1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Mangle.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/VTableBuilder.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/DiagnosticOptions.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/JamCRC.h"
32
33 using namespace clang;
34
35 namespace {
36
37 /// \brief Retrieve the declaration context that should be used when mangling
38 /// the given declaration.
getEffectiveDeclContext(const Decl * D)39 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
40 // The ABI assumes that lambda closure types that occur within
41 // default arguments live in the context of the function. However, due to
42 // the way in which Clang parses and creates function declarations, this is
43 // not the case: the lambda closure type ends up living in the context
44 // where the function itself resides, because the function declaration itself
45 // had not yet been created. Fix the context here.
46 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
47 if (RD->isLambda())
48 if (ParmVarDecl *ContextParam =
49 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
50 return ContextParam->getDeclContext();
51 }
52
53 // Perform the same check for block literals.
54 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
55 if (ParmVarDecl *ContextParam =
56 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
57 return ContextParam->getDeclContext();
58 }
59
60 const DeclContext *DC = D->getDeclContext();
61 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
62 return getEffectiveDeclContext(CD);
63
64 return DC;
65 }
66
getEffectiveParentContext(const DeclContext * DC)67 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
68 return getEffectiveDeclContext(cast<Decl>(DC));
69 }
70
getStructor(const NamedDecl * ND)71 static const FunctionDecl *getStructor(const NamedDecl *ND) {
72 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
73 return FTD->getTemplatedDecl();
74
75 const auto *FD = cast<FunctionDecl>(ND);
76 if (const auto *FTD = FD->getPrimaryTemplate())
77 return FTD->getTemplatedDecl();
78
79 return FD;
80 }
81
isLambda(const NamedDecl * ND)82 static bool isLambda(const NamedDecl *ND) {
83 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
84 if (!Record)
85 return false;
86
87 return Record->isLambda();
88 }
89
90 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
91 /// Microsoft Visual C++ ABI.
92 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
93 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
94 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
95 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
96 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
97 llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
98 llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
99
100 public:
MicrosoftMangleContextImpl(ASTContext & Context,DiagnosticsEngine & Diags)101 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
102 : MicrosoftMangleContext(Context, Diags) {}
103 bool shouldMangleCXXName(const NamedDecl *D) override;
104 bool shouldMangleStringLiteral(const StringLiteral *SL) override;
105 void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
106 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
107 raw_ostream &) override;
108 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
109 raw_ostream &) override;
110 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
111 const ThisAdjustment &ThisAdjustment,
112 raw_ostream &) override;
113 void mangleCXXVFTable(const CXXRecordDecl *Derived,
114 ArrayRef<const CXXRecordDecl *> BasePath,
115 raw_ostream &Out) override;
116 void mangleCXXVBTable(const CXXRecordDecl *Derived,
117 ArrayRef<const CXXRecordDecl *> BasePath,
118 raw_ostream &Out) override;
119 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
120 const CXXRecordDecl *DstRD,
121 raw_ostream &Out) override;
122 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
123 uint32_t NumEntries, raw_ostream &Out) override;
124 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
125 raw_ostream &Out) override;
126 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
127 CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
128 int32_t VBPtrOffset, uint32_t VBIndex,
129 raw_ostream &Out) override;
130 void mangleCXXCatchHandlerType(QualType T, uint32_t Flags,
131 raw_ostream &Out) override;
132 void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
133 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
134 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
135 uint32_t NVOffset, int32_t VBPtrOffset,
136 uint32_t VBTableOffset, uint32_t Flags,
137 raw_ostream &Out) override;
138 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
139 raw_ostream &Out) override;
140 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
141 raw_ostream &Out) override;
142 void
143 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
144 ArrayRef<const CXXRecordDecl *> BasePath,
145 raw_ostream &Out) override;
146 void mangleTypeName(QualType T, raw_ostream &) override;
147 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
148 raw_ostream &) override;
149 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
150 raw_ostream &) override;
151 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
152 raw_ostream &) override;
153 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
154 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
155 raw_ostream &Out) override;
156 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
157 void mangleDynamicAtExitDestructor(const VarDecl *D,
158 raw_ostream &Out) override;
159 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
160 raw_ostream &Out) override;
161 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
162 raw_ostream &Out) override;
163 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)164 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
165 // Lambda closure types are already numbered.
166 if (isLambda(ND))
167 return false;
168
169 const DeclContext *DC = getEffectiveDeclContext(ND);
170 if (!DC->isFunctionOrMethod())
171 return false;
172
173 // Use the canonical number for externally visible decls.
174 if (ND->isExternallyVisible()) {
175 disc = getASTContext().getManglingNumber(ND);
176 return true;
177 }
178
179 // Anonymous tags are already numbered.
180 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
181 if (!Tag->hasNameForLinkage() &&
182 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
183 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
184 return false;
185 }
186
187 // Make up a reasonable number for internal decls.
188 unsigned &discriminator = Uniquifier[ND];
189 if (!discriminator)
190 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
191 disc = discriminator + 1;
192 return true;
193 }
194
getLambdaId(const CXXRecordDecl * RD)195 unsigned getLambdaId(const CXXRecordDecl *RD) {
196 assert(RD->isLambda() && "RD must be a lambda!");
197 assert(!RD->isExternallyVisible() && "RD must not be visible!");
198 assert(RD->getLambdaManglingNumber() == 0 &&
199 "RD must not have a mangling number!");
200 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
201 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
202 return Result.first->second;
203 }
204
205 private:
206 void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
207 };
208
209 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
210 /// Microsoft Visual C++ ABI.
211 class MicrosoftCXXNameMangler {
212 MicrosoftMangleContextImpl &Context;
213 raw_ostream &Out;
214
215 /// The "structor" is the top-level declaration being mangled, if
216 /// that's not a template specialization; otherwise it's the pattern
217 /// for that specialization.
218 const NamedDecl *Structor;
219 unsigned StructorType;
220
221 typedef llvm::SmallVector<std::string, 10> BackRefVec;
222 BackRefVec NameBackReferences;
223
224 typedef llvm::DenseMap<void *, unsigned> ArgBackRefMap;
225 ArgBackRefMap TypeBackReferences;
226
getASTContext() const227 ASTContext &getASTContext() const { return Context.getASTContext(); }
228
229 // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
230 // this check into mangleQualifiers().
231 const bool PointersAre64Bit;
232
233 public:
234 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
235
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_)236 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
237 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
238 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
239 64) {}
240
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)241 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
242 const CXXConstructorDecl *D, CXXCtorType Type)
243 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
244 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
245 64) {}
246
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)247 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
248 const CXXDestructorDecl *D, CXXDtorType Type)
249 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
250 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
251 64) {}
252
getStream() const253 raw_ostream &getStream() const { return Out; }
254
255 void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
256 void mangleName(const NamedDecl *ND);
257 void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
258 void mangleVariableEncoding(const VarDecl *VD);
259 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
260 void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
261 const CXXMethodDecl *MD);
262 void mangleVirtualMemPtrThunk(
263 const CXXMethodDecl *MD,
264 const MicrosoftVTableContext::MethodVFTableLocation &ML);
265 void mangleNumber(int64_t Number);
266 void mangleType(QualType T, SourceRange Range,
267 QualifierMangleMode QMM = QMM_Mangle);
268 void mangleFunctionType(const FunctionType *T,
269 const FunctionDecl *D = nullptr,
270 bool ForceThisQuals = false);
271 void mangleNestedName(const NamedDecl *ND);
272
273 private:
mangleUnqualifiedName(const NamedDecl * ND)274 void mangleUnqualifiedName(const NamedDecl *ND) {
275 mangleUnqualifiedName(ND, ND->getDeclName());
276 }
277 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
278 void mangleSourceName(StringRef Name);
279 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
280 void mangleCXXDtorType(CXXDtorType T);
281 void mangleQualifiers(Qualifiers Quals, bool IsMember);
282 void mangleRefQualifier(RefQualifierKind RefQualifier);
283 void manglePointerCVQualifiers(Qualifiers Quals);
284 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
285
286 void mangleUnscopedTemplateName(const TemplateDecl *ND);
287 void
288 mangleTemplateInstantiationName(const TemplateDecl *TD,
289 const TemplateArgumentList &TemplateArgs);
290 void mangleObjCMethodName(const ObjCMethodDecl *MD);
291
292 void mangleArgumentType(QualType T, SourceRange Range);
293
294 // Declare manglers for every type class.
295 #define ABSTRACT_TYPE(CLASS, PARENT)
296 #define NON_CANONICAL_TYPE(CLASS, PARENT)
297 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
298 Qualifiers Quals, \
299 SourceRange Range);
300 #include "clang/AST/TypeNodes.def"
301 #undef ABSTRACT_TYPE
302 #undef NON_CANONICAL_TYPE
303 #undef TYPE
304
305 void mangleType(const TagDecl *TD);
306 void mangleDecayedArrayType(const ArrayType *T);
307 void mangleArrayType(const ArrayType *T);
308 void mangleFunctionClass(const FunctionDecl *FD);
309 void mangleCallingConvention(CallingConv CC);
310 void mangleCallingConvention(const FunctionType *T);
311 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
312 void mangleExpression(const Expr *E);
313 void mangleThrowSpecification(const FunctionProtoType *T);
314
315 void mangleTemplateArgs(const TemplateDecl *TD,
316 const TemplateArgumentList &TemplateArgs);
317 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
318 const NamedDecl *Parm);
319 };
320 }
321
shouldMangleCXXName(const NamedDecl * D)322 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
323 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
324 LanguageLinkage L = FD->getLanguageLinkage();
325 // Overloadable functions need mangling.
326 if (FD->hasAttr<OverloadableAttr>())
327 return true;
328
329 // The ABI expects that we would never mangle "typical" user-defined entry
330 // points regardless of visibility or freestanding-ness.
331 //
332 // N.B. This is distinct from asking about "main". "main" has a lot of
333 // special rules associated with it in the standard while these
334 // user-defined entry points are outside of the purview of the standard.
335 // For example, there can be only one definition for "main" in a standards
336 // compliant program; however nothing forbids the existence of wmain and
337 // WinMain in the same translation unit.
338 if (FD->isMSVCRTEntryPoint())
339 return false;
340
341 // C++ functions and those whose names are not a simple identifier need
342 // mangling.
343 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
344 return true;
345
346 // C functions are not mangled.
347 if (L == CLanguageLinkage)
348 return false;
349 }
350
351 // Otherwise, no mangling is done outside C++ mode.
352 if (!getASTContext().getLangOpts().CPlusPlus)
353 return false;
354
355 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
356 // C variables are not mangled.
357 if (VD->isExternC())
358 return false;
359
360 // Variables at global scope with non-internal linkage are not mangled.
361 const DeclContext *DC = getEffectiveDeclContext(D);
362 // Check for extern variable declared locally.
363 if (DC->isFunctionOrMethod() && D->hasLinkage())
364 while (!DC->isNamespace() && !DC->isTranslationUnit())
365 DC = getEffectiveParentContext(DC);
366
367 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
368 !isa<VarTemplateSpecializationDecl>(D) &&
369 D->getIdentifier() != nullptr)
370 return false;
371 }
372
373 return true;
374 }
375
376 bool
shouldMangleStringLiteral(const StringLiteral * SL)377 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
378 return true;
379 }
380
mangle(const NamedDecl * D,StringRef Prefix)381 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
382 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
383 // Therefore it's really important that we don't decorate the
384 // name with leading underscores or leading/trailing at signs. So, by
385 // default, we emit an asm marker at the start so we get the name right.
386 // Callers can override this with a custom prefix.
387
388 // <mangled-name> ::= ? <name> <type-encoding>
389 Out << Prefix;
390 mangleName(D);
391 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
392 mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
393 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
394 mangleVariableEncoding(VD);
395 else {
396 // TODO: Fields? Can MSVC even mangle them?
397 // Issue a diagnostic for now.
398 DiagnosticsEngine &Diags = Context.getDiags();
399 unsigned DiagID = Diags.getCustomDiagID(
400 DiagnosticsEngine::Error, "cannot mangle this declaration yet");
401 Diags.Report(D->getLocation(), DiagID) << D->getSourceRange();
402 }
403 }
404
mangleFunctionEncoding(const FunctionDecl * FD,bool ShouldMangle)405 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
406 bool ShouldMangle) {
407 // <type-encoding> ::= <function-class> <function-type>
408
409 // Since MSVC operates on the type as written and not the canonical type, it
410 // actually matters which decl we have here. MSVC appears to choose the
411 // first, since it is most likely to be the declaration in a header file.
412 FD = FD->getFirstDecl();
413
414 // We should never ever see a FunctionNoProtoType at this point.
415 // We don't even know how to mangle their types anyway :).
416 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
417
418 // extern "C" functions can hold entities that must be mangled.
419 // As it stands, these functions still need to get expressed in the full
420 // external name. They have their class and type omitted, replaced with '9'.
421 if (ShouldMangle) {
422 // We would like to mangle all extern "C" functions using this additional
423 // component but this would break compatibility with MSVC's behavior.
