1 // Copyright 2013 the V8 project authors. All rights reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following
11 // disclaimer in the documentation and/or other materials provided
12 // with the distribution.
13 // * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived
15 // from this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29 #if V8_TARGET_ARCH_ARM64
30
31 #define ARM64_DEFINE_REG_STATICS
32 #include "src/arm64/assembler-arm64.h"
33
34 #include "src/arm64/assembler-arm64-inl.h"
35 #include "src/arm64/frames-arm64.h"
36 #include "src/base/bits.h"
37 #include "src/base/cpu.h"
38 #include "src/register-configuration.h"
39
40 namespace v8 {
41 namespace internal {
42
43
44 // -----------------------------------------------------------------------------
45 // CpuFeatures implementation.
46
ProbeImpl(bool cross_compile)47 void CpuFeatures::ProbeImpl(bool cross_compile) {
48 // AArch64 has no configuration options, no further probing is required.
49 supported_ = 0;
50
51 // Only use statically determined features for cross compile (snapshot).
52 if (cross_compile) return;
53
54 // We used to probe for coherent cache support, but on older CPUs it
55 // causes crashes (crbug.com/524337), and newer CPUs don't even have
56 // the feature any more.
57 }
58
PrintTarget()59 void CpuFeatures::PrintTarget() { }
PrintFeatures()60 void CpuFeatures::PrintFeatures() {}
61
62 // -----------------------------------------------------------------------------
63 // CPURegList utilities.
64
PopLowestIndex()65 CPURegister CPURegList::PopLowestIndex() {
66 DCHECK(IsValid());
67 if (IsEmpty()) {
68 return NoCPUReg;
69 }
70 int index = CountTrailingZeros(list_, kRegListSizeInBits);
71 DCHECK((1 << index) & list_);
72 Remove(index);
73 return CPURegister::Create(index, size_, type_);
74 }
75
76
PopHighestIndex()77 CPURegister CPURegList::PopHighestIndex() {
78 DCHECK(IsValid());
79 if (IsEmpty()) {
80 return NoCPUReg;
81 }
82 int index = CountLeadingZeros(list_, kRegListSizeInBits);
83 index = kRegListSizeInBits - 1 - index;
84 DCHECK((1 << index) & list_);
85 Remove(index);
86 return CPURegister::Create(index, size_, type_);
87 }
88
89
RemoveCalleeSaved()90 void CPURegList::RemoveCalleeSaved() {
91 if (type() == CPURegister::kRegister) {
92 Remove(GetCalleeSaved(RegisterSizeInBits()));
93 } else if (type() == CPURegister::kFPRegister) {
94 Remove(GetCalleeSavedFP(RegisterSizeInBits()));
95 } else {
96 DCHECK(type() == CPURegister::kNoRegister);
97 DCHECK(IsEmpty());
98 // The list must already be empty, so do nothing.
99 }
100 }
101
102
GetCalleeSaved(int size)103 CPURegList CPURegList::GetCalleeSaved(int size) {
104 return CPURegList(CPURegister::kRegister, size, 19, 29);
105 }
106
107
GetCalleeSavedFP(int size)108 CPURegList CPURegList::GetCalleeSavedFP(int size) {
109 return CPURegList(CPURegister::kFPRegister, size, 8, 15);
110 }
111
112
GetCallerSaved(int size)113 CPURegList CPURegList::GetCallerSaved(int size) {
114 // Registers x0-x18 and lr (x30) are caller-saved.
115 CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
116 list.Combine(lr);
117 return list;
118 }
119
120
GetCallerSavedFP(int size)121 CPURegList CPURegList::GetCallerSavedFP(int size) {
122 // Registers d0-d7 and d16-d31 are caller-saved.
123 CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
124 list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
125 return list;
126 }
127
128
129 // This function defines the list of registers which are associated with a
130 // safepoint slot. Safepoint register slots are saved contiguously on the stack.
131 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register
132 // code to index in the safepoint register slots. Any change here can affect
133 // this mapping.
GetSafepointSavedRegisters()134 CPURegList CPURegList::GetSafepointSavedRegisters() {
135 CPURegList list = CPURegList::GetCalleeSaved();
136 list.Combine(
137 CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
138
139 // Note that unfortunately we can't use symbolic names for registers and have
140 // to directly use register codes. This is because this function is used to
141 // initialize some static variables and we can't rely on register variables
142 // to be initialized due to static initialization order issues in C++.
143
144 // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
145 // preserved outside of the macro assembler.
146 list.Remove(16);
147 list.Remove(17);
148
149 // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
150 // is a caller-saved register according to the procedure call standard.
151 list.Combine(18);
152
153 // Drop jssp as the stack pointer doesn't need to be included.
154 list.Remove(28);
155
156 // Add the link register (x30) to the safepoint list.
157 list.Combine(30);
158
159 return list;
160 }
161
162
163 // -----------------------------------------------------------------------------
164 // Implementation of RelocInfo
165
166 const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
167
168
IsCodedSpecially()169 bool RelocInfo::IsCodedSpecially() {
170 // The deserializer needs to know whether a pointer is specially coded. Being
171 // specially coded on ARM64 means that it is a movz/movk sequence. We don't
172 // generate those for relocatable pointers.
173 return false;
174 }
175
176
IsInConstantPool()177 bool RelocInfo::IsInConstantPool() {
178 Instruction* instr = reinterpret_cast<Instruction*>(pc_);
179 return instr->IsLdrLiteralX();
180 }
181
wasm_memory_reference()182 Address RelocInfo::wasm_memory_reference() {
183 DCHECK(IsWasmMemoryReference(rmode_));
184 return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
185 }
186
wasm_memory_size_reference()187 uint32_t RelocInfo::wasm_memory_size_reference() {
188 DCHECK(IsWasmMemorySizeReference(rmode_));
189 return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
190 }
191
wasm_global_reference()192 Address RelocInfo::wasm_global_reference() {
193 DCHECK(IsWasmGlobalReference(rmode_));
194 return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
195 }
196
unchecked_update_wasm_memory_reference(Address address,ICacheFlushMode flush_mode)197 void RelocInfo::unchecked_update_wasm_memory_reference(
198 Address address, ICacheFlushMode flush_mode) {
199 Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
200 }
201
unchecked_update_wasm_memory_size(uint32_t size,ICacheFlushMode flush_mode)202 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
203 ICacheFlushMode flush_mode) {
204 Memory::uint32_at(Assembler::target_pointer_address_at(pc_)) = size;
205 }
206
GetAllocatableRegisterThatIsNotOneOf(Register reg1,Register reg2,Register reg3,Register reg4)207 Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
208 Register reg3, Register reg4) {
209 CPURegList regs(reg1, reg2, reg3, reg4);
210 const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
211 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
212 int code = config->GetAllocatableDoubleCode(i);
213 Register candidate = Register::from_code(code);
214 if (regs.IncludesAliasOf(candidate)) continue;
215 return candidate;
216 }
217 UNREACHABLE();
218 return NoReg;
219 }
220
221
AreAliased(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)222 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
223 const CPURegister& reg3, const CPURegister& reg4,
224 const CPURegister& reg5, const CPURegister& reg6,
225 const CPURegister& reg7, const CPURegister& reg8) {
226 int number_of_valid_regs = 0;
227 int number_of_valid_fpregs = 0;
228
229 RegList unique_regs = 0;
230 RegList unique_fpregs = 0;
231
232 const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
233
234 for (unsigned i = 0; i < arraysize(regs); i++) {
235 if (regs[i].IsRegister()) {
236 number_of_valid_regs++;
237 unique_regs |= regs[i].Bit();
238 } else if (regs[i].IsFPRegister()) {
239 number_of_valid_fpregs++;
240 unique_fpregs |= regs[i].Bit();
241 } else {
242 DCHECK(!regs[i].IsValid());
243 }
244 }
245
246 int number_of_unique_regs =
247 CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
248 int number_of_unique_fpregs =
249 CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
250
251 DCHECK(number_of_valid_regs >= number_of_unique_regs);
252 DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
253
254 return (number_of_valid_regs != number_of_unique_regs) ||
255 (number_of_valid_fpregs != number_of_unique_fpregs);
256 }
257
258
AreSameSizeAndType(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)259 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
260 const CPURegister& reg3, const CPURegister& reg4,
261 const CPURegister& reg5, const CPURegister& reg6,
262 const CPURegister& reg7, const CPURegister& reg8) {
263 DCHECK(reg1.IsValid());
264 bool match = true;
265 match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
266 match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
267 match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
268 match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
269 match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
270 match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
271 match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
272 return match;
273 }
274
275
InitializeHandle(Handle<Object> handle)276 void Immediate::InitializeHandle(Handle<Object> handle) {
277 AllowDeferredHandleDereference using_raw_address;
278
279 // Verify all Objects referred by code are NOT in new space.
280 Object* obj = *handle;
281 if (obj->IsHeapObject()) {
282 DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
283 value_ = reinterpret_cast<intptr_t>(handle.location());
284 rmode_ = RelocInfo::EMBEDDED_OBJECT;
285 } else {
286 STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
287 value_ = reinterpret_cast<intptr_t>(obj);
288 rmode_ = RelocInfo::NONE64;
289 }
290 }
291
292
NeedsRelocation(const Assembler * assembler) const293 bool Operand::NeedsRelocation(const Assembler* assembler) const {
294 RelocInfo::Mode rmode = immediate_.rmode();
295
296 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
297 return assembler->serializer_enabled();
298 }
299
300 return !RelocInfo::IsNone(rmode);
301 }
302
303
304 // Constant Pool.
RecordEntry(intptr_t data,RelocInfo::Mode mode)305 void ConstPool::RecordEntry(intptr_t data,
306 RelocInfo::Mode mode) {
307 DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::POSITION &&
308 mode != RelocInfo::STATEMENT_POSITION &&
309 mode != RelocInfo::CONST_POOL && mode != RelocInfo::VENEER_POOL &&
310 mode != RelocInfo::CODE_AGE_SEQUENCE &&
311 mode != RelocInfo::DEOPT_REASON && mode != RelocInfo::DEOPT_ID);
312 uint64_t raw_data = static_cast<uint64_t>(data);
313 int offset = assm_->pc_offset();
314 if (IsEmpty()) {
315 first_use_ = offset;
316 }
317
318 std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
319 if (CanBeShared(mode)) {
320 shared_entries_.insert(entry);
321 if (shared_entries_.count(entry.first) == 1) {
322 shared_entries_count++;
323 }
324 } else {
325 unique_entries_.push_back(entry);
326 }
327
328 if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
329 // Request constant pool emission after the next instruction.
330 assm_->SetNextConstPoolCheckIn(1);
331 }
332 }
333
334
DistanceToFirstUse()335 int ConstPool::DistanceToFirstUse() {
336 DCHECK(first_use_ >= 0);
337 return assm_->pc_offset() - first_use_;
338 }
339
340
MaxPcOffset()341 int ConstPool::MaxPcOffset() {
342 // There are no pending entries in the pool so we can never get out of
343 // range.
344 if (IsEmpty()) return kMaxInt;
345
346 // Entries are not necessarily emitted in the order they are added so in the
347 // worst case the first constant pool use will be accessing the last entry.
348 return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
349 }
350
351
WorstCaseSize()352 int ConstPool::WorstCaseSize() {
353 if (IsEmpty()) return 0;
354
355 // Max size prologue:
356 // b over
357 // ldr xzr, #pool_size
358 // blr xzr
359 // nop
360 // All entries are 64-bit for now.
361 return 4 * kInstructionSize + EntryCount() * kPointerSize;
362 }
363
364
SizeIfEmittedAtCurrentPc(bool require_jump)365 int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
366 if (IsEmpty()) return 0;
367
368 // Prologue is:
369 // b over ;; if require_jump
370 // ldr xzr, #pool_size
371 // blr xzr
372 // nop ;; if not 64-bit aligned
373 int prologue_size = require_jump ? kInstructionSize : 0;
374 prologue_size += 2 * kInstructionSize;
375 prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
376 0 : kInstructionSize;
377
378 // All entries are 64-bit for now.
379 return prologue_size + EntryCount() * kPointerSize;
380 }
381
382
Emit(bool require_jump)383 void ConstPool::Emit(bool require_jump) {
384 DCHECK(!assm_->is_const_pool_blocked());
385 // Prevent recursive pool emission and protect from veneer pools.
386 Assembler::BlockPoolsScope block_pools(assm_);
387
388 int size = SizeIfEmittedAtCurrentPc(require_jump);
389 Label size_check;
390 assm_->bind(&size_check);
391
392 assm_->RecordConstPool(size);
393 // Emit the constant pool. It is preceded by an optional branch if
394 // require_jump and a header which will:
395 // 1) Encode the size of the constant pool, for use by the disassembler.
396 // 2) Terminate the program, to try to prevent execution from accidentally
397 // flowing into the constant pool.
398 // 3) align the pool entries to 64-bit.
399 // The header is therefore made of up to three arm64 instructions:
400 // ldr xzr, #<size of the constant pool in 32-bit words>
401 // blr xzr
402 // nop
403 //
404 // If executed, the header will likely segfault and lr will point to the
405 // instruction following the offending blr.
406 // TODO(all): Make the alignment part less fragile. Currently code is
407 // allocated as a byte array so there are no guarantees the alignment will
408 // be preserved on compaction. Currently it works as allocation seems to be
409 // 64-bit aligned.
410
411 // Emit branch if required
412 Label after_pool;
413 if (require_jump) {
414 assm_->b(&after_pool);
415 }
416
417 // Emit the header.
418 assm_->RecordComment("[ Constant Pool");
419 EmitMarker();
420 EmitGuard();
421 assm_->Align(8);
422
423 // Emit constant pool entries.
424 // TODO(all): currently each relocated constant is 64 bits, consider adding
425 // support for 32-bit entries.
