1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19
20 #include <algorithm>
21 #include <array>
22 #include <type_traits>
23
24 #include "base/arena_bit_vector.h"
25 #include "base/arena_containers.h"
26 #include "base/arena_object.h"
27 #include "base/stl_util.h"
28 #include "dex/compiler_enums.h"
29 #include "entrypoints/quick/quick_entrypoints_enum.h"
30 #include "handle.h"
31 #include "handle_scope.h"
32 #include "invoke_type.h"
33 #include "locations.h"
34 #include "method_reference.h"
35 #include "mirror/class.h"
36 #include "offsets.h"
37 #include "primitive.h"
38 #include "utils/array_ref.h"
39 #include "utils/intrusive_forward_list.h"
40
41 namespace art {
42
43 class GraphChecker;
44 class HBasicBlock;
45 class HCurrentMethod;
46 class HDoubleConstant;
47 class HEnvironment;
48 class HFloatConstant;
49 class HGraphBuilder;
50 class HGraphVisitor;
51 class HInstruction;
52 class HIntConstant;
53 class HInvoke;
54 class HLongConstant;
55 class HNullConstant;
56 class HPhi;
57 class HSuspendCheck;
58 class HTryBoundary;
59 class LiveInterval;
60 class LocationSummary;
61 class SlowPathCode;
62 class SsaBuilder;
63
64 namespace mirror {
65 class DexCache;
66 } // namespace mirror
67
68 static const int kDefaultNumberOfBlocks = 8;
69 static const int kDefaultNumberOfSuccessors = 2;
70 static const int kDefaultNumberOfPredecessors = 2;
71 static const int kDefaultNumberOfExceptionalPredecessors = 0;
72 static const int kDefaultNumberOfDominatedBlocks = 1;
73 static const int kDefaultNumberOfBackEdges = 1;
74
75 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
76 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
77 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
78 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
79
80 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
81 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
82
83 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
84
85 static constexpr uint32_t kNoDexPc = -1;
86
87 enum IfCondition {
88 // All types.
89 kCondEQ, // ==
90 kCondNE, // !=
91 // Signed integers and floating-point numbers.
92 kCondLT, // <
93 kCondLE, // <=
94 kCondGT, // >
95 kCondGE, // >=
96 // Unsigned integers.
97 kCondB, // <
98 kCondBE, // <=
99 kCondA, // >
100 kCondAE, // >=
101 };
102
103 enum GraphAnalysisResult {
104 kAnalysisSkipped,
105 kAnalysisInvalidBytecode,
106 kAnalysisFailThrowCatchLoop,
107 kAnalysisFailAmbiguousArrayOp,
108 kAnalysisSuccess,
109 };
110
111 class HInstructionList : public ValueObject {
112 public:
HInstructionList()113 HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
114
115 void AddInstruction(HInstruction* instruction);
116 void RemoveInstruction(HInstruction* instruction);
117
118 // Insert `instruction` before/after an existing instruction `cursor`.
119 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
120 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
121
122 // Return true if this list contains `instruction`.
123 bool Contains(HInstruction* instruction) const;
124
125 // Return true if `instruction1` is found before `instruction2` in
126 // this instruction list and false otherwise. Abort if none
127 // of these instructions is found.
128 bool FoundBefore(const HInstruction* instruction1,
129 const HInstruction* instruction2) const;
130
IsEmpty()131 bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()132 void Clear() { first_instruction_ = last_instruction_ = nullptr; }
133
134 // Update the block of all instructions to be `block`.
135 void SetBlockOfInstructions(HBasicBlock* block) const;
136
137 void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
138 void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
139 void Add(const HInstructionList& instruction_list);
140
141 // Return the number of instructions in the list. This is an expensive operation.
142 size_t CountSize() const;
143
144 private:
145 HInstruction* first_instruction_;
146 HInstruction* last_instruction_;
147
148 friend class HBasicBlock;
149 friend class HGraph;
150 friend class HInstruction;
151 friend class HInstructionIterator;
152 friend class HBackwardInstructionIterator;
153
154 DISALLOW_COPY_AND_ASSIGN(HInstructionList);
155 };
156
157 class ReferenceTypeInfo : ValueObject {
158 public:
159 typedef Handle<mirror::Class> TypeHandle;
160
161 static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
162
CreateUnchecked(TypeHandle type_handle,bool is_exact)163 static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
164 return ReferenceTypeInfo(type_handle, is_exact);
165 }
166
CreateInvalid()167 static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
168
IsValidHandle(TypeHandle handle)169 static bool IsValidHandle(TypeHandle handle) {
170 return handle.GetReference() != nullptr;
171 }
172
IsValid()173 bool IsValid() const {
174 return IsValidHandle(type_handle_);
175 }
176
IsExact()177 bool IsExact() const { return is_exact_; }
178
IsObjectClass()179 bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
180 DCHECK(IsValid());
181 return GetTypeHandle()->IsObjectClass();
182 }
183
IsStringClass()184 bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
185 DCHECK(IsValid());
186 return GetTypeHandle()->IsStringClass();
187 }
188
IsObjectArray()189 bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
190 DCHECK(IsValid());
191 return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
192 }
193
IsInterface()194 bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
195 DCHECK(IsValid());
196 return GetTypeHandle()->IsInterface();
197 }
198
IsArrayClass()199 bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
200 DCHECK(IsValid());
201 return GetTypeHandle()->IsArrayClass();
202 }
203
IsPrimitiveArrayClass()204 bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
205 DCHECK(IsValid());
206 return GetTypeHandle()->IsPrimitiveArray();
207 }
208
IsNonPrimitiveArrayClass()209 bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
210 DCHECK(IsValid());
211 return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
212 }
213
CanArrayHold(ReferenceTypeInfo rti)214 bool CanArrayHold(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
215 DCHECK(IsValid());
216 if (!IsExact()) return false;
217 if (!IsArrayClass()) return false;
218 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
219 }
220
CanArrayHoldValuesOf(ReferenceTypeInfo rti)221 bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
222 DCHECK(IsValid());
223 if (!IsExact()) return false;
224 if (!IsArrayClass()) return false;
225 if (!rti.IsArrayClass()) return false;
226 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
227 rti.GetTypeHandle()->GetComponentType());
228 }
229
GetTypeHandle()230 Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
231
IsSupertypeOf(ReferenceTypeInfo rti)232 bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
233 DCHECK(IsValid());
234 DCHECK(rti.IsValid());
235 return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
236 }
237
IsStrictSupertypeOf(ReferenceTypeInfo rti)238 bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
239 DCHECK(IsValid());
240 DCHECK(rti.IsValid());
241 return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
242 GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
243 }
244
245 // Returns true if the type information provide the same amount of details.
246 // Note that it does not mean that the instructions have the same actual type
247 // (because the type can be the result of a merge).
IsEqual(ReferenceTypeInfo rti)248 bool IsEqual(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
249 if (!IsValid() && !rti.IsValid()) {
250 // Invalid types are equal.
251 return true;
252 }
253 if (!IsValid() || !rti.IsValid()) {
254 // One is valid, the other not.
255 return false;
256 }
257 return IsExact() == rti.IsExact()
258 && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
259 }
260
261 private:
ReferenceTypeInfo()262 ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
ReferenceTypeInfo(TypeHandle type_handle,bool is_exact)263 ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
264 : type_handle_(type_handle), is_exact_(is_exact) { }
265
266 // The class of the object.
267 TypeHandle type_handle_;
268 // Whether or not the type is exact or a superclass of the actual type.
269 // Whether or not we have any information about this type.
270 bool is_exact_;
271 };
272
273 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
274
275 // Control-flow graph of a method. Contains a list of basic blocks.
276 class HGraph : public ArenaObject<kArenaAllocGraph> {
277 public:
278 HGraph(ArenaAllocator* arena,
279 const DexFile& dex_file,
280 uint32_t method_idx,
281 bool should_generate_constructor_barrier,
282 InstructionSet instruction_set,
283 InvokeType invoke_type = kInvalidInvokeType,
284 bool debuggable = false,
285 bool osr = false,
286 int start_instruction_id = 0)
arena_(arena)287 : arena_(arena),
288 blocks_(arena->Adapter(kArenaAllocBlockList)),
289 reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
290 linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
291 entry_block_(nullptr),
292 exit_block_(nullptr),
293 maximum_number_of_out_vregs_(0),
294 number_of_vregs_(0),
295 number_of_in_vregs_(0),
296 temporaries_vreg_slots_(0),
297 has_bounds_checks_(false),
298 has_try_catch_(false),
299 has_irreducible_loops_(false),
300 debuggable_(debuggable),
301 current_instruction_id_(start_instruction_id),
302 dex_file_(dex_file),
303 method_idx_(method_idx),
304 invoke_type_(invoke_type),
305 in_ssa_form_(false),
306 should_generate_constructor_barrier_(should_generate_constructor_barrier),
307 instruction_set_(instruction_set),
308 cached_null_constant_(nullptr),
309 cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
310 cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
311 cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
312 cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
313 cached_current_method_(nullptr),
314 inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()),
315 osr_(osr) {
316 blocks_.reserve(kDefaultNumberOfBlocks);
317 }
318
319 // Acquires and stores RTI of inexact Object to be used when creating HNullConstant.
320 void InitializeInexactObjectRTI(StackHandleScopeCollection* handles);
321
GetArena()322 ArenaAllocator* GetArena() const { return arena_; }
GetBlocks()323 const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
324
IsInSsaForm()325 bool IsInSsaForm() const { return in_ssa_form_; }
SetInSsaForm()326 void SetInSsaForm() { in_ssa_form_ = true; }
327
GetEntryBlock()328 HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()329 HBasicBlock* GetExitBlock() const { return exit_block_; }
HasExitBlock()330 bool HasExitBlock() const { return exit_block_ != nullptr; }
331
SetEntryBlock(HBasicBlock * block)332 void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)333 void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
334
335 void AddBlock(HBasicBlock* block);
336
337 void ComputeDominanceInformation();
338 void ClearDominanceInformation();
339 void ClearLoopInformation();
340 void FindBackEdges(ArenaBitVector* visited);
341 GraphAnalysisResult BuildDominatorTree();
342 void SimplifyCFG();
343 void SimplifyCatchBlocks();
344
345 // Analyze all natural loops in this graph. Returns a code specifying that it
346 // was successful or the reason for failure. The method will fail if a loop
347 // is a throw-catch loop, i.e. the header is a catch block.
348 GraphAnalysisResult AnalyzeLoops() const;
349
350 // Iterate over blocks to compute try block membership. Needs reverse post
351 // order and loop information.
352 void ComputeTryBlockInformation();
353
354 // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
355 // Returns the instruction to replace the invoke expression or null if the
356 // invoke is for a void method. Note that the caller is responsible for replacing
357 // and removing the invoke instruction.
358 HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
359
360 // Update the loop and try membership of `block`, which was spawned from `reference`.
361 // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
362 // should be the new back edge.
363 void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
364 HBasicBlock* reference,
365 bool replace_if_back_edge);
366
367 // Need to add a couple of blocks to test if the loop body is entered and
368 // put deoptimization instructions, etc.
369 void TransformLoopHeaderForBCE(HBasicBlock* header);
370
371 // Removes `block` from the graph. Assumes `block` has been disconnected from
372 // other blocks and has no instructions or phis.
373 void DeleteDeadEmptyBlock(HBasicBlock* block);
374
375 // Splits the edge between `block` and `successor` while preserving the
376 // indices in the predecessor/successor lists. If there are multiple edges
377 // between the blocks, the lowest indices are used.
378 // Returns the new block which is empty and has the same dex pc as `successor`.
379 HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
380
381 void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
382 void SimplifyLoop(HBasicBlock* header);
383
GetNextInstructionId()384 int32_t GetNextInstructionId() {
385 DCHECK_NE(current_instruction_id_, INT32_MAX);
386 return current_instruction_id_++;
387 }
388
GetCurrentInstructionId()389 int32_t GetCurrentInstructionId() const {
390 return current_instruction_id_;
391 }
392
SetCurrentInstructionId(int32_t id)393 void SetCurrentInstructionId(int32_t id) {
394 DCHECK_GE(id, current_instruction_id_);
395 current_instruction_id_ = id;
396 }
397
GetMaximumNumberOfOutVRegs()398 uint16_t GetMaximumNumberOfOutVRegs() const {
399 return maximum_number_of_out_vregs_;
400 }
401
SetMaximumNumberOfOutVRegs(uint16_t new_value)402 void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
403 maximum_number_of_out_vregs_ = new_value;
404 }
405
UpdateMaximumNumberOfOutVRegs(uint16_t other_value)406 void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
407 maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
408 }
409
UpdateTemporariesVRegSlots(size_t slots)410 void UpdateTemporariesVRegSlots(size_t slots) {
411 temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
412 }
413
GetTemporariesVRegSlots()414 size_t GetTemporariesVRegSlots() const {
415 DCHECK(!in_ssa_form_);
416 return temporaries_vreg_slots_;
417 }
418
SetNumberOfVRegs(uint16_t number_of_vregs)419 void SetNumberOfVRegs(uint16_t number_of_vregs) {
420 number_of_vregs_ = number_of_vregs;
421 }
422
GetNumberOfVRegs()423 uint16_t GetNumberOfVRegs() const {
424 return number_of_vregs_;
425 }
426
SetNumberOfInVRegs(uint16_t value)427 void SetNumberOfInVRegs(uint16_t value) {
428 number_of_in_vregs_ = value;
429 }
430
GetNumberOfInVRegs()431 uint16_t GetNumberOfInVRegs() const {
432 return number_of_in_vregs_;
433 }
434
GetNumberOfLocalVRegs()435 uint16_t GetNumberOfLocalVRegs() const {
436 DCHECK(!in_ssa_form_);
437 return number_of_vregs_ - number_of_in_vregs_;
438 }
439
GetReversePostOrder()440 const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
441 return reverse_post_order_;
442 }
443
GetLinearOrder()444 const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
445 return linear_order_;
446 }
447
HasBoundsChecks()448 bool HasBoundsChecks() const {
449 return has_bounds_checks_;
450 }
451
SetHasBoundsChecks(bool value)452 void SetHasBoundsChecks(bool value) {
453 has_bounds_checks_ = value;
454 }
455
ShouldGenerateConstructorBarrier()456 bool ShouldGenerateConstructorBarrier() const {
457 return should_generate_constructor_barrier_;
458 }
459
IsDebuggable()460 bool IsDebuggable() const { return debuggable_; }
461
462 // Returns a constant of the given type and value. If it does not exist
463 // already, it is created and inserted into the graph. This method is only for
464 // integral types.
465 HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
466
467 // TODO: This is problematic for the consistency of reference type propagation
468 // because it can be created anytime after the pass and thus it will be left
469 // with an invalid type.
470 HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
471
472 HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
473 return CreateConstant(value, &cached_int_constants_, dex_pc);
474 }
475 HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
476 return CreateConstant(value, &cached_long_constants_, dex_pc);
477 }
478 HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
479 return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
480 }
481 HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
482 return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
483 }
484
485 HCurrentMethod* GetCurrentMethod();
486
GetDexFile()487 const DexFile& GetDexFile() const {
488 return dex_file_;
489 }
490
GetMethodIdx()491 uint32_t GetMethodIdx() const {
492 return method_idx_;
493 }
494
GetInvokeType()495 InvokeType GetInvokeType() const {
496 return invoke_type_;
497 }
498
GetInstructionSet()499 InstructionSet GetInstructionSet() const {
500 return instruction_set_;
501 }
502
IsCompilingOsr()503 bool IsCompilingOsr() const { return osr_; }
504
HasTryCatch()505 bool HasTryCatch() const { return has_try_catch_; }
SetHasTryCatch(bool value)506 void SetHasTryCatch(bool value) { has_try_catch_ = value; }
507
HasIrreducibleLoops()508 bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
SetHasIrreducibleLoops(bool value)509 void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
510
GetArtMethod()511 ArtMethod* GetArtMethod() const { return art_method_; }
SetArtMethod(ArtMethod * method)512 void SetArtMethod(ArtMethod* method) { art_method_ = method; }
513
514 // Returns an instruction with the opposite boolean value from 'cond'.
515 // The instruction has been inserted into the graph, either as a constant, or
516 // before cursor.
517 HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
518
GetInexactObjectRti()519 ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; }
520
521 private:
522 void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
523 void RemoveDeadBlocks(const ArenaBitVector& visited);
524
525 template <class InstructionType, typename ValueType>
526 InstructionType* CreateConstant(ValueType value,
527 ArenaSafeMap<ValueType, InstructionType*>* cache,
528 uint32_t dex_pc = kNoDexPc) {
529 // Try to find an existing constant of the given value.
530 InstructionType* constant = nullptr;
531 auto cached_constant = cache->find(value);
532 if (cached_constant != cache->end()) {
533 constant = cached_constant->second;
534 }
535
536 // If not found or previously deleted, create and cache a new instruction.
537 // Don't bother reviving a previously deleted instruction, for simplicity.
538 if (constant == nullptr || constant->GetBlock() == nullptr) {
539 constant = new (arena_) InstructionType(value, dex_pc);
540 cache->Overwrite(value, constant);
541 InsertConstant(constant);
542 }
543 return constant;
544 }
545
546 void InsertConstant(HConstant* instruction);
547
548 // Cache a float constant into the graph. This method should only be
549 // called by the SsaBuilder when creating "equivalent" instructions.
550 void CacheFloatConstant(HFloatConstant* constant);
551
552 // See CacheFloatConstant comment.
553 void CacheDoubleConstant(HDoubleConstant* constant);
554
555 ArenaAllocator* const arena_;
556
557 // List of blocks in insertion order.
558 ArenaVector<HBasicBlock*> blocks_;
559
560 // List of blocks to perform a reverse post order tree traversal.
561 ArenaVector<HBasicBlock*> reverse_post_order_;
562
563 // List of blocks to perform a linear order tree traversal.
564 ArenaVector<HBasicBlock*> linear_order_;
565
566 HBasicBlock* entry_block_;
567 HBasicBlock* exit_block_;
568
569 // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
570 uint16_t maximum_number_of_out_vregs_;
571
572 // The number of virtual registers in this method. Contains the parameters.
573 uint16_t number_of_vregs_;
574
575 // The number of virtual registers used by parameters of this method.
576 uint16_t number_of_in_vregs_;
577
578 // Number of vreg size slots that the temporaries use (used in baseline compiler).
579 size_t temporaries_vreg_slots_;
580
581 // Has bounds checks. We can totally skip BCE if it's false.
582 bool has_bounds_checks_;
583
584 // Flag whether there are any try/catch blocks in the graph. We will skip
585 // try/catch-related passes if false.
586 bool has_try_catch_;
587
588 // Flag whether there are any irreducible loops in the graph.
589 bool has_irreducible_loops_;
590
591 // Indicates whether the graph should be compiled in a way that
592 // ensures full debuggability. If false, we can apply more
593 // aggressive optimizations that may limit the level of debugging.
594 const bool debuggable_;
595
596 // The current id to assign to a newly added instruction. See HInstruction.id_.
597 int32_t current_instruction_id_;
598
599 // The dex file from which the method is from.
600 const DexFile& dex_file_;
601
602 // The method index in the dex file.
603 const uint32_t method_idx_;
604
605 // If inlined, this encodes how the callee is being invoked.
606 const InvokeType invoke_type_;
607
608 // Whether the graph has been transformed to SSA form. Only used
609 // in debug mode to ensure we are not using properties only valid
610 // for non-SSA form (like the number of temporaries).
611 bool in_ssa_form_;
612
613 const bool should_generate_constructor_barrier_;
614
615 const InstructionSet instruction_set_;
616
617 // Cached constants.
618 HNullConstant* cached_null_constant_;
619 ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
620 ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
621 ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
622 ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
623
624 HCurrentMethod* cached_current_method_;
625
626 // The ArtMethod this graph is for. Note that for AOT, it may be null,
627 // for example for methods whose declaring class could not be resolved
628 // (such as when the superclass could not be found).
629 ArtMethod* art_method_;
630
631 // Keep the RTI of inexact Object to avoid having to pass stack handle
632 // collection pointer to passes which may create NullConstant.
633 ReferenceTypeInfo inexact_object_rti_;
634
635 // Whether we are compiling this graph for on stack replacement: this will
636 // make all loops seen as irreducible and emit special stack maps to mark
637 // compiled code entries which the interpreter can directly jump to.
638 const bool osr_;
639
640 friend class SsaBuilder; // For caching constants.
641 friend class SsaLivenessAnalysis; // For the linear order.
642 friend class HInliner; // For the reverse post order.
643 ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
644 DISALLOW_COPY_AND_ASSIGN(HGraph);
645 };
646
647 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
648 public:
HLoopInformation(HBasicBlock * header,HGraph * graph)649 HLoopInformation(HBasicBlock* header, HGraph* graph)
650 : header_(header),
651 suspend_check_(nullptr),
652 irreducible_(false),
653 contains_irreducible_loop_(false),
654 back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
655 // Make bit vector growable, as the number of blocks may change.
656 blocks_(graph->GetArena(), graph->GetBlocks().size(), true, kArenaAllocLoopInfoBackEdges) {
657 back_edges_.reserve(kDefaultNumberOfBackEdges);
658 }
659
IsIrreducible()660 bool IsIrreducible() const { return irreducible_; }
ContainsIrreducibleLoop()661 bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
662
663 void Dump(std::ostream& os);
664
GetHeader()665 HBasicBlock* GetHeader() const {
666 return header_;
667 }
668
SetHeader(HBasicBlock * block)669 void SetHeader(HBasicBlock* block) {
670 header_ = block;
671 }
672
GetSuspendCheck()673 HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)674 void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()675 bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
676
AddBackEdge(HBasicBlock * back_edge)677 void AddBackEdge(HBasicBlock* back_edge) {
678 back_edges_.push_back(back_edge);
679 }
680
RemoveBackEdge(HBasicBlock * back_edge)681 void RemoveBackEdge(HBasicBlock* back_edge) {
682 RemoveElement(back_edges_, back_edge);
683 }
684
IsBackEdge(const HBasicBlock & block)685 bool IsBackEdge(const HBasicBlock& block) const {
686 return ContainsElement(back_edges_, &block);
687 }
688
NumberOfBackEdges()689 size_t NumberOfBackEdges() const {
690 return back_edges_.size();
691 }
692
693 HBasicBlock* GetPreHeader() const;
694
GetBackEdges()695 const ArenaVector<HBasicBlock*>& GetBackEdges() const {
696 return back_edges_;
697 }
698
699 // Returns the lifetime position of the back edge that has the
700 // greatest lifetime position.
701 size_t GetLifetimeEnd() const;
702
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)703 void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
704 ReplaceElement(back_edges_, existing, new_back_edge);
705 }
706
707 // Finds blocks that are part of this loop.
708 void Populate();
709
710 // Returns whether this loop information contains `block`.
711 // Note that this loop information *must* be populated before entering this function.
712 bool Contains(const HBasicBlock& block) const;
713
714 // Returns whether this loop information is an inner loop of `other`.
715 // Note that `other` *must* be populated before entering this function.
716 bool IsIn(const HLoopInformation& other) const;
717
718 // Returns true if instruction is not defined within this loop.
719 bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
720
GetBlocks()721 const ArenaBitVector& GetBlocks() const { return blocks_; }
722
723 void Add(HBasicBlock* block);
724 void Remove(HBasicBlock* block);
725
ClearAllBlocks()726 void ClearAllBlocks() {
727 blocks_.ClearAllBits();
728 }
729
730 bool HasBackEdgeNotDominatedByHeader() const;
731
IsPopulated()732 bool IsPopulated() const {
733 return blocks_.GetHighestBitSet() != -1;
734 }
735
736 bool DominatesAllBackEdges(HBasicBlock* block);
737
738 private:
739 // Internal recursive implementation of `Populate`.
740 void PopulateRecursive(HBasicBlock* block);
741 void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
742
743 HBasicBlock* header_;
744 HSuspendCheck* suspend_check_;
745 bool irreducible_;
746 bool contains_irreducible_loop_;
747 ArenaVector<HBasicBlock*> back_edges_;
748 ArenaBitVector blocks_;
749
750 DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
751 };
752
753 // Stores try/catch information for basic blocks.
754 // Note that HGraph is constructed so that catch blocks cannot simultaneously
755 // be try blocks.
756 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
757 public:
758 // Try block information constructor.
TryCatchInformation(const HTryBoundary & try_entry)759 explicit TryCatchInformation(const HTryBoundary& try_entry)
760 : try_entry_(&try_entry),
761 catch_dex_file_(nullptr),
762 catch_type_index_(DexFile::kDexNoIndex16) {
763 DCHECK(try_entry_ != nullptr);
764 }
765
766 // Catch block information constructor.
