1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_PROPERTY_DETAILS_H_ 6 #define V8_PROPERTY_DETAILS_H_ 7 8 #include "include/v8.h" 9 #include "src/allocation.h" 10 #include "src/utils.h" 11 12 namespace v8 { 13 namespace internal { 14 15 // ES6 6.1.7.1 16 enum PropertyAttributes { 17 NONE = ::v8::None, 18 READ_ONLY = ::v8::ReadOnly, 19 DONT_ENUM = ::v8::DontEnum, 20 DONT_DELETE = ::v8::DontDelete, 21 22 ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE, 23 24 SEALED = DONT_DELETE, 25 FROZEN = SEALED | READ_ONLY, 26 27 ABSENT = 64, // Used in runtime to indicate a property is absent. 28 // ABSENT can never be stored in or returned from a descriptor's attributes 29 // bitfield. It is only used as a return value meaning the attributes of 30 // a non-existent property. 31 }; 32 33 34 enum PropertyFilter { 35 ALL_PROPERTIES = 0, 36 ONLY_WRITABLE = 1, 37 ONLY_ENUMERABLE = 2, 38 ONLY_CONFIGURABLE = 4, 39 SKIP_STRINGS = 8, 40 SKIP_SYMBOLS = 16, 41 ONLY_ALL_CAN_READ = 32, 42 ENUMERABLE_STRINGS = ONLY_ENUMERABLE | SKIP_SYMBOLS, 43 }; 44 // Enable fast comparisons of PropertyAttributes against PropertyFilters. 45 STATIC_ASSERT(ALL_PROPERTIES == static_cast<PropertyFilter>(NONE)); 46 STATIC_ASSERT(ONLY_WRITABLE == static_cast<PropertyFilter>(READ_ONLY)); 47 STATIC_ASSERT(ONLY_ENUMERABLE == static_cast<PropertyFilter>(DONT_ENUM)); 48 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(DONT_DELETE)); 49 STATIC_ASSERT(((SKIP_STRINGS | SKIP_SYMBOLS | ONLY_ALL_CAN_READ) & 50 ALL_ATTRIBUTES_MASK) == 0); 51 STATIC_ASSERT(ALL_PROPERTIES == 52 static_cast<PropertyFilter>(v8::PropertyFilter::ALL_PROPERTIES)); 53 STATIC_ASSERT(ONLY_WRITABLE == 54 static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_WRITABLE)); 55 STATIC_ASSERT(ONLY_ENUMERABLE == 56 static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_ENUMERABLE)); 57 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>( 58 v8::PropertyFilter::ONLY_CONFIGURABLE)); 59 STATIC_ASSERT(SKIP_STRINGS == 60 static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_STRINGS)); 61 STATIC_ASSERT(SKIP_SYMBOLS == 62 static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_SYMBOLS)); 63 64 class Smi; 65 class Type; 66 class TypeInfo; 67 68 // Type of properties. 69 // Order of kinds is significant. 70 // Must fit in the BitField PropertyDetails::KindField. 71 enum PropertyKind { kData = 0, kAccessor = 1 }; 72 73 74 // Order of modes is significant. 75 // Must fit in the BitField PropertyDetails::StoreModeField. 76 enum PropertyLocation { kField = 0, kDescriptor = 1 }; 77 78 79 // Order of properties is significant. 80 // Must fit in the BitField PropertyDetails::TypeField. 81 // A copy of this is in debug/mirrors.js. 82 enum PropertyType { 83 DATA = (kField << 1) | kData, 84 DATA_CONSTANT = (kDescriptor << 1) | kData, 85 ACCESSOR = (kField << 1) | kAccessor, 86 ACCESSOR_CONSTANT = (kDescriptor << 1) | kAccessor 87 }; 88 89 90 class Representation { 91 public: 92 enum Kind { 93 kNone, 94 kInteger8, 95 kUInteger8, 96 kInteger16, 97 kUInteger16, 98 kSmi, 99 kInteger32, 100 kDouble, 101 kHeapObject, 102 kTagged, 103 kExternal, 104 kNumRepresentations 105 }; 106 Representation()107 Representation() : kind_(kNone) { } 108 None()109 static Representation None() { return Representation(kNone); } Tagged()110 static Representation Tagged() { return Representation(kTagged); } Integer8()111 static Representation Integer8() { return Representation(kInteger8); } UInteger8()112 static Representation UInteger8() { return Representation(kUInteger8); } Integer16()113 static Representation Integer16() { return Representation(kInteger16); } UInteger16()114 static Representation UInteger16() { return Representation(kUInteger16); } Smi()115 static Representation Smi() { return Representation(kSmi); } Integer32()116 static Representation Integer32() { return