426 EmitEntries();
427 assm_->RecordComment("]");
428
429 if (after_pool.is_linked()) {
430 assm_->bind(&after_pool);
431 }
432
433 DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
434 static_cast<unsigned>(size));
435 }
436
437
Clear()438 void ConstPool::Clear() {
439 shared_entries_.clear();
440 shared_entries_count = 0;
441 unique_entries_.clear();
442 first_use_ = -1;
443 }
444
445
CanBeShared(RelocInfo::Mode mode)446 bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
447 // Constant pool currently does not support 32-bit entries.
448 DCHECK(mode != RelocInfo::NONE32);
449
450 return RelocInfo::IsNone(mode) ||
451 (!assm_->serializer_enabled() &&
452 (mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE));
453 }
454
455
EmitMarker()456 void ConstPool::EmitMarker() {
457 // A constant pool size is expressed in number of 32-bits words.
458 // Currently all entries are 64-bit.
459 // + 1 is for the crash guard.
460 // + 0/1 for alignment.
461 int word_count = EntryCount() * 2 + 1 +
462 (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
463 assm_->Emit(LDR_x_lit |
464 Assembler::ImmLLiteral(word_count) |
465 Assembler::Rt(xzr));
466 }
467
468
AreConsistentForPair(const MemOperand & operandA,const MemOperand & operandB,int access_size_log2)469 MemOperand::PairResult MemOperand::AreConsistentForPair(
470 const MemOperand& operandA,
471 const MemOperand& operandB,
472 int access_size_log2) {
473 DCHECK(access_size_log2 >= 0);
474 DCHECK(access_size_log2 <= 3);
475 // Step one: check that they share the same base, that the mode is Offset
476 // and that the offset is a multiple of access size.
477 if (!operandA.base().Is(operandB.base()) ||
478 (operandA.addrmode() != Offset) ||
479 (operandB.addrmode() != Offset) ||
480 ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
481 return kNotPair;
482 }
483 // Step two: check that the offsets are contiguous and that the range
484 // is OK for ldp/stp.
485 if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
486 is_int7(operandA.offset() >> access_size_log2)) {
487 return kPairAB;
488 }
489 if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
490 is_int7(operandB.offset() >> access_size_log2)) {
491 return kPairBA;
492 }
493 return kNotPair;
494 }
495
496
EmitGuard()497 void ConstPool::EmitGuard() {
498 #ifdef DEBUG
499 Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
500 DCHECK(instr->preceding()->IsLdrLiteralX() &&
501 instr->preceding()->Rt() == xzr.code());
502 #endif
503 assm_->EmitPoolGuard();
504 }
505
506
EmitEntries()507 void ConstPool::EmitEntries() {
508 DCHECK(IsAligned(assm_->pc_offset(), 8));
509
510 typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
511 SharedEntriesIterator value_it;
512 // Iterate through the keys (constant pool values).
513 for (value_it = shared_entries_.begin();
514 value_it != shared_entries_.end();
515 value_it = shared_entries_.upper_bound(value_it->first)) {
516 std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
517 uint64_t data = value_it->first;
518 range = shared_entries_.equal_range(data);
519 SharedEntriesIterator offset_it;
520 // Iterate through the offsets of a given key.
521 for (offset_it = range.first; offset_it != range.second; offset_it++) {
522 Instruction* instr = assm_->InstructionAt(offset_it->second);
523
524 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
525 DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
526 instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
527 }
528 assm_->dc64(data);
529 }
530 shared_entries_.clear();
531 shared_entries_count = 0;
532
533 // Emit unique entries.
534 std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
535 for (unique_it = unique_entries_.begin();
536 unique_it != unique_entries_.end();
537 unique_it++) {
538 Instruction* instr = assm_->InstructionAt(unique_it->second);
539
540 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
541 DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
542 instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
543 assm_->dc64(unique_it->first);
544 }
545 unique_entries_.clear();
546 first_use_ = -1;
547 }
548
549
550 // Assembler
Assembler(Isolate * isolate,void * buffer,int buffer_size)551 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
552 : AssemblerBase(isolate, buffer, buffer_size),
553 constpool_(this),
554 recorded_ast_id_(TypeFeedbackId::None()),
555 unresolved_branches_(),
556 positions_recorder_(this) {
557 const_pool_blocked_nesting_ = 0;
558 veneer_pool_blocked_nesting_ = 0;
559 Reset();
560 }
561
562
~Assembler()563 Assembler::~Assembler() {
564 DCHECK(constpool_.IsEmpty());
565 DCHECK(const_pool_blocked_nesting_ == 0);
566 DCHECK(veneer_pool_blocked_nesting_ == 0);
567 }
568
569
Reset()570 void Assembler::Reset() {
571 #ifdef DEBUG
572 DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
573 DCHECK(const_pool_blocked_nesting_ == 0);
574 DCHECK(veneer_pool_blocked_nesting_ == 0);
575 DCHECK(unresolved_branches_.empty());
576 memset(buffer_, 0, pc_ - buffer_);
577 #endif
578 pc_ = buffer_;
579 reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
580 reinterpret_cast<byte*>(pc_));
581 constpool_.Clear();
582 next_constant_pool_check_ = 0;
583 next_veneer_pool_check_ = kMaxInt;
584 no_const_pool_before_ = 0;
585 ClearRecordedAstId();
586 }
587
588
GetCode(CodeDesc * desc)589 void Assembler::GetCode(CodeDesc* desc) {
590 reloc_info_writer.Finish();
591 // Emit constant pool if necessary.
592 CheckConstPool(true, false);
593 DCHECK(constpool_.IsEmpty());
594
595 // Set up code descriptor.
596 if (desc) {
597 desc->buffer = reinterpret_cast<byte*>(buffer_);
598 desc->buffer_size = buffer_size_;
599 desc->instr_size = pc_offset();
600 desc->reloc_size =
601 static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
602 reloc_info_writer.pos());
603 desc->origin = this;
604 desc->constant_pool_size = 0;
605 desc->unwinding_info_size = 0;
606 desc->unwinding_info = nullptr;
607 }
608 }
609
610
Align(int m)611 void Assembler::Align(int m) {
612 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
613 while ((pc_offset() & (m - 1)) != 0) {
614 nop();
615 }
616 }
617
618
CheckLabelLinkChain(Label const * label)619 void Assembler::CheckLabelLinkChain(Label const * label) {
620 #ifdef DEBUG
621 if (label->is_linked()) {
622 static const int kMaxLinksToCheck = 64; // Avoid O(n2) behaviour.
623 int links_checked = 0;
624 int64_t linkoffset = label->pos();
625 bool end_of_chain = false;
626 while (!end_of_chain) {
627 if (++links_checked > kMaxLinksToCheck) break;
628 Instruction * link = InstructionAt(linkoffset);
629 int64_t linkpcoffset = link->ImmPCOffset();
630 int64_t prevlinkoffset = linkoffset + linkpcoffset;
631
632 end_of_chain = (linkoffset == prevlinkoffset);
633 linkoffset = linkoffset + linkpcoffset;
634 }
635 }
636 #endif
637 }
638
639
RemoveBranchFromLabelLinkChain(Instruction * branch,Label * label,Instruction * label_veneer)640 void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
641 Label* label,
642 Instruction* label_veneer) {
643 DCHECK(label->is_linked());
644
645 CheckLabelLinkChain(label);
646
647 Instruction* link = InstructionAt(label->pos());
648 Instruction* prev_link = link;
649 Instruction* next_link;
650 bool end_of_chain = false;
651
652 while (link != branch && !end_of_chain) {
653 next_link = link->ImmPCOffsetTarget();
654 end_of_chain = (link == next_link);
655 prev_link = link;
656 link = next_link;
657 }
658
659 DCHECK(branch == link);
660 next_link = branch->ImmPCOffsetTarget();
661
662 if (branch == prev_link) {
663 // The branch is the first instruction in the chain.
664 if (branch == next_link) {
665 // It is also the last instruction in the chain, so it is the only branch
666 // currently referring to this label.
667 label->Unuse();
668 } else {
669 label->link_to(
670 static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
671 }
672
673 } else if (branch == next_link) {
674 // The branch is the last (but not also the first) instruction in the chain.
675 prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
676
677 } else {
678 // The branch is in the middle of the chain.
679 if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
680 prev_link->SetImmPCOffsetTarget(isolate(), next_link);
681 } else if (label_veneer != NULL) {
682 // Use the veneer for all previous links in the chain.
683 prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
684
685 end_of_chain = false;
686 link = next_link;
687 while (!end_of_chain) {
688 next_link = link->ImmPCOffsetTarget();
689 end_of_chain = (link == next_link);
690 link->SetImmPCOffsetTarget(isolate(), label_veneer);
691 link = next_link;
692 }
693 } else {
694 // The assert below will fire.
695 // Some other work could be attempted to fix up the chain, but it would be
696 // rather complicated. If we crash here, we may want to consider using an
697 // other mechanism than a chain of branches.
698 //
699 // Note that this situation currently should not happen, as we always call
700 // this function with a veneer to the target label.
701 // However this could happen with a MacroAssembler in the following state:
702 // [previous code]
703 // B(label);
704 // [20KB code]
705 // Tbz(label); // First tbz. Pointing to unconditional branch.
706 // [20KB code]
707 // Tbz(label); // Second tbz. Pointing to the first tbz.
708 // [more code]
709 // and this function is called to remove the first tbz from the label link
710 // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
711 // the unconditional branch.
712 CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
713 UNREACHABLE();
714 }
715 }
716
717 CheckLabelLinkChain(label);
718 }
719
720
bind(Label * label)721 void Assembler::bind(Label* label) {
722 // Bind label to the address at pc_. All instructions (most likely branches)
723 // that are linked to this label will be updated to point to the newly-bound
724 // label.
725
726 DCHECK(!label->is_near_linked());
727 DCHECK(!label->is_bound());
728
729 DeleteUnresolvedBranchInfoForLabel(label);
730
731 // If the label is linked, the link chain looks something like this:
732 //
733 // |--I----I-------I-------L
734 // |---------------------->| pc_offset
735 // |-------------->| linkoffset = label->pos()
736 // |<------| link->ImmPCOffset()
737 // |------>| prevlinkoffset = linkoffset + link->ImmPCOffset()
738 //
739 // On each iteration, the last link is updated and then removed from the
740 // chain until only one remains. At that point, the label is bound.
741 //
742 // If the label is not linked, no preparation is required before binding.
743 while (label->is_linked()) {
744 int linkoffset = label->pos();
745 Instruction* link = InstructionAt(linkoffset);
746 int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
747
748 CheckLabelLinkChain(label);
749
750 DCHECK(linkoffset >= 0);
751 DCHECK(linkoffset < pc_offset());
752 DCHECK((linkoffset > prevlinkoffset) ||
753 (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
754 DCHECK(prevlinkoffset >= 0);
755
756 // Update the link to point to the label.
757 if (link->IsUnresolvedInternalReference()) {
758 // Internal references do not get patched to an instruction but directly
759 // to an address.
760 internal_reference_positions_.push_back(linkoffset);
761 PatchingAssembler patcher(isolate(), link, 2);
762 patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
763 } else {
764 link->SetImmPCOffsetTarget(isolate(),
765 reinterpret_cast<Instruction*>(pc_));
766 }
767
768 // Link the label to the previous link in the chain.
769 if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
770 // We hit kStartOfLabelLinkChain, so the chain is fully processed.
771 label->Unuse();
772 } else {
773 // Update the label for the next iteration.
774 label->link_to(prevlinkoffset);
775 }
776 }
777 label->bind_to(pc_offset());
778
779 DCHECK(label->is_bound());
780 DCHECK(!label->is_linked());
781 }
782
783
LinkAndGetByteOffsetTo(Label * label)784 int Assembler::LinkAndGetByteOffsetTo(Label* label) {
785 DCHECK(sizeof(*pc_) == 1);
786 CheckLabelLinkChain(label);
787
788 int offset;
789 if (label->is_bound()) {
790 // The label is bound, so it does not need to be updated. Referring
791 // instructions must link directly to the label as they will not be
792 // updated.
793 //
794 // In this case, label->pos() returns the offset of the label from the
795 // start of the buffer.
796 //
797 // Note that offset can be zero for self-referential instructions. (This
798 // could be useful for ADR, for example.)
799 offset = label->pos() - pc_offset();
800 DCHECK(offset <= 0);
801 } else {
802 if (label->is_linked()) {
803 // The label is linked, so the referring instruction should be added onto
804 // the end of the label's link chain.
805 //
806 // In this case, label->pos() returns the offset of the last linked
807 // instruction from the start of the buffer.
808 offset = label->pos() - pc_offset();
809 DCHECK(offset != kStartOfLabelLinkChain);
810 // Note that the offset here needs to be PC-relative only so that the
811 // first instruction in a buffer can link to an unbound label. Otherwise,
812 // the offset would be 0 for this case, and 0 is reserved for
813 // kStartOfLabelLinkChain.
814 } else {
815 // The label is unused, so it now becomes linked and the referring
816 // instruction is at the start of the new link chain.
817 offset = kStartOfLabelLinkChain;
818 }
819 // The instruction at pc is now the last link in the label's chain.
820 label->link_to(pc_offset());
821 }
822
823 return offset;
824 }
825
826
DeleteUnresolvedBranchInfoForLabelTraverse(Label * label)827 void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
828 DCHECK(label->is_linked());
829 CheckLabelLinkChain(label);
830
831 int link_offset = label->pos();
832 int link_pcoffset;
833 bool end_of_chain = false;
834
835 while (!end_of_chain) {
836 Instruction * link = InstructionAt(link_offset);
837 link_pcoffset = static_cast<int>(link->ImmPCOffset());
838
839 // ADR instructions are not handled by veneers.
