
14866 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
14867 isolate, trap,
14868 Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
14869 Nothing<bool>());
14870 // 7. If trap is undefined, then return target.[[SetPrototypeOf]]().
14871 if (trap->IsUndefined(isolate)) {
14872 return JSReceiver::SetPrototype(target, value, from_javascript,
14873 should_throw);
14874 }
14875 // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, «target, V»)).
14876 Handle<Object> argv[] = {target, value};
14877 Handle<Object> trap_result;
14878 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
14879 isolate, trap_result,
14880 Execution::Call(isolate, trap, handler, arraysize(argv), argv),
14881 Nothing<bool>());
14882 bool bool_trap_result = trap_result->BooleanValue();
14883 // 9. If booleanTrapResult is false, return false.
14884 if (!bool_trap_result) {
14885 RETURN_FAILURE(
14886 isolate, should_throw,
14887 NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
14888 }
14889 // 10. Let extensibleTarget be ? IsExtensible(target).
14890 Maybe<bool> is_extensible = JSReceiver::IsExtensible(target);
14891 if (is_extensible.IsNothing()) return Nothing<bool>();
14892 // 11. If extensibleTarget is true, return true.
14893 if (is_extensible.FromJust()) {
14894 if (bool_trap_result) return Just(true);
14895 RETURN_FAILURE(
14896 isolate, should_throw,
14897 NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
14898 }
14899 // 12. Let targetProto be ? target.[[GetPrototypeOf]]().
14900 Handle<Object> target_proto;
14901 ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, target_proto,
14902 JSReceiver::GetPrototype(isolate, target),
14903 Nothing<bool>());
14904 // 13. If SameValue(V, targetProto) is false, throw a TypeError exception.
14905 if (bool_trap_result && !value->SameValue(*target_proto)) {
14906 isolate->Throw(*isolate->factory()->NewTypeError(
14907 MessageTemplate::kProxySetPrototypeOfNonExtensible));
14908 return Nothing<bool>();
14909 }
14910 // 14. Return true.
14911 return Just(true);
14912 }
14913
14914
SetPrototype(Handle<JSObject> object,Handle<Object> value,bool from_javascript,ShouldThrow should_throw)14915 Maybe<bool> JSObject::SetPrototype(Handle<JSObject> object,
14916 Handle<Object> value, bool from_javascript,
14917 ShouldThrow should_throw) {
14918 Isolate* isolate = object->GetIsolate();
14919
14920 #ifdef DEBUG
14921 int size = object->Size();
14922 #endif
14923
14924 if (from_javascript) {
14925 if (object->IsAccessCheckNeeded() &&
14926 !isolate->MayAccess(handle(isolate->context()), object)) {
14927 isolate->ReportFailedAccessCheck(object);
14928 RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
14929 RETURN_FAILURE(isolate, should_throw,
14930 NewTypeError(MessageTemplate::kNoAccess));
14931 }
14932 } else {
14933 DCHECK(!object->IsAccessCheckNeeded());
14934 }
14935
14936 Heap* heap = isolate->heap();
14937 // Silently ignore the change if value is not a JSObject or null.
14938 // SpiderMonkey behaves this way.
14939 if (!value->IsJSReceiver() && !value->IsNull(isolate)) return Just(true);
14940
14941 bool dictionary_elements_in_chain =
14942 object->map()->DictionaryElementsInPrototypeChainOnly();
14943
14944 bool all_extensible = object->map()->is_extensible();
14945 Handle<JSObject> real_receiver = object;
14946 if (from_javascript) {
14947 // Find the first object in the chain whose prototype object is not
14948 // hidden.
14949 PrototypeIterator iter(isolate, real_receiver, kStartAtPrototype,
14950 PrototypeIterator::END_AT_NON_HIDDEN);
14951 while (!iter.IsAtEnd()) {
14952 // Casting to JSObject is fine because hidden prototypes are never
14953 // JSProxies.
14954 real_receiver = PrototypeIterator::GetCurrent<JSObject>(iter);
14955 iter.Advance();
14956 all_extensible = all_extensible && real_receiver->map()->is_extensible();
14957 }
14958 }
14959 Handle<Map> map(real_receiver->map());
14960
14961 // Nothing to do if prototype is already set.
14962 if (map->prototype() == *value) return Just(true);
14963
14964 // From 8.6.2 Object Internal Methods
14965 // ...
14966 // In addition, if [[Extensible]] is false the value of the [[Class]] and
14967 // [[Prototype]] internal properties of the object may not be modified.
14968 // ...
14969 // Implementation specific extensions that modify [[Class]], [[Prototype]]
14970 // or [[Extensible]] must not violate the invariants defined in the preceding
14971 // paragraph.
14972 if (!all_extensible) {
14973 RETURN_FAILURE(isolate, should_throw,
14974 NewTypeError(MessageTemplate::kNonExtensibleProto, object));
14975 }
14976
14977 // Before we can set the prototype we need to be sure prototype cycles are
14978 // prevented. It is sufficient to validate that the receiver is not in the
14979 // new prototype chain.
14980 if (value->IsJSReceiver()) {
14981 for (PrototypeIterator iter(isolate, JSReceiver::cast(*value),
14982 kStartAtReceiver);
14983 !iter.IsAtEnd(); iter.Advance()) {
14984 if (iter.GetCurrent<JSReceiver>() == *object) {
14985 // Cycle detected.
14986 RETURN_FAILURE(isolate, should_throw,
14987 NewTypeError(MessageTemplate::kCyclicProto));
14988 }
14989 }
14990 }
14991
14992 // Set the new prototype of the object.
14993
14994 isolate->UpdateArrayProtectorOnSetPrototype(real_receiver);
14995
14996 PrototypeOptimizationMode mode =
14997 from_javascript ? REGULAR_PROTOTYPE : FAST_PROTOTYPE;
14998 Handle<Map> new_map = Map::TransitionToPrototype(map, value, mode);
14999 DCHECK(new_map->prototype() == *value);
15000 JSObject::MigrateToMap(real_receiver, new_map);
15001
15002 if (from_javascript && !dictionary_elements_in_chain &&
15003 new_map->DictionaryElementsInPrototypeChainOnly()) {
15004 // If the prototype chain didn't previously have element callbacks, then
15005 // KeyedStoreICs need to be cleared to ensure any that involve this
15006 // map go generic.
15007 TypeFeedbackVector::ClearAllKeyedStoreICs(isolate);
15008 }
15009
15010 heap->ClearInstanceofCache();
15011 DCHECK(size == object->Size());
15012 return Just(true);
15013 }
15014
15015
EnsureCanContainElements(Handle<JSObject> object,Arguments * args,uint32_t first_arg,uint32_t arg_count,EnsureElementsMode mode)15016 void JSObject::EnsureCanContainElements(Handle<JSObject> object,
15017 Arguments* args,
15018 uint32_t first_arg,
15019 uint32_t arg_count,
15020 EnsureElementsMode mode) {
15021 // Elements in |Arguments| are ordered backwards (because they're on the
15022 // stack), but the method that's called here iterates over them in forward
15023 // direction.
15024 return EnsureCanContainElements(
15025 object, args->arguments() - first_arg - (arg_count - 1), arg_count, mode);
15026 }
15027
15028
GetElementsAccessor()15029 ElementsAccessor* JSObject::GetElementsAccessor() {
15030 return ElementsAccessor::ForKind(GetElementsKind());
15031 }
15032
15033
ValidateElements(Handle<JSObject> object)15034 void JSObject::ValidateElements(Handle<JSObject> object) {
15035 #ifdef ENABLE_SLOW_DCHECKS
15036 if (FLAG_enable_slow_asserts) {
15037 ElementsAccessor* accessor = object->GetElementsAccessor();
15038 accessor->Validate(object);
15039 }
15040 #endif
15041 }
15042
15043
ShouldConvertToSlowElements(JSObject * object,uint32_t capacity,uint32_t index,uint32_t * new_capacity)15044 static bool ShouldConvertToSlowElements(JSObject* object, uint32_t capacity,
15045 uint32_t index,
15046 uint32_t* new_capacity) {
15047 STATIC_ASSERT(JSObject::kMaxUncheckedOldFastElementsLength <=
15048 JSObject::kMaxUncheckedFastElementsLength);
15049 if (index < capacity) {
15050 *new_capacity = capacity;
15051 return false;
15052 }
15053 if (index - capacity >= JSObject::kMaxGap) return true;
15054 *new_capacity = JSObject::NewElementsCapacity(index + 1);
15055 DCHECK_LT(index, *new_capacity);
15056 if (*new_capacity <= JSObject::kMaxUncheckedOldFastElementsLength ||
15057 (*new_capacity <= JSObject::kMaxUncheckedFastElementsLength &&
15058 object->GetHeap()->InNewSpace(object))) {
15059 return false;
15060 }
15061 // If the fast-case backing storage takes up roughly three times as
15062 // much space (in machine words) as a dictionary backing storage
15063 // would, the object should have slow elements.
15064 int used_elements = object->GetFastElementsUsage();
15065 int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) *
15066 SeededNumberDictionary::kEntrySize;
15067 return 3 * static_cast<uint32_t>(dictionary_size) <= *new_capacity;
15068 }
15069
15070
WouldConvertToSlowElements(uint32_t index)15071 bool JSObject::WouldConvertToSlowElements(uint32_t index) {
15072 if (HasFastElements()) {
15073 Handle<FixedArrayBase> backing_store(FixedArrayBase::cast(elements()));
15074 uint32_t capacity = static_cast<uint32_t>(backing_store->length());
15075 uint32_t new_capacity;
15076 return ShouldConvertToSlowElements(this, capacity, index, &new_capacity);
15077 }
15078 return false;
15079 }
15080
15081
BestFittingFastElementsKind(JSObject * object)15082 static ElementsKind BestFittingFastElementsKind(JSObject* object) {
15083 if (object->HasSloppyArgumentsElements()) {
15084 return FAST_SLOPPY_ARGUMENTS_ELEMENTS;
15085 }
15086 if (object->HasStringWrapperElements()) {
15087 return FAST_STRING_WRAPPER_ELEMENTS;
15088 }
15089 DCHECK(object->HasDictionaryElements());
15090 SeededNumberDictionary* dictionary = object->element_dictionary();
15091 ElementsKind kind = FAST_HOLEY_SMI_ELEMENTS;
15092 for (int i = 0; i < dictionary->Capacity(); i++) {
15093 Object* key = dictionary->KeyAt(i);
15094 if (key->IsNumber()) {
15095 Object* value = dictionary->ValueAt(i);
15096 if (!value->IsNumber()) return FAST_HOLEY_ELEMENTS;
15097 if (!value->IsSmi()) {
15098 if (!FLAG_unbox_double_arrays) return FAST_HOLEY_ELEMENTS;
15099 kind = FAST_HOLEY_DOUBLE_ELEMENTS;
15100 }
15101 }
15102 }
15103 return kind;
15104 }
15105
15106
ShouldConvertToFastElements(JSObject * object,SeededNumberDictionary * dictionary,uint32_t index,uint32_t * new_capacity)15107 static bool ShouldConvertToFastElements(JSObject* object,
15108 SeededNumberDictionary* dictionary,
15109 uint32_t index,
15110 uint32_t* new_capacity) {
15111 // If properties with non-standard attributes or accessors were added, we
15112 // cannot go back to fast elements.
15113 if (dictionary->requires_slow_elements()) return false;
15114
15115 // Adding a property with this index will require slow elements.
15116 if (index >= static_cast<uint32_t>(Smi::kMaxValue)) return false;
15117
15118 if (object->IsJSArray()) {
15119 Object* length = JSArray::cast(object)->length();
15120 if (!length->IsSmi()) return false;
15121 *new_capacity = static_cast<uint32_t>(Smi::cast(length)->value());
15122 } else {
15123 *new_capacity = dictionary->max_number_key() + 1;
15124 }
15125 *new_capacity = Max(index + 1, *new_capacity);
15126
15127 uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) *
15128 SeededNumberDictionary::kEntrySize;
15129
15130 // Turn fast if the dictionary only saves 50% space.
15131 return 2 * dictionary_size >= *new_capacity;
15132 }
15133
15134
15135 // static
AddDataElement(Handle<JSObject> object,uint32_t index,Handle<Object> value,PropertyAttributes attributes)15136 MaybeHandle<Object> JSObject::AddDataElement(Handle<JSObject> object,
15137 uint32_t index,
15138 Handle<Object> value,
15139 PropertyAttributes attributes) {
15140 MAYBE_RETURN_NULL(
15141 AddDataElement(object, index, value, attributes, THROW_ON_ERROR));
15142 return value;
15143 }
15144
15145
15146 // static
AddDataElement(Handle<JSObject> object,uint32_t index,Handle<Object> value,PropertyAttributes attributes,ShouldThrow should_throw)15147 Maybe<bool> JSObject::AddDataElement(Handle<JSObject> object, uint32_t index,
15148 Handle<Object> value,
15149 PropertyAttributes attributes,
15150 ShouldThrow should_throw) {
15151 DCHECK(object->map()->is_extensible());
15152
15153 Isolate* isolate = object->GetIsolate();
15154
15155 uint32_t old_length = 0;
15156 uint32_t new_capacity = 0;
15157
15158 if (object->IsJSArray()) {
15159 CHECK(JSArray::cast(*object)->length()->ToArrayLength(&old_length));
15160 }
15161
15162 ElementsKind kind = object->GetElementsKind();
15163 FixedArrayBase* elements = object->elements();
15164 ElementsKind dictionary_kind = DICTIONARY_ELEMENTS;
15165 if (IsSloppyArgumentsElements(kind)) {
15166 elements = FixedArrayBase::cast(FixedArray::cast(elements)->get(1));
15167 dictionary_kind = SLOW_SLOPPY_ARGUMENTS_ELEMENTS;
15168 } else if (IsStringWrapperElementsKind(kind)) {
15169 dictionary_kind = SLOW_STRING_WRAPPER_ELEMENTS;
15170 }
15171
15172 if (attributes != NONE) {
15173 kind = dictionary_kind;
15174 } else if (elements->IsSeededNumberDictionary()) {
15175 kind = ShouldConvertToFastElements(*object,
15176 SeededNumberDictionary::cast(elements),
15177 index, &new_capacity)
15178 ? BestFittingFastElementsKind(*object)
15179 : dictionary_kind; // Overwrite in case of arguments.
15180 } else if (ShouldConvertToSlowElements(
15181 *object, static_cast<uint32_t>(elements->length()), index,
15182 &new_capacity)) {
15183 kind = dictionary_kind;
15184 }
15185
15186 ElementsKind to = value->OptimalElementsKind();
15187 if (IsHoleyElementsKind(kind) || !object->IsJSArray() || index > old_length) {
15188 to = GetHoleyElementsKind(to);
15189 kind = GetHoleyElementsKind(kind);
15190 }
15191 to = GetMoreGeneralElementsKind(kind, to);
15192 ElementsAccessor* accessor = ElementsAccessor::ForKind(to);
15193 accessor->Add(object, index, value, attributes, new_capacity);
15194
15195 uint32_t new_length = old_length;
15196 Handle<Object> new_length_handle;
15197 if (object->IsJSArray() && index >= old_length) {
15198 new_length = index + 1;
15199 new_length_handle = isolate->factory()->NewNumberFromUint(new_length);
15200 JSArray::cast(*object)->set_length(*new_length_handle);
15201 }
15202
15203 return Just(true);
15204 }
15205
15206
SetLengthWouldNormalize(uint32_t new_length)15207 bool JSArray::SetLengthWouldNormalize(uint32_t new_length) {
15208 if (!HasFastElements()) return false;
15209 uint32_t capacity = static_cast<uint32_t>(elements()->length());
15210 uint32_t new_capacity;
15211 return JSArray::SetLengthWouldNormalize(GetHeap(), new_length) &&
15212 ShouldConvertToSlowElements(this, capacity, new_length - 1,
15213 &new_capacity);
15214 }
15215
15216
15217 const double AllocationSite::kPretenureRatio = 0.85;
15218
15219
ResetPretenureDecision()15220 void AllocationSite::ResetPretenureDecision() {
15221 set_pretenure_decision(kUndecided);
15222 set_memento_found_count(0);
15223 set_memento_create_count(0);
15224 }
15225
15226
GetPretenureMode()15227 PretenureFlag AllocationSite::GetPretenureMode() {
15228 PretenureDecision mode = pretenure_decision();
15229 // Zombie objects "decide" to be untenured.
15230 return mode == kTenure ? TENURED : NOT_TENURED;
15231 }
15232
15233
IsNestedSite()15234 bool AllocationSite::IsNestedSite() {
15235 DCHECK(FLAG_trace_track_allocation_sites);
15236 Object* current = GetHeap()->allocation_sites_list();
15237 while (current->IsAllocationSite()) {
15238 AllocationSite* current_site = AllocationSite::cast(current);
15239 if (current_site->nested_site() == this) {
15240 return true;
15241 }
15242 current = current_site->weak_next();
15243 }
15244 return false;
15245 }
15246
15247
DigestTransitionFeedback(Handle<AllocationSite> site,ElementsKind to_kind)15248 void AllocationSite::DigestTransitionFeedback(Handle<AllocationSite> site,
15249 ElementsKind to_kind) {
15250 Isolate* isolate = site->GetIsolate();
15251
15252 if (site->SitePointsToLiteral() && site->transition_info()->IsJSArray()) {
15253 Handle<JSArray> transition_info =
15254 handle(JSArray::cast(site->transition_info()));
15255 ElementsKind kind = transition_info->GetElementsKind();
15256 // if kind is holey ensure that to_kind is as well.
15257 if (IsHoleyElementsKind(kind)) {
15258 to_kind = GetHoleyElementsKind(to_kind);
15259 }
15260 if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
15261 // If the array is huge, it's not likely to be defined in a local
15262 // function, so we shouldn't make new instances of it very often.
15263 uint32_t length = 0;
15264 CHECK(transition_info->length()->ToArrayLength(&length));
15265 if (length <= kMaximumArrayBytesToPretransition) {
15266 if (FLAG_trace_track_allocation_sites) {
15267 bool is_nested = site->IsNestedSite();
15268 PrintF(
15269 "AllocationSite: JSArray %p boilerplate %s updated %s->%s\n",
15270 reinterpret_cast<void*>(*site),
15271 is_nested ? "(nested)" : "",
15272 ElementsKindToString(kind),
15273 ElementsKindToString(to_kind));
15274 }
15275 JSObject::TransitionElementsKind(transition_info, to_kind);
15276 site->dependent_code()->DeoptimizeDependentCodeGroup(
15277 isolate, DependentCode::kAllocationSiteTransitionChangedGroup);
15278 }
15279 }
15280 } else {
15281 ElementsKind kind = site->GetElementsKind();
15282 // if kind is holey ensure that to_kind is as well.
15283 if (IsHoleyElementsKind(kind)) {
15284 to_kind = GetHoleyElementsKind(to_kind);
15285 }
15286 if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
15287 if (FLAG_trace_track_allocation_sites) {
15288 PrintF("AllocationSite: JSArray %p site updated %s->%s\n",
15289 reinterpret_cast<void*>(*site),
15290 ElementsKindToString(kind),
15291 ElementsKindToString(to_kind));
15292 }
15293 site->SetElementsKind(to_kind);
15294 site->dependent_code()->DeoptimizeDependentCodeGroup(
15295 isolate, DependentCode::kAllocationSiteTransitionChangedGroup);
15296 }
15297 }
15298 }
15299
15300
PretenureDecisionName(PretenureDecision decision)15301 const char* AllocationSite::PretenureDecisionName(PretenureDecision decision) {
15302 switch (decision) {
15303 case kUndecided: return "undecided";
15304 case kDontTenure: return "don't tenure";
15305 case kMaybeTenure: return "maybe tenure";
15306 case kTenure: return "tenure";
15307 case kZombie: return "zombie";
15308 default: UNREACHABLE();
15309 }
15310 return NULL;
15311 }
15312
15313
UpdateAllocationSite(Handle<JSObject> object,ElementsKind to_kind)15314 void JSObject::UpdateAllocationSite(Handle<JSObject> object,
15315 ElementsKind to_kind) {
15316 if (!object->IsJSArray()) return;
15317
15318 Heap* heap = object->GetHeap();
15319 if (!heap->InNewSpace(*object)) return;
15320
15321 Handle<AllocationSite> site;
15322 {
15323 DisallowHeapAllocation no_allocation;
15324
15325 AllocationMemento* memento =
15326 heap->FindAllocationMemento<Heap::kForRuntime>(*object);
15327 if (memento == NULL) return;
15328
15329 // Walk through to the Allocation Site
15330 site = handle(memento->GetAllocationSite());
15331 }
15332 AllocationSite::DigestTransitionFeedback(site, to_kind);
15333 }
15334
15335
TransitionElementsKind(Handle<JSObject> object,ElementsKind to_kind)15336 void JSObject::TransitionElementsKind(Handle<JSObject> object,
15337 ElementsKind to_kind) {
15338 ElementsKind from_kind = object->GetElementsKind();
15339
15340 if (IsFastHoleyElementsKind(from_kind)) {
15341 to_kind = GetHoleyElementsKind(to_kind);
15342 }
15343
15344 if (from_kind == to_kind) return;
15345
15346 // This method should never be called for any other case.
15347 DCHECK(IsFastElementsKind(from_kind));
15348 DCHECK(IsFastElementsKind(to_kind));
15349 DCHECK_NE(TERMINAL_FAST_ELEMENTS_KIND, from_kind);
15350
15351 UpdateAllocationSite(object, to_kind);
15352 if (object->elements() == object->GetHeap()->empty_fixed_array() ||
15353 IsFastDoubleElementsKind(from_kind) ==
15354 IsFastDoubleElementsKind(to_kind)) {
15355 // No change is needed to the elements() buffer, the transition
15356 // only requires a map change.