424 // Instead, do this when we know that compatibility isn't important (in
425 // other words, when it is an overloaded extern "C" function).
426 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
427 Out << "$$J0";
428
429 mangleFunctionClass(FD);
430
431 mangleFunctionType(FT, FD);
432 } else {
433 Out << '9';
434 }
435 }
436
mangleVariableEncoding(const VarDecl * VD)437 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
438 // <type-encoding> ::= <storage-class> <variable-type>
439 // <storage-class> ::= 0 # private static member
440 // ::= 1 # protected static member
441 // ::= 2 # public static member
442 // ::= 3 # global
443 // ::= 4 # static local
444
445 // The first character in the encoding (after the name) is the storage class.
446 if (VD->isStaticDataMember()) {
447 // If it's a static member, it also encodes the access level.
448 switch (VD->getAccess()) {
449 default:
450 case AS_private: Out << '0'; break;
451 case AS_protected: Out << '1'; break;
452 case AS_public: Out << '2'; break;
453 }
454 }
455 else if (!VD->isStaticLocal())
456 Out << '3';
457 else
458 Out << '4';
459 // Now mangle the type.
460 // <variable-type> ::= <type> <cvr-qualifiers>
461 // ::= <type> <pointee-cvr-qualifiers> # pointers, references
462 // Pointers and references are odd. The type of 'int * const foo;' gets
463 // mangled as 'QAHA' instead of 'PAHB', for example.
464 SourceRange SR = VD->getSourceRange();
465 QualType Ty = VD->getType();
466 if (Ty->isPointerType() || Ty->isReferenceType() ||
467 Ty->isMemberPointerType()) {
468 mangleType(Ty, SR, QMM_Drop);
469 manglePointerExtQualifiers(
470 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
471 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
472 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
473 // Member pointers are suffixed with a back reference to the member
474 // pointer's class name.
475 mangleName(MPT->getClass()->getAsCXXRecordDecl());
476 } else
477 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
478 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
479 // Global arrays are funny, too.
480 mangleDecayedArrayType(AT);
481 if (AT->getElementType()->isArrayType())
482 Out << 'A';
483 else
484 mangleQualifiers(Ty.getQualifiers(), false);
485 } else {
486 mangleType(Ty, SR, QMM_Drop);
487 mangleQualifiers(Ty.getQualifiers(), false);
488 }
489 }
490
mangleMemberDataPointer(const CXXRecordDecl * RD,const ValueDecl * VD)491 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
492 const ValueDecl *VD) {
493 // <member-data-pointer> ::= <integer-literal>
494 // ::= $F <number> <number>
495 // ::= $G <number> <number> <number>
496
497 int64_t FieldOffset;
498 int64_t VBTableOffset;
499 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
500 if (VD) {
501 FieldOffset = getASTContext().getFieldOffset(VD);
502 assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
503 "cannot take address of bitfield");
504 FieldOffset /= getASTContext().getCharWidth();
505
506 VBTableOffset = 0;
507
508 if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
509 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
510 } else {
511 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
512
513 VBTableOffset = -1;
514 }
515
516 char Code = '\0';
517 switch (IM) {
518 case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
519 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
520 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
521 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
522 }
523
524 Out << '$' << Code;
525
526 mangleNumber(FieldOffset);
527
528 // The C++ standard doesn't allow base-to-derived member pointer conversions
529 // in template parameter contexts, so the vbptr offset of data member pointers
530 // is always zero.
531 if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
532 mangleNumber(0);
533 if (MSInheritanceAttr::hasVBTableOffsetField(IM))
534 mangleNumber(VBTableOffset);
535 }
536
537 void
mangleMemberFunctionPointer(const CXXRecordDecl * RD,const CXXMethodDecl * MD)538 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
539 const CXXMethodDecl *MD) {
540 // <member-function-pointer> ::= $1? <name>
541 // ::= $H? <name> <number>
542 // ::= $I? <name> <number> <number>
543 // ::= $J? <name> <number> <number> <number>
544
545 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
546
547 char Code = '\0';
548 switch (IM) {
549 case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
550 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
551 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
552 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
553 }
554
555 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
556 // thunk.
557 uint64_t NVOffset = 0;
558 uint64_t VBTableOffset = 0;
559 uint64_t VBPtrOffset = 0;
560 if (MD) {
561 Out << '$' << Code << '?';
562 if (MD->isVirtual()) {
563 MicrosoftVTableContext *VTContext =
564 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
565 const MicrosoftVTableContext::MethodVFTableLocation &ML =
566 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
567 mangleVirtualMemPtrThunk(MD, ML);
568 NVOffset = ML.VFPtrOffset.getQuantity();
569 VBTableOffset = ML.VBTableIndex * 4;
570 if (ML.VBase) {
571 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
572 VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
573 }
574 } else {
575 mangleName(MD);
576 mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
577 }
578
579 if (VBTableOffset == 0 &&
580 IM == MSInheritanceAttr::Keyword_virtual_inheritance)
581 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
582 } else {
583 // Null single inheritance member functions are encoded as a simple nullptr.
584 if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
585 Out << "$0A@";
586 return;
587 }
588 if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
589 VBTableOffset = -1;
590 Out << '$' << Code;
591 }
592
593 if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
594 mangleNumber(static_cast<uint32_t>(NVOffset));
595 if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
596 mangleNumber(VBPtrOffset);
597 if (MSInheritanceAttr::hasVBTableOffsetField(IM))
598 mangleNumber(VBTableOffset);
599 }
600
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,const MicrosoftVTableContext::MethodVFTableLocation & ML)601 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
602 const CXXMethodDecl *MD,
603 const MicrosoftVTableContext::MethodVFTableLocation &ML) {
604 // Get the vftable offset.
605 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
606 getASTContext().getTargetInfo().getPointerWidth(0));
607 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
608
609 Out << "?_9";
610 mangleName(MD->getParent());
611 Out << "$B";
612 mangleNumber(OffsetInVFTable);
613 Out << 'A';
614 mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
615 }
616
mangleName(const NamedDecl * ND)617 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
618 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
619
620 // Always start with the unqualified name.
621 mangleUnqualifiedName(ND);
622
623 mangleNestedName(ND);
624
625 // Terminate the whole name with an '@'.
626 Out << '@';
627 }
628
mangleNumber(int64_t Number)629 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
630 // <non-negative integer> ::= A@ # when Number == 0
631 // ::= <decimal digit> # when 1 <= Number <= 10
632 // ::= <hex digit>+ @ # when Number >= 10
633 //
634 // <number> ::= [?] <non-negative integer>
635
636 uint64_t Value = static_cast<uint64_t>(Number);
637 if (Number < 0) {
638 Value = -Value;
639 Out << '?';
640 }
641
642 if (Value == 0)
643 Out << "A@";
644 else if (Value >= 1 && Value <= 10)
645 Out << (Value - 1);
646 else {
647 // Numbers that are not encoded as decimal digits are represented as nibbles
648 // in the range of ASCII characters 'A' to 'P'.
649 // The number 0x123450 would be encoded as 'BCDEFA'
650 char EncodedNumberBuffer[sizeof(uint64_t) * 2];
651 MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
652 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
653 for (; Value != 0; Value >>= 4)
654 *I++ = 'A' + (Value & 0xf);
655 Out.write(I.base(), I - BufferRef.rbegin());
656 Out << '@';
657 }
658 }
659
660 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)661 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
662 // Check if we have a function template.
663 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
664 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
665 TemplateArgs = FD->getTemplateSpecializationArgs();
666 return TD;
667 }
668 }
669
670 // Check if we have a class template.
671 if (const ClassTemplateSpecializationDecl *Spec =
672 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
673 TemplateArgs = &Spec->getTemplateArgs();
674 return Spec->getSpecializedTemplate();
675 }
676
677 // Check if we have a variable template.
678 if (const VarTemplateSpecializationDecl *Spec =
679 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
680 TemplateArgs = &Spec->getTemplateArgs();
681 return Spec->getSpecializedTemplate();
682 }
683
684 return nullptr;
685 }
686
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name)687 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
688 DeclarationName Name) {
689 // <unqualified-name> ::= <operator-name>
690 // ::= <ctor-dtor-name>
691 // ::= <source-name>
692 // ::= <template-name>
693
694 // Check if we have a template.
695 const TemplateArgumentList *TemplateArgs = nullptr;
696 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
697 // Function templates aren't considered for name back referencing. This
698 // makes sense since function templates aren't likely to occur multiple
699 // times in a symbol.
700 if (!isa<ClassTemplateDecl>(TD)) {
701 mangleTemplateInstantiationName(TD, *TemplateArgs);
702 Out << '@';
703 return;
704 }
705
706 // Here comes the tricky thing: if we need to mangle something like
707 // void foo(A::X<Y>, B::X<Y>),
708 // the X<Y> part is aliased. However, if you need to mangle
709 // void foo(A::X<A::Y>, A::X<B::Y>),
710 // the A::X<> part is not aliased.
711 // That said, from the mangler's perspective we have a structure like this:
712 // namespace[s] -> type[ -> template-parameters]
713 // but from the Clang perspective we have
714 // type [ -> template-parameters]
715 // \-> namespace[s]
716 // What we do is we create a new mangler, mangle the same type (without
717 // a namespace suffix) to a string using the extra mangler and then use
718 // the mangled type name as a key to check the mangling of different types
719 // for aliasing.
720
721 llvm::SmallString<64> TemplateMangling;
722 llvm::raw_svector_ostream Stream(TemplateMangling);
723 MicrosoftCXXNameMangler Extra(Context, Stream);
724 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
725
726 mangleSourceName(TemplateMangling);
727 return;
728 }
729
730 switch (Name.getNameKind()) {
731 case DeclarationName::Identifier: {
732 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
733 mangleSourceName(II->getName());
734 break;
735 }
736
737 // Otherwise, an anonymous entity. We must have a declaration.
738 assert(ND && "mangling empty name without declaration");
739
740 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
741 if (NS->isAnonymousNamespace()) {
742 Out << "?A@";
743 break;
744 }
745 }
746
747 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
748 // We must have an anonymous union or struct declaration.
749 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
750 assert(RD && "expected variable decl to have a record type");
751 // Anonymous types with no tag or typedef get the name of their
752 // declarator mangled in. If they have no declarator, number them with
753 // a $S prefix.
754 llvm::SmallString<64> Name("$S");
755 // Get a unique id for the anonymous struct.
756 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
757 mangleSourceName(Name.str());
758 break;
759 }
760
761 // We must have an anonymous struct.
762 const TagDecl *TD = cast<TagDecl>(ND);
763 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
764 assert(TD->getDeclContext() == D->getDeclContext() &&
765 "Typedef should not be in another decl context!");
766 assert(D->getDeclName().getAsIdentifierInfo() &&
767 "Typedef was not named!");
768 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
769 break;
770 }
771
772 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
773 if (Record->isLambda()) {
774 llvm::SmallString<10> Name("<lambda_");
775 unsigned LambdaId;
776 if (Record->getLambdaManglingNumber())
777 LambdaId = Record->getLambdaManglingNumber();
778 else
779 LambdaId = Context.getLambdaId(Record);
780
781 Name += llvm::utostr(LambdaId);
782 Name += ">";
783
784 mangleSourceName(Name);
785 break;
786 }
787 }
788
789 llvm::SmallString<64> Name("<unnamed-type-");
790 if (DeclaratorDecl *DD =
791 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
792 // Anonymous types without a name for linkage purposes have their
793 // declarator mangled in if they have one.
794 Name += DD->getName();
795 } else if (TypedefNameDecl *TND =
796 Context.getASTContext().getTypedefNameForUnnamedTagDecl(
797 TD)) {
798 // Anonymous types without a name for linkage purposes have their
799 // associate typedef mangled in if they have one.
800 Name += TND->getName();
801 } else {
802 // Otherwise, number the types using a $S prefix.
803 Name += "$S";
804 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
805 }
806 Name += ">";
807 mangleSourceName(Name.str());
808 break;
809 }
810
811 case DeclarationName::ObjCZeroArgSelector:
812 case DeclarationName::ObjCOneArgSelector:
813 case DeclarationName::ObjCMultiArgSelector:
814 llvm_unreachable("Can't mangle Objective-C selector names here!");
815
816 case DeclarationName::CXXConstructorName:
817 if (Structor == getStructor(ND)) {
818 if (StructorType == Ctor_CopyingClosure) {
819 Out << "?_O";
820 return;
821 }
822 if (StructorType == Ctor_DefaultClosure) {
823 Out << "?_F";
824 return;
825 }
826 }
827 Out << "?0";
828 return;
829
830 case DeclarationName::CXXDestructorName:
831 if (ND == Structor)
832 // If the named decl is the C++ destructor we're mangling,
833 // use the type we were given.
834 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
835 else
836 // Otherwise, use the base destructor name. This is relevant if a
837 // class with a destructor is declared within a destructor.