840 if (link->IsImmBranch()) {
841 int max_reachable_pc =
842 static_cast<int>(InstructionOffset(link) +
843 Instruction::ImmBranchRange(link->BranchType()));
844 typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
845 std::pair<unresolved_info_it, unresolved_info_it> range;
846 range = unresolved_branches_.equal_range(max_reachable_pc);
847 unresolved_info_it it;
848 for (it = range.first; it != range.second; ++it) {
849 if (it->second.pc_offset_ == link_offset) {
850 unresolved_branches_.erase(it);
851 break;
852 }
853 }
854 }
855
856 end_of_chain = (link_pcoffset == 0);
857 link_offset = link_offset + link_pcoffset;
858 }
859 }
860
861
DeleteUnresolvedBranchInfoForLabel(Label * label)862 void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
863 if (unresolved_branches_.empty()) {
864 DCHECK(next_veneer_pool_check_ == kMaxInt);
865 return;
866 }
867
868 if (label->is_linked()) {
869 // Branches to this label will be resolved when the label is bound, normally
870 // just after all the associated info has been deleted.
871 DeleteUnresolvedBranchInfoForLabelTraverse(label);
872 }
873 if (unresolved_branches_.empty()) {
874 next_veneer_pool_check_ = kMaxInt;
875 } else {
876 next_veneer_pool_check_ =
877 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
878 }
879 }
880
881
StartBlockConstPool()882 void Assembler::StartBlockConstPool() {
883 if (const_pool_blocked_nesting_++ == 0) {
884 // Prevent constant pool checks happening by setting the next check to
885 // the biggest possible offset.
886 next_constant_pool_check_ = kMaxInt;
887 }
888 }
889
890
EndBlockConstPool()891 void Assembler::EndBlockConstPool() {
892 if (--const_pool_blocked_nesting_ == 0) {
893 // Check the constant pool hasn't been blocked for too long.
894 DCHECK(pc_offset() < constpool_.MaxPcOffset());
895 // Two cases:
896 // * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
897 // still blocked
898 // * no_const_pool_before_ < next_constant_pool_check_ and the next emit
899 // will trigger a check.
900 next_constant_pool_check_ = no_const_pool_before_;
901 }
902 }
903
904
is_const_pool_blocked() const905 bool Assembler::is_const_pool_blocked() const {
906 return (const_pool_blocked_nesting_ > 0) ||
907 (pc_offset() < no_const_pool_before_);
908 }
909
910
IsConstantPoolAt(Instruction * instr)911 bool Assembler::IsConstantPoolAt(Instruction* instr) {
912 // The constant pool marker is made of two instructions. These instructions
913 // will never be emitted by the JIT, so checking for the first one is enough:
914 // 0: ldr xzr, #<size of pool>
915 bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
916
917 // It is still worth asserting the marker is complete.
918 // 4: blr xzr
919 DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
920 instr->following()->Rn() == kZeroRegCode));
921
922 return result;
923 }
924
925
ConstantPoolSizeAt(Instruction * instr)926 int Assembler::ConstantPoolSizeAt(Instruction* instr) {
927 #ifdef USE_SIMULATOR
928 // Assembler::debug() embeds constants directly into the instruction stream.
929 // Although this is not a genuine constant pool, treat it like one to avoid
930 // disassembling the constants.
931 if ((instr->Mask(ExceptionMask) == HLT) &&
932 (instr->ImmException() == kImmExceptionIsDebug)) {
933 const char* message =
934 reinterpret_cast<const char*>(
935 instr->InstructionAtOffset(kDebugMessageOffset));
936 int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
937 return RoundUp(size, kInstructionSize) / kInstructionSize;
938 }
939 // Same for printf support, see MacroAssembler::CallPrintf().
940 if ((instr->Mask(ExceptionMask) == HLT) &&
941 (instr->ImmException() == kImmExceptionIsPrintf)) {
942 return kPrintfLength / kInstructionSize;
943 }
944 #endif
945 if (IsConstantPoolAt(instr)) {
946 return instr->ImmLLiteral();
947 } else {
948 return -1;
949 }
950 }
951
952
EmitPoolGuard()953 void Assembler::EmitPoolGuard() {
954 // We must generate only one instruction as this is used in scopes that
955 // control the size of the code generated.
956 Emit(BLR | Rn(xzr));
957 }
958
959
StartBlockVeneerPool()960 void Assembler::StartBlockVeneerPool() {
961 ++veneer_pool_blocked_nesting_;
962 }
963
964
EndBlockVeneerPool()965 void Assembler::EndBlockVeneerPool() {
966 if (--veneer_pool_blocked_nesting_ == 0) {
967 // Check the veneer pool hasn't been blocked for too long.
968 DCHECK(unresolved_branches_.empty() ||
969 (pc_offset() < unresolved_branches_first_limit()));
970 }
971 }
972
973
br(const Register & xn)974 void Assembler::br(const Register& xn) {
975 DCHECK(xn.Is64Bits());
976 Emit(BR | Rn(xn));
977 }
978
979
blr(const Register & xn)980 void Assembler::blr(const Register& xn) {
981 DCHECK(xn.Is64Bits());
982 // The pattern 'blr xzr' is used as a guard to detect when execution falls
983 // through the constant pool. It should not be emitted.
984 DCHECK(!xn.Is(xzr));
985 Emit(BLR | Rn(xn));
986 }
987
988
ret(const Register & xn)989 void Assembler::ret(const Register& xn) {
990 DCHECK(xn.Is64Bits());
991 Emit(RET | Rn(xn));
992 }
993
994
b(int imm26)995 void Assembler::b(int imm26) {
996 Emit(B | ImmUncondBranch(imm26));
997 }
998
999
b(Label * label)1000 void Assembler::b(Label* label) {
1001 b(LinkAndGetInstructionOffsetTo(label));
1002 }
1003
1004
b(int imm19,Condition cond)1005 void Assembler::b(int imm19, Condition cond) {
1006 Emit(B_cond | ImmCondBranch(imm19) | cond);
1007 }
1008
1009
b(Label * label,Condition cond)1010 void Assembler::b(Label* label, Condition cond) {
1011 b(LinkAndGetInstructionOffsetTo(label), cond);
1012 }
1013
1014
bl(int imm26)1015 void Assembler::bl(int imm26) {
1016 Emit(BL | ImmUncondBranch(imm26));
1017 }
1018
1019
bl(Label * label)1020 void Assembler::bl(Label* label) {
1021 bl(LinkAndGetInstructionOffsetTo(label));
1022 }
1023
1024
cbz(const Register & rt,int imm19)1025 void Assembler::cbz(const Register& rt,
1026 int imm19) {
1027 Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
1028 }
1029
1030
cbz(const Register & rt,Label * label)1031 void Assembler::cbz(const Register& rt,
1032 Label* label) {
1033 cbz(rt, LinkAndGetInstructionOffsetTo(label));
1034 }
1035
1036
cbnz(const Register & rt,int imm19)1037 void Assembler::cbnz(const Register& rt,
1038 int imm19) {
1039 Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
1040 }
1041
1042
cbnz(const Register & rt,Label * label)1043 void Assembler::cbnz(const Register& rt,
1044 Label* label) {
1045 cbnz(rt, LinkAndGetInstructionOffsetTo(label));
1046 }
1047
1048
tbz(const Register & rt,unsigned bit_pos,int imm14)1049 void Assembler::tbz(const Register& rt,
1050 unsigned bit_pos,
1051 int imm14) {
1052 DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1053 Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1054 }
1055
1056
tbz(const Register & rt,unsigned bit_pos,Label * label)1057 void Assembler::tbz(const Register& rt,
1058 unsigned bit_pos,
1059 Label* label) {
1060 tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1061 }
1062
1063
tbnz(const Register & rt,unsigned bit_pos,int imm14)1064 void Assembler::tbnz(const Register& rt,
1065 unsigned bit_pos,
1066 int imm14) {
1067 DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1068 Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1069 }
1070
1071
tbnz(const Register & rt,unsigned bit_pos,Label * label)1072 void Assembler::tbnz(const Register& rt,
1073 unsigned bit_pos,
1074 Label* label) {
1075 tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1076 }
1077
1078
adr(const Register & rd,int imm21)1079 void Assembler::adr(const Register& rd, int imm21) {
1080 DCHECK(rd.Is64Bits());
1081 Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
1082 }
1083
1084
adr(const Register & rd,Label * label)1085 void Assembler::adr(const Register& rd, Label* label) {
1086 adr(rd, LinkAndGetByteOffsetTo(label));
1087 }
1088
1089
add(const Register & rd,const Register & rn,const Operand & operand)1090 void Assembler::add(const Register& rd,
1091 const Register& rn,
1092 const Operand& operand) {
1093 AddSub(rd, rn, operand, LeaveFlags, ADD);
1094 }
1095
1096
adds(const Register & rd,const Register & rn,const Operand & operand)1097 void Assembler::adds(const Register& rd,
1098 const Register& rn,
1099 const Operand& operand) {
1100 AddSub(rd, rn, operand, SetFlags, ADD);
1101 }
1102
1103
cmn(const Register & rn,const Operand & operand)1104 void Assembler::cmn(const Register& rn,
1105 const Operand& operand) {
1106 Register zr = AppropriateZeroRegFor(rn);
1107 adds(zr, rn, operand);
1108 }
1109
1110
sub(const Register & rd,const Register & rn,const Operand & operand)1111 void Assembler::sub(const Register& rd,
1112 const Register& rn,
1113 const Operand& operand) {
1114 AddSub(rd, rn, operand, LeaveFlags, SUB);
1115 }
1116
1117
subs(const Register & rd,const Register & rn,const Operand & operand)1118 void Assembler::subs(const Register& rd,
1119 const Register& rn,
1120 const Operand& operand) {
1121 AddSub(rd, rn, operand, SetFlags, SUB);
1122 }
1123
1124
cmp(const Register & rn,const Operand & operand)1125 void Assembler::cmp(const Register& rn, const Operand& operand) {
1126 Register zr = AppropriateZeroRegFor(rn);
1127 subs(zr, rn, operand);
1128 }
1129
1130
neg(const Register & rd,const Operand & operand)1131 void Assembler::neg(const Register& rd, const Operand& operand) {
1132 Register zr = AppropriateZeroRegFor(rd);
1133 sub(rd, zr, operand);
1134 }
1135
1136
negs(const Register & rd,const Operand & operand)1137 void Assembler::negs(const Register& rd, const Operand& operand) {
1138 Register zr = AppropriateZeroRegFor(rd);
1139 subs(rd, zr, operand);
1140 }
1141
1142
adc(const Register & rd,const Register & rn,const Operand & operand)1143 void Assembler::adc(const Register& rd,
1144 const Register& rn,
1145 const Operand& operand) {
1146 AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
1147 }
1148
1149
adcs(const Register & rd,const Register & rn,const Operand & operand)1150 void Assembler::adcs(const Register& rd,
1151 const Register& rn,
1152 const Operand& operand) {
1153 AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
1154 }
1155
1156
sbc(const Register & rd,const Register & rn,const Operand & operand)1157 void Assembler::sbc(const Register& rd,
1158 const Register& rn,
1159 const Operand& operand) {
1160 AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
1161 }
1162
1163
sbcs(const Register & rd,const Register & rn,const Operand & operand)1164 void Assembler::sbcs(const Register& rd,
1165 const Register& rn,
1166 const Operand& operand) {
1167 AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
1168 }
1169
1170
ngc(const Register & rd,const Operand & operand)1171 void Assembler::ngc(const Register& rd, const Operand& operand) {
1172 Register zr = AppropriateZeroRegFor(rd);
1173 sbc(rd, zr, operand);
1174 }
1175
1176
ngcs(const Register & rd,const Operand & operand)1177 void Assembler::ngcs(const Register& rd, const Operand& operand) {
1178 Register zr = AppropriateZeroRegFor(rd);
1179 sbcs(rd, zr, operand);
1180 }
1181
1182
1183 // Logical instructions.
and_(const Register & rd,const Register & rn,const Operand & operand)1184 void Assembler::and_(const Register& rd,
1185 const Register& rn,
1186 const Operand& operand) {
1187 Logical(rd, rn, operand, AND);
1188 }
1189
1190
ands(const Register & rd,const Register & rn,const Operand & operand)1191 void Assembler::ands(const Register& rd,
1192 const Register& rn,
1193 const Operand& operand) {
1194 Logical(rd, rn, operand, ANDS);
1195 }
1196
1197
tst(const Register & rn,const Operand & operand)1198 void Assembler::tst(const Register& rn,
1199 const Operand& operand) {
1200 ands(AppropriateZeroRegFor(rn), rn, operand);
1201 }
1202
1203
bic(const Register & rd,const Register & rn,const Operand & operand)1204 void Assembler::bic(const Register& rd,
1205 const Register& rn,
1206 const Operand& operand) {
1207 Logical(rd, rn, operand, BIC);
1208 }
1209
1210
bics(const Register & rd,const Register & rn,const Operand & operand)1211 void Assembler::bics(const Register& rd,
1212 const Register& rn,
1213 const Operand& operand) {
1214 Logical(rd, rn, operand, BICS);
1215 }
1216
1217
orr(const Register & rd,const Register & rn,const Operand & operand)1218 void Assembler::orr(const Register& rd,
1219 const Register& rn,
1220 const Operand& operand) {
1221 Logical(rd, rn, operand, ORR);
1222 }
1223
1224
orn(const Register & rd,const Register & rn,const Operand & operand)1225 void Assembler::orn(const Register& rd,
1226 const Register& rn,
1227 const Operand& operand) {
1228 Logical(rd, rn, operand, ORN);
1229 }
1230
1231
eor(const Register & rd,const Register & rn,const Operand & operand)1232 void Assembler::eor(const Register& rd,
1233 const Register& rn,
1234 const Operand& operand) {
1235 Logical(rd, rn, operand, EOR);
1236 }
1237
1238
eon(const Register & rd,const Register & rn,const Operand & operand)1239 void Assembler::eon(const Register& rd,
1240 const Register& rn,
1241 const Operand& operand) {
1242 Logical(rd, rn, operand, EON);
1243 }
1244
1245
lslv(const Register & rd,const Register & rn,const Register & rm)1246 void Assembler::lslv(const Register& rd,
1247 const Register& rn,
1248 const Register& rm) {
1249 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1250 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1251 Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
1252 }
1253
1254
lsrv(const Register & rd,const Register & rn,const Register & rm)1255 void Assembler::lsrv(const Register& rd,
1256 const Register& rn,
1257 const Register& rm) {
1258 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1259 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1260 Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
1261 }
1262
1263
asrv(const Register & rd,const Register & rn,const Register & rm)1264 void Assembler::asrv(const Register& rd,
1265 const Register& rn,
1266 const Register& rm) {
1267 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1268 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1269 Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
1270 }
1271
1272
rorv(const Register & rd,const Register & rn,const Register & rm)1273 void Assembler::rorv(const Register& rd,
1274 const Register& rn,
1275 const Register& rm) {
1276 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1277 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1278 Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
1279 }
1280
1281
1282 // Bitfield operations.