15357 Handle<Map> new_map = GetElementsTransitionMap(object, to_kind);
15358 MigrateToMap(object, new_map);
15359 if (FLAG_trace_elements_transitions) {
15360 Handle<FixedArrayBase> elms(object->elements());
15361 PrintElementsTransition(stdout, object, from_kind, elms, to_kind, elms);
15362 }
15363 } else {
15364 DCHECK((IsFastSmiElementsKind(from_kind) &&
15365 IsFastDoubleElementsKind(to_kind)) ||
15366 (IsFastDoubleElementsKind(from_kind) &&
15367 IsFastObjectElementsKind(to_kind)));
15368 uint32_t c = static_cast<uint32_t>(object->elements()->length());
15369 ElementsAccessor::ForKind(to_kind)->GrowCapacityAndConvert(object, c);
15370 }
15371 }
15372
15373
15374 // static
IsValidElementsTransition(ElementsKind from_kind,ElementsKind to_kind)15375 bool Map::IsValidElementsTransition(ElementsKind from_kind,
15376 ElementsKind to_kind) {
15377 // Transitions can't go backwards.
15378 if (!IsMoreGeneralElementsKindTransition(from_kind, to_kind)) {
15379 return false;
15380 }
15381
15382 // Transitions from HOLEY -> PACKED are not allowed.
15383 return !IsFastHoleyElementsKind(from_kind) ||
15384 IsFastHoleyElementsKind(to_kind);
15385 }
15386
15387
HasReadOnlyLength(Handle<JSArray> array)15388 bool JSArray::HasReadOnlyLength(Handle<JSArray> array) {
15389 Map* map = array->map();
15390 // Fast path: "length" is the first fast property of arrays. Since it's not
15391 // configurable, it's guaranteed to be the first in the descriptor array.
15392 if (!map->is_dictionary_map()) {
15393 DCHECK(map->instance_descriptors()->GetKey(0) ==
15394 array->GetHeap()->length_string());
15395 return map->instance_descriptors()->GetDetails(0).IsReadOnly();
15396 }
15397
15398 Isolate* isolate = array->GetIsolate();
15399 LookupIterator it(array, isolate->factory()->length_string(), array,
15400 LookupIterator::OWN_SKIP_INTERCEPTOR);
15401 CHECK_EQ(LookupIterator::ACCESSOR, it.state());
15402 return it.IsReadOnly();
15403 }
15404
15405
WouldChangeReadOnlyLength(Handle<JSArray> array,uint32_t index)15406 bool JSArray::WouldChangeReadOnlyLength(Handle<JSArray> array,
15407 uint32_t index) {
15408 uint32_t length = 0;
15409 CHECK(array->length()->ToArrayLength(&length));
15410 if (length <= index) return HasReadOnlyLength(array);
15411 return false;
15412 }
15413
15414
15415 template <typename BackingStore>
FastHoleyElementsUsage(JSObject * object,BackingStore * store)15416 static int FastHoleyElementsUsage(JSObject* object, BackingStore* store) {
15417 int limit = object->IsJSArray()
15418 ? Smi::cast(JSArray::cast(object)->length())->value()
15419 : store->length();
15420 int used = 0;
15421 for (int i = 0; i < limit; ++i) {
15422 if (!store->is_the_hole(i)) ++used;
15423 }
15424 return used;
15425 }
15426
15427
GetFastElementsUsage()15428 int JSObject::GetFastElementsUsage() {
15429 FixedArrayBase* store = elements();
15430 switch (GetElementsKind()) {
15431 case FAST_SMI_ELEMENTS:
15432 case FAST_DOUBLE_ELEMENTS:
15433 case FAST_ELEMENTS:
15434 return IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value()
15435 : store->length();
15436 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
15437 store = FixedArray::cast(FixedArray::cast(store)->get(1));
15438 // Fall through.
15439 case FAST_HOLEY_SMI_ELEMENTS:
15440 case FAST_HOLEY_ELEMENTS:
15441 case FAST_STRING_WRAPPER_ELEMENTS:
15442 return FastHoleyElementsUsage(this, FixedArray::cast(store));
15443 case FAST_HOLEY_DOUBLE_ELEMENTS:
15444 if (elements()->length() == 0) return 0;
15445 return FastHoleyElementsUsage(this, FixedDoubleArray::cast(store));
15446
15447 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
15448 case SLOW_STRING_WRAPPER_ELEMENTS:
15449 case DICTIONARY_ELEMENTS:
15450 case NO_ELEMENTS:
15451 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
15452 case TYPE##_ELEMENTS: \
15453
15454 TYPED_ARRAYS(TYPED_ARRAY_CASE)
15455 #undef TYPED_ARRAY_CASE
15456 UNREACHABLE();
15457 }
15458 return 0;
15459 }
15460
15461
15462 // Certain compilers request function template instantiation when they
15463 // see the definition of the other template functions in the
15464 // class. This requires us to have the template functions put
15465 // together, so even though this function belongs in objects-debug.cc,
15466 // we keep it here instead to satisfy certain compilers.
15467 #ifdef OBJECT_PRINT
15468 template <typename Derived, typename Shape, typename Key>
Print(std::ostream & os)15469 void Dictionary<Derived, Shape, Key>::Print(std::ostream& os) { // NOLINT
15470 Isolate* isolate = this->GetIsolate();
15471 int capacity = this->Capacity();
15472 for (int i = 0; i < capacity; i++) {
15473 Object* k = this->KeyAt(i);
15474 if (this->IsKey(isolate, k)) {
15475 os << "\n ";
15476 if (k->IsString()) {
15477 String::cast(k)->StringPrint(os);
15478 } else {
15479 os << Brief(k);
15480 }
15481 os << ": " << Brief(this->ValueAt(i)) << " " << this->DetailsAt(i);
15482 }
15483 }
15484 }
15485 template <typename Derived, typename Shape, typename Key>
Print()15486 void Dictionary<Derived, Shape, Key>::Print() {
15487 OFStream os(stdout);
15488 Print(os);
15489 }
15490 #endif
15491
15492
15493 template<typename Derived, typename Shape, typename Key>
CopyValuesTo(FixedArray * elements)15494 void Dictionary<Derived, Shape, Key>::CopyValuesTo(FixedArray* elements) {
15495 Isolate* isolate = this->GetIsolate();
15496 int pos = 0;
15497 int capacity = this->Capacity();
15498 DisallowHeapAllocation no_gc;
15499 WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
15500 for (int i = 0; i < capacity; i++) {
15501 Object* k = this->KeyAt(i);
15502 if (this->IsKey(isolate, k)) {
15503 elements->set(pos++, this->ValueAt(i), mode);
15504 }
15505 }
15506 DCHECK(pos == elements->length());
15507 }
15508
15509
GetPropertyWithInterceptor(LookupIterator * it,bool * done)15510 MaybeHandle<Object> JSObject::GetPropertyWithInterceptor(LookupIterator* it,
15511 bool* done) {
15512 DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
15513 return GetPropertyWithInterceptorInternal(it, it->GetInterceptor(), done);
15514 }
15515
HasRealNamedProperty(Handle<JSObject> object,Handle<Name> name)15516 Maybe<bool> JSObject::HasRealNamedProperty(Handle<JSObject> object,
15517 Handle<Name> name) {
15518 LookupIterator it = LookupIterator::PropertyOrElement(
15519 name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
15520 return HasProperty(&it);
15521 }
15522
15523
HasRealElementProperty(Handle<JSObject> object,uint32_t index)15524 Maybe<bool> JSObject::HasRealElementProperty(Handle<JSObject> object,
15525 uint32_t index) {
15526 Isolate* isolate = object->GetIsolate();
15527 LookupIterator it(isolate, object, index, object,
15528 LookupIterator::OWN_SKIP_INTERCEPTOR);
15529 return HasProperty(&it);
15530 }
15531
15532
HasRealNamedCallbackProperty(Handle<JSObject> object,Handle<Name> name)15533 Maybe<bool> JSObject::HasRealNamedCallbackProperty(Handle<JSObject> object,
15534 Handle<Name> name) {
15535 LookupIterator it = LookupIterator::PropertyOrElement(
15536 name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
15537 Maybe<PropertyAttributes> maybe_result = GetPropertyAttributes(&it);
15538 return maybe_result.IsJust() ? Just(it.state() == LookupIterator::ACCESSOR)
15539 : Nothing<bool>();
15540 }
15541
15542
SwapPairs(FixedArray * numbers,int i,int j)15543 void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
15544 Object* temp = get(i);
15545 set(i, get(j));
15546 set(j, temp);
15547 if (this != numbers) {
15548 temp = numbers->get(i);
15549 numbers->set(i, Smi::cast(numbers->get(j)));
15550 numbers->set(j, Smi::cast(temp));
15551 }
15552 }
15553
15554
InsertionSortPairs(FixedArray * content,FixedArray * numbers,int len)15555 static void InsertionSortPairs(FixedArray* content,
15556 FixedArray* numbers,
15557 int len) {
15558 for (int i = 1; i < len; i++) {
15559 int j = i;
15560 while (j > 0 &&
15561 (NumberToUint32(numbers->get(j - 1)) >
15562 NumberToUint32(numbers->get(j)))) {
15563 content->SwapPairs(numbers, j - 1, j);
15564 j--;
15565 }
15566 }
15567 }
15568
15569
HeapSortPairs(FixedArray * content,FixedArray * numbers,int len)15570 void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
15571 // In-place heap sort.
15572 DCHECK(content->length() == numbers->length());
15573
15574 // Bottom-up max-heap construction.
15575 for (int i = 1; i < len; ++i) {
15576 int child_index = i;
15577 while (child_index > 0) {
15578 int parent_index = ((child_index + 1) >> 1) - 1;
15579 uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
15580 uint32_t child_value = NumberToUint32(numbers->get(child_index));
15581 if (parent_value < child_value) {
15582 content->SwapPairs(numbers, parent_index, child_index);
15583 } else {
15584 break;
15585 }
15586 child_index = parent_index;
15587 }
15588 }
15589
15590 // Extract elements and create sorted array.
15591 for (int i = len - 1; i > 0; --i) {
15592 // Put max element at the back of the array.
15593 content->SwapPairs(numbers, 0, i);
15594 // Sift down the new top element.
15595 int parent_index = 0;
15596 while (true) {
15597 int child_index = ((parent_index + 1) << 1) - 1;
15598 if (child_index >= i) break;
15599 uint32_t child1_value = NumberToUint32(numbers->get(child_index));
15600 uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
15601 uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
15602 if (child_index + 1 >= i || child1_value > child2_value) {
15603 if (parent_value > child1_value) break;
15604 content->SwapPairs(numbers, parent_index, child_index);
15605 parent_index = child_index;
15606 } else {
15607 if (parent_value > child2_value) break;
15608 content->SwapPairs(numbers, parent_index, child_index + 1);
15609 parent_index = child_index + 1;
15610 }
15611 }
15612 }
15613 }
15614
15615
15616 // Sort this array and the numbers as pairs wrt. the (distinct) numbers.
SortPairs(FixedArray * numbers,uint32_t len)15617 void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
15618 DCHECK(this->length() == numbers->length());
15619 // For small arrays, simply use insertion sort.
15620 if (len <= 10) {
15621 InsertionSortPairs(this, numbers, len);
15622 return;
15623 }
15624 // Check the range of indices.
15625 uint32_t min_index = NumberToUint32(numbers->get(0));
15626 uint32_t max_index = min_index;
15627 uint32_t i;
15628 for (i = 1; i < len; i++) {
15629 if (NumberToUint32(numbers->get(i)) < min_index) {
15630 min_index = NumberToUint32(numbers->get(i));
15631 } else if (NumberToUint32(numbers->get(i)) > max_index) {
15632 max_index = NumberToUint32(numbers->get(i));
15633 }
15634 }
15635 if (max_index - min_index + 1 == len) {
15636 // Indices form a contiguous range, unless there are duplicates.
15637 // Do an in-place linear time sort assuming distinct numbers, but
15638 // avoid hanging in case they are not.
15639 for (i = 0; i < len; i++) {
15640 uint32_t p;
15641 uint32_t j = 0;
15642 // While the current element at i is not at its correct position p,
15643 // swap the elements at these two positions.
15644 while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
15645 j++ < len) {
15646 SwapPairs(numbers, i, p);
15647 }
15648 }
15649 } else {
15650 HeapSortPairs(this, numbers, len);
15651 return;
15652 }
15653 }
15654
WasConstructedFromApiFunction()15655 bool JSObject::WasConstructedFromApiFunction() {
15656 auto instance_type = map()->instance_type();
15657 bool is_api_object = instance_type == JS_API_OBJECT_TYPE ||
15658 instance_type == JS_SPECIAL_API_OBJECT_TYPE;
15659 #ifdef ENABLE_SLOW_DCHECKS
15660 if (FLAG_enable_slow_asserts) {
15661 Object* maybe_constructor = map()->GetConstructor();
15662 if (!maybe_constructor->IsJSFunction()) return false;
15663 JSFunction* constructor = JSFunction::cast(maybe_constructor);
15664 if (constructor->shared()->IsApiFunction()) {
15665 DCHECK(is_api_object);
15666 } else {
15667 DCHECK(!is_api_object);
15668 }
15669 }
15670 #endif
15671 return is_api_object;
15672 }
15673
ObjectProtoToString(Isolate * isolate,Handle<Object> object)15674 MaybeHandle<String> Object::ObjectProtoToString(Isolate* isolate,
15675 Handle<Object> object) {
15676 if (*object == isolate->heap()->undefined_value()) {
15677 return isolate->factory()->undefined_to_string();
15678 }
15679 if (*object == isolate->heap()->null_value()) {
15680 return isolate->factory()->null_to_string();
15681 }
15682
15683 Handle<JSReceiver> receiver =
15684 Object::ToObject(isolate, object).ToHandleChecked();
15685
15686 // For proxies, we must check IsArray() before get(toStringTag) to comply
15687 // with the specification
15688 Maybe<bool> is_array = Nothing<bool>();
15689 InstanceType instance_type = receiver->map()->instance_type();
15690 if (instance_type == JS_PROXY_TYPE) {
15691 is_array = Object::IsArray(receiver);
15692 MAYBE_RETURN(is_array, MaybeHandle<String>());
15693 }
15694
15695 Handle<String> tag;
15696 Handle<Object> to_string_tag;
15697 ASSIGN_RETURN_ON_EXCEPTION(
15698 isolate, to_string_tag,
15699 JSReceiver::GetProperty(receiver,
15700 isolate->factory()->to_string_tag_symbol()),
15701 String);
15702 if (to_string_tag->IsString()) {
15703 tag = Handle<String>::cast(to_string_tag);
15704 } else {
15705 switch (instance_type) {
15706 case JS_API_OBJECT_TYPE:
15707 case JS_SPECIAL_API_OBJECT_TYPE:
15708 tag = handle(receiver->class_name(), isolate);
15709 break;
15710 case JS_ARGUMENTS_TYPE:
15711 return isolate->factory()->arguments_to_string();
15712 case JS_ARRAY_TYPE:
15713 return isolate->factory()->array_to_string();
15714 case JS_BOUND_FUNCTION_TYPE:
15715 case JS_FUNCTION_TYPE:
15716 return isolate->factory()->function_to_string();
15717 case JS_ERROR_TYPE:
15718 return isolate->factory()->error_to_string();
15719 case JS_DATE_TYPE:
15720 return isolate->factory()->date_to_string();
15721 case JS_REGEXP_TYPE:
15722 return isolate->factory()->regexp_to_string();
15723 case JS_PROXY_TYPE: {
15724 if (is_array.FromJust()) {
15725 return isolate->factory()->array_to_string();
15726 }
15727 if (receiver->IsCallable()) {
15728 return isolate->factory()->function_to_string();
15729 }
15730 return isolate->factory()->object_to_string();
15731 }
15732 case JS_VALUE_TYPE: {
15733 Object* value = JSValue::cast(*receiver)->value();
15734 if (value->IsString()) {
15735 return isolate->factory()->string_to_string();
15736 }
15737 if (value->IsNumber()) {
15738 return isolate->factory()->number_to_string();
15739 }
15740 if (value->IsBoolean()) {
15741 return isolate->factory()->boolean_to_string();
15742 }
15743 if (value->IsSymbol()) {
15744 return isolate->factory()->object_to_string();
15745 }
15746 UNREACHABLE();
15747 tag = handle(receiver->class_name(), isolate);
15748 break;
15749 }
15750 default:
15751 return isolate->factory()->object_to_string();
15752 }
15753 }
15754
15755 IncrementalStringBuilder builder(isolate);
15756 builder.AppendCString("[object ");
15757 builder.AppendString(tag);
15758 builder.AppendCharacter(']');
15759 return builder.Finish();
15760 }
15761
PrivateSymbolToName() const15762 const char* Symbol::PrivateSymbolToName() const {
15763 Heap* heap = GetIsolate()->heap();
15764 #define SYMBOL_CHECK_AND_PRINT(name) \
15765 if (this == heap->name()) return #name;
15766 PRIVATE_SYMBOL_LIST(SYMBOL_CHECK_AND_PRINT)
15767 #undef SYMBOL_CHECK_AND_PRINT
15768 return "UNKNOWN";
15769 }
15770
15771
SymbolShortPrint(std::ostream & os)15772 void Symbol::SymbolShortPrint(std::ostream& os) {
15773 os << "<Symbol:";
15774 if (!name()->IsUndefined(GetIsolate())) {
15775 os << " ";
15776 HeapStringAllocator allocator;
15777 StringStream accumulator(&allocator);
15778 String::cast(name())->StringShortPrint(&accumulator, false);
15779 os << accumulator.ToCString().get();
15780 } else {
15781 os << " (" << PrivateSymbolToName() << ")";
15782 }
15783 os << ">";
15784 }
15785
15786
15787 // StringSharedKeys are used as keys in the eval cache.
15788 class StringSharedKey : public HashTableKey {
15789 public:
StringSharedKey(Handle<String> source,Handle<SharedFunctionInfo> shared,LanguageMode language_mode,int scope_position)15790 StringSharedKey(Handle<String> source, Handle<SharedFunctionInfo> shared,
15791 LanguageMode language_mode, int scope_position)
15792 : source_(source),
15793 shared_(shared),
15794 language_mode_(language_mode),
15795 scope_position_(scope_position) {}
15796
IsMatch(Object * other)15797 bool IsMatch(Object* other) override {
15798 DisallowHeapAllocation no_allocation;
15799 if (!other->IsFixedArray()) {
15800 if (!other->IsNumber()) return false;
15801 uint32_t other_hash = static_cast<uint32_t>(other->Number());
15802 return Hash() == other_hash;
15803 }
15804 FixedArray* other_array = FixedArray::cast(other);
15805 SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
15806 if (shared != *shared_) return false;
15807 int language_unchecked = Smi::cast(other_array->get(2))->value();
15808 DCHECK(is_valid_language_mode(language_unchecked));
15809 LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
15810 if (language_mode != language_mode_) return false;
15811 int scope_position = Smi::cast(other_array->get(3))->value();
15812 if (scope_position != scope_position_) return false;
15813 String* source = String::cast(other_array->get(1));
15814 return source->Equals(*source_);
15815 }
15816
StringSharedHashHelper(String * source,SharedFunctionInfo * shared,LanguageMode language_mode,int scope_position)15817 static uint32_t StringSharedHashHelper(String* source,
15818 SharedFunctionInfo* shared,
15819 LanguageMode language_mode,
15820 int scope_position) {
15821 uint32_t hash = source->Hash();
15822 if (shared->HasSourceCode()) {
15823 // Instead of using the SharedFunctionInfo pointer in the hash
15824 // code computation, we use a combination of the hash of the
15825 // script source code and the start position of the calling scope.
15826 // We do this to ensure that the cache entries can survive garbage
15827 // collection.
15828 Script* script(Script::cast(shared->script()));
15829 hash ^= String::cast(script->source())->Hash();
15830 STATIC_ASSERT(LANGUAGE_END == 3);
15831 if (is_strict(language_mode)) hash ^= 0x8000;
15832 hash += scope_position;
15833 }
15834 return hash;
15835 }
15836
Hash()15837 uint32_t Hash() override {
15838 return StringSharedHashHelper(*source_, *shared_, language_mode_,
15839 scope_position_);
15840 }
15841
HashForObject(Object * obj)15842 uint32_t HashForObject(Object* obj) override {
15843 DisallowHeapAllocation no_allocation;
15844 if (obj->IsNumber()) {
15845 return static_cast<uint32_t>(obj->Number());
15846 }
15847 FixedArray* other_array = FixedArray::cast(obj);
15848 SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
15849 String* source = String::cast(other_array->get(1));
15850 int language_unchecked = Smi::cast(other_array->get(2))->value();
15851 DCHECK(is_valid_language_mode(language_unchecked));
15852 LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
15853 int scope_position = Smi::cast(other_array->get(3))->value();
15854 return StringSharedHashHelper(source, shared, language_mode,
15855 scope_position);
15856 }
15857
15858
AsHandle(Isolate * isolate)15859 Handle<Object> AsHandle(Isolate* isolate) override {
15860 Handle<FixedArray> array = isolate->factory()->NewFixedArray(4);
15861 array->set(0, *shared_);
15862 array->set(1, *source_);
15863 array->set(2, Smi::FromInt(language_mode_));
15864 array->set(3, Smi::FromInt(scope_position_));
15865 return array;
15866 }
15867
15868 private:
15869 Handle<String> source_;
15870 Handle<SharedFunctionInfo> shared_;
15871 LanguageMode language_mode_;
15872 int scope_position_;
15873 };
15874
15875
15876 namespace {
15877
RegExpFlagsFromString(Handle<String> flags,bool * success)15878 JSRegExp::Flags RegExpFlagsFromString(Handle<String> flags, bool* success) {
15879 JSRegExp::Flags value = JSRegExp::kNone;
15880 int length = flags->length();
15881 // A longer flags string cannot be valid.
