• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_FACTORY_H_
6 #define V8_FACTORY_H_
7 
8 #include "src/isolate.h"
9 #include "src/messages.h"
10 #include "src/type-feedback-vector.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // Interface for handle based allocation.
16 class Factory final {
17  public:
18   Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string,
19                              Handle<Object> to_number, bool to_boolean,
20                              const char* type_of, byte kind);
21 
22   // Allocates a fixed array initialized with undefined values.
23   Handle<FixedArray> NewFixedArray(
24       int size,
25       PretenureFlag pretenure = NOT_TENURED);
26 
27   // Allocate a new fixed array with non-existing entries (the hole).
28   Handle<FixedArray> NewFixedArrayWithHoles(
29       int size,
30       PretenureFlag pretenure = NOT_TENURED);
31 
32   // Allocates an uninitialized fixed array. It must be filled by the caller.
33   Handle<FixedArray> NewUninitializedFixedArray(int size);
34 
35   // Allocate a new uninitialized fixed double array.
36   // The function returns a pre-allocated empty fixed array for capacity = 0,
37   // so the return type must be the general fixed array class.
38   Handle<FixedArrayBase> NewFixedDoubleArray(
39       int size,
40       PretenureFlag pretenure = NOT_TENURED);
41 
42   // Allocate a new fixed double array with hole values.
43   Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
44       int size,
45       PretenureFlag pretenure = NOT_TENURED);
46 
47   Handle<OrderedHashSet> NewOrderedHashSet();
48   Handle<OrderedHashMap> NewOrderedHashMap();
49 
50   // Create a new boxed value.
51   Handle<Box> NewBox(Handle<Object> value);
52 
53   // Create a new PrototypeInfo struct.
54   Handle<PrototypeInfo> NewPrototypeInfo();
55 
56   // Create a new SloppyBlockWithEvalContextExtension struct.
57   Handle<SloppyBlockWithEvalContextExtension>
58   NewSloppyBlockWithEvalContextExtension(Handle<ScopeInfo> scope_info,
59                                          Handle<JSObject> extension);
60 
61   // Create a pre-tenured empty AccessorPair.
62   Handle<AccessorPair> NewAccessorPair();
63 
64   // Create an empty TypeFeedbackInfo.
65   Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
66 
67   // Finds the internalized copy for string in the string table.
68   // If not found, a new string is added to the table and returned.
69   Handle<String> InternalizeUtf8String(Vector<const char> str);
InternalizeUtf8String(const char * str)70   Handle<String> InternalizeUtf8String(const char* str) {
71     return InternalizeUtf8String(CStrVector(str));
72   }
73 
74   Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
75   Handle<String> InternalizeOneByteString(
76       Handle<SeqOneByteString>, int from, int length);
77 
78   Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
79 
80   template<class StringTableKey>
81   Handle<String> InternalizeStringWithKey(StringTableKey* key);
82 
83   // Internalized strings are created in the old generation (data space).
InternalizeString(Handle<String> string)84   Handle<String> InternalizeString(Handle<String> string) {
85     if (string->IsInternalizedString()) return string;
86     return StringTable::LookupString(isolate(), string);
87   }
88 
InternalizeName(Handle<Name> name)89   Handle<Name> InternalizeName(Handle<Name> name) {
90     if (name->IsUniqueName()) return name;
91     return StringTable::LookupString(isolate(), Handle<String>::cast(name));
92   }
93 
94   // String creation functions.  Most of the string creation functions take
95   // a Heap::PretenureFlag argument to optionally request that they be
96   // allocated in the old generation.  The pretenure flag defaults to
97   // DONT_TENURE.
98   //
99   // Creates a new String object.  There are two String encodings: one-byte and
100   // two-byte.  One should choose between the three string factory functions
101   // based on the encoding of the string buffer that the string is
102   // initialized from.
103   //   - ...FromOneByte initializes the string from a buffer that is Latin1
104   //     encoded (it does not check that the buffer is Latin1 encoded) and
105   //     the result will be Latin1 encoded.