bfm(const Register & rd,const Register & rn,int immr,int imms)1283 void Assembler::bfm(const Register& rd, const Register& rn, int immr,
1284 int imms) {
1285 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1286 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1287 Emit(SF(rd) | BFM | N |
1288 ImmR(immr, rd.SizeInBits()) |
1289 ImmS(imms, rn.SizeInBits()) |
1290 Rn(rn) | Rd(rd));
1291 }
1292
1293
sbfm(const Register & rd,const Register & rn,int immr,int imms)1294 void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
1295 int imms) {
1296 DCHECK(rd.Is64Bits() || rn.Is32Bits());
1297 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1298 Emit(SF(rd) | SBFM | N |
1299 ImmR(immr, rd.SizeInBits()) |
1300 ImmS(imms, rn.SizeInBits()) |
1301 Rn(rn) | Rd(rd));
1302 }
1303
1304
ubfm(const Register & rd,const Register & rn,int immr,int imms)1305 void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
1306 int imms) {
1307 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1308 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1309 Emit(SF(rd) | UBFM | N |
1310 ImmR(immr, rd.SizeInBits()) |
1311 ImmS(imms, rn.SizeInBits()) |
1312 Rn(rn) | Rd(rd));
1313 }
1314
1315
extr(const Register & rd,const Register & rn,const Register & rm,int lsb)1316 void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
1317 int lsb) {
1318 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1319 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1320 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1321 Emit(SF(rd) | EXTR | N | Rm(rm) |
1322 ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
1323 }
1324
1325
csel(const Register & rd,const Register & rn,const Register & rm,Condition cond)1326 void Assembler::csel(const Register& rd,
1327 const Register& rn,
1328 const Register& rm,
1329 Condition cond) {
1330 ConditionalSelect(rd, rn, rm, cond, CSEL);
1331 }
1332
1333
csinc(const Register & rd,const Register & rn,const Register & rm,Condition cond)1334 void Assembler::csinc(const Register& rd,
1335 const Register& rn,
1336 const Register& rm,
1337 Condition cond) {
1338 ConditionalSelect(rd, rn, rm, cond, CSINC);
1339 }
1340
1341
csinv(const Register & rd,const Register & rn,const Register & rm,Condition cond)1342 void Assembler::csinv(const Register& rd,
1343 const Register& rn,
1344 const Register& rm,
1345 Condition cond) {
1346 ConditionalSelect(rd, rn, rm, cond, CSINV);
1347 }
1348
1349
csneg(const Register & rd,const Register & rn,const Register & rm,Condition cond)1350 void Assembler::csneg(const Register& rd,
1351 const Register& rn,
1352 const Register& rm,
1353 Condition cond) {
1354 ConditionalSelect(rd, rn, rm, cond, CSNEG);
1355 }
1356
1357
cset(const Register & rd,Condition cond)1358 void Assembler::cset(const Register &rd, Condition cond) {
1359 DCHECK((cond != al) && (cond != nv));
1360 Register zr = AppropriateZeroRegFor(rd);
1361 csinc(rd, zr, zr, NegateCondition(cond));
1362 }
1363
1364
csetm(const Register & rd,Condition cond)1365 void Assembler::csetm(const Register &rd, Condition cond) {
1366 DCHECK((cond != al) && (cond != nv));
1367 Register zr = AppropriateZeroRegFor(rd);
1368 csinv(rd, zr, zr, NegateCondition(cond));
1369 }
1370
1371
cinc(const Register & rd,const Register & rn,Condition cond)1372 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
1373 DCHECK((cond != al) && (cond != nv));
1374 csinc(rd, rn, rn, NegateCondition(cond));
1375 }
1376
1377
cinv(const Register & rd,const Register & rn,Condition cond)1378 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
1379 DCHECK((cond != al) && (cond != nv));
1380 csinv(rd, rn, rn, NegateCondition(cond));
1381 }
1382
1383
cneg(const Register & rd,const Register & rn,Condition cond)1384 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
1385 DCHECK((cond != al) && (cond != nv));
1386 csneg(rd, rn, rn, NegateCondition(cond));
1387 }
1388
1389
ConditionalSelect(const Register & rd,const Register & rn,const Register & rm,Condition cond,ConditionalSelectOp op)1390 void Assembler::ConditionalSelect(const Register& rd,
1391 const Register& rn,
1392 const Register& rm,
1393 Condition cond,
1394 ConditionalSelectOp op) {
1395 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1396 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1397 Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
1398 }
1399
1400
ccmn(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1401 void Assembler::ccmn(const Register& rn,
1402 const Operand& operand,
1403 StatusFlags nzcv,
1404 Condition cond) {
1405 ConditionalCompare(rn, operand, nzcv, cond, CCMN);
1406 }
1407
1408
ccmp(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1409 void Assembler::ccmp(const Register& rn,
1410 const Operand& operand,
1411 StatusFlags nzcv,
1412 Condition cond) {
1413 ConditionalCompare(rn, operand, nzcv, cond, CCMP);
1414 }
1415
1416
DataProcessing3Source(const Register & rd,const Register & rn,const Register & rm,const Register & ra,DataProcessing3SourceOp op)1417 void Assembler::DataProcessing3Source(const Register& rd,
1418 const Register& rn,
1419 const Register& rm,
1420 const Register& ra,
1421 DataProcessing3SourceOp op) {
1422 Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
1423 }
1424
1425
mul(const Register & rd,const Register & rn,const Register & rm)1426 void Assembler::mul(const Register& rd,
1427 const Register& rn,
1428 const Register& rm) {
1429 DCHECK(AreSameSizeAndType(rd, rn, rm));
1430 Register zr = AppropriateZeroRegFor(rn);
1431 DataProcessing3Source(rd, rn, rm, zr, MADD);
1432 }
1433
1434
madd(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1435 void Assembler::madd(const Register& rd,
1436 const Register& rn,
1437 const Register& rm,
1438 const Register& ra) {
1439 DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1440 DataProcessing3Source(rd, rn, rm, ra, MADD);
1441 }
1442
1443
mneg(const Register & rd,const Register & rn,const Register & rm)1444 void Assembler::mneg(const Register& rd,
1445 const Register& rn,
1446 const Register& rm) {
1447 DCHECK(AreSameSizeAndType(rd, rn, rm));
1448 Register zr = AppropriateZeroRegFor(rn);
1449 DataProcessing3Source(rd, rn, rm, zr, MSUB);
1450 }
1451
1452
msub(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1453 void Assembler::msub(const Register& rd,
1454 const Register& rn,
1455 const Register& rm,
1456 const Register& ra) {
1457 DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1458 DataProcessing3Source(rd, rn, rm, ra, MSUB);
1459 }
1460
1461
smaddl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1462 void Assembler::smaddl(const Register& rd,
1463 const Register& rn,
1464 const Register& rm,
1465 const Register& ra) {
1466 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1467 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1468 DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
1469 }
1470
1471
smsubl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1472 void Assembler::smsubl(const Register& rd,
1473 const Register& rn,
1474 const Register& rm,
1475 const Register& ra) {
1476 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1477 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1478 DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
1479 }
1480
1481
umaddl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1482 void Assembler::umaddl(const Register& rd,
1483 const Register& rn,
1484 const Register& rm,
1485 const Register& ra) {
1486 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1487 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1488 DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
1489 }
1490
1491
umsubl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1492 void Assembler::umsubl(const Register& rd,
1493 const Register& rn,
1494 const Register& rm,
1495 const Register& ra) {
1496 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1497 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1498 DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
1499 }
1500
1501
smull(const Register & rd,const Register & rn,const Register & rm)1502 void Assembler::smull(const Register& rd,
1503 const Register& rn,
1504 const Register& rm) {
1505 DCHECK(rd.Is64Bits());
1506 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1507 DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
1508 }
1509
1510
smulh(const Register & rd,const Register & rn,const Register & rm)1511 void Assembler::smulh(const Register& rd,
1512 const Register& rn,
1513 const Register& rm) {
1514 DCHECK(AreSameSizeAndType(rd, rn, rm));
1515 DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
1516 }
1517
1518
sdiv(const Register & rd,const Register & rn,const Register & rm)1519 void Assembler::sdiv(const Register& rd,
1520 const Register& rn,
1521 const Register& rm) {
1522 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1523 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1524 Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
1525 }
1526
1527
udiv(const Register & rd,const Register & rn,const Register & rm)1528 void Assembler::udiv(const Register& rd,
1529 const Register& rn,
1530 const Register& rm) {
1531 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1532 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1533 Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
1534 }
1535
1536
rbit(const Register & rd,const Register & rn)1537 void Assembler::rbit(const Register& rd,
1538 const Register& rn) {
1539 DataProcessing1Source(rd, rn, RBIT);
1540 }
1541
1542
rev16(const Register & rd,const Register & rn)1543 void Assembler::rev16(const Register& rd,
1544 const Register& rn) {
1545 DataProcessing1Source(rd, rn, REV16);
1546 }
1547
1548
rev32(const Register & rd,const Register & rn)1549 void Assembler::rev32(const Register& rd,
1550 const Register& rn) {
1551 DCHECK(rd.Is64Bits());
1552 DataProcessing1Source(rd, rn, REV);
1553 }
1554
1555
rev(const Register & rd,const Register & rn)1556 void Assembler::rev(const Register& rd,
1557 const Register& rn) {
1558 DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1559 }
1560
1561
clz(const Register & rd,const Register & rn)1562 void Assembler::clz(const Register& rd,
1563 const Register& rn) {
1564 DataProcessing1Source(rd, rn, CLZ);
1565 }
1566
1567
cls(const Register & rd,const Register & rn)1568 void Assembler::cls(const Register& rd,
1569 const Register& rn) {
1570 DataProcessing1Source(rd, rn, CLS);
1571 }
1572
1573
ldp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & src)1574 void Assembler::ldp(const CPURegister& rt,
1575 const CPURegister& rt2,
1576 const MemOperand& src) {
1577 LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1578 }
1579
1580
stp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & dst)1581 void Assembler::stp(const CPURegister& rt,
1582 const CPURegister& rt2,
1583 const MemOperand& dst) {
1584 LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1585 }
1586
1587
ldpsw(const Register & rt,const Register & rt2,const MemOperand & src)1588 void Assembler::ldpsw(const Register& rt,
1589 const Register& rt2,
1590 const MemOperand& src) {
1591 DCHECK(rt.Is64Bits());
1592 LoadStorePair(rt, rt2, src, LDPSW_x);
1593 }
1594
1595
LoadStorePair(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)1596 void Assembler::LoadStorePair(const CPURegister& rt,
1597 const CPURegister& rt2,
1598 const MemOperand& addr,
1599 LoadStorePairOp op) {
1600 // 'rt' and 'rt2' can only be aliased for stores.
1601 DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1602 DCHECK(AreSameSizeAndType(rt, rt2));
1603 DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
1604 int offset = static_cast<int>(addr.offset());
1605
1606 Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
1607 ImmLSPair(offset, CalcLSPairDataSize(op));
1608
1609 Instr addrmodeop;
1610 if (addr.IsImmediateOffset()) {
1611 addrmodeop = LoadStorePairOffsetFixed;
1612 } else {
1613 // Pre-index and post-index modes.
1614 DCHECK(!rt.Is(addr.base()));
1615 DCHECK(!rt2.Is(addr.base()));
1616 DCHECK(addr.offset() != 0);
1617 if (addr.IsPreIndex()) {
1618 addrmodeop = LoadStorePairPreIndexFixed;
1619 } else {
1620 DCHECK(addr.IsPostIndex());
1621 addrmodeop = LoadStorePairPostIndexFixed;
1622 }
1623 }
1624 Emit(addrmodeop | memop);
1625 }
1626
1627
1628 // Memory instructions.
ldrb(const Register & rt,const MemOperand & src)1629 void Assembler::ldrb(const Register& rt, const MemOperand& src) {
1630 LoadStore(rt, src, LDRB_w);
1631 }
1632
1633
strb(const Register & rt,const MemOperand & dst)1634 void Assembler::strb(const Register& rt, const MemOperand& dst) {
1635 LoadStore(rt, dst, STRB_w);
1636 }
1637
1638
ldrsb(const Register & rt,const MemOperand & src)1639 void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
1640 LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
1641 }
1642
1643
ldrh(const Register & rt,const MemOperand & src)1644 void Assembler::ldrh(const Register& rt, const MemOperand& src) {
1645 LoadStore(rt, src, LDRH_w);
1646 }
1647
1648
strh(const Register & rt,const MemOperand & dst)1649 void Assembler::strh(const Register& rt, const MemOperand& dst) {
1650 LoadStore(rt, dst, STRH_w);
1651 }
1652
1653
ldrsh(const Register & rt,const MemOperand & src)1654 void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
1655 LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
1656 }
1657
1658
ldr(const CPURegister & rt,const MemOperand & src)1659 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
1660 LoadStore(rt, src, LoadOpFor(rt));
1661 }
1662
1663
str(const CPURegister & rt,const MemOperand & src)1664 void Assembler::str(const CPURegister& rt, const MemOperand& src) {
1665 LoadStore(rt, src, StoreOpFor(rt));
1666 }
1667
1668
ldrsw(const Register & rt,const MemOperand & src)1669 void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
1670 DCHECK(rt.Is64Bits());
1671 LoadStore(rt, src, LDRSW_x);
1672 }
1673
1674
ldr_pcrel(const CPURegister & rt,int imm19)1675 void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
1676 // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
1677 // constant pool. It should not be emitted.