15882 if (length > 5) return JSRegExp::Flags(0);
15883 for (int i = 0; i < length; i++) {
15884 JSRegExp::Flag flag = JSRegExp::kNone;
15885 switch (flags->Get(i)) {
15886 case 'g':
15887 flag = JSRegExp::kGlobal;
15888 break;
15889 case 'i':
15890 flag = JSRegExp::kIgnoreCase;
15891 break;
15892 case 'm':
15893 flag = JSRegExp::kMultiline;
15894 break;
15895 case 'u':
15896 flag = JSRegExp::kUnicode;
15897 break;
15898 case 'y':
15899 flag = JSRegExp::kSticky;
15900 break;
15901 default:
15902 return JSRegExp::Flags(0);
15903 }
15904 // Duplicate flag.
15905 if (value & flag) return JSRegExp::Flags(0);
15906 value |= flag;
15907 }
15908 *success = true;
15909 return value;
15910 }
15911
15912 } // namespace
15913
15914
15915 // static
New(Handle<String> pattern,Flags flags)15916 MaybeHandle<JSRegExp> JSRegExp::New(Handle<String> pattern, Flags flags) {
15917 Isolate* isolate = pattern->GetIsolate();
15918 Handle<JSFunction> constructor = isolate->regexp_function();
15919 Handle<JSRegExp> regexp =
15920 Handle<JSRegExp>::cast(isolate->factory()->NewJSObject(constructor));
15921
15922 return JSRegExp::Initialize(regexp, pattern, flags);
15923 }
15924
15925
15926 // static
Copy(Handle<JSRegExp> regexp)15927 Handle<JSRegExp> JSRegExp::Copy(Handle<JSRegExp> regexp) {
15928 Isolate* const isolate = regexp->GetIsolate();
15929 return Handle<JSRegExp>::cast(isolate->factory()->CopyJSObject(regexp));
15930 }
15931
15932
15933 template <typename Char>
CountRequiredEscapes(Handle<String> source)15934 inline int CountRequiredEscapes(Handle<String> source) {
15935 DisallowHeapAllocation no_gc;
15936 int escapes = 0;
15937 Vector<const Char> src = source->GetCharVector<Char>();
15938 for (int i = 0; i < src.length(); i++) {
15939 if (src[i] == '/' && (i == 0 || src[i - 1] != '\\')) escapes++;
15940 }
15941 return escapes;
15942 }
15943
15944
15945 template <typename Char, typename StringType>
WriteEscapedRegExpSource(Handle<String> source,Handle<StringType> result)15946 inline Handle<StringType> WriteEscapedRegExpSource(Handle<String> source,
15947 Handle<StringType> result) {
15948 DisallowHeapAllocation no_gc;
15949 Vector<const Char> src = source->GetCharVector<Char>();
15950 Vector<Char> dst(result->GetChars(), result->length());
15951 int s = 0;
15952 int d = 0;
15953 while (s < src.length()) {
15954 if (src[s] == '/' && (s == 0 || src[s - 1] != '\\')) dst[d++] = '\\';
15955 dst[d++] = src[s++];
15956 }
15957 DCHECK_EQ(result->length(), d);
15958 return result;
15959 }
15960
15961
EscapeRegExpSource(Isolate * isolate,Handle<String> source)15962 MaybeHandle<String> EscapeRegExpSource(Isolate* isolate,
15963 Handle<String> source) {
15964 String::Flatten(source);
15965 if (source->length() == 0) return isolate->factory()->query_colon_string();
15966 bool one_byte = source->IsOneByteRepresentationUnderneath();
15967 int escapes = one_byte ? CountRequiredEscapes<uint8_t>(source)
15968 : CountRequiredEscapes<uc16>(source);
15969 if (escapes == 0) return source;
15970 int length = source->length() + escapes;
15971 if (one_byte) {
15972 Handle<SeqOneByteString> result;
15973 ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
15974 isolate->factory()->NewRawOneByteString(length),
15975 String);
15976 return WriteEscapedRegExpSource<uint8_t>(source, result);
15977 } else {
15978 Handle<SeqTwoByteString> result;
15979 ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
15980 isolate->factory()->NewRawTwoByteString(length),
15981 String);
15982 return WriteEscapedRegExpSource<uc16>(source, result);
15983 }
15984 }
15985
15986
15987 // static
Initialize(Handle<JSRegExp> regexp,Handle<String> source,Handle<String> flags_string)15988 MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
15989 Handle<String> source,
15990 Handle<String> flags_string) {
15991 Isolate* isolate = source->GetIsolate();
15992 bool success = false;
15993 Flags flags = RegExpFlagsFromString(flags_string, &success);
15994 if (!success) {
15995 THROW_NEW_ERROR(
15996 isolate,
15997 NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string),
15998 JSRegExp);
15999 }
16000 return Initialize(regexp, source, flags);
16001 }
16002
16003
16004 // static
Initialize(Handle<JSRegExp> regexp,Handle<String> source,Flags flags)16005 MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
16006 Handle<String> source, Flags flags) {
16007 Isolate* isolate = regexp->GetIsolate();
16008 Factory* factory = isolate->factory();
16009 // If source is the empty string we set it to "(?:)" instead as
16010 // suggested by ECMA-262, 5th, section 15.10.4.1.
16011 if (source->length() == 0) source = factory->query_colon_string();
16012
16013 Handle<String> escaped_source;
16014 ASSIGN_RETURN_ON_EXCEPTION(isolate, escaped_source,
16015 EscapeRegExpSource(isolate, source), JSRegExp);
16016
16017 RETURN_ON_EXCEPTION(isolate, RegExpImpl::Compile(regexp, source, flags),
16018 JSRegExp);
16019
16020 regexp->set_source(*escaped_source);
16021 regexp->set_flags(Smi::FromInt(flags));
16022
16023 Map* map = regexp->map();
16024 Object* constructor = map->GetConstructor();
16025 if (constructor->IsJSFunction() &&
16026 JSFunction::cast(constructor)->initial_map() == map) {
16027 // If we still have the original map, set in-object properties directly.
16028 regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex,
16029 Smi::FromInt(0), SKIP_WRITE_BARRIER);
16030 } else {
16031 // Map has changed, so use generic, but slower, method.
16032 PropertyAttributes writable =
16033 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
16034 JSObject::SetOwnPropertyIgnoreAttributes(
16035 regexp, factory->last_index_string(),
16036 Handle<Smi>(Smi::FromInt(0), isolate), writable)
16037 .Check();
16038 }
16039
16040 return regexp;
16041 }
16042
16043
16044 // RegExpKey carries the source and flags of a regular expression as key.
16045 class RegExpKey : public HashTableKey {
16046 public:
RegExpKey(Handle<String> string,JSRegExp::Flags flags)16047 RegExpKey(Handle<String> string, JSRegExp::Flags flags)
16048 : string_(string), flags_(Smi::FromInt(flags)) {}
16049
16050 // Rather than storing the key in the hash table, a pointer to the
16051 // stored value is stored where the key should be. IsMatch then
16052 // compares the search key to the found object, rather than comparing
16053 // a key to a key.
IsMatch(Object * obj)16054 bool IsMatch(Object* obj) override {
16055 FixedArray* val = FixedArray::cast(obj);
16056 return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
16057 && (flags_ == val->get(JSRegExp::kFlagsIndex));
16058 }
16059
Hash()16060 uint32_t Hash() override { return RegExpHash(*string_, flags_); }
16061
AsHandle(Isolate * isolate)16062 Handle<Object> AsHandle(Isolate* isolate) override {
16063 // Plain hash maps, which is where regexp keys are used, don't
16064 // use this function.
16065 UNREACHABLE();
16066 return MaybeHandle<Object>().ToHandleChecked();
16067 }
16068
HashForObject(Object * obj)16069 uint32_t HashForObject(Object* obj) override {
16070 FixedArray* val = FixedArray::cast(obj);
16071 return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
16072 Smi::cast(val->get(JSRegExp::kFlagsIndex)));
16073 }
16074
RegExpHash(String * string,Smi * flags)16075 static uint32_t RegExpHash(String* string, Smi* flags) {
16076 return string->Hash() + flags->value();
16077 }
16078
16079 Handle<String> string_;
16080 Smi* flags_;
16081 };
16082
16083
AsHandle(Isolate * isolate)16084 Handle<Object> OneByteStringKey::AsHandle(Isolate* isolate) {
16085 if (hash_field_ == 0) Hash();
16086 return isolate->factory()->NewOneByteInternalizedString(string_, hash_field_);
16087 }
16088
16089
AsHandle(Isolate * isolate)16090 Handle<Object> TwoByteStringKey::AsHandle(Isolate* isolate) {
16091 if (hash_field_ == 0) Hash();
16092 return isolate->factory()->NewTwoByteInternalizedString(string_, hash_field_);
16093 }
16094
16095
AsHandle(Isolate * isolate)16096 Handle<Object> SeqOneByteSubStringKey::AsHandle(Isolate* isolate) {
16097 if (hash_field_ == 0) Hash();
16098 return isolate->factory()->NewOneByteInternalizedSubString(
16099 string_, from_, length_, hash_field_);
16100 }
16101
16102
IsMatch(Object * string)16103 bool SeqOneByteSubStringKey::IsMatch(Object* string) {
16104 Vector<const uint8_t> chars(string_->GetChars() + from_, length_);
16105 return String::cast(string)->IsOneByteEqualTo(chars);
16106 }
16107
16108
16109 // InternalizedStringKey carries a string/internalized-string object as key.
16110 class InternalizedStringKey : public HashTableKey {
16111 public:
InternalizedStringKey(Handle<String> string)16112 explicit InternalizedStringKey(Handle<String> string)
16113 : string_(String::Flatten(string)) {}
16114
IsMatch(Object * string)16115 bool IsMatch(Object* string) override {
16116 return String::cast(string)->Equals(*string_);
16117 }
16118
Hash()16119 uint32_t Hash() override { return string_->Hash(); }
16120
HashForObject(Object * other)16121 uint32_t HashForObject(Object* other) override {
16122 return String::cast(other)->Hash();
16123 }
16124
AsHandle(Isolate * isolate)16125 Handle<Object> AsHandle(Isolate* isolate) override {
16126 // Internalize the string if possible.
16127 MaybeHandle<Map> maybe_map =
16128 isolate->factory()->InternalizedStringMapForString(string_);
16129 Handle<Map> map;
16130 if (maybe_map.ToHandle(&map)) {
16131 string_->set_map_no_write_barrier(*map);
16132 DCHECK(string_->IsInternalizedString());
16133 return string_;
16134 }
16135 // Otherwise allocate a new internalized string.
16136 return isolate->factory()->NewInternalizedStringImpl(
16137 string_, string_->length(), string_->hash_field());
16138 }
16139
StringHash(Object * obj)16140 static uint32_t StringHash(Object* obj) {
16141 return String::cast(obj)->Hash();
16142 }
16143
16144 Handle<String> string_;
16145 };
16146
16147
16148 template<typename Derived, typename Shape, typename Key>
IteratePrefix(ObjectVisitor * v)16149 void HashTable<Derived, Shape, Key>::IteratePrefix(ObjectVisitor* v) {
16150 BodyDescriptorBase::IteratePointers(this, 0, kElementsStartOffset, v);
16151 }
16152
16153
16154 template<typename Derived, typename Shape, typename Key>
IterateElements(ObjectVisitor * v)16155 void HashTable<Derived, Shape, Key>::IterateElements(ObjectVisitor* v) {
16156 BodyDescriptorBase::IteratePointers(this, kElementsStartOffset,
16157 kHeaderSize + length() * kPointerSize, v);
16158 }
16159
16160
16161 template<typename Derived, typename Shape, typename Key>
New(Isolate * isolate,int at_least_space_for,MinimumCapacity capacity_option,PretenureFlag pretenure)16162 Handle<Derived> HashTable<Derived, Shape, Key>::New(
16163 Isolate* isolate,
16164 int at_least_space_for,
16165 MinimumCapacity capacity_option,
16166 PretenureFlag pretenure) {
16167 DCHECK(0 <= at_least_space_for);
16168 DCHECK(!capacity_option || base::bits::IsPowerOfTwo32(at_least_space_for));
16169
16170 int capacity = (capacity_option == USE_CUSTOM_MINIMUM_CAPACITY)
16171 ? at_least_space_for
16172 : ComputeCapacity(at_least_space_for);
16173 if (capacity > HashTable::kMaxCapacity) {
16174 v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true);
16175 }
16176
16177 Factory* factory = isolate->factory();
16178 int length = EntryToIndex(capacity);
16179 Handle<FixedArray> array = factory->NewFixedArray(length, pretenure);
16180 array->set_map_no_write_barrier(*factory->hash_table_map());
16181 Handle<Derived> table = Handle<Derived>::cast(array);
16182
16183 table->SetNumberOfElements(0);
16184 table->SetNumberOfDeletedElements(0);
16185 table->SetCapacity(capacity);
16186 return table;
16187 }
16188
16189
16190 // Find entry for key otherwise return kNotFound.
16191 template <typename Derived, typename Shape>
FindEntry(Handle<Name> key)16192 int NameDictionaryBase<Derived, Shape>::FindEntry(Handle<Name> key) {
16193 if (!key->IsUniqueName()) {
16194 return DerivedDictionary::FindEntry(key);
16195 }
16196
16197 // Optimized for unique names. Knowledge of the key type allows:
16198 // 1. Move the check if the key is unique out of the loop.
16199 // 2. Avoid comparing hash codes in unique-to-unique comparison.
16200 // 3. Detect a case when a dictionary key is not unique but the key is.
16201 // In case of positive result the dictionary key may be replaced by the
16202 // internalized string with minimal performance penalty. It gives a chance
16203 // to perform further lookups in code stubs (and significant performance
16204 // boost a certain style of code).
16205
16206 // EnsureCapacity will guarantee the hash table is never full.
16207 uint32_t capacity = this->Capacity();
16208 uint32_t entry = Derived::FirstProbe(key->Hash(), capacity);
16209 uint32_t count = 1;
16210 Isolate* isolate = this->GetIsolate();
16211 while (true) {
16212 Object* element = this->KeyAt(entry);
16213 if (element->IsUndefined(isolate)) break; // Empty entry.
16214 if (*key == element) return entry;
16215 DCHECK(element->IsTheHole(isolate) || element->IsUniqueName());
16216 entry = Derived::NextProbe(entry, count++, capacity);
16217 }
16218 return Derived::kNotFound;
16219 }
16220
16221
16222 template<typename Derived, typename Shape, typename Key>
Rehash(Handle<Derived> new_table,Key key)16223 void HashTable<Derived, Shape, Key>::Rehash(
16224 Handle<Derived> new_table,
16225 Key key) {
16226 DCHECK(NumberOfElements() < new_table->Capacity());
16227
16228 DisallowHeapAllocation no_gc;
16229 WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc);
16230
16231 // Copy prefix to new array.
16232 for (int i = kPrefixStartIndex;
16233 i < kPrefixStartIndex + Shape::kPrefixSize;
16234 i++) {
16235 new_table->set(i, get(i), mode);
16236 }
16237
16238 // Rehash the elements.
16239 int capacity = this->Capacity();
16240 Heap* heap = new_table->GetHeap();
16241 Object* the_hole = heap->the_hole_value();
16242 Object* undefined = heap->undefined_value();
16243 for (int i = 0; i < capacity; i++) {
16244 uint32_t from_index = EntryToIndex(i);
16245 Object* k = this->get(from_index);
16246 if (k != the_hole && k != undefined) {
16247 uint32_t hash = this->HashForObject(key, k);
16248 uint32_t insertion_index =
16249 EntryToIndex(new_table->FindInsertionEntry(hash));
16250 for (int j = 0; j < Shape::kEntrySize; j++) {
16251 new_table->set(insertion_index + j, get(from_index + j), mode);
16252 }
16253 }
16254 }
16255 new_table->SetNumberOfElements(NumberOfElements());
16256 new_table->SetNumberOfDeletedElements(0);
16257 }
16258
16259
16260 template<typename Derived, typename Shape, typename Key>
EntryForProbe(Key key,Object * k,int probe,uint32_t expected)16261 uint32_t HashTable<Derived, Shape, Key>::EntryForProbe(
16262 Key key,
16263 Object* k,
16264 int probe,
16265 uint32_t expected) {
16266 uint32_t hash = this->HashForObject(key, k);
16267 uint32_t capacity = this->Capacity();
16268 uint32_t entry = FirstProbe(hash, capacity);
16269 for (int i = 1; i < probe; i++) {
16270 if (entry == expected) return expected;
16271 entry = NextProbe(entry, i, capacity);
16272 }
16273 return entry;
16274 }
16275
16276
16277 template<typename Derived, typename Shape, typename Key>
Swap(uint32_t entry1,uint32_t entry2,WriteBarrierMode mode)16278 void HashTable<Derived, Shape, Key>::Swap(uint32_t entry1,
16279 uint32_t entry2,
16280 WriteBarrierMode mode) {
16281 int index1 = EntryToIndex(entry1);
16282 int index2 = EntryToIndex(entry2);
16283 Object* temp[Shape::kEntrySize];
16284 for (int j = 0; j < Shape::kEntrySize; j++) {
16285 temp[j] = get(index1 + j);
16286 }
16287 for (int j = 0; j < Shape::kEntrySize; j++) {
16288 set(index1 + j, get(index2 + j), mode);
16289 }
16290 for (int j = 0; j < Shape::kEntrySize; j++) {
16291 set(index2 + j, temp[j], mode);
16292 }
16293 }
16294
16295
16296 template<typename Derived, typename Shape, typename Key>
Rehash(Key key)16297 void HashTable<Derived, Shape, Key>::Rehash(Key key) {
16298 DisallowHeapAllocation no_gc;
16299 WriteBarrierMode mode = GetWriteBarrierMode(no_gc);
16300 Isolate* isolate = GetIsolate();
16301 uint32_t capacity = Capacity();
16302 bool done = false;
16303 for (int probe = 1; !done; probe++) {
16304 // All elements at entries given by one of the first _probe_ probes
16305 // are placed correctly. Other elements might need to be moved.
16306 done = true;
16307 for (uint32_t current = 0; current < capacity; current++) {
16308 Object* current_key = KeyAt(current);
16309 if (IsKey(isolate, current_key)) {
16310 uint32_t target = EntryForProbe(key, current_key, probe, current);
16311 if (current == target) continue;
16312 Object* target_key = KeyAt(target);
16313 if (!IsKey(target_key) ||
16314 EntryForProbe(key, target_key, probe, target) != target) {
16315 // Put the current element into the correct position.
16316 Swap(current, target, mode);
16317 // The other element will be processed on the next iteration.
16318 current--;
16319 } else {
16320 // The place for the current element is occupied. Leave the element
16321 // for the next probe.
16322 done = false;
16323 }
16324 }
16325 }
16326 }
16327 // Wipe deleted entries.
16328 Object* the_hole = isolate->heap()->the_hole_value();
16329 Object* undefined = isolate->heap()->undefined_value();
16330 for (uint32_t current = 0; current < capacity; current++) {
16331 if (KeyAt(current) == the_hole) {
16332 set(EntryToIndex(current) + Derived::kEntryKeyIndex, undefined);
16333 }
16334 }
16335 SetNumberOfDeletedElements(0);
16336 }
16337
16338
16339 template<typename Derived, typename Shape, typename Key>
EnsureCapacity(Handle<Derived> table,int n,Key key,PretenureFlag pretenure)16340 Handle<Derived> HashTable<Derived, Shape, Key>::EnsureCapacity(
16341 Handle<Derived> table,
16342 int n,
16343 Key key,
16344 PretenureFlag pretenure) {
16345 Isolate* isolate = table->GetIsolate();
16346 int capacity = table->Capacity();
16347 int nof = table->NumberOfElements() + n;
16348
16349 if (table->HasSufficientCapacityToAdd(n)) return table;
16350
16351 const int kMinCapacityForPretenure = 256;
16352 bool should_pretenure = pretenure == TENURED ||
16353 ((capacity > kMinCapacityForPretenure) &&
16354 !isolate->heap()->InNewSpace(*table));
16355 Handle<Derived> new_table = HashTable::New(
16356 isolate,
16357 nof * 2,
16358 USE_DEFAULT_MINIMUM_CAPACITY,
16359 should_pretenure ? TENURED : NOT_TENURED);
16360
16361 table->Rehash(new_table, key);
16362 return new_table;
16363 }
16364
16365 template <typename Derived, typename Shape, typename Key>
HasSufficientCapacityToAdd(int number_of_additional_elements)16366 bool HashTable<Derived, Shape, Key>::HasSufficientCapacityToAdd(
16367 int number_of_additional_elements) {
16368 int capacity = Capacity();
16369 int nof = NumberOfElements() + number_of_additional_elements;
16370 int nod = NumberOfDeletedElements();
16371 // Return true if:
16372 // 50% is still free after adding number_of_additional_elements elements and
16373 // at most 50% of the free elements are deleted elements.
16374 if ((nof < capacity) && ((nod <= (capacity - nof) >> 1))) {
16375 int needed_free = nof >> 1;
16376 if (nof + needed_free <= capacity) return true;
16377 }
16378 return false;
16379 }
16380
16381
16382 template<typename Derived, typename Shape, typename Key>
Shrink(Handle<Derived> table,Key key)16383 Handle<Derived> HashTable<Derived, Shape, Key>::Shrink(Handle<Derived> table,
16384 Key key) {
16385 int capacity = table->Capacity();
16386 int nof = table->NumberOfElements();
16387
16388 // Shrink to fit the number of elements if only a quarter of the
16389 // capacity is filled with elements.
16390 if (nof > (capacity >> 2)) return table;
16391 // Allocate a new dictionary with room for at least the current
16392 // number of elements. The allocation method will make sure that
16393 // there is extra room in the dictionary for additions. Don't go
16394 // lower than room for 16 elements.