106   //   - ...FromUtf8 initializes the string from a buffer that is UTF-8
107   //     encoded.  If the characters are all ASCII characters, the result
108   //     will be Latin1 encoded, otherwise it will converted to two-byte.
109   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
110   //     encoded.  If the characters are all Latin1 characters, the result
111   //     will be converted to Latin1, otherwise it will be left as two-byte.
112   //
113   // One-byte strings are pretenured when used as keys in the SourceCodeCache.
114   MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
115       Vector<const uint8_t> str,
116       PretenureFlag pretenure = NOT_TENURED);
117 
118   template <size_t N>
119   inline Handle<String> NewStringFromStaticChars(
120       const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) {
121     DCHECK(N == StrLength(str) + 1);
122     return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure)
123         .ToHandleChecked();
124   }
125 
126   inline Handle<String> NewStringFromAsciiChecked(
127       const char* str,
128       PretenureFlag pretenure = NOT_TENURED) {
129     return NewStringFromOneByte(
130         OneByteVector(str), pretenure).ToHandleChecked();
131   }
132 
133 
134   // Allocates and fully initializes a String.  There are two String encodings:
135   // one-byte and two-byte. One should choose between the threestring
136   // allocation functions based on the encoding of the string buffer used to
137   // initialized the string.
138   //   - ...FromOneByte initializes the string from a buffer that is Latin1
139   //     encoded (it does not check that the buffer is Latin1 encoded) and the
140   //     result will be Latin1 encoded.
141   //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
142   //     encoded.  If the characters are all ASCII characters, the result
143   //     will be Latin1 encoded, otherwise it will converted to two-byte.
144   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
145   //     encoded.  If the characters are all Latin1 characters, the
146   //     result will be converted to Latin1, otherwise it will be left as
147   //     two-byte.
148 
149   // TODO(dcarney): remove this function.
150   MUST_USE_RESULT inline MaybeHandle<String> NewStringFromAscii(
151       Vector<const char> str,
152       PretenureFlag pretenure = NOT_TENURED) {
153     return NewStringFromOneByte(Vector<const uint8_t>::cast(str), pretenure);
154   }
155 
156   // UTF8 strings are pretenured when used for regexp literal patterns and
157   // flags in the parser.
158   MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
159       Vector<const char> str,
160       PretenureFlag pretenure = NOT_TENURED);
161 
162   MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
163       Vector<const uc16> str,
164       PretenureFlag pretenure = NOT_TENURED);
165 
166   MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
167       const ZoneVector<uc16>* str, PretenureFlag pretenure = NOT_TENURED);
168 
169   // Allocates an internalized string in old space based on the character
170   // stream.
171   Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str,
172                                                int chars, uint32_t hash_field);
173 
174   Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str,
175                                               uint32_t hash_field);
176 
177   Handle<String> NewOneByteInternalizedSubString(
178       Handle<SeqOneByteString> string, int offset, int length,
179       uint32_t hash_field);
180 
181   Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str,
182                                               uint32_t hash_field);
183 
184   Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars,
185                                            uint32_t hash_field);
186 
187   // Compute the matching internalized string map for a string if possible.
188   // Empty handle is returned if string is in new space or not flattened.
189   MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
190       Handle<String> string);
191 
192   // Allocates and partially initializes an one-byte or two-byte String. The
193   // characters of the string are uninitialized. Currently used in regexp code
194   // only, where they are pretenured.
195   MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
196       int length,
197       PretenureFlag pretenure = NOT_TENURED);
198   MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
199       int length,
200       PretenureFlag pretenure = NOT_TENURED);
201 
202   // Creates a single character string where the character has given code.
203   // A cache is used for Latin1 codes.
204   Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
205 
206   // Create a new cons string object which consists of a pair of strings.
207   MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
208                                                     Handle<String> right);
209 
210   // Create a new string object which holds a proper substring of a string.
211   Handle<String> NewProperSubString(Handle<String> str,
212                                     int begin,
213                                     int end);
214 
215   // Create a new string object which holds a substring of a string.