Representation(kInteger32); } Double()117 static Representation Double() { return Representation(kDouble); } HeapObject()118 static Representation HeapObject() { return Representation(kHeapObject); } External()119 static Representation External() { return Representation(kExternal); } 120 FromKind(Kind kind)121 static Representation FromKind(Kind kind) { return Representation(kind); } 122 Equals(const Representation & other)123 bool Equals(const Representation& other) const { 124 return kind_ == other.kind_; 125 } 126 IsCompatibleForLoad(const Representation & other)127 bool IsCompatibleForLoad(const Representation& other) const { 128 return (IsDouble() && other.IsDouble()) || 129 (!IsDouble() && !other.IsDouble()); 130 } 131 IsCompatibleForStore(const Representation & other)132 bool IsCompatibleForStore(const Representation& other) const { 133 return Equals(other); 134 } 135 is_more_general_than(const Representation & other)136 bool is_more_general_than(const Representation& other) const { 137 if (kind_ == kExternal && other.kind_ == kNone) return true; 138 if (kind_ == kExternal && other.kind_ == kExternal) return false; 139 if (kind_ == kNone && other.kind_ == kExternal) return false; 140 141 DCHECK(kind_ != kExternal); 142 DCHECK(other.kind_ != kExternal); 143 if (IsHeapObject()) return other.IsNone(); 144 if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false; 145 if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false; 146 return kind_ > other.kind_; 147 } 148 fits_into(const Representation & other)149 bool fits_into(const Representation& other) const { 150 return other.is_more_general_than(*this) || other.Equals(*this); 151 } 152 generalize(Representation other)153 Representation generalize(Representation other) { 154 if (other.fits_into(*this)) return *this; 155 if (other.is_more_general_than(*this)) return other; 156 return Representation::Tagged(); 157 } 158 size()159 int size() const { 160 DCHECK(!IsNone()); 161 if (IsInteger8() || IsUInteger8()) { 162 return sizeof(uint8_t); 163 } 164 if (IsInteger16() || IsUInteger16()) { 165 return sizeof(uint16_t); 166 } 167 if (IsInteger32()) { 168 return sizeof(uint32_t); 169 } 170 return kPointerSize; 171 } 172 kind()173 Kind kind() const { return static_cast<Kind>(kind_); } IsNone()174 bool IsNone() const { return kind_ == kNone; } IsInteger8()175 bool IsInteger8() const { return kind_ == kInteger8; } IsUInteger8()176 bool IsUInteger8() const { return kind_ == kUInteger8; } IsInteger16()177 bool IsInteger16() const { return kind_ == kInteger16; } IsUInteger16()178 bool IsUInteger16() const { return kind_ == kUInteger16; } IsTagged()179 bool IsTagged() const { return kind_ == kTagged; } IsSmi()180 bool IsSmi() const { return kind_ == kSmi; } IsSmiOrTagged()181 bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); } IsInteger32()182 bool IsInteger32() const { return kind_ == kInteger32; } IsSmiOrInteger32()183 bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); } IsDouble()184 bool IsDouble() const { return kind_ == kDouble; } IsHeapObject()185 bool IsHeapObject() const { return kind_ == kHeapObject; } IsExternal()186 bool IsExternal() const { return kind_ == kExternal; } IsSpecialization()187 bool IsSpecialization() const { 188 return IsInteger8() || IsUInteger8() || 189 IsInteger16() || IsUInteger16() || 190 IsSmi() || IsInteger32() || IsDouble(); 191 } 192 const char* Mnemonic() const; 193 194 private: Representation(Kind k)195 explicit Representation(Kind k) : kind_(k) { } 196 197 // Make sure kind fits in int8. 198 STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte)); 199 200 int8_t kind_; 201 }; 202 203 204 static const int kDescriptorIndexBitCount = 10; 205 // The maximum number of descriptors we want in a descriptor array (should 206 // fit in a page). 