16395 int at_least_room_for = nof;
16396 if (at_least_room_for < 16) return table;
16397
16398 Isolate* isolate = table->GetIsolate();
16399 const int kMinCapacityForPretenure = 256;
16400 bool pretenure =
16401 (at_least_room_for > kMinCapacityForPretenure) &&
16402 !isolate->heap()->InNewSpace(*table);
16403 Handle<Derived> new_table = HashTable::New(
16404 isolate,
16405 at_least_room_for,
16406 USE_DEFAULT_MINIMUM_CAPACITY,
16407 pretenure ? TENURED : NOT_TENURED);
16408
16409 table->Rehash(new_table, key);
16410 return new_table;
16411 }
16412
16413
16414 template<typename Derived, typename Shape, typename Key>
FindInsertionEntry(uint32_t hash)16415 uint32_t HashTable<Derived, Shape, Key>::FindInsertionEntry(uint32_t hash) {
16416 uint32_t capacity = Capacity();
16417 uint32_t entry = FirstProbe(hash, capacity);
16418 uint32_t count = 1;
16419 // EnsureCapacity will guarantee the hash table is never full.
16420 Isolate* isolate = GetIsolate();
16421 while (true) {
16422 Object* element = KeyAt(entry);
16423 if (!IsKey(isolate, element)) break;
16424 entry = NextProbe(entry, count++, capacity);
16425 }
16426 return entry;
16427 }
16428
16429
16430 // Force instantiation of template instances class.
16431 // Please note this list is compiler dependent.
16432
16433 template class HashTable<StringTable, StringTableShape, HashTableKey*>;
16434
16435 template class HashTable<CompilationCacheTable,
16436 CompilationCacheShape,
16437 HashTableKey*>;
16438
16439 template class HashTable<ObjectHashTable,
16440 ObjectHashTableShape,
16441 Handle<Object> >;
16442
16443 template class HashTable<WeakHashTable, WeakHashTableShape<2>, Handle<Object> >;
16444
16445 template class Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >;
16446
16447 template class Dictionary<GlobalDictionary, GlobalDictionaryShape,
16448 Handle<Name> >;
16449
16450 template class Dictionary<SeededNumberDictionary,
16451 SeededNumberDictionaryShape,
16452 uint32_t>;
16453
16454 template class Dictionary<UnseededNumberDictionary,
16455 UnseededNumberDictionaryShape,
16456 uint32_t>;
16457
16458 template Handle<SeededNumberDictionary>
16459 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16460 New(Isolate*, int at_least_space_for, PretenureFlag pretenure);
16461
16462 template Handle<UnseededNumberDictionary>
16463 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
16464 New(Isolate*, int at_least_space_for, PretenureFlag pretenure);
16465
16466 template Handle<NameDictionary>
16467 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
16468 New(Isolate*, int n, PretenureFlag pretenure);
16469
16470 template Handle<GlobalDictionary>
16471 Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::New(
16472 Isolate*, int n, PretenureFlag pretenure);
16473
16474 template Handle<SeededNumberDictionary>
16475 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16476 AtPut(Handle<SeededNumberDictionary>, uint32_t, Handle<Object>);
16477
16478 template Handle<UnseededNumberDictionary>
16479 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
16480 AtPut(Handle<UnseededNumberDictionary>, uint32_t, Handle<Object>);
16481
16482 template Object*
16483 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16484 SlowReverseLookup(Object* value);
16485
16486 template Object*
16487 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
16488 SlowReverseLookup(Object* value);
16489
16490 template Handle<Object>
16491 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::DeleteProperty(
16492 Handle<NameDictionary>, int);
16493
16494 template Handle<Object>
16495 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape,
16496 uint32_t>::DeleteProperty(Handle<SeededNumberDictionary>, int);
16497
16498 template Handle<Object>
16499 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape,
16500 uint32_t>::DeleteProperty(Handle<UnseededNumberDictionary>, int);
16501
16502 template Handle<NameDictionary>
16503 HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >::
16504 New(Isolate*, int, MinimumCapacity, PretenureFlag);
16505
16506 template Handle<NameDictionary>
16507 HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >::
16508 Shrink(Handle<NameDictionary>, Handle<Name>);
16509
16510 template Handle<SeededNumberDictionary>
16511 HashTable<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16512 Shrink(Handle<SeededNumberDictionary>, uint32_t);
16513
16514 template Handle<UnseededNumberDictionary>
16515 HashTable<UnseededNumberDictionary, UnseededNumberDictionaryShape,
16516 uint32_t>::Shrink(Handle<UnseededNumberDictionary>, uint32_t);
16517
16518 template Handle<NameDictionary>
16519 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::Add(
16520 Handle<NameDictionary>, Handle<Name>, Handle<Object>, PropertyDetails);
16521
16522 template Handle<GlobalDictionary>
16523 Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::Add(
16524 Handle<GlobalDictionary>, Handle<Name>, Handle<Object>,
16525 PropertyDetails);
16526
16527 template Handle<FixedArray> Dictionary<
16528 NameDictionary, NameDictionaryShape,
16529 Handle<Name> >::BuildIterationIndicesArray(Handle<NameDictionary>);
16530
16531 template Handle<FixedArray> Dictionary<
16532 NameDictionary, NameDictionaryShape,
16533 Handle<Name> >::GenerateNewEnumerationIndices(Handle<NameDictionary>);
16534
16535 template Handle<SeededNumberDictionary>
16536 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16537 Add(Handle<SeededNumberDictionary>,
16538 uint32_t,
16539 Handle<Object>,
16540 PropertyDetails);
16541
16542 template Handle<UnseededNumberDictionary>
16543 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
16544 Add(Handle<UnseededNumberDictionary>,
16545 uint32_t,
16546 Handle<Object>,
16547 PropertyDetails);
16548
16549 template Handle<SeededNumberDictionary>
16550 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
16551 EnsureCapacity(Handle<SeededNumberDictionary>, int, uint32_t);
16552
16553 template Handle<UnseededNumberDictionary>
16554 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
16555 EnsureCapacity(Handle<UnseededNumberDictionary>, int, uint32_t);
16556
16557 template void Dictionary<NameDictionary, NameDictionaryShape,
16558 Handle<Name> >::SetRequiresCopyOnCapacityChange();
16559
16560 template Handle<NameDictionary>
16561 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
16562 EnsureCapacity(Handle<NameDictionary>, int, Handle<Name>);
16563
16564 template int HashTable<SeededNumberDictionary, SeededNumberDictionaryShape,
16565 uint32_t>::FindEntry(uint32_t);
16566
16567 template int NameDictionaryBase<NameDictionary, NameDictionaryShape>::FindEntry(
16568 Handle<Name>);
16569
16570 template int Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name>>::
16571 NumberOfElementsFilterAttributes(PropertyFilter filter);
16572
16573 template int Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>::
16574 NumberOfElementsFilterAttributes(PropertyFilter filter);
16575
16576 template void Dictionary<GlobalDictionary, GlobalDictionaryShape,
16577 Handle<Name>>::CopyEnumKeysTo(FixedArray* storage);
16578
16579 template void Dictionary<NameDictionary, NameDictionaryShape,
16580 Handle<Name>>::CopyEnumKeysTo(FixedArray* storage);
16581
16582 template void
16583 Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name>>::
16584 CollectKeysTo(Handle<Dictionary<GlobalDictionary, GlobalDictionaryShape,
16585 Handle<Name>>>
16586 dictionary,
16587 KeyAccumulator* keys, PropertyFilter filter);
16588
16589 template void
16590 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>::CollectKeysTo(
16591 Handle<Dictionary<NameDictionary, NameDictionaryShape, Handle<Name>>>
16592 dictionary,
16593 KeyAccumulator* keys, PropertyFilter filter);
16594
PrepareSlowElementsForSort(Handle<JSObject> object,uint32_t limit)16595 Handle<Object> JSObject::PrepareSlowElementsForSort(
16596 Handle<JSObject> object, uint32_t limit) {
16597 DCHECK(object->HasDictionaryElements());
16598 Isolate* isolate = object->GetIsolate();
16599 // Must stay in dictionary mode, either because of requires_slow_elements,
16600 // or because we are not going to sort (and therefore compact) all of the
16601 // elements.
16602 Handle<SeededNumberDictionary> dict(object->element_dictionary(), isolate);
16603 Handle<SeededNumberDictionary> new_dict =
16604 SeededNumberDictionary::New(isolate, dict->NumberOfElements());
16605
16606 uint32_t pos = 0;
16607 uint32_t undefs = 0;
16608 int capacity = dict->Capacity();
16609 Handle<Smi> bailout(Smi::FromInt(-1), isolate);
16610 // Entry to the new dictionary does not cause it to grow, as we have
16611 // allocated one that is large enough for all entries.
16612 DisallowHeapAllocation no_gc;
16613 for (int i = 0; i < capacity; i++) {
16614 Object* k = dict->KeyAt(i);
16615 if (!dict->IsKey(isolate, k)) continue;
16616
16617 DCHECK(k->IsNumber());
16618 DCHECK(!k->IsSmi() || Smi::cast(k)->value() >= 0);
16619 DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
16620 DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
16621
16622 HandleScope scope(isolate);
16623 Handle<Object> value(dict->ValueAt(i), isolate);
16624 PropertyDetails details = dict->DetailsAt(i);
16625 if (details.type() == ACCESSOR_CONSTANT || details.IsReadOnly()) {
16626 // Bail out and do the sorting of undefineds and array holes in JS.
16627 // Also bail out if the element is not supposed to be moved.
16628 return bailout;
16629 }
16630
16631 uint32_t key = NumberToUint32(k);
16632 if (key < limit) {
16633 if (value->IsUndefined(isolate)) {
16634 undefs++;
16635 } else if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
16636 // Adding an entry with the key beyond smi-range requires
16637 // allocation. Bailout.
16638 return bailout;
16639 } else {
16640 Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
16641 new_dict, pos, value, details, object->map()->is_prototype_map());
16642 DCHECK(result.is_identical_to(new_dict));
16643 USE(result);
16644 pos++;
16645 }
16646 } else if (key > static_cast<uint32_t>(Smi::kMaxValue)) {
16647 // Adding an entry with the key beyond smi-range requires
16648 // allocation. Bailout.
16649 return bailout;
16650 } else {
16651 Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
16652 new_dict, key, value, details, object->map()->is_prototype_map());
16653 DCHECK(result.is_identical_to(new_dict));
16654 USE(result);
16655 }
16656 }
16657
16658 uint32_t result = pos;
16659 PropertyDetails no_details = PropertyDetails::Empty();
16660 while (undefs > 0) {
16661 if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
16662 // Adding an entry with the key beyond smi-range requires
16663 // allocation. Bailout.
16664 return bailout;
16665 }
16666 HandleScope scope(isolate);
16667 Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
16668 new_dict, pos, isolate->factory()->undefined_value(), no_details,
16669 object->map()->is_prototype_map());
16670 DCHECK(result.is_identical_to(new_dict));
16671 USE(result);
16672 pos++;
16673 undefs--;
16674 }
16675
16676 object->set_elements(*new_dict);
16677
16678 AllowHeapAllocation allocate_return_value;
16679 return isolate->factory()->NewNumberFromUint(result);
16680 }
16681
16682
16683 // Collects all defined (non-hole) and non-undefined (array) elements at
16684 // the start of the elements array.
16685 // If the object is in dictionary mode, it is converted to fast elements
16686 // mode.
PrepareElementsForSort(Handle<JSObject> object,uint32_t limit)16687 Handle<Object> JSObject::PrepareElementsForSort(Handle<JSObject> object,
16688 uint32_t limit) {
16689 Isolate* isolate = object->GetIsolate();
16690 if (object->HasSloppyArgumentsElements()) {
16691 return handle(Smi::FromInt(-1), isolate);
16692 }
16693
16694 if (object->HasStringWrapperElements()) {
16695 int len = String::cast(Handle<JSValue>::cast(object)->value())->length();
16696 return handle(Smi::FromInt(len), isolate);
16697 }
16698
16699 if (object->HasDictionaryElements()) {
16700 // Convert to fast elements containing only the existing properties.
16701 // Ordering is irrelevant, since we are going to sort anyway.
16702 Handle<SeededNumberDictionary> dict(object->element_dictionary());
16703 if (object->IsJSArray() || dict->requires_slow_elements() ||
16704 dict->max_number_key() >= limit) {
16705 return JSObject::PrepareSlowElementsForSort(object, limit);
16706 }
16707 // Convert to fast elements.
16708
16709 Handle<Map> new_map =
16710 JSObject::GetElementsTransitionMap(object, FAST_HOLEY_ELEMENTS);
16711
16712 PretenureFlag tenure = isolate->heap()->InNewSpace(*object) ?
16713 NOT_TENURED: TENURED;
16714 Handle<FixedArray> fast_elements =
16715 isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure);
16716 dict->CopyValuesTo(*fast_elements);
16717 JSObject::ValidateElements(object);
16718
16719 JSObject::SetMapAndElements(object, new_map, fast_elements);
16720 } else if (object->HasFixedTypedArrayElements()) {
16721 // Typed arrays cannot have holes or undefined elements.
16722 return handle(Smi::FromInt(
16723 FixedArrayBase::cast(object->elements())->length()), isolate);
16724 } else if (!object->HasFastDoubleElements()) {
16725 EnsureWritableFastElements(object);
16726 }
16727 DCHECK(object->HasFastSmiOrObjectElements() ||
16728 object->HasFastDoubleElements());
16729
16730 // Collect holes at the end, undefined before that and the rest at the
16731 // start, and return the number of non-hole, non-undefined values.
16732
16733 Handle<FixedArrayBase> elements_base(object->elements());
16734 uint32_t elements_length = static_cast<uint32_t>(elements_base->length());
16735 if (limit > elements_length) {
16736 limit = elements_length;
16737 }
16738 if (limit == 0) {
16739 return handle(Smi::FromInt(0), isolate);
16740 }
16741
16742 uint32_t result = 0;
16743 if (elements_base->map() == isolate->heap()->fixed_double_array_map()) {
16744 FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base);
16745 // Split elements into defined and the_hole, in that order.
16746 unsigned int holes = limit;
16747 // Assume most arrays contain no holes and undefined values, so minimize the
16748 // number of stores of non-undefined, non-the-hole values.
16749 for (unsigned int i = 0; i < holes; i++) {
16750 if (elements->is_the_hole(i)) {
16751 holes--;
16752 } else {
16753 continue;
16754 }
16755 // Position i needs to be filled.
16756 while (holes > i) {
16757 if (elements->is_the_hole(holes)) {
16758 holes--;
16759 } else {
16760 elements->set(i, elements->get_scalar(holes));
16761 break;
16762 }
16763 }
16764 }
16765 result = holes;
16766 while (holes < limit) {
16767 elements->set_the_hole(holes);
16768 holes++;
16769 }
16770 } else {
16771 FixedArray* elements = FixedArray::cast(*elements_base);
16772 DisallowHeapAllocation no_gc;
16773
16774 // Split elements into defined, undefined and the_hole, in that order. Only
16775 // count locations for undefined and the hole, and fill them afterwards.
16776 WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc);
16777 unsigned int undefs = limit;
16778 unsigned int holes = limit;
16779 // Assume most arrays contain no holes and undefined values, so minimize the
16780 // number of stores of non-undefined, non-the-hole values.
16781 for (unsigned int i = 0; i < undefs; i++) {
16782 Object* current = elements->get(i);
16783 if (current->IsTheHole(isolate)) {
16784 holes--;
16785 undefs--;
16786 } else if (current->IsUndefined(isolate)) {
16787 undefs--;
16788 } else {
16789 continue;
16790 }
16791 // Position i needs to be filled.
16792 while (undefs > i) {
16793 current = elements->get(undefs);
16794 if (current->IsTheHole(isolate)) {
16795 holes--;
16796 undefs--;
16797 } else if (current->IsUndefined(isolate)) {
16798 undefs--;
16799 } else {
16800 elements->set(i, current, write_barrier);
16801 break;
16802 }
16803 }
16804 }
16805 result = undefs;
16806 while (undefs < holes) {
16807 elements->set_undefined(undefs);
16808 undefs++;
16809 }
16810 while (holes < limit) {
16811 elements->set_the_hole(holes);
16812 holes++;
16813 }
16814 }
16815
16816 return isolate->factory()->NewNumberFromUint(result);
16817 }
16818
16819
type()16820 ExternalArrayType JSTypedArray::type() {
16821 switch (elements()->map()->instance_type()) {
16822 #define INSTANCE_TYPE_TO_ARRAY_TYPE(Type, type, TYPE, ctype, size) \
16823 case FIXED_##TYPE##_ARRAY_TYPE: \
16824 return kExternal##Type##Array;
16825
16826 TYPED_ARRAYS(INSTANCE_TYPE_TO_ARRAY_TYPE)
16827 #undef INSTANCE_TYPE_TO_ARRAY_TYPE
16828
16829 default:
16830 UNREACHABLE();
16831 return static_cast<ExternalArrayType>(-1);
16832 }
16833 }
16834
16835
element_size()16836 size_t JSTypedArray::element_size() {
16837 switch (elements()->map()->instance_type()) {
16838 #define INSTANCE_TYPE_TO_ELEMENT_SIZE(Type, type, TYPE, ctype, size) \
16839 case FIXED_##TYPE##_ARRAY_TYPE: \
16840 return size;
16841
16842 TYPED_ARRAYS(INSTANCE_TYPE_TO_ELEMENT_SIZE)
16843 #undef INSTANCE_TYPE_TO_ELEMENT_SIZE
16844
16845 default:
16846 UNREACHABLE();
16847 return 0;
16848 }
16849 }
16850
16851
InvalidatePropertyCell(Handle<JSGlobalObject> global,Handle<Name> name)16852 void JSGlobalObject::InvalidatePropertyCell(Handle<JSGlobalObject> global,
16853 Handle<Name> name) {
16854 DCHECK(!global->HasFastProperties());
16855 auto dictionary = handle(global->global_dictionary());
16856 int entry = dictionary->FindEntry(name);
16857 if (entry == GlobalDictionary::kNotFound) return;
16858 PropertyCell::InvalidateEntry(dictionary, entry);
16859 }
16860
16861
16862 // TODO(ishell): rename to EnsureEmptyPropertyCell or something.
EnsurePropertyCell(Handle<JSGlobalObject> global,Handle<Name> name)16863 Handle<PropertyCell> JSGlobalObject::EnsurePropertyCell(
16864 Handle<JSGlobalObject> global, Handle<Name> name) {
16865 Isolate* isolate = global->GetIsolate();
16866 DCHECK(!global->HasFastProperties());
16867 auto dictionary = handle(global->global_dictionary(), isolate);
16868 int entry = dictionary->FindEntry(name);
16869 Handle<PropertyCell> cell;
16870 if (entry != GlobalDictionary::kNotFound) {
16871 // This call should be idempotent.
16872 DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
16873 cell = handle(PropertyCell::cast(dictionary->ValueAt(entry)));
16874 DCHECK(cell->property_details().cell_type() ==
16875 PropertyCellType::kUninitialized ||
16876 cell->property_details().cell_type() ==
16877 PropertyCellType::kInvalidated);
16878 DCHECK(cell->value()->IsTheHole(isolate));
16879 return cell;
16880 }
16881 cell = isolate->factory()->NewPropertyCell();
16882 PropertyDetails details(NONE, DATA, 0, PropertyCellType::kUninitialized);
16883 dictionary = GlobalDictionary::Add(dictionary, name, cell, details);
16884 global->set_properties(*dictionary);
16885 return cell;
16886 }
16887
16888
16889 // This class is used for looking up two character strings in the string table.
16890 // If we don't have a hit we don't want to waste much time so we unroll the
16891 // string hash calculation loop here for speed. Doesn't work if the two
16892 // characters form a decimal integer, since such strings have a different hash
16893 // algorithm.
16894 class TwoCharHashTableKey : public HashTableKey {
16895 public:
TwoCharHashTableKey(uint16_t c1,uint16_t c2,uint32_t seed)16896 TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed)
16897 : c1_(c1), c2_(c2) {
16898 // Char 1.
16899 uint32_t hash = seed;
16900 hash += c1;
16901 hash += hash << 10;
16902 hash ^= hash >> 6;
16903 // Char 2.
16904 hash += c2;
16905 hash += hash << 10;
16906 hash ^= hash >> 6;
16907 // GetHash.
16908 hash += hash << 3;
16909 hash ^= hash >> 11;
16910 hash += hash << 15;
16911 if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash;
16912 hash_ = hash;
16913 #ifdef DEBUG
16914 // If this assert fails then we failed to reproduce the two-character
16915 // version of the string hashing algorithm above. One reason could be
16916 // that we were passed two digits as characters, since the hash
16917 // algorithm is different in that case.
16918 uint16_t chars[2] = {c1, c2};
16919 uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed);
16920 hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask;
16921 DCHECK_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash));
16922 #endif
16923 }
16924
IsMatch(Object * o)16925 bool IsMatch(Object* o) override {
16926 if (!o->IsString()) return false;
16927 String* other = String::cast(o);
16928 if (other->length() != 2) return false;
16929 if (other->Get(0) != c1_) return false;
16930 return other->Get(1) == c2_;
16931 }
16932
Hash()16933 uint32_t Hash() override { return hash_; }
HashForObject(Object * key)16934 uint32_t HashForObject(Object* key) override {
16935 if (!key->IsString()) return 0;
16936 return String::cast(key)->Hash();
16937 }
16938
AsHandle(Isolate * isolate)16939 Handle<Object> AsHandle(Isolate* isolate) override {
16940 // The TwoCharHashTableKey is only used for looking in the string
16941 // table, not for adding to it.