NewSubString(Handle<String> str,int begin,int end)216   Handle<String> NewSubString(Handle<String> str, int begin, int end) {
217     if (begin == 0 && end == str->length()) return str;
218     return NewProperSubString(str, begin, end);
219   }
220 
221   // Creates a new external String object.  There are two String encodings
222   // in the system: one-byte and two-byte.  Unlike other String types, it does
223   // not make sense to have a UTF-8 factory function for external strings,
224   // because we cannot change the underlying buffer.  Note that these strings
225   // are backed by a string resource that resides outside the V8 heap.
226   MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
227       const ExternalOneByteString::Resource* resource);
228   MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
229       const ExternalTwoByteString::Resource* resource);
230   // Create a new external string object for one-byte encoded native script.
231   // It does not cache the resource data pointer.
232   Handle<ExternalOneByteString> NewNativeSourceString(
233       const ExternalOneByteString::Resource* resource);
234 
235   // Create a symbol.
236   Handle<Symbol> NewSymbol();
237   Handle<Symbol> NewPrivateSymbol();
238 
239   // Create a global (but otherwise uninitialized) context.
240   Handle<Context> NewNativeContext();
241 
242   // Create a script context.
243   Handle<Context> NewScriptContext(Handle<JSFunction> function,
244                                    Handle<ScopeInfo> scope_info);
245 
246   // Create an empty script context table.
247   Handle<ScriptContextTable> NewScriptContextTable();
248 
249   // Create a module context.
250   Handle<Context> NewModuleContext(Handle<ScopeInfo> scope_info);
251 
252   // Create a function context.
253   Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function);
254 
255   // Create a catch context.
256   Handle<Context> NewCatchContext(Handle<JSFunction> function,
257                                   Handle<Context> previous,
258                                   Handle<String> name,
259                                   Handle<Object> thrown_object);
260 
261   // Create a 'with' context.
262   Handle<Context> NewWithContext(Handle<JSFunction> function,
263                                  Handle<Context> previous,
264                                  Handle<JSReceiver> extension);
265 
266   Handle<Context> NewDebugEvaluateContext(Handle<Context> previous,
267                                           Handle<JSReceiver> extension,
268                                           Handle<Context> wrapped,
269                                           Handle<StringSet> whitelist);
270 
271   // Create a block context.
272   Handle<Context> NewBlockContext(Handle<JSFunction> function,
273                                   Handle<Context> previous,
274                                   Handle<ScopeInfo> scope_info);
275 
276   // Allocate a new struct.  The struct is pretenured (allocated directly in
277   // the old generation).
278   Handle<Struct> NewStruct(InstanceType type);
279 
280   Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
281       int aliased_context_slot);
282 
283   Handle<AccessorInfo> NewAccessorInfo();
284 
285   Handle<Script> NewScript(Handle<String> source);
286 
287   // Foreign objects are pretenured when allocated by the bootstrapper.
288   Handle<Foreign> NewForeign(Address addr,
289                              PretenureFlag pretenure = NOT_TENURED);
290 
291   // Allocate a new foreign object.  The foreign is pretenured (allocated
292   // directly in the old generation).
293   Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
294 
295   Handle<ByteArray> NewByteArray(int length,
296                                  PretenureFlag pretenure = NOT_TENURED);
297 
298   Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes,
299                                          int frame_size, int parameter_count,
300                                          Handle<FixedArray> constant_pool);
301 
302   Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer(
303       int length, ExternalArrayType array_type, void* external_pointer,
304       PretenureFlag pretenure = NOT_TENURED);
305 
306   Handle<FixedTypedArrayBase> NewFixedTypedArray(
307       int length, ExternalArrayType array_type, bool initialize,
308       PretenureFlag pretenure = NOT_TENURED);
309 
310   Handle<Cell> NewCell(Handle<Object> value);
311 
312   Handle<PropertyCell> NewPropertyCell();
313 
314   Handle<WeakCell> NewWeakCell(Handle<HeapObject> value);
315 
316   Handle<TransitionArray> NewTransitionArray(int capacity);
317 
318   // Allocate a tenured AllocationSite. It's payload is null.