207 static const int kMaxNumberOfDescriptors = 208 (1 << kDescriptorIndexBitCount) - 2; 209 static const int kInvalidEnumCacheSentinel = 210 (1 << kDescriptorIndexBitCount) - 1; 211 212 213 enum class PropertyCellType { 214 // Meaningful when a property cell does not contain the hole. 215 kUndefined, // The PREMONOMORPHIC of property cells. 216 kConstant, // Cell has been assigned only once. 217 kConstantType, // Cell has been assigned only one type. 218 kMutable, // Cell will no longer be tracked as constant. 219 220 // Meaningful when a property cell contains the hole. 221 kUninitialized = kUndefined, // Cell has never been initialized. 222 kInvalidated = kConstant, // Cell has been deleted or invalidated. 223 224 // For dictionaries not holding cells. 225 kNoCell = kMutable, 226 }; 227 228 229 enum class PropertyCellConstantType { 230 kSmi, 231 kStableMap, 232 }; 233 234 235 // PropertyDetails captures type and attributes for a property. 236 // They are used both in property dictionaries and instance descriptors. 237 class PropertyDetails BASE_EMBEDDED { 238 public: PropertyDetails(PropertyAttributes attributes,PropertyType type,int index,PropertyCellType cell_type)239 PropertyDetails(PropertyAttributes attributes, PropertyType type, int index, 240 PropertyCellType cell_type) { 241 value_ = TypeField::encode(type) | AttributesField::encode(attributes) | 242 DictionaryStorageField::encode(index) | 243 PropertyCellTypeField::encode(cell_type); 244 245 DCHECK(type == this->type()); 246 DCHECK(attributes == this->attributes()); 247 } 248 249 PropertyDetails(PropertyAttributes attributes, 250 PropertyType type, 251 Representation representation, 252 int field_index = 0) { 253 value_ = TypeField::encode(type) 254 | AttributesField::encode(attributes) 255 | RepresentationField::encode(EncodeRepresentation(representation)) 256 | FieldIndexField::encode(field_index); 257 } 258 259 PropertyDetails(PropertyAttributes attributes, PropertyKind kind, 260 PropertyLocation location, Representation representation, 261 int field_index = 0) { 262 value_ = KindField::encode(kind) | LocationField::encode(location) | 263 AttributesField::encode(attributes) | 264 RepresentationField::encode(EncodeRepresentation(representation)) | 265 FieldIndexField::encode(field_index); 266 } 267 Empty()268 static PropertyDetails Empty() { 269 return PropertyDetails(NONE, DATA, 0, PropertyCellType::kNoCell); 270 } 271 pointer()272 int pointer() const { return DescriptorPointer::decode(value_); } 273 set_pointer(int i)274 PropertyDetails set_pointer(int i) const { 275 return PropertyDetails(value_, i); 276 } 277 set_cell_type(PropertyCellType type)278 PropertyDetails set_cell_type(PropertyCellType type) const { 279 PropertyDetails details = *this; 280 details.value_ = PropertyCellTypeField::update(details.value_, type); 281 return details; 282 } 283 set_index(int index)284 PropertyDetails set_index(int index) const { 285 PropertyDetails details = *this; 286 details.value_ = DictionaryStorageField::update(details.value_, index); 287 return details; 288 } 289 CopyWithRepresentation(Representation representation)290 PropertyDetails CopyWithRepresentation(Representation representation) const { 291 return PropertyDetails(value_, representation); 292 } CopyAddAttributes(PropertyAttributes new_attributes)293 PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const { 294 new_attributes = 295 static_cast<PropertyAttributes>(attributes() | new_attributes); 296 return PropertyDetails(value_, new_attributes); 297 } 298 299 // Conversion for storing details as Object*. 