16942 UNREACHABLE();
16943 return MaybeHandle<Object>().ToHandleChecked();
16944 }
16945
16946 private:
16947 uint16_t c1_;
16948 uint16_t c2_;
16949 uint32_t hash_;
16950 };
16951
16952
InternalizeStringIfExists(Isolate * isolate,Handle<String> string)16953 MaybeHandle<String> StringTable::InternalizeStringIfExists(
16954 Isolate* isolate,
16955 Handle<String> string) {
16956 if (string->IsInternalizedString()) {
16957 return string;
16958 }
16959 return LookupStringIfExists(isolate, string);
16960 }
16961
16962
LookupStringIfExists(Isolate * isolate,Handle<String> string)16963 MaybeHandle<String> StringTable::LookupStringIfExists(
16964 Isolate* isolate,
16965 Handle<String> string) {
16966 Handle<StringTable> string_table = isolate->factory()->string_table();
16967 InternalizedStringKey key(string);
16968 int entry = string_table->FindEntry(&key);
16969 if (entry == kNotFound) {
16970 return MaybeHandle<String>();
16971 } else {
16972 Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate);
16973 DCHECK(StringShape(*result).IsInternalized());
16974 return result;
16975 }
16976 }
16977
16978
LookupTwoCharsStringIfExists(Isolate * isolate,uint16_t c1,uint16_t c2)16979 MaybeHandle<String> StringTable::LookupTwoCharsStringIfExists(
16980 Isolate* isolate,
16981 uint16_t c1,
16982 uint16_t c2) {
16983 Handle<StringTable> string_table = isolate->factory()->string_table();
16984 TwoCharHashTableKey key(c1, c2, isolate->heap()->HashSeed());
16985 int entry = string_table->FindEntry(&key);
16986 if (entry == kNotFound) {
16987 return MaybeHandle<String>();
16988 } else {
16989 Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate);
16990 DCHECK(StringShape(*result).IsInternalized());
16991 return result;
16992 }
16993 }
16994
16995
EnsureCapacityForDeserialization(Isolate * isolate,int expected)16996 void StringTable::EnsureCapacityForDeserialization(Isolate* isolate,
16997 int expected) {
16998 Handle<StringTable> table = isolate->factory()->string_table();
16999 // We need a key instance for the virtual hash function.
17000 InternalizedStringKey dummy_key(isolate->factory()->empty_string());
17001 table = StringTable::EnsureCapacity(table, expected, &dummy_key);
17002 isolate->heap()->SetRootStringTable(*table);
17003 }
17004
17005
LookupString(Isolate * isolate,Handle<String> string)17006 Handle<String> StringTable::LookupString(Isolate* isolate,
17007 Handle<String> string) {
17008 if (string->IsConsString() && string->IsFlat()) {
17009 string = String::Flatten(string);
17010 if (string->IsInternalizedString()) return string;
17011 }
17012
17013 InternalizedStringKey key(string);
17014 Handle<String> result = LookupKey(isolate, &key);
17015
17016 if (string->IsConsString()) {
17017 Handle<ConsString> cons = Handle<ConsString>::cast(string);
17018 cons->set_first(*result);
17019 cons->set_second(isolate->heap()->empty_string());
17020 } else if (string->IsSlicedString()) {
17021 STATIC_ASSERT(ConsString::kSize == SlicedString::kSize);
17022 DisallowHeapAllocation no_gc;
17023 bool one_byte = result->IsOneByteRepresentation();
17024 Handle<Map> map = one_byte ? isolate->factory()->cons_one_byte_string_map()
17025 : isolate->factory()->cons_string_map();
17026 string->set_map(*map);
17027 Handle<ConsString> cons = Handle<ConsString>::cast(string);
17028 cons->set_first(*result);
17029 cons->set_second(isolate->heap()->empty_string());
17030 }
17031 return result;
17032 }
17033
17034
LookupKey(Isolate * isolate,HashTableKey * key)17035 Handle<String> StringTable::LookupKey(Isolate* isolate, HashTableKey* key) {
17036 Handle<StringTable> table = isolate->factory()->string_table();
17037 int entry = table->FindEntry(key);
17038
17039 // String already in table.
17040 if (entry != kNotFound) {
17041 return handle(String::cast(table->KeyAt(entry)), isolate);
17042 }
17043
17044 // Adding new string. Grow table if needed.
17045 table = StringTable::EnsureCapacity(table, 1, key);
17046
17047 // Create string object.
17048 Handle<Object> string = key->AsHandle(isolate);
17049 // There must be no attempts to internalize strings that could throw
17050 // InvalidStringLength error.
17051 CHECK(!string.is_null());
17052
17053 // Add the new string and return it along with the string table.
17054 entry = table->FindInsertionEntry(key->Hash());
17055 table->set(EntryToIndex(entry), *string);
17056 table->ElementAdded();
17057
17058 isolate->heap()->SetRootStringTable(*table);
17059 return Handle<String>::cast(string);
17060 }
17061
17062
LookupKeyIfExists(Isolate * isolate,HashTableKey * key)17063 String* StringTable::LookupKeyIfExists(Isolate* isolate, HashTableKey* key) {
17064 Handle<StringTable> table = isolate->factory()->string_table();
17065 int entry = table->FindEntry(key);
17066 if (entry != kNotFound) return String::cast(table->KeyAt(entry));
17067 return NULL;
17068 }
17069
New(Isolate * isolate)17070 Handle<StringSet> StringSet::New(Isolate* isolate) {
17071 return HashTable::New(isolate, 0);
17072 }
17073
Add(Handle<StringSet> stringset,Handle<String> name)17074 Handle<StringSet> StringSet::Add(Handle<StringSet> stringset,
17075 Handle<String> name) {
17076 if (!stringset->Has(name)) {
17077 stringset = EnsureCapacity(stringset, 1, *name);
17078 uint32_t hash = StringSetShape::Hash(*name);
17079 int entry = stringset->FindInsertionEntry(hash);
17080 stringset->set(EntryToIndex(entry), *name);
17081 stringset->ElementAdded();
17082 }
17083 return stringset;
17084 }
17085
Has(Handle<String> name)17086 bool StringSet::Has(Handle<String> name) {
17087 return FindEntry(*name) != kNotFound;
17088 }
17089
Lookup(Handle<String> src,Handle<Context> context,LanguageMode language_mode)17090 Handle<Object> CompilationCacheTable::Lookup(Handle<String> src,
17091 Handle<Context> context,
17092 LanguageMode language_mode) {
17093 Isolate* isolate = GetIsolate();
17094 Handle<SharedFunctionInfo> shared(context->closure()->shared());
17095 StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition);
17096 int entry = FindEntry(&key);
17097 if (entry == kNotFound) return isolate->factory()->undefined_value();
17098 int index = EntryToIndex(entry);
17099 if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value();
17100 return Handle<Object>(get(index + 1), isolate);
17101 }
17102
17103
LookupEval(Handle<String> src,Handle<SharedFunctionInfo> outer_info,LanguageMode language_mode,int scope_position)17104 Handle<Object> CompilationCacheTable::LookupEval(
17105 Handle<String> src, Handle<SharedFunctionInfo> outer_info,
17106 LanguageMode language_mode, int scope_position) {
17107 Isolate* isolate = GetIsolate();
17108 // Cache key is the tuple (source, outer shared function info, scope position)
17109 // to unambiguously identify the context chain the cached eval code assumes.
17110 StringSharedKey key(src, outer_info, language_mode, scope_position);
17111 int entry = FindEntry(&key);
17112 if (entry == kNotFound) return isolate->factory()->undefined_value();
17113 int index = EntryToIndex(entry);
17114 if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value();
17115 return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
17116 }
17117
17118
LookupRegExp(Handle<String> src,JSRegExp::Flags flags)17119 Handle<Object> CompilationCacheTable::LookupRegExp(Handle<String> src,
17120 JSRegExp::Flags flags) {
17121 Isolate* isolate = GetIsolate();
17122 DisallowHeapAllocation no_allocation;
17123 RegExpKey key(src, flags);
17124 int entry = FindEntry(&key);
17125 if (entry == kNotFound) return isolate->factory()->undefined_value();
17126 return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
17127 }
17128
17129
Put(Handle<CompilationCacheTable> cache,Handle<String> src,Handle<Context> context,LanguageMode language_mode,Handle<Object> value)17130 Handle<CompilationCacheTable> CompilationCacheTable::Put(
17131 Handle<CompilationCacheTable> cache, Handle<String> src,
17132 Handle<Context> context, LanguageMode language_mode, Handle<Object> value) {
17133 Isolate* isolate = cache->GetIsolate();
17134 Handle<SharedFunctionInfo> shared(context->closure()->shared());
17135 StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition);
17136 Handle<Object> k = key.AsHandle(isolate);
17137 cache = EnsureCapacity(cache, 1, &key);
17138 int entry = cache->FindInsertionEntry(key.Hash());
17139 cache->set(EntryToIndex(entry), *k);
17140 cache->set(EntryToIndex(entry) + 1, *value);
17141 cache->ElementAdded();
17142 return cache;
17143 }
17144
17145
PutEval(Handle<CompilationCacheTable> cache,Handle<String> src,Handle<SharedFunctionInfo> outer_info,Handle<SharedFunctionInfo> value,int scope_position)17146 Handle<CompilationCacheTable> CompilationCacheTable::PutEval(
17147 Handle<CompilationCacheTable> cache, Handle<String> src,
17148 Handle<SharedFunctionInfo> outer_info, Handle<SharedFunctionInfo> value,
17149 int scope_position) {
17150 Isolate* isolate = cache->GetIsolate();
17151 StringSharedKey key(src, outer_info, value->language_mode(), scope_position);
17152 {
17153 Handle<Object> k = key.AsHandle(isolate);
17154 DisallowHeapAllocation no_allocation_scope;
17155 int entry = cache->FindEntry(&key);
17156 if (entry != kNotFound) {
17157 cache->set(EntryToIndex(entry), *k);
17158 cache->set(EntryToIndex(entry) + 1, *value);
17159 return cache;
17160 }
17161 }
17162
17163 cache = EnsureCapacity(cache, 1, &key);
17164 int entry = cache->FindInsertionEntry(key.Hash());
17165 Handle<Object> k =
17166 isolate->factory()->NewNumber(static_cast<double>(key.Hash()));
17167 cache->set(EntryToIndex(entry), *k);
17168 cache->set(EntryToIndex(entry) + 1, Smi::FromInt(kHashGenerations));
17169 cache->ElementAdded();
17170 return cache;
17171 }
17172
17173
PutRegExp(Handle<CompilationCacheTable> cache,Handle<String> src,JSRegExp::Flags flags,Handle<FixedArray> value)17174 Handle<CompilationCacheTable> CompilationCacheTable::PutRegExp(
17175 Handle<CompilationCacheTable> cache, Handle<String> src,
17176 JSRegExp::Flags flags, Handle<FixedArray> value) {
17177 RegExpKey key(src, flags);
17178 cache = EnsureCapacity(cache, 1, &key);
17179 int entry = cache->FindInsertionEntry(key.Hash());
17180 // We store the value in the key slot, and compare the search key
17181 // to the stored value with a custon IsMatch function during lookups.
17182 cache->set(EntryToIndex(entry), *value);
17183 cache->set(EntryToIndex(entry) + 1, *value);
17184 cache->ElementAdded();
17185 return cache;
17186 }
17187
17188
Age()17189 void CompilationCacheTable::Age() {
17190 DisallowHeapAllocation no_allocation;
17191 Object* the_hole_value = GetHeap()->the_hole_value();
17192 uint32_t capacity = Capacity();
17193 for (int entry = 0, size = capacity; entry < size; entry++) {
17194 int entry_index = EntryToIndex(entry);
17195 int value_index = entry_index + 1;
17196
17197 if (get(entry_index)->IsNumber()) {
17198 Smi* count = Smi::cast(get(value_index));
17199 count = Smi::FromInt(count->value() - 1);
17200 if (count->value() == 0) {
17201 NoWriteBarrierSet(this, entry_index, the_hole_value);
17202 NoWriteBarrierSet(this, value_index, the_hole_value);
17203 ElementRemoved();
17204 } else {
17205 NoWriteBarrierSet(this, value_index, count);
17206 }
17207 } else if (get(entry_index)->IsFixedArray()) {
17208 SharedFunctionInfo* info = SharedFunctionInfo::cast(get(value_index));
17209 if (info->code()->kind() != Code::FUNCTION || info->code()->IsOld()) {
17210 NoWriteBarrierSet(this, entry_index, the_hole_value);
17211 NoWriteBarrierSet(this, value_index, the_hole_value);
17212 ElementRemoved();
17213 }
17214 }
17215 }
17216 // Wipe deleted entries.
17217 Heap* heap = GetHeap();
17218 Object* the_hole = heap->the_hole_value();
17219 Object* undefined = heap->undefined_value();
17220 for (uint32_t current = 0; current < capacity; current++) {
17221 if (get(EntryToIndex(current)) == the_hole) {
17222 set(EntryToIndex(current), undefined);
17223 }
17224 }
17225 SetNumberOfDeletedElements(0);
17226 }
17227
17228
Remove(Object * value)17229 void CompilationCacheTable::Remove(Object* value) {
17230 DisallowHeapAllocation no_allocation;
17231 Object* the_hole_value = GetHeap()->the_hole_value();
17232 for (int entry = 0, size = Capacity(); entry < size; entry++) {
17233 int entry_index = EntryToIndex(entry);
17234 int value_index = entry_index + 1;
17235 if (get(value_index) == value) {
17236 NoWriteBarrierSet(this, entry_index, the_hole_value);
17237 NoWriteBarrierSet(this, value_index, the_hole_value);
17238 ElementRemoved();
17239 }
17240 }
17241 return;
17242 }
17243
17244
17245 template<typename Derived, typename Shape, typename Key>
New(Isolate * isolate,int at_least_space_for,PretenureFlag pretenure)17246 Handle<Derived> Dictionary<Derived, Shape, Key>::New(
17247 Isolate* isolate,
17248 int at_least_space_for,
17249 PretenureFlag pretenure) {
17250 DCHECK(0 <= at_least_space_for);
17251 Handle<Derived> dict = DerivedHashTable::New(isolate,
17252 at_least_space_for,
17253 USE_DEFAULT_MINIMUM_CAPACITY,
17254 pretenure);
17255
17256 // Initialize the next enumeration index.
17257 dict->SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
17258 return dict;
17259 }
17260
17261
17262 template <typename Derived, typename Shape, typename Key>
BuildIterationIndicesArray(Handle<Derived> dictionary)17263 Handle<FixedArray> Dictionary<Derived, Shape, Key>::BuildIterationIndicesArray(
17264 Handle<Derived> dictionary) {
17265 Isolate* isolate = dictionary->GetIsolate();
17266 Factory* factory = isolate->factory();
17267 int length = dictionary->NumberOfElements();
17268
17269 Handle<FixedArray> iteration_order = factory->NewFixedArray(length);
17270 Handle<FixedArray> enumeration_order = factory->NewFixedArray(length);
17271
17272 // Fill both the iteration order array and the enumeration order array
17273 // with property details.
17274 int capacity = dictionary->Capacity();
17275 int pos = 0;
17276 for (int i = 0; i < capacity; i++) {
17277 if (dictionary->IsKey(isolate, dictionary->KeyAt(i))) {
17278 int index = dictionary->DetailsAt(i).dictionary_index();
17279 iteration_order->set(pos, Smi::FromInt(i));
17280 enumeration_order->set(pos, Smi::FromInt(index));
17281 pos++;
17282 }
17283 }
17284 DCHECK(pos == length);
17285
17286 // Sort the arrays wrt. enumeration order.
17287 iteration_order->SortPairs(*enumeration_order, enumeration_order->length());
17288 return iteration_order;
17289 }
17290
17291
17292 template <typename Derived, typename Shape, typename Key>
17293 Handle<FixedArray>
GenerateNewEnumerationIndices(Handle<Derived> dictionary)17294 Dictionary<Derived, Shape, Key>::GenerateNewEnumerationIndices(
17295 Handle<Derived> dictionary) {
17296 int length = dictionary->NumberOfElements();
17297
17298 Handle<FixedArray> iteration_order = BuildIterationIndicesArray(dictionary);
17299 DCHECK(iteration_order->length() == length);
17300
17301 // Iterate over the dictionary using the enumeration order and update
17302 // the dictionary with new enumeration indices.
17303 for (int i = 0; i < length; i++) {
17304 int index = Smi::cast(iteration_order->get(i))->value();
17305 DCHECK(dictionary->IsKey(dictionary->KeyAt(index)));
17306
17307 int enum_index = PropertyDetails::kInitialIndex + i;
17308
17309 PropertyDetails details = dictionary->DetailsAt(index);
17310 PropertyDetails new_details = details.set_index(enum_index);
17311 dictionary->DetailsAtPut(index, new_details);
17312 }
17313
17314 // Set the next enumeration index.
17315 dictionary->SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
17316 return iteration_order;
17317 }
17318
17319
17320 template <typename Derived, typename Shape, typename Key>
SetRequiresCopyOnCapacityChange()17321 void Dictionary<Derived, Shape, Key>::SetRequiresCopyOnCapacityChange() {
17322 DCHECK_EQ(0, DerivedHashTable::NumberOfElements());
17323 DCHECK_EQ(0, DerivedHashTable::NumberOfDeletedElements());
17324 // Make sure that HashTable::EnsureCapacity will create a copy.
17325 DerivedHashTable::SetNumberOfDeletedElements(DerivedHashTable::Capacity());
17326 DCHECK(!DerivedHashTable::HasSufficientCapacityToAdd(1));
17327 }
17328
17329
17330 template <typename Derived, typename Shape, typename Key>
EnsureCapacity(Handle<Derived> dictionary,int n,Key key)17331 Handle<Derived> Dictionary<Derived, Shape, Key>::EnsureCapacity(
17332 Handle<Derived> dictionary, int n, Key key) {
17333 // Check whether there are enough enumeration indices to add n elements.
17334 if (Shape::kIsEnumerable &&
17335 !PropertyDetails::IsValidIndex(dictionary->NextEnumerationIndex() + n)) {
17336 // If not, we generate new indices for the properties.
17337 GenerateNewEnumerationIndices(dictionary);
17338 }
17339 return DerivedHashTable::EnsureCapacity(dictionary, n, key);
17340 }
17341
17342
17343 template <typename Derived, typename Shape, typename Key>
DeleteProperty(Handle<Derived> dictionary,int entry)17344 Handle<Object> Dictionary<Derived, Shape, Key>::DeleteProperty(
17345 Handle<Derived> dictionary, int entry) {
17346 Factory* factory = dictionary->GetIsolate()->factory();
17347 PropertyDetails details = dictionary->DetailsAt(entry);
17348 if (!details.IsConfigurable()) return factory->false_value();
17349
17350 dictionary->SetEntry(
17351 entry, factory->the_hole_value(), factory->the_hole_value());
17352 dictionary->ElementRemoved();
17353 return factory->true_value();
17354 }
17355
17356
17357 template<typename Derived, typename Shape, typename Key>
AtPut(Handle<Derived> dictionary,Key key,Handle<Object> value)17358 Handle<Derived> Dictionary<Derived, Shape, Key>::AtPut(
17359 Handle<Derived> dictionary, Key key, Handle<Object> value) {
17360 int entry = dictionary->FindEntry(key);
17361
17362 // If the entry is present set the value;
17363 if (entry != Dictionary::kNotFound) {
17364 dictionary->ValueAtPut(entry, *value);
17365 return dictionary;
17366 }
17367
17368 // Check whether the dictionary should be extended.
17369 dictionary = EnsureCapacity(dictionary, 1, key);
17370 #ifdef DEBUG
17371 USE(Shape::AsHandle(dictionary->GetIsolate(), key));
17372 #endif
17373 PropertyDetails details = PropertyDetails::Empty();
17374
17375 AddEntry(dictionary, key, value, details, dictionary->Hash(key));
17376 return dictionary;
17377 }
17378
17379
17380 template<typename Derived, typename Shape, typename Key>
Add(Handle<Derived> dictionary,Key key,Handle<Object> value,PropertyDetails details)17381 Handle<Derived> Dictionary<Derived, Shape, Key>::Add(
17382 Handle<Derived> dictionary,
17383 Key key,
17384 Handle<Object> value,
17385 PropertyDetails details) {
17386 // Valdate key is absent.
17387 SLOW_DCHECK((dictionary->FindEntry(key) == Dictionary::kNotFound));
17388 // Check whether the dictionary should be extended.
17389 dictionary = EnsureCapacity(dictionary, 1, key);
17390
17391 AddEntry(dictionary, key, value, details, dictionary->Hash(key));
17392 return dictionary;
17393 }
17394
17395
17396 // Add a key, value pair to the dictionary.
17397 template<typename Derived, typename Shape, typename Key>
AddEntry(Handle<Derived> dictionary,Key key,Handle<Object> value,PropertyDetails details,uint32_t hash)17398 void Dictionary<Derived, Shape, Key>::AddEntry(
17399 Handle<Derived> dictionary,
17400 Key key,
17401 Handle<Object> value,
17402 PropertyDetails details,
17403 uint32_t hash) {
17404 // Compute the key object.
17405 Handle<Object> k = Shape::AsHandle(dictionary->GetIsolate(), key);
17406
17407 uint32_t entry = dictionary->FindInsertionEntry(hash);
17408 // Insert element at empty or deleted entry
17409 if (details.dictionary_index() == 0 && Shape::kIsEnumerable) {
17410 // Assign an enumeration index to the property and update
17411 // SetNextEnumerationIndex.
17412 int index = dictionary->NextEnumerationIndex();
17413 details = details.set_index(index);
17414 dictionary->SetNextEnumerationIndex(index + 1);
17415 }
17416 dictionary->SetEntry(entry, k, value, details);
17417 DCHECK((dictionary->KeyAt(entry)->IsNumber() ||
17418 dictionary->KeyAt(entry)->IsName()));
17419 dictionary->ElementAdded();
17420 }
17421
HasComplexElements()17422 bool SeededNumberDictionary::HasComplexElements() {
17423 if (!requires_slow_elements()) return false;
17424 Isolate* isolate = this->GetIsolate();
17425 int capacity = this->Capacity();
17426 for (int i = 0; i < capacity; i++) {
17427 Object* k = this->KeyAt(i);
17428 if (!this->IsKey(isolate, k)) continue;
17429 DCHECK(!IsDeleted(i));
17430 PropertyDetails details = this->DetailsAt(i);
17431 if (details.type() == ACCESSOR_CONSTANT) return true;
17432 PropertyAttributes attr = details.attributes();
17433 if (attr & ALL_ATTRIBUTES_MASK) return true;
17434 }
17435 return false;
17436 }
17437
UpdateMaxNumberKey(uint32_t key,bool used_as_prototype)17438 void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key,
17439 bool used_as_prototype) {
17440 DisallowHeapAllocation no_allocation;
17441 // If the dictionary requires slow elements an element has already
17442 // been added at a high index.