1678 DCHECK(!rt.IsZero());
1679 Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
1680 }
1681
1682
ldr(const CPURegister & rt,const Immediate & imm)1683 void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
1684 // Currently we only support 64-bit literals.
1685 DCHECK(rt.Is64Bits());
1686
1687 RecordRelocInfo(imm.rmode(), imm.value());
1688 BlockConstPoolFor(1);
1689 // The load will be patched when the constpool is emitted, patching code
1690 // expect a load literal with offset 0.
1691 ldr_pcrel(rt, 0);
1692 }
1693
ldar(const Register & rt,const Register & rn)1694 void Assembler::ldar(const Register& rt, const Register& rn) {
1695 DCHECK(rn.Is64Bits());
1696 LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x;
1697 Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1698 }
1699
ldaxr(const Register & rt,const Register & rn)1700 void Assembler::ldaxr(const Register& rt, const Register& rn) {
1701 DCHECK(rn.Is64Bits());
1702 LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x;
1703 Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1704 }
1705
stlr(const Register & rt,const Register & rn)1706 void Assembler::stlr(const Register& rt, const Register& rn) {
1707 DCHECK(rn.Is64Bits());
1708 LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x;
1709 Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1710 }
1711
stlxr(const Register & rs,const Register & rt,const Register & rn)1712 void Assembler::stlxr(const Register& rs, const Register& rt,
1713 const Register& rn) {
1714 DCHECK(rs.Is32Bits());
1715 DCHECK(rn.Is64Bits());
1716 LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x;
1717 Emit(op | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1718 }
1719
ldarb(const Register & rt,const Register & rn)1720 void Assembler::ldarb(const Register& rt, const Register& rn) {
1721 DCHECK(rt.Is32Bits());
1722 DCHECK(rn.Is64Bits());
1723 Emit(LDAR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1724 }
1725
ldaxrb(const Register & rt,const Register & rn)1726 void Assembler::ldaxrb(const Register& rt, const Register& rn) {
1727 DCHECK(rt.Is32Bits());
1728 DCHECK(rn.Is64Bits());
1729 Emit(LDAXR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1730 }
1731
stlrb(const Register & rt,const Register & rn)1732 void Assembler::stlrb(const Register& rt, const Register& rn) {
1733 DCHECK(rt.Is32Bits());
1734 DCHECK(rn.Is64Bits());
1735 Emit(STLR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1736 }
1737
stlxrb(const Register & rs,const Register & rt,const Register & rn)1738 void Assembler::stlxrb(const Register& rs, const Register& rt,
1739 const Register& rn) {
1740 DCHECK(rs.Is32Bits());
1741 DCHECK(rt.Is32Bits());
1742 DCHECK(rn.Is64Bits());
1743 Emit(STLXR_b | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1744 }
1745
ldarh(const Register & rt,const Register & rn)1746 void Assembler::ldarh(const Register& rt, const Register& rn) {
1747 DCHECK(rt.Is32Bits());
1748 DCHECK(rn.Is64Bits());
1749 Emit(LDAR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1750 }
1751
ldaxrh(const Register & rt,const Register & rn)1752 void Assembler::ldaxrh(const Register& rt, const Register& rn) {
1753 DCHECK(rt.Is32Bits());
1754 DCHECK(rn.Is64Bits());
1755 Emit(LDAXR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1756 }
1757
stlrh(const Register & rt,const Register & rn)1758 void Assembler::stlrh(const Register& rt, const Register& rn) {
1759 DCHECK(rt.Is32Bits());
1760 DCHECK(rn.Is64Bits());
1761 Emit(STLR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1762 }
1763
stlxrh(const Register & rs,const Register & rt,const Register & rn)1764 void Assembler::stlxrh(const Register& rs, const Register& rt,
1765 const Register& rn) {
1766 DCHECK(rs.Is32Bits());
1767 DCHECK(rt.Is32Bits());
1768 DCHECK(rn.Is64Bits());
1769 Emit(STLXR_h | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1770 }
1771
mov(const Register & rd,const Register & rm)1772 void Assembler::mov(const Register& rd, const Register& rm) {
1773 // Moves involving the stack pointer are encoded as add immediate with
1774 // second operand of zero. Otherwise, orr with first operand zr is
1775 // used.
1776 if (rd.IsSP() || rm.IsSP()) {
1777 add(rd, rm, 0);
1778 } else {
1779 orr(rd, AppropriateZeroRegFor(rd), rm);
1780 }
1781 }
1782
1783
mvn(const Register & rd,const Operand & operand)1784 void Assembler::mvn(const Register& rd, const Operand& operand) {
1785 orn(rd, AppropriateZeroRegFor(rd), operand);
1786 }
1787
1788
mrs(const Register & rt,SystemRegister sysreg)1789 void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
1790 DCHECK(rt.Is64Bits());
1791 Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
1792 }
1793
1794
msr(SystemRegister sysreg,const Register & rt)1795 void Assembler::msr(SystemRegister sysreg, const Register& rt) {
1796 DCHECK(rt.Is64Bits());
1797 Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
1798 }
1799
1800
hint(SystemHint code)1801 void Assembler::hint(SystemHint code) {
1802 Emit(HINT | ImmHint(code) | Rt(xzr));
1803 }
1804
1805
dmb(BarrierDomain domain,BarrierType type)1806 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
1807 Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1808 }
1809
1810
dsb(BarrierDomain domain,BarrierType type)1811 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
1812 Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1813 }
1814
1815
isb()1816 void Assembler::isb() {
1817 Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
1818 }
1819
1820
fmov(FPRegister fd,double imm)1821 void Assembler::fmov(FPRegister fd, double imm) {
1822 DCHECK(fd.Is64Bits());
1823 DCHECK(IsImmFP64(imm));
1824 Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
1825 }
1826
1827
fmov(FPRegister fd,float imm)1828 void Assembler::fmov(FPRegister fd, float imm) {
1829 DCHECK(fd.Is32Bits());
1830 DCHECK(IsImmFP32(imm));
1831 Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
1832 }
1833
1834
fmov(Register rd,FPRegister fn)1835 void Assembler::fmov(Register rd, FPRegister fn) {
1836 DCHECK(rd.SizeInBits() == fn.SizeInBits());
1837 FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
1838 Emit(op | Rd(rd) | Rn(fn));
1839 }
1840
1841
fmov(FPRegister fd,Register rn)1842 void Assembler::fmov(FPRegister fd, Register rn) {
1843 DCHECK(fd.SizeInBits() == rn.SizeInBits());
1844 FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
1845 Emit(op | Rd(fd) | Rn(rn));
1846 }
1847
1848
fmov(FPRegister fd,FPRegister fn)1849 void Assembler::fmov(FPRegister fd, FPRegister fn) {
1850 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1851 Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
1852 }
1853
1854
fadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1855 void Assembler::fadd(const FPRegister& fd,
1856 const FPRegister& fn,
1857 const FPRegister& fm) {
1858 FPDataProcessing2Source(fd, fn, fm, FADD);
1859 }
1860
1861
fsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1862 void Assembler::fsub(const FPRegister& fd,
1863 const FPRegister& fn,
1864 const FPRegister& fm) {
1865 FPDataProcessing2Source(fd, fn, fm, FSUB);
1866 }
1867
1868
fmul(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1869 void Assembler::fmul(const FPRegister& fd,
1870 const FPRegister& fn,
1871 const FPRegister& fm) {
1872 FPDataProcessing2Source(fd, fn, fm, FMUL);
1873 }
1874
1875
fmadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1876 void Assembler::fmadd(const FPRegister& fd,
1877 const FPRegister& fn,
1878 const FPRegister& fm,
1879 const FPRegister& fa) {
1880 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
1881 }
1882
1883
fmsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1884 void Assembler::fmsub(const FPRegister& fd,
1885 const FPRegister& fn,
1886 const FPRegister& fm,
1887 const FPRegister& fa) {
1888 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
1889 }
1890
1891
fnmadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1892 void Assembler::fnmadd(const FPRegister& fd,
1893 const FPRegister& fn,
1894 const FPRegister& fm,
1895 const FPRegister& fa) {
1896 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
1897 }
1898
1899
fnmsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1900 void Assembler::fnmsub(const FPRegister& fd,
1901 const FPRegister& fn,
1902 const FPRegister& fm,
1903 const FPRegister& fa) {
1904 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
1905 }
1906
1907
fdiv(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1908 void Assembler::fdiv(const FPRegister& fd,
1909 const FPRegister& fn,
1910 const FPRegister& fm) {
1911 FPDataProcessing2Source(fd, fn, fm, FDIV);
1912 }
1913
1914
fmax(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1915 void Assembler::fmax(const FPRegister& fd,
1916 const FPRegister& fn,
1917 const FPRegister& fm) {
1918 FPDataProcessing2Source(fd, fn, fm, FMAX);
1919 }
1920
1921
fmaxnm(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1922 void Assembler::fmaxnm(const FPRegister& fd,
1923 const FPRegister& fn,
1924 const FPRegister& fm) {
1925 FPDataProcessing2Source(fd, fn, fm, FMAXNM);
1926 }
1927
1928
fmin(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1929 void Assembler::fmin(const FPRegister& fd,
1930 const FPRegister& fn,
1931 const FPRegister& fm) {
1932 FPDataProcessing2Source(fd, fn, fm, FMIN);
1933 }
1934
1935
fminnm(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1936 void Assembler::fminnm(const FPRegister& fd,
1937 const FPRegister& fn,
1938 const FPRegister& fm) {
1939 FPDataProcessing2Source(fd, fn, fm, FMINNM);
1940 }
1941
1942
fabs(const FPRegister & fd,const FPRegister & fn)1943 void Assembler::fabs(const FPRegister& fd,
1944 const FPRegister& fn) {
1945 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1946 FPDataProcessing1Source(fd, fn, FABS);
1947 }
1948
1949
fneg(const FPRegister & fd,const FPRegister & fn)1950 void Assembler::fneg(const FPRegister& fd,
1951 const FPRegister& fn) {
1952 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1953 FPDataProcessing1Source(fd, fn, FNEG);
1954 }
1955
1956
fsqrt(const FPRegister & fd,const FPRegister & fn)1957 void Assembler::fsqrt(const FPRegister& fd,
1958 const FPRegister& fn) {
1959 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1960 FPDataProcessing1Source(fd, fn, FSQRT);
1961 }
1962
1963
frinta(const FPRegister & fd,const FPRegister & fn)1964 void Assembler::frinta(const FPRegister& fd,
1965 const FPRegister& fn) {
1966 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1967 FPDataProcessing1Source(fd, fn, FRINTA);
1968 }
1969
1970
frintm(const FPRegister & fd,const FPRegister & fn)1971 void Assembler::frintm(const FPRegister& fd,
1972 const FPRegister& fn) {
1973 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1974 FPDataProcessing1Source(fd, fn, FRINTM);
1975 }
1976
1977
frintn(const FPRegister & fd,const FPRegister & fn)1978 void Assembler::frintn(const FPRegister& fd,
1979 const FPRegister& fn) {
1980 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1981 FPDataProcessing1Source(fd, fn, FRINTN);
1982 }
1983
1984
frintp(const FPRegister & fd,const FPRegister & fn)1985 void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
1986 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1987 FPDataProcessing1Source(fd, fn, FRINTP);
1988 }
1989
1990
frintz(const FPRegister & fd,const FPRegister & fn)1991 void Assembler::frintz(const FPRegister& fd,
1992 const FPRegister& fn) {
1993 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1994 FPDataProcessing1Source(fd, fn, FRINTZ);
1995 }
1996
1997
fcmp(const FPRegister & fn,const FPRegister & fm)1998 void Assembler::fcmp(const FPRegister& fn,
1999 const FPRegister& fm) {
2000 DCHECK(fn.SizeInBits() == fm.SizeInBits());
2001 Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
2002 }
2003
2004
fcmp(const FPRegister & fn,double value)2005 void Assembler::fcmp(const FPRegister& fn,
2006 double value) {
2007 USE(value);
2008 // Although the fcmp instruction can strictly only take an immediate value of
2009 // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
2010 // affect the result of the comparison.
2011 DCHECK(value == 0.0);
2012 Emit(FPType(fn) | FCMP_zero | Rn(fn));
2013 }
2014
2015
fccmp(const FPRegister & fn,const FPRegister & fm,StatusFlags nzcv,Condition cond)2016 void Assembler::fccmp(const FPRegister& fn,
2017 const FPRegister& fm,
2018 StatusFlags nzcv,
2019 Condition cond) {
2020 DCHECK(fn.SizeInBits() == fm.SizeInBits());
2021 Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
2022 }
2023
2024
fcsel(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,Condition cond)2025 void Assembler::fcsel(const FPRegister& fd,
2026 const FPRegister& fn,
2027 const FPRegister& fm,
2028 Condition cond) {
2029 DCHECK(fd.SizeInBits() == fn.SizeInBits());
2030 DCHECK(fd.SizeInBits() == fm.SizeInBits());
2031 Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
2032 }
2033
2034
FPConvertToInt(const Register & rd,const FPRegister & fn,FPIntegerConvertOp op)2035 void Assembler::FPConvertToInt(const Register& rd,
2036 const FPRegister& fn,
2037 FPIntegerConvertOp op) {
2038 Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
2039 }
2040
2041
fcvt(const FPRegister & fd,const FPRegister & fn)2042 void Assembler::fcvt(const FPRegister& fd,
2043 const FPRegister& fn) {
2044 if (fd.Is64Bits()) {
2045 // Convert float to double.