TryCatchInformation(uint16_t catch_type_index,const DexFile & dex_file)767 TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
768 : try_entry_(nullptr),
769 catch_dex_file_(&dex_file),
770 catch_type_index_(catch_type_index) {}
771
IsTryBlock()772 bool IsTryBlock() const { return try_entry_ != nullptr; }
773
GetTryEntry()774 const HTryBoundary& GetTryEntry() const {
775 DCHECK(IsTryBlock());
776 return *try_entry_;
777 }
778
IsCatchBlock()779 bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
780
IsCatchAllTypeIndex()781 bool IsCatchAllTypeIndex() const {
782 DCHECK(IsCatchBlock());
783 return catch_type_index_ == DexFile::kDexNoIndex16;
784 }
785
GetCatchTypeIndex()786 uint16_t GetCatchTypeIndex() const {
787 DCHECK(IsCatchBlock());
788 return catch_type_index_;
789 }
790
GetCatchDexFile()791 const DexFile& GetCatchDexFile() const {
792 DCHECK(IsCatchBlock());
793 return *catch_dex_file_;
794 }
795
796 private:
797 // One of possibly several TryBoundary instructions entering the block's try.
798 // Only set for try blocks.
799 const HTryBoundary* try_entry_;
800
801 // Exception type information. Only set for catch blocks.
802 const DexFile* catch_dex_file_;
803 const uint16_t catch_type_index_;
804 };
805
806 static constexpr size_t kNoLifetime = -1;
807 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
808
809 // A block in a method. Contains the list of instructions represented
810 // as a double linked list. Each block knows its predecessors and
811 // successors.
812
813 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
814 public:
815 HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)816 : graph_(graph),
817 predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
818 successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
819 loop_information_(nullptr),
820 dominator_(nullptr),
821 dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
822 block_id_(kInvalidBlockId),
823 dex_pc_(dex_pc),
824 lifetime_start_(kNoLifetime),
825 lifetime_end_(kNoLifetime),
826 try_catch_information_(nullptr) {
827 predecessors_.reserve(kDefaultNumberOfPredecessors);
828 successors_.reserve(kDefaultNumberOfSuccessors);
829 dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
830 }
831
GetPredecessors()832 const ArenaVector<HBasicBlock*>& GetPredecessors() const {
833 return predecessors_;
834 }
835
GetSuccessors()836 const ArenaVector<HBasicBlock*>& GetSuccessors() const {
837 return successors_;
838 }
839
840 ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
841 ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
842
843 bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
844 return ContainsElement(successors_, block, start_from);
845 }
846
GetDominatedBlocks()847 const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
848 return dominated_blocks_;
849 }
850
IsEntryBlock()851 bool IsEntryBlock() const {
852 return graph_->GetEntryBlock() == this;
853 }
854
IsExitBlock()855 bool IsExitBlock() const {
856 return graph_->GetExitBlock() == this;
857 }
858
859 bool IsSingleGoto() const;
860 bool IsSingleTryBoundary() const;
861
862 // Returns true if this block emits nothing but a jump.
IsSingleJump()863 bool IsSingleJump() const {
864 HLoopInformation* loop_info = GetLoopInformation();
865 return (IsSingleGoto() || IsSingleTryBoundary())
866 // Back edges generate a suspend check.
867 && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
868 }
869
AddBackEdge(HBasicBlock * back_edge)870 void AddBackEdge(HBasicBlock* back_edge) {
871 if (loop_information_ == nullptr) {
872 loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
873 }
874 DCHECK_EQ(loop_information_->GetHeader(), this);
875 loop_information_->AddBackEdge(back_edge);
876 }
877
GetGraph()878 HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)879 void SetGraph(HGraph* graph) { graph_ = graph; }
880
GetBlockId()881 uint32_t GetBlockId() const { return block_id_; }
SetBlockId(int id)882 void SetBlockId(int id) { block_id_ = id; }
GetDexPc()883 uint32_t GetDexPc() const { return dex_pc_; }
884
GetDominator()885 HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)886 void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)887 void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
888
RemoveDominatedBlock(HBasicBlock * block)889 void RemoveDominatedBlock(HBasicBlock* block) {
890 RemoveElement(dominated_blocks_, block);
891 }
892
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)893 void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
894 ReplaceElement(dominated_blocks_, existing, new_block);
895 }
896
897 void ClearDominanceInformation();
898
NumberOfBackEdges()899 int NumberOfBackEdges() const {
900 return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
901 }
902
GetFirstInstruction()903 HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()904 HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()905 const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()906 HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()907 HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()908 const HInstructionList& GetPhis() const { return phis_; }
909
910 HInstruction* GetFirstInstructionDisregardMoves() const;
911
AddSuccessor(HBasicBlock * block)912 void AddSuccessor(HBasicBlock* block) {
913 successors_.push_back(block);
914 block->predecessors_.push_back(this);
915 }
916
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)917 void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
918 size_t successor_index = GetSuccessorIndexOf(existing);
919 existing->RemovePredecessor(this);
920 new_block->predecessors_.push_back(this);
921 successors_[successor_index] = new_block;
922 }
923
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)924 void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
925 size_t predecessor_index = GetPredecessorIndexOf(existing);
926 existing->RemoveSuccessor(this);
927 new_block->successors_.push_back(this);
928 predecessors_[predecessor_index] = new_block;
929 }
930
931 // Insert `this` between `predecessor` and `successor. This method
932 // preserves the indicies, and will update the first edge found between
933 // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)934 void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
935 size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
936 size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
937 successor->predecessors_[predecessor_index] = this;
938 predecessor->successors_[successor_index] = this;
939 successors_.push_back(successor);
940 predecessors_.push_back(predecessor);
941 }
942
RemovePredecessor(HBasicBlock * block)943 void RemovePredecessor(HBasicBlock* block) {
944 predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
945 }
946
RemoveSuccessor(HBasicBlock * block)947 void RemoveSuccessor(HBasicBlock* block) {
948 successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
949 }
950
ClearAllPredecessors()951 void ClearAllPredecessors() {
952 predecessors_.clear();
953 }
954
AddPredecessor(HBasicBlock * block)955 void AddPredecessor(HBasicBlock* block) {
956 predecessors_.push_back(block);
957 block->successors_.push_back(this);
958 }
959
SwapPredecessors()960 void SwapPredecessors() {
961 DCHECK_EQ(predecessors_.size(), 2u);
962 std::swap(predecessors_[0], predecessors_[1]);
963 }
964
SwapSuccessors()965 void SwapSuccessors() {
966 DCHECK_EQ(successors_.size(), 2u);
967 std::swap(successors_[0], successors_[1]);
968 }
969
GetPredecessorIndexOf(HBasicBlock * predecessor)970 size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
971 return IndexOfElement(predecessors_, predecessor);
972 }
973
GetSuccessorIndexOf(HBasicBlock * successor)974 size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
975 return IndexOfElement(successors_, successor);
976 }
977
GetSinglePredecessor()978 HBasicBlock* GetSinglePredecessor() const {
979 DCHECK_EQ(GetPredecessors().size(), 1u);
980 return GetPredecessors()[0];
981 }
982
GetSingleSuccessor()983 HBasicBlock* GetSingleSuccessor() const {
984 DCHECK_EQ(GetSuccessors().size(), 1u);
985 return GetSuccessors()[0];
986 }
987
988 // Returns whether the first occurrence of `predecessor` in the list of
989 // predecessors is at index `idx`.
IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)990 bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
991 DCHECK_EQ(GetPredecessors()[idx], predecessor);
992 return GetPredecessorIndexOf(predecessor) == idx;
993 }
994
995 // Create a new block between this block and its predecessors. The new block
996 // is added to the graph, all predecessor edges are relinked to it and an edge
997 // is created to `this`. Returns the new empty block. Reverse post order or
998 // loop and try/catch information are not updated.
999 HBasicBlock* CreateImmediateDominator();
1000
1001 // Split the block into two blocks just before `cursor`. Returns the newly
1002 // created, latter block. Note that this method will add the block to the
1003 // graph, create a Goto at the end of the former block and will create an edge
1004 // between the blocks. It will not, however, update the reverse post order or
1005 // loop and try/catch information.
1006 HBasicBlock* SplitBefore(HInstruction* cursor);
1007
1008 // Split the block into two blocks just before `cursor`. Returns the newly
1009 // created block. Note that this method just updates raw block information,
1010 // like predecessors, successors, dominators, and instruction list. It does not
1011 // update the graph, reverse post order, loop information, nor make sure the
1012 // blocks are consistent (for example ending with a control flow instruction).
1013 HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1014
1015 // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1016 HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1017
1018 // Merge `other` at the end of `this`. Successors and dominated blocks of
1019 // `other` are changed to be successors and dominated blocks of `this`. Note
1020 // that this method does not update the graph, reverse post order, loop
1021 // information, nor make sure the blocks are consistent (for example ending
1022 // with a control flow instruction).
1023 void MergeWithInlined(HBasicBlock* other);
1024
1025 // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1026 // of `this` are moved to `other`.
1027 // Note that this method does not update the graph, reverse post order, loop
1028 // information, nor make sure the blocks are consistent (for example ending
1029 // with a control flow instruction).
1030 void ReplaceWith(HBasicBlock* other);
1031
1032 // Merge `other` at the end of `this`. This method updates loops, reverse post
1033 // order, links to predecessors, successors, dominators and deletes the block
1034 // from the graph. The two blocks must be successive, i.e. `this` the only
1035 // predecessor of `other` and vice versa.
1036 void MergeWith(HBasicBlock* other);
1037
1038 // Disconnects `this` from all its predecessors, successors and dominator,
1039 // removes it from all loops it is included in and eventually from the graph.
1040 // The block must not dominate any other block. Predecessors and successors
1041 // are safely updated.
1042 void DisconnectAndDelete();
1043
1044 void AddInstruction(HInstruction* instruction);
1045 // Insert `instruction` before/after an existing instruction `cursor`.
1046 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1047 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1048 // Replace instruction `initial` with `replacement` within this block.
1049 void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1050 HInstruction* replacement);
1051 void MoveInstructionBefore(HInstruction* insn, HInstruction* cursor);
1052 void AddPhi(HPhi* phi);
1053 void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1054 // RemoveInstruction and RemovePhi delete a given instruction from the respective
1055 // instruction list. With 'ensure_safety' set to true, it verifies that the
1056 // instruction is not in use and removes it from the use lists of its inputs.
1057 void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1058 void RemovePhi(HPhi* phi, bool ensure_safety = true);
1059 void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1060
IsLoopHeader()1061 bool IsLoopHeader() const {
1062 return IsInLoop() && (loop_information_->GetHeader() == this);
1063 }
1064
IsLoopPreHeaderFirstPredecessor()1065 bool IsLoopPreHeaderFirstPredecessor() const {
1066 DCHECK(IsLoopHeader());
1067 return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1068 }
1069
IsFirstPredecessorBackEdge()1070 bool IsFirstPredecessorBackEdge() const {
1071 DCHECK(IsLoopHeader());
1072 return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1073 }
1074
GetLoopInformation()1075 HLoopInformation* GetLoopInformation() const {
1076 return loop_information_;
1077 }
1078
1079 // Set the loop_information_ on this block. Overrides the current
1080 // loop_information if it is an outer loop of the passed loop information.
1081 // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)1082 void SetInLoop(HLoopInformation* info) {
1083 if (IsLoopHeader()) {
1084 // Nothing to do. This just means `info` is an outer loop.
1085 } else if (!IsInLoop()) {
1086 loop_information_ = info;
1087 } else if (loop_information_->Contains(*info->GetHeader())) {
1088 // Block is currently part of an outer loop. Make it part of this inner loop.
1089 // Note that a non loop header having a loop information means this loop information
1090 // has already been populated
1091 loop_information_ = info;
1092 } else {
1093 // Block is part of an inner loop. Do not update the loop information.
1094 // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1095 // at this point, because this method is being called while populating `info`.
1096 }
1097 }
1098
1099 // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)1100 void SetLoopInformation(HLoopInformation* info) {
1101 loop_information_ = info;
1102 }
1103
IsInLoop()1104 bool IsInLoop() const { return loop_information_ != nullptr; }
1105
GetTryCatchInformation()1106 TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1107
SetTryCatchInformation(TryCatchInformation * try_catch_information)1108 void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1109 try_catch_information_ = try_catch_information;
1110 }
1111
IsTryBlock()1112 bool IsTryBlock() const {
1113 return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1114 }
1115
IsCatchBlock()1116 bool IsCatchBlock() const {
1117 return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1118 }
1119
1120 // Returns the try entry that this block's successors should have. They will
1121 // be in the same try, unless the block ends in a try boundary. In that case,
1122 // the appropriate try entry will be returned.
1123 const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1124
1125 bool HasThrowingInstructions() const;
1126
1127 // Returns whether this block dominates the blocked passed as parameter.
1128 bool Dominates(HBasicBlock* block) const;
1129
GetLifetimeStart()1130 size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()1131 size_t GetLifetimeEnd() const { return lifetime_end_; }
1132
SetLifetimeStart(size_t start)1133 void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)1134 void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1135
1136 bool EndsWithControlFlowInstruction() const;
1137 bool EndsWithIf() const;
1138 bool EndsWithTryBoundary() const;
1139 bool HasSinglePhi() const;
1140
1141 private:
1142 HGraph* graph_;
1143 ArenaVector<HBasicBlock*> predecessors_;
1144 ArenaVector<HBasicBlock*> successors_;
1145 HInstructionList instructions_;
1146 HInstructionList phis_;
1147 HLoopInformation* loop_information_;
1148 HBasicBlock* dominator_;
1149 ArenaVector<HBasicBlock*> dominated_blocks_;
1150 uint32_t block_id_;
1151 // The dex program counter of the first instruction of this block.
1152 const uint32_t dex_pc_;
1153 size_t lifetime_start_;
1154 size_t lifetime_end_;
1155 TryCatchInformation* try_catch_information_;
1156
1157 friend class HGraph;
1158 friend class HInstruction;
1159
1160 DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1161 };
1162
1163 // Iterates over the LoopInformation of all loops which contain 'block'
1164 // from the innermost to the outermost.
1165 class HLoopInformationOutwardIterator : public ValueObject {
1166 public:
HLoopInformationOutwardIterator(const HBasicBlock & block)1167 explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1168 : current_(block.GetLoopInformation()) {}
1169
Done()1170 bool Done() const { return current_ == nullptr; }
1171
Advance()1172 void Advance() {
1173 DCHECK(!Done());
1174 current_ = current_->GetPreHeader()->GetLoopInformation();
1175 }
1176
Current()1177 HLoopInformation* Current() const {
1178 DCHECK(!Done());
1179 return current_;
1180 }
1181
1182 private:
1183 HLoopInformation* current_;
1184
1185 DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1186 };
1187
1188 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
1189 M(Above, Condition) \
1190 M(AboveOrEqual, Condition) \
1191 M(Add, BinaryOperation) \
1192 M(And, BinaryOperation) \
1193 M(ArrayGet, Instruction) \
1194 M(ArrayLength, Instruction) \
1195 M(ArraySet, Instruction) \
1196 M(Below, Condition) \
1197 M(BelowOrEqual, Condition) \
1198 M(BooleanNot, UnaryOperation) \
1199 M(BoundsCheck, Instruction) \
1200 M(BoundType, Instruction) \
1201 M(CheckCast, Instruction) \
1202 M(ClassTableGet, Instruction) \
1203 M(ClearException, Instruction) \
1204 M(ClinitCheck, Instruction) \
1205 M(Compare, BinaryOperation) \
1206 M(CurrentMethod, Instruction) \
1207 M(Deoptimize, Instruction) \
1208 M(Div, BinaryOperation) \
1209 M(DivZeroCheck, Instruction) \
1210 M(DoubleConstant, Constant) \
1211 M(Equal, Condition) \
1212 M(Exit, Instruction) \
1213 M(FloatConstant, Constant) \
1214 M(Goto, Instruction) \
1215 M(GreaterThan, Condition) \
1216 M(GreaterThanOrEqual, Condition) \
1217 M(If, Instruction) \
1218 M(InstanceFieldGet, Instruction) \
1219 M(InstanceFieldSet, Instruction) \
1220 M(InstanceOf, Instruction) \
1221 M(IntConstant, Constant) \
1222 M(InvokeUnresolved, Invoke) \
1223 M(InvokeInterface, Invoke) \
1224 M(InvokeStaticOrDirect, Invoke) \
1225 M(InvokeVirtual, Invoke) \
1226 M(LessThan, Condition) \
1227 M(LessThanOrEqual, Condition) \
1228 M(LoadClass, Instruction) \
1229 M(LoadException, Instruction) \
1230 M(LoadString, Instruction) \
1231 M(LongConstant, Constant) \
1232 M(MemoryBarrier, Instruction) \
1233 M(MonitorOperation, Instruction) \
1234 M(Mul, BinaryOperation) \
1235 M(NativeDebugInfo, Instruction) \
1236 M(Neg, UnaryOperation) \
1237 M(NewArray, Instruction) \
1238 M(NewInstance, Instruction) \
1239 M(Not, UnaryOperation) \
1240 M(NotEqual, Condition) \
1241 M(NullConstant, Instruction) \
1242 M(NullCheck, Instruction) \
1243 M(Or, BinaryOperation) \
1244 M(PackedSwitch, Instruction) \
1245 M(ParallelMove, Instruction) \
1246 M(ParameterValue, Instruction) \
1247 M(Phi, Instruction) \
1248 M(Rem, BinaryOperation) \
1249 M(Return, Instruction) \
1250 M(ReturnVoid, Instruction) \
1251 M(Ror, BinaryOperation) \
1252 M(Shl, BinaryOperation) \
1253 M(Shr, BinaryOperation) \
1254 M(StaticFieldGet, Instruction) \
1255 M(StaticFieldSet, Instruction) \
1256 M(UnresolvedInstanceFieldGet, Instruction) \
1257 M(UnresolvedInstanceFieldSet, Instruction) \
1258 M(UnresolvedStaticFieldGet, Instruction) \
1259 M(UnresolvedStaticFieldSet, Instruction) \
1260 M(Select, Instruction) \
1261 M(Sub, BinaryOperation) \
1262 M(SuspendCheck, Instruction) \
1263 M(Throw, Instruction) \
1264 M(TryBoundary, Instruction) \
1265 M(TypeConversion, Instruction) \
1266 M(UShr, BinaryOperation) \
1267 M(Xor, BinaryOperation) \
1268
1269 /*
1270 * Instructions, shared across several (not all) architectures.
1271 */
1272 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1273 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1274 #else
1275 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
1276 M(BitwiseNegatedRight, Instruction) \
1277 M(MultiplyAccumulate, Instruction)
1278 #endif
1279
1280 #ifndef ART_ENABLE_CODEGEN_arm
1281 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1282 #else
1283 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \
1284 M(ArmDexCacheArraysBase, Instruction)
1285 #endif
1286
1287 #ifndef ART_ENABLE_CODEGEN_arm64
1288 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1289 #else
1290 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \
1291 M(Arm64DataProcWithShifterOp, Instruction) \
1292 M(Arm64IntermediateAddress, Instruction)
1293 #endif
1294
1295 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1296
1297 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1298
1299 #ifndef ART_ENABLE_CODEGEN_x86
1300 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1301 #else
1302 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
1303 M(X86ComputeBaseMethodAddress, Instruction) \
1304 M(X86LoadFromConstantTable, Instruction) \
1305 M(X86FPNeg, Instruction) \
1306 M(X86PackedSwitch, Instruction)
1307 #endif
1308
1309 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1310
1311 #define FOR_EACH_CONCRETE_INSTRUCTION(M) \
1312 FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
1313 FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
1314 FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \
1315 FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \
1316 FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \
1317 FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) \
1318 FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
1319 FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1320
1321 #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \
1322 M(Condition, BinaryOperation) \
1323 M(Constant, Instruction) \
1324 M(UnaryOperation, Instruction) \
1325 M(BinaryOperation, Instruction) \
1326 M(Invoke, Instruction)
1327
1328 #define FOR_EACH_INSTRUCTION(M) \
1329 FOR_EACH_CONCRETE_INSTRUCTION(M) \
1330 FOR_EACH_ABSTRACT_INSTRUCTION(M)
1331
1332 #define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1333 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1334 #undef FORWARD_DECLARATION
1335
1336 #define DECLARE_INSTRUCTION(type) \
1337 InstructionKind GetKindInternal() const OVERRIDE { return k##type; } \
1338 const char* DebugName() const OVERRIDE { return #type; } \
1339 bool InstructionTypeEquals(HInstruction* other) const OVERRIDE { \
1340 return other->Is##type(); \
1341 } \
1342 void Accept(HGraphVisitor* visitor) OVERRIDE
1343
1344 #define DECLARE_ABSTRACT_INSTRUCTION(type) \
1345 bool Is##type() const { return As##type() != nullptr; } \
1346 const H##type* As##type() const { return this; } \
1347 H##type* As##type() { return this; }
1348
1349 template <typename T>
1350 class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1351 public:
1352 T GetUser() const { return user_; }
1353 size_t GetIndex() const { return index_; }
1354 void SetIndex(size_t index) { index_ = index; }
1355
1356 // Hook for the IntrusiveForwardList<>.
1357 // TODO: Hide this better.
1358 IntrusiveForwardListHook hook;
1359
1360 private:
1361 HUseListNode(T user, size_t index)
1362 : user_(user), index_(index) {}
1363
1364 T const user_;
1365 size_t index_;
1366
1367 friend class HInstruction;
1368
1369 DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1370 };
1371
1372 template <typename T>
1373 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1374
1375 // This class is used by HEnvironment and HInstruction classes to record the
1376 // instructions they use and pointers to the corresponding HUseListNodes kept
1377 // by the used instructions.
1378 template <typename T>
1379 class HUserRecord : public ValueObject {
1380 public:
HUserRecord()1381 HUserRecord() : instruction_(nullptr), before_use_node_() {}
HUserRecord(HInstruction * instruction)1382 explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1383
HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1384 HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1385 : HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1386 HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1387 : instruction_(instruction), before_use_node_(before_use_node) {
1388 DCHECK(instruction_ != nullptr);
1389 }
1390
GetInstruction()1391 HInstruction* GetInstruction() const { return instruction_; }
GetBeforeUseNode()1392 typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
GetUseNode()1393 typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1394
1395 private:
1396 // Instruction used by the user.
1397 HInstruction* instruction_;
1398
1399 // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1400 typename HUseList<T>::iterator before_use_node_;
1401 };
1402
1403 /**
1404 * Side-effects representation.
1405 *
1406 * For write/read dependences on fields/arrays, the dependence analysis uses
1407 * type disambiguation (e.g. a float field write cannot modify the value of an
1408 * integer field read) and the access type (e.g. a reference array write cannot
1409 * modify the value of a reference field read [although it may modify the
1410 * reference fetch prior to reading the field, which is represented by its own
1411 * write/read dependence]). The analysis makes conservative points-to
1412 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1413 * the same, and any reference read depends on any reference read without
1414 * further regard of its type).
1415 *
1416 * The internal representation uses 38-bit and is described in the table below.
1417 * The first line indicates the side effect, and for field/array accesses the
1418 * second line indicates the type of the access (in the order of the
1419 * Primitive::Type enum).
1420 * The two numbered lines below indicate the bit position in the bitfield (read
1421 * vertically).
1422 *
1423 * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W |
1424 * +-------------+---------+---------+--------------+---------+---------+
1425 * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL|
1426 * | 3 |333333322|222222221| 1 |111111110|000000000|
1427 * | 7 |654321098|765432109| 8 |765432109|876543210|
1428 *
1429 * Note that, to ease the implementation, 'changes' bits are least significant
1430 * bits, while 'dependency' bits are most significant bits.
1431 */
1432 class SideEffects : public ValueObject {
1433 public:
SideEffects()1434 SideEffects() : flags_(0) {}
1435
None()1436 static SideEffects None() {
1437 return SideEffects(0);
1438 }
1439
All()1440 static SideEffects All() {
1441 return SideEffects(kAllChangeBits | kAllDependOnBits);
1442 }
1443
AllChanges()1444 static SideEffects AllChanges() {
1445 return SideEffects(kAllChangeBits);
1446 }
1447
AllDependencies()1448 static SideEffects AllDependencies() {
1449 return SideEffects(kAllDependOnBits);
1450 }
1451
AllExceptGCDependency()1452 static SideEffects AllExceptGCDependency() {
1453 return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1454 }
1455
AllWritesAndReads()1456 static SideEffects AllWritesAndReads() {
1457 return SideEffects(kAllWrites | kAllReads);
1458 }
1459
AllWrites()1460 static SideEffects AllWrites() {
1461 return SideEffects(kAllWrites);
1462 }
1463
AllReads()1464 static SideEffects AllReads() {
1465 return SideEffects(kAllReads);
1466 }
1467
FieldWriteOfType(Primitive::Type type,bool is_volatile)1468 static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1469 return is_volatile
1470 ? AllWritesAndReads()
1471 : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1472 }
1473
ArrayWriteOfType(Primitive::Type type)1474 static SideEffects ArrayWriteOfType(Primitive::Type type) {
1475 return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1476 }
1477
FieldReadOfType(Primitive::Type type,bool is_volatile)1478 static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1479 return is_volatile
1480 ? AllWritesAndReads()
1481 : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1482 }
1483
ArrayReadOfType(Primitive::Type type)1484 static SideEffects ArrayReadOfType(Primitive::Type type) {
1485 return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1486 }
1487
CanTriggerGC()1488 static SideEffects CanTriggerGC() {
1489 return SideEffects(1ULL << kCanTriggerGCBit);
1490 }
1491
DependsOnGC()1492 static SideEffects DependsOnGC() {
1493 return SideEffects(1ULL << kDependsOnGCBit);
1494 }
1495
1496 // Combines the side-effects of this and the other.