838 mangleCXXDtorType(Dtor_Base);
839 break;
840
841 case DeclarationName::CXXConversionFunctionName:
842 // <operator-name> ::= ?B # (cast)
843 // The target type is encoded as the return type.
844 Out << "?B";
845 break;
846
847 case DeclarationName::CXXOperatorName:
848 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
849 break;
850
851 case DeclarationName::CXXLiteralOperatorName: {
852 Out << "?__K";
853 mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
854 break;
855 }
856
857 case DeclarationName::CXXUsingDirective:
858 llvm_unreachable("Can't mangle a using directive name!");
859 }
860 }
861
mangleNestedName(const NamedDecl * ND)862 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
863 // <postfix> ::= <unqualified-name> [<postfix>]
864 // ::= <substitution> [<postfix>]
865 const DeclContext *DC = getEffectiveDeclContext(ND);
866
867 while (!DC->isTranslationUnit()) {
868 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
869 unsigned Disc;
870 if (Context.getNextDiscriminator(ND, Disc)) {
871 Out << '?';
872 mangleNumber(Disc);
873 Out << '?';
874 }
875 }
876
877 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
878 DiagnosticsEngine &Diags = Context.getDiags();
879 unsigned DiagID =
880 Diags.getCustomDiagID(DiagnosticsEngine::Error,
881 "cannot mangle a local inside this block yet");
882 Diags.Report(BD->getLocation(), DiagID);
883
884 // FIXME: This is completely, utterly, wrong; see ItaniumMangle
885 // for how this should be done.
886 Out << "__block_invoke" << Context.getBlockId(BD, false);
887 Out << '@';
888 continue;
889 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
890 mangleObjCMethodName(Method);
891 } else if (isa<NamedDecl>(DC)) {
892 ND = cast<NamedDecl>(DC);
893 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
894 mangle(FD, "?");
895 break;
896 } else
897 mangleUnqualifiedName(ND);
898 }
899 DC = DC->getParent();
900 }
901 }
902
mangleCXXDtorType(CXXDtorType T)903 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
904 // Microsoft uses the names on the case labels for these dtor variants. Clang
905 // uses the Itanium terminology internally. Everything in this ABI delegates
906 // towards the base dtor.
907 switch (T) {
908 // <operator-name> ::= ?1 # destructor
909 case Dtor_Base: Out << "?1"; return;
910 // <operator-name> ::= ?_D # vbase destructor
911 case Dtor_Complete: Out << "?_D"; return;
912 // <operator-name> ::= ?_G # scalar deleting destructor
913 case Dtor_Deleting: Out << "?_G"; return;
914 // <operator-name> ::= ?_E # vector deleting destructor
915 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
916 // it.
917 case Dtor_Comdat:
918 llvm_unreachable("not expecting a COMDAT");
919 }
920 llvm_unreachable("Unsupported dtor type?");
921 }
922
mangleOperatorName(OverloadedOperatorKind OO,SourceLocation Loc)923 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
924 SourceLocation Loc) {
925 switch (OO) {
926 // ?0 # constructor
927 // ?1 # destructor
928 // <operator-name> ::= ?2 # new
929 case OO_New: Out << "?2"; break;
930 // <operator-name> ::= ?3 # delete
931 case OO_Delete: Out << "?3"; break;
932 // <operator-name> ::= ?4 # =
933 case OO_Equal: Out << "?4"; break;
934 // <operator-name> ::= ?5 # >>
935 case OO_GreaterGreater: Out << "?5"; break;
936 // <operator-name> ::= ?6 # <<
937 case OO_LessLess: Out << "?6"; break;
938 // <operator-name> ::= ?7 # !
939 case OO_Exclaim: Out << "?7"; break;
940 // <operator-name> ::= ?8 # ==
941 case OO_EqualEqual: Out << "?8"; break;
942 // <operator-name> ::= ?9 # !=
943 case OO_ExclaimEqual: Out << "?9"; break;
944 // <operator-name> ::= ?A # []
945 case OO_Subscript: Out << "?A"; break;
946 // ?B # conversion
947 // <operator-name> ::= ?C # ->
948 case OO_Arrow: Out << "?C"; break;
949 // <operator-name> ::= ?D # *
950 case OO_Star: Out << "?D"; break;
951 // <operator-name> ::= ?E # ++
952 case OO_PlusPlus: Out << "?E"; break;
953 // <operator-name> ::= ?F # --
954 case OO_MinusMinus: Out << "?F"; break;
955 // <operator-name> ::= ?G # -
956 case OO_Minus: Out << "?G"; break;
957 // <operator-name> ::= ?H # +
958 case OO_Plus: Out << "?H"; break;
959 // <operator-name> ::= ?I # &
960 case OO_Amp: Out << "?I"; break;
961 // <operator-name> ::= ?J # ->*
962 case OO_ArrowStar: Out << "?J"; break;
963 // <operator-name> ::= ?K # /
964 case OO_Slash: Out << "?K"; break;
965 // <operator-name> ::= ?L # %
966 case OO_Percent: Out << "?L"; break;
967 // <operator-name> ::= ?M # <
968 case OO_Less: Out << "?M"; break;
969 // <operator-name> ::= ?N # <=
970 case OO_LessEqual: Out << "?N"; break;
971 // <operator-name> ::= ?O # >
972 case OO_Greater: Out << "?O"; break;
973 // <operator-name> ::= ?P # >=
974 case OO_GreaterEqual: Out << "?P"; break;
975 // <operator-name> ::= ?Q # ,
976 case OO_Comma: Out << "?Q"; break;
977 // <operator-name> ::= ?R # ()
978 case OO_Call: Out << "?R"; break;
979 // <operator-name> ::= ?S # ~
980 case OO_Tilde: Out << "?S"; break;
981 // <operator-name> ::= ?T # ^
982 case OO_Caret: Out << "?T"; break;
983 // <operator-name> ::= ?U # |
984 case OO_Pipe: Out << "?U"; break;
985 // <operator-name> ::= ?V # &&
986 case OO_AmpAmp: Out << "?V"; break;
987 // <operator-name> ::= ?W # ||
988 case OO_PipePipe: Out << "?W"; break;
989 // <operator-name> ::= ?X # *=
990 case OO_StarEqual: Out << "?X"; break;
991 // <operator-name> ::= ?Y # +=
992 case OO_PlusEqual: Out << "?Y"; break;
993 // <operator-name> ::= ?Z # -=
994 case OO_MinusEqual: Out << "?Z"; break;
995 // <operator-name> ::= ?_0 # /=
996 case OO_SlashEqual: Out << "?_0"; break;
997 // <operator-name> ::= ?_1 # %=
998 case OO_PercentEqual: Out << "?_1"; break;
999 // <operator-name> ::= ?_2 # >>=
1000 case OO_GreaterGreaterEqual: Out << "?_2"; break;
1001 // <operator-name> ::= ?_3 # <<=
1002 case OO_LessLessEqual: Out << "?_3"; break;
1003 // <operator-name> ::= ?_4 # &=
1004 case OO_AmpEqual: Out << "?_4"; break;
1005 // <operator-name> ::= ?_5 # |=
1006 case OO_PipeEqual: Out << "?_5"; break;
1007 // <operator-name> ::= ?_6 # ^=
1008 case OO_CaretEqual: Out << "?_6"; break;
1009 // ?_7 # vftable
1010 // ?_8 # vbtable
1011 // ?_9 # vcall
1012 // ?_A # typeof
1013 // ?_B # local static guard
1014 // ?_C # string
1015 // ?_D # vbase destructor
1016 // ?_E # vector deleting destructor
1017 // ?_F # default constructor closure
1018 // ?_G # scalar deleting destructor
1019 // ?_H # vector constructor iterator
1020 // ?_I # vector destructor iterator
1021 // ?_J # vector vbase constructor iterator
1022 // ?_K # virtual displacement map
1023 // ?_L # eh vector constructor iterator
1024 // ?_M # eh vector destructor iterator
1025 // ?_N # eh vector vbase constructor iterator
1026 // ?_O # copy constructor closure
1027 // ?_P<name> # udt returning <name>
1028 // ?_Q # <unknown>
1029 // ?_R0 # RTTI Type Descriptor
1030 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1031 // ?_R2 # RTTI Base Class Array
1032 // ?_R3 # RTTI Class Hierarchy Descriptor
1033 // ?_R4 # RTTI Complete Object Locator
1034 // ?_S # local vftable
1035 // ?_T # local vftable constructor closure
1036 // <operator-name> ::= ?_U # new[]
1037 case OO_Array_New: Out << "?_U"; break;
1038 // <operator-name> ::= ?_V # delete[]
1039 case OO_Array_Delete: Out << "?_V"; break;
1040
1041 case OO_Conditional: {
1042 DiagnosticsEngine &Diags = Context.getDiags();
1043 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1044 "cannot mangle this conditional operator yet");
1045 Diags.Report(Loc, DiagID);
1046 break;
1047 }
1048
1049 case OO_Coawait: {
1050 DiagnosticsEngine &Diags = Context.getDiags();
1051 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1052 "cannot mangle this operator co_await yet");
1053 Diags.Report(Loc, DiagID);
1054 break;
1055 }
1056
1057 case OO_None:
1058 case NUM_OVERLOADED_OPERATORS:
1059 llvm_unreachable("Not an overloaded operator");
1060 }
1061 }
1062
mangleSourceName(StringRef Name)1063 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1064 // <source name> ::= <identifier> @
1065 BackRefVec::iterator Found =
1066 std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
1067 if (Found == NameBackReferences.end()) {
1068 if (NameBackReferences.size() < 10)
1069 NameBackReferences.push_back(Name);
1070 Out << Name << '@';
1071 } else {
1072 Out << (Found - NameBackReferences.begin());
1073 }
1074 }
1075
mangleObjCMethodName(const ObjCMethodDecl * MD)1076 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1077 Context.mangleObjCMethodName(MD, Out);
1078 }
1079
mangleTemplateInstantiationName(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1080 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1081 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1082 // <template-name> ::= <unscoped-template-name> <template-args>
1083 // ::= <substitution>
1084 // Always start with the unqualified name.
1085
1086 // Templates have their own context for back references.
1087 ArgBackRefMap OuterArgsContext;
1088 BackRefVec OuterTemplateContext;
1089 NameBackReferences.swap(OuterTemplateContext);
1090 TypeBackReferences.swap(OuterArgsContext);
1091
1092 mangleUnscopedTemplateName(TD);
1093 mangleTemplateArgs(TD, TemplateArgs);
1094
1095 // Restore the previous back reference contexts.
1096 NameBackReferences.swap(OuterTemplateContext);
1097 TypeBackReferences.swap(OuterArgsContext);
1098 }
1099
1100 void
mangleUnscopedTemplateName(const TemplateDecl * TD)1101 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1102 // <unscoped-template-name> ::= ?$ <unqualified-name>
1103 Out << "?$";
1104 mangleUnqualifiedName(TD);
1105 }
1106
mangleIntegerLiteral(const llvm::APSInt & Value,bool IsBoolean)1107 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1108 bool IsBoolean) {
1109 // <integer-literal> ::= $0 <number>
1110 Out << "$0";
1111 // Make sure booleans are encoded as 0/1.
1112 if (IsBoolean && Value.getBoolValue())
1113 mangleNumber(1);
1114 else if (Value.isSigned())
1115 mangleNumber(Value.getSExtValue());
1116 else
1117 mangleNumber(Value.getZExtValue());
1118 }
1119
mangleExpression(const Expr * E)1120 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1121 // See if this is a constant expression.
1122 llvm::APSInt Value;
1123 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1124 mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1125 return;
1126 }
1127
1128 // Look through no-op casts like template parameter substitutions.
1129 E = E->IgnoreParenNoopCasts(Context.getASTContext());
1130
1131 const CXXUuidofExpr *UE = nullptr;
1132 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1133 if (UO->getOpcode() == UO_AddrOf)
1134 UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1135 } else
1136 UE = dyn_cast<CXXUuidofExpr>(E);
1137
1138 if (UE) {
1139 // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1140 // const __s_GUID _GUID_{lower case UUID with underscores}
1141 StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
1142 std::string Name = "_GUID_" + Uuid.lower();
1143 std::replace(Name.begin(), Name.end(), '-', '_');
1144
1145 // If we had to peek through an address-of operator, treat this like we are
1146 // dealing with a pointer type. Otherwise, treat it like a const reference.
1147 //
1148 // N.B. This matches up with the handling of TemplateArgument::Declaration
1149 // in mangleTemplateArg
1150 if (UE == E)
1151 Out << "$E?";
1152 else
1153 Out << "$1?";
1154 Out << Name << "@@3U__s_GUID@@B";
1155 return;
1156 }
1157
1158 // As bad as this diagnostic is, it's better than crashing.
