• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
6 #define V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
7 
8 #include "src/allocation.h"
9 #include "src/base/compiler-specific.h"
10 #include "src/crankshaft/compilation-phase.h"
11 #include "src/crankshaft/lithium.h"
12 #include "src/zone.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 // Forward declarations.
18 class HBasicBlock;
19 class HGraph;
20 class HPhi;
21 class HTracer;
22 class HValue;
23 class BitVector;
24 class StringStream;
25 
26 class LPlatformChunk;
27 class LOperand;
28 class LUnallocated;
29 class LGap;
30 class LParallelMove;
31 class LPointerMap;
32 
33 
34 // This class represents a single point of a LOperand's lifetime.
35 // For each lithium instruction there are exactly two lifetime positions:
36 // the beginning and the end of the instruction. Lifetime positions for
37 // different lithium instructions are disjoint.
38 class LifetimePosition {
39  public:
40   // Return the lifetime position that corresponds to the beginning of
41   // the instruction with the given index.
FromInstructionIndex(int index)42   static LifetimePosition FromInstructionIndex(int index) {
43     return LifetimePosition(index * kStep);
44   }
45 
46   // Returns a numeric representation of this lifetime position.
Value()47   int Value() const {
48     return value_;
49   }
50 
51   // Returns the index of the instruction to which this lifetime position
52   // corresponds.
InstructionIndex()53   int InstructionIndex() const {
54     DCHECK(IsValid());
55     return value_ / kStep;
56   }
57 
58   // Returns true if this lifetime position corresponds to the instruction
59   // start.
IsInstructionStart()60   bool IsInstructionStart() const {
61     return (value_ & (kStep - 1)) == 0;
62   }
63 
64   // Returns the lifetime position for the start of the instruction which
65   // corresponds to this lifetime position.
InstructionStart()66   LifetimePosition InstructionStart() const {
67     DCHECK(IsValid());
68     return LifetimePosition(value_ & ~(kStep - 1));
69   }
70 
71   // Returns the lifetime position for the end of the instruction which
72   // corresponds to this lifetime position.
InstructionEnd()73   LifetimePosition InstructionEnd() const {
74     DCHECK(IsValid());
75     return LifetimePosition(InstructionStart().Value() + kStep/2);
76   }
77 
78   // Returns the lifetime position for the beginning of the next instruction.
NextInstruction()79   LifetimePosition NextInstruction() const {
80     DCHECK(IsValid());
81     return LifetimePosition(InstructionStart().Value() + kStep);
82   }
83 
84   // Returns the lifetime position for the beginning of the previous
85   // instruction.
PrevInstruction()86   LifetimePosition PrevInstruction() const {
87     DCHECK(IsValid());
88     DCHECK(value_ > 1);
89     return LifetimePosition(InstructionStart().Value() - kStep);
90   }
91 
92   // Constructs the lifetime position which does not correspond to any
93   // instruction.
LifetimePosition()94   LifetimePosition() : value_(-1) {}
95 
96   // Returns true if this lifetime positions corrensponds to some
97   // instruction.
IsValid()98   bool IsValid() const { return value_ != -1; }
99 
Invalid()100   static inline LifetimePosition Invalid() { return LifetimePosition(); }
101 
MaxPosition()102   static inline LifetimePosition MaxPosition() {
103     // We have to use this kind of getter instead of static member due to
104     // crash bug in GDB.
105     return LifetimePosition(kMaxInt);
106   }
107 
108  private:
109   static const int kStep = 2;
110 
111   // Code relies on kStep being a power of two.
112   STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
113 
LifetimePosition(int value)114   explicit LifetimePosition(int value) : value_(value) { }
115 
116   int value_;
117 };
118 
119 
120 // Representation of the non-empty interval [start,end[.
121 class UseInterval: public ZoneObject {
122  public:
UseInterval(LifetimePosition start,LifetimePosition end)123   UseInterval(LifetimePosition start, LifetimePosition end)
124       : start_(start), end_(end), next_(NULL) {
125     DCHECK(start.Value() < end.Value());
126   }
127 
start()128   LifetimePosition start() const { return start_; }
end()129   LifetimePosition end() const { return end_; }
next()130   UseInterval* next() const { return next_; }
131 
132   // Split this interval at the given position without effecting the
133   // live range that owns it. The interval must contain the position.
134   void SplitAt(LifetimePosition pos, Zone* zone);
135 
136   // If this interval intersects with other return smallest position
137   // that belongs to both of them.
Intersect(const UseInterval * other)138   LifetimePosition Intersect(const UseInterval* other) const {
139     if (other->start().Value() < start_.Value()) return other->Intersect(this);
140     if (other->start().Value() < end_.Value()) return other->start();
141     return LifetimePosition::Invalid();
142   }
143 
Contains(LifetimePosition point)144   bool Contains(LifetimePosition point) const {
145     return start_.Value() <= point.Value() && point.Value() < end_.Value();
146   }
147 
148  private:
set_start(LifetimePosition start)149   void set_start(LifetimePosition start) { start_ = start; }
set_next(UseInterval * next)150   void set_next(UseInterval* next) { next_ = next; }
151 
152   LifetimePosition start_;
153   LifetimePosition end_;
154   UseInterval* next_;
155 
156   friend class LiveRange;  // Assigns to start_.
157 };
158 
159 // Representation of a use position.
160 class UsePosition: public ZoneObject {
161  public:
162   UsePosition(LifetimePosition pos, LOperand* operand, LOperand* hint);
163 
operand()164   LOperand* operand() const { return operand_; }
HasOperand()165   bool HasOperand() const { return operand_ != NULL; }
166 
hint()167   LOperand* hint() const { return hint_; }
168   bool HasHint() const;
169   bool RequiresRegister() const;
170   bool RegisterIsBeneficial() const;
171 
pos()172   LifetimePosition pos() const { return pos_; }
next()173   UsePosition* next() const { return next_; }
174 
175  private:
set_next(UsePosition * next)176   void set_next(UsePosition* next) { next_ = next; }
177 
178   LOperand* const operand_;
179   LOperand* const hint_;
180   LifetimePosition const pos_;
181   UsePosition* next_;
182   bool requires_reg_;
183   bool register_beneficial_;
184 
185   friend class LiveRange;
186 };
187 
188 // Representation of SSA values' live ranges as a collection of (continuous)
189 // intervals over the instruction ordering.
190 class LiveRange: public ZoneObject {
191  public:
192   static const int kInvalidAssignment = 0x7fffffff;
193 
194   LiveRange(int id, Zone* zone);
195 
first_interval()196   UseInterval* first_interval() const { return first_interval_; }
first_pos()197   UsePosition* first_pos() const { return first_pos_; }
parent()198   LiveRange* parent() const { return parent_; }
TopLevel()199   LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
next()200   LiveRange* next() const { return next_; }
IsChild()201   bool IsChild() const { return parent() != NULL; }
id()202   int id() const { return id_; }
IsFixed()203   bool IsFixed() const { return id_ < 0; }
IsEmpty()204   bool IsEmpty() const { return first_interval() == NULL; }
205   LOperand* CreateAssignedOperand(Zone* zone