Union(SideEffects other)1497 SideEffects Union(SideEffects other) const {
1498 return SideEffects(flags_ | other.flags_);
1499 }
1500
Exclusion(SideEffects other)1501 SideEffects Exclusion(SideEffects other) const {
1502 return SideEffects(flags_ & ~other.flags_);
1503 }
1504
Add(SideEffects other)1505 void Add(SideEffects other) {
1506 flags_ |= other.flags_;
1507 }
1508
Includes(SideEffects other)1509 bool Includes(SideEffects other) const {
1510 return (other.flags_ & flags_) == other.flags_;
1511 }
1512
HasSideEffects()1513 bool HasSideEffects() const {
1514 return (flags_ & kAllChangeBits);
1515 }
1516
HasDependencies()1517 bool HasDependencies() const {
1518 return (flags_ & kAllDependOnBits);
1519 }
1520
1521 // Returns true if there are no side effects or dependencies.
DoesNothing()1522 bool DoesNothing() const {
1523 return flags_ == 0;
1524 }
1525
1526 // Returns true if something is written.
DoesAnyWrite()1527 bool DoesAnyWrite() const {
1528 return (flags_ & kAllWrites);
1529 }
1530
1531 // Returns true if something is read.
DoesAnyRead()1532 bool DoesAnyRead() const {
1533 return (flags_ & kAllReads);
1534 }
1535
1536 // Returns true if potentially everything is written and read
1537 // (every type and every kind of access).
DoesAllReadWrite()1538 bool DoesAllReadWrite() const {
1539 return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1540 }
1541
DoesAll()1542 bool DoesAll() const {
1543 return flags_ == (kAllChangeBits | kAllDependOnBits);
1544 }
1545
1546 // Returns true if `this` may read something written by `other`.
MayDependOn(SideEffects other)1547 bool MayDependOn(SideEffects other) const {
1548 const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1549 return (other.flags_ & depends_on_flags);
1550 }
1551
1552 // Returns string representation of flags (for debugging only).
1553 // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
ToString()1554 std::string ToString() const {
1555 std::string flags = "|";
1556 for (int s = kLastBit; s >= 0; s--) {
1557 bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1558 if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1559 // This is a bit for the GC side effect.
1560 if (current_bit_is_set) {
1561 flags += "GC";
1562 }
1563 flags += "|";
1564 } else {
1565 // This is a bit for the array/field analysis.
1566 // The underscore character stands for the 'can trigger GC' bit.
1567 static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1568 if (current_bit_is_set) {
1569 flags += kDebug[s];
1570 }
1571 if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1572 (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1573 flags += "|";
1574 }
1575 }
1576 }
1577 return flags;
1578 }
1579
Equals(const SideEffects & other)1580 bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1581
1582 private:
1583 static constexpr int kFieldArrayAnalysisBits = 9;
1584
1585 static constexpr int kFieldWriteOffset = 0;
1586 static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1587 static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1588 static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1589
1590 static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1591
1592 static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1593 static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1594 static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1595 static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1596
1597 static constexpr int kLastBit = kDependsOnGCBit;
1598 static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1599
1600 // Aliases.
1601
1602 static_assert(kChangeBits == kDependOnBits,
1603 "the 'change' bits should match the 'depend on' bits.");
1604
1605 static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1606 static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1607 static constexpr uint64_t kAllWrites =
1608 ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1609 static constexpr uint64_t kAllReads =
1610 ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1611
1612 // Work around the fact that HIR aliases I/F and J/D.
1613 // TODO: remove this interceptor once HIR types are clean
TypeFlagWithAlias(Primitive::Type type,int offset)1614 static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1615 switch (type) {
1616 case Primitive::kPrimInt:
1617 case Primitive::kPrimFloat:
1618 return TypeFlag(Primitive::kPrimInt, offset) |
1619 TypeFlag(Primitive::kPrimFloat, offset);
1620 case Primitive::kPrimLong:
1621 case Primitive::kPrimDouble:
1622 return TypeFlag(Primitive::kPrimLong, offset) |
1623 TypeFlag(Primitive::kPrimDouble, offset);
1624 default:
1625 return TypeFlag(type, offset);
1626 }
1627 }
1628
1629 // Translates type to bit flag.
TypeFlag(Primitive::Type type,int offset)1630 static uint64_t TypeFlag(Primitive::Type type, int offset) {
1631 CHECK_NE(type, Primitive::kPrimVoid);
1632 const uint64_t one = 1;
1633 const int shift = type; // 0-based consecutive enum
1634 DCHECK_LE(kFieldWriteOffset, shift);
1635 DCHECK_LT(shift, kArrayWriteOffset);
1636 return one << (type + offset);
1637 }
1638
1639 // Private constructor on direct flags value.
SideEffects(uint64_t flags)1640 explicit SideEffects(uint64_t flags) : flags_(flags) {}
1641
1642 uint64_t flags_;
1643 };
1644
1645 // A HEnvironment object contains the values of virtual registers at a given location.
1646 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1647 public:
HEnvironment(ArenaAllocator * arena,size_t number_of_vregs,const DexFile & dex_file,uint32_t method_idx,uint32_t dex_pc,InvokeType invoke_type,HInstruction * holder)1648 HEnvironment(ArenaAllocator* arena,
1649 size_t number_of_vregs,
1650 const DexFile& dex_file,
1651 uint32_t method_idx,
1652 uint32_t dex_pc,
1653 InvokeType invoke_type,
1654 HInstruction* holder)
1655 : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1656 locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1657 parent_(nullptr),
1658 dex_file_(dex_file),
1659 method_idx_(method_idx),
1660 dex_pc_(dex_pc),
1661 invoke_type_(invoke_type),
1662 holder_(holder) {
1663 }
1664
HEnvironment(ArenaAllocator * arena,const HEnvironment & to_copy,HInstruction * holder)1665 HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1666 : HEnvironment(arena,
1667 to_copy.Size(),
1668 to_copy.GetDexFile(),
1669 to_copy.GetMethodIdx(),
1670 to_copy.GetDexPc(),
1671 to_copy.GetInvokeType(),
1672 holder) {}
1673
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)1674 void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1675 if (parent_ != nullptr) {
1676 parent_->SetAndCopyParentChain(allocator, parent);
1677 } else {
1678 parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1679 parent_->CopyFrom(parent);
1680 if (parent->GetParent() != nullptr) {
1681 parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1682 }
1683 }
1684 }
1685
1686 void CopyFrom(const ArenaVector<HInstruction*>& locals);
1687 void CopyFrom(HEnvironment* environment);
1688
1689 // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1690 // input to the loop phi instead. This is for inserting instructions that
1691 // require an environment (like HDeoptimization) in the loop pre-header.
1692 void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1693
SetRawEnvAt(size_t index,HInstruction * instruction)1694 void SetRawEnvAt(size_t index, HInstruction* instruction) {
1695 vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1696 }
1697
GetInstructionAt(size_t index)1698 HInstruction* GetInstructionAt(size_t index) const {
1699 return vregs_[index].GetInstruction();
1700 }
1701
1702 void RemoveAsUserOfInput(size_t index) const;
1703
Size()1704 size_t Size() const { return vregs_.size(); }
1705
GetParent()1706 HEnvironment* GetParent() const { return parent_; }
1707
SetLocationAt(size_t index,Location location)1708 void SetLocationAt(size_t index, Location location) {
1709 locations_[index] = location;
1710 }
1711
GetLocationAt(size_t index)1712 Location GetLocationAt(size_t index) const {
1713 return locations_[index];
1714 }
1715
GetDexPc()1716 uint32_t GetDexPc() const {
1717 return dex_pc_;
1718 }
1719
GetMethodIdx()1720 uint32_t GetMethodIdx() const {
1721 return method_idx_;
1722 }
1723
GetInvokeType()1724 InvokeType GetInvokeType() const {
1725 return invoke_type_;
1726 }
1727
GetDexFile()1728 const DexFile& GetDexFile() const {
1729 return dex_file_;
1730 }
1731
GetHolder()1732 HInstruction* GetHolder() const {
1733 return holder_;
1734 }
1735
1736
IsFromInlinedInvoke()1737 bool IsFromInlinedInvoke() const {
1738 return GetParent() != nullptr;
1739 }
1740
1741 private:
1742 ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1743 ArenaVector<Location> locations_;
1744 HEnvironment* parent_;
1745 const DexFile& dex_file_;
1746 const uint32_t method_idx_;
1747 const uint32_t dex_pc_;
1748 const InvokeType invoke_type_;
1749
1750 // The instruction that holds this environment.
1751 HInstruction* const holder_;
1752
1753 friend class HInstruction;
1754
1755 DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1756 };
1757
1758 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1759 public:
HInstruction(SideEffects side_effects,uint32_t dex_pc)1760 HInstruction(SideEffects side_effects, uint32_t dex_pc)
1761 : previous_(nullptr),
1762 next_(nullptr),
1763 block_(nullptr),
1764 dex_pc_(dex_pc),
1765 id_(-1),
1766 ssa_index_(-1),
1767 packed_fields_(0u),
1768 environment_(nullptr),
1769 locations_(nullptr),
1770 live_interval_(nullptr),
1771 lifetime_position_(kNoLifetime),
1772 side_effects_(side_effects),
1773 reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
1774 SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
1775 }
1776
~HInstruction()1777 virtual ~HInstruction() {}
1778
1779 #define DECLARE_KIND(type, super) k##type,
1780 enum InstructionKind {
1781 FOR_EACH_INSTRUCTION(DECLARE_KIND)
1782 };
1783 #undef DECLARE_KIND
1784
GetNext()1785 HInstruction* GetNext() const { return next_; }
GetPrevious()1786 HInstruction* GetPrevious() const { return previous_; }
1787
1788 HInstruction* GetNextDisregardingMoves() const;
1789 HInstruction* GetPreviousDisregardingMoves() const;
1790
GetBlock()1791 HBasicBlock* GetBlock() const { return block_; }
GetArena()1792 ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
SetBlock(HBasicBlock * block)1793 void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()1794 bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()1795 bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()1796 bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
IsIrreducibleLoopHeaderPhi()1797 bool IsIrreducibleLoopHeaderPhi() const {
1798 return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
1799 }
1800
1801 virtual size_t InputCount() const = 0;
InputAt(size_t i)1802 HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1803
1804 virtual void Accept(HGraphVisitor* visitor) = 0;
1805 virtual const char* DebugName() const = 0;
1806
GetType()1807 virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
SetRawInputAt(size_t index,HInstruction * input)1808 void SetRawInputAt(size_t index, HInstruction* input) {
1809 SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1810 }
1811
NeedsEnvironment()1812 virtual bool NeedsEnvironment() const { return false; }
1813
GetDexPc()1814 uint32_t GetDexPc() const { return dex_pc_; }
1815
IsControlFlow()1816 virtual bool IsControlFlow() const { return false; }
1817
CanThrow()1818 virtual bool CanThrow() const { return false; }
CanThrowIntoCatchBlock()1819 bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1820
HasSideEffects()1821 bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
DoesAnyWrite()1822 bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1823
1824 // Does not apply for all instructions, but having this at top level greatly
1825 // simplifies the null check elimination.
1826 // TODO: Consider merging can_be_null into ReferenceTypeInfo.
CanBeNull()1827 virtual bool CanBeNull() const {
1828 DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1829 return true;
1830 }
1831
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)1832 virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1833 return false;
1834 }
1835
IsActualObject()1836 virtual bool IsActualObject() const {
1837 return GetType() == Primitive::kPrimNot;
1838 }
1839
1840 void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1841
GetReferenceTypeInfo()1842 ReferenceTypeInfo GetReferenceTypeInfo() const {
1843 DCHECK_EQ(GetType(), Primitive::kPrimNot);
1844 return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
1845 GetPackedFlag<kFlagReferenceTypeIsExact>());
1846 }
1847
AddUseAt(HInstruction * user,size_t index)1848 void AddUseAt(HInstruction* user, size_t index) {
1849 DCHECK(user != nullptr);
1850 // Note: fixup_end remains valid across push_front().
1851 auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
1852 HUseListNode<HInstruction*>* new_node =
1853 new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HInstruction*>(user, index);
1854 uses_.push_front(*new_node);
1855 FixUpUserRecordsAfterUseInsertion(fixup_end);
1856 }
1857
AddEnvUseAt(HEnvironment * user,size_t index)1858 void AddEnvUseAt(HEnvironment* user, size_t index) {
1859 DCHECK(user != nullptr);
1860 // Note: env_fixup_end remains valid across push_front().
1861 auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
1862 HUseListNode<HEnvironment*>* new_node =
1863 new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HEnvironment*>(user, index);
1864 env_uses_.push_front(*new_node);
1865 FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1866 }
1867
RemoveAsUserOfInput(size_t input)1868 void RemoveAsUserOfInput(size_t input) {
1869 HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1870 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1871 input_use.GetInstruction()->uses_.erase_after(before_use_node);
1872 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1873 }
1874
GetUses()1875 const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()1876 const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1877
HasUses()1878 bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
HasEnvironmentUses()1879 bool HasEnvironmentUses() const { return !env_uses_.empty(); }
HasNonEnvironmentUses()1880 bool HasNonEnvironmentUses() const { return !uses_.empty(); }
HasOnlyOneNonEnvironmentUse()1881 bool HasOnlyOneNonEnvironmentUse() const {
1882 return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
1883 }
1884
1885 // Does this instruction strictly dominate `other_instruction`?
1886 // Returns false if this instruction and `other_instruction` are the same.
1887 // Aborts if this instruction and `other_instruction` are both phis.
1888 bool StrictlyDominates(HInstruction* other_instruction) const;
1889
GetId()1890 int GetId() const { return id_; }
SetId(int id)1891 void SetId(int id) { id_ = id; }
1892
GetSsaIndex()1893 int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)1894 void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()1895 bool HasSsaIndex() const { return ssa_index_ != -1; }
1896
HasEnvironment()1897 bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()1898 HEnvironment* GetEnvironment() const { return environment_; }
1899 // Set the `environment_` field. Raw because this method does not
1900 // update the uses lists.
SetRawEnvironment(HEnvironment * environment)1901 void SetRawEnvironment(HEnvironment* environment) {
1902 DCHECK(environment_ == nullptr);
1903 DCHECK_EQ(environment->GetHolder(), this);
1904 environment_ = environment;
1905 }
1906
1907 void RemoveEnvironment();
1908
1909 // Set the environment of this instruction, copying it from `environment`. While
1910 // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)1911 void CopyEnvironmentFrom(HEnvironment* environment) {
1912 DCHECK(environment_ == nullptr);
1913 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1914 environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1915 environment_->CopyFrom(environment);
1916 if (environment->GetParent() != nullptr) {
1917 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1918 }
1919 }
1920
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)1921 void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1922 HBasicBlock* block) {
1923 DCHECK(environment_ == nullptr);
1924 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1925 environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1926 environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1927 if (environment->GetParent() != nullptr) {
1928 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1929 }
1930 }
1931
1932 // Returns the number of entries in the environment. Typically, that is the
1933 // number of dex registers in a method. It could be more in case of inlining.
1934 size_t EnvironmentSize() const;
1935
GetLocations()1936 LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)1937 void SetLocations(LocationSummary* locations) { locations_ = locations; }
1938
1939 void ReplaceWith(HInstruction* instruction);
1940 void ReplaceInput(HInstruction* replacement, size_t index);
1941
1942 // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1943 // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)1944 void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1945 ReplaceWith(other);
1946 other->ReplaceInput(this, use_index);
1947 }
1948
1949 // Move `this` instruction before `cursor`.
1950 void MoveBefore(HInstruction* cursor);
1951
1952 // Move `this` before its first user and out of any loops. If there is no
1953 // out-of-loop user that dominates all other users, move the instruction
1954 // to the end of the out-of-loop common dominator of the user's blocks.
1955 //
1956 // This can be used only on non-throwing instructions with no side effects that
1957 // have at least one use but no environment uses.
1958 void MoveBeforeFirstUserAndOutOfLoops();
1959
1960 #define INSTRUCTION_TYPE_CHECK(type, super) \
1961 bool Is##type() const; \
1962 const H##type* As##type() const; \
1963 H##type* As##type();
1964
1965 FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1966 #undef INSTRUCTION_TYPE_CHECK
1967
1968 #define INSTRUCTION_TYPE_CHECK(type, super) \
1969 bool Is##type() const { return (As##type() != nullptr); } \
1970 virtual const H##type* As##type() const { return nullptr; } \
1971 virtual H##type* As##type() { return nullptr; }
FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)1972 FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1973 #undef INSTRUCTION_TYPE_CHECK
1974
1975 // Returns whether the instruction can be moved within the graph.
1976 virtual bool CanBeMoved() const { return false; }
1977
1978 // Returns whether the two instructions are of the same kind.
InstructionTypeEquals(HInstruction * other ATTRIBUTE_UNUSED)1979 virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1980 return false;
1981 }
1982
1983 // Returns whether any data encoded in the two instructions is equal.
1984 // This method does not look at the inputs. Both instructions must be
1985 // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)1986 virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1987 return false;
1988 }
1989
1990 // Returns whether two instructions are equal, that is:
1991 // 1) They have the same type and contain the same data (InstructionDataEquals).
1992 // 2) Their inputs are identical.
1993 bool Equals(HInstruction* other) const;
1994
1995 // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744)
1996 // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide
1997 // the virtual function because the __attribute__((__pure__)) doesn't really
1998 // apply the strong requirement for virtual functions, preventing optimizations.
1999 InstructionKind GetKind() const PURE;
2000 virtual InstructionKind GetKindInternal() const = 0;
2001
ComputeHashCode()2002 virtual size_t ComputeHashCode() const {
2003 size_t result = GetKind();
2004 for (size_t i = 0, e = InputCount(); i < e; ++i) {
2005 result = (result * 31) + InputAt(i)->GetId();
2006 }
2007 return result;
2008 }
2009
GetSideEffects()2010 SideEffects GetSideEffects() const { return side_effects_; }
SetSideEffects(SideEffects other)2011 void SetSideEffects(SideEffects other) { side_effects_ = other; }
AddSideEffects(SideEffects other)2012 void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2013
GetLifetimePosition()2014 size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)2015 void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()2016 LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)2017 void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()2018 bool HasLiveInterval() const { return live_interval_ != nullptr; }
2019
IsSuspendCheckEntry()2020 bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2021
2022 // Returns whether the code generation of the instruction will require to have access
2023 // to the current method. Such instructions are:
2024 // (1): Instructions that require an environment, as calling the runtime requires
2025 // to walk the stack and have the current method stored at a specific stack address.
2026 // (2): Object literals like classes and strings, that are loaded from the dex cache
2027 // fields of the current method.
NeedsCurrentMethod()2028 bool NeedsCurrentMethod() const {
2029 return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2030 }
2031
2032 // Returns whether the code generation of the instruction will require to have access
2033 // to the dex cache of the current method's declaring class via the current method.
NeedsDexCacheOfDeclaringClass()2034 virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2035
2036 // Does this instruction have any use in an environment before
2037 // control flow hits 'other'?
2038 bool HasAnyEnvironmentUseBefore(HInstruction* other);
2039
2040 // Remove all references to environment uses of this instruction.
2041 // The caller must ensure that this is safe to do.
2042 void RemoveEnvironmentUsers();
2043
IsEmittedAtUseSite()2044 bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
MarkEmittedAtUseSite()2045 void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2046
2047 protected:
2048 // If set, the machine code for this instruction is assumed to be generated by
2049 // its users. Used by liveness analysis to compute use positions accordingly.
2050 static constexpr size_t kFlagEmittedAtUseSite = 0u;
2051 static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2052 static constexpr size_t kNumberOfGenericPackedBits = kFlagReferenceTypeIsExact + 1;
2053 static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2054
2055 virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2056 virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2057
GetPackedFields()2058 uint32_t GetPackedFields() const {
2059 return packed_fields_;
2060 }
2061
2062 template <size_t flag>
GetPackedFlag()2063 bool GetPackedFlag() const {
2064 return (packed_fields_ & (1u << flag)) != 0u;
2065 }
2066
2067 template <size_t flag>
2068 void SetPackedFlag(bool value = true) {
2069 packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2070 }
2071
2072 template <typename BitFieldType>
GetPackedField()2073 typename BitFieldType::value_type GetPackedField() const {
2074 return BitFieldType::Decode(packed_fields_);
2075 }
2076
2077 template <typename BitFieldType>
SetPackedField(typename BitFieldType::value_type value)2078 void SetPackedField(typename BitFieldType::value_type value) {
2079 DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2080 packed_fields_ = BitFieldType::Update(value, packed_fields_);
2081 }
2082
2083 private:
FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2084 void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2085 auto before_use_node = uses_.before_begin();
2086 for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2087 HInstruction* user = use_node->GetUser();
2088 size_t input_index = use_node->GetIndex();
2089 user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2090 before_use_node = use_node;
2091 }
2092 }
2093
FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2094 void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2095 auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2096 if (next != uses_.end()) {
2097 HInstruction* next_user = next->GetUser();
2098 size_t next_index = next->GetIndex();
2099 DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2100 next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2101 }
2102 }
2103
FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2104 void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2105 auto before_env_use_node = env_uses_.before_begin();
2106 for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2107 HEnvironment* user = env_use_node->GetUser();
2108 size_t input_index = env_use_node->GetIndex();
2109 user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2110 before_env_use_node = env_use_node;
2111 }
2112 }
2113
FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2114 void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2115 auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2116 if (next != env_uses_.end()) {
2117 HEnvironment* next_user = next->GetUser();
2118 size_t next_index = next->GetIndex();
2119 DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
2120 next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2121 }
2122 }
2123
2124 HInstruction* previous_;
2125 HInstruction* next_;
2126 HBasicBlock* block_;
2127 const uint32_t dex_pc_;
2128
2129 // An instruction gets an id when it is added to the graph.
2130 // It reflects creation order. A negative id means the instruction
2131 // has not been added to the graph.
2132 int id_;
2133
2134 // When doing liveness analysis, instructions that have uses get an SSA index.
2135 int ssa_index_;
2136
2137 // Packed fields.
2138 uint32_t packed_fields_;
2139
2140 // List of instructions that have this instruction as input.
2141 HUseList<HInstruction*> uses_;
2142
2143 // List of environments that contain this instruction.
2144 HUseList<HEnvironment*> env_uses_;
2145
2146 // The environment associated with this instruction. Not null if the instruction
2147 // might jump out of the method.
2148 HEnvironment* environment_;
2149
2150 // Set by the code generator.
2151 LocationSummary* locations_;
2152
2153 // Set by the liveness analysis.
2154 LiveInterval* live_interval_;
2155
2156 // Set by the liveness analysis, this is the position in a linear
2157 // order of blocks where this instruction's live interval start.
2158 size_t lifetime_position_;
2159
2160 SideEffects side_effects_;
2161
2162 // The reference handle part of the reference type info.
2163 // The IsExact() flag is stored in packed fields.
2164 // TODO: for primitive types this should be marked as invalid.