1159 DiagnosticsEngine &Diags = Context.getDiags();
1160 unsigned DiagID = Diags.getCustomDiagID(
1161 DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1162 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1163 << E->getSourceRange();
1164 }
1165
mangleTemplateArgs(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1166 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1167 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1168 // <template-args> ::= <template-arg>+
1169 const TemplateParameterList *TPL = TD->getTemplateParameters();
1170 assert(TPL->size() == TemplateArgs.size() &&
1171 "size mismatch between args and parms!");
1172
1173 unsigned Idx = 0;
1174 for (const TemplateArgument &TA : TemplateArgs.asArray())
1175 mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
1176 }
1177
mangleTemplateArg(const TemplateDecl * TD,const TemplateArgument & TA,const NamedDecl * Parm)1178 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1179 const TemplateArgument &TA,
1180 const NamedDecl *Parm) {
1181 // <template-arg> ::= <type>
1182 // ::= <integer-literal>
1183 // ::= <member-data-pointer>
1184 // ::= <member-function-pointer>
1185 // ::= $E? <name> <type-encoding>
1186 // ::= $1? <name> <type-encoding>
1187 // ::= $0A@
1188 // ::= <template-args>
1189
1190 switch (TA.getKind()) {
1191 case TemplateArgument::Null:
1192 llvm_unreachable("Can't mangle null template arguments!");
1193 case TemplateArgument::TemplateExpansion:
1194 llvm_unreachable("Can't mangle template expansion arguments!");
1195 case TemplateArgument::Type: {
1196 QualType T = TA.getAsType();
1197 mangleType(T, SourceRange(), QMM_Escape);
1198 break;
1199 }
1200 case TemplateArgument::Declaration: {
1201 const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1202 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1203 mangleMemberDataPointer(
1204 cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1205 cast<ValueDecl>(ND));
1206 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1207 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1208 if (MD && MD->isInstance()) {
1209 mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1210 } else {
1211 Out << "$1?";
1212 mangleName(FD);
1213 mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1214 }
1215 } else {
1216 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1217 }
1218 break;
1219 }
1220 case TemplateArgument::Integral:
1221 mangleIntegerLiteral(TA.getAsIntegral(),
1222 TA.getIntegralType()->isBooleanType());
1223 break;
1224 case TemplateArgument::NullPtr: {
1225 QualType T = TA.getNullPtrType();
1226 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1227 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1228 if (MPT->isMemberFunctionPointerType() &&
1229 !isa<FunctionTemplateDecl>(TD)) {
1230 mangleMemberFunctionPointer(RD, nullptr);
1231 return;
1232 }
1233 if (MPT->isMemberDataPointer()) {
1234 if (!isa<FunctionTemplateDecl>(TD)) {
1235 mangleMemberDataPointer(RD, nullptr);
1236 return;
1237 }
1238 // nullptr data pointers are always represented with a single field
1239 // which is initialized with either 0 or -1. Why -1? Well, we need to
1240 // distinguish the case where the data member is at offset zero in the
1241 // record.
1242 // However, we are free to use 0 *if* we would use multiple fields for
1243 // non-nullptr member pointers.
1244 if (!RD->nullFieldOffsetIsZero()) {
1245 mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1246 return;
1247 }
1248 }
1249 }
1250 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1251 break;
1252 }
1253 case TemplateArgument::Expression:
1254 mangleExpression(TA.getAsExpr());
1255 break;
1256 case TemplateArgument::Pack: {
1257 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1258 if (TemplateArgs.empty()) {
1259 if (isa<TemplateTypeParmDecl>(Parm) ||
1260 isa<TemplateTemplateParmDecl>(Parm))
1261 // MSVC 2015 changed the mangling for empty expanded template packs,
1262 // use the old mangling for link compatibility for old versions.
1263 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1264 LangOptions::MSVC2015)
1265 ? "$$V"
1266 : "$$$V");
1267 else if (isa<NonTypeTemplateParmDecl>(Parm))
1268 Out << "$S";
1269 else
1270 llvm_unreachable("unexpected template parameter decl!");
1271 } else {
1272 for (const TemplateArgument &PA : TemplateArgs)
1273 mangleTemplateArg(TD, PA, Parm);
1274 }
1275 break;
1276 }
1277 case TemplateArgument::Template: {
1278 const NamedDecl *ND =
1279 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1280 if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1281 mangleType(TD);
1282 } else if (isa<TypeAliasDecl>(ND)) {
1283 Out << "$$Y";
1284 mangleName(ND);
1285 } else {
1286 llvm_unreachable("unexpected template template NamedDecl!");
1287 }
1288 break;
1289 }
1290 }
1291 }
1292
mangleQualifiers(Qualifiers Quals,bool IsMember)1293 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1294 bool IsMember) {
1295 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1296 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1297 // 'I' means __restrict (32/64-bit).
1298 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1299 // keyword!
1300 // <base-cvr-qualifiers> ::= A # near
1301 // ::= B # near const
1302 // ::= C # near volatile
1303 // ::= D # near const volatile
1304 // ::= E # far (16-bit)
1305 // ::= F # far const (16-bit)
1306 // ::= G # far volatile (16-bit)
1307 // ::= H # far const volatile (16-bit)
1308 // ::= I # huge (16-bit)
1309 // ::= J # huge const (16-bit)
1310 // ::= K # huge volatile (16-bit)
1311 // ::= L # huge const volatile (16-bit)
1312 // ::= M <basis> # based
1313 // ::= N <basis> # based const
1314 // ::= O <basis> # based volatile
1315 // ::= P <basis> # based const volatile
1316 // ::= Q # near member
1317 // ::= R # near const member
1318 // ::= S # near volatile member
1319 // ::= T # near const volatile member
1320 // ::= U # far member (16-bit)
1321 // ::= V # far const member (16-bit)
1322 // ::= W # far volatile member (16-bit)
1323 // ::= X # far const volatile member (16-bit)
1324 // ::= Y # huge member (16-bit)
1325 // ::= Z # huge const member (16-bit)
1326 // ::= 0 # huge volatile member (16-bit)
1327 // ::= 1 # huge const volatile member (16-bit)
1328 // ::= 2 <basis> # based member
1329 // ::= 3 <basis> # based const member
1330 // ::= 4 <basis> # based volatile member
1331 // ::= 5 <basis> # based const volatile member
1332 // ::= 6 # near function (pointers only)
1333 // ::= 7 # far function (pointers only)
1334 // ::= 8 # near method (pointers only)
1335 // ::= 9 # far method (pointers only)
1336 // ::= _A <basis> # based function (pointers only)
1337 // ::= _B <basis> # based function (far?) (pointers only)
1338 // ::= _C <basis> # based method (pointers only)
1339 // ::= _D <basis> # based method (far?) (pointers only)
1340 // ::= _E # block (Clang)
1341 // <basis> ::= 0 # __based(void)
1342 // ::= 1 # __based(segment)?
1343 // ::= 2 <name> # __based(name)
1344 // ::= 3 # ?
1345 // ::= 4 # ?
1346 // ::= 5 # not really based
1347 bool HasConst = Quals.hasConst(),
1348 HasVolatile = Quals.hasVolatile();
1349
1350 if (!IsMember) {
1351 if (HasConst && HasVolatile) {
1352 Out << 'D';
1353 } else if (HasVolatile) {
1354 Out << 'C';
1355 } else if (HasConst) {
1356 Out << 'B';
1357 } else {
1358 Out << 'A';
1359 }
1360 } else {
1361 if (HasConst && HasVolatile) {
1362 Out << 'T';
1363 } else if (HasVolatile) {
1364 Out << 'S';
1365 } else if (HasConst) {
1366 Out << 'R';
1367 } else {
1368 Out << 'Q';
1369 }
1370 }
1371
1372 // FIXME: For now, just drop all extension qualifiers on the floor.
1373 }
1374
1375 void
mangleRefQualifier(RefQualifierKind RefQualifier)1376 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1377 // <ref-qualifier> ::= G # lvalue reference
1378 // ::= H # rvalue-reference
1379 switch (RefQualifier) {
1380 case RQ_None:
1381 break;
1382
1383 case RQ_LValue:
1384 Out << 'G';
1385 break;
1386
1387 case RQ_RValue:
1388 Out << 'H';
1389 break;
1390 }
1391 }
1392
manglePointerExtQualifiers(Qualifiers Quals,QualType PointeeType)1393 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1394 QualType PointeeType) {
1395 bool HasRestrict = Quals.hasRestrict();
1396 if (PointersAre64Bit &&
1397 (PointeeType.isNull() || !PointeeType->isFunctionType()))
1398 Out << 'E';
1399
1400 if (HasRestrict)
1401 Out << 'I';
1402 }
1403
manglePointerCVQualifiers(Qualifiers Quals)1404 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1405 // <pointer-cv-qualifiers> ::= P # no qualifiers
1406 // ::= Q # const
1407 // ::= R # volatile
1408 // ::= S # const volatile
1409 bool HasConst = Quals.hasConst(),
1410 HasVolatile = Quals.hasVolatile();
1411
1412 if (HasConst && HasVolatile) {
1413 Out << 'S';
1414 } else if (HasVolatile) {
1415 Out << 'R';
1416 } else if (HasConst) {
1417 Out << 'Q';
1418 } else {
1419 Out << 'P';
1420 }
1421 }
1422
mangleArgumentType(QualType T,SourceRange Range)1423 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1424 SourceRange Range) {
1425 // MSVC will backreference two canonically equivalent types that have slightly
1426 // different manglings when mangled alone.
1427
1428 // Decayed types do not match up with non-decayed versions of the same type.
1429 //
1430 // e.g.
1431 // void (*x)(void) will not form a backreference with void x(void)
1432 void *TypePtr;
1433 if (const auto *DT = T->getAs<DecayedType>()) {
1434 QualType OriginalType = DT->getOriginalType();
1435 // All decayed ArrayTypes should be treated identically; as-if they were
1436 // a decayed IncompleteArrayType.
1437 if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1438 OriginalType = getASTContext().getIncompleteArrayType(
1439 AT->getElementType(), AT->getSizeModifier(),
1440 AT->getIndexTypeCVRQualifiers());
1441
1442 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1443 // If the original parameter was textually written as an array,
1444 // instead treat the decayed parameter like it's const.
1445 //
1446 // e.g.
1447 // int [] -> int * const
1448 if (OriginalType->isArrayType())
1449 T = T.withConst();
1450 } else {
1451 TypePtr = T.getCanonicalType().getAsOpaquePtr();
1452 }
1453
1454 ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1455
1456 if (Found == TypeBackReferences.end()) {
1457 size_t OutSizeBefore = Out.tell();
1458
1459 mangleType(T, Range, QMM_Drop);
1460
1461 // See if it's worth creating a back reference.
1462 // Only types longer than 1 character are considered
1463 // and only 10 back references slots are available:
1464 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1465 if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1466 size_t Size = TypeBackReferences.size();
1467 TypeBackReferences[TypePtr] = Size;
1468 }
1469 } else {
1470 Out << Found->second;
1471 }
1472 }
1473
mangleType(QualType T,SourceRange Range,QualifierMangleMode QMM)1474 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1475 QualifierMangleMode QMM) {
1476 // Don't use the canonical types. MSVC includes things like 'const' on
1477 // pointer arguments to function pointers that canonicalization strips away.
1478 T = T.getDesugaredType(getASTContext());
1479 Qualifiers Quals = T.getLocalQualifiers();
1480 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1481 // If there were any Quals, getAsArrayType() pushed them onto the array
1482 // element type.