319   Handle<AllocationSite> NewAllocationSite();
320 
321   Handle<Map> NewMap(
322       InstanceType type,
323       int instance_size,
324       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
325 
326   Handle<HeapObject> NewFillerObject(int size,
327                                      bool double_align,
328                                      AllocationSpace space);
329 
330   Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
331 
332   Handle<JSObject> CopyJSObject(Handle<JSObject> object);
333 
334   Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
335                                                   Handle<AllocationSite> site);
336 
337   Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
338                                            Handle<Map> map);
339 
340   Handle<FixedArray> CopyFixedArrayAndGrow(
341       Handle<FixedArray> array, int grow_by,
342       PretenureFlag pretenure = NOT_TENURED);
343 
344   Handle<FixedArray> CopyFixedArrayUpTo(Handle<FixedArray> array, int new_len,
345                                         PretenureFlag pretenure = NOT_TENURED);
346 
347   Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
348 
349   // This method expects a COW array in new space, and creates a copy
350   // of it in old space.
351   Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
352 
353   Handle<FixedDoubleArray> CopyFixedDoubleArray(
354       Handle<FixedDoubleArray> array);
355 
356   // Numbers (e.g. literals) are pretenured by the parser.
357   // The return value may be a smi or a heap number.
358   Handle<Object> NewNumber(double value,
359                            PretenureFlag pretenure = NOT_TENURED);
360 
361   Handle<Object> NewNumberFromInt(int32_t value,
362                                   PretenureFlag pretenure = NOT_TENURED);
363   Handle<Object> NewNumberFromUint(uint32_t value,
364                                   PretenureFlag pretenure = NOT_TENURED);
365   Handle<Object> NewNumberFromSize(size_t value,
366                                    PretenureFlag pretenure = NOT_TENURED) {
367     // We can't use Smi::IsValid() here because that operates on a signed
368     // intptr_t, and casting from size_t could create a bogus sign bit.
369     if (value <= static_cast<size_t>(Smi::kMaxValue)) {
370       return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
371                             isolate());
372     }
373     return NewNumber(static_cast<double>(value), pretenure);
374   }
375   Handle<HeapNumber> NewHeapNumber(double value,
376                                    MutableMode mode = IMMUTABLE,
377                                    PretenureFlag pretenure = NOT_TENURED);
378 
379 #define SIMD128_NEW_DECL(TYPE, Type, type, lane_count, lane_type) \
380   Handle<Type> New##Type(lane_type lanes[lane_count],             \
381                          PretenureFlag pretenure = NOT_TENURED);
SIMD128_TYPES(SIMD128_NEW_DECL)382   SIMD128_TYPES(SIMD128_NEW_DECL)
383 #undef SIMD128_NEW_DECL
384 
385   // These objects are used by the api to create env-independent data
386   // structures in the heap.
387   inline Handle<JSObject> NewNeanderObject() {
388     return NewJSObjectFromMap(neander_map());
389   }
390 
391   Handle<JSWeakMap> NewJSWeakMap();
392 
393   Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
394 
395   // JS objects are pretenured when allocated by the bootstrapper and
396   // runtime.
397   Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
398                                PretenureFlag pretenure = NOT_TENURED);
399   // JSObject that should have a memento pointing to the allocation site.
400   Handle<JSObject> NewJSObjectWithMemento(Handle<JSFunction> constructor,
401                                           Handle<AllocationSite> site);
402   // JSObject without a prototype.
403   Handle<JSObject> NewJSObjectWithNullProto();
404 
405   // Global objects are pretenured and initialized based on a constructor.
406   Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor);
407 
408   // JS objects are pretenured when allocated by the bootstrapper and
409   // runtime.
410   Handle<JSObject> NewJSObjectFromMap(
411       Handle<Map> map,
412       PretenureFlag pretenure = NOT_TENURED,
413       Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
414 
415   // JS modules are pretenured.
416   Handle<JSModule> NewJSModule(Handle<Context> context,
417                                Handle<ScopeInfo> scope_info);
418 
419   // JS arrays are pretenured when allocated by the parser.