2165 ReferenceTypeInfo::TypeHandle reference_type_handle_;
2166
2167 friend class GraphChecker;
2168 friend class HBasicBlock;
2169 friend class HEnvironment;
2170 friend class HGraph;
2171 friend class HInstructionList;
2172
2173 DISALLOW_COPY_AND_ASSIGN(HInstruction);
2174 };
2175 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2176
2177 class HInputIterator : public ValueObject {
2178 public:
HInputIterator(HInstruction * instruction)2179 explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2180
Done()2181 bool Done() const { return index_ == instruction_->InputCount(); }
Current()2182 HInstruction* Current() const { return instruction_->InputAt(index_); }
Advance()2183 void Advance() { index_++; }
2184
2185 private:
2186 HInstruction* instruction_;
2187 size_t index_;
2188
2189 DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2190 };
2191
2192 class HInstructionIterator : public ValueObject {
2193 public:
HInstructionIterator(const HInstructionList & instructions)2194 explicit HInstructionIterator(const HInstructionList& instructions)
2195 : instruction_(instructions.first_instruction_) {
2196 next_ = Done() ? nullptr : instruction_->GetNext();
2197 }
2198
Done()2199 bool Done() const { return instruction_ == nullptr; }
Current()2200 HInstruction* Current() const { return instruction_; }
Advance()2201 void Advance() {
2202 instruction_ = next_;
2203 next_ = Done() ? nullptr : instruction_->GetNext();
2204 }
2205
2206 private:
2207 HInstruction* instruction_;
2208 HInstruction* next_;
2209
2210 DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2211 };
2212
2213 class HBackwardInstructionIterator : public ValueObject {
2214 public:
HBackwardInstructionIterator(const HInstructionList & instructions)2215 explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2216 : instruction_(instructions.last_instruction_) {
2217 next_ = Done() ? nullptr : instruction_->GetPrevious();
2218 }
2219
Done()2220 bool Done() const { return instruction_ == nullptr; }
Current()2221 HInstruction* Current() const { return instruction_; }
Advance()2222 void Advance() {
2223 instruction_ = next_;
2224 next_ = Done() ? nullptr : instruction_->GetPrevious();
2225 }
2226
2227 private:
2228 HInstruction* instruction_;
2229 HInstruction* next_;
2230
2231 DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2232 };
2233
2234 template<size_t N>
2235 class HTemplateInstruction: public HInstruction {
2236 public:
2237 HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
HInstruction(side_effects,dex_pc)2238 : HInstruction(side_effects, dex_pc), inputs_() {}
~HTemplateInstruction()2239 virtual ~HTemplateInstruction() {}
2240
InputCount()2241 size_t InputCount() const OVERRIDE { return N; }
2242
2243 protected:
InputRecordAt(size_t i)2244 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2245 DCHECK_LT(i, N);
2246 return inputs_[i];
2247 }
2248
SetRawInputRecordAt(size_t i,const HUserRecord<HInstruction * > & input)2249 void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2250 DCHECK_LT(i, N);
2251 inputs_[i] = input;
2252 }
2253
2254 private:
2255 std::array<HUserRecord<HInstruction*>, N> inputs_;
2256
2257 friend class SsaBuilder;
2258 };
2259
2260 // HTemplateInstruction specialization for N=0.
2261 template<>
2262 class HTemplateInstruction<0>: public HInstruction {
2263 public:
2264 explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
HInstruction(side_effects,dex_pc)2265 : HInstruction(side_effects, dex_pc) {}
2266
~HTemplateInstruction()2267 virtual ~HTemplateInstruction() {}
2268
InputCount()2269 size_t InputCount() const OVERRIDE { return 0; }
2270
2271 protected:
InputRecordAt(size_t i ATTRIBUTE_UNUSED)2272 const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2273 LOG(FATAL) << "Unreachable";
2274 UNREACHABLE();
2275 }
2276
SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,const HUserRecord<HInstruction * > & input ATTRIBUTE_UNUSED)2277 void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2278 const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2279 LOG(FATAL) << "Unreachable";
2280 UNREACHABLE();
2281 }
2282
2283 private:
2284 friend class SsaBuilder;
2285 };
2286
2287 template<intptr_t N>
2288 class HExpression : public HTemplateInstruction<N> {
2289 public:
2290 HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2291 : HTemplateInstruction<N>(side_effects, dex_pc) {
2292 this->template SetPackedField<TypeField>(type);
2293 }
~HExpression()2294 virtual ~HExpression() {}
2295
GetType()2296 Primitive::Type GetType() const OVERRIDE {
2297 return TypeField::Decode(this->GetPackedFields());
2298 }
2299
2300 protected:
2301 static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
2302 static constexpr size_t kFieldTypeSize =
2303 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
2304 static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize;
2305 static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits,
2306 "Too many packed fields.");
2307 using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
2308 };
2309
2310 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2311 // instruction that branches to the exit block.
2312 class HReturnVoid : public HTemplateInstruction<0> {
2313 public:
2314 explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2315 : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2316
IsControlFlow()2317 bool IsControlFlow() const OVERRIDE { return true; }
2318
2319 DECLARE_INSTRUCTION(ReturnVoid);
2320
2321 private:
2322 DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2323 };
2324
2325 // Represents dex's RETURN opcodes. A HReturn is a control flow
2326 // instruction that branches to the exit block.
2327 class HReturn : public HTemplateInstruction<1> {
2328 public:
2329 explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2330 : HTemplateInstruction(SideEffects::None(), dex_pc) {
2331 SetRawInputAt(0, value);
2332 }
2333
IsControlFlow()2334 bool IsControlFlow() const OVERRIDE { return true; }
2335
2336 DECLARE_INSTRUCTION(Return);
2337
2338 private:
2339 DISALLOW_COPY_AND_ASSIGN(HReturn);
2340 };
2341
2342 class HPhi : public HInstruction {
2343 public:
2344 HPhi(ArenaAllocator* arena,
2345 uint32_t reg_number,
2346 size_t number_of_inputs,
2347 Primitive::Type type,
2348 uint32_t dex_pc = kNoDexPc)
HInstruction(SideEffects::None (),dex_pc)2349 : HInstruction(SideEffects::None(), dex_pc),
2350 inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
2351 reg_number_(reg_number) {
2352 SetPackedField<TypeField>(ToPhiType(type));
2353 DCHECK_NE(GetType(), Primitive::kPrimVoid);
2354 // Phis are constructed live and marked dead if conflicting or unused.
2355 // Individual steps of SsaBuilder should assume that if a phi has been
2356 // marked dead, it can be ignored and will be removed by SsaPhiElimination.
2357 SetPackedFlag<kFlagIsLive>(true);
2358 SetPackedFlag<kFlagCanBeNull>(true);
2359 }
2360
2361 // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
ToPhiType(Primitive::Type type)2362 static Primitive::Type ToPhiType(Primitive::Type type) {
2363 return Primitive::PrimitiveKind(type);
2364 }
2365
IsCatchPhi()2366 bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
2367
InputCount()2368 size_t InputCount() const OVERRIDE { return inputs_.size(); }
2369
2370 void AddInput(HInstruction* input);
2371 void RemoveInputAt(size_t index);
2372
GetType()2373 Primitive::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); }
SetType(Primitive::Type new_type)2374 void SetType(Primitive::Type new_type) {
2375 // Make sure that only valid type changes occur. The following are allowed:
2376 // (1) int -> float/ref (primitive type propagation),
2377 // (2) long -> double (primitive type propagation).
2378 DCHECK(GetType() == new_type ||
2379 (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) ||
2380 (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimNot) ||
2381 (GetType() == Primitive::kPrimLong && new_type == Primitive::kPrimDouble));
2382 SetPackedField<TypeField>(new_type);
2383 }
2384
CanBeNull()2385 bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)2386 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
2387
GetRegNumber()2388 uint32_t GetRegNumber() const { return reg_number_; }
2389
SetDead()2390 void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
SetLive()2391 void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
IsDead()2392 bool IsDead() const { return !IsLive(); }
IsLive()2393 bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
2394
IsVRegEquivalentOf(HInstruction * other)2395 bool IsVRegEquivalentOf(HInstruction* other) const {
2396 return other != nullptr
2397 && other->IsPhi()
2398 && other->AsPhi()->GetBlock() == GetBlock()
2399 && other->AsPhi()->GetRegNumber() == GetRegNumber();
2400 }
2401
2402 // Returns the next equivalent phi (starting from the current one) or null if there is none.
2403 // An equivalent phi is a phi having the same dex register and type.
2404 // It assumes that phis with the same dex register are adjacent.
GetNextEquivalentPhiWithSameType()2405 HPhi* GetNextEquivalentPhiWithSameType() {
2406 HInstruction* next = GetNext();
2407 while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2408 if (next->GetType() == GetType()) {
2409 return next->AsPhi();
2410 }
2411 next = next->GetNext();
2412 }
2413 return nullptr;
2414 }
2415
2416 DECLARE_INSTRUCTION(Phi);
2417
2418 protected:
InputRecordAt(size_t index)2419 const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
2420 return inputs_[index];
2421 }
2422
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2423 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2424 inputs_[index] = input;
2425 }
2426
2427 private:
2428 static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
2429 static constexpr size_t kFieldTypeSize =
2430 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
2431 static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize;
2432 static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
2433 static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
2434 static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
2435 using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
2436
2437 ArenaVector<HUserRecord<HInstruction*> > inputs_;
2438 const uint32_t reg_number_;
2439
2440 DISALLOW_COPY_AND_ASSIGN(HPhi);
2441 };
2442
2443 // The exit instruction is the only instruction of the exit block.
2444 // Instructions aborting the method (HThrow and HReturn) must branch to the
2445 // exit block.
2446 class HExit : public HTemplateInstruction<0> {
2447 public:
HTemplateInstruction(SideEffects::None (),dex_pc)2448 explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2449
IsControlFlow()2450 bool IsControlFlow() const OVERRIDE { return true; }
2451
2452 DECLARE_INSTRUCTION(Exit);
2453
2454 private:
2455 DISALLOW_COPY_AND_ASSIGN(HExit);
2456 };
2457
2458 // Jumps from one block to another.
2459 class HGoto : public HTemplateInstruction<0> {
2460 public:
HTemplateInstruction(SideEffects::None (),dex_pc)2461 explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2462
IsControlFlow()2463 bool IsControlFlow() const OVERRIDE { return true; }
2464
GetSuccessor()2465 HBasicBlock* GetSuccessor() const {
2466 return GetBlock()->GetSingleSuccessor();
2467 }
2468
2469 DECLARE_INSTRUCTION(Goto);
2470
2471 private:
2472 DISALLOW_COPY_AND_ASSIGN(HGoto);
2473 };
2474
2475 class HConstant : public HExpression<0> {
2476 public:
2477 explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(type,SideEffects::None (),dex_pc)2478 : HExpression(type, SideEffects::None(), dex_pc) {}
2479
CanBeMoved()2480 bool CanBeMoved() const OVERRIDE { return true; }
2481
2482 // Is this constant -1 in the arithmetic sense?
IsMinusOne()2483 virtual bool IsMinusOne() const { return false; }
2484 // Is this constant 0 in the arithmetic sense?
IsArithmeticZero()2485 virtual bool IsArithmeticZero() const { return false; }
2486 // Is this constant a 0-bit pattern?
IsZeroBitPattern()2487 virtual bool IsZeroBitPattern() const { return false; }
2488 // Is this constant 1 in the arithmetic sense?
IsOne()2489 virtual bool IsOne() const { return false; }
2490
2491 virtual uint64_t GetValueAsUint64() const = 0;
2492
2493 DECLARE_ABSTRACT_INSTRUCTION(Constant);
2494
2495 private:
2496 DISALLOW_COPY_AND_ASSIGN(HConstant);
2497 };
2498
2499 class HNullConstant : public HConstant {
2500 public:
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)2501 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2502 return true;
2503 }
2504
GetValueAsUint64()2505 uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2506
ComputeHashCode()2507 size_t ComputeHashCode() const OVERRIDE { return 0; }
2508
2509 // The null constant representation is a 0-bit pattern.
IsZeroBitPattern()2510 virtual bool IsZeroBitPattern() const { return true; }
2511
2512 DECLARE_INSTRUCTION(NullConstant);
2513
2514 private:
HConstant(Primitive::kPrimNot,dex_pc)2515 explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2516
2517 friend class HGraph;
2518 DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2519 };
2520
2521 // Constants of the type int. Those can be from Dex instructions, or
2522 // synthesized (for example with the if-eqz instruction).
2523 class HIntConstant : public HConstant {
2524 public:
GetValue()2525 int32_t GetValue() const { return value_; }
2526
GetValueAsUint64()2527 uint64_t GetValueAsUint64() const OVERRIDE {
2528 return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2529 }
2530
InstructionDataEquals(HInstruction * other)2531 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2532 DCHECK(other->IsIntConstant()) << other->DebugName();
2533 return other->AsIntConstant()->value_ == value_;
2534 }
2535
ComputeHashCode()2536 size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2537
IsMinusOne()2538 bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
IsArithmeticZero()2539 bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
IsZeroBitPattern()2540 bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
IsOne()2541 bool IsOne() const OVERRIDE { return GetValue() == 1; }
2542
2543 // Integer constants are used to encode Boolean values as well,
2544 // where 1 means true and 0 means false.
IsTrue()2545 bool IsTrue() const { return GetValue() == 1; }
IsFalse()2546 bool IsFalse() const { return GetValue() == 0; }
2547
2548 DECLARE_INSTRUCTION(IntConstant);
2549
2550 private:
2551 explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimInt,dex_pc)2552 : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2553 explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimInt,dex_pc)2554 : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2555
2556 const int32_t value_;
2557
2558 friend class HGraph;
2559 ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2560 ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2561 DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2562 };
2563
2564 class HLongConstant : public HConstant {
2565 public:
GetValue()2566 int64_t GetValue() const { return value_; }
2567
GetValueAsUint64()2568 uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2569
InstructionDataEquals(HInstruction * other)2570 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2571 DCHECK(other->IsLongConstant()) << other->DebugName();
2572 return other->AsLongConstant()->value_ == value_;
2573 }
2574
ComputeHashCode()2575 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2576
IsMinusOne()2577 bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
IsArithmeticZero()2578 bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
IsZeroBitPattern()2579 bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
IsOne()2580 bool IsOne() const OVERRIDE { return GetValue() == 1; }
2581
2582 DECLARE_INSTRUCTION(LongConstant);
2583
2584 private:
2585 explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimLong,dex_pc)2586 : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2587
2588 const int64_t value_;
2589
2590 friend class HGraph;
2591 DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2592 };
2593
2594 class HFloatConstant : public HConstant {
2595 public:
GetValue()2596 float GetValue() const { return value_; }
2597
GetValueAsUint64()2598 uint64_t GetValueAsUint64() const OVERRIDE {
2599 return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
2600 }
2601
InstructionDataEquals(HInstruction * other)2602 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2603 DCHECK(other->IsFloatConstant()) << other->DebugName();
2604 return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
2605 }
2606
ComputeHashCode()2607 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2608
IsMinusOne()2609 bool IsMinusOne() const OVERRIDE {
2610 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2611 }
IsArithmeticZero()2612 bool IsArithmeticZero() const OVERRIDE {
2613 return std::fpclassify(value_) == FP_ZERO;
2614 }
IsArithmeticPositiveZero()2615 bool IsArithmeticPositiveZero() const {
2616 return IsArithmeticZero() && !std::signbit(value_);
2617 }
IsArithmeticNegativeZero()2618 bool IsArithmeticNegativeZero() const {
2619 return IsArithmeticZero() && std::signbit(value_);
2620 }
IsZeroBitPattern()2621 bool IsZeroBitPattern() const OVERRIDE {
2622 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
2623 }
IsOne()2624 bool IsOne() const OVERRIDE {
2625 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2626 }
IsNaN()2627 bool IsNaN() const {
2628 return std::isnan(value_);
2629 }
2630
2631 DECLARE_INSTRUCTION(FloatConstant);
2632
2633 private:
2634 explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimFloat,dex_pc)2635 : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
2636 explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimFloat,dex_pc)2637 : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
2638
2639 const float value_;
2640
2641 // Only the SsaBuilder and HGraph can create floating-point constants.
2642 friend class SsaBuilder;
2643 friend class HGraph;
2644 DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2645 };
2646
2647 class HDoubleConstant : public HConstant {
2648 public:
GetValue()2649 double GetValue() const { return value_; }
2650
GetValueAsUint64()2651 uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
2652
InstructionDataEquals(HInstruction * other)2653 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2654 DCHECK(other->IsDoubleConstant()) << other->DebugName();
2655 return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
2656 }
2657
ComputeHashCode()2658 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2659
IsMinusOne()2660 bool IsMinusOne() const OVERRIDE {
2661 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2662 }
IsArithmeticZero()2663 bool IsArithmeticZero() const OVERRIDE {
2664 return std::fpclassify(value_) == FP_ZERO;
2665 }
IsArithmeticPositiveZero()2666 bool IsArithmeticPositiveZero() const {
2667 return IsArithmeticZero() && !std::signbit(value_);
2668 }
IsArithmeticNegativeZero()2669 bool IsArithmeticNegativeZero() const {
2670 return IsArithmeticZero() && std::signbit(value_);
2671 }
IsZeroBitPattern()2672 bool IsZeroBitPattern() const OVERRIDE {
2673 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
2674 }
IsOne()2675 bool IsOne() const OVERRIDE {
2676 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
2677 }
IsNaN()2678 bool IsNaN() const {
2679 return std::isnan(value_);
2680 }
2681
2682 DECLARE_INSTRUCTION(DoubleConstant);
2683
2684 private:
2685 explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimDouble,dex_pc)2686 : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
2687 explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimDouble,dex_pc)2688 : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
2689
2690 const double value_;
2691
2692 // Only the SsaBuilder and HGraph can create floating-point constants.
2693 friend class SsaBuilder;
2694 friend class HGraph;
2695 DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2696 };
2697
2698 // Conditional branch. A block ending with an HIf instruction must have
2699 // two successors.
2700 class HIf : public HTemplateInstruction<1> {
2701 public:
2702 explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2703 : HTemplateInstruction(SideEffects::None(), dex_pc) {
2704 SetRawInputAt(0, input);
2705 }
2706
IsControlFlow()2707 bool IsControlFlow() const OVERRIDE { return true; }
2708
IfTrueSuccessor()2709 HBasicBlock* IfTrueSuccessor() const {
2710 return GetBlock()->GetSuccessors()[0];
2711 }
2712
IfFalseSuccessor()2713 HBasicBlock* IfFalseSuccessor() const {
2714 return GetBlock()->GetSuccessors()[1];
2715 }
2716
2717 DECLARE_INSTRUCTION(If);
2718
2719 private:
2720 DISALLOW_COPY_AND_ASSIGN(HIf);
2721 };
2722
2723
2724 // Abstract instruction which marks the beginning and/or end of a try block and
2725 // links it to the respective exception handlers. Behaves the same as a Goto in
2726 // non-exceptional control flow.
2727 // Normal-flow successor is stored at index zero, exception handlers under
2728 // higher indices in no particular order.
2729 class HTryBoundary : public HTemplateInstruction<0> {
2730 public:
2731 enum class BoundaryKind {
2732 kEntry,
2733 kExit,
2734 kLast = kExit
2735 };
2736
2737 explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2738 : HTemplateInstruction(SideEffects::None(), dex_pc) {
2739 SetPackedField<BoundaryKindField>(kind);
2740 }
2741
IsControlFlow()2742 bool IsControlFlow() const OVERRIDE { return true; }
2743
2744 // Returns the block's non-exceptional successor (index zero).
GetNormalFlowSuccessor()2745 HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2746
GetExceptionHandlers()2747 ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2748 return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2749 }
2750
2751 // Returns whether `handler` is among its exception handlers (non-zero index
2752 // successors).
HasExceptionHandler(const HBasicBlock & handler)2753 bool HasExceptionHandler(const HBasicBlock& handler) const {
2754 DCHECK(handler.IsCatchBlock());
2755 return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2756 }
2757
2758 // If not present already, adds `handler` to its block's list of exception
2759 // handlers.
AddExceptionHandler(HBasicBlock * handler)2760 void AddExceptionHandler(HBasicBlock* handler) {
2761 if (!HasExceptionHandler(*handler)) {
2762 GetBlock()->AddSuccessor(handler);
2763 }
2764 }
2765
GetBoundaryKind()2766 BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
IsEntry()2767 bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
2768
2769 bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2770
2771 DECLARE_INSTRUCTION(TryBoundary);
2772
2773 private:
2774 static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
2775 static constexpr size_t kFieldBoundaryKindSize =
2776 MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
2777 static constexpr size_t kNumberOfTryBoundaryPackedBits =
2778 kFieldBoundaryKind + kFieldBoundaryKindSize;
2779 static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
2780 "Too many packed fields.");
2781 using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
2782
2783 DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2784 };
2785
2786 // Deoptimize to interpreter, upon checking a condition.
2787 class HDeoptimize : public HTemplateInstruction<1> {
2788 public:
2789 // We set CanTriggerGC to prevent any intermediate address to be live
2790 // at the point of the `HDeoptimize`.
HDeoptimize(HInstruction * cond,uint32_t dex_pc)2791 HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2792 : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
2793 SetRawInputAt(0, cond);
2794 }
2795
CanBeMoved()2796 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)2797 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2798 return true;
2799 }
NeedsEnvironment()2800 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()2801 bool CanThrow() const OVERRIDE { return true; }
2802
2803 DECLARE_INSTRUCTION(Deoptimize);
2804
2805 private:
2806 DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2807 };
2808
2809 // Represents the ArtMethod that was passed as a first argument to
2810 // the method. It is used by instructions that depend on it, like
2811 // instructions that work with the dex cache.
2812 class HCurrentMethod : public HExpression<0> {
2813 public:
2814 explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(type,SideEffects::None (),dex_pc)2815 : HExpression(type, SideEffects::None(), dex_pc) {}
2816
2817 DECLARE_INSTRUCTION(CurrentMethod);
2818
2819 private:
2820 DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2821 };
2822
2823 // Fetches an ArtMethod from the virtual table or the interface method table
2824 // of a class.
2825 class HClassTableGet : public HExpression<1> {
2826 public:
2827 enum class TableKind {
2828 kVTable,
2829 kIMTable,
2830 kLast = kIMTable
2831 };
HClassTableGet(HInstruction * cls,Primitive::Type type,TableKind kind,size_t index,uint32_t dex_pc)2832 HClassTableGet(HInstruction* cls,
2833 Primitive::Type type,
2834 TableKind kind,
2835 size_t index,
2836 uint32_t dex_pc)
2837 : HExpression(type, SideEffects::None(), dex_pc),
2838 index_(index) {
2839 SetPackedField<TableKindField>(kind);
2840 SetRawInputAt(0, cls);
2841 }
2842
CanBeMoved()2843 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)2844 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2845 return other->AsClassTableGet()->GetIndex() == index_ &&
2846 other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
2847 }
2848
GetTableKind()2849 TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
GetIndex()2850 size_t GetIndex() const { return index_; }
2851
2852 DECLARE_INSTRUCTION(ClassTableGet);
2853
2854 private:
2855 static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits;
2856 static constexpr size_t kFieldTableKindSize =
2857 MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
2858 static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
2859 static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
2860 "Too many packed fields.");
2861 using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
2862
2863 // The index of the ArtMethod in the table.
2864 const size_t index_;
2865
2866 DISALLOW_COPY_AND_ASSIGN(HClassTableGet);
2867 };
2868
2869 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2870 // have one successor for each entry in the switch table, and the final successor
2871 // will be the block containing the next Dex opcode.
2872 class HPackedSwitch : public HTemplateInstruction<1> {
2873 public:
2874 HPackedSwitch(int32_t start_value,
2875 uint32_t num_entries,
2876 HInstruction* input,
2877 uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2878 : HTemplateInstruction(SideEffects::None(), dex_pc),
2879 start_value_(start_value),
2880 num_entries_(num_entries) {
2881 SetRawInputAt(0, input);
2882 }
2883
IsControlFlow()2884 bool IsControlFlow() const OVERRIDE { return true; }
2885
GetStartValue()2886 int32_t GetStartValue() const { return start_value_; }
2887
GetNumEntries()2888 uint32_t GetNumEntries() const { return num_entries_; }
2889
GetDefaultBlock()2890 HBasicBlock* GetDefaultBlock() const {
2891 // Last entry is the default block.
2892 return GetBlock()->GetSuccessors()[num_entries_];
2893 }
2894 DECLARE_INSTRUCTION(PackedSwitch);
2895
2896 private:
2897 const int32_t start_value_;
2898 const uint32_t num_entries_;
2899
2900 DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2901 };
2902
2903 class HUnaryOperation : public HExpression<1> {
2904 public:
2905 HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(result_type,SideEffects::None (),dex_pc)2906 : HExpression(result_type, SideEffects::None(), dex_pc) {
2907 SetRawInputAt(0, input);
2908 }
2909
GetInput()2910 HInstruction* GetInput() const { return InputAt(0); }
GetResultType()2911 Primitive::Type GetResultType() const { return GetType(); }
2912
CanBeMoved()2913 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)2914 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2915 return true;
2916 }
2917
2918 // Try to statically evaluate `this` and return a HConstant
2919 // containing the result of this evaluation. If `this` cannot
2920 // be evaluated as a constant, return null.
2921 HConstant* TryStaticEvaluation() const;
2922
2923 // Apply this operation to `x`.
2924 virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2925 virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2926 virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
2927 virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
2928
2929 DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
2930
2931 private:
2932 DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2933 };
2934
2935 class HBinaryOperation : public HExpression<2> {
2936 public:
2937 HBinaryOperation(Primitive::Type result_type,
2938 HInstruction* left,
2939 HInstruction* right,
2940 SideEffects side_effects = SideEffects::None(),
2941 uint32_t dex_pc = kNoDexPc)
HExpression(result_type,side_effects,dex_pc)2942 : HExpression(result_type, side_effects, dex_pc) {
2943 SetRawInputAt(0, left);
2944 SetRawInputAt(1, right);
2945 }
2946
GetLeft()2947 HInstruction* GetLeft() const { return InputAt(0); }
GetRight()2948 HInstruction* GetRight() const { return InputAt(1); }
GetResultType()2949 Primitive::Type GetResultType() const { return GetType(); }
2950
IsCommutative()2951 virtual bool IsCommutative() const { return false; }
2952
2953 // Put constant on the right.