1483 if (QMM == QMM_Mangle)
1484 Out << 'A';
1485 else if (QMM == QMM_Escape || QMM == QMM_Result)
1486 Out << "$$B";
1487 mangleArrayType(AT);
1488 return;
1489 }
1490
1491 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1492 T->isReferenceType() || T->isBlockPointerType();
1493
1494 switch (QMM) {
1495 case QMM_Drop:
1496 break;
1497 case QMM_Mangle:
1498 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1499 Out << '6';
1500 mangleFunctionType(FT);
1501 return;
1502 }
1503 mangleQualifiers(Quals, false);
1504 break;
1505 case QMM_Escape:
1506 if (!IsPointer && Quals) {
1507 Out << "$$C";
1508 mangleQualifiers(Quals, false);
1509 }
1510 break;
1511 case QMM_Result:
1512 if ((!IsPointer && Quals) || isa<TagType>(T)) {
1513 Out << '?';
1514 mangleQualifiers(Quals, false);
1515 }
1516 break;
1517 }
1518
1519 const Type *ty = T.getTypePtr();
1520
1521 switch (ty->getTypeClass()) {
1522 #define ABSTRACT_TYPE(CLASS, PARENT)
1523 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1524 case Type::CLASS: \
1525 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1526 return;
1527 #define TYPE(CLASS, PARENT) \
1528 case Type::CLASS: \
1529 mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1530 break;
1531 #include "clang/AST/TypeNodes.def"
1532 #undef ABSTRACT_TYPE
1533 #undef NON_CANONICAL_TYPE
1534 #undef TYPE
1535 }
1536 }
1537
mangleType(const BuiltinType * T,Qualifiers,SourceRange Range)1538 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1539 SourceRange Range) {
1540 // <type> ::= <builtin-type>
1541 // <builtin-type> ::= X # void
1542 // ::= C # signed char
1543 // ::= D # char
1544 // ::= E # unsigned char
1545 // ::= F # short
1546 // ::= G # unsigned short (or wchar_t if it's not a builtin)
1547 // ::= H # int
1548 // ::= I # unsigned int
1549 // ::= J # long
1550 // ::= K # unsigned long
1551 // L # <none>
1552 // ::= M # float
1553 // ::= N # double
1554 // ::= O # long double (__float80 is mangled differently)
1555 // ::= _J # long long, __int64
1556 // ::= _K # unsigned long long, __int64
1557 // ::= _L # __int128
1558 // ::= _M # unsigned __int128
1559 // ::= _N # bool
1560 // _O # <array in parameter>
1561 // ::= _T # __float80 (Intel)
1562 // ::= _W # wchar_t
1563 // ::= _Z # __float80 (Digital Mars)
1564 switch (T->getKind()) {
1565 case BuiltinType::Void:
1566 Out << 'X';
1567 break;
1568 case BuiltinType::SChar:
1569 Out << 'C';
1570 break;
1571 case BuiltinType::Char_U:
1572 case BuiltinType::Char_S:
1573 Out << 'D';
1574 break;
1575 case BuiltinType::UChar:
1576 Out << 'E';
1577 break;
1578 case BuiltinType::Short:
1579 Out << 'F';
1580 break;
1581 case BuiltinType::UShort:
1582 Out << 'G';
1583 break;
1584 case BuiltinType::Int:
1585 Out << 'H';
1586 break;
1587 case BuiltinType::UInt:
1588 Out << 'I';
1589 break;
1590 case BuiltinType::Long:
1591 Out << 'J';
1592 break;
1593 case BuiltinType::ULong:
1594 Out << 'K';
1595 break;
1596 case BuiltinType::Float:
1597 Out << 'M';
1598 break;
1599 case BuiltinType::Double:
1600 Out << 'N';
1601 break;
1602 // TODO: Determine size and mangle accordingly
1603 case BuiltinType::LongDouble:
1604 Out << 'O';
1605 break;
1606 case BuiltinType::LongLong:
1607 Out << "_J";
1608 break;
1609 case BuiltinType::ULongLong:
1610 Out << "_K";
1611 break;
1612 case BuiltinType::Int128:
1613 Out << "_L";
1614 break;
1615 case BuiltinType::UInt128:
1616 Out << "_M";
1617 break;
1618 case BuiltinType::Bool:
1619 Out << "_N";
1620 break;
1621 case BuiltinType::Char16:
1622 Out << "_S";
1623 break;
1624 case BuiltinType::Char32:
1625 Out << "_U";
1626 break;
1627 case BuiltinType::WChar_S:
1628 case BuiltinType::WChar_U:
1629 Out << "_W";
1630 break;
1631
1632 #define BUILTIN_TYPE(Id, SingletonId)
1633 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1634 case BuiltinType::Id:
1635 #include "clang/AST/BuiltinTypes.def"
1636 case BuiltinType::Dependent:
1637 llvm_unreachable("placeholder types shouldn't get to name mangling");
1638
1639 case BuiltinType::ObjCId:
1640 Out << "PAUobjc_object@@";
1641 break;
1642 case BuiltinType::ObjCClass:
1643 Out << "PAUobjc_class@@";
1644 break;
1645 case BuiltinType::ObjCSel:
1646 Out << "PAUobjc_selector@@";
1647 break;
1648
1649 case BuiltinType::OCLImage1d:
1650 Out << "PAUocl_image1d@@";
1651 break;
1652 case BuiltinType::OCLImage1dArray:
1653 Out << "PAUocl_image1darray@@";
1654 break;
1655 case BuiltinType::OCLImage1dBuffer:
1656 Out << "PAUocl_image1dbuffer@@";
1657 break;
1658 case BuiltinType::OCLImage2d:
1659 Out << "PAUocl_image2d@@";
1660 break;
1661 case BuiltinType::OCLImage2dArray:
1662 Out << "PAUocl_image2darray@@";
1663 break;
1664 case BuiltinType::OCLImage2dDepth:
1665 Out << "PAUocl_image2ddepth@@";
1666 break;
1667 case BuiltinType::OCLImage2dArrayDepth:
1668 Out << "PAUocl_image2darraydepth@@";
1669 break;
1670 case BuiltinType::OCLImage2dMSAA:
1671 Out << "PAUocl_image2dmsaa@@";
1672 break;
1673 case BuiltinType::OCLImage2dArrayMSAA:
1674 Out << "PAUocl_image2darraymsaa@@";
1675 break;
1676 case BuiltinType::OCLImage2dMSAADepth:
1677 Out << "PAUocl_image2dmsaadepth@@";
1678 break;
1679 case BuiltinType::OCLImage2dArrayMSAADepth:
1680 Out << "PAUocl_image2darraymsaadepth@@";
1681 break;
1682 case BuiltinType::OCLImage3d:
1683 Out << "PAUocl_image3d@@";
1684 break;
1685 case BuiltinType::OCLSampler:
1686 Out << "PAUocl_sampler@@";
1687 break;
1688 case BuiltinType::OCLEvent:
1689 Out << "PAUocl_event@@";
1690 break;
1691 case BuiltinType::OCLClkEvent:
1692 Out << "PAUocl_clkevent@@";
1693 break;
1694 case BuiltinType::OCLQueue:
1695 Out << "PAUocl_queue@@";
1696 break;
1697 case BuiltinType::OCLNDRange:
1698 Out << "PAUocl_ndrange@@";
1699 break;
1700 case BuiltinType::OCLReserveID:
1701 Out << "PAUocl_reserveid@@";
1702 break;
1703
1704 case BuiltinType::NullPtr:
1705 Out << "$$T";
1706 break;
1707
1708 case BuiltinType::Half: {
1709 DiagnosticsEngine &Diags = Context.getDiags();
1710 unsigned DiagID = Diags.getCustomDiagID(
1711 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
1712 Diags.Report(Range.getBegin(), DiagID)
1713 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
1714 break;
1715 }
1716 }
1717 }
1718
1719 // <type> ::= <function-type>
mangleType(const FunctionProtoType * T,Qualifiers,SourceRange)1720 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
1721 SourceRange) {
1722 // Structors only appear in decls, so at this point we know it's not a
1723 // structor type.
1724 // FIXME: This may not be lambda-friendly.
1725 if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
1726 Out << "$$A8@@";
1727 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
1728 } else {
1729 Out << "$$A6";
1730 mangleFunctionType(T);
1731 }
1732 }
mangleType(const FunctionNoProtoType * T,Qualifiers,SourceRange)1733 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1734 Qualifiers, SourceRange) {
1735 Out << "$$A6";
1736 mangleFunctionType(T);
1737 }
1738
mangleFunctionType(const FunctionType * T,const FunctionDecl * D,bool ForceThisQuals)1739 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1740 const FunctionDecl *D,
1741 bool ForceThisQuals) {
1742 // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1743 // <return-type> <argument-list> <throw-spec>
1744 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
1745
1746 SourceRange Range;
1747 if (D) Range = D->getSourceRange();
1748
1749 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
1750 CallingConv CC = T->getCallConv();
1751 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1752 if (MD->isInstance())
1753 HasThisQuals = true;
1754 if (isa<CXXDestructorDecl>(MD)) {
1755 IsStructor = true;
1756 } else if (isa<CXXConstructorDecl>(MD)) {
1757 IsStructor = true;
1758 IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
1759 StructorType == Ctor_DefaultClosure) &&
1760 getStructor(MD) == Structor;
1761 if (IsCtorClosure)
1762 CC = getASTContext().getDefaultCallingConvention(
1763 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1764 }
1765 }
1766
1767 // If this is a C++ instance method, mangle the CVR qualifiers for the
1768 // this pointer.
1769 if (HasThisQuals) {
1770 Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
1771 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
1772 mangleRefQualifier(Proto->getRefQualifier());
1773 mangleQualifiers(Quals, /*IsMember=*/false);
1774 }
1775
1776 mangleCallingConvention(CC);
1777
1778 // <return-type> ::= <type>
1779 // ::= @ # structors (they have no declared return type)
1780 if (IsStructor) {
1781 if (isa<CXXDestructorDecl>(D) && D == Structor &&
1782 StructorType == Dtor_Deleting) {
1783 // The scalar deleting destructor takes an extra int argument.
1784 // However, the FunctionType generated has 0 arguments.
1785 // FIXME: This is a temporary hack.
1786 // Maybe should fix the FunctionType creation instead?
1787 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1788 return;
1789 }
1790 if (IsCtorClosure) {
1791 // Default constructor closure and copy constructor closure both return
1792 // void.
1793 Out << 'X';
1794
1795 if (StructorType == Ctor_DefaultClosure) {
1796 // Default constructor closure always has no arguments.
1797 Out << 'X';
1798 } else if (StructorType == Ctor_CopyingClosure) {
1799 // Copy constructor closure always takes an unqualified reference.
1800 mangleArgumentType(getASTContext().getLValueReferenceType(
1801 Proto->getParamType(0)
1802 ->getAs<LValueReferenceType>()
1803 ->getPointeeType(),
1804 /*SpelledAsLValue=*/true),
1805 Range);
1806 Out << '@';
1807 } else {
1808 llvm_unreachable("unexpected constructor closure!");
1809 }
1810 Out << 'Z';
1811 return;
1812 }
1813 Out << '@';
1814 } else {
1815 QualType ResultType = T->getReturnType();
1816 if (const auto *AT =
1817 dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1818 Out << '?';
1819 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1820 Out << '?';
1821 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
1822 "shouldn't need to mangle __auto_type!");
1823 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1824 Out << '@';
1825 } else {
1826 if (ResultType->isVoidType())
1827 ResultType = ResultType.getUnqualifiedType();
1828 mangleType(ResultType, Range, QMM_Result);
1829 }
1830 }
1831
1832 // <argument-list> ::= X # void
1833 // ::= <type>+ @
1834 // ::= <type>* Z # varargs
1835 if (!Proto) {
1836 // Function types without prototypes can arise when mangling a function type
1837 // within an overloadable function in C. We mangle these as the absence of
1838 // any parameter types (not even an empty parameter list).
1839 Out << '@';
1840 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1841 Out << 'X';
1842 } else {
1843 // Happens for function pointer type arguments for example.
1844 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
1845 mangleArgumentType(Proto->getParamType(I), Range);
1846 // Mangle each pass_object_size parameter as if it's a paramater of enum
1847 // type passed directly after the parameter with the pass_object_size
1848 // attribute. The aforementioned enum's name is __pass_object_size, and we
1849 // pretend it resides in a top-level namespace called __clang.
1850 //
1851 // FIXME: Is there a defined extension notation for the MS ABI, or is it
1852 // necessary to just cross our fingers and hope this type+namespace
1853 // combination doesn't conflict with anything?
1854 if (D)
1855 if (auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
1856 Out << "W4__pass_object_size" << P->getType() << "@__clang@@";
1857 }
1858 // <builtin-type> ::= Z # ellipsis
1859 if (Proto->isVariadic())
1860 Out << 'Z';
1861 else
1862 Out << '@';
1863 }
1864
1865 mangleThrowSpecification(Proto);
1866 }
1867
mangleFunctionClass(const FunctionDecl * FD)1868 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1869 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
1870 // # pointer. in 64-bit mode *all*
1871 // # 'this' pointers are 64-bit.
1872 // ::= <global-function>
1873 // <member-function> ::= A # private: near
1874 // ::= B # private: far
1875 // ::= C # private: static near
1876 // ::= D # private: static far
1877 // ::= E # private: virtual near
1878 // ::= F # private: virtual far
1879 // ::= I # protected: near
1880 // ::= J # protected: far
1881 // ::= K # protected: static near
1882 // ::= L # protected: static far
1883 // ::= M # protected: virtual near
1884 // ::= N # protected: virtual far
1885 // ::= Q # public: near
1886 // ::= R # public: far
1887 // ::= S # public: static near
1888 // ::= T # public: static far
1889 // ::= U # public: virtual near
1890 // ::= V # public: virtual far
1891 // <global-function> ::= Y # global near
1892 // ::= Z # global far
1893 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1894 switch (MD->getAccess()) {
1895 case AS_none:
1896 llvm_unreachable("Unsupported access specifier");
1897 case AS_private:
1898 if (MD->isStatic())
1899 Out << 'C';
1900 else if (MD->isVirtual())
1901 Out << 'E';
1902 else
1903 Out << 'A';
1904 break;
1905 case AS_protected:
1906 if (MD->isStatic())
1907 Out << 'K';
1908 else if (MD->isVirtual())
1909 Out << 'M';
1910 else
1911 Out << 'I';
1912 break;
1913 case AS_public:
1914 if (MD->isStatic())
1915 Out << 'S';
1916 else if (MD->isVirtual())
1917 Out << 'U';
1918 else
1919 Out << 'Q';
1920 }
1921 } else {
1922 Out << 'Y';
1923 }
1924 }
mangleCallingConvention(CallingConv CC)1925 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
1926 // <calling-convention> ::= A # __cdecl
1927 // ::= B # __export __cdecl
1928 // ::= C # __pascal
1929 // ::= D # __export __pascal
1930 // ::= E # __thiscall
1931 // ::= F # __export __thiscall
1932 // ::= G # __stdcall
1933 // ::= H # __export __stdcall
1934 // ::= I # __fastcall
1935 // ::= J # __export __fastcall
1936 // ::= Q # __vectorcall
1937 // The 'export' calling conventions are from a bygone era
1938 // (*cough*Win16*cough*) when functions were declared for export with
1939 // that keyword. (It didn't actually export them, it just made them so
1940 // that they could be in a DLL and somebody from another module could call
1941 // them.)