17443 if (requires_slow_elements()) return;
17444 // Check if this index is high enough that we should require slow
17445 // elements.
17446 if (key > kRequiresSlowElementsLimit) {
17447 if (used_as_prototype) {
17448 // TODO(verwaest): Remove this hack.
17449 TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate());
17450 }
17451 set_requires_slow_elements();
17452 return;
17453 }
17454 // Update max key value.
17455 Object* max_index_object = get(kMaxNumberKeyIndex);
17456 if (!max_index_object->IsSmi() || max_number_key() < key) {
17457 FixedArray::set(kMaxNumberKeyIndex,
17458 Smi::FromInt(key << kRequiresSlowElementsTagSize));
17459 }
17460 }
17461
17462
AddNumberEntry(Handle<SeededNumberDictionary> dictionary,uint32_t key,Handle<Object> value,PropertyDetails details,bool used_as_prototype)17463 Handle<SeededNumberDictionary> SeededNumberDictionary::AddNumberEntry(
17464 Handle<SeededNumberDictionary> dictionary, uint32_t key,
17465 Handle<Object> value, PropertyDetails details, bool used_as_prototype) {
17466 dictionary->UpdateMaxNumberKey(key, used_as_prototype);
17467 SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound);
17468 return Add(dictionary, key, value, details);
17469 }
17470
17471
AddNumberEntry(Handle<UnseededNumberDictionary> dictionary,uint32_t key,Handle<Object> value)17472 Handle<UnseededNumberDictionary> UnseededNumberDictionary::AddNumberEntry(
17473 Handle<UnseededNumberDictionary> dictionary,
17474 uint32_t key,
17475 Handle<Object> value) {
17476 SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound);
17477 return Add(dictionary, key, value, PropertyDetails::Empty());
17478 }
17479
17480
AtNumberPut(Handle<SeededNumberDictionary> dictionary,uint32_t key,Handle<Object> value,bool used_as_prototype)17481 Handle<SeededNumberDictionary> SeededNumberDictionary::AtNumberPut(
17482 Handle<SeededNumberDictionary> dictionary, uint32_t key,
17483 Handle<Object> value, bool used_as_prototype) {
17484 dictionary->UpdateMaxNumberKey(key, used_as_prototype);
17485 return AtPut(dictionary, key, value);
17486 }
17487
17488
AtNumberPut(Handle<UnseededNumberDictionary> dictionary,uint32_t key,Handle<Object> value)17489 Handle<UnseededNumberDictionary> UnseededNumberDictionary::AtNumberPut(
17490 Handle<UnseededNumberDictionary> dictionary,
17491 uint32_t key,
17492 Handle<Object> value) {
17493 return AtPut(dictionary, key, value);
17494 }
17495
17496
Set(Handle<SeededNumberDictionary> dictionary,uint32_t key,Handle<Object> value,PropertyDetails details,bool used_as_prototype)17497 Handle<SeededNumberDictionary> SeededNumberDictionary::Set(
17498 Handle<SeededNumberDictionary> dictionary, uint32_t key,
17499 Handle<Object> value, PropertyDetails details, bool used_as_prototype) {
17500 int entry = dictionary->FindEntry(key);
17501 if (entry == kNotFound) {
17502 return AddNumberEntry(dictionary, key, value, details, used_as_prototype);
17503 }
17504 // Preserve enumeration index.
17505 details = details.set_index(dictionary->DetailsAt(entry).dictionary_index());
17506 Handle<Object> object_key =
17507 SeededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key);
17508 dictionary->SetEntry(entry, object_key, value, details);
17509 return dictionary;
17510 }
17511
17512
Set(Handle<UnseededNumberDictionary> dictionary,uint32_t key,Handle<Object> value)17513 Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set(
17514 Handle<UnseededNumberDictionary> dictionary,
17515 uint32_t key,
17516 Handle<Object> value) {
17517 int entry = dictionary->FindEntry(key);
17518 if (entry == kNotFound) return AddNumberEntry(dictionary, key, value);
17519 Handle<Object> object_key =
17520 UnseededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key);
17521 dictionary->SetEntry(entry, object_key, value);
17522 return dictionary;
17523 }
17524
17525
17526 template <typename Derived, typename Shape, typename Key>
NumberOfElementsFilterAttributes(PropertyFilter filter)17527 int Dictionary<Derived, Shape, Key>::NumberOfElementsFilterAttributes(
17528 PropertyFilter filter) {
17529 Isolate* isolate = this->GetIsolate();
17530 int capacity = this->Capacity();
17531 int result = 0;
17532 for (int i = 0; i < capacity; i++) {
17533 Object* k = this->KeyAt(i);
17534 if (this->IsKey(isolate, k) && !k->FilterKey(filter)) {
17535 if (this->IsDeleted(i)) continue;
17536 PropertyDetails details = this->DetailsAt(i);
17537 PropertyAttributes attr = details.attributes();
17538 if ((attr & filter) == 0) result++;
17539 }
17540 }
17541 return result;
17542 }
17543
17544
17545 template <typename Dictionary>
17546 struct EnumIndexComparator {
EnumIndexComparatorv8::internal::EnumIndexComparator17547 explicit EnumIndexComparator(Dictionary* dict) : dict(dict) {}
operator ()v8::internal::EnumIndexComparator17548 bool operator() (Smi* a, Smi* b) {
17549 PropertyDetails da(dict->DetailsAt(a->value()));
17550 PropertyDetails db(dict->DetailsAt(b->value()));
17551 return da.dictionary_index() < db.dictionary_index();
17552 }
17553 Dictionary* dict;
17554 };
17555
17556
17557 template <typename Derived, typename Shape, typename Key>
CopyEnumKeysTo(FixedArray * storage)17558 void Dictionary<Derived, Shape, Key>::CopyEnumKeysTo(FixedArray* storage) {
17559 Isolate* isolate = this->GetIsolate();
17560 int length = storage->length();
17561 int capacity = this->Capacity();
17562 int properties = 0;
17563 for (int i = 0; i < capacity; i++) {
17564 Object* k = this->KeyAt(i);
17565 if (this->IsKey(isolate, k) && !k->IsSymbol()) {
17566 PropertyDetails details = this->DetailsAt(i);
17567 if (details.IsDontEnum() || this->IsDeleted(i)) continue;
17568 storage->set(properties, Smi::FromInt(i));
17569 properties++;
17570 if (properties == length) break;
17571 }
17572 }
17573 CHECK_EQ(length, properties);
17574 EnumIndexComparator<Derived> cmp(static_cast<Derived*>(this));
17575 Smi** start = reinterpret_cast<Smi**>(storage->GetFirstElementAddress());
17576 std::sort(start, start + length, cmp);
17577 for (int i = 0; i < length; i++) {
17578 int index = Smi::cast(storage->get(i))->value();
17579 storage->set(i, this->KeyAt(index));
17580 }
17581 }
17582
17583 template <typename Derived, typename Shape, typename Key>
CollectKeysTo(Handle<Dictionary<Derived,Shape,Key>> dictionary,KeyAccumulator * keys,PropertyFilter filter)17584 void Dictionary<Derived, Shape, Key>::CollectKeysTo(
17585 Handle<Dictionary<Derived, Shape, Key> > dictionary, KeyAccumulator* keys,
17586 PropertyFilter filter) {
17587 Isolate* isolate = keys->isolate();
17588 int capacity = dictionary->Capacity();
17589 Handle<FixedArray> array =
17590 isolate->factory()->NewFixedArray(dictionary->NumberOfElements());
17591 int array_size = 0;
17592
17593 {
17594 DisallowHeapAllocation no_gc;
17595 Dictionary<Derived, Shape, Key>* raw_dict = *dictionary;
17596 for (int i = 0; i < capacity; i++) {
17597 Object* k = raw_dict->KeyAt(i);
17598 if (!raw_dict->IsKey(isolate, k) || k->FilterKey(filter)) continue;
17599 if (raw_dict->IsDeleted(i)) continue;
17600 PropertyDetails details = raw_dict->DetailsAt(i);
17601 if ((details.attributes() & filter) != 0) continue;
17602 if (filter & ONLY_ALL_CAN_READ) {
17603 if (details.kind() != kAccessor) continue;
17604 Object* accessors = raw_dict->ValueAt(i);
17605 if (accessors->IsPropertyCell()) {
17606 accessors = PropertyCell::cast(accessors)->value();
17607 }
17608 if (!accessors->IsAccessorInfo()) continue;
17609 if (!AccessorInfo::cast(accessors)->all_can_read()) continue;
17610 }
17611 array->set(array_size++, Smi::FromInt(i));
17612 }
17613
17614 EnumIndexComparator<Derived> cmp(static_cast<Derived*>(raw_dict));
17615 Smi** start = reinterpret_cast<Smi**>(array->GetFirstElementAddress());
17616 std::sort(start, start + array_size, cmp);
17617 }
17618
17619 bool has_seen_symbol = false;
17620 for (int i = 0; i < array_size; i++) {
17621 int index = Smi::cast(array->get(i))->value();
17622 Object* key = dictionary->KeyAt(index);
17623 if (key->IsSymbol()) {
17624 has_seen_symbol = true;
17625 continue;
17626 }
17627 keys->AddKey(key, DO_NOT_CONVERT);
17628 }
17629 if (has_seen_symbol) {
17630 for (int i = 0; i < array_size; i++) {
17631 int index = Smi::cast(array->get(i))->value();
17632 Object* key = dictionary->KeyAt(index);
17633 if (!key->IsSymbol()) continue;
17634 keys->AddKey(key, DO_NOT_CONVERT);
17635 }
17636 }
17637 }
17638
17639
17640 // Backwards lookup (slow).
17641 template<typename Derived, typename Shape, typename Key>
SlowReverseLookup(Object * value)17642 Object* Dictionary<Derived, Shape, Key>::SlowReverseLookup(Object* value) {
17643 Isolate* isolate = this->GetIsolate();
17644 int capacity = this->Capacity();
17645 for (int i = 0; i < capacity; i++) {
17646 Object* k = this->KeyAt(i);
17647 if (!this->IsKey(isolate, k)) continue;
17648 Object* e = this->ValueAt(i);
17649 // TODO(dcarney): this should be templatized.
17650 if (e->IsPropertyCell()) {
17651 e = PropertyCell::cast(e)->value();
17652 }
17653 if (e == value) return k;
17654 }
17655 return isolate->heap()->undefined_value();
17656 }
17657
17658
Lookup(Isolate * isolate,Handle<Object> key,int32_t hash)17659 Object* ObjectHashTable::Lookup(Isolate* isolate, Handle<Object> key,
17660 int32_t hash) {
17661 DisallowHeapAllocation no_gc;
17662 DCHECK(IsKey(isolate, *key));
17663
17664 int entry = FindEntry(isolate, key, hash);
17665 if (entry == kNotFound) return isolate->heap()->the_hole_value();
17666 return get(EntryToIndex(entry) + 1);
17667 }
17668
17669
Lookup(Handle<Object> key)17670 Object* ObjectHashTable::Lookup(Handle<Object> key) {
17671 DisallowHeapAllocation no_gc;
17672
17673 Isolate* isolate = GetIsolate();
17674 DCHECK(IsKey(isolate, *key));
17675
17676 // If the object does not have an identity hash, it was never used as a key.
17677 Object* hash = key->GetHash();
17678 if (hash->IsUndefined(isolate)) {
17679 return isolate->heap()->the_hole_value();
17680 }
17681 return Lookup(isolate, key, Smi::cast(hash)->value());
17682 }
17683
17684
Lookup(Handle<Object> key,int32_t hash)17685 Object* ObjectHashTable::Lookup(Handle<Object> key, int32_t hash) {
17686 return Lookup(GetIsolate(), key, hash);
17687 }
17688
17689
Put(Handle<ObjectHashTable> table,Handle<Object> key,Handle<Object> value)17690 Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
17691 Handle<Object> key,
17692 Handle<Object> value) {
17693 Isolate* isolate = table->GetIsolate();
17694 DCHECK(table->IsKey(isolate, *key));
17695 DCHECK(!value->IsTheHole(isolate));
17696
17697 // Make sure the key object has an identity hash code.
17698 int32_t hash = Object::GetOrCreateHash(isolate, key)->value();
17699
17700 return Put(table, key, value, hash);
17701 }
17702
17703
Put(Handle<ObjectHashTable> table,Handle<Object> key,Handle<Object> value,int32_t hash)17704 Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
17705 Handle<Object> key,
17706 Handle<Object> value,
17707 int32_t hash) {
17708 Isolate* isolate = table->GetIsolate();
17709 DCHECK(table->IsKey(isolate, *key));
17710 DCHECK(!value->IsTheHole(isolate));
17711
17712 int entry = table->FindEntry(isolate, key, hash);
17713
17714 // Key is already in table, just overwrite value.
17715 if (entry != kNotFound) {
17716 table->set(EntryToIndex(entry) + 1, *value);
17717 return table;
17718 }
17719
17720 // Rehash if more than 25% of the entries are deleted entries.
17721 // TODO(jochen): Consider to shrink the fixed array in place.
17722 if ((table->NumberOfDeletedElements() << 1) > table->NumberOfElements()) {
17723 table->Rehash(isolate->factory()->undefined_value());
17724 }
17725 // If we're out of luck, we didn't get a GC recently, and so rehashing
17726 // isn't enough to avoid a crash.
17727 if (!table->HasSufficientCapacityToAdd(1)) {
17728 int nof = table->NumberOfElements() + 1;
17729 int capacity = ObjectHashTable::ComputeCapacity(nof * 2);
17730 if (capacity > ObjectHashTable::kMaxCapacity) {
17731 for (size_t i = 0; i < 2; ++i) {
17732 isolate->heap()->CollectAllGarbage(
17733 Heap::kFinalizeIncrementalMarkingMask, "full object hash table");
17734 }
17735 table->Rehash(isolate->factory()->undefined_value());
17736 }
17737 }
17738
17739 // Check whether the hash table should be extended.
17740 table = EnsureCapacity(table, 1, key);
17741 table->AddEntry(table->FindInsertionEntry(hash), *key, *value);
17742 return table;
17743 }
17744
17745
Remove(Handle<ObjectHashTable> table,Handle<Object> key,bool * was_present)17746 Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table,
17747 Handle<Object> key,
17748 bool* was_present) {
17749 DCHECK(table->IsKey(table->GetIsolate(), *key));
17750
17751 Object* hash = key->GetHash();
17752 if (hash->IsUndefined(table->GetIsolate())) {
17753 *was_present = false;
17754 return table;
17755 }
17756
17757 return Remove(table, key, was_present, Smi::cast(hash)->value());
17758 }
17759
17760
Remove(Handle<ObjectHashTable> table,Handle<Object> key,bool * was_present,int32_t hash)17761 Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table,
17762 Handle<Object> key,
17763 bool* was_present,
17764 int32_t hash) {
17765 Isolate* isolate = table->GetIsolate();
17766 DCHECK(table->IsKey(isolate, *key));
17767
17768 int entry = table->FindEntry(isolate, key, hash);
17769 if (entry == kNotFound) {
17770 *was_present = false;
17771 return table;
17772 }
17773
17774 *was_present = true;
17775 table->RemoveEntry(entry);
17776 return Shrink(table, key);
17777 }
17778
17779
AddEntry(int entry,Object * key,Object * value)17780 void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) {
17781 set(EntryToIndex(entry), key);
17782 set(EntryToIndex(entry) + 1, value);
17783 ElementAdded();
17784 }
17785
17786
RemoveEntry(int entry)17787 void ObjectHashTable::RemoveEntry(int entry) {
17788 set_the_hole(EntryToIndex(entry));
17789 set_the_hole(EntryToIndex(entry) + 1);
17790 ElementRemoved();
17791 }
17792
17793
Lookup(Handle<HeapObject> key)17794 Object* WeakHashTable::Lookup(Handle<HeapObject> key) {
17795 DisallowHeapAllocation no_gc;
17796 Isolate* isolate = GetIsolate();
17797 DCHECK(IsKey(isolate, *key));
17798 int entry = FindEntry(key);
17799 if (entry == kNotFound) return isolate->heap()->the_hole_value();
17800 return get(EntryToValueIndex(entry));
17801 }
17802
17803
Put(Handle<WeakHashTable> table,Handle<HeapObject> key,Handle<HeapObject> value)17804 Handle<WeakHashTable> WeakHashTable::Put(Handle<WeakHashTable> table,
17805 Handle<HeapObject> key,
17806 Handle<HeapObject> value) {
17807 Isolate* isolate = key->GetIsolate();
17808 DCHECK(table->IsKey(isolate, *key));
17809 int entry = table->FindEntry(key);
17810 // Key is already in table, just overwrite value.
17811 if (entry != kNotFound) {
17812 table->set(EntryToValueIndex(entry), *value);
17813 return table;
17814 }
17815
17816 Handle<WeakCell> key_cell = isolate->factory()->NewWeakCell(key);
17817
17818 // Check whether the hash table should be extended.
17819 table = EnsureCapacity(table, 1, key, TENURED);
17820
17821 table->AddEntry(table->FindInsertionEntry(table->Hash(key)), key_cell, value);
17822 return table;
17823 }
17824
17825
AddEntry(int entry,Handle<WeakCell> key_cell,Handle<HeapObject> value)17826 void WeakHashTable::AddEntry(int entry, Handle<WeakCell> key_cell,
17827 Handle<HeapObject> value) {
17828 DisallowHeapAllocation no_allocation;
17829 set(EntryToIndex(entry), *key_cell);
17830 set(EntryToValueIndex(entry), *value);
17831 ElementAdded();
17832 }
17833
17834
17835 template<class Derived, class Iterator, int entrysize>
Allocate(Isolate * isolate,int capacity,PretenureFlag pretenure)17836 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Allocate(
17837 Isolate* isolate, int capacity, PretenureFlag pretenure) {
17838 // Capacity must be a power of two, since we depend on being able
17839 // to divide and multiple by 2 (kLoadFactor) to derive capacity
17840 // from number of buckets. If we decide to change kLoadFactor
17841 // to something other than 2, capacity should be stored as another
17842 // field of this object.
17843 capacity = base::bits::RoundUpToPowerOfTwo32(Max(kMinCapacity, capacity));
17844 if (capacity > kMaxCapacity) {
17845 v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true);
17846 }
17847 int num_buckets = capacity / kLoadFactor;
17848 Handle<FixedArray> backing_store = isolate->factory()->NewFixedArray(
17849 kHashTableStartIndex + num_buckets + (capacity * kEntrySize), pretenure);
17850 backing_store->set_map_no_write_barrier(
17851 isolate->heap()->ordered_hash_table_map());
17852 Handle<Derived> table = Handle<Derived>::cast(backing_store);
17853 for (int i = 0; i < num_buckets; ++i) {
17854 table->set(kHashTableStartIndex + i, Smi::FromInt(kNotFound));
17855 }
17856 table->SetNumberOfBuckets(num_buckets);
17857 table->SetNumberOfElements(0);
17858 table->SetNumberOfDeletedElements(0);
17859 return table;
17860 }
17861
17862
17863 template<class Derived, class Iterator, int entrysize>
EnsureGrowable(Handle<Derived> table)17864 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::EnsureGrowable(
17865 Handle<Derived> table) {
17866 DCHECK(!table->IsObsolete());
17867
17868 int nof = table->NumberOfElements();
17869 int nod = table->NumberOfDeletedElements();
17870 int capacity = table->Capacity();
17871 if ((nof + nod) < capacity) return table;
17872 // Don't need to grow if we can simply clear out deleted entries instead.
17873 // Note that we can't compact in place, though, so we always allocate
17874 // a new table.
17875 return Rehash(table, (nod < (capacity >> 1)) ? capacity << 1 : capacity);
17876 }
17877
17878
17879 template<class Derived, class Iterator, int entrysize>
Shrink(Handle<Derived> table)17880 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Shrink(
17881 Handle<Derived> table) {
17882 DCHECK(!table->IsObsolete());
17883
17884 int nof = table->NumberOfElements();
17885 int capacity = table->Capacity();
17886 if (nof >= (capacity >> 2)) return table;
17887 return Rehash(table, capacity / 2);
17888 }
17889
17890
17891 template<class Derived, class Iterator, int entrysize>
Clear(Handle<Derived> table)17892 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Clear(
17893 Handle<Derived> table) {
17894 DCHECK(!table->IsObsolete());
17895
17896 Handle<Derived> new_table =
17897 Allocate(table->GetIsolate(),
17898 kMinCapacity,
17899 table->GetHeap()->InNewSpace(*table) ? NOT_TENURED : TENURED);
17900
17901 table->SetNextTable(*new_table);
17902 table->SetNumberOfDeletedElements(kClearedTableSentinel);
17903
17904 return new_table;
17905 }
17906
17907 template <class Derived, class Iterator, int entrysize>
HasKey(Handle<Derived> table,Handle<Object> key)17908 bool OrderedHashTable<Derived, Iterator, entrysize>::HasKey(
17909 Handle<Derived> table, Handle<Object> key) {
17910 DisallowHeapAllocation no_gc;
17911 Isolate* isolate = table->GetIsolate();
17912 Object* raw_key = *key;
17913 int entry = table->KeyToFirstEntry(isolate, raw_key);
17914 // Walk the chain in the bucket to find the key.