2954 // Returns whether order is changed.
OrderInputsWithConstantOnTheRight()2955 bool OrderInputsWithConstantOnTheRight() {
2956 HInstruction* left = InputAt(0);
2957 HInstruction* right = InputAt(1);
2958 if (left->IsConstant() && !right->IsConstant()) {
2959 ReplaceInput(right, 0);
2960 ReplaceInput(left, 1);
2961 return true;
2962 }
2963 return false;
2964 }
2965
2966 // Order inputs by instruction id, but favor constant on the right side.
2967 // This helps GVN for commutative ops.
OrderInputs()2968 void OrderInputs() {
2969 DCHECK(IsCommutative());
2970 HInstruction* left = InputAt(0);
2971 HInstruction* right = InputAt(1);
2972 if (left == right || (!left->IsConstant() && right->IsConstant())) {
2973 return;
2974 }
2975 if (OrderInputsWithConstantOnTheRight()) {
2976 return;
2977 }
2978 // Order according to instruction id.
2979 if (left->GetId() > right->GetId()) {
2980 ReplaceInput(right, 0);
2981 ReplaceInput(left, 1);
2982 }
2983 }
2984
CanBeMoved()2985 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)2986 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2987 return true;
2988 }
2989
2990 // Try to statically evaluate `this` and return a HConstant
2991 // containing the result of this evaluation. If `this` cannot
2992 // be evaluated as a constant, return null.
2993 HConstant* TryStaticEvaluation() const;
2994
2995 // Apply this operation to `x` and `y`.
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)2996 virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2997 HNullConstant* y ATTRIBUTE_UNUSED) const {
2998 LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
2999 UNREACHABLE();
3000 }
3001 virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
3002 virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED,HIntConstant * y ATTRIBUTE_UNUSED)3003 virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
3004 HIntConstant* y ATTRIBUTE_UNUSED) const {
3005 LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3006 UNREACHABLE();
3007 }
3008 virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
3009 virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
3010
3011 // Returns an input that can legally be used as the right input and is
3012 // constant, or null.
3013 HConstant* GetConstantRight() const;
3014
3015 // If `GetConstantRight()` returns one of the input, this returns the other
3016 // one. Otherwise it returns null.
3017 HInstruction* GetLeastConstantLeft() const;
3018
3019 DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3020
3021 private:
3022 DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
3023 };
3024
3025 // The comparison bias applies for floating point operations and indicates how NaN
3026 // comparisons are treated:
3027 enum class ComparisonBias {
3028 kNoBias, // bias is not applicable (i.e. for long operation)
3029 kGtBias, // return 1 for NaN comparisons
3030 kLtBias, // return -1 for NaN comparisons
3031 kLast = kLtBias
3032 };
3033
3034 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs);
3035
3036 class HCondition : public HBinaryOperation {
3037 public:
3038 HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HBinaryOperation(Primitive::kPrimBoolean,first,second,SideEffects::None (),dex_pc)3039 : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc) {
3040 SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3041 }
3042
3043 // For code generation purposes, returns whether this instruction is just before
3044 // `instruction`, and disregard moves in between.
3045 bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3046
3047 DECLARE_ABSTRACT_INSTRUCTION(Condition);
3048
3049 virtual IfCondition GetCondition() const = 0;
3050
3051 virtual IfCondition GetOppositeCondition() const = 0;
3052
IsGtBias()3053 bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
IsLtBias()3054 bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3055
GetBias()3056 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
SetBias(ComparisonBias bias)3057 void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3058
InstructionDataEquals(HInstruction * other)3059 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3060 return GetPackedFields() == other->AsCondition()->GetPackedFields();
3061 }
3062
IsFPConditionTrueIfNaN()3063 bool IsFPConditionTrueIfNaN() const {
3064 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3065 IfCondition if_cond = GetCondition();
3066 if (if_cond == kCondNE) {
3067 return true;
3068 } else if (if_cond == kCondEQ) {
3069 return false;
3070 }
3071 return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3072 }
3073
IsFPConditionFalseIfNaN()3074 bool IsFPConditionFalseIfNaN() const {
3075 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3076 IfCondition if_cond = GetCondition();
3077 if (if_cond == kCondEQ) {
3078 return true;
3079 } else if (if_cond == kCondNE) {
3080 return false;
3081 }
3082 return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3083 }
3084
3085 protected:
3086 // Needed if we merge a HCompare into a HCondition.
3087 static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
3088 static constexpr size_t kFieldComparisonBiasSize =
3089 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3090 static constexpr size_t kNumberOfConditionPackedBits =
3091 kFieldComparisonBias + kFieldComparisonBiasSize;
3092 static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3093 using ComparisonBiasField =
3094 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3095
3096 template <typename T>
Compare(T x,T y)3097 int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3098
3099 template <typename T>
CompareFP(T x,T y)3100 int32_t CompareFP(T x, T y) const {
3101 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3102 DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3103 // Handle the bias.
3104 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3105 }
3106
3107 // Return an integer constant containing the result of a condition evaluated at compile time.
MakeConstantCondition(bool value,uint32_t dex_pc)3108 HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
3109 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3110 }
3111
3112 private:
3113 DISALLOW_COPY_AND_ASSIGN(HCondition);
3114 };
3115
3116 // Instruction to check if two inputs are equal to each other.
3117 class HEqual : public HCondition {
3118 public:
3119 HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3120 : HCondition(first, second, dex_pc) {}
3121
IsCommutative()3122 bool IsCommutative() const OVERRIDE { return true; }
3123
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3124 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3125 HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3126 return MakeConstantCondition(true, GetDexPc());
3127 }
Evaluate(HIntConstant * x,HIntConstant * y)3128 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3129 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3130 }
3131 // In the following Evaluate methods, a HCompare instruction has
3132 // been merged into this HEqual instruction; evaluate it as
3133 // `Compare(x, y) == 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3134 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3135 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
3136 GetDexPc());
3137 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3138 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3139 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3140 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3141 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3142 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3143 }
3144
3145 DECLARE_INSTRUCTION(Equal);
3146
GetCondition()3147 IfCondition GetCondition() const OVERRIDE {
3148 return kCondEQ;
3149 }
3150
GetOppositeCondition()3151 IfCondition GetOppositeCondition() const OVERRIDE {
3152 return kCondNE;
3153 }
3154
3155 private:
Compute(T x,T y)3156 template <typename T> bool Compute(T x, T y) const { return x == y; }
3157
3158 DISALLOW_COPY_AND_ASSIGN(HEqual);
3159 };
3160
3161 class HNotEqual : public HCondition {
3162 public:
3163 HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3164 : HCondition(first, second, dex_pc) {}
3165
IsCommutative()3166 bool IsCommutative() const OVERRIDE { return true; }
3167
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3168 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3169 HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3170 return MakeConstantCondition(false, GetDexPc());
3171 }
Evaluate(HIntConstant * x,HIntConstant * y)3172 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3173 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3174 }
3175 // In the following Evaluate methods, a HCompare instruction has
3176 // been merged into this HNotEqual instruction; evaluate it as
3177 // `Compare(x, y) != 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3178 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3179 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3180 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3181 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3182 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3183 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3184 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3185 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3186 }
3187
3188 DECLARE_INSTRUCTION(NotEqual);
3189
GetCondition()3190 IfCondition GetCondition() const OVERRIDE {
3191 return kCondNE;
3192 }
3193
GetOppositeCondition()3194 IfCondition GetOppositeCondition() const OVERRIDE {
3195 return kCondEQ;
3196 }
3197
3198 private:
Compute(T x,T y)3199 template <typename T> bool Compute(T x, T y) const { return x != y; }
3200
3201 DISALLOW_COPY_AND_ASSIGN(HNotEqual);
3202 };
3203
3204 class HLessThan : public HCondition {
3205 public:
3206 HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3207 : HCondition(first, second, dex_pc) {}
3208
Evaluate(HIntConstant * x,HIntConstant * y)3209 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3210 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3211 }
3212 // In the following Evaluate methods, a HCompare instruction has
3213 // been merged into this HLessThan instruction; evaluate it as
3214 // `Compare(x, y) < 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3215 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3216 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3217 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3218 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3219 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3220 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3221 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3222 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3223 }
3224
3225 DECLARE_INSTRUCTION(LessThan);
3226
GetCondition()3227 IfCondition GetCondition() const OVERRIDE {
3228 return kCondLT;
3229 }
3230
GetOppositeCondition()3231 IfCondition GetOppositeCondition() const OVERRIDE {
3232 return kCondGE;
3233 }
3234
3235 private:
Compute(T x,T y)3236 template <typename T> bool Compute(T x, T y) const { return x < y; }
3237
3238 DISALLOW_COPY_AND_ASSIGN(HLessThan);
3239 };
3240
3241 class HLessThanOrEqual : public HCondition {
3242 public:
3243 HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3244 : HCondition(first, second, dex_pc) {}
3245
Evaluate(HIntConstant * x,HIntConstant * y)3246 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3247 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3248 }
3249 // In the following Evaluate methods, a HCompare instruction has
3250 // been merged into this HLessThanOrEqual instruction; evaluate it as
3251 // `Compare(x, y) <= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3252 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3253 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3254 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3255 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3256 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3257 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3258 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3259 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3260 }
3261
3262 DECLARE_INSTRUCTION(LessThanOrEqual);
3263
GetCondition()3264 IfCondition GetCondition() const OVERRIDE {
3265 return kCondLE;
3266 }
3267
GetOppositeCondition()3268 IfCondition GetOppositeCondition() const OVERRIDE {
3269 return kCondGT;
3270 }
3271
3272 private:
Compute(T x,T y)3273 template <typename T> bool Compute(T x, T y) const { return x <= y; }
3274
3275 DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
3276 };
3277
3278 class HGreaterThan : public HCondition {
3279 public:
3280 HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3281 : HCondition(first, second, dex_pc) {}
3282
Evaluate(HIntConstant * x,HIntConstant * y)3283 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3284 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3285 }
3286 // In the following Evaluate methods, a HCompare instruction has
3287 // been merged into this HGreaterThan instruction; evaluate it as
3288 // `Compare(x, y) > 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3289 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3290 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3291 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3292 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3293 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3294 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3295 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3296 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3297 }
3298
3299 DECLARE_INSTRUCTION(GreaterThan);
3300
GetCondition()3301 IfCondition GetCondition() const OVERRIDE {
3302 return kCondGT;
3303 }
3304
GetOppositeCondition()3305 IfCondition GetOppositeCondition() const OVERRIDE {
3306 return kCondLE;
3307 }
3308
3309 private:
Compute(T x,T y)3310 template <typename T> bool Compute(T x, T y) const { return x > y; }
3311
3312 DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
3313 };
3314
3315 class HGreaterThanOrEqual : public HCondition {
3316 public:
3317 HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3318 : HCondition(first, second, dex_pc) {}
3319
Evaluate(HIntConstant * x,HIntConstant * y)3320 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3321 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3322 }
3323 // In the following Evaluate methods, a HCompare instruction has
3324 // been merged into this HGreaterThanOrEqual instruction; evaluate it as
3325 // `Compare(x, y) >= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3326 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3327 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3328 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3329 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3330 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3331 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3332 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3333 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3334 }
3335
3336 DECLARE_INSTRUCTION(GreaterThanOrEqual);
3337
GetCondition()3338 IfCondition GetCondition() const OVERRIDE {
3339 return kCondGE;
3340 }
3341
GetOppositeCondition()3342 IfCondition GetOppositeCondition() const OVERRIDE {
3343 return kCondLT;
3344 }
3345
3346 private:
Compute(T x,T y)3347 template <typename T> bool Compute(T x, T y) const { return x >= y; }
3348
3349 DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
3350 };
3351
3352 class HBelow : public HCondition {
3353 public:
3354 HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3355 : HCondition(first, second, dex_pc) {}
3356
Evaluate(HIntConstant * x,HIntConstant * y)3357 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3358 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3359 }
Evaluate(HLongConstant * x,HLongConstant * y)3360 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3361 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3362 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3363 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3364 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3365 LOG(FATAL) << DebugName() << " is not defined for float values";
3366 UNREACHABLE();
3367 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3368 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3369 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3370 LOG(FATAL) << DebugName() << " is not defined for double values";
3371 UNREACHABLE();
3372 }
3373
3374 DECLARE_INSTRUCTION(Below);
3375
GetCondition()3376 IfCondition GetCondition() const OVERRIDE {
3377 return kCondB;
3378 }
3379
GetOppositeCondition()3380 IfCondition GetOppositeCondition() const OVERRIDE {
3381 return kCondAE;
3382 }
3383
3384 private:
Compute(T x,T y)3385 template <typename T> bool Compute(T x, T y) const {
3386 return MakeUnsigned(x) < MakeUnsigned(y);
3387 }
3388
3389 DISALLOW_COPY_AND_ASSIGN(HBelow);
3390 };
3391
3392 class HBelowOrEqual : public HCondition {
3393 public:
3394 HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3395 : HCondition(first, second, dex_pc) {}
3396
Evaluate(HIntConstant * x,HIntConstant * y)3397 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3398 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3399 }
Evaluate(HLongConstant * x,HLongConstant * y)3400 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3401 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3402 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3403 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3404 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3405 LOG(FATAL) << DebugName() << " is not defined for float values";
3406 UNREACHABLE();
3407 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3408 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3409 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3410 LOG(FATAL) << DebugName() << " is not defined for double values";
3411 UNREACHABLE();
3412 }
3413
3414 DECLARE_INSTRUCTION(BelowOrEqual);
3415
GetCondition()3416 IfCondition GetCondition() const OVERRIDE {
3417 return kCondBE;
3418 }
3419
GetOppositeCondition()3420 IfCondition GetOppositeCondition() const OVERRIDE {
3421 return kCondA;
3422 }
3423
3424 private:
Compute(T x,T y)3425 template <typename T> bool Compute(T x, T y) const {
3426 return MakeUnsigned(x) <= MakeUnsigned(y);
3427 }
3428
3429 DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
3430 };
3431
3432 class HAbove : public HCondition {
3433 public:
3434 HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3435 : HCondition(first, second, dex_pc) {}
3436
Evaluate(HIntConstant * x,HIntConstant * y)3437 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3438 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3439 }
Evaluate(HLongConstant * x,HLongConstant * y)3440 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3441 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3442 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3443 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3444 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3445 LOG(FATAL) << DebugName() << " is not defined for float values";
3446 UNREACHABLE();
3447 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3448 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3449 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3450 LOG(FATAL) << DebugName() << " is not defined for double values";
3451 UNREACHABLE();
3452 }
3453
3454 DECLARE_INSTRUCTION(Above);
3455
GetCondition()3456 IfCondition GetCondition() const OVERRIDE {
3457 return kCondA;
3458 }
3459
GetOppositeCondition()3460 IfCondition GetOppositeCondition() const OVERRIDE {
3461 return kCondBE;
3462 }
3463
3464 private:
Compute(T x,T y)3465 template <typename T> bool Compute(T x, T y) const {
3466 return MakeUnsigned(x) > MakeUnsigned(y);
3467 }
3468
3469 DISALLOW_COPY_AND_ASSIGN(HAbove);
3470 };
3471
3472 class HAboveOrEqual : public HCondition {
3473 public:
3474 HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3475 : HCondition(first, second, dex_pc) {}
3476
Evaluate(HIntConstant * x,HIntConstant * y)3477 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3478 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3479 }
Evaluate(HLongConstant * x,HLongConstant * y)3480 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3481 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3482 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3483 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3484 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3485 LOG(FATAL) << DebugName() << " is not defined for float values";
3486 UNREACHABLE();
3487 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3488 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3489 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3490 LOG(FATAL) << DebugName() << " is not defined for double values";
3491 UNREACHABLE();
3492 }
3493
3494 DECLARE_INSTRUCTION(AboveOrEqual);
3495
GetCondition()3496 IfCondition GetCondition() const OVERRIDE {
3497 return kCondAE;
3498 }
3499
GetOppositeCondition()3500 IfCondition GetOppositeCondition() const OVERRIDE {
3501 return kCondB;
3502 }
3503
3504 private:
Compute(T x,T y)3505 template <typename T> bool Compute(T x, T y) const {
3506 return MakeUnsigned(x) >= MakeUnsigned(y);
3507 }
3508
3509 DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3510 };
3511
3512 // Instruction to check how two inputs compare to each other.
3513 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3514 class HCompare : public HBinaryOperation {
3515 public:
3516 // Note that `comparison_type` is the type of comparison performed
3517 // between the comparison's inputs, not the type of the instantiated
3518 // HCompare instruction (which is always Primitive::kPrimInt).
HCompare(Primitive::Type comparison_type,HInstruction * first,HInstruction * second,ComparisonBias bias,uint32_t dex_pc)3519 HCompare(Primitive::Type comparison_type,
3520 HInstruction* first,
3521 HInstruction* second,
3522 ComparisonBias bias,
3523 uint32_t dex_pc)
3524 : HBinaryOperation(Primitive::kPrimInt,
3525 first,
3526 second,
3527 SideEffectsForArchRuntimeCalls(comparison_type),
3528 dex_pc) {
3529 SetPackedField<ComparisonBiasField>(bias);
3530 DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(first->GetType()));
3531 DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(second->GetType()));
3532 }
3533
3534 template <typename T>
Compute(T x,T y)3535 int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3536
3537 template <typename T>
ComputeFP(T x,T y)3538 int32_t ComputeFP(T x, T y) const {
3539 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3540 DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3541 // Handle the bias.
3542 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
3543 }
3544
Evaluate(HIntConstant * x,HIntConstant * y)3545 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3546 // Note that there is no "cmp-int" Dex instruction so we shouldn't
3547 // reach this code path when processing a freshly built HIR
3548 // graph. However HCompare integer instructions can be synthesized
3549 // by the instruction simplifier to implement IntegerCompare and
3550 // IntegerSignum intrinsics, so we have to handle this case.
3551 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3552 }
Evaluate(HLongConstant * x,HLongConstant * y)3553 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3554 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3555 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3556 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3557 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
3558 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3559 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3560 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
3561 }
3562
InstructionDataEquals(HInstruction * other)3563 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3564 return GetPackedFields() == other->AsCompare()->GetPackedFields();
3565 }
3566
GetBias()3567 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3568
3569 // Does this compare instruction have a "gt bias" (vs an "lt bias")?
3570 // Only meaningful for floating-point comparisons.
IsGtBias()3571 bool IsGtBias() const {
3572 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3573 return GetBias() == ComparisonBias::kGtBias;
3574 }
3575
SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED)3576 static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED) {
3577 // Comparisons do not require a runtime call in any back end.
3578 return SideEffects::None();
3579 }
3580
3581 DECLARE_INSTRUCTION(Compare);
3582
3583 protected:
3584 static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
3585 static constexpr size_t kFieldComparisonBiasSize =
3586 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3587 static constexpr size_t kNumberOfComparePackedBits =
3588 kFieldComparisonBias + kFieldComparisonBiasSize;
3589 static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3590 using ComparisonBiasField =
3591 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3592
3593 // Return an integer constant containing the result of a comparison evaluated at compile time.
MakeConstantComparison(int32_t value,uint32_t dex_pc)3594 HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
3595 DCHECK(value == -1 || value == 0 || value == 1) << value;
3596 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3597 }
3598
3599 private:
3600 DISALLOW_COPY_AND_ASSIGN(HCompare);
3601 };
3602
3603 class HNewInstance : public HExpression<2> {
3604 public:
HNewInstance(HInstruction * cls,HCurrentMethod * current_method,uint32_t dex_pc,uint16_t type_index,const DexFile & dex_file,bool can_throw,bool finalizable,QuickEntrypointEnum entrypoint)3605 HNewInstance(HInstruction* cls,
3606 HCurrentMethod* current_method,
3607 uint32_t dex_pc,
3608 uint16_t type_index,
3609 const DexFile& dex_file,
3610 bool can_throw,
3611 bool finalizable,
3612 QuickEntrypointEnum entrypoint)
3613 : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3614 type_index_(type_index),
3615 dex_file_(dex_file),
3616 entrypoint_(entrypoint) {
3617 SetPackedFlag<kFlagCanThrow>(can_throw);
3618 SetPackedFlag<kFlagFinalizable>(finalizable);
3619 SetRawInputAt(0, cls);
3620 SetRawInputAt(1, current_method);
3621 }
3622
GetTypeIndex()3623 uint16_t GetTypeIndex() const { return type_index_; }
GetDexFile()3624 const DexFile& GetDexFile() const { return dex_file_; }
3625
3626 // Calls runtime so needs an environment.
NeedsEnvironment()3627 bool NeedsEnvironment() const OVERRIDE { return true; }
3628
3629 // It may throw when called on type that's not instantiable/accessible.
3630 // It can throw OOME.
3631 // TODO: distinguish between the two cases so we can for example allow allocation elimination.
CanThrow()3632 bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>() || true; }
3633
IsFinalizable()3634 bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
3635
CanBeNull()3636 bool CanBeNull() const OVERRIDE { return false; }
3637
GetEntrypoint()3638 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3639
SetEntrypoint(QuickEntrypointEnum entrypoint)3640 void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3641 entrypoint_ = entrypoint;
3642 }
3643
3644 bool IsStringAlloc() const;
3645
3646 DECLARE_INSTRUCTION(NewInstance);
3647
3648 private:
3649 static constexpr size_t kFlagCanThrow = kNumberOfExpressionPackedBits;
3650 static constexpr size_t kFlagFinalizable = kFlagCanThrow + 1;
3651 static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
3652 static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
3653 "Too many packed fields.");
3654
3655 const uint16_t type_index_;
3656 const DexFile& dex_file_;
3657 QuickEntrypointEnum entrypoint_;
3658
3659 DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3660 };
3661
3662 enum class Intrinsics {
3663 #define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions) \
3664 k ## Name,
3665 #include "intrinsics_list.h"
3666 kNone,
3667 INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3668 #undef INTRINSICS_LIST
3669 #undef OPTIMIZING_INTRINSICS
3670 };
3671 std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3672
3673 enum IntrinsicNeedsEnvironmentOrCache {
3674 kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache.
3675 kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache.
3676 };
3677
3678 enum IntrinsicSideEffects {
3679 kNoSideEffects, // Intrinsic does not have any heap memory side effects.
3680 kReadSideEffects, // Intrinsic may read heap memory.
3681 kWriteSideEffects, // Intrinsic may write heap memory.
3682 kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC.
3683 };
3684
3685 enum IntrinsicExceptions {
3686 kNoThrow, // Intrinsic does not throw any exceptions.
3687 kCanThrow // Intrinsic may throw exceptions.
3688 };
3689
3690 class HInvoke : public HInstruction {
3691 public:
InputCount()3692 size_t InputCount() const OVERRIDE { return inputs_.size(); }
3693
3694 bool NeedsEnvironment() const OVERRIDE;
3695
SetArgumentAt(size_t index,HInstruction * argument)3696 void SetArgumentAt(size_t index, HInstruction* argument) {
3697 SetRawInputAt(index, argument);
3698 }
3699
3700 // Return the number of arguments. This number can be lower than
3701 // the number of inputs returned by InputCount(), as some invoke
3702 // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3703 // inputs at the end of their list of inputs.