1942
1943 switch (CC) {
1944 default:
1945 llvm_unreachable("Unsupported CC for mangling");
1946 case CC_X86_64Win64:
1947 case CC_X86_64SysV:
1948 case CC_C: Out << 'A'; break;
1949 case CC_X86Pascal: Out << 'C'; break;
1950 case CC_X86ThisCall: Out << 'E'; break;
1951 case CC_X86StdCall: Out << 'G'; break;
1952 case CC_X86FastCall: Out << 'I'; break;
1953 case CC_X86VectorCall: Out << 'Q'; break;
1954 }
1955 }
mangleCallingConvention(const FunctionType * T)1956 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
1957 mangleCallingConvention(T->getCallConv());
1958 }
mangleThrowSpecification(const FunctionProtoType * FT)1959 void MicrosoftCXXNameMangler::mangleThrowSpecification(
1960 const FunctionProtoType *FT) {
1961 // <throw-spec> ::= Z # throw(...) (default)
1962 // ::= @ # throw() or __declspec/__attribute__((nothrow))
1963 // ::= <type>+
1964 // NOTE: Since the Microsoft compiler ignores throw specifications, they are
1965 // all actually mangled as 'Z'. (They're ignored because their associated
1966 // functionality isn't implemented, and probably never will be.)
1967 Out << 'Z';
1968 }
1969
mangleType(const UnresolvedUsingType * T,Qualifiers,SourceRange Range)1970 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
1971 Qualifiers, SourceRange Range) {
1972 // Probably should be mangled as a template instantiation; need to see what
1973 // VC does first.
1974 DiagnosticsEngine &Diags = Context.getDiags();
1975 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1976 "cannot mangle this unresolved dependent type yet");
1977 Diags.Report(Range.getBegin(), DiagID)
1978 << Range;
1979 }
1980
1981 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
1982 // <union-type> ::= T <name>
1983 // <struct-type> ::= U <name>
1984 // <class-type> ::= V <name>
1985 // <enum-type> ::= W4 <name>
mangleType(const EnumType * T,Qualifiers,SourceRange)1986 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
1987 SourceRange) {
1988 mangleType(cast<TagType>(T)->getDecl());
1989 }
mangleType(const RecordType * T,Qualifiers,SourceRange)1990 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
1991 SourceRange) {
1992 mangleType(cast<TagType>(T)->getDecl());
1993 }
mangleType(const TagDecl * TD)1994 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
1995 switch (TD->getTagKind()) {
1996 case TTK_Union:
1997 Out << 'T';
1998 break;
1999 case TTK_Struct:
2000 case TTK_Interface:
2001 Out << 'U';
2002 break;
2003 case TTK_Class:
2004 Out << 'V';
2005 break;
2006 case TTK_Enum:
2007 Out << "W4";
2008 break;
2009 }
2010 mangleName(TD);
2011 }
2012
2013 // <type> ::= <array-type>
2014 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2015 // [Y <dimension-count> <dimension>+]
2016 // <element-type> # as global, E is never required
2017 // It's supposed to be the other way around, but for some strange reason, it
2018 // isn't. Today this behavior is retained for the sole purpose of backwards
2019 // compatibility.
mangleDecayedArrayType(const ArrayType * T)2020 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2021 // This isn't a recursive mangling, so now we have to do it all in this
2022 // one call.
2023 manglePointerCVQualifiers(T->getElementType().getQualifiers());
2024 mangleType(T->getElementType(), SourceRange());
2025 }
mangleType(const ConstantArrayType * T,Qualifiers,SourceRange)2026 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2027 SourceRange) {
2028 llvm_unreachable("Should have been special cased");
2029 }
mangleType(const VariableArrayType * T,Qualifiers,SourceRange)2030 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2031 SourceRange) {
2032 llvm_unreachable("Should have been special cased");
2033 }
mangleType(const DependentSizedArrayType * T,Qualifiers,SourceRange)2034 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2035 Qualifiers, SourceRange) {
2036 llvm_unreachable("Should have been special cased");
2037 }
mangleType(const IncompleteArrayType * T,Qualifiers,SourceRange)2038 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2039 Qualifiers, SourceRange) {
2040 llvm_unreachable("Should have been special cased");
2041 }
mangleArrayType(const ArrayType * T)2042 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2043 QualType ElementTy(T, 0);
2044 SmallVector<llvm::APInt, 3> Dimensions;
2045 for (;;) {
2046 if (ElementTy->isConstantArrayType()) {
2047 const ConstantArrayType *CAT =
2048 getASTContext().getAsConstantArrayType(ElementTy);
2049 Dimensions.push_back(CAT->getSize());
2050 ElementTy = CAT->getElementType();
2051 } else if (ElementTy->isIncompleteArrayType()) {
2052 const IncompleteArrayType *IAT =
2053 getASTContext().getAsIncompleteArrayType(ElementTy);
2054 Dimensions.push_back(llvm::APInt(32, 0));
2055 ElementTy = IAT->getElementType();
2056 } else if (ElementTy->isVariableArrayType()) {
2057 const VariableArrayType *VAT =
2058 getASTContext().getAsVariableArrayType(ElementTy);
2059 Dimensions.push_back(llvm::APInt(32, 0));
2060 ElementTy = VAT->getElementType();
2061 } else if (ElementTy->isDependentSizedArrayType()) {
2062 // The dependent expression has to be folded into a constant (TODO).
2063 const DependentSizedArrayType *DSAT =
2064 getASTContext().getAsDependentSizedArrayType(ElementTy);
2065 DiagnosticsEngine &Diags = Context.getDiags();
2066 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2067 "cannot mangle this dependent-length array yet");
2068 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2069 << DSAT->getBracketsRange();
2070 return;
2071 } else {
2072 break;
2073 }
2074 }
2075 Out << 'Y';
2076 // <dimension-count> ::= <number> # number of extra dimensions
2077 mangleNumber(Dimensions.size());
2078 for (const llvm::APInt &Dimension : Dimensions)
2079 mangleNumber(Dimension.getLimitedValue());
2080 mangleType(ElementTy, SourceRange(), QMM_Escape);
2081 }
2082
2083 // <type> ::= <pointer-to-member-type>
2084 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2085 // <class name> <type>
mangleType(const MemberPointerType * T,Qualifiers Quals,SourceRange Range)2086 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals,
2087 SourceRange Range) {
2088 QualType PointeeType = T->getPointeeType();
2089 manglePointerCVQualifiers(Quals);
2090 manglePointerExtQualifiers(Quals, PointeeType);
2091 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2092 Out << '8';
2093 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2094 mangleFunctionType(FPT, nullptr, true);
2095 } else {
2096 mangleQualifiers(PointeeType.getQualifiers(), true);
2097 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2098 mangleType(PointeeType, Range, QMM_Drop);
2099 }
2100 }
2101
mangleType(const TemplateTypeParmType * T,Qualifiers,SourceRange Range)2102 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2103 Qualifiers, SourceRange Range) {
2104 DiagnosticsEngine &Diags = Context.getDiags();
2105 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2106 "cannot mangle this template type parameter type yet");
2107 Diags.Report(Range.getBegin(), DiagID)
2108 << Range;
2109 }
2110
mangleType(const SubstTemplateTypeParmPackType * T,Qualifiers,SourceRange Range)2111 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2112 Qualifiers, SourceRange Range) {
2113 DiagnosticsEngine &Diags = Context.getDiags();
2114 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2115 "cannot mangle this substituted parameter pack yet");
2116 Diags.Report(Range.getBegin(), DiagID)
2117 << Range;
2118 }
2119
2120 // <type> ::= <pointer-type>
2121 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2122 // # the E is required for 64-bit non-static pointers
mangleType(const PointerType * T,Qualifiers Quals,SourceRange Range)2123 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2124 SourceRange Range) {
2125 QualType PointeeType = T->getPointeeType();
2126 manglePointerCVQualifiers(Quals);
2127 manglePointerExtQualifiers(Quals, PointeeType);
2128 mangleType(PointeeType, Range);
2129 }
mangleType(const ObjCObjectPointerType * T,Qualifiers Quals,SourceRange Range)2130 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2131 Qualifiers Quals, SourceRange Range) {
2132 QualType PointeeType = T->getPointeeType();
2133 manglePointerCVQualifiers(Quals);
2134 manglePointerExtQualifiers(Quals, PointeeType);
2135 // Object pointers never have qualifiers.
2136 Out << 'A';
2137 mangleType(PointeeType, Range);
2138 }
2139
2140 // <type> ::= <reference-type>
2141 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2142 // # the E is required for 64-bit non-static lvalue references
mangleType(const LValueReferenceType * T,Qualifiers Quals,SourceRange Range)2143 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2144 Qualifiers Quals, SourceRange Range) {
2145 QualType PointeeType = T->getPointeeType();
2146 Out << (Quals.hasVolatile() ? 'B' : 'A');
2147 manglePointerExtQualifiers(Quals, PointeeType);
2148 mangleType(PointeeType, Range);
2149 }
2150
2151 // <type> ::= <r-value-reference-type>
2152 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2153 // # the E is required for 64-bit non-static rvalue references
mangleType(const RValueReferenceType * T,Qualifiers Quals,SourceRange Range)2154 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2155 Qualifiers Quals, SourceRange Range) {
2156 QualType PointeeType = T->getPointeeType();
2157 Out << (Quals.hasVolatile() ? "$$R" : "$$Q");
2158 manglePointerExtQualifiers(Quals, PointeeType);
2159 mangleType(PointeeType, Range);
2160 }
2161
mangleType(const ComplexType * T,Qualifiers,SourceRange Range)2162 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2163 SourceRange Range) {
2164 DiagnosticsEngine &Diags = Context.getDiags();
2165 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2166 "cannot mangle this complex number type yet");
2167 Diags.Report(Range.getBegin(), DiagID)
2168 << Range;
2169 }
2170
mangleType(const VectorType * T,Qualifiers Quals,SourceRange Range)2171 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2172 SourceRange Range) {
2173 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2174 assert(ET && "vectors with non-builtin elements are unsupported");
2175 uint64_t Width = getASTContext().getTypeSize(T);
2176 // Pattern match exactly the typedefs in our intrinsic headers. Anything that
2177 // doesn't match the Intel types uses a custom mangling below.
2178 bool IsBuiltin = true;
2179 llvm::Triple::ArchType AT =
2180 getASTContext().getTargetInfo().getTriple().getArch();
2181 if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
2182 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2183 Out << "T__m64";
2184 } else if (Width >= 128) {
2185 if (ET->getKind() == BuiltinType::Float)
2186 Out << "T__m" << Width;
2187 else if (ET->getKind() == BuiltinType::LongLong)
2188 Out << "T__m" << Width << 'i';
2189 else if (ET->getKind() == BuiltinType::Double)
2190 Out << "U__m" << Width << 'd';
2191 else
2192 IsBuiltin = false;
2193 } else {
2194 IsBuiltin = false;
2195 }
2196 } else {
2197 IsBuiltin = false;
2198 }
2199
2200 if (!IsBuiltin) {
2201 // The MS ABI doesn't have a special mangling for vector types, so we define
2202 // our own mangling to handle uses of __vector_size__ on user-specified
2203 // types, and for extensions like __v4sf.
2204 Out << "T__clang_vec" << T->getNumElements() << '_';
2205 mangleType(ET, Quals, Range);
2206 }
2207
2208 Out << "@@";
2209 }
2210
mangleType(const ExtVectorType * T,Qualifiers Quals,SourceRange Range)2211 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2212 Qualifiers Quals, SourceRange Range) {
2213 mangleType(static_cast<const VectorType *>(T), Quals, Range);
2214 }
mangleType(const DependentSizedExtVectorType * T,Qualifiers,SourceRange Range)2215 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2216 Qualifiers, SourceRange Range) {
2217 DiagnosticsEngine &Diags = Context.getDiags();
2218 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2219 "cannot mangle this dependent-sized extended vector type yet");
2220 Diags.Report(Range.getBegin(), DiagID)
2221 << Range;
2222 }
2223
mangleType(const ObjCInterfaceType * T,Qualifiers,SourceRange)2224 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2225 SourceRange) {
2226 // ObjC interfaces have structs underlying them.