2046 DCHECK(fn.Is32Bits());
2047 FPDataProcessing1Source(fd, fn, FCVT_ds);
2048 } else {
2049 // Convert double to float.
2050 DCHECK(fn.Is64Bits());
2051 FPDataProcessing1Source(fd, fn, FCVT_sd);
2052 }
2053 }
2054
2055
fcvtau(const Register & rd,const FPRegister & fn)2056 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
2057 FPConvertToInt(rd, fn, FCVTAU);
2058 }
2059
2060
fcvtas(const Register & rd,const FPRegister & fn)2061 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
2062 FPConvertToInt(rd, fn, FCVTAS);
2063 }
2064
2065
fcvtmu(const Register & rd,const FPRegister & fn)2066 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
2067 FPConvertToInt(rd, fn, FCVTMU);
2068 }
2069
2070
fcvtms(const Register & rd,const FPRegister & fn)2071 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
2072 FPConvertToInt(rd, fn, FCVTMS);
2073 }
2074
2075
fcvtnu(const Register & rd,const FPRegister & fn)2076 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
2077 FPConvertToInt(rd, fn, FCVTNU);
2078 }
2079
2080
fcvtns(const Register & rd,const FPRegister & fn)2081 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
2082 FPConvertToInt(rd, fn, FCVTNS);
2083 }
2084
2085
fcvtzu(const Register & rd,const FPRegister & fn)2086 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
2087 FPConvertToInt(rd, fn, FCVTZU);
2088 }
2089
2090
fcvtzs(const Register & rd,const FPRegister & fn)2091 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
2092 FPConvertToInt(rd, fn, FCVTZS);
2093 }
2094
2095
scvtf(const FPRegister & fd,const Register & rn,unsigned fbits)2096 void Assembler::scvtf(const FPRegister& fd,
2097 const Register& rn,
2098 unsigned fbits) {
2099 if (fbits == 0) {
2100 Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
2101 } else {
2102 Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2103 Rd(fd));
2104 }
2105 }
2106
2107
ucvtf(const FPRegister & fd,const Register & rn,unsigned fbits)2108 void Assembler::ucvtf(const FPRegister& fd,
2109 const Register& rn,
2110 unsigned fbits) {
2111 if (fbits == 0) {
2112 Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
2113 } else {
2114 Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2115 Rd(fd));
2116 }
2117 }
2118
2119
dcptr(Label * label)2120 void Assembler::dcptr(Label* label) {
2121 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2122 if (label->is_bound()) {
2123 // The label is bound, so it does not need to be updated and the internal
2124 // reference should be emitted.
2125 //
2126 // In this case, label->pos() returns the offset of the label from the
2127 // start of the buffer.
2128 internal_reference_positions_.push_back(pc_offset());
2129 dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
2130 } else {
2131 int32_t offset;
2132 if (label->is_linked()) {
2133 // The label is linked, so the internal reference should be added
2134 // onto the end of the label's link chain.
2135 //
2136 // In this case, label->pos() returns the offset of the last linked
2137 // instruction from the start of the buffer.
2138 offset = label->pos() - pc_offset();
2139 DCHECK(offset != kStartOfLabelLinkChain);
2140 } else {
2141 // The label is unused, so it now becomes linked and the internal
2142 // reference is at the start of the new link chain.
2143 offset = kStartOfLabelLinkChain;
2144 }
2145 // The instruction at pc is now the last link in the label's chain.
2146 label->link_to(pc_offset());
2147
2148 // Traditionally the offset to the previous instruction in the chain is
2149 // encoded in the instruction payload (e.g. branch range) but internal
2150 // references are not instructions so while unbound they are encoded as
2151 // two consecutive brk instructions. The two 16-bit immediates are used
2152 // to encode the offset.
2153 offset >>= kInstructionSizeLog2;
2154 DCHECK(is_int32(offset));
2155 uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
2156 uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
2157
2158 brk(high16);
2159 brk(low16);
2160 }
2161 }
2162
2163
2164 // Note:
2165 // Below, a difference in case for the same letter indicates a
2166 // negated bit.
2167 // If b is 1, then B is 0.
ImmFP32(float imm)2168 Instr Assembler::ImmFP32(float imm) {
2169 DCHECK(IsImmFP32(imm));
2170 // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
2171 uint32_t bits = float_to_rawbits(imm);
2172 // bit7: a000.0000
2173 uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
2174 // bit6: 0b00.0000
2175 uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
2176 // bit5_to_0: 00cd.efgh
2177 uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
2178
2179 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2180 }
2181
2182
ImmFP64(double imm)2183 Instr Assembler::ImmFP64(double imm) {
2184 DCHECK(IsImmFP64(imm));
2185 // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2186 // 0000.0000.0000.0000.0000.0000.0000.0000
2187 uint64_t bits = double_to_rawbits(imm);
2188 // bit7: a000.0000
2189 uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
2190 // bit6: 0b00.0000
2191 uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
2192 // bit5_to_0: 00cd.efgh
2193 uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
2194
2195 return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
2196 }
2197
2198
2199 // Code generation helpers.
MoveWide(const Register & rd,uint64_t imm,int shift,MoveWideImmediateOp mov_op)2200 void Assembler::MoveWide(const Register& rd,
2201 uint64_t imm,
2202 int shift,
2203 MoveWideImmediateOp mov_op) {
2204 // Ignore the top 32 bits of an immediate if we're moving to a W register.
2205 if (rd.Is32Bits()) {
2206 // Check that the top 32 bits are zero (a positive 32-bit number) or top
2207 // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
2208 DCHECK(((imm >> kWRegSizeInBits) == 0) ||
2209 ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
2210 imm &= kWRegMask;
2211 }
2212
2213 if (shift >= 0) {
2214 // Explicit shift specified.
2215 DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
2216 DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
2217 shift /= 16;
2218 } else {
2219 // Calculate a new immediate and shift combination to encode the immediate
2220 // argument.
2221 shift = 0;
2222 if ((imm & ~0xffffUL) == 0) {
2223 // Nothing to do.
2224 } else if ((imm & ~(0xffffUL << 16)) == 0) {
2225 imm >>= 16;
2226 shift = 1;
2227 } else if ((imm & ~(0xffffUL << 32)) == 0) {
2228 DCHECK(rd.Is64Bits());
2229 imm >>= 32;
2230 shift = 2;
2231 } else if ((imm & ~(0xffffUL << 48)) == 0) {
2232 DCHECK(rd.Is64Bits());
2233 imm >>= 48;
2234 shift = 3;
2235 }
2236 }
2237
2238 DCHECK(is_uint16(imm));
2239
2240 Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
2241 ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
2242 }
2243
2244
AddSub(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)2245 void Assembler::AddSub(const Register& rd,
2246 const Register& rn,
2247 const Operand& operand,
2248 FlagsUpdate S,
2249 AddSubOp op) {
2250 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2251 DCHECK(!operand.NeedsRelocation(this));
2252 if (operand.IsImmediate()) {
2253 int64_t immediate = operand.ImmediateValue();
2254 DCHECK(IsImmAddSub(immediate));
2255 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2256 Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
2257 ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
2258 } else if (operand.IsShiftedRegister()) {
2259 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2260 DCHECK(operand.shift() != ROR);
2261
2262 // For instructions of the form:
2263 // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
2264 // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
2265 // add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
2266 // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
2267 // or their 64-bit register equivalents, convert the operand from shifted to
2268 // extended register mode, and emit an add/sub extended instruction.
2269 if (rn.IsSP() || rd.IsSP()) {
2270 DCHECK(!(rd.IsSP() && (S == SetFlags)));
2271 DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
2272 AddSubExtendedFixed | op);
2273 } else {
2274 DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
2275 }
2276 } else {
2277 DCHECK(operand.IsExtendedRegister());
2278 DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
2279 }
2280 }
2281
2282
AddSubWithCarry(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)2283 void Assembler::AddSubWithCarry(const Register& rd,
2284 const Register& rn,
2285 const Operand& operand,
2286 FlagsUpdate S,
2287 AddSubWithCarryOp op) {
2288 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2289 DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
2290 DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2291 DCHECK(!operand.NeedsRelocation(this));
2292 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
2293 }
2294
2295
hlt(int code)2296 void Assembler::hlt(int code) {
2297 DCHECK(is_uint16(code));
2298 Emit(HLT | ImmException(code));
2299 }
2300
2301
brk(int code)2302 void Assembler::brk(int code) {
2303 DCHECK(is_uint16(code));
2304 Emit(BRK | ImmException(code));
2305 }
2306
2307
EmitStringData(const char * string)2308 void Assembler::EmitStringData(const char* string) {
2309 size_t len = strlen(string) + 1;
2310 DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
2311 EmitData(string, static_cast<int>(len));
2312 // Pad with NULL characters until pc_ is aligned.
2313 const char pad[] = {'\0', '\0', '\0', '\0'};
2314 STATIC_ASSERT(sizeof(pad) == kInstructionSize);
2315 EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
2316 }
2317
2318
debug(const char * message,uint32_t code,Instr params)2319 void Assembler::debug(const char* message, uint32_t code, Instr params) {
2320 #ifdef USE_SIMULATOR
2321 // Don't generate simulator specific code if we are building a snapshot, which
2322 // might be run on real hardware.
2323 if (!serializer_enabled()) {
2324 // The arguments to the debug marker need to be contiguous in memory, so
2325 // make sure we don't try to emit pools.
2326 BlockPoolsScope scope(this);
2327
2328 Label start;
2329 bind(&start);
2330
2331 // Refer to instructions-arm64.h for a description of the marker and its
2332 // arguments.
2333 hlt(kImmExceptionIsDebug);
2334 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
2335 dc32(code);
2336 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
2337 dc32(params);
2338 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
2339 EmitStringData(message);
2340 hlt(kImmExceptionIsUnreachable);
2341
2342 return;
2343 }
2344 // Fall through if Serializer is enabled.
2345 #endif
2346
2347 if (params & BREAK) {
2348 hlt(kImmExceptionIsDebug);
2349 }
2350 }
2351
2352
Logical(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)2353 void Assembler::Logical(const Register& rd,
2354 const Register& rn,
2355 const Operand& operand,
2356 LogicalOp op) {
2357 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2358 DCHECK(!operand.NeedsRelocation(this));
2359 if (operand.IsImmediate()) {
2360 int64_t immediate = operand.ImmediateValue();
2361 unsigned reg_size = rd.SizeInBits();
2362
2363 DCHECK(immediate != 0);
2364 DCHECK(immediate != -1);
2365 DCHECK(rd.Is64Bits() || is_uint32(immediate));
2366
2367 // If the operation is NOT, invert the operation and immediate.
2368 if ((op & NOT) == NOT) {
2369 op = static_cast<LogicalOp>(op & ~NOT);
2370 immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
2371 }
2372
2373 unsigned n, imm_s, imm_r;
2374 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
2375 // Immediate can be encoded in the instruction.
2376 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
2377 } else {
2378 // This case is handled in the macro assembler.
2379 UNREACHABLE();
2380 }
2381 } else {
2382 DCHECK(operand.IsShiftedRegister());
2383 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2384 Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
2385 DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
2386 }
2387 }
2388
2389
LogicalImmediate(const Register & rd,const Register & rn,unsigned n,unsigned imm_s,unsigned imm_r,LogicalOp op)2390 void Assembler::LogicalImmediate(const Register& rd,
2391 const Register& rn,
2392 unsigned n,
2393 unsigned imm_s,
2394 unsigned imm_r,
2395 LogicalOp op) {
2396 unsigned reg_size = rd.SizeInBits();
2397 Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
2398 Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
2399 ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
2400 Rn(rn));
2401 }
2402
2403
ConditionalCompare(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)2404 void Assembler::ConditionalCompare(const Register& rn,
2405 const Operand& operand,
2406 StatusFlags nzcv,
2407 Condition cond,
2408 ConditionalCompareOp op) {
2409 Instr ccmpop;
2410 DCHECK(!operand.NeedsRelocation(this));
2411 if (operand.IsImmediate()) {
2412 int64_t immediate = operand.ImmediateValue();
2413 DCHECK(IsImmConditionalCompare(immediate));
2414 ccmpop = ConditionalCompareImmediateFixed | op |
2415 ImmCondCmp(static_cast<unsigned>(immediate));
2416 } else {
2417 DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2418 ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
2419 }
2420 Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
2421 }
2422
2423
DataProcessing1Source(const Register & rd,const Register & rn,DataProcessing1SourceOp op)2424 void Assembler::DataProcessing1Source(const Register& rd,
2425 const Register& rn,
2426 DataProcessing1SourceOp op) {
2427 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2428 Emit(SF(rn) | op | Rn(rn) | Rd(rd));
2429 }
2430
2431
FPDataProcessing1Source(const FPRegister & fd,const FPRegister & fn,FPDataProcessing1SourceOp op)2432 void Assembler::FPDataProcessing1Source(const FPRegister& fd,
2433 const FPRegister& fn,
2434 FPDataProcessing1SourceOp op) {
2435 Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
2436 }
2437
2438
FPDataProcessing2Source(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,FPDataProcessing2SourceOp op)2439 void Assembler::FPDataProcessing2Source(const FPRegister& fd,
2440 const FPRegister& fn,
2441 const FPRegister& fm,
2442 FPDataProcessing2SourceOp op) {
2443 DCHECK(fd.SizeInBits() == fn.SizeInBits());
2444 DCHECK(fd.SizeInBits() == fm.SizeInBits());
2445 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
2446 }
2447
2448
FPDataProcessing3Source(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa,FPDataProcessing3SourceOp op)2449 void Assembler::FPDataProcessing3Source(const FPRegister& fd,
2450 const FPRegister& fn,
2451 const FPRegister& fm,
2452 const FPRegister& fa,
2453 FPDataProcessing3SourceOp op) {
2454 DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
2455 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
2456 }
2457
2458
EmitShift(const Register & rd,const Register & rn,Shift shift,unsigned shift_amount)2459 void Assembler::EmitShift(const Register& rd,
2460 const Register& rn,
2461 Shift shift,
2462 unsigned shift_amount) {
2463 switch (shift) {
2464 case LSL:
2465 lsl(rd, rn, shift_amount);
2466 break;
2467 case LSR:
2468 lsr(rd, rn, shift_amount);
2469 break;
2470 case ASR:
2471 asr(rd, rn, shift_amount);
2472 break;
2473 case ROR:
2474 ror(rd, rn, shift_amount);
2475 break;
2476 default:
2477 UNREACHABLE();
2478 }
2479 }
2480
2481
EmitExtendShift(const Register & rd,const Register & rn,Extend extend,unsigned left_shift)2482 void Assembler::EmitExtendShift(const Register& rd,
2483 const Register& rn,
2484 Extend extend,
2485 unsigned left_shift) {
2486 DCHECK(rd.SizeInBits() >= rn.SizeInBits());
2487 unsigned reg_size = rd.SizeInBits();
2488 // Use the correct size of register.