GetNumberOfArguments()3704 uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3705
GetType()3706 Primitive::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); }
3707
GetDexMethodIndex()3708 uint32_t GetDexMethodIndex() const { return dex_method_index_; }
GetDexFile()3709 const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3710
GetOriginalInvokeType()3711 InvokeType GetOriginalInvokeType() const {
3712 return GetPackedField<OriginalInvokeTypeField>();
3713 }
3714
GetIntrinsic()3715 Intrinsics GetIntrinsic() const {
3716 return intrinsic_;
3717 }
3718
3719 void SetIntrinsic(Intrinsics intrinsic,
3720 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
3721 IntrinsicSideEffects side_effects,
3722 IntrinsicExceptions exceptions);
3723
IsFromInlinedInvoke()3724 bool IsFromInlinedInvoke() const {
3725 return GetEnvironment()->IsFromInlinedInvoke();
3726 }
3727
CanThrow()3728 bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); }
3729
CanBeMoved()3730 bool CanBeMoved() const OVERRIDE { return IsIntrinsic(); }
3731
InstructionDataEquals(HInstruction * other)3732 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3733 return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
3734 }
3735
GetIntrinsicOptimizations()3736 uint32_t* GetIntrinsicOptimizations() {
3737 return &intrinsic_optimizations_;
3738 }
3739
GetIntrinsicOptimizations()3740 const uint32_t* GetIntrinsicOptimizations() const {
3741 return &intrinsic_optimizations_;
3742 }
3743
IsIntrinsic()3744 bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3745
3746 DECLARE_ABSTRACT_INSTRUCTION(Invoke);
3747
3748 protected:
3749 static constexpr size_t kFieldOriginalInvokeType = kNumberOfGenericPackedBits;
3750 static constexpr size_t kFieldOriginalInvokeTypeSize =
3751 MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
3752 static constexpr size_t kFieldReturnType =
3753 kFieldOriginalInvokeType + kFieldOriginalInvokeTypeSize;
3754 static constexpr size_t kFieldReturnTypeSize =
3755 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
3756 static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize;
3757 static constexpr size_t kNumberOfInvokePackedBits = kFlagCanThrow + 1;
3758 static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3759 using OriginalInvokeTypeField =
3760 BitField<InvokeType, kFieldOriginalInvokeType, kFieldOriginalInvokeTypeSize>;
3761 using ReturnTypeField = BitField<Primitive::Type, kFieldReturnType, kFieldReturnTypeSize>;
3762
HInvoke(ArenaAllocator * arena,uint32_t number_of_arguments,uint32_t number_of_other_inputs,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,InvokeType original_invoke_type)3763 HInvoke(ArenaAllocator* arena,
3764 uint32_t number_of_arguments,
3765 uint32_t number_of_other_inputs,
3766 Primitive::Type return_type,
3767 uint32_t dex_pc,
3768 uint32_t dex_method_index,
3769 InvokeType original_invoke_type)
3770 : HInstruction(
3771 SideEffects::AllExceptGCDependency(), dex_pc), // Assume write/read on all fields/arrays.
3772 number_of_arguments_(number_of_arguments),
3773 inputs_(number_of_arguments + number_of_other_inputs,
3774 arena->Adapter(kArenaAllocInvokeInputs)),
3775 dex_method_index_(dex_method_index),
3776 intrinsic_(Intrinsics::kNone),
3777 intrinsic_optimizations_(0) {
3778 SetPackedField<ReturnTypeField>(return_type);
3779 SetPackedField<OriginalInvokeTypeField>(original_invoke_type);
3780 SetPackedFlag<kFlagCanThrow>(true);
3781 }
3782
InputRecordAt(size_t index)3783 const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3784 return inputs_[index];
3785 }
3786
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)3787 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3788 inputs_[index] = input;
3789 }
3790
SetCanThrow(bool can_throw)3791 void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
3792
3793 uint32_t number_of_arguments_;
3794 ArenaVector<HUserRecord<HInstruction*>> inputs_;
3795 const uint32_t dex_method_index_;
3796 Intrinsics intrinsic_;
3797
3798 // A magic word holding optimizations for intrinsics. See intrinsics.h.
3799 uint32_t intrinsic_optimizations_;
3800
3801 private:
3802 DISALLOW_COPY_AND_ASSIGN(HInvoke);
3803 };
3804
3805 class HInvokeUnresolved : public HInvoke {
3806 public:
HInvokeUnresolved(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,InvokeType invoke_type)3807 HInvokeUnresolved(ArenaAllocator* arena,
3808 uint32_t number_of_arguments,
3809 Primitive::Type return_type,
3810 uint32_t dex_pc,
3811 uint32_t dex_method_index,
3812 InvokeType invoke_type)
3813 : HInvoke(arena,
3814 number_of_arguments,
3815 0u /* number_of_other_inputs */,
3816 return_type,
3817 dex_pc,
3818 dex_method_index,
3819 invoke_type) {
3820 }
3821
3822 DECLARE_INSTRUCTION(InvokeUnresolved);
3823
3824 private:
3825 DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3826 };
3827
3828 class HInvokeStaticOrDirect : public HInvoke {
3829 public:
3830 // Requirements of this method call regarding the class
3831 // initialization (clinit) check of its declaring class.
3832 enum class ClinitCheckRequirement {
3833 kNone, // Class already initialized.
3834 kExplicit, // Static call having explicit clinit check as last input.
3835 kImplicit, // Static call implicitly requiring a clinit check.
3836 kLast = kImplicit
3837 };
3838
3839 // Determines how to load the target ArtMethod*.
3840 enum class MethodLoadKind {
3841 // Use a String init ArtMethod* loaded from Thread entrypoints.
3842 kStringInit,
3843
3844 // Use the method's own ArtMethod* loaded by the register allocator.
3845 kRecursive,
3846
3847 // Use ArtMethod* at a known address, embed the direct address in the code.
3848 // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3849 kDirectAddress,
3850
3851 // Use ArtMethod* at an address that will be known at link time, embed the direct
3852 // address in the code. If the image is relocatable, emit .patch_oat entry.
3853 // Used for app->boot calls with relocatable image and boot->boot calls, whether
3854 // the image relocatable or not.
3855 kDirectAddressWithFixup,
3856
3857 // Load from resolved methods array in the dex cache using a PC-relative load.
3858 // Used when we need to use the dex cache, for example for invoke-static that
3859 // may cause class initialization (the entry may point to a resolution method),
3860 // and we know that we can access the dex cache arrays using a PC-relative load.
3861 kDexCachePcRelative,
3862
3863 // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3864 // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3865 // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3866 // or unimplemented or impractical (i.e. slow) on a particular architecture.
3867 kDexCacheViaMethod,
3868 };
3869
3870 // Determines the location of the code pointer.
3871 enum class CodePtrLocation {
3872 // Recursive call, use local PC-relative call instruction.
3873 kCallSelf,
3874
3875 // Use PC-relative call instruction patched at link time.
3876 // Used for calls within an oat file, boot->boot or app->app.
3877 kCallPCRelative,
3878
3879 // Call to a known target address, embed the direct address in code.
3880 // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3881 kCallDirect,
3882
3883 // Call to a target address that will be known at link time, embed the direct
3884 // address in code. If the image is relocatable, emit .patch_oat entry.
3885 // Used for app->boot calls with relocatable image and boot->boot calls, whether
3886 // the image relocatable or not.
3887 kCallDirectWithFixup,
3888
3889 // Use code pointer from the ArtMethod*.
3890 // Used when we don't know the target code. This is also the last-resort-kind used when
3891 // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3892 kCallArtMethod,
3893 };
3894
3895 struct DispatchInfo {
3896 MethodLoadKind method_load_kind;
3897 CodePtrLocation code_ptr_location;
3898 // The method load data holds
3899 // - thread entrypoint offset for kStringInit method if this is a string init invoke.
3900 // Note that there are multiple string init methods, each having its own offset.
3901 // - the method address for kDirectAddress
3902 // - the dex cache arrays offset for kDexCachePcRel.
3903 uint64_t method_load_data;
3904 uint64_t direct_code_ptr;
3905 };
3906
HInvokeStaticOrDirect(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t method_index,MethodReference target_method,DispatchInfo dispatch_info,InvokeType original_invoke_type,InvokeType optimized_invoke_type,ClinitCheckRequirement clinit_check_requirement)3907 HInvokeStaticOrDirect(ArenaAllocator* arena,
3908 uint32_t number_of_arguments,
3909 Primitive::Type return_type,
3910 uint32_t dex_pc,
3911 uint32_t method_index,
3912 MethodReference target_method,
3913 DispatchInfo dispatch_info,
3914 InvokeType original_invoke_type,
3915 InvokeType optimized_invoke_type,
3916 ClinitCheckRequirement clinit_check_requirement)
3917 : HInvoke(arena,
3918 number_of_arguments,
3919 // There is potentially one extra argument for the HCurrentMethod node, and
3920 // potentially one other if the clinit check is explicit, and potentially
3921 // one other if the method is a string factory.
3922 (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3923 (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
3924 return_type,
3925 dex_pc,
3926 method_index,
3927 original_invoke_type),
3928 target_method_(target_method),
3929 dispatch_info_(dispatch_info) {
3930 SetPackedField<OptimizedInvokeTypeField>(optimized_invoke_type);
3931 SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
3932 }
3933
SetDispatchInfo(const DispatchInfo & dispatch_info)3934 void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3935 bool had_current_method_input = HasCurrentMethodInput();
3936 bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3937
3938 // Using the current method is the default and once we find a better
3939 // method load kind, we should not go back to using the current method.
3940 DCHECK(had_current_method_input || !needs_current_method_input);
3941
3942 if (had_current_method_input && !needs_current_method_input) {
3943 DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3944 RemoveInputAt(GetSpecialInputIndex());
3945 }
3946 dispatch_info_ = dispatch_info;
3947 }
3948
AddSpecialInput(HInstruction * input)3949 void AddSpecialInput(HInstruction* input) {
3950 // We allow only one special input.
3951 DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3952 DCHECK(InputCount() == GetSpecialInputIndex() ||
3953 (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3954 InsertInputAt(GetSpecialInputIndex(), input);
3955 }
3956
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)3957 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3958 // We access the method via the dex cache so we can't do an implicit null check.
3959 // TODO: for intrinsics we can generate implicit null checks.
3960 return false;
3961 }
3962
CanBeNull()3963 bool CanBeNull() const OVERRIDE {
3964 return GetPackedField<ReturnTypeField>() == Primitive::kPrimNot && !IsStringInit();
3965 }
3966
3967 // Get the index of the special input, if any.
3968 //
3969 // If the invoke HasCurrentMethodInput(), the "special input" is the current
3970 // method pointer; otherwise there may be one platform-specific special input,
3971 // such as PC-relative addressing base.
GetSpecialInputIndex()3972 uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
HasSpecialInput()3973 bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); }
3974
GetOptimizedInvokeType()3975 InvokeType GetOptimizedInvokeType() const {
3976 return GetPackedField<OptimizedInvokeTypeField>();
3977 }
3978
SetOptimizedInvokeType(InvokeType invoke_type)3979 void SetOptimizedInvokeType(InvokeType invoke_type) {
3980 SetPackedField<OptimizedInvokeTypeField>(invoke_type);
3981 }
3982
GetMethodLoadKind()3983 MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
GetCodePtrLocation()3984 CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
IsRecursive()3985 bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3986 bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
IsStringInit()3987 bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
HasMethodAddress()3988 bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
HasPcRelativeDexCache()3989 bool HasPcRelativeDexCache() const {
3990 return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3991 }
HasCurrentMethodInput()3992 bool HasCurrentMethodInput() const {
3993 // This function can be called only after the invoke has been fully initialized by the builder.
3994 if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3995 DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3996 return true;
3997 } else {
3998 DCHECK(InputCount() == GetSpecialInputIndex() ||
3999 !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4000 return false;
4001 }
4002 }
HasDirectCodePtr()4003 bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
GetTargetMethod()4004 MethodReference GetTargetMethod() const { return target_method_; }
SetTargetMethod(MethodReference method)4005 void SetTargetMethod(MethodReference method) { target_method_ = method; }
4006
GetStringInitOffset()4007 int32_t GetStringInitOffset() const {
4008 DCHECK(IsStringInit());
4009 return dispatch_info_.method_load_data;
4010 }
4011
GetMethodAddress()4012 uint64_t GetMethodAddress() const {
4013 DCHECK(HasMethodAddress());
4014 return dispatch_info_.method_load_data;
4015 }
4016
GetDexCacheArrayOffset()4017 uint32_t GetDexCacheArrayOffset() const {
4018 DCHECK(HasPcRelativeDexCache());
4019 return dispatch_info_.method_load_data;
4020 }
4021
GetDirectCodePtr()4022 uint64_t GetDirectCodePtr() const {
4023 DCHECK(HasDirectCodePtr());
4024 return dispatch_info_.direct_code_ptr;
4025 }
4026
GetClinitCheckRequirement()4027 ClinitCheckRequirement GetClinitCheckRequirement() const {
4028 return GetPackedField<ClinitCheckRequirementField>();
4029 }
4030
4031 // Is this instruction a call to a static method?
IsStatic()4032 bool IsStatic() const {
4033 return GetOriginalInvokeType() == kStatic;
4034 }
4035
4036 // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
4037 // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
4038 // instruction; only relevant for static calls with explicit clinit check.
RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement)4039 void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
4040 DCHECK(IsStaticWithExplicitClinitCheck());
4041 size_t last_input_index = InputCount() - 1;
4042 HInstruction* last_input = InputAt(last_input_index);
4043 DCHECK(last_input != nullptr);
4044 DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
4045 RemoveAsUserOfInput(last_input_index);
4046 inputs_.pop_back();
4047 SetPackedField<ClinitCheckRequirementField>(new_requirement);
4048 DCHECK(!IsStaticWithExplicitClinitCheck());
4049 }
4050
4051 // Is this a call to a static method whose declaring class has an
4052 // explicit initialization check in the graph?
IsStaticWithExplicitClinitCheck()4053 bool IsStaticWithExplicitClinitCheck() const {
4054 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
4055 }
4056
4057 // Is this a call to a static method whose declaring class has an
4058 // implicit intialization check requirement?
IsStaticWithImplicitClinitCheck()4059 bool IsStaticWithImplicitClinitCheck() const {
4060 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
4061 }
4062
4063 // Does this method load kind need the current method as an input?
NeedsCurrentMethodInput(MethodLoadKind kind)4064 static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
4065 return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
4066 }
4067
4068 DECLARE_INSTRUCTION(InvokeStaticOrDirect);
4069
4070 protected:
InputRecordAt(size_t i)4071 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
4072 const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
4073 if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
4074 HInstruction* input = input_record.GetInstruction();
4075 // `input` is the last input of a static invoke marked as having
4076 // an explicit clinit check. It must either be:
4077 // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4078 // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4079 DCHECK(input != nullptr);
4080 DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
4081 }
4082 return input_record;
4083 }
4084
4085 void InsertInputAt(size_t index, HInstruction* input);
4086 void RemoveInputAt(size_t index);
4087
4088 private:
4089 static constexpr size_t kFieldOptimizedInvokeType = kNumberOfInvokePackedBits;
4090 static constexpr size_t kFieldOptimizedInvokeTypeSize =
4091 MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4092 static constexpr size_t kFieldClinitCheckRequirement =
4093 kFieldOptimizedInvokeType + kFieldOptimizedInvokeTypeSize;
4094 static constexpr size_t kFieldClinitCheckRequirementSize =
4095 MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
4096 static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
4097 kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
4098 static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
4099 "Too many packed fields.");
4100 using OptimizedInvokeTypeField =
4101 BitField<InvokeType, kFieldOptimizedInvokeType, kFieldOptimizedInvokeTypeSize>;
4102 using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
4103 kFieldClinitCheckRequirement,
4104 kFieldClinitCheckRequirementSize>;
4105
4106 // The target method may refer to different dex file or method index than the original
4107 // invoke. This happens for sharpened calls and for calls where a method was redeclared
4108 // in derived class to increase visibility.
4109 MethodReference target_method_;
4110 DispatchInfo dispatch_info_;
4111
4112 DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
4113 };
4114 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
4115 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
4116
4117 class HInvokeVirtual : public HInvoke {
4118 public:
HInvokeVirtual(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,uint32_t vtable_index)4119 HInvokeVirtual(ArenaAllocator* arena,
4120 uint32_t number_of_arguments,
4121 Primitive::Type return_type,
4122 uint32_t dex_pc,
4123 uint32_t dex_method_index,
4124 uint32_t vtable_index)
4125 : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
4126 vtable_index_(vtable_index) {}
4127
CanDoImplicitNullCheckOn(HInstruction * obj)4128 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4129 // TODO: Add implicit null checks in intrinsics.
4130 return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
4131 }
4132
GetVTableIndex()4133 uint32_t GetVTableIndex() const { return vtable_index_; }
4134
4135 DECLARE_INSTRUCTION(InvokeVirtual);
4136
4137 private:
4138 const uint32_t vtable_index_;
4139
4140 DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
4141 };
4142
4143 class HInvokeInterface : public HInvoke {
4144 public:
HInvokeInterface(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,uint32_t imt_index)4145 HInvokeInterface(ArenaAllocator* arena,
4146 uint32_t number_of_arguments,
4147 Primitive::Type return_type,
4148 uint32_t dex_pc,
4149 uint32_t dex_method_index,
4150 uint32_t imt_index)
4151 : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
4152 imt_index_(imt_index) {}
4153
CanDoImplicitNullCheckOn(HInstruction * obj)4154 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4155 // TODO: Add implicit null checks in intrinsics.
4156 return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
4157 }
4158
GetImtIndex()4159 uint32_t GetImtIndex() const { return imt_index_; }
GetDexMethodIndex()4160 uint32_t GetDexMethodIndex() const { return dex_method_index_; }
4161
4162 DECLARE_INSTRUCTION(InvokeInterface);
4163
4164 private:
4165 const uint32_t imt_index_;
4166
4167 DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
4168 };
4169
4170 class HNeg : public HUnaryOperation {
4171 public:
4172 HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(result_type,input,dex_pc)4173 : HUnaryOperation(result_type, input, dex_pc) {
4174 DCHECK_EQ(result_type, Primitive::PrimitiveKind(input->GetType()));
4175 }
4176
Compute(T x)4177 template <typename T> T Compute(T x) const { return -x; }
4178
Evaluate(HIntConstant * x)4179 HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4180 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4181 }
Evaluate(HLongConstant * x)4182 HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4183 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4184 }
Evaluate(HFloatConstant * x)4185 HConstant* Evaluate(HFloatConstant* x) const OVERRIDE {
4186 return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
4187 }
Evaluate(HDoubleConstant * x)4188 HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE {
4189 return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
4190 }
4191
4192 DECLARE_INSTRUCTION(Neg);
4193
4194 private:
4195 DISALLOW_COPY_AND_ASSIGN(HNeg);
4196 };
4197
4198 class HNewArray : public HExpression<2> {
4199 public:
HNewArray(HInstruction * length,HCurrentMethod * current_method,uint32_t dex_pc,uint16_t type_index,const DexFile & dex_file,QuickEntrypointEnum entrypoint)4200 HNewArray(HInstruction* length,
4201 HCurrentMethod* current_method,
4202 uint32_t dex_pc,
4203 uint16_t type_index,
4204 const DexFile& dex_file,
4205 QuickEntrypointEnum entrypoint)
4206 : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
4207 type_index_(type_index),
4208 dex_file_(dex_file),
4209 entrypoint_(entrypoint) {
4210 SetRawInputAt(0, length);
4211 SetRawInputAt(1, current_method);
4212 }
4213
GetTypeIndex()4214 uint16_t GetTypeIndex() const { return type_index_; }
GetDexFile()4215 const DexFile& GetDexFile() const { return dex_file_; }
4216
4217 // Calls runtime so needs an environment.
NeedsEnvironment()4218 bool NeedsEnvironment() const OVERRIDE { return true; }
4219
4220 // May throw NegativeArraySizeException, OutOfMemoryError, etc.
CanThrow()4221 bool CanThrow() const OVERRIDE { return true; }
4222
CanBeNull()4223 bool CanBeNull() const OVERRIDE { return false; }
4224
GetEntrypoint()4225 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4226
4227 DECLARE_INSTRUCTION(NewArray);
4228
4229 private:
4230 const uint16_t type_index_;
4231 const DexFile& dex_file_;
4232 const QuickEntrypointEnum entrypoint_;
4233
4234 DISALLOW_COPY_AND_ASSIGN(HNewArray);
4235 };
4236
4237 class HAdd : public HBinaryOperation {
4238 public:
4239 HAdd(Primitive::Type result_type,
4240 HInstruction* left,
4241 HInstruction* right,
4242 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4243 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4244
IsCommutative()4245 bool IsCommutative() const OVERRIDE { return true; }
4246
Compute(T x,T y)4247 template <typename T> T Compute(T x, T y) const { return x + y; }
4248
Evaluate(HIntConstant * x,HIntConstant * y)4249 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4250 return GetBlock()->GetGraph()->GetIntConstant(
4251 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4252 }
Evaluate(HLongConstant * x,HLongConstant * y)4253 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4254 return GetBlock()->GetGraph()->GetLongConstant(
4255 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4256 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4257 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4258 return GetBlock()->GetGraph()->GetFloatConstant(
4259 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4260 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4261 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4262 return GetBlock()->GetGraph()->GetDoubleConstant(
4263 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4264 }
4265
4266 DECLARE_INSTRUCTION(Add);
4267
4268 private:
4269 DISALLOW_COPY_AND_ASSIGN(HAdd);
4270 };
4271
4272 class HSub : public HBinaryOperation {
4273 public:
4274 HSub(Primitive::Type result_type,
4275 HInstruction* left,
4276 HInstruction* right,
4277 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4278 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4279
Compute(T x,T y)4280 template <typename T> T Compute(T x, T y) const { return x - y; }
4281
Evaluate(HIntConstant * x,HIntConstant * y)4282 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4283 return GetBlock()->GetGraph()->GetIntConstant(
4284 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4285 }
Evaluate(HLongConstant * x,HLongConstant * y)4286 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4287 return GetBlock()->GetGraph()->GetLongConstant(
4288 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4289 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4290 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4291 return GetBlock()->GetGraph()->GetFloatConstant(
4292 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4293 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4294 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4295 return GetBlock()->GetGraph()->GetDoubleConstant(
4296 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4297 }
4298
4299 DECLARE_INSTRUCTION(Sub);
4300
4301 private:
4302 DISALLOW_COPY_AND_ASSIGN(HSub);
4303 };
4304
4305 class HMul : public HBinaryOperation {
4306 public:
4307 HMul(Primitive::Type result_type,
4308 HInstruction* left,
4309 HInstruction* right,
4310 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4311 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4312
IsCommutative()4313 bool IsCommutative() const OVERRIDE { return true; }
4314
Compute(T x,T y)4315 template <typename T> T Compute(T x, T y) const { return x * y; }
4316
Evaluate(HIntConstant * x,HIntConstant * y)4317 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4318 return GetBlock()->GetGraph()->GetIntConstant(
4319 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4320 }
Evaluate(HLongConstant * x,HLongConstant * y)4321 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4322 return GetBlock()->GetGraph()->GetLongConstant(
4323 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4324 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4325 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4326 return GetBlock()->GetGraph()->GetFloatConstant(
4327 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4328 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4329 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4330 return GetBlock()->GetGraph()->GetDoubleConstant(
4331 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4332 }
4333
4334 DECLARE_INSTRUCTION(Mul);
4335
4336 private:
4337 DISALLOW_COPY_AND_ASSIGN(HMul);
4338 };
4339
4340 class HDiv : public HBinaryOperation {
4341 public:
HDiv(Primitive::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)4342 HDiv(Primitive::Type result_type,
4343 HInstruction* left,
4344 HInstruction* right,
4345 uint32_t dex_pc)
4346 : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
4347
4348 template <typename T>
ComputeIntegral(T x,T y)4349 T ComputeIntegral(T x, T y) const {
4350 DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
4351 // Our graph structure ensures we never have 0 for `y` during
4352 // constant folding.
4353 DCHECK_NE(y, 0);
4354 // Special case -1 to avoid getting a SIGFPE on x86(_64).
4355 return (y == -1) ? -x : x / y;
4356 }
4357
4358 template <typename T>
ComputeFP(T x,T y)4359 T ComputeFP(T x, T y) const {
4360 DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
4361 return x / y;
4362 }
4363
Evaluate(HIntConstant * x,HIntConstant * y)4364 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4365 return GetBlock()->GetGraph()->GetIntConstant(
4366 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4367 }
Evaluate(HLongConstant * x,HLongConstant * y)4368 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4369 return GetBlock()->GetGraph()->GetLongConstant(
4370 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4371 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4372 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4373 return GetBlock()->GetGraph()->GetFloatConstant(
4374 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4375 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4376 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4377 return GetBlock()->GetGraph()->GetDoubleConstant(
4378 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4379 }
4380
SideEffectsForArchRuntimeCalls()4381 static SideEffects SideEffectsForArchRuntimeCalls() {
4382 // The generated code can use a runtime call.
4383 return SideEffects::CanTriggerGC();
4384 }
4385
4386 DECLARE_INSTRUCTION(Div);
4387
4388 private:
4389 DISALLOW_COPY_AND_ASSIGN(HDiv);
4390 };
4391
4392 class HRem : public HBinaryOperation {
4393 public:
HRem(Primitive::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)4394 HRem(Primitive::Type result_type,
4395 HInstruction* left,
4396 HInstruction* right,
4397 uint32_t dex_pc)
4398 : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
4399
4400 template <typename T>
ComputeIntegral(T x,T y)4401 T ComputeIntegral(T x, T y) const {
4402 DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
4403 // Our graph structure ensures we never have 0 for `y` during
4404 // constant folding.
4405 DCHECK_NE(y, 0);
4406 // Special case -1 to avoid getting a SIGFPE on x86(_64).
4407 return (y == -1) ? 0 : x % y;
4408 }
4409
4410 template <typename T>
ComputeFP(T x,T y)4411 T ComputeFP(T x, T y) const {
4412 DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
4413 return std::fmod(x, y);
4414 }
4415
Evaluate(HIntConstant * x,HIntConstant * y)4416 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4417 return GetBlock()->GetGraph()->GetIntConstant(
4418 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4419 }
Evaluate(HLongConstant * x,HLongConstant * y)4420 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4421 return GetBlock()->GetGraph()->GetLongConstant(
4422 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4423 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4424 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4425 return GetBlock()->GetGraph()->GetFloatConstant(
4426 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4427 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4428 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4429 return GetBlock()->GetGraph()->GetDoubleConstant(
4430 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4431 }
4432
SideEffectsForArchRuntimeCalls()4433 static SideEffects SideEffectsForArchRuntimeCalls() {
4434 return SideEffects::CanTriggerGC();
4435 }
4436
4437 DECLARE_INSTRUCTION(Rem);
4438
4439 private:
4440 DISALLOW_COPY_AND_ASSIGN(HRem);
4441 };
4442
4443 class HDivZeroCheck : public HExpression<1> {
4444 public:
4445 // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
4446 // constructor.