300 explicit inline PropertyDetails(Smi* smi); 301 inline Smi* AsSmi() const; 302 EncodeRepresentation(Representation representation)303 static uint8_t EncodeRepresentation(Representation representation) { 304 return representation.kind(); 305 } 306 DecodeRepresentation(uint32_t bits)307 static Representation DecodeRepresentation(uint32_t bits) { 308 return Representation::FromKind(static_cast<Representation::Kind>(bits)); 309 } 310 kind()311 PropertyKind kind() const { return KindField::decode(value_); } location()312 PropertyLocation location() const { return LocationField::decode(value_); } 313 type()314 PropertyType type() const { return TypeField::decode(value_); } 315 attributes()316 PropertyAttributes attributes() const { 317 return AttributesField::decode(value_); 318 } 319 dictionary_index()320 int dictionary_index() const { 321 return DictionaryStorageField::decode(value_); 322 } 323 representation()324 Representation representation() const { 325 return DecodeRepresentation(RepresentationField::decode(value_)); 326 } 327 field_index()328 int field_index() const { return FieldIndexField::decode(value_); } 329 330 inline int field_width_in_words() const; 331 IsValidIndex(int index)332 static bool IsValidIndex(int index) { 333 return DictionaryStorageField::is_valid(index); 334 } 335 IsReadOnly()336 bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; } IsConfigurable()337 bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; } IsDontEnum()338 bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; } IsEnumerable()339 bool IsEnumerable() const { return !IsDontEnum(); } cell_type()340 PropertyCellType cell_type() const { 341 return PropertyCellTypeField::decode(value_); 342 } 343 344 // Bit fields in value_ (type, shift, size). Must be public so the 345 // constants can be embedded in generated code. 346 class KindField : public BitField<PropertyKind, 0, 1> {}; 347 class LocationField : public BitField<PropertyLocation, 1, 1> {}; 348 class AttributesField : public BitField<PropertyAttributes, 2, 3> {}; 349 static const int kAttributesReadOnlyMask = 350 (READ_ONLY << AttributesField::kShift); 351 352 // Bit fields for normalized objects. 353 class PropertyCellTypeField : public BitField<PropertyCellType, 5, 2> {}; 354 class DictionaryStorageField : public BitField<uint32_t, 7, 24> {}; 355 356 // Bit fields for fast objects. 357 class RepresentationField : public BitField<uint32_t, 5, 4> {}; 358 class DescriptorPointer 359 : public BitField<uint32_t, 9, kDescriptorIndexBitCount> {}; // NOLINT 360 class FieldIndexField 361 : public BitField<uint32_t, 9 + kDescriptorIndexBitCount, 362 kDescriptorIndexBitCount> {}; // NOLINT 363 364 // NOTE: TypeField overlaps with KindField and LocationField. 365 class TypeField : public BitField<PropertyType, 0, 2> {}; 366 STATIC_ASSERT(KindField::kNext == LocationField::kShift); 367 STATIC_ASSERT(TypeField::kShift == KindField::kShift); 368 STATIC_ASSERT(TypeField::kNext == LocationField::kNext); 369 370 // All bits for both fast and slow objects must fit in a smi. 371 STATIC_ASSERT(DictionaryStorageField::kNext <= 31); 372 STATIC_ASSERT(FieldIndexField::kNext <= 31); 373 374 static const int kInitialIndex = 1; 375 376 #ifdef OBJECT_PRINT 377 // For our gdb macros, we should perhaps change these in the future. 378 void Print(bool dictionary_mode); 379 #endif 380 381 private: PropertyDetails(int value,int pointer)382 PropertyDetails(int value, int pointer) { 383 value_ = DescriptorPointer::update(value, pointer); 384 } PropertyDetails(int value,Representation representation)385 PropertyDetails(int value, Representation representation) { 386 value_ = RepresentationField::update( 387 value, EncodeRepresentation(representation)); 388 } PropertyDetails(int value,PropertyAttributes attributes)389 PropertyDetails(int value, PropertyAttributes attributes) { 390 value_ = AttributesField::update(value, attributes); 391 } 392 393 uint32_t value_; 394 }; 395 396 397 std::ostream& operator<<(std::ostream& os, 398 const PropertyAttributes& attributes); 399 std::ostream& operator<<(std::ostream& os, const PropertyDetails& details); 400 } // namespace internal 401 } // namespace v8 402 403 #endif // V8_PROPERTY_DETAILS_H_ 404