2489 Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
2490 // Bits extracted are high_bit:0.
2491 unsigned high_bit = (8 << (extend & 0x3)) - 1;
2492 // Number of bits left in the result that are not introduced by the shift.
2493 unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
2494
2495 if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
2496 switch (extend) {
2497 case UXTB:
2498 case UXTH:
2499 case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
2500 case SXTB:
2501 case SXTH:
2502 case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
2503 case UXTX:
2504 case SXTX: {
2505 DCHECK(rn.SizeInBits() == kXRegSizeInBits);
2506 // Nothing to extend. Just shift.
2507 lsl(rd, rn_, left_shift);
2508 break;
2509 }
2510 default: UNREACHABLE();
2511 }
2512 } else {
2513 // No need to extend as the extended bits would be shifted away.
2514 lsl(rd, rn_, left_shift);
2515 }
2516 }
2517
2518
DataProcShiftedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)2519 void Assembler::DataProcShiftedRegister(const Register& rd,
2520 const Register& rn,
2521 const Operand& operand,
2522 FlagsUpdate S,
2523 Instr op) {
2524 DCHECK(operand.IsShiftedRegister());
2525 DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
2526 DCHECK(!operand.NeedsRelocation(this));
2527 Emit(SF(rd) | op | Flags(S) |
2528 ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
2529 Rm(operand.reg()) | Rn(rn) | Rd(rd));
2530 }
2531
2532
DataProcExtendedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)2533 void Assembler::DataProcExtendedRegister(const Register& rd,
2534 const Register& rn,
2535 const Operand& operand,
2536 FlagsUpdate S,
2537 Instr op) {
2538 DCHECK(!operand.NeedsRelocation(this));
2539 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2540 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
2541 ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
2542 dest_reg | RnSP(rn));
2543 }
2544
2545
IsImmAddSub(int64_t immediate)2546 bool Assembler::IsImmAddSub(int64_t immediate) {
2547 return is_uint12(immediate) ||
2548 (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
2549 }
2550
LoadStore(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)2551 void Assembler::LoadStore(const CPURegister& rt,
2552 const MemOperand& addr,
2553 LoadStoreOp op) {
2554 Instr memop = op | Rt(rt) | RnSP(addr.base());
2555
2556 if (addr.IsImmediateOffset()) {
2557 LSDataSize size = CalcLSDataSize(op);
2558 if (IsImmLSScaled(addr.offset(), size)) {
2559 int offset = static_cast<int>(addr.offset());
2560 // Use the scaled addressing mode.
2561 Emit(LoadStoreUnsignedOffsetFixed | memop |
2562 ImmLSUnsigned(offset >> size));
2563 } else if (IsImmLSUnscaled(addr.offset())) {
2564 int offset = static_cast<int>(addr.offset());
2565 // Use the unscaled addressing mode.
2566 Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
2567 } else {
2568 // This case is handled in the macro assembler.
2569 UNREACHABLE();
2570 }
2571 } else if (addr.IsRegisterOffset()) {
2572 Extend ext = addr.extend();
2573 Shift shift = addr.shift();
2574 unsigned shift_amount = addr.shift_amount();
2575
2576 // LSL is encoded in the option field as UXTX.
2577 if (shift == LSL) {
2578 ext = UXTX;
2579 }
2580
2581 // Shifts are encoded in one bit, indicating a left shift by the memory
2582 // access size.
2583 DCHECK((shift_amount == 0) ||
2584 (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
2585 Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
2586 ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
2587 } else {
2588 // Pre-index and post-index modes.
2589 DCHECK(!rt.Is(addr.base()));
2590 if (IsImmLSUnscaled(addr.offset())) {
2591 int offset = static_cast<int>(addr.offset());
2592 if (addr.IsPreIndex()) {
2593 Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
2594 } else {
2595 DCHECK(addr.IsPostIndex());
2596 Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
2597 }
2598 } else {
2599 // This case is handled in the macro assembler.
2600 UNREACHABLE();
2601 }
2602 }
2603 }
2604
2605
IsImmLSUnscaled(int64_t offset)2606 bool Assembler::IsImmLSUnscaled(int64_t offset) {
2607 return is_int9(offset);
2608 }
2609
2610
IsImmLSScaled(int64_t offset,LSDataSize size)2611 bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
2612 bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2613 return offset_is_size_multiple && is_uint12(offset >> size);
2614 }
2615
2616
IsImmLSPair(int64_t offset,LSDataSize size)2617 bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
2618 bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2619 return offset_is_size_multiple && is_int7(offset >> size);
2620 }
2621
2622
IsImmLLiteral(int64_t offset)2623 bool Assembler::IsImmLLiteral(int64_t offset) {
2624 int inst_size = static_cast<int>(kInstructionSizeLog2);
2625 bool offset_is_inst_multiple =
2626 (((offset >> inst_size) << inst_size) == offset);
2627 return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
2628 }
2629
2630
2631 // Test if a given value can be encoded in the immediate field of a logical
2632 // instruction.
2633 // If it can be encoded, the function returns true, and values pointed to by n,
2634 // imm_s and imm_r are updated with immediates encoded in the format required
2635 // by the corresponding fields in the logical instruction.
2636 // If it can not be encoded, the function returns false, and the values pointed
2637 // to by n, imm_s and imm_r are undefined.
IsImmLogical(uint64_t value,unsigned width,unsigned * n,unsigned * imm_s,unsigned * imm_r)2638 bool Assembler::IsImmLogical(uint64_t value,
2639 unsigned width,
2640 unsigned* n,
2641 unsigned* imm_s,
2642 unsigned* imm_r) {
2643 DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2644 DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2645
2646 bool negate = false;
2647
2648 // Logical immediates are encoded using parameters n, imm_s and imm_r using
2649 // the following table:
2650 //
2651 // N imms immr size S R
2652 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
2653 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
2654 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
2655 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
2656 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
2657 // 0 11110s xxxxxr 2 UInt(s) UInt(r)
2658 // (s bits must not be all set)
2659 //
2660 // A pattern is constructed of size bits, where the least significant S+1 bits
2661 // are set. The pattern is rotated right by R, and repeated across a 32 or
2662 // 64-bit value, depending on destination register width.
2663 //
2664 // Put another way: the basic format of a logical immediate is a single
2665 // contiguous stretch of 1 bits, repeated across the whole word at intervals
2666 // given by a power of 2. To identify them quickly, we first locate the
2667 // lowest stretch of 1 bits, then the next 1 bit above that; that combination
2668 // is different for every logical immediate, so it gives us all the
2669 // information we need to identify the only logical immediate that our input
2670 // could be, and then we simply check if that's the value we actually have.
2671 //
2672 // (The rotation parameter does give the possibility of the stretch of 1 bits
2673 // going 'round the end' of the word. To deal with that, we observe that in
2674 // any situation where that happens the bitwise NOT of the value is also a
2675 // valid logical immediate. So we simply invert the input whenever its low bit
2676 // is set, and then we know that the rotated case can't arise.)
2677
2678 if (value & 1) {
2679 // If the low bit is 1, negate the value, and set a flag to remember that we
2680 // did (so that we can adjust the return values appropriately).
2681 negate = true;
2682 value = ~value;
2683 }
2684
2685 if (width == kWRegSizeInBits) {
2686 // To handle 32-bit logical immediates, the very easiest thing is to repeat
2687 // the input value twice to make a 64-bit word. The correct encoding of that
2688 // as a logical immediate will also be the correct encoding of the 32-bit
2689 // value.
2690
2691 // The most-significant 32 bits may not be zero (ie. negate is true) so
2692 // shift the value left before duplicating it.
2693 value <<= kWRegSizeInBits;
2694 value |= value >> kWRegSizeInBits;
2695 }
2696
2697 // The basic analysis idea: imagine our input word looks like this.
2698 //
2699 // 0011111000111110001111100011111000111110001111100011111000111110
2700 // c b a
2701 // |<--d-->|
2702 //
2703 // We find the lowest set bit (as an actual power-of-2 value, not its index)
2704 // and call it a. Then we add a to our original number, which wipes out the
2705 // bottommost stretch of set bits and replaces it with a 1 carried into the
2706 // next zero bit. Then we look for the new lowest set bit, which is in
2707 // position b, and subtract it, so now our number is just like the original
2708 // but with the lowest stretch of set bits completely gone. Now we find the
2709 // lowest set bit again, which is position c in the diagram above. Then we'll
2710 // measure the distance d between bit positions a and c (using CLZ), and that
2711 // tells us that the only valid logical immediate that could possibly be equal
2712 // to this number is the one in which a stretch of bits running from a to just
2713 // below b is replicated every d bits.
2714 uint64_t a = LargestPowerOf2Divisor(value);
2715 uint64_t value_plus_a = value + a;
2716 uint64_t b = LargestPowerOf2Divisor(value_plus_a);
2717 uint64_t value_plus_a_minus_b = value_plus_a - b;
2718 uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
2719
2720 int d, clz_a, out_n;
2721 uint64_t mask;
2722
2723 if (c != 0) {
2724 // The general case, in which there is more than one stretch of set bits.
2725 // Compute the repeat distance d, and set up a bitmask covering the basic
2726 // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
2727 // of these cases the N bit of the output will be zero.
2728 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2729 int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
2730 d = clz_a - clz_c;
2731 mask = ((V8_UINT64_C(1) << d) - 1);
2732 out_n = 0;
2733 } else {
2734 // Handle degenerate cases.
2735 //
2736 // If any of those 'find lowest set bit' operations didn't find a set bit at
2737 // all, then the word will have been zero thereafter, so in particular the
2738 // last lowest_set_bit operation will have returned zero. So we can test for
2739 // all the special case conditions in one go by seeing if c is zero.
2740 if (a == 0) {
2741 // The input was zero (or all 1 bits, which will come to here too after we
2742 // inverted it at the start of the function), for which we just return
2743 // false.
2744 return false;
2745 } else {
2746 // Otherwise, if c was zero but a was not, then there's just one stretch
2747 // of set bits in our word, meaning that we have the trivial case of
2748 // d == 64 and only one 'repetition'. Set up all the same variables as in
2749 // the general case above, and set the N bit in the output.
2750 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2751 d = 64;
2752 mask = ~V8_UINT64_C(0);
2753 out_n = 1;
2754 }
2755 }
2756
2757 // If the repeat period d is not a power of two, it can't be encoded.
2758 if (!IS_POWER_OF_TWO(d)) {
2759 return false;
2760 }
2761
2762 if (((b - a) & ~mask) != 0) {
2763 // If the bit stretch (b - a) does not fit within the mask derived from the
2764 // repeat period, then fail.
2765 return false;
2766 }
2767
2768 // The only possible option is b - a repeated every d bits. Now we're going to
2769 // actually construct the valid logical immediate derived from that
2770 // specification, and see if it equals our original input.
2771 //
2772 // To repeat a value every d bits, we multiply it by a number of the form
2773 // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
2774 // be derived using a table lookup on CLZ(d).
2775 static const uint64_t multipliers[] = {
2776 0x0000000000000001UL,
2777 0x0000000100000001UL,
2778 0x0001000100010001UL,
2779 0x0101010101010101UL,
2780 0x1111111111111111UL,
2781 0x5555555555555555UL,
2782 };
2783 int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
2784 // Ensure that the index to the multipliers array is within bounds.
2785 DCHECK((multiplier_idx >= 0) &&
2786 (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
2787 uint64_t multiplier = multipliers[multiplier_idx];
2788 uint64_t candidate = (b - a) * multiplier;
2789
2790 if (value != candidate) {
2791 // The candidate pattern doesn't match our input value, so fail.
2792 return false;
2793 }
2794
2795 // We have a match! This is a valid logical immediate, so now we have to
2796 // construct the bits and pieces of the instruction encoding that generates
2797 // it.
2798
2799 // Count the set bits in our basic stretch. The special case of clz(0) == -1
2800 // makes the answer come out right for stretches that reach the very top of
2801 // the word (e.g. numbers like 0xffffc00000000000).
2802 int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
2803 int s = clz_a - clz_b;
2804
2805 // Decide how many bits to rotate right by, to put the low bit of that basic
2806 // stretch in position a.
2807 int r;
2808 if (negate) {
2809 // If we inverted the input right at the start of this function, here's
2810 // where we compensate: the number of set bits becomes the number of clear
2811 // bits, and the rotation count is based on position b rather than position
2812 // a (since b is the location of the 'lowest' 1 bit after inversion).