HDivZeroCheck(HInstruction * value,uint32_t dex_pc)4447 HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
4448 : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4449 SetRawInputAt(0, value);
4450 }
4451
GetType()4452 Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
4453
CanBeMoved()4454 bool CanBeMoved() const OVERRIDE { return true; }
4455
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)4456 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4457 return true;
4458 }
4459
NeedsEnvironment()4460 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()4461 bool CanThrow() const OVERRIDE { return true; }
4462
4463 DECLARE_INSTRUCTION(DivZeroCheck);
4464
4465 private:
4466 DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
4467 };
4468
4469 class HShl : public HBinaryOperation {
4470 public:
4471 HShl(Primitive::Type result_type,
4472 HInstruction* value,
4473 HInstruction* distance,
4474 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,value,distance,SideEffects::None (),dex_pc)4475 : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4476 DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4477 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4478 }
4479
4480 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)4481 T Compute(T value, int32_t distance, int32_t max_shift_distance) const {
4482 return value << (distance & max_shift_distance);
4483 }
4484
Evaluate(HIntConstant * value,HIntConstant * distance)4485 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4486 return GetBlock()->GetGraph()->GetIntConstant(
4487 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4488 }
Evaluate(HLongConstant * value,HIntConstant * distance)4489 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4490 return GetBlock()->GetGraph()->GetLongConstant(
4491 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4492 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)4493 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4494 HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4495 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4496 UNREACHABLE();
4497 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)4498 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4499 HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4500 LOG(FATAL) << DebugName() << " is not defined for float values";
4501 UNREACHABLE();
4502 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)4503 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4504 HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4505 LOG(FATAL) << DebugName() << " is not defined for double values";
4506 UNREACHABLE();
4507 }
4508
4509 DECLARE_INSTRUCTION(Shl);
4510
4511 private:
4512 DISALLOW_COPY_AND_ASSIGN(HShl);
4513 };
4514
4515 class HShr : public HBinaryOperation {
4516 public:
4517 HShr(Primitive::Type result_type,
4518 HInstruction* value,
4519 HInstruction* distance,
4520 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,value,distance,SideEffects::None (),dex_pc)4521 : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4522 DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4523 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4524 }
4525
4526 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)4527 T Compute(T value, int32_t distance, int32_t max_shift_distance) const {
4528 return value >> (distance & max_shift_distance);
4529 }
4530
Evaluate(HIntConstant * value,HIntConstant * distance)4531 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4532 return GetBlock()->GetGraph()->GetIntConstant(
4533 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4534 }
Evaluate(HLongConstant * value,HIntConstant * distance)4535 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4536 return GetBlock()->GetGraph()->GetLongConstant(
4537 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4538 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)4539 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4540 HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4541 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4542 UNREACHABLE();
4543 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)4544 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4545 HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4546 LOG(FATAL) << DebugName() << " is not defined for float values";
4547 UNREACHABLE();
4548 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)4549 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4550 HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4551 LOG(FATAL) << DebugName() << " is not defined for double values";
4552 UNREACHABLE();
4553 }
4554
4555 DECLARE_INSTRUCTION(Shr);
4556
4557 private:
4558 DISALLOW_COPY_AND_ASSIGN(HShr);
4559 };
4560
4561 class HUShr : public HBinaryOperation {
4562 public:
4563 HUShr(Primitive::Type result_type,
4564 HInstruction* value,
4565 HInstruction* distance,
4566 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,value,distance,SideEffects::None (),dex_pc)4567 : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4568 DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4569 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4570 }
4571
4572 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)4573 T Compute(T value, int32_t distance, int32_t max_shift_distance) const {
4574 typedef typename std::make_unsigned<T>::type V;
4575 V ux = static_cast<V>(value);
4576 return static_cast<T>(ux >> (distance & max_shift_distance));
4577 }
4578
Evaluate(HIntConstant * value,HIntConstant * distance)4579 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4580 return GetBlock()->GetGraph()->GetIntConstant(
4581 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4582 }
Evaluate(HLongConstant * value,HIntConstant * distance)4583 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4584 return GetBlock()->GetGraph()->GetLongConstant(
4585 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4586 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)4587 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4588 HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4589 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4590 UNREACHABLE();
4591 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)4592 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4593 HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4594 LOG(FATAL) << DebugName() << " is not defined for float values";
4595 UNREACHABLE();
4596 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)4597 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4598 HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4599 LOG(FATAL) << DebugName() << " is not defined for double values";
4600 UNREACHABLE();
4601 }
4602
4603 DECLARE_INSTRUCTION(UShr);
4604
4605 private:
4606 DISALLOW_COPY_AND_ASSIGN(HUShr);
4607 };
4608
4609 class HAnd : public HBinaryOperation {
4610 public:
4611 HAnd(Primitive::Type result_type,
4612 HInstruction* left,
4613 HInstruction* right,
4614 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4615 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4616
IsCommutative()4617 bool IsCommutative() const OVERRIDE { return true; }
4618
Compute(T x,T y)4619 template <typename T> T Compute(T x, T y) const { return x & y; }
4620
Evaluate(HIntConstant * x,HIntConstant * y)4621 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4622 return GetBlock()->GetGraph()->GetIntConstant(
4623 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4624 }
Evaluate(HLongConstant * x,HLongConstant * y)4625 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4626 return GetBlock()->GetGraph()->GetLongConstant(
4627 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4628 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4629 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4630 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4631 LOG(FATAL) << DebugName() << " is not defined for float values";
4632 UNREACHABLE();
4633 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4634 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4635 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4636 LOG(FATAL) << DebugName() << " is not defined for double values";
4637 UNREACHABLE();
4638 }
4639
4640 DECLARE_INSTRUCTION(And);
4641
4642 private:
4643 DISALLOW_COPY_AND_ASSIGN(HAnd);
4644 };
4645
4646 class HOr : public HBinaryOperation {
4647 public:
4648 HOr(Primitive::Type result_type,
4649 HInstruction* left,
4650 HInstruction* right,
4651 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4652 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4653
IsCommutative()4654 bool IsCommutative() const OVERRIDE { return true; }
4655
Compute(T x,T y)4656 template <typename T> T Compute(T x, T y) const { return x | y; }
4657
Evaluate(HIntConstant * x,HIntConstant * y)4658 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4659 return GetBlock()->GetGraph()->GetIntConstant(
4660 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4661 }
Evaluate(HLongConstant * x,HLongConstant * y)4662 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4663 return GetBlock()->GetGraph()->GetLongConstant(
4664 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4665 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4666 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4667 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4668 LOG(FATAL) << DebugName() << " is not defined for float values";
4669 UNREACHABLE();
4670 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4671 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4672 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4673 LOG(FATAL) << DebugName() << " is not defined for double values";
4674 UNREACHABLE();
4675 }
4676
4677 DECLARE_INSTRUCTION(Or);
4678
4679 private:
4680 DISALLOW_COPY_AND_ASSIGN(HOr);
4681 };
4682
4683 class HXor : public HBinaryOperation {
4684 public:
4685 HXor(Primitive::Type result_type,
4686 HInstruction* left,
4687 HInstruction* right,
4688 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4689 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4690
IsCommutative()4691 bool IsCommutative() const OVERRIDE { return true; }
4692
Compute(T x,T y)4693 template <typename T> T Compute(T x, T y) const { return x ^ y; }
4694
Evaluate(HIntConstant * x,HIntConstant * y)4695 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4696 return GetBlock()->GetGraph()->GetIntConstant(
4697 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4698 }
Evaluate(HLongConstant * x,HLongConstant * y)4699 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4700 return GetBlock()->GetGraph()->GetLongConstant(
4701 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4702 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4703 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4704 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4705 LOG(FATAL) << DebugName() << " is not defined for float values";
4706 UNREACHABLE();
4707 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4708 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4709 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4710 LOG(FATAL) << DebugName() << " is not defined for double values";
4711 UNREACHABLE();
4712 }
4713
4714 DECLARE_INSTRUCTION(Xor);
4715
4716 private:
4717 DISALLOW_COPY_AND_ASSIGN(HXor);
4718 };
4719
4720 class HRor : public HBinaryOperation {
4721 public:
HRor(Primitive::Type result_type,HInstruction * value,HInstruction * distance)4722 HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance)
4723 : HBinaryOperation(result_type, value, distance) {
4724 DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4725 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4726 }
4727
4728 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_value)4729 T Compute(T value, int32_t distance, int32_t max_shift_value) const {
4730 typedef typename std::make_unsigned<T>::type V;
4731 V ux = static_cast<V>(value);
4732 if ((distance & max_shift_value) == 0) {
4733 return static_cast<T>(ux);
4734 } else {
4735 const V reg_bits = sizeof(T) * 8;
4736 return static_cast<T>(ux >> (distance & max_shift_value)) |
4737 (value << (reg_bits - (distance & max_shift_value)));
4738 }
4739 }
4740
Evaluate(HIntConstant * value,HIntConstant * distance)4741 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4742 return GetBlock()->GetGraph()->GetIntConstant(
4743 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4744 }
Evaluate(HLongConstant * value,HIntConstant * distance)4745 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4746 return GetBlock()->GetGraph()->GetLongConstant(
4747 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4748 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)4749 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4750 HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4751 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4752 UNREACHABLE();
4753 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)4754 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4755 HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4756 LOG(FATAL) << DebugName() << " is not defined for float values";
4757 UNREACHABLE();
4758 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)4759 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4760 HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4761 LOG(FATAL) << DebugName() << " is not defined for double values";
4762 UNREACHABLE();
4763 }
4764
4765 DECLARE_INSTRUCTION(Ror);
4766
4767 private:
4768 DISALLOW_COPY_AND_ASSIGN(HRor);
4769 };
4770
4771 // The value of a parameter in this method. Its location depends on
4772 // the calling convention.
4773 class HParameterValue : public HExpression<0> {
4774 public:
4775 HParameterValue(const DexFile& dex_file,
4776 uint16_t type_index,
4777 uint8_t index,
4778 Primitive::Type parameter_type,
4779 bool is_this = false)
HExpression(parameter_type,SideEffects::None (),kNoDexPc)4780 : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4781 dex_file_(dex_file),
4782 type_index_(type_index),
4783 index_(index) {
4784 SetPackedFlag<kFlagIsThis>(is_this);
4785 SetPackedFlag<kFlagCanBeNull>(!is_this);
4786 }
4787
GetDexFile()4788 const DexFile& GetDexFile() const { return dex_file_; }
GetTypeIndex()4789 uint16_t GetTypeIndex() const { return type_index_; }
GetIndex()4790 uint8_t GetIndex() const { return index_; }
IsThis()4791 bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
4792
CanBeNull()4793 bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)4794 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
4795
4796 DECLARE_INSTRUCTION(ParameterValue);
4797
4798 private:
4799 // Whether or not the parameter value corresponds to 'this' argument.
4800 static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits;
4801 static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
4802 static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
4803 static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
4804 "Too many packed fields.");
4805
4806 const DexFile& dex_file_;
4807 const uint16_t type_index_;
4808 // The index of this parameter in the parameters list. Must be less
4809 // than HGraph::number_of_in_vregs_.
4810 const uint8_t index_;
4811
4812 DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4813 };
4814
4815 class HNot : public HUnaryOperation {
4816 public:
4817 HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(result_type,input,dex_pc)4818 : HUnaryOperation(result_type, input, dex_pc) {}
4819
CanBeMoved()4820 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)4821 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4822 return true;
4823 }
4824
Compute(T x)4825 template <typename T> T Compute(T x) const { return ~x; }
4826
Evaluate(HIntConstant * x)4827 HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4828 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4829 }
Evaluate(HLongConstant * x)4830 HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4831 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4832 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)4833 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4834 LOG(FATAL) << DebugName() << " is not defined for float values";
4835 UNREACHABLE();
4836 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)4837 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4838 LOG(FATAL) << DebugName() << " is not defined for double values";
4839 UNREACHABLE();
4840 }
4841
4842 DECLARE_INSTRUCTION(Not);
4843
4844 private:
4845 DISALLOW_COPY_AND_ASSIGN(HNot);
4846 };
4847
4848 class HBooleanNot : public HUnaryOperation {
4849 public:
4850 explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(Primitive::Type::kPrimBoolean,input,dex_pc)4851 : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4852
CanBeMoved()4853 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)4854 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4855 return true;
4856 }
4857
Compute(T x)4858 template <typename T> bool Compute(T x) const {
4859 DCHECK(IsUint<1>(x)) << x;
4860 return !x;
4861 }
4862
Evaluate(HIntConstant * x)4863 HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4864 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4865 }
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED)4866 HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4867 LOG(FATAL) << DebugName() << " is not defined for long values";
4868 UNREACHABLE();
4869 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)4870 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4871 LOG(FATAL) << DebugName() << " is not defined for float values";
4872 UNREACHABLE();
4873 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)4874 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4875 LOG(FATAL) << DebugName() << " is not defined for double values";
4876 UNREACHABLE();
4877 }
4878
4879 DECLARE_INSTRUCTION(BooleanNot);
4880
4881 private:
4882 DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4883 };
4884
4885 class HTypeConversion : public HExpression<1> {
4886 public:
4887 // Instantiate a type conversion of `input` to `result_type`.
HTypeConversion(Primitive::Type result_type,HInstruction * input,uint32_t dex_pc)4888 HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4889 : HExpression(result_type,
4890 SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4891 dex_pc) {
4892 SetRawInputAt(0, input);
4893 // Invariant: We should never generate a conversion to a Boolean value.
4894 DCHECK_NE(Primitive::kPrimBoolean, result_type);
4895 }
4896
GetInput()4897 HInstruction* GetInput() const { return InputAt(0); }
GetInputType()4898 Primitive::Type GetInputType() const { return GetInput()->GetType(); }
GetResultType()4899 Primitive::Type GetResultType() const { return GetType(); }
4900
CanBeMoved()4901 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)4902 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4903
4904 // Try to statically evaluate the conversion and return a HConstant
4905 // containing the result. If the input cannot be converted, return nullptr.
4906 HConstant* TryStaticEvaluation() const;
4907
SideEffectsForArchRuntimeCalls(Primitive::Type input_type,Primitive::Type result_type)4908 static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4909 Primitive::Type result_type) {
4910 // Some architectures may not require the 'GC' side effects, but at this point
4911 // in the compilation process we do not know what architecture we will
4912 // generate code for, so we must be conservative.
4913 if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4914 || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4915 return SideEffects::CanTriggerGC();
4916 }
4917 return SideEffects::None();
4918 }
4919
4920 DECLARE_INSTRUCTION(TypeConversion);
4921
4922 private:
4923 DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4924 };
4925
4926 static constexpr uint32_t kNoRegNumber = -1;
4927
4928 class HNullCheck : public HExpression<1> {
4929 public:
4930 // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
4931 // constructor.
HNullCheck(HInstruction * value,uint32_t dex_pc)4932 HNullCheck(HInstruction* value, uint32_t dex_pc)
4933 : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4934 SetRawInputAt(0, value);
4935 }
4936
CanBeMoved()4937 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)4938 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4939 return true;
4940 }
4941
NeedsEnvironment()4942 bool NeedsEnvironment() const OVERRIDE { return true; }
4943
CanThrow()4944 bool CanThrow() const OVERRIDE { return true; }
4945
CanBeNull()4946 bool CanBeNull() const OVERRIDE { return false; }
4947
4948
4949 DECLARE_INSTRUCTION(NullCheck);
4950
4951 private:
4952 DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4953 };
4954
4955 class FieldInfo : public ValueObject {
4956 public:
FieldInfo(MemberOffset field_offset,Primitive::Type field_type,bool is_volatile,uint32_t index,uint16_t declaring_class_def_index,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache)4957 FieldInfo(MemberOffset field_offset,
4958 Primitive::Type field_type,
4959 bool is_volatile,
4960 uint32_t index,
4961 uint16_t declaring_class_def_index,
4962 const DexFile& dex_file,
4963 Handle<mirror::DexCache> dex_cache)
4964 : field_offset_(field_offset),
4965 field_type_(field_type),
4966 is_volatile_(is_volatile),
4967 index_(index),
4968 declaring_class_def_index_(declaring_class_def_index),
4969 dex_file_(dex_file),
4970 dex_cache_(dex_cache) {}
4971
GetFieldOffset()4972 MemberOffset GetFieldOffset() const { return field_offset_; }
GetFieldType()4973 Primitive::Type GetFieldType() const { return field_type_; }
GetFieldIndex()4974 uint32_t GetFieldIndex() const { return index_; }
GetDeclaringClassDefIndex()4975 uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
GetDexFile()4976 const DexFile& GetDexFile() const { return dex_file_; }
IsVolatile()4977 bool IsVolatile() const { return is_volatile_; }
GetDexCache()4978 Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4979
4980 private:
4981 const MemberOffset field_offset_;
4982 const Primitive::Type field_type_;
4983 const bool is_volatile_;
4984 const uint32_t index_;
4985 const uint16_t declaring_class_def_index_;
4986 const DexFile& dex_file_;
4987 const Handle<mirror::DexCache> dex_cache_;
4988 };
4989
4990 class HInstanceFieldGet : public HExpression<1> {
4991 public:
HInstanceFieldGet(HInstruction * value,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache,uint32_t dex_pc)4992 HInstanceFieldGet(HInstruction* value,
4993 Primitive::Type field_type,
4994 MemberOffset field_offset,
4995 bool is_volatile,
4996 uint32_t field_idx,
4997 uint16_t declaring_class_def_index,
4998 const DexFile& dex_file,
4999 Handle<mirror::DexCache> dex_cache,
5000 uint32_t dex_pc)
5001 : HExpression(field_type,
5002 SideEffects::FieldReadOfType(field_type, is_volatile),
5003 dex_pc),
5004 field_info_(field_offset,
5005 field_type,
5006 is_volatile,
5007 field_idx,
5008 declaring_class_def_index,
5009 dex_file,
5010 dex_cache) {
5011 SetRawInputAt(0, value);
5012 }
5013
CanBeMoved()5014 bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5015
InstructionDataEquals(HInstruction * other)5016 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5017 HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
5018 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5019 }
5020
CanDoImplicitNullCheckOn(HInstruction * obj)5021 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5022 return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
5023 }
5024
ComputeHashCode()5025 size_t ComputeHashCode() const OVERRIDE {
5026 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5027 }
5028
GetFieldInfo()5029 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5030 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5031 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5032 bool IsVolatile() const { return field_info_.IsVolatile(); }
5033
5034 DECLARE_INSTRUCTION(InstanceFieldGet);
5035
5036 private:
5037 const FieldInfo field_info_;
5038
5039 DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
5040 };
5041
5042 class HInstanceFieldSet : public HTemplateInstruction<2> {
5043 public:
HInstanceFieldSet(HInstruction * object,HInstruction * value,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache,uint32_t dex_pc)5044 HInstanceFieldSet(HInstruction* object,
5045 HInstruction* value,
5046 Primitive::Type field_type,
5047 MemberOffset field_offset,
5048 bool is_volatile,
5049 uint32_t field_idx,
5050 uint16_t declaring_class_def_index,
5051 const DexFile& dex_file,
5052 Handle<mirror::DexCache> dex_cache,
5053 uint32_t dex_pc)
5054 : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5055 dex_pc),
5056 field_info_(field_offset,
5057 field_type,
5058 is_volatile,
5059 field_idx,
5060 declaring_class_def_index,
5061 dex_file,
5062 dex_cache) {
5063 SetPackedFlag<kFlagValueCanBeNull>(true);
5064 SetRawInputAt(0, object);
5065 SetRawInputAt(1, value);
5066 }
5067
CanDoImplicitNullCheckOn(HInstruction * obj)5068 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5069 return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
5070 }
5071
GetFieldInfo()5072 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5073 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5074 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5075 bool IsVolatile() const { return field_info_.IsVolatile(); }
GetValue()5076 HInstruction* GetValue() const { return InputAt(1); }
GetValueCanBeNull()5077 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
ClearValueCanBeNull()5078 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5079
5080 DECLARE_INSTRUCTION(InstanceFieldSet);
5081
5082 private:
5083 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5084 static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
5085 static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
5086 "Too many packed fields.");
5087
5088 const FieldInfo field_info_;
5089
5090 DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
5091 };
5092
5093 class HArrayGet : public HExpression<2> {
5094 public:
5095 HArrayGet(HInstruction* array,
5096 HInstruction* index,
5097 Primitive::Type type,
5098 uint32_t dex_pc,
5099 SideEffects additional_side_effects = SideEffects::None())
5100 : HExpression(type,
5101 SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
5102 dex_pc) {
5103 SetRawInputAt(0, array);
5104 SetRawInputAt(1, index);
5105 }
5106
CanBeMoved()5107 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)5108 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5109 return true;
5110 }
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)5111 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
5112 // TODO: We can be smarter here.
5113 // Currently, the array access is always preceded by an ArrayLength or a NullCheck
5114 // which generates the implicit null check. There are cases when these can be removed
5115 // to produce better code. If we ever add optimizations to do so we should allow an
5116 // implicit check here (as long as the address falls in the first page).
5117 return false;
5118 }
5119
IsEquivalentOf(HArrayGet * other)5120 bool IsEquivalentOf(HArrayGet* other) const {
5121 bool result = (GetDexPc() == other->GetDexPc());
5122 if (kIsDebugBuild && result) {
5123 DCHECK_EQ(GetBlock(), other->GetBlock());
5124 DCHECK_EQ(GetArray(), other->GetArray());
5125 DCHECK_EQ(GetIndex(), other->GetIndex());
5126 if (Primitive::IsIntOrLongType(GetType())) {
5127 DCHECK(Primitive::IsFloatingPointType(other->GetType())) << other->GetType();
5128 } else {
5129 DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
5130 DCHECK(Primitive::IsIntOrLongType(other->GetType())) << other->GetType();
5131 }
5132 }
5133 return result;
5134 }
5135
GetArray()5136 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()5137 HInstruction* GetIndex() const { return InputAt(1); }
5138
5139 DECLARE_INSTRUCTION(ArrayGet);
5140
5141 private:
5142 DISALLOW_COPY_AND_ASSIGN(HArrayGet);
5143 };
5144
5145 class HArraySet : public HTemplateInstruction<3> {
5146 public:
5147 HArraySet(HInstruction* array,
5148 HInstruction* index,
5149 HInstruction* value,
5150 Primitive::Type expected_component_type,
5151 uint32_t dex_pc,
5152 SideEffects additional_side_effects = SideEffects::None())
5153 : HTemplateInstruction(
5154 SideEffects::ArrayWriteOfType(expected_component_type).Union(
5155 SideEffectsForArchRuntimeCalls(value->GetType())).Union(
5156 additional_side_effects),
5157 dex_pc) {
5158 SetPackedField<ExpectedComponentTypeField>(expected_component_type);
5159 SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == Primitive::kPrimNot);
5160 SetPackedFlag<kFlagValueCanBeNull>(true);
5161 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
5162 SetRawInputAt(0, array);
5163 SetRawInputAt(1, index);
5164 SetRawInputAt(2, value);
5165 }
5166
NeedsEnvironment()5167 bool NeedsEnvironment() const OVERRIDE {
5168 // We call a runtime method to throw ArrayStoreException.
5169 return NeedsTypeCheck();
5170 }
5171
5172 // Can throw ArrayStoreException.
CanThrow()5173 bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); }
5174
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)5175 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
5176 // TODO: Same as for ArrayGet.
5177 return false;
5178 }
5179
ClearNeedsTypeCheck()5180 void ClearNeedsTypeCheck() {
5181 SetPackedFlag<kFlagNeedsTypeCheck>(false);
5182 }
5183
ClearValueCanBeNull()5184 void ClearValueCanBeNull() {
5185 SetPackedFlag<kFlagValueCanBeNull>(false);
5186 }
5187
SetStaticTypeOfArrayIsObjectArray()5188 void SetStaticTypeOfArrayIsObjectArray() {
5189 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
5190 }
5191
GetValueCanBeNull()5192 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
NeedsTypeCheck()5193 bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
StaticTypeOfArrayIsObjectArray()5194 bool StaticTypeOfArrayIsObjectArray() const {
5195 return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
5196 }
5197
GetArray()5198 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()5199 HInstruction* GetIndex() const { return InputAt(1); }
GetValue()5200 HInstruction* GetValue() const { return InputAt(2); }
5201
GetComponentType()5202 Primitive::Type GetComponentType() const {
5203 // The Dex format does not type floating point index operations. Since the
5204 // `expected_component_type_` is set during building and can therefore not
5205 // be correct, we also check what is the value type. If it is a floating
5206 // point type, we must use that type.