17915 while (entry != kNotFound) {
17916 Object* candidate_key = table->KeyAt(entry);
17917 if (candidate_key->SameValueZero(raw_key)) return true;
17918 entry = table->NextChainEntry(entry);
17919 }
17920 return false;
17921 }
17922
17923
Add(Handle<OrderedHashSet> table,Handle<Object> key)17924 Handle<OrderedHashSet> OrderedHashSet::Add(Handle<OrderedHashSet> table,
17925 Handle<Object> key) {
17926 int hash = Object::GetOrCreateHash(table->GetIsolate(), key)->value();
17927 int entry = table->HashToEntry(hash);
17928 // Walk the chain of the bucket and try finding the key.
17929 while (entry != kNotFound) {
17930 Object* candidate_key = table->KeyAt(entry);
17931 // Do not add if we have the key already
17932 if (candidate_key->SameValueZero(*key)) return table;
17933 entry = table->NextChainEntry(entry);
17934 }
17935
17936 table = OrderedHashSet::EnsureGrowable(table);
17937 // Read the existing bucket values.
17938 int bucket = table->HashToBucket(hash);
17939 int previous_entry = table->HashToEntry(hash);
17940 int nof = table->NumberOfElements();
17941 // Insert a new entry at the end,
17942 int new_entry = nof + table->NumberOfDeletedElements();
17943 int new_index = table->EntryToIndex(new_entry);
17944 table->set(new_index, *key);
17945 table->set(new_index + kChainOffset, Smi::FromInt(previous_entry));
17946 // and point the bucket to the new entry.
17947 table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry));
17948 table->SetNumberOfElements(nof + 1);
17949 return table;
17950 }
17951
ConvertToKeysArray(Handle<OrderedHashSet> table,GetKeysConversion convert)17952 Handle<FixedArray> OrderedHashSet::ConvertToKeysArray(
17953 Handle<OrderedHashSet> table, GetKeysConversion convert) {
17954 Isolate* isolate = table->GetIsolate();
17955 int length = table->NumberOfElements();
17956 int nof_buckets = table->NumberOfBuckets();
17957 // Convert the dictionary to a linear list.
17958 Handle<FixedArray> result = Handle<FixedArray>::cast(table);
17959 // From this point on table is no longer a valid OrderedHashSet.
17960 result->set_map(isolate->heap()->fixed_array_map());
17961 for (int i = 0; i < length; i++) {
17962 int index = kHashTableStartIndex + nof_buckets + (i * kEntrySize);
17963 Object* key = table->get(index);
17964 if (convert == GetKeysConversion::kConvertToString && key->IsNumber()) {
17965 key = *isolate->factory()->NumberToString(handle(key, isolate));
17966 }
17967 result->set(i, key);
17968 }
17969 result->Shrink(length);
17970 return result;
17971 }
17972
17973 template<class Derived, class Iterator, int entrysize>
Rehash(Handle<Derived> table,int new_capacity)17974 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Rehash(
17975 Handle<Derived> table, int new_capacity) {
17976 Isolate* isolate = table->GetIsolate();
17977 DCHECK(!table->IsObsolete());
17978
17979 Handle<Derived> new_table =
17980 Allocate(isolate, new_capacity,
17981 isolate->heap()->InNewSpace(*table) ? NOT_TENURED : TENURED);
17982 int nof = table->NumberOfElements();
17983 int nod = table->NumberOfDeletedElements();
17984 int new_buckets = new_table->NumberOfBuckets();
17985 int new_entry = 0;
17986 int removed_holes_index = 0;
17987
17988 DisallowHeapAllocation no_gc;
17989 for (int old_entry = 0; old_entry < (nof + nod); ++old_entry) {
17990 Object* key = table->KeyAt(old_entry);
17991 if (key->IsTheHole(isolate)) {
17992 table->SetRemovedIndexAt(removed_holes_index++, old_entry);
17993 continue;
17994 }
17995
17996 Object* hash = key->GetHash();
17997 int bucket = Smi::cast(hash)->value() & (new_buckets - 1);
17998 Object* chain_entry = new_table->get(kHashTableStartIndex + bucket);
17999 new_table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry));
18000 int new_index = new_table->EntryToIndex(new_entry);
18001 int old_index = table->EntryToIndex(old_entry);
18002 for (int i = 0; i < entrysize; ++i) {
18003 Object* value = table->get(old_index + i);
18004 new_table->set(new_index + i, value);
18005 }
18006 new_table->set(new_index + kChainOffset, chain_entry);
18007 ++new_entry;
18008 }
18009
18010 DCHECK_EQ(nod, removed_holes_index);
18011
18012 new_table->SetNumberOfElements(nof);
18013 table->SetNextTable(*new_table);
18014
18015 return new_table;
18016 }
18017
18018
18019 template Handle<OrderedHashSet>
18020 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Allocate(
18021 Isolate* isolate, int capacity, PretenureFlag pretenure);
18022
18023 template Handle<OrderedHashSet>
18024 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::EnsureGrowable(
18025 Handle<OrderedHashSet> table);
18026
18027 template Handle<OrderedHashSet>
18028 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Shrink(
18029 Handle<OrderedHashSet> table);
18030
18031 template Handle<OrderedHashSet>
18032 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Clear(
18033 Handle<OrderedHashSet> table);
18034
18035 template bool OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::HasKey(
18036 Handle<OrderedHashSet> table, Handle<Object> key);
18037
18038
18039 template Handle<OrderedHashMap>
18040 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Allocate(
18041 Isolate* isolate, int capacity, PretenureFlag pretenure);
18042
18043 template Handle<OrderedHashMap>
18044 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::EnsureGrowable(
18045 Handle<OrderedHashMap> table);
18046
18047 template Handle<OrderedHashMap>
18048 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Shrink(
18049 Handle<OrderedHashMap> table);
18050
18051 template Handle<OrderedHashMap>
18052 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Clear(
18053 Handle<OrderedHashMap> table);
18054
18055 template bool OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::HasKey(
18056 Handle<OrderedHashMap> table, Handle<Object> key);
18057
18058
18059 template<class Derived, class TableType>
Transition()18060 void OrderedHashTableIterator<Derived, TableType>::Transition() {
18061 DisallowHeapAllocation no_allocation;
18062 TableType* table = TableType::cast(this->table());
18063 if (!table->IsObsolete()) return;
18064
18065 int index = Smi::cast(this->index())->value();
18066 while (table->IsObsolete()) {
18067 TableType* next_table = table->NextTable();
18068
18069 if (index > 0) {
18070 int nod = table->NumberOfDeletedElements();
18071
18072 if (nod == TableType::kClearedTableSentinel) {
18073 index = 0;
18074 } else {
18075 int old_index = index;
18076 for (int i = 0; i < nod; ++i) {
18077 int removed_index = table->RemovedIndexAt(i);
18078 if (removed_index >= old_index) break;
18079 --index;
18080 }
18081 }
18082 }
18083
18084 table = next_table;
18085 }
18086
18087 set_table(table);
18088 set_index(Smi::FromInt(index));
18089 }
18090
18091
18092 template<class Derived, class TableType>
HasMore()18093 bool OrderedHashTableIterator<Derived, TableType>::HasMore() {
18094 DisallowHeapAllocation no_allocation;
18095 Isolate* isolate = this->GetIsolate();
18096 if (this->table()->IsUndefined(isolate)) return false;
18097
18098 Transition();
18099
18100 TableType* table = TableType::cast(this->table());
18101 int index = Smi::cast(this->index())->value();
18102 int used_capacity = table->UsedCapacity();
18103
18104 while (index < used_capacity && table->KeyAt(index)->IsTheHole(isolate)) {
18105 index++;
18106 }
18107
18108 set_index(Smi::FromInt(index));
18109
18110 if (index < used_capacity) return true;
18111
18112 set_table(isolate->heap()->undefined_value());
18113 return false;
18114 }
18115
18116
18117 template<class Derived, class TableType>
Next(JSArray * value_array)18118 Smi* OrderedHashTableIterator<Derived, TableType>::Next(JSArray* value_array) {
18119 DisallowHeapAllocation no_allocation;
18120 if (HasMore()) {
18121 FixedArray* array = FixedArray::cast(value_array->elements());
18122 static_cast<Derived*>(this)->PopulateValueArray(array);
18123 MoveNext();
18124 return Smi::cast(kind());
18125 }
18126 return Smi::FromInt(0);
18127 }
18128
18129
18130 template Smi*
18131 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Next(
18132 JSArray* value_array);
18133
18134 template bool
18135 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::HasMore();
18136
18137 template void
18138 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::MoveNext();
18139
18140 template Object*
18141 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::CurrentKey();
18142
18143 template void
18144 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Transition();
18145
18146
18147 template Smi*
18148 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Next(
18149 JSArray* value_array);
18150
18151 template bool
18152 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::HasMore();
18153
18154 template void
18155 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::MoveNext();
18156
18157 template Object*
18158 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::CurrentKey();
18159
18160 template void
18161 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Transition();
18162
18163
Initialize(Handle<JSSet> set,Isolate * isolate)18164 void JSSet::Initialize(Handle<JSSet> set, Isolate* isolate) {
18165 Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet();
18166 set->set_table(*table);
18167 }
18168
18169
Clear(Handle<JSSet> set)18170 void JSSet::Clear(Handle<JSSet> set) {
18171 Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()));
18172 table = OrderedHashSet::Clear(table);
18173 set->set_table(*table);
18174 }
18175
18176
Initialize(Handle<JSMap> map,Isolate * isolate)18177 void JSMap::Initialize(Handle<JSMap> map, Isolate* isolate) {
18178 Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap();
18179 map->set_table(*table);
18180 }
18181
18182
Clear(Handle<JSMap> map)18183 void JSMap::Clear(Handle<JSMap> map) {
18184 Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()));
18185 table = OrderedHashMap::Clear(table);
18186 map->set_table(*table);
18187 }
18188
18189
Initialize(Handle<JSWeakCollection> weak_collection,Isolate * isolate)18190 void JSWeakCollection::Initialize(Handle<JSWeakCollection> weak_collection,
18191 Isolate* isolate) {
18192 Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0);
18193 weak_collection->set_table(*table);
18194 }
18195
18196
Set(Handle<JSWeakCollection> weak_collection,Handle<Object> key,Handle<Object> value,int32_t hash)18197 void JSWeakCollection::Set(Handle<JSWeakCollection> weak_collection,
18198 Handle<Object> key, Handle<Object> value,
18199 int32_t hash) {
18200 DCHECK(key->IsJSReceiver() || key->IsSymbol());
18201 Handle<ObjectHashTable> table(
18202 ObjectHashTable::cast(weak_collection->table()));
18203 DCHECK(table->IsKey(*key));
18204 Handle<ObjectHashTable> new_table =
18205 ObjectHashTable::Put(table, key, value, hash);
18206 weak_collection->set_table(*new_table);
18207 if (*table != *new_table) {
18208 // Zap the old table since we didn't record slots for its elements.
18209 table->FillWithHoles(0, table->length());
18210 }
18211 }
18212
18213
Delete(Handle<JSWeakCollection> weak_collection,Handle<Object> key,int32_t hash)18214 bool JSWeakCollection::Delete(Handle<JSWeakCollection> weak_collection,
18215 Handle<Object> key, int32_t hash) {
18216 DCHECK(key->IsJSReceiver() || key->IsSymbol());
18217 Handle<ObjectHashTable> table(
18218 ObjectHashTable::cast(weak_collection->table()));
18219 DCHECK(table->IsKey(*key));
18220 bool was_present = false;
18221 Handle<ObjectHashTable> new_table =
18222 ObjectHashTable::Remove(table, key, &was_present, hash);
18223 weak_collection->set_table(*new_table);
18224 if (*table != *new_table) {
18225 // Zap the old table since we didn't record slots for its elements.
18226 table->FillWithHoles(0, table->length());
18227 }
18228 return was_present;
18229 }
18230
18231 // Check if there is a break point at this code offset.
HasBreakPoint(int code_offset)18232 bool DebugInfo::HasBreakPoint(int code_offset) {
18233 // Get the break point info object for this code offset.
18234 Object* break_point_info = GetBreakPointInfo(code_offset);
18235
18236 // If there is no break point info object or no break points in the break
18237 // point info object there is no break point at this code offset.
18238 if (break_point_info->IsUndefined(GetIsolate())) return false;
18239 return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
18240 }
18241
18242 // Get the break point info object for this code offset.
GetBreakPointInfo(int code_offset)18243 Object* DebugInfo::GetBreakPointInfo(int code_offset) {
18244 // Find the index of the break point info object for this code offset.
18245 int index = GetBreakPointInfoIndex(code_offset);
18246
18247 // Return the break point info object if any.
18248 if (index == kNoBreakPointInfo) return GetHeap()->undefined_value();
18249 return BreakPointInfo::cast(break_points()->get(index));
18250 }
18251
18252 // Clear a break point at the specified code offset.
ClearBreakPoint(Handle<DebugInfo> debug_info,int code_offset,Handle<Object> break_point_object)18253 void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, int code_offset,
18254 Handle<Object> break_point_object) {
18255 Isolate* isolate = debug_info->GetIsolate();
18256 Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_offset),
18257 isolate);
18258 if (break_point_info->IsUndefined(isolate)) return;
18259 BreakPointInfo::ClearBreakPoint(
18260 Handle<BreakPointInfo>::cast(break_point_info),
18261 break_point_object);
18262 }
18263
SetBreakPoint(Handle<DebugInfo> debug_info,int code_offset,int source_position,int statement_position,Handle<Object> break_point_object)18264 void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, int code_offset,
18265 int source_position, int statement_position,
18266 Handle<Object> break_point_object) {
18267 Isolate* isolate = debug_info->GetIsolate();
18268 Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_offset),
18269 isolate);
18270 if (!break_point_info->IsUndefined(isolate)) {
18271 BreakPointInfo::SetBreakPoint(
18272 Handle<BreakPointInfo>::cast(break_point_info),
18273 break_point_object);
18274 return;
18275 }
18276
18277 // Adding a new break point for a code offset which did not have any
18278 // break points before. Try to find a free slot.
18279 int index = kNoBreakPointInfo;
18280 for (int i = 0; i < debug_info->break_points()->length(); i++) {
18281 if (debug_info->break_points()->get(i)->IsUndefined(isolate)) {
18282 index = i;
18283 break;
18284 }
18285 }
18286 if (index == kNoBreakPointInfo) {
18287 // No free slot - extend break point info array.
18288 Handle<FixedArray> old_break_points = Handle<FixedArray>(
18289 FixedArray::cast(debug_info->break_points()), isolate);
18290 Handle<FixedArray> new_break_points =
18291 isolate->factory()->NewFixedArray(
18292 old_break_points->length() +
18293 DebugInfo::kEstimatedNofBreakPointsInFunction);
18294
18295 debug_info->set_break_points(*new_break_points);
18296 for (int i = 0; i < old_break_points->length(); i++) {
18297 new_break_points->set(i, old_break_points->get(i));
18298 }
18299 index = old_break_points->length();
18300 }
18301 DCHECK(index != kNoBreakPointInfo);
18302
18303 // Allocate new BreakPointInfo object and set the break point.
18304 Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast(
18305 isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE));
18306 new_break_point_info->set_code_offset(code_offset);
18307 new_break_point_info->set_source_position(source_position);
18308 new_break_point_info->set_statement_position(statement_position);
18309 new_break_point_info->set_break_point_objects(
18310 isolate->heap()->undefined_value());
18311 BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
18312 debug_info->break_points()->set(index, *new_break_point_info);
18313 }
18314
18315 // Get the break point objects for a code offset.
GetBreakPointObjects(int code_offset)18316 Handle<Object> DebugInfo::GetBreakPointObjects(int code_offset) {
18317 Object* break_point_info = GetBreakPointInfo(code_offset);
18318 Isolate* isolate = GetIsolate();
18319 if (break_point_info->IsUndefined(isolate)) {
18320 return isolate->factory()->undefined_value();
18321 }
18322 return Handle<Object>(
18323 BreakPointInfo::cast(break_point_info)->break_point_objects(), isolate);
18324 }
18325
18326
18327 // Get the total number of break points.
GetBreakPointCount()18328 int DebugInfo::GetBreakPointCount() {
18329 Isolate* isolate = GetIsolate();
18330 if (break_points()->IsUndefined(isolate)) return 0;
18331 int count = 0;
18332 for (int i = 0; i < break_points()->length(); i++) {
18333 if (!break_points()->get(i)->IsUndefined(isolate)) {
18334 BreakPointInfo* break_point_info =
18335 BreakPointInfo::cast(break_points()->get(i));
18336 count += break_point_info->GetBreakPointCount();
18337 }
18338 }
18339 return count;
18340 }
18341
18342
FindBreakPointInfo(Handle<DebugInfo> debug_info,Handle<Object> break_point_object)18343 Handle<Object> DebugInfo::FindBreakPointInfo(
18344 Handle<DebugInfo> debug_info, Handle<Object> break_point_object) {
18345 Isolate* isolate = debug_info->GetIsolate();
18346 if (!debug_info->break_points()->IsUndefined(isolate)) {
18347 for (int i = 0; i < debug_info->break_points()->length(); i++) {
18348 if (!debug_info->break_points()->get(i)->IsUndefined(isolate)) {
18349 Handle<BreakPointInfo> break_point_info = Handle<BreakPointInfo>(
18350 BreakPointInfo::cast(debug_info->break_points()->get(i)), isolate);
18351 if (BreakPointInfo::HasBreakPointObject(break_point_info,
18352 break_point_object)) {
18353 return break_point_info;
18354 }
18355 }
18356 }
18357 }
18358 return isolate->factory()->undefined_value();
18359 }
18360
18361
18362 // Find the index of the break point info object for the specified code
18363 // position.
GetBreakPointInfoIndex(int code_offset)18364 int DebugInfo::GetBreakPointInfoIndex(int code_offset) {
18365 Isolate* isolate = GetIsolate();
18366 if (break_points()->IsUndefined(isolate)) return kNoBreakPointInfo;
18367 for (int i = 0; i < break_points()->length(); i++) {
18368 if (!break_points()->get(i)->IsUndefined(isolate)) {
18369 BreakPointInfo* break_point_info =
18370 BreakPointInfo::cast(break_points()->get(i));
18371 if (break_point_info->code_offset() == code_offset) {
18372 return i;
18373 }
18374 }
18375 }
18376 return kNoBreakPointInfo;
18377 }
18378
18379
18380 // Remove the specified break point object.
ClearBreakPoint(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)18381 void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
18382 Handle<Object> break_point_object) {
18383 Isolate* isolate = break_point_info->GetIsolate();
18384 // If there are no break points just ignore.
18385 if (break_point_info->break_point_objects()->IsUndefined(isolate)) return;
18386 // If there is a single break point clear it if it is the same.
18387 if (!break_point_info->break_point_objects()->IsFixedArray()) {
18388 if (break_point_info->break_point_objects() == *break_point_object) {
18389 break_point_info->set_break_point_objects(
18390 isolate->heap()->undefined_value());
18391 }
18392 return;
18393 }
18394 // If there are multiple break points shrink the array
18395 DCHECK(break_point_info->break_point_objects()->IsFixedArray());
18396 Handle<FixedArray> old_array =
18397 Handle<FixedArray>(
18398 FixedArray::cast(break_point_info->break_point_objects()));
18399 Handle<FixedArray> new_array =
18400 isolate->factory()->NewFixedArray(old_array->length() - 1);
18401 int found_count = 0;
18402 for (int i = 0; i < old_array->length(); i++) {
18403 if (old_array->get(i) == *break_point_object) {
18404 DCHECK(found_count == 0);
18405 found_count++;
18406 } else {
18407 new_array->set(i - found_count, old_array->get(i));
18408 }
18409 }
18410 // If the break point was found in the list change it.
18411 if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
18412 }
18413
18414
18415 // Add the specified break point object.
SetBreakPoint(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)18416 void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
18417 Handle<Object> break_point_object) {
18418 Isolate* isolate = break_point_info->GetIsolate();
18419
18420 // If there was no break point objects before just set it.
18421 if (break_point_info->break_point_objects()->IsUndefined(isolate)) {
18422 break_point_info->set_break_point_objects(*break_point_object);
18423 return;
18424 }
18425 // If the break point object is the same as before just ignore.
18426 if (break_point_info->break_point_objects() == *break_point_object) return;
18427 // If there was one break point object before replace with array.
18428 if (!break_point_info->break_point_objects()->IsFixedArray()) {
18429 Handle<FixedArray> array = isolate->factory()->NewFixedArray(2);
18430 array->set(0, break_point_info->break_point_objects());
18431 array->set(1, *break_point_object);
18432 break_point_info->set_break_point_objects(*array);
18433 return;
18434 }
18435 // If there was more than one break point before extend array.
18436 Handle<FixedArray> old_array =
18437 Handle<FixedArray>(
18438 FixedArray::cast(break_point_info->break_point_objects()));
18439 Handle<FixedArray> new_array =
18440 isolate->factory()->NewFixedArray(old_array->length() + 1);
18441 for (int i = 0; i < old_array->length(); i++) {
18442 // If the break point was there before just ignore.
18443 if (old_array->get(i) == *break_point_object) return;
18444 new_array->set(i, old_array->get(i));
18445 }
18446 // Add the new break point.
18447 new_array->set(old_array->length(), *break_point_object);
18448 break_point_info->set_break_point_objects(*new_array);
18449 }
18450
18451
HasBreakPointObject(Handle<BreakPointInfo> break_point_info,Handle<Object> break_point_object)18452 bool BreakPointInfo::HasBreakPointObject(
18453 Handle<BreakPointInfo> break_point_info,
18454 Handle<Object> break_point_object) {
18455 // No break point.
18456 Isolate* isolate = break_point_info->GetIsolate();
18457 if (break_point_info->break_point_objects()->IsUndefined(isolate)) {
18458 return false;
18459 }
18460 // Single break point.