420 
421   // Create a JSArray with a specified length and elements initialized
422   // according to the specified mode.
423   Handle<JSArray> NewJSArray(
424       ElementsKind elements_kind, int length, int capacity,
425       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
426       PretenureFlag pretenure = NOT_TENURED);
427 
428   Handle<JSArray> NewJSArray(
429       int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
430       PretenureFlag pretenure = NOT_TENURED) {
431     if (capacity != 0) {
432       elements_kind = GetHoleyElementsKind(elements_kind);
433     }
434     return NewJSArray(elements_kind, 0, capacity,
435                       INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
436   }
437 
438   // Create a JSArray with the given elements.
439   Handle<JSArray> NewJSArrayWithElements(Handle<FixedArrayBase> elements,
440                                          ElementsKind elements_kind, int length,
441                                          PretenureFlag pretenure = NOT_TENURED);
442 
443   Handle<JSArray> NewJSArrayWithElements(
444       Handle<FixedArrayBase> elements,
445       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
446       PretenureFlag pretenure = NOT_TENURED) {
447     return NewJSArrayWithElements(elements, elements_kind, elements->length(),
448                                   pretenure);
449   }
450 
451   void NewJSArrayStorage(
452       Handle<JSArray> array,
453       int length,
454       int capacity,
455       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
456 
457   Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
458 
459   Handle<JSArrayBuffer> NewJSArrayBuffer(
460       SharedFlag shared = SharedFlag::kNotShared,
461       PretenureFlag pretenure = NOT_TENURED);
462 
463   Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
464                                        PretenureFlag pretenure = NOT_TENURED);
465 
466   Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
467                                        PretenureFlag pretenure = NOT_TENURED);
468 
469   // Creates a new JSTypedArray with the specified buffer.
470   Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
471                                        Handle<JSArrayBuffer> buffer,
472                                        size_t byte_offset, size_t length,
473                                        PretenureFlag pretenure = NOT_TENURED);
474 
475   // Creates a new on-heap JSTypedArray.
476   Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
477                                        size_t number_of_elements,
478                                        PretenureFlag pretenure = NOT_TENURED);
479 
480   Handle<JSDataView> NewJSDataView();
481   Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
482                                    size_t byte_offset, size_t byte_length);
483 
484   Handle<JSMap> NewJSMap();
485   Handle<JSSet> NewJSSet();
486 
487   // TODO(aandrey): Maybe these should take table, index and kind arguments.
488   Handle<JSMapIterator> NewJSMapIterator();
489   Handle<JSSetIterator> NewJSSetIterator();
490 
491   // Allocates a bound function.
492   MaybeHandle<JSBoundFunction> NewJSBoundFunction(
493       Handle<JSReceiver> target_function, Handle<Object> bound_this,
494       Vector<Handle<Object>> bound_args);
495 
496   // Allocates a Harmony proxy.
497   Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target,
498                              Handle<JSReceiver> handler);
499 
500   // Reinitialize an JSGlobalProxy based on a constructor.  The object
501   // must have the same size as objects allocated using the
502   // constructor.  The object is reinitialized and behaves as an
503   // object that has been freshly allocated using the constructor.
504   void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
505                                  Handle<JSFunction> constructor);
506 
507   Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy();
508 
509   Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
510                                  Handle<Object> prototype,
511                                  bool is_strict = false);
512   Handle<JSFunction> NewFunction(Handle<String> name);
513   Handle<JSFunction> NewFunctionWithoutPrototype(Handle<String> name,
514                                                  Handle<Code> code,
515                                                  bool is_strict = false);
516 
517   Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
518       Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
519       Handle<Context> context, PretenureFlag pretenure = TENURED);
520 
521   Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
522       Handle<SharedFunctionInfo> function_info, Handle<Context> context,
523       PretenureFlag pretenure = TENURED);
524 
525   Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
526                                  Handle<Object> prototype, InstanceType type,
527                                  int instance_size,
528                                  bool is_strict = false);
529   Handle<JSFunction> NewFunction(Handle<String> name,
530                                  Handle<Code> code,
531                                  InstanceType type,
532                                  int instance_size);
533   Handle<JSFunction> NewFunction(Handle<Map> map, Handle<String> name,
534                                  MaybeHandle<Code> maybe_code);
535 
536   // Create a serialized scope info.