5207 Primitive::Type value_type = GetValue()->GetType();
5208 return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
5209 ? value_type
5210 : GetRawExpectedComponentType();
5211 }
5212
GetRawExpectedComponentType()5213 Primitive::Type GetRawExpectedComponentType() const {
5214 return GetPackedField<ExpectedComponentTypeField>();
5215 }
5216
SideEffectsForArchRuntimeCalls(Primitive::Type value_type)5217 static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
5218 return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
5219 }
5220
5221 DECLARE_INSTRUCTION(ArraySet);
5222
5223 private:
5224 static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
5225 static constexpr size_t kFieldExpectedComponentTypeSize =
5226 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
5227 static constexpr size_t kFlagNeedsTypeCheck =
5228 kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
5229 static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
5230 // Cached information for the reference_type_info_ so that codegen
5231 // does not need to inspect the static type.
5232 static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
5233 static constexpr size_t kNumberOfArraySetPackedBits =
5234 kFlagStaticTypeOfArrayIsObjectArray + 1;
5235 static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5236 using ExpectedComponentTypeField =
5237 BitField<Primitive::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
5238
5239 DISALLOW_COPY_AND_ASSIGN(HArraySet);
5240 };
5241
5242 class HArrayLength : public HExpression<1> {
5243 public:
HArrayLength(HInstruction * array,uint32_t dex_pc)5244 HArrayLength(HInstruction* array, uint32_t dex_pc)
5245 : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
5246 // Note that arrays do not change length, so the instruction does not
5247 // depend on any write.
5248 SetRawInputAt(0, array);
5249 }
5250
CanBeMoved()5251 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)5252 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5253 return true;
5254 }
CanDoImplicitNullCheckOn(HInstruction * obj)5255 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5256 return obj == InputAt(0);
5257 }
5258
5259 DECLARE_INSTRUCTION(ArrayLength);
5260
5261 private:
5262 DISALLOW_COPY_AND_ASSIGN(HArrayLength);
5263 };
5264
5265 class HBoundsCheck : public HExpression<2> {
5266 public:
5267 // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
5268 // constructor.
HBoundsCheck(HInstruction * index,HInstruction * length,uint32_t dex_pc)5269 HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
5270 : HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
5271 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(index->GetType()));
5272 SetRawInputAt(0, index);
5273 SetRawInputAt(1, length);
5274 }
5275
CanBeMoved()5276 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)5277 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5278 return true;
5279 }
5280
NeedsEnvironment()5281 bool NeedsEnvironment() const OVERRIDE { return true; }
5282
CanThrow()5283 bool CanThrow() const OVERRIDE { return true; }
5284
GetIndex()5285 HInstruction* GetIndex() const { return InputAt(0); }
5286
5287 DECLARE_INSTRUCTION(BoundsCheck);
5288
5289 private:
5290 DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
5291 };
5292
5293 class HSuspendCheck : public HTemplateInstruction<0> {
5294 public:
5295 explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::CanTriggerGC (),dex_pc)5296 : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
5297
NeedsEnvironment()5298 bool NeedsEnvironment() const OVERRIDE {
5299 return true;
5300 }
5301
SetSlowPath(SlowPathCode * slow_path)5302 void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
GetSlowPath()5303 SlowPathCode* GetSlowPath() const { return slow_path_; }
5304
5305 DECLARE_INSTRUCTION(SuspendCheck);
5306
5307 private:
5308 // Only used for code generation, in order to share the same slow path between back edges
5309 // of a same loop.
5310 SlowPathCode* slow_path_;
5311
5312 DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
5313 };
5314
5315 // Pseudo-instruction which provides the native debugger with mapping information.
5316 // It ensures that we can generate line number and local variables at this point.
5317 class HNativeDebugInfo : public HTemplateInstruction<0> {
5318 public:
HNativeDebugInfo(uint32_t dex_pc)5319 explicit HNativeDebugInfo(uint32_t dex_pc)
5320 : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {}
5321
NeedsEnvironment()5322 bool NeedsEnvironment() const OVERRIDE {
5323 return true;
5324 }
5325
5326 DECLARE_INSTRUCTION(NativeDebugInfo);
5327
5328 private:
5329 DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo);
5330 };
5331
5332 /**
5333 * Instruction to load a Class object.
5334 */
5335 class HLoadClass : public HExpression<1> {
5336 public:
HLoadClass(HCurrentMethod * current_method,uint16_t type_index,const DexFile & dex_file,bool is_referrers_class,uint32_t dex_pc,bool needs_access_check,bool is_in_dex_cache)5337 HLoadClass(HCurrentMethod* current_method,
5338 uint16_t type_index,
5339 const DexFile& dex_file,
5340 bool is_referrers_class,
5341 uint32_t dex_pc,
5342 bool needs_access_check,
5343 bool is_in_dex_cache)
5344 : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
5345 type_index_(type_index),
5346 dex_file_(dex_file),
5347 loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
5348 // Referrers class should not need access check. We never inline unverified
5349 // methods so we can't possibly end up in this situation.
5350 DCHECK(!is_referrers_class || !needs_access_check);
5351
5352 SetPackedFlag<kFlagIsReferrersClass>(is_referrers_class);
5353 SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
5354 SetPackedFlag<kFlagIsInDexCache>(is_in_dex_cache);
5355 SetPackedFlag<kFlagGenerateClInitCheck>(false);
5356 SetRawInputAt(0, current_method);
5357 }
5358
CanBeMoved()5359 bool CanBeMoved() const OVERRIDE { return true; }
5360
InstructionDataEquals(HInstruction * other)5361 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5362 // Note that we don't need to test for generate_clinit_check_.
5363 // Whether or not we need to generate the clinit check is processed in
5364 // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
5365 return other->AsLoadClass()->type_index_ == type_index_ &&
5366 other->AsLoadClass()->GetPackedFields() == GetPackedFields();
5367 }
5368
ComputeHashCode()5369 size_t ComputeHashCode() const OVERRIDE { return type_index_; }
5370
GetTypeIndex()5371 uint16_t GetTypeIndex() const { return type_index_; }
CanBeNull()5372 bool CanBeNull() const OVERRIDE { return false; }
5373
NeedsEnvironment()5374 bool NeedsEnvironment() const OVERRIDE {
5375 return CanCallRuntime();
5376 }
5377
SetMustGenerateClinitCheck(bool generate_clinit_check)5378 void SetMustGenerateClinitCheck(bool generate_clinit_check) {
5379 // The entrypoint the code generator is going to call does not do
5380 // clinit of the class.
5381 DCHECK(!NeedsAccessCheck());
5382 SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
5383 }
5384
CanCallRuntime()5385 bool CanCallRuntime() const {
5386 return MustGenerateClinitCheck() ||
5387 (!IsReferrersClass() && !IsInDexCache()) ||
5388 NeedsAccessCheck();
5389 }
5390
5391
CanThrow()5392 bool CanThrow() const OVERRIDE {
5393 return CanCallRuntime();
5394 }
5395
GetLoadedClassRTI()5396 ReferenceTypeInfo GetLoadedClassRTI() {
5397 return loaded_class_rti_;
5398 }
5399
SetLoadedClassRTI(ReferenceTypeInfo rti)5400 void SetLoadedClassRTI(ReferenceTypeInfo rti) {
5401 // Make sure we only set exact types (the loaded class should never be merged).
5402 DCHECK(rti.IsExact());
5403 loaded_class_rti_ = rti;
5404 }
5405
GetDexFile()5406 const DexFile& GetDexFile() { return dex_file_; }
5407
NeedsDexCacheOfDeclaringClass()5408 bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !IsReferrersClass(); }
5409
SideEffectsForArchRuntimeCalls()5410 static SideEffects SideEffectsForArchRuntimeCalls() {
5411 return SideEffects::CanTriggerGC();
5412 }
5413
IsReferrersClass()5414 bool IsReferrersClass() const { return GetPackedFlag<kFlagIsReferrersClass>(); }
NeedsAccessCheck()5415 bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
IsInDexCache()5416 bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); }
MustGenerateClinitCheck()5417 bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
5418
5419 DECLARE_INSTRUCTION(LoadClass);
5420
5421 private:
5422 static constexpr size_t kFlagIsReferrersClass = kNumberOfExpressionPackedBits;
5423 static constexpr size_t kFlagNeedsAccessCheck = kFlagIsReferrersClass + 1;
5424 static constexpr size_t kFlagIsInDexCache = kFlagNeedsAccessCheck + 1;
5425 // Whether this instruction must generate the initialization check.
5426 // Used for code generation.
5427 static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInDexCache + 1;
5428 static constexpr size_t kNumberOfLoadClassPackedBits = kFlagGenerateClInitCheck + 1;
5429 static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
5430
5431 const uint16_t type_index_;
5432 const DexFile& dex_file_;
5433
5434 ReferenceTypeInfo loaded_class_rti_;
5435
5436 DISALLOW_COPY_AND_ASSIGN(HLoadClass);
5437 };
5438
5439 class HLoadString : public HExpression<1> {
5440 public:
5441 // Determines how to load the String.
5442 enum class LoadKind {
5443 // Use boot image String* address that will be known at link time.
5444 // Used for boot image strings referenced by boot image code in non-PIC mode.
5445 kBootImageLinkTimeAddress,
5446
5447 // Use PC-relative boot image String* address that will be known at link time.
5448 // Used for boot image strings referenced by boot image code in PIC mode.
5449 kBootImageLinkTimePcRelative,
5450
5451 // Use a known boot image String* address, embedded in the code by the codegen.
5452 // Used for boot image strings referenced by apps in AOT- and JIT-compiled code.
5453 // Note: codegen needs to emit a linker patch if indicated by compiler options'
5454 // GetIncludePatchInformation().
5455 kBootImageAddress,
5456
5457 // Load from the resolved strings array at an absolute address.
5458 // Used for strings outside the boot image referenced by JIT-compiled code.
5459 kDexCacheAddress,
5460
5461 // Load from resolved strings array in the dex cache using a PC-relative load.
5462 // Used for strings outside boot image when we know that we can access
5463 // the dex cache arrays using a PC-relative load.
5464 kDexCachePcRelative,
5465
5466 // Load from resolved strings array accessed through the class loaded from
5467 // the compiled method's own ArtMethod*. This is the default access type when
5468 // all other types are unavailable.
5469 kDexCacheViaMethod,
5470
5471 kLast = kDexCacheViaMethod
5472 };
5473
HLoadString(HCurrentMethod * current_method,uint32_t string_index,const DexFile & dex_file,uint32_t dex_pc)5474 HLoadString(HCurrentMethod* current_method,
5475 uint32_t string_index,
5476 const DexFile& dex_file,
5477 uint32_t dex_pc)
5478 : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
5479 string_index_(string_index) {
5480 SetPackedFlag<kFlagIsInDexCache>(false);
5481 SetPackedField<LoadKindField>(LoadKind::kDexCacheViaMethod);
5482 load_data_.ref.dex_file = &dex_file;
5483 SetRawInputAt(0, current_method);
5484 }
5485
SetLoadKindWithAddress(LoadKind load_kind,uint64_t address)5486 void SetLoadKindWithAddress(LoadKind load_kind, uint64_t address) {
5487 DCHECK(HasAddress(load_kind));
5488 load_data_.address = address;
5489 SetLoadKindInternal(load_kind);
5490 }
5491
SetLoadKindWithStringReference(LoadKind load_kind,const DexFile & dex_file,uint32_t string_index)5492 void SetLoadKindWithStringReference(LoadKind load_kind,
5493 const DexFile& dex_file,
5494 uint32_t string_index) {
5495 DCHECK(HasStringReference(load_kind));
5496 load_data_.ref.dex_file = &dex_file;
5497 string_index_ = string_index;
5498 SetLoadKindInternal(load_kind);
5499 }
5500
SetLoadKindWithDexCacheReference(LoadKind load_kind,const DexFile & dex_file,uint32_t element_index)5501 void SetLoadKindWithDexCacheReference(LoadKind load_kind,
5502 const DexFile& dex_file,
5503 uint32_t element_index) {
5504 DCHECK(HasDexCacheReference(load_kind));
5505 load_data_.ref.dex_file = &dex_file;
5506 load_data_.ref.dex_cache_element_index = element_index;
5507 SetLoadKindInternal(load_kind);
5508 }
5509
GetLoadKind()5510 LoadKind GetLoadKind() const {
5511 return GetPackedField<LoadKindField>();
5512 }
5513
5514 const DexFile& GetDexFile() const;
5515
GetStringIndex()5516 uint32_t GetStringIndex() const {
5517 DCHECK(HasStringReference(GetLoadKind()) || /* For slow paths. */ !IsInDexCache());
5518 return string_index_;
5519 }
5520
5521 uint32_t GetDexCacheElementOffset() const;
5522
GetAddress()5523 uint64_t GetAddress() const {
5524 DCHECK(HasAddress(GetLoadKind()));
5525 return load_data_.address;
5526 }
5527
CanBeMoved()5528 bool CanBeMoved() const OVERRIDE { return true; }
5529
5530 bool InstructionDataEquals(HInstruction* other) const OVERRIDE;
5531
ComputeHashCode()5532 size_t ComputeHashCode() const OVERRIDE { return string_index_; }
5533
5534 // Will call the runtime if we need to load the string through
5535 // the dex cache and the string is not guaranteed to be there yet.
NeedsEnvironment()5536 bool NeedsEnvironment() const OVERRIDE {
5537 LoadKind load_kind = GetLoadKind();
5538 if (load_kind == LoadKind::kBootImageLinkTimeAddress ||
5539 load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5540 load_kind == LoadKind::kBootImageAddress) {
5541 return false;
5542 }
5543 return !IsInDexCache();
5544 }
5545
NeedsDexCacheOfDeclaringClass()5546 bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
5547 return GetLoadKind() == LoadKind::kDexCacheViaMethod;
5548 }
5549
CanBeNull()5550 bool CanBeNull() const OVERRIDE { return false; }
CanThrow()5551 bool CanThrow() const OVERRIDE { return NeedsEnvironment(); }
5552
SideEffectsForArchRuntimeCalls()5553 static SideEffects SideEffectsForArchRuntimeCalls() {
5554 return SideEffects::CanTriggerGC();
5555 }
5556
IsInDexCache()5557 bool IsInDexCache() const { return GetPackedFlag<kFlagIsInDexCache>(); }
5558
MarkInDexCache()5559 void MarkInDexCache() {
5560 SetPackedFlag<kFlagIsInDexCache>(true);
5561 DCHECK(!NeedsEnvironment());
5562 RemoveEnvironment();
5563 SetSideEffects(SideEffects::None());
5564 }
5565
InputCount()5566 size_t InputCount() const OVERRIDE {
5567 return (InputAt(0) != nullptr) ? 1u : 0u;
5568 }
5569
5570 void AddSpecialInput(HInstruction* special_input);
5571
5572 DECLARE_INSTRUCTION(LoadString);
5573
5574 private:
5575 static constexpr size_t kFlagIsInDexCache = kNumberOfExpressionPackedBits;
5576 static constexpr size_t kFieldLoadKind = kFlagIsInDexCache + 1;
5577 static constexpr size_t kFieldLoadKindSize =
5578 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
5579 static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
5580 static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5581 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
5582
HasStringReference(LoadKind load_kind)5583 static bool HasStringReference(LoadKind load_kind) {
5584 return load_kind == LoadKind::kBootImageLinkTimeAddress ||
5585 load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5586 load_kind == LoadKind::kDexCacheViaMethod;
5587 }
5588
HasAddress(LoadKind load_kind)5589 static bool HasAddress(LoadKind load_kind) {
5590 return load_kind == LoadKind::kBootImageAddress || load_kind == LoadKind::kDexCacheAddress;
5591 }
5592
HasDexCacheReference(LoadKind load_kind)5593 static bool HasDexCacheReference(LoadKind load_kind) {
5594 return load_kind == LoadKind::kDexCachePcRelative;
5595 }
5596
5597 void SetLoadKindInternal(LoadKind load_kind);
5598
5599 // String index serves also as the hash code and it's also needed for slow-paths,
5600 // so it must not be overwritten with other load data.
5601 uint32_t string_index_;
5602
5603 union {
5604 struct {
5605 const DexFile* dex_file; // For string reference and dex cache reference.
5606 uint32_t dex_cache_element_index; // Only for dex cache reference.
5607 } ref;
5608 uint64_t address; // Up to 64-bit, needed for kDexCacheAddress on 64-bit targets.
5609 } load_data_;
5610
5611 DISALLOW_COPY_AND_ASSIGN(HLoadString);
5612 };
5613 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
5614
5615 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
GetDexFile()5616 inline const DexFile& HLoadString::GetDexFile() const {
5617 DCHECK(HasStringReference(GetLoadKind()) || HasDexCacheReference(GetLoadKind()))
5618 << GetLoadKind();
5619 return *load_data_.ref.dex_file;
5620 }
5621
5622 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
GetDexCacheElementOffset()5623 inline uint32_t HLoadString::GetDexCacheElementOffset() const {
5624 DCHECK(HasDexCacheReference(GetLoadKind())) << GetLoadKind();
5625 return load_data_.ref.dex_cache_element_index;
5626 }
5627
5628 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
AddSpecialInput(HInstruction * special_input)5629 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
5630 // The special input is used for PC-relative loads on some architectures.
5631 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
5632 GetLoadKind() == LoadKind::kDexCachePcRelative) << GetLoadKind();
5633 DCHECK(InputAt(0) == nullptr);
5634 SetRawInputAt(0u, special_input);
5635 special_input->AddUseAt(this, 0);
5636 }
5637
5638 /**
5639 * Performs an initialization check on its Class object input.
5640 */
5641 class HClinitCheck : public HExpression<1> {
5642 public:
HClinitCheck(HLoadClass * constant,uint32_t dex_pc)5643 HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
5644 : HExpression(
5645 Primitive::kPrimNot,
5646 SideEffects::AllChanges(), // Assume write/read on all fields/arrays.
5647 dex_pc) {
5648 SetRawInputAt(0, constant);
5649 }
5650
CanBeMoved()5651 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)5652 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5653 return true;
5654 }
5655
NeedsEnvironment()5656 bool NeedsEnvironment() const OVERRIDE {
5657 // May call runtime to initialize the class.
5658 return true;
5659 }
5660
CanThrow()5661 bool CanThrow() const OVERRIDE { return true; }
5662
GetLoadClass()5663 HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
5664
5665 DECLARE_INSTRUCTION(ClinitCheck);
5666
5667 private:
5668 DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
5669 };
5670
5671 class HStaticFieldGet : public HExpression<1> {
5672 public:
HStaticFieldGet(HInstruction * cls,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache,uint32_t dex_pc)5673 HStaticFieldGet(HInstruction* cls,
5674 Primitive::Type field_type,
5675 MemberOffset field_offset,
5676 bool is_volatile,
5677 uint32_t field_idx,
5678 uint16_t declaring_class_def_index,
5679 const DexFile& dex_file,
5680 Handle<mirror::DexCache> dex_cache,
5681 uint32_t dex_pc)
5682 : HExpression(field_type,
5683 SideEffects::FieldReadOfType(field_type, is_volatile),
5684 dex_pc),
5685 field_info_(field_offset,
5686 field_type,
5687 is_volatile,
5688 field_idx,
5689 declaring_class_def_index,
5690 dex_file,
5691 dex_cache) {
5692 SetRawInputAt(0, cls);
5693 }
5694
5695
CanBeMoved()5696 bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5697
InstructionDataEquals(HInstruction * other)5698 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5699 HStaticFieldGet* other_get = other->AsStaticFieldGet();
5700 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5701 }
5702
ComputeHashCode()5703 size_t ComputeHashCode() const OVERRIDE {
5704 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5705 }
5706
GetFieldInfo()5707 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5708 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5709 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5710 bool IsVolatile() const { return field_info_.IsVolatile(); }
5711
5712 DECLARE_INSTRUCTION(StaticFieldGet);
5713
5714 private:
5715 const FieldInfo field_info_;
5716
5717 DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
5718 };
5719
5720 class HStaticFieldSet : public HTemplateInstruction<2> {
5721 public:
HStaticFieldSet(HInstruction * cls,HInstruction * value,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache,uint32_t dex_pc)5722 HStaticFieldSet(HInstruction* cls,
5723 HInstruction* value,
5724 Primitive::Type field_type,
5725 MemberOffset field_offset,
5726 bool is_volatile,
5727 uint32_t field_idx,
5728 uint16_t declaring_class_def_index,
5729 const DexFile& dex_file,
5730 Handle<mirror::DexCache> dex_cache,
5731 uint32_t dex_pc)
5732 : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5733 dex_pc),
5734 field_info_(field_offset,
5735 field_type,
5736 is_volatile,
5737 field_idx,
5738 declaring_class_def_index,
5739 dex_file,
5740 dex_cache) {
5741 SetPackedFlag<kFlagValueCanBeNull>(true);
5742 SetRawInputAt(0, cls);
5743 SetRawInputAt(1, value);
5744 }
5745
GetFieldInfo()5746 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5747 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5748 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5749 bool IsVolatile() const { return field_info_.IsVolatile(); }
5750
GetValue()5751 HInstruction* GetValue() const { return InputAt(1); }
GetValueCanBeNull()5752 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
ClearValueCanBeNull()5753 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5754
5755 DECLARE_INSTRUCTION(StaticFieldSet);
5756
5757 private:
5758 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5759 static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
5760 static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
5761 "Too many packed fields.");
5762
5763 const FieldInfo field_info_;
5764
5765 DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5766 };
5767
5768 class HUnresolvedInstanceFieldGet : public HExpression<1> {
5769 public:
HUnresolvedInstanceFieldGet(HInstruction * obj,Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc)5770 HUnresolvedInstanceFieldGet(HInstruction* obj,
5771 Primitive::Type field_type,
5772 uint32_t field_index,
5773 uint32_t dex_pc)
5774 : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5775 field_index_(field_index) {
5776 SetRawInputAt(0, obj);
5777 }
5778
NeedsEnvironment()5779 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()5780 bool CanThrow() const OVERRIDE { return true; }
5781
GetFieldType()5782 Primitive::Type GetFieldType() const { return GetType(); }
GetFieldIndex()5783 uint32_t GetFieldIndex() const { return field_index_; }
5784
5785 DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5786
5787 private:
5788 const uint32_t field_index_;
5789
5790 DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5791 };
5792
5793 class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5794 public:
HUnresolvedInstanceFieldSet(HInstruction * obj,HInstruction * value,Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc)5795 HUnresolvedInstanceFieldSet(HInstruction* obj,
5796 HInstruction* value,
5797 Primitive::Type field_type,
5798 uint32_t field_index,
5799 uint32_t dex_pc)
5800 : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5801 field_index_(field_index) {
5802 SetPackedField<FieldTypeField>(field_type);
5803 DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType()));
5804 SetRawInputAt(0, obj);
5805 SetRawInputAt(1, value);
5806 }
5807
NeedsEnvironment()5808 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()5809 bool CanThrow() const OVERRIDE { return true; }
5810
GetFieldType()5811 Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
GetFieldIndex()5812 uint32_t GetFieldIndex() const { return field_index_; }
5813
5814 DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5815
5816 private:
5817 static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
5818 static constexpr size_t kFieldFieldTypeSize =
5819 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
5820 static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
5821 kFieldFieldType + kFieldFieldTypeSize;
5822 static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
5823 "Too many packed fields.");
5824 using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
5825
5826 const uint32_t field_index_;
5827
5828 DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5829 };
5830
5831 class HUnresolvedStaticFieldGet : public HExpression<0> {
5832 public:
HUnresolvedStaticFieldGet(Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc)5833 HUnresolvedStaticFieldGet(Primitive::Type field_type,
5834 uint32_t field_index,
5835 uint32_t dex_pc)
5836 : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5837 field_index_(field_index) {
5838 }
5839
NeedsEnvironment()5840 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()5841 bool CanThrow() const OVERRIDE { return true; }
5842
GetFieldType()5843 Primitive::Type GetFieldType() const { return GetType(); }
GetFieldIndex()5844 uint32_t GetFieldIndex() const { return field_index_; }
5845
5846 DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5847
5848 private:
5849 const uint32_t field_index_;
5850
5851 DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5852 };
5853
5854 class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5855 public:
HUnresolvedStaticFieldSet(HInstruction * value,Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc)5856 HUnresolvedStaticFieldSet(HInstruction* value,
5857 Primitive::Type field_type,
5858 uint32_t field_index,
5859 uint32_t dex_pc)
5860 : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5861 field_index_(field_index) {
5862 SetPackedField<FieldTypeField>(field_type);
5863 DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType()));
5864 SetRawInputAt(0, value);
5865 }
5866
NeedsEnvironment()5867 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()5868 bool CanThrow() const OVERRIDE { return true; }
5869
GetFieldType()5870 Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
GetFieldIndex()5871