18461 if (!break_point_info->break_point_objects()->IsFixedArray()) {
18462 return break_point_info->break_point_objects() == *break_point_object;
18463 }
18464 // Multiple break points.
18465 FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
18466 for (int i = 0; i < array->length(); i++) {
18467 if (array->get(i) == *break_point_object) {
18468 return true;
18469 }
18470 }
18471 return false;
18472 }
18473
18474
18475 // Get the number of break points.
GetBreakPointCount()18476 int BreakPointInfo::GetBreakPointCount() {
18477 // No break point.
18478 if (break_point_objects()->IsUndefined(GetIsolate())) return 0;
18479 // Single break point.
18480 if (!break_point_objects()->IsFixedArray()) return 1;
18481 // Multiple break points.
18482 return FixedArray::cast(break_point_objects())->length();
18483 }
18484
18485
18486 // static
New(Handle<JSFunction> constructor,Handle<JSReceiver> new_target,double tv)18487 MaybeHandle<JSDate> JSDate::New(Handle<JSFunction> constructor,
18488 Handle<JSReceiver> new_target, double tv) {
18489 Isolate* const isolate = constructor->GetIsolate();
18490 Handle<JSObject> result;
18491 ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
18492 JSObject::New(constructor, new_target), JSDate);
18493 if (-DateCache::kMaxTimeInMs <= tv && tv <= DateCache::kMaxTimeInMs) {
18494 tv = DoubleToInteger(tv) + 0.0;
18495 } else {
18496 tv = std::numeric_limits<double>::quiet_NaN();
18497 }
18498 Handle<Object> value = isolate->factory()->NewNumber(tv);
18499 Handle<JSDate>::cast(result)->SetValue(*value, std::isnan(tv));
18500 return Handle<JSDate>::cast(result);
18501 }
18502
18503
18504 // static
CurrentTimeValue(Isolate * isolate)18505 double JSDate::CurrentTimeValue(Isolate* isolate) {
18506 if (FLAG_log_timer_events || FLAG_prof_cpp) LOG(isolate, CurrentTimeEvent());
18507
18508 // According to ECMA-262, section 15.9.1, page 117, the precision of
18509 // the number in a Date object representing a particular instant in
18510 // time is milliseconds. Therefore, we floor the result of getting
18511 // the OS time.
18512 return Floor(FLAG_verify_predictable
18513 ? isolate->heap()->MonotonicallyIncreasingTimeInMs()
18514 : base::OS::TimeCurrentMillis());
18515 }
18516
18517
18518 // static
GetField(Object * object,Smi * index)18519 Object* JSDate::GetField(Object* object, Smi* index) {
18520 return JSDate::cast(object)->DoGetField(
18521 static_cast<FieldIndex>(index->value()));
18522 }
18523
18524
DoGetField(FieldIndex index)18525 Object* JSDate::DoGetField(FieldIndex index) {
18526 DCHECK(index != kDateValue);
18527
18528 DateCache* date_cache = GetIsolate()->date_cache();
18529
18530 if (index < kFirstUncachedField) {
18531 Object* stamp = cache_stamp();
18532 if (stamp != date_cache->stamp() && stamp->IsSmi()) {
18533 // Since the stamp is not NaN, the value is also not NaN.
18534 int64_t local_time_ms =
18535 date_cache->ToLocal(static_cast<int64_t>(value()->Number()));
18536 SetCachedFields(local_time_ms, date_cache);
18537 }
18538 switch (index) {
18539 case kYear: return year();
18540 case kMonth: return month();
18541 case kDay: return day();
18542 case kWeekday: return weekday();
18543 case kHour: return hour();
18544 case kMinute: return min();
18545 case kSecond: return sec();
18546 default: UNREACHABLE();
18547 }
18548 }
18549
18550 if (index >= kFirstUTCField) {
18551 return GetUTCField(index, value()->Number(), date_cache);
18552 }
18553
18554 double time = value()->Number();
18555 if (std::isnan(time)) return GetIsolate()->heap()->nan_value();
18556
18557 int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time));
18558 int days = DateCache::DaysFromTime(local_time_ms);
18559
18560 if (index == kDays) return Smi::FromInt(days);
18561
18562 int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
18563 if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000);
18564 DCHECK(index == kTimeInDay);
18565 return Smi::FromInt(time_in_day_ms);
18566 }
18567
18568
GetUTCField(FieldIndex index,double value,DateCache * date_cache)18569 Object* JSDate::GetUTCField(FieldIndex index,
18570 double value,
18571 DateCache* date_cache) {
18572 DCHECK(index >= kFirstUTCField);
18573
18574 if (std::isnan(value)) return GetIsolate()->heap()->nan_value();
18575
18576 int64_t time_ms = static_cast<int64_t>(value);
18577
18578 if (index == kTimezoneOffset) {
18579 return Smi::FromInt(date_cache->TimezoneOffset(time_ms));
18580 }
18581
18582 int days = DateCache::DaysFromTime(time_ms);
18583
18584 if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days));
18585
18586 if (index <= kDayUTC) {
18587 int year, month, day;
18588 date_cache->YearMonthDayFromDays(days, &year, &month, &day);
18589 if (index == kYearUTC) return Smi::FromInt(year);
18590 if (index == kMonthUTC) return Smi::FromInt(month);
18591 DCHECK(index == kDayUTC);
18592 return Smi::FromInt(day);
18593 }
18594
18595 int time_in_day_ms = DateCache::TimeInDay(time_ms, days);
18596 switch (index) {
18597 case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000));
18598 case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60);
18599 case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60);
18600 case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000);
18601 case kDaysUTC: return Smi::FromInt(days);
18602 case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms);
18603 default: UNREACHABLE();
18604 }
18605
18606 UNREACHABLE();
18607 return NULL;
18608 }
18609
18610
18611 // static
SetValue(Handle<JSDate> date,double v)18612 Handle<Object> JSDate::SetValue(Handle<JSDate> date, double v) {
18613 Isolate* const isolate = date->GetIsolate();
18614 Handle<Object> value = isolate->factory()->NewNumber(v);
18615 bool value_is_nan = std::isnan(v);
18616 date->SetValue(*value, value_is_nan);
18617 return value;
18618 }
18619
18620
SetValue(Object * value,bool is_value_nan)18621 void JSDate::SetValue(Object* value, bool is_value_nan) {
18622 set_value(value);
18623 if (is_value_nan) {
18624 HeapNumber* nan = GetIsolate()->heap()->nan_value();
18625 set_cache_stamp(nan, SKIP_WRITE_BARRIER);
18626 set_year(nan, SKIP_WRITE_BARRIER);
18627 set_month(nan, SKIP_WRITE_BARRIER);
18628 set_day(nan, SKIP_WRITE_BARRIER);
18629 set_hour(nan, SKIP_WRITE_BARRIER);
18630 set_min(nan, SKIP_WRITE_BARRIER);
18631 set_sec(nan, SKIP_WRITE_BARRIER);
18632 set_weekday(nan, SKIP_WRITE_BARRIER);
18633 } else {
18634 set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER);
18635 }
18636 }
18637
18638
18639 // static
ToPrimitive(Handle<JSReceiver> receiver,Handle<Object> hint)18640 MaybeHandle<Object> JSDate::ToPrimitive(Handle<JSReceiver> receiver,
18641 Handle<Object> hint) {
18642 Isolate* const isolate = receiver->GetIsolate();
18643 if (hint->IsString()) {
18644 Handle<String> hint_string = Handle<String>::cast(hint);
18645 if (hint_string->Equals(isolate->heap()->number_string())) {
18646 return JSReceiver::OrdinaryToPrimitive(receiver,
18647 OrdinaryToPrimitiveHint::kNumber);
18648 }
18649 if (hint_string->Equals(isolate->heap()->default_string()) ||
18650 hint_string->Equals(isolate->heap()->string_string())) {
18651 return JSReceiver::OrdinaryToPrimitive(receiver,
18652 OrdinaryToPrimitiveHint::kString);
18653 }
18654 }
18655 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kInvalidHint, hint),
18656 Object);
18657 }
18658
18659
SetCachedFields(int64_t local_time_ms,DateCache * date_cache)18660 void JSDate::SetCachedFields(int64_t local_time_ms, DateCache* date_cache) {
18661 int days = DateCache::DaysFromTime(local_time_ms);
18662 int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
18663 int year, month, day;
18664 date_cache->YearMonthDayFromDays(days, &year, &month, &day);
18665 int weekday = date_cache->Weekday(days);
18666 int hour = time_in_day_ms / (60 * 60 * 1000);
18667 int min = (time_in_day_ms / (60 * 1000)) % 60;
18668 int sec = (time_in_day_ms / 1000) % 60;
18669 set_cache_stamp(date_cache->stamp());
18670 set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER);
18671 set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER);
18672 set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER);
18673 set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER);
18674 set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER);
18675 set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER);
18676 set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER);
18677 }
18678
18679
Neuter()18680 void JSArrayBuffer::Neuter() {
18681 CHECK(is_neuterable());
18682 CHECK(is_external());
18683 set_backing_store(NULL);
18684 set_byte_length(Smi::FromInt(0));
18685 set_was_neutered(true);
18686 }
18687
18688
Setup(Handle<JSArrayBuffer> array_buffer,Isolate * isolate,bool is_external,void * data,size_t allocated_length,SharedFlag shared)18689 void JSArrayBuffer::Setup(Handle<JSArrayBuffer> array_buffer, Isolate* isolate,
18690 bool is_external, void* data, size_t allocated_length,
18691 SharedFlag shared) {
18692 DCHECK(array_buffer->GetInternalFieldCount() ==
18693 v8::ArrayBuffer::kInternalFieldCount);
18694 for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
18695 array_buffer->SetInternalField(i, Smi::FromInt(0));
18696 }
18697 array_buffer->set_bit_field(0);
18698 array_buffer->set_is_external(is_external);
18699 array_buffer->set_is_neuterable(shared == SharedFlag::kNotShared);
18700 array_buffer->set_is_shared(shared == SharedFlag::kShared);
18701
18702 Handle<Object> byte_length =
18703 isolate->factory()->NewNumberFromSize(allocated_length);
18704 CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
18705 array_buffer->set_byte_length(*byte_length);
18706 // Initialize backing store at last to avoid handling of |JSArrayBuffers| that
18707 // are currently being constructed in the |ArrayBufferTracker|. The
18708 // registration method below handles the case of registering a buffer that has
18709 // already been promoted.
18710 array_buffer->set_backing_store(data);
18711
18712 if (data && !is_external) {
18713 isolate->heap()->RegisterNewArrayBuffer(*array_buffer);
18714 }
18715 }
18716
18717
SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,Isolate * isolate,size_t allocated_length,bool initialize,SharedFlag shared)18718 bool JSArrayBuffer::SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,
18719 Isolate* isolate,
18720 size_t allocated_length,
18721 bool initialize, SharedFlag shared) {
18722 void* data;
18723 CHECK(isolate->array_buffer_allocator() != NULL);
18724 // Prevent creating array buffers when serializing.
18725 DCHECK(!isolate->serializer_enabled());
18726 if (allocated_length != 0) {
18727 if (initialize) {
18728 data = isolate->array_buffer_allocator()->Allocate(allocated_length);
18729 } else {
18730 data = isolate->array_buffer_allocator()->AllocateUninitialized(
18731 allocated_length);
18732 }
18733 if (data == NULL) return false;
18734 } else {
18735 data = NULL;
18736 }
18737
18738 JSArrayBuffer::Setup(array_buffer, isolate, false, data, allocated_length,
18739 shared);
18740 return true;
18741 }
18742
18743
MaterializeArrayBuffer(Handle<JSTypedArray> typed_array)18744 Handle<JSArrayBuffer> JSTypedArray::MaterializeArrayBuffer(
18745 Handle<JSTypedArray> typed_array) {
18746
18747 Handle<Map> map(typed_array->map());
18748 Isolate* isolate = typed_array->GetIsolate();
18749
18750 DCHECK(IsFixedTypedArrayElementsKind(map->elements_kind()));
18751
18752 Handle<FixedTypedArrayBase> fixed_typed_array(
18753 FixedTypedArrayBase::cast(typed_array->elements()));
18754
18755 Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(typed_array->buffer()),
18756 isolate);
18757 void* backing_store =
18758 isolate->array_buffer_allocator()->AllocateUninitialized(
18759 fixed_typed_array->DataSize());
18760 buffer->set_is_external(false);
18761 DCHECK(buffer->byte_length()->IsSmi() ||
18762 buffer->byte_length()->IsHeapNumber());
18763 DCHECK(NumberToInt32(buffer->byte_length()) == fixed_typed_array->DataSize());
18764 // Initialize backing store at last to avoid handling of |JSArrayBuffers| that
18765 // are currently being constructed in the |ArrayBufferTracker|. The
18766 // registration method below handles the case of registering a buffer that has
18767 // already been promoted.
18768 buffer->set_backing_store(backing_store);
18769 isolate->heap()->RegisterNewArrayBuffer(*buffer);
18770 memcpy(buffer->backing_store(),
18771 fixed_typed_array->DataPtr(),
18772 fixed_typed_array->DataSize());
18773 Handle<FixedTypedArrayBase> new_elements =
18774 isolate->factory()->NewFixedTypedArrayWithExternalPointer(
18775 fixed_typed_array->length(), typed_array->type(),
18776 static_cast<uint8_t*>(buffer->backing_store()));
18777
18778 typed_array->set_elements(*new_elements);
18779
18780 return buffer;
18781 }
18782
18783
GetBuffer()18784 Handle<JSArrayBuffer> JSTypedArray::GetBuffer() {
18785 Handle<JSArrayBuffer> array_buffer(JSArrayBuffer::cast(buffer()),
18786 GetIsolate());
18787 if (array_buffer->was_neutered() ||
18788 array_buffer->backing_store() != nullptr) {
18789 return array_buffer;
18790 }
18791 Handle<JSTypedArray> self(this);
18792 return MaterializeArrayBuffer(self);
18793 }
18794
18795
InvalidateEntry(Handle<GlobalDictionary> dictionary,int entry)18796 Handle<PropertyCell> PropertyCell::InvalidateEntry(
18797 Handle<GlobalDictionary> dictionary, int entry) {
18798 Isolate* isolate = dictionary->GetIsolate();
18799 // Swap with a copy.
18800 DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
18801 Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
18802 auto new_cell = isolate->factory()->NewPropertyCell();
18803 new_cell->set_value(cell->value());
18804 dictionary->ValueAtPut(entry, *new_cell);
18805 bool is_the_hole = cell->value()->IsTheHole(isolate);
18806 // Cell is officially mutable henceforth.
18807 PropertyDetails details = cell->property_details();
18808 details = details.set_cell_type(is_the_hole ? PropertyCellType::kInvalidated
18809 : PropertyCellType::kMutable);
18810 new_cell->set_property_details(details);
18811 // Old cell is ready for invalidation.
18812 if (is_the_hole) {
18813 cell->set_value(isolate->heap()->undefined_value());
18814 } else {
18815 cell->set_value(isolate->heap()->the_hole_value());
18816 }
18817 details = details.set_cell_type(PropertyCellType::kInvalidated);
18818 cell->set_property_details(details);
18819 cell->dependent_code()->DeoptimizeDependentCodeGroup(
18820 isolate, DependentCode::kPropertyCellChangedGroup);
18821 return new_cell;
18822 }
18823
18824
GetConstantType()18825 PropertyCellConstantType PropertyCell::GetConstantType() {
18826 if (value()->IsSmi()) return PropertyCellConstantType::kSmi;
18827 return PropertyCellConstantType::kStableMap;
18828 }
18829
18830
RemainsConstantType(Handle<PropertyCell> cell,Handle<Object> value)18831 static bool RemainsConstantType(Handle<PropertyCell> cell,
18832 Handle<Object> value) {
18833 // TODO(dcarney): double->smi and smi->double transition from kConstant
18834 if (cell->value()->IsSmi() && value->IsSmi()) {
18835 return true;
18836 } else if (cell->value()->IsHeapObject() && value->IsHeapObject()) {
18837 return HeapObject::cast(cell->value())->map() ==
18838 HeapObject::cast(*value)->map() &&
18839 HeapObject::cast(*value)->map()->is_stable();
18840 }
18841 return false;
18842 }
18843
18844
UpdatedType(Handle<PropertyCell> cell,Handle<Object> value,PropertyDetails details)18845 PropertyCellType PropertyCell::UpdatedType(Handle<PropertyCell> cell,
18846 Handle<Object> value,
18847 PropertyDetails details) {
18848 PropertyCellType type = details.cell_type();
18849 Isolate* isolate = cell->GetIsolate();
18850 DCHECK(!value->IsTheHole(isolate));
18851 if (cell->value()->IsTheHole(isolate)) {
18852 switch (type) {
18853 // Only allow a cell to transition once into constant state.
18854 case PropertyCellType::kUninitialized:
18855 if (value->IsUndefined(isolate)) return PropertyCellType::kUndefined;
18856 return PropertyCellType::kConstant;
18857 case PropertyCellType::kInvalidated:
18858 return PropertyCellType::kMutable;
18859 default:
18860 UNREACHABLE();
18861 return PropertyCellType::kMutable;
18862 }
18863 }
18864 switch (type) {
18865 case PropertyCellType::kUndefined:
18866 return PropertyCellType::kConstant;
18867 case PropertyCellType::kConstant:
18868 if (*value == cell->value()) return PropertyCellType::kConstant;
18869 // Fall through.
18870 case PropertyCellType::kConstantType:
18871 if (RemainsConstantType(cell, value)) {
18872 return PropertyCellType::kConstantType;
18873 }
18874 // Fall through.
18875 case PropertyCellType::kMutable:
18876 return PropertyCellType::kMutable;
18877 }
18878 UNREACHABLE();
18879 return PropertyCellType::kMutable;
18880 }
18881
18882
UpdateCell(Handle<GlobalDictionary> dictionary,int entry,Handle<Object> value,PropertyDetails details)18883 void PropertyCell::UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
18884 Handle<Object> value, PropertyDetails details) {
18885 Isolate* isolate = dictionary->GetIsolate();
18886 DCHECK(!value->IsTheHole(isolate));
18887 DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
18888 Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
18889 const PropertyDetails original_details = cell->property_details();
18890 // Data accesses could be cached in ics or optimized code.
18891 bool invalidate =
18892 original_details.kind() == kData && details.kind() == kAccessor;
18893 int index = original_details.dictionary_index();
18894 PropertyCellType old_type = original_details.cell_type();
18895 // Preserve the enumeration index unless the property was deleted or never
18896 // initialized.
18897 if (cell->value()->IsTheHole(isolate)) {
18898 index = dictionary->NextEnumerationIndex();
18899 dictionary->SetNextEnumerationIndex(index + 1);
18900 // Negative lookup cells must be invalidated.
18901 invalidate = true;
18902 }
18903 DCHECK(index > 0);
18904 details = details.set_index(index);
18905
18906 PropertyCellType new_type = UpdatedType(cell, value, original_details);
18907 if (invalidate) cell = PropertyCell::InvalidateEntry(dictionary, entry);
18908
18909 // Install new property details and cell value.
18910 details = details.set_cell_type(new_type);
18911 cell->set_property_details(details);
18912 cell->set_value(*value);
18913
18914 // Deopt when transitioning from a constant type.
18915 if (!invalidate && (old_type != new_type ||
18916 original_details.IsReadOnly() != details.IsReadOnly())) {
18917 cell->dependent_code()->DeoptimizeDependentCodeGroup(
18918 isolate, DependentCode::kPropertyCellChangedGroup);
18919 }
18920 }
18921
18922
18923 // static
SetValueWithInvalidation(Handle<PropertyCell> cell,Handle<Object> new_value)18924 void PropertyCell::SetValueWithInvalidation(Handle<PropertyCell> cell,
18925 Handle<Object> new_value) {
18926 if (cell->value() != *new_value) {
18927 cell->set_value(*new_value);
18928 Isolate* isolate = cell->GetIsolate();
18929 cell->dependent_code()->DeoptimizeDependentCodeGroup(
18930 isolate, DependentCode::kPropertyCellChangedGroup);
18931 }
18932 }
18933
source_position() const18934 int JSGeneratorObject::source_position() const {
18935 CHECK(is_suspended());
18936 if (function()->shared()->HasBytecodeArray()) {
18937 // New-style generators.
18938 int offset = Smi::cast(input_or_debug_pos())->value();
18939 // The stored bytecode offset is relative to a different base than what
18940 // is used in the source position table, hence the subtraction.
18941 offset -= BytecodeArray::kHeaderSize - kHeapObjectTag;
18942 return function()->shared()->bytecode_array()->SourcePosition(offset);
18943 } else {
18944 // Old-style generators.
18945 int offset = continuation();
18946 CHECK(0 <= offset && offset < function()->code()->instruction_size());
18947 return function()->code()->SourcePosition(offset);
18948 }
18949 }
18950
18951 // static
Get(Isolate * isolate,Handle<JSObject> receiver)18952 AccessCheckInfo* AccessCheckInfo::Get(Isolate* isolate,
18953 Handle<JSObject> receiver) {
18954 DisallowHeapAllocation no_gc;
18955 DCHECK(receiver->map()->is_access_check_needed());
18956 Object* maybe_constructor = receiver->map()->GetConstructor();
18957 // Might happen for a detached context.
18958 if (!maybe_constructor->IsJSFunction()) return nullptr;
18959 JSFunction* constructor = JSFunction::cast(maybe_constructor);
18960 // Might happen for the debug context.
18961 if (!constructor->shared()->IsApiFunction()) return nullptr;
18962
18963 Object* data_obj =
18964 constructor->shared()->get_api_func_data()->access_check_info();
18965 if (data_obj->IsUndefined(isolate)) return nullptr;
18966
18967 return AccessCheckInfo::cast(data_obj);
18968 }
18969
18970 } // namespace internal
18971 } // namespace v8
18972