537   Handle<ScopeInfo> NewScopeInfo(int length);
538 
539   // Create an External object for V8's external API.
540   Handle<JSObject> NewExternal(void* value);
541 
542   // The reference to the Code object is stored in self_reference.
543   // This allows generated code to reference its own Code object
544   // by containing this handle.
545   Handle<Code> NewCode(const CodeDesc& desc,
546                        Code::Flags flags,
547                        Handle<Object> self_reference,
548                        bool immovable = false,
549                        bool crankshafted = false,
550                        int prologue_offset = Code::kPrologueOffsetNotSet,
551                        bool is_debug = false);
552 
553   Handle<Code> CopyCode(Handle<Code> code);
554 
555   Handle<Code> CopyCode(Handle<Code> code, Vector<byte> reloc_info);
556 
557   Handle<BytecodeArray> CopyBytecodeArray(Handle<BytecodeArray>);
558 
559   // Interface for creating error objects.
560   Handle<Object> NewError(Handle<JSFunction> constructor,
561                           Handle<String> message);
562 
NewInvalidStringLengthError()563   Handle<Object> NewInvalidStringLengthError() {
564     return NewRangeError(MessageTemplate::kInvalidStringLength);
565   }
566 
NewURIError()567   Handle<Object> NewURIError() {
568     return NewError(isolate()->uri_error_function(),
569                     MessageTemplate::kURIMalformed);
570   }
571 
572   Handle<Object> NewError(Handle<JSFunction> constructor,
573                           MessageTemplate::Template template_index,
574                           Handle<Object> arg0 = Handle<Object>(),
575                           Handle<Object> arg1 = Handle<Object>(),
576                           Handle<Object> arg2 = Handle<Object>());
577 
578 #define DECLARE_ERROR(NAME)                                          \
579   Handle<Object> New##NAME(MessageTemplate::Template template_index, \
580                            Handle<Object> arg0 = Handle<Object>(),   \
581                            Handle<Object> arg1 = Handle<Object>(),   \
582                            Handle<Object> arg2 = Handle<Object>());
583   DECLARE_ERROR(Error)
584   DECLARE_ERROR(EvalError)
585   DECLARE_ERROR(RangeError)
586   DECLARE_ERROR(ReferenceError)
587   DECLARE_ERROR(SyntaxError)
588   DECLARE_ERROR(TypeError)
589 #undef DEFINE_ERROR
590 
591   Handle<String> NumberToString(Handle<Object> number,
592                                 bool check_number_string_cache = true);
593 
Uint32ToString(uint32_t value)594   Handle<String> Uint32ToString(uint32_t value) {
595     return NumberToString(NewNumberFromUint(value));
596   }
597 
598   Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
599 
600 #define ROOT_ACCESSOR(type, name, camel_name)                         \
601   inline Handle<type> name() {                                        \
602     return Handle<type>(bit_cast<type**>(                             \
603         &isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \
604   }
605   ROOT_LIST(ROOT_ACCESSOR)
606 #undef ROOT_ACCESSOR
607 
608 #define STRUCT_MAP_ACCESSOR(NAME, Name, name)                      \
609   inline Handle<Map> name##_map() {                                \
610     return Handle<Map>(bit_cast<Map**>(                            \
611         &isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \
612   }
613   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
614 #undef STRUCT_MAP_ACCESSOR
615 
616 #define STRING_ACCESSOR(name, str)                              \
617   inline Handle<String> name() {                                \
618     return Handle<String>(bit_cast<String**>(                   \
619         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
620   }
621   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
622 #undef STRING_ACCESSOR
623 
624 #define SYMBOL_ACCESSOR(name)                                   \
625   inline Handle<Symbol> name() {                                \
626     return Handle<Symbol>(bit_cast<Symbol**>(                   \
627         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
628   }
629   PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
630 #undef SYMBOL_ACCESSOR
631 
632 #define SYMBOL_ACCESSOR(name, description)                      \
633   inline Handle<Symbol> name() {                                \
634     return Handle<Symbol>(bit_cast<Symbol**>(                   \
635         &isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
636   }
637   PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
638   WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
639 #undef SYMBOL_ACCESSOR
640 
641   // Allocates a new SharedFunctionInfo object.