2227 Out << 'U';
2228 mangleName(T->getDecl());
2229 }
2230
mangleType(const ObjCObjectType * T,Qualifiers,SourceRange Range)2231 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
2232 SourceRange Range) {
2233 // We don't allow overloading by different protocol qualification,
2234 // so mangling them isn't necessary.
2235 mangleType(T->getBaseType(), Range);
2236 }
2237
mangleType(const BlockPointerType * T,Qualifiers Quals,SourceRange Range)2238 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2239 Qualifiers Quals, SourceRange Range) {
2240 QualType PointeeType = T->getPointeeType();
2241 manglePointerCVQualifiers(Quals);
2242 manglePointerExtQualifiers(Quals, PointeeType);
2243
2244 Out << "_E";
2245
2246 mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2247 }
2248
mangleType(const InjectedClassNameType *,Qualifiers,SourceRange)2249 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2250 Qualifiers, SourceRange) {
2251 llvm_unreachable("Cannot mangle injected class name type.");
2252 }
2253
mangleType(const TemplateSpecializationType * T,Qualifiers,SourceRange Range)2254 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2255 Qualifiers, SourceRange Range) {
2256 DiagnosticsEngine &Diags = Context.getDiags();
2257 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2258 "cannot mangle this template specialization type yet");
2259 Diags.Report(Range.getBegin(), DiagID)
2260 << Range;
2261 }
2262
mangleType(const DependentNameType * T,Qualifiers,SourceRange Range)2263 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2264 SourceRange Range) {
2265 DiagnosticsEngine &Diags = Context.getDiags();
2266 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2267 "cannot mangle this dependent name type yet");
2268 Diags.Report(Range.getBegin(), DiagID)
2269 << Range;
2270 }
2271
mangleType(const DependentTemplateSpecializationType * T,Qualifiers,SourceRange Range)2272 void MicrosoftCXXNameMangler::mangleType(
2273 const DependentTemplateSpecializationType *T, Qualifiers,
2274 SourceRange Range) {
2275 DiagnosticsEngine &Diags = Context.getDiags();
2276 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2277 "cannot mangle this dependent template specialization type yet");
2278 Diags.Report(Range.getBegin(), DiagID)
2279 << Range;
2280 }
2281
mangleType(const PackExpansionType * T,Qualifiers,SourceRange Range)2282 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2283 SourceRange Range) {
2284 DiagnosticsEngine &Diags = Context.getDiags();
2285 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2286 "cannot mangle this pack expansion yet");
2287 Diags.Report(Range.getBegin(), DiagID)
2288 << Range;
2289 }
2290
mangleType(const TypeOfType * T,Qualifiers,SourceRange Range)2291 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2292 SourceRange Range) {
2293 DiagnosticsEngine &Diags = Context.getDiags();
2294 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2295 "cannot mangle this typeof(type) yet");
2296 Diags.Report(Range.getBegin(), DiagID)
2297 << Range;
2298 }
2299
mangleType(const TypeOfExprType * T,Qualifiers,SourceRange Range)2300 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2301 SourceRange Range) {
2302 DiagnosticsEngine &Diags = Context.getDiags();
2303 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2304 "cannot mangle this typeof(expression) yet");
2305 Diags.Report(Range.getBegin(), DiagID)
2306 << Range;
2307 }
2308
mangleType(const DecltypeType * T,Qualifiers,SourceRange Range)2309 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2310 SourceRange Range) {
2311 DiagnosticsEngine &Diags = Context.getDiags();
2312 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2313 "cannot mangle this decltype() yet");
2314 Diags.Report(Range.getBegin(), DiagID)
2315 << Range;
2316 }
2317
mangleType(const UnaryTransformType * T,Qualifiers,SourceRange Range)2318 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2319 Qualifiers, SourceRange Range) {
2320 DiagnosticsEngine &Diags = Context.getDiags();
2321 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2322 "cannot mangle this unary transform type yet");
2323 Diags.Report(Range.getBegin(), DiagID)
2324 << Range;
2325 }
2326
mangleType(const AutoType * T,Qualifiers,SourceRange Range)2327 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2328 SourceRange Range) {
2329 assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2330
2331 DiagnosticsEngine &Diags = Context.getDiags();
2332 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2333 "cannot mangle this 'auto' type yet");
2334 Diags.Report(Range.getBegin(), DiagID)
2335 << Range;
2336 }
2337
mangleType(const AtomicType * T,Qualifiers,SourceRange Range)2338 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2339 SourceRange Range) {
2340 DiagnosticsEngine &Diags = Context.getDiags();
2341 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2342 "cannot mangle this C11 atomic type yet");
2343 Diags.Report(Range.getBegin(), DiagID)
2344 << Range;
2345 }
2346
mangleCXXName(const NamedDecl * D,raw_ostream & Out)2347 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2348 raw_ostream &Out) {
2349 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2350 "Invalid mangleName() call, argument is not a variable or function!");
2351 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2352 "Invalid mangleName() call on 'structor decl!");
2353
2354 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2355 getASTContext().getSourceManager(),
2356 "Mangling declaration");
2357
2358 MicrosoftCXXNameMangler Mangler(*this, Out);
2359 return Mangler.mangle(D);
2360 }
2361
2362 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2363 // <virtual-adjustment>
2364 // <no-adjustment> ::= A # private near
2365 // ::= B # private far
2366 // ::= I # protected near
2367 // ::= J # protected far
2368 // ::= Q # public near
2369 // ::= R # public far
2370 // <static-adjustment> ::= G <static-offset> # private near
2371 // ::= H <static-offset> # private far
2372 // ::= O <static-offset> # protected near
2373 // ::= P <static-offset> # protected far
2374 // ::= W <static-offset> # public near
2375 // ::= X <static-offset> # public far
2376 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2377 // ::= $1 <virtual-shift> <static-offset> # private far
2378 // ::= $2 <virtual-shift> <static-offset> # protected near
2379 // ::= $3 <virtual-shift> <static-offset> # protected far
2380 // ::= $4 <virtual-shift> <static-offset> # public near
2381 // ::= $5 <virtual-shift> <static-offset> # public far
2382 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
2383 // <vtordisp-shift> ::= <offset-to-vtordisp>
2384 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
2385 // <offset-to-vtordisp>
mangleThunkThisAdjustment(const CXXMethodDecl * MD,const ThisAdjustment & Adjustment,MicrosoftCXXNameMangler & Mangler,raw_ostream & Out)2386 static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
2387 const ThisAdjustment &Adjustment,
2388 MicrosoftCXXNameMangler &Mangler,
2389 raw_ostream &Out) {
2390 if (!Adjustment.Virtual.isEmpty()) {
2391 Out << '$';
2392 char AccessSpec;
2393 switch (MD->getAccess()) {
2394 case AS_none:
2395 llvm_unreachable("Unsupported access specifier");
2396 case AS_private:
2397 AccessSpec = '0';
2398 break;
2399 case AS_protected:
2400 AccessSpec = '2';
2401 break;
2402 case AS_public:
2403 AccessSpec = '4';
2404 }
2405 if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2406 Out << 'R' << AccessSpec;
2407 Mangler.mangleNumber(
2408 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2409 Mangler.mangleNumber(
2410 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2411 Mangler.mangleNumber(
2412 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2413 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2414 } else {
2415 Out << AccessSpec;
2416 Mangler.mangleNumber(
2417 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2418 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2419 }
2420 } else if (Adjustment.NonVirtual != 0) {
2421 switch (MD->getAccess()) {
2422 case AS_none:
2423 llvm_unreachable("Unsupported access specifier");
2424 case AS_private:
2425 Out << 'G';
2426 break;
2427 case AS_protected:
2428 Out << 'O';
2429 break;
2430 case AS_public:
2431 Out << 'W';
2432 }
2433 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2434 } else {
2435 switch (MD->getAccess()) {
2436 case AS_none:
2437 llvm_unreachable("Unsupported access specifier");
2438 case AS_private:
2439 Out << 'A';
2440 break;
2441 case AS_protected:
2442 Out << 'I';
2443 break;
2444 case AS_public:
2445 Out << 'Q';
2446 }
2447 }
2448 }
2449
2450 void
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,raw_ostream & Out)2451 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2452 raw_ostream &Out) {
2453 MicrosoftVTableContext *VTContext =
2454 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2455 const MicrosoftVTableContext::MethodVFTableLocation &ML =
2456 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2457
2458 MicrosoftCXXNameMangler Mangler(*this, Out);
2459 Mangler.getStream() << "\01?";
2460 Mangler.mangleVirtualMemPtrThunk(MD, ML);
2461 }
2462
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)2463 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2464 const ThunkInfo &Thunk,
2465 raw_ostream &Out) {
2466 MicrosoftCXXNameMangler Mangler(*this, Out);
2467 Out << "\01?";
2468 Mangler.mangleName(MD);
2469 mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
2470 if (!Thunk.Return.isEmpty())
2471 assert(Thunk.Method != nullptr &&
2472 "Thunk info should hold the overridee decl");
2473
2474 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2475 Mangler.mangleFunctionType(
2476 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2477 }
2478
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & Adjustment,raw_ostream & Out)2479 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2480 const CXXDestructorDecl *DD, CXXDtorType Type,
2481 const ThisAdjustment &Adjustment, raw_ostream &Out) {
2482 // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2483 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2484 // mangling manually until we support both deleting dtor types.
2485 assert(Type == Dtor_Deleting);
2486 MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
2487 Out << "\01??_E";
2488 Mangler.mangleName(DD->getParent());
2489 mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
2490 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2491 }
2492
mangleCXXVFTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2493 void MicrosoftMangleContextImpl::mangleCXXVFTable(
2494 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2495 raw_ostream &Out) {
2496 // <mangled-name> ::= ?_7 <class-name> <storage-class>
2497 // <cvr-qualifiers> [<name>] @
2498 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2499 // is always '6' for vftables.
2500 MicrosoftCXXNameMangler Mangler(*this, Out);
2501 Mangler.getStream() << "\01??_7";
2502 Mangler.mangleName(Derived);
2503 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2504 for (const CXXRecordDecl *RD : BasePath)
2505 Mangler.mangleName(RD);
2506 Mangler.getStream() << '@';
2507 }
2508
mangleCXXVBTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2509 void MicrosoftMangleContextImpl::mangleCXXVBTable(
2510 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2511 raw_ostream &Out) {
2512 // <mangled-name> ::= ?_8 <class-name> <storage-class>
2513 // <cvr-qualifiers> [<name>] @
2514 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2515 // is always '7' for vbtables.
2516 MicrosoftCXXNameMangler Mangler(*this, Out);
2517 Mangler.getStream() << "\01??_8";
2518 Mangler.mangleName(Derived);
2519 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
2520 for (const CXXRecordDecl *RD : BasePath)
2521 Mangler.mangleName(RD);
2522 Mangler.getStream() << '@';
2523 }
2524
mangleCXXRTTI(QualType T,raw_ostream & Out)2525 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2526 MicrosoftCXXNameMangler Mangler(*this, Out);
2527 Mangler.getStream() << "\01??_R0";
2528 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2529 Mangler.getStream() << "@8";
2530 }
2531
mangleCXXRTTIName(QualType T,raw_ostream & Out)2532 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2533 raw_ostream &Out) {
2534 MicrosoftCXXNameMangler Mangler(*this, Out);
2535 Mangler.getStream() << '.';
2536 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2537 }
2538
mangleCXXCatchHandlerType(QualType T,uint32_t Flags,raw_ostream & Out)2539 void MicrosoftMangleContextImpl::mangleCXXCatchHandlerType(QualType T,
2540 uint32_t Flags,
2541 raw_ostream &Out) {
2542 MicrosoftCXXNameMangler Mangler(*this, Out);
2543 Mangler.getStream() << "llvm.eh.handlertype.";
2544 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2545 Mangler.getStream() << '.' << Flags;
2546 }
2547
mangleCXXVirtualDisplacementMap(const CXXRecordDecl * SrcRD,const CXXRecordDecl * DstRD,raw_ostream & Out)2548 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
2549 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
2550 MicrosoftCXXNameMangler Mangler(*this, Out);
2551 Mangler.getStream() << "\01??_K";
2552 Mangler.mangleName(SrcRD);
2553 Mangler.getStream() << "$C";
2554 Mangler.mangleName(DstRD);
2555 }
2556
mangleCXXThrowInfo(QualType T,bool IsConst,bool IsVolatile,uint32_t NumEntries,raw_ostream & Out)2557 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T,
2558 bool IsConst,
2559 bool IsVolatile,
2560 uint32_t NumEntries,
2561 raw_ostream &Out) {
2562 MicrosoftCXXNameMangler Mangler(*this, Out);
2563 Mangler.getStream() << "_TI";
2564 if (IsConst)
2565 Mangler.getStream() << 'C';
2566 if (IsVolatile)
2567 Mangler.getStream() << 'V';
2568 Mangler.getStream() << NumEntries;
2569 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2570 }
2571
mangleCXXCatchableTypeArray(QualType T,uint32_t NumEntries,raw_ostream & Out)2572 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
2573 QualType T, uint32_t NumEntries, raw_ostream &Out) {
2574 MicrosoftCXXNameMangler Mangler(*this, Out);
2575 Mangler.getStream() << "_CTA";
2576 Mangler.getStream() << NumEntries;
2577 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2578 }
2579
mangleCXXCatchableType(QualType T,const CXXConstructorDecl * CD,CXXCtorType CT,uint32_t Size,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBIndex,raw_ostream & Out)2580 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
2581 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
2582 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
2583 raw_ostream &Out) {
2584 MicrosoftCXXNameMangler Mangler(*this, Out);
2585 Mangler.getStream() << "_CT";
2586
2587 llvm::SmallString<64> RTTIMangling;
2588 {
2589 llvm::raw_svector_ostream Stream(RTTIMangling);
2590 mangleCXXRTTI(T, Stream);
2591 }
2592 Mangler.getStream() << RTTIMangling.substr(1);
2593
2594 // VS2015 CTP6 omits the copy-constructor in the mangled name. This name is,
2595 // in fact, superfluous but I'm not sure the change was made consciously.