2813 s = d - s;
2814 r = (clz_b + 1) & (d - 1);
2815 } else {
2816 r = (clz_a + 1) & (d - 1);
2817 }
2818
2819 // Now we're done, except for having to encode the S output in such a way that
2820 // it gives both the number of set bits and the length of the repeated
2821 // segment. The s field is encoded like this:
2822 //
2823 // imms size S
2824 // ssssss 64 UInt(ssssss)
2825 // 0sssss 32 UInt(sssss)
2826 // 10ssss 16 UInt(ssss)
2827 // 110sss 8 UInt(sss)
2828 // 1110ss 4 UInt(ss)
2829 // 11110s 2 UInt(s)
2830 //
2831 // So we 'or' (-d << 1) with our computed s to form imms.
2832 *n = out_n;
2833 *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
2834 *imm_r = r;
2835
2836 return true;
2837 }
2838
2839
IsImmConditionalCompare(int64_t immediate)2840 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
2841 return is_uint5(immediate);
2842 }
2843
2844
IsImmFP32(float imm)2845 bool Assembler::IsImmFP32(float imm) {
2846 // Valid values will have the form:
2847 // aBbb.bbbc.defg.h000.0000.0000.0000.0000
2848 uint32_t bits = float_to_rawbits(imm);
2849 // bits[19..0] are cleared.
2850 if ((bits & 0x7ffff) != 0) {
2851 return false;
2852 }
2853
2854 // bits[29..25] are all set or all cleared.
2855 uint32_t b_pattern = (bits >> 16) & 0x3e00;
2856 if (b_pattern != 0 && b_pattern != 0x3e00) {
2857 return false;
2858 }
2859
2860 // bit[30] and bit[29] are opposite.
2861 if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
2862 return false;
2863 }
2864
2865 return true;
2866 }
2867
2868
IsImmFP64(double imm)2869 bool Assembler::IsImmFP64(double imm) {
2870 // Valid values will have the form:
2871 // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2872 // 0000.0000.0000.0000.0000.0000.0000.0000
2873 uint64_t bits = double_to_rawbits(imm);
2874 // bits[47..0] are cleared.
2875 if ((bits & 0xffffffffffffL) != 0) {
2876 return false;
2877 }
2878
2879 // bits[61..54] are all set or all cleared.
2880 uint32_t b_pattern = (bits >> 48) & 0x3fc0;
2881 if (b_pattern != 0 && b_pattern != 0x3fc0) {
2882 return false;
2883 }
2884
2885 // bit[62] and bit[61] are opposite.
2886 if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
2887 return false;
2888 }
2889
2890 return true;
2891 }
2892
2893
GrowBuffer()2894 void Assembler::GrowBuffer() {
2895 if (!own_buffer_) FATAL("external code buffer is too small");
2896
2897 // Compute new buffer size.
2898 CodeDesc desc; // the new buffer
2899 if (buffer_size_ < 1 * MB) {
2900 desc.buffer_size = 2 * buffer_size_;
2901 } else {
2902 desc.buffer_size = buffer_size_ + 1 * MB;
2903 }
2904 CHECK_GT(desc.buffer_size, 0); // No overflow.
2905
2906 byte* buffer = reinterpret_cast<byte*>(buffer_);
2907
2908 // Set up new buffer.
2909 desc.buffer = NewArray<byte>(desc.buffer_size);
2910 desc.origin = this;
2911
2912 desc.instr_size = pc_offset();
2913 desc.reloc_size =
2914 static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
2915
2916 // Copy the data.
2917 intptr_t pc_delta = desc.buffer - buffer;
2918 intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
2919 (buffer + buffer_size_);
2920 memmove(desc.buffer, buffer, desc.instr_size);
2921 memmove(reloc_info_writer.pos() + rc_delta,
2922 reloc_info_writer.pos(), desc.reloc_size);
2923
2924 // Switch buffers.
2925 DeleteArray(buffer_);
2926 buffer_ = desc.buffer;
2927 buffer_size_ = desc.buffer_size;
2928 pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
2929 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2930 reloc_info_writer.last_pc() + pc_delta);
2931
2932 // None of our relocation types are pc relative pointing outside the code
2933 // buffer nor pc absolute pointing inside the code buffer, so there is no need
2934 // to relocate any emitted relocation entries.
2935
2936 // Relocate internal references.
2937 for (auto pos : internal_reference_positions_) {
2938 intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
2939 *p += pc_delta;
2940 }
2941
2942 // Pending relocation entries are also relative, no need to relocate.
2943 }
2944
2945
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2946 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2947 // We do not try to reuse pool constants.
2948 RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
2949 if (((rmode >= RelocInfo::COMMENT) &&
2950 (rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL)) ||
2951 (rmode == RelocInfo::INTERNAL_REFERENCE) ||
2952 (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
2953 (rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID) ||
2954 (rmode == RelocInfo::GENERATOR_CONTINUATION)) {
2955 // Adjust code for new modes.
2956 DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
2957 RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) ||
2958 RelocInfo::IsPosition(rmode) ||
2959 RelocInfo::IsInternalReference(rmode) ||
2960 RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode) ||
2961 RelocInfo::IsGeneratorContinuation(rmode));
2962 // These modes do not need an entry in the constant pool.
2963 } else {
2964 constpool_.RecordEntry(data, rmode);
2965 // Make sure the constant pool is not emitted in place of the next
2966 // instruction for which we just recorded relocation info.
2967 BlockConstPoolFor(1);
2968 }
2969
2970 if (!RelocInfo::IsNone(rmode)) {
2971 // Don't record external references unless the heap will be serialized.
2972 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2973 !serializer_enabled() && !emit_debug_code()) {
2974 return;
2975 }
2976 DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
2977 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2978 RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
2979 rmode, RecordedAstId().ToInt(), NULL);
2980 ClearRecordedAstId();
2981 reloc_info_writer.Write(&reloc_info_with_ast_id);
2982 } else {
2983 reloc_info_writer.Write(&rinfo);
2984 }
2985 }
2986 }
2987
2988
BlockConstPoolFor(int instructions)2989 void Assembler::BlockConstPoolFor(int instructions) {
2990 int pc_limit = pc_offset() + instructions * kInstructionSize;
2991 if (no_const_pool_before_ < pc_limit) {
2992 no_const_pool_before_ = pc_limit;
2993 // Make sure the pool won't be blocked for too long.
2994 DCHECK(pc_limit < constpool_.MaxPcOffset());
2995 }
2996
2997 if (next_constant_pool_check_ < no_const_pool_before_) {
2998 next_constant_pool_check_ = no_const_pool_before_;
2999 }
3000 }
3001
3002
CheckConstPool(bool force_emit,bool require_jump)3003 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
3004 // Some short sequence of instruction mustn't be broken up by constant pool
3005 // emission, such sequences are protected by calls to BlockConstPoolFor and
3006 // BlockConstPoolScope.
3007 if (is_const_pool_blocked()) {
3008 // Something is wrong if emission is forced and blocked at the same time.
3009 DCHECK(!force_emit);
3010 return;
3011 }
3012
3013 // There is nothing to do if there are no pending constant pool entries.
3014 if (constpool_.IsEmpty()) {
3015 // Calculate the offset of the next check.
3016 SetNextConstPoolCheckIn(kCheckConstPoolInterval);
3017 return;
3018 }
3019
3020 // We emit a constant pool when:
3021 // * requested to do so by parameter force_emit (e.g. after each function).
3022 // * the distance to the first instruction accessing the constant pool is
3023 // kApproxMaxDistToConstPool or more.
3024 // * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
3025 int dist = constpool_.DistanceToFirstUse();
3026 int count = constpool_.EntryCount();
3027 if (!force_emit &&
3028 (dist < kApproxMaxDistToConstPool) &&
3029 (count < kApproxMaxPoolEntryCount)) {
3030 return;
3031 }
3032
3033
3034 // Emit veneers for branches that would go out of range during emission of the
3035 // constant pool.
3036 int worst_case_size = constpool_.WorstCaseSize();
3037 CheckVeneerPool(false, require_jump,
3038 kVeneerDistanceMargin + worst_case_size);
3039
3040 // Check that the code buffer is large enough before emitting the constant
3041 // pool (this includes the gap to the relocation information).
3042 int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
3043 while (buffer_space() <= needed_space) {
3044 GrowBuffer();
3045 }
3046
3047 Label size_check;
3048 bind(&size_check);
3049 constpool_.Emit(require_jump);
3050 DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
3051 static_cast<unsigned>(worst_case_size));
3052
3053 // Since a constant pool was just emitted, move the check offset forward by
3054 // the standard interval.
3055 SetNextConstPoolCheckIn(kCheckConstPoolInterval);
3056 }
3057
3058
ShouldEmitVeneer(int max_reachable_pc,int margin)3059 bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
3060 // Account for the branch around the veneers and the guard.
3061 int protection_offset = 2 * kInstructionSize;
3062 return pc_offset() > max_reachable_pc - margin - protection_offset -
3063 static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
3064 }
3065
3066
RecordVeneerPool(int location_offset,int size)3067 void Assembler::RecordVeneerPool(int location_offset, int size) {
3068 RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
3069 static_cast<intptr_t>(size), NULL);
3070 reloc_info_writer.Write(&rinfo);
3071 }
3072
3073
EmitVeneers(bool force_emit,bool need_protection,int margin)3074 void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
3075 BlockPoolsScope scope(this);
3076 RecordComment("[ Veneers");
3077
3078 // The exact size of the veneer pool must be recorded (see the comment at the
3079 // declaration site of RecordConstPool()), but computing the number of
3080 // veneers that will be generated is not obvious. So instead we remember the
3081 // current position and will record the size after the pool has been
3082 // generated.
3083 Label size_check;
3084 bind(&size_check);
3085 int veneer_pool_relocinfo_loc = pc_offset();
3086
3087 Label end;
3088 if (need_protection) {
3089 b(&end);
3090 }
3091
3092 EmitVeneersGuard();
3093
3094 Label veneer_size_check;
3095
3096 std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
3097
3098 it = unresolved_branches_.begin();
3099 while (it != unresolved_branches_.end()) {
3100 if (force_emit || ShouldEmitVeneer(it->first, margin)) {
3101 Instruction* branch = InstructionAt(it->second.pc_offset_);
3102 Label* label = it->second.label_;
3103
3104 #ifdef DEBUG
3105 bind(&veneer_size_check);
3106 #endif
3107 // Patch the branch to point to the current position, and emit a branch
3108 // to the label.
3109 Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
3110 RemoveBranchFromLabelLinkChain(branch, label, veneer);
3111 branch->SetImmPCOffsetTarget(isolate(), veneer);
3112 b(label);
3113 #ifdef DEBUG
3114 DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
3115 static_cast<uint64_t>(kMaxVeneerCodeSize));
3116 veneer_size_check.Unuse();
3117 #endif
3118
3119 it_to_delete = it++;
3120 unresolved_branches_.erase(it_to_delete);
3121 } else {
3122 ++it;
3123 }
3124 }
3125
3126 // Record the veneer pool size.
3127 int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
3128 RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
3129
3130 if (unresolved_branches_.empty()) {
3131 next_veneer_pool_check_ = kMaxInt;
3132 } else {
3133 next_veneer_pool_check_ =
3134 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3135 }
3136
3137 bind(&end);
3138
3139 RecordComment("]");
3140 }
3141
3142
CheckVeneerPool(bool force_emit,bool require_jump,int margin)3143 void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
3144 int margin) {
3145 // There is nothing to do if there are no pending veneer pool entries.
3146 if (unresolved_branches_.empty()) {
3147 DCHECK(next_veneer_pool_check_ == kMaxInt);
3148 return;
3149 }
3150
3151 DCHECK(pc_offset() < unresolved_branches_first_limit());
3152
3153 // Some short sequence of instruction mustn't be broken up by veneer pool
3154 // emission, such sequences are protected by calls to BlockVeneerPoolFor and
3155 // BlockVeneerPoolScope.
3156 if (is_veneer_pool_blocked()) {
3157 DCHECK(!force_emit);
3158 return;
3159 }
3160
3161 if (!require_jump) {
3162 // Prefer emitting veneers protected by an existing instruction.
3163 margin *= kVeneerNoProtectionFactor;
3164 }
3165 if (force_emit || ShouldEmitVeneers(margin)) {
3166 EmitVeneers(force_emit, require_jump, margin);
3167 } else {
3168 next_veneer_pool_check_ =
3169 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3170 }
3171 }
3172
3173
buffer_space() const3174 int Assembler::buffer_space() const {
3175 return static_cast<int>(reloc_info_writer.pos() -
3176 reinterpret_cast<byte*>(pc_));
3177 }
3178
3179
RecordConstPool(int size)3180 void Assembler::RecordConstPool(int size) {
3181 // We only need this for debugger support, to correctly compute offsets in the
3182 // code.
3183 RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3184 }
3185
3186
PatchAdrFar(int64_t target_offset)3187 void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
3188 // The code at the current instruction should be:
3189 // adr rd, 0
3190 // nop (adr_far)
3191 // nop (adr_far)
3192 // movz scratch, 0
3193
3194 // Verify the expected code.
3195 Instruction* expected_adr = InstructionAt(0);
3196 CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
3197 int rd_code = expected_adr->Rd();
3198 for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
3199 CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
3200 }
3201 Instruction* expected_movz =
3202 InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
3203 CHECK(expected_movz->IsMovz() &&
3204 (expected_movz->ImmMoveWide() == 0) &&
3205 (expected_movz->ShiftMoveWide() == 0));
3206 int scratch_code = expected_movz->Rd();
3207
3208 // Patch to load the correct address.
3209 Register rd = Register::XRegFromCode(rd_code);
3210 Register scratch = Register::XRegFromCode(scratch_code);
3211 // Addresses are only 48 bits.
3212 adr(rd, target_offset & 0xFFFF);
3213 movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
3214 movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
3215 DCHECK((target_offset >> 48) == 0);
3216 add(rd, rd, scratch);
3217 }
3218
3219
3220 } // namespace internal
3221 } // namespace v8
3222
3223 #endif // V8_TARGET_ARCH_ARM64
3224