642   Handle<SharedFunctionInfo> NewSharedFunctionInfo(
643       Handle<String> name, int number_of_literals, FunctionKind kind,
644       Handle<Code> code, Handle<ScopeInfo> scope_info);
645   Handle<SharedFunctionInfo> NewSharedFunctionInfo(Handle<String> name,
646                                                    MaybeHandle<Code> code,
647                                                    bool is_constructor);
648 
649   // Allocates a new JSMessageObject object.
650   Handle<JSMessageObject> NewJSMessageObject(MessageTemplate::Template message,
651                                              Handle<Object> argument,
652                                              int start_position,
653                                              int end_position,
654                                              Handle<Object> script,
655                                              Handle<Object> stack_frames);
656 
657   Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
658 
659   // Return a map for given number of properties using the map cache in the
660   // native context.
661   Handle<Map> ObjectLiteralMapFromCache(Handle<Context> context,
662                                         int number_of_properties,
663                                         bool* is_result_from_cache);
664 
665   // Creates a new FixedArray that holds the data associated with the
666   // atom regexp and stores it in the regexp.
667   void SetRegExpAtomData(Handle<JSRegExp> regexp,
668                          JSRegExp::Type type,
669                          Handle<String> source,
670                          JSRegExp::Flags flags,
671                          Handle<Object> match_pattern);
672 
673   // Creates a new FixedArray that holds the data associated with the
674   // irregexp regexp and stores it in the regexp.
675   void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
676                              JSRegExp::Type type,
677                              Handle<String> source,
678                              JSRegExp::Flags flags,
679                              int capture_count);
680 
681   // Returns the value for a known global constant (a property of the global
682   // object which is neither configurable nor writable) like 'undefined'.
683   // Returns a null handle when the given name is unknown.
684   Handle<Object> GlobalConstantFor(Handle<Name> name);
685 
686   // Converts the given boolean condition to JavaScript boolean value.
687   Handle<Object> ToBoolean(bool value);
688 
689  private:
isolate()690   Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
691 
692   // Creates a heap object based on the map. The fields of the heap object are
693   // not initialized by New<>() functions. It's the responsibility of the caller
694   // to do that.
695   template<typename T>
696   Handle<T> New(Handle<Map> map, AllocationSpace space);
697 
698   template<typename T>
699   Handle<T> New(Handle<Map> map,
700                 AllocationSpace space,
701                 Handle<AllocationSite> allocation_site);
702 
703   MaybeHandle<String> NewStringFromTwoByte(const uc16* string, int length,
704                                            PretenureFlag pretenure);
705 
706   // Creates a code object that is not yet fully initialized yet.
707   inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
708 
709   // Attempt to find the number in a small cache.  If we finds it, return
710   // the string representation of the number.  Otherwise return undefined.
711   Handle<Object> GetNumberStringCache(Handle<Object> number);
712 
713   // Update the cache with a new number-string pair.
714   void SetNumberStringCache(Handle<Object> number, Handle<String> string);
715 
716   // Creates a function initialized with a shared part.
717   Handle<JSFunction> NewFunction(Handle<Map> map,
718                                  Handle<SharedFunctionInfo> info,
719                                  Handle<Context> context,
720                                  PretenureFlag pretenure = TENURED);
721 
722   // Create a JSArray with no elements and no length.
723   Handle<JSArray> NewJSArray(ElementsKind elements_kind,
724                              PretenureFlag pretenure = NOT_TENURED);
725 };
726 
727 }  // namespace internal
728 }  // namespace v8
729 
730 #endif  // V8_FACTORY_H_
731