2596 // TODO: Revisit this when VS2015 gets released.
2597 llvm::SmallString<64> CopyCtorMangling;
2598 if (CD) {
2599 llvm::raw_svector_ostream Stream(CopyCtorMangling);
2600 mangleCXXCtor(CD, CT, Stream);
2601 }
2602 Mangler.getStream() << CopyCtorMangling.substr(1);
2603
2604 Mangler.getStream() << Size;
2605 if (VBPtrOffset == -1) {
2606 if (NVOffset) {
2607 Mangler.getStream() << NVOffset;
2608 }
2609 } else {
2610 Mangler.getStream() << NVOffset;
2611 Mangler.getStream() << VBPtrOffset;
2612 Mangler.getStream() << VBIndex;
2613 }
2614 }
2615
mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl * Derived,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBTableOffset,uint32_t Flags,raw_ostream & Out)2616 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2617 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2618 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2619 MicrosoftCXXNameMangler Mangler(*this, Out);
2620 Mangler.getStream() << "\01??_R1";
2621 Mangler.mangleNumber(NVOffset);
2622 Mangler.mangleNumber(VBPtrOffset);
2623 Mangler.mangleNumber(VBTableOffset);
2624 Mangler.mangleNumber(Flags);
2625 Mangler.mangleName(Derived);
2626 Mangler.getStream() << "8";
2627 }
2628
mangleCXXRTTIBaseClassArray(const CXXRecordDecl * Derived,raw_ostream & Out)2629 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2630 const CXXRecordDecl *Derived, raw_ostream &Out) {
2631 MicrosoftCXXNameMangler Mangler(*this, Out);
2632 Mangler.getStream() << "\01??_R2";
2633 Mangler.mangleName(Derived);
2634 Mangler.getStream() << "8";
2635 }
2636
mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl * Derived,raw_ostream & Out)2637 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2638 const CXXRecordDecl *Derived, raw_ostream &Out) {
2639 MicrosoftCXXNameMangler Mangler(*this, Out);
2640 Mangler.getStream() << "\01??_R3";
2641 Mangler.mangleName(Derived);
2642 Mangler.getStream() << "8";
2643 }
2644
mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2645 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2646 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2647 raw_ostream &Out) {
2648 // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2649 // <cvr-qualifiers> [<name>] @
2650 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2651 // is always '6' for vftables.
2652 MicrosoftCXXNameMangler Mangler(*this, Out);
2653 Mangler.getStream() << "\01??_R4";
2654 Mangler.mangleName(Derived);
2655 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2656 for (const CXXRecordDecl *RD : BasePath)
2657 Mangler.mangleName(RD);
2658 Mangler.getStream() << '@';
2659 }
2660
mangleSEHFilterExpression(const NamedDecl * EnclosingDecl,raw_ostream & Out)2661 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
2662 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2663 MicrosoftCXXNameMangler Mangler(*this, Out);
2664 // The function body is in the same comdat as the function with the handler,
2665 // so the numbering here doesn't have to be the same across TUs.
2666 //
2667 // <mangled-name> ::= ?filt$ <filter-number> @0
2668 Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
2669 Mangler.mangleName(EnclosingDecl);
2670 }
2671
mangleSEHFinallyBlock(const NamedDecl * EnclosingDecl,raw_ostream & Out)2672 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
2673 const NamedDecl *EnclosingDecl, raw_ostream &Out) {
2674 MicrosoftCXXNameMangler Mangler(*this, Out);
2675 // The function body is in the same comdat as the function with the handler,
2676 // so the numbering here doesn't have to be the same across TUs.
2677 //
2678 // <mangled-name> ::= ?fin$ <filter-number> @0
2679 Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
2680 Mangler.mangleName(EnclosingDecl);
2681 }
2682
mangleTypeName(QualType T,raw_ostream & Out)2683 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2684 // This is just a made up unique string for the purposes of tbaa. undname
2685 // does *not* know how to demangle it.
2686 MicrosoftCXXNameMangler Mangler(*this, Out);
2687 Mangler.getStream() << '?';
2688 Mangler.mangleType(T, SourceRange());
2689 }
2690
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)2691 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2692 CXXCtorType Type,
2693 raw_ostream &Out) {
2694 MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2695 mangler.mangle(D);
2696 }
2697
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)2698 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2699 CXXDtorType Type,
2700 raw_ostream &Out) {
2701 MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2702 mangler.mangle(D);
2703 }
2704
mangleReferenceTemporary(const VarDecl * VD,unsigned,raw_ostream &)2705 void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
2706 unsigned,
2707 raw_ostream &) {
2708 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
2709 "cannot mangle this reference temporary yet");
2710 getDiags().Report(VD->getLocation(), DiagID);
2711 }
2712
mangleThreadSafeStaticGuardVariable(const VarDecl * VD,unsigned GuardNum,raw_ostream & Out)2713 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
2714 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
2715 MicrosoftCXXNameMangler Mangler(*this, Out);
2716
2717 Mangler.getStream() << "\01?$TSS" << GuardNum << '@';
2718 Mangler.mangleNestedName(VD);
2719 }
2720
mangleStaticGuardVariable(const VarDecl * VD,raw_ostream & Out)2721 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2722 raw_ostream &Out) {
2723 // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2724 // ::= ?__J <postfix> @5 <scope-depth>
2725 // ::= ?$S <guard-num> @ <postfix> @4IA
2726
2727 // The first mangling is what MSVC uses to guard static locals in inline
2728 // functions. It uses a different mangling in external functions to support
2729 // guarding more than 32 variables. MSVC rejects inline functions with more
2730 // than 32 static locals. We don't fully implement the second mangling
2731 // because those guards are not externally visible, and instead use LLVM's
2732 // default renaming when creating a new guard variable.
2733 MicrosoftCXXNameMangler Mangler(*this, Out);
2734
2735 bool Visible = VD->isExternallyVisible();
2736 if (Visible) {
2737 Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B");
2738 } else {
2739 Mangler.getStream() << "\01?$S1@";
2740 }
2741 unsigned ScopeDepth = 0;
2742 if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2743 // If we do not have a discriminator and are emitting a guard variable for
2744 // use at global scope, then mangling the nested name will not be enough to
2745 // remove ambiguities.
2746 Mangler.mangle(VD, "");
2747 else
2748 Mangler.mangleNestedName(VD);
2749 Mangler.getStream() << (Visible ? "@5" : "@4IA");
2750 if (ScopeDepth)
2751 Mangler.mangleNumber(ScopeDepth);
2752 }
2753
mangleInitFiniStub(const VarDecl * D,raw_ostream & Out,char CharCode)2754 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2755 raw_ostream &Out,
2756 char CharCode) {
2757 MicrosoftCXXNameMangler Mangler(*this, Out);
2758 Mangler.getStream() << "\01??__" << CharCode;
2759 Mangler.mangleName(D);
2760 if (D->isStaticDataMember()) {
2761 Mangler.mangleVariableEncoding(D);
2762 Mangler.getStream() << '@';
2763 }
2764 // This is the function class mangling. These stubs are global, non-variadic,
2765 // cdecl functions that return void and take no args.
2766 Mangler.getStream() << "YAXXZ";
2767 }
2768
mangleDynamicInitializer(const VarDecl * D,raw_ostream & Out)2769 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2770 raw_ostream &Out) {
2771 // <initializer-name> ::= ?__E <name> YAXXZ
2772 mangleInitFiniStub(D, Out, 'E');
2773 }
2774
2775 void
mangleDynamicAtExitDestructor(const VarDecl * D,raw_ostream & Out)2776 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2777 raw_ostream &Out) {
2778 // <destructor-name> ::= ?__F <name> YAXXZ
2779 mangleInitFiniStub(D, Out, 'F');
2780 }
2781
mangleStringLiteral(const StringLiteral * SL,raw_ostream & Out)2782 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2783 raw_ostream &Out) {
2784 // <char-type> ::= 0 # char
2785 // ::= 1 # wchar_t
2786 // ::= ??? # char16_t/char32_t will need a mangling too...
2787 //
2788 // <literal-length> ::= <non-negative integer> # the length of the literal
2789 //
2790 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
2791 // # null-terminator
2792 //
2793 // <encoded-string> ::= <simple character> # uninteresting character
2794 // ::= '?$' <hex digit> <hex digit> # these two nibbles
2795 // # encode the byte for the
2796 // # character
2797 // ::= '?' [a-z] # \xe1 - \xfa
2798 // ::= '?' [A-Z] # \xc1 - \xda
2799 // ::= '?' [0-9] # [,/\:. \n\t'-]
2800 //
2801 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2802 // <encoded-string> '@'
2803 MicrosoftCXXNameMangler Mangler(*this, Out);
2804 Mangler.getStream() << "\01??_C@_";
2805
2806 // <char-type>: The "kind" of string literal is encoded into the mangled name.
2807 if (SL->isWide())
2808 Mangler.getStream() << '1';
2809 else
2810 Mangler.getStream() << '0';
2811
2812 // <literal-length>: The next part of the mangled name consists of the length
2813 // of the string.
2814 // The StringLiteral does not consider the NUL terminator byte(s) but the
2815 // mangling does.
2816 // N.B. The length is in terms of bytes, not characters.
2817 Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2818
2819 auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2820 unsigned CharByteWidth = SL->getCharByteWidth();
2821 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2822 unsigned OffsetInCodeUnit = Index % CharByteWidth;
2823 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2824 };
2825
2826 auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2827 unsigned CharByteWidth = SL->getCharByteWidth();
2828 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2829 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2830 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2831 };
2832
2833 // CRC all the bytes of the StringLiteral.
2834 llvm::JamCRC JC;
2835 for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2836 JC.update(GetLittleEndianByte(I));
2837
2838 // The NUL terminator byte(s) were not present earlier,
2839 // we need to manually process those bytes into the CRC.
2840 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2841 ++NullTerminator)
2842 JC.update('\x00');
2843
2844 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2845 // scheme.
2846 Mangler.mangleNumber(JC.getCRC());
2847
2848 // <encoded-string>: The mangled name also contains the first 32 _characters_
2849 // (including null-terminator bytes) of the StringLiteral.
2850 // Each character is encoded by splitting them into bytes and then encoding
2851 // the constituent bytes.
2852 auto MangleByte = [&Mangler](char Byte) {
2853 // There are five different manglings for characters:
2854 // - [a-zA-Z0-9_$]: A one-to-one mapping.
2855 // - ?[a-z]: The range from \xe1 to \xfa.
2856 // - ?[A-Z]: The range from \xc1 to \xda.
2857 // - ?[0-9]: The set of [,/\:. \n\t'-].
2858 // - ?$XX: A fallback which maps nibbles.
2859 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2860 Mangler.getStream() << Byte;
2861 } else if (isLetter(Byte & 0x7f)) {
2862 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2863 } else {
2864 const char SpecialChars[] = {',', '/', '\\', ':', '.',
2865 ' ', '\n', '\t', '\'', '-'};
2866 const char *Pos =
2867 std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
2868 if (Pos != std::end(SpecialChars)) {
2869 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
2870 } else {
2871 Mangler.getStream() << "?$";
2872 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
2873 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
2874 }
2875 }
2876 };
2877
2878 // Enforce our 32 character max.
2879 unsigned NumCharsToMangle = std::min(32U, SL->getLength());
2880 for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
2881 ++I)
2882 if (SL->isWide())
2883 MangleByte(GetBigEndianByte(I));
2884 else
2885 MangleByte(GetLittleEndianByte(I));
2886
2887 // Encode the NUL terminator if there is room.
2888 if (NumCharsToMangle < 32)
2889 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2890 ++NullTerminator)
2891 MangleByte(0);
2892
2893 Mangler.getStream() << '@';
2894 }
2895
2896 MicrosoftMangleContext *
create(ASTContext & Context,DiagnosticsEngine & Diags)2897 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
2898 return new MicrosoftMangleContextImpl(Context, Diags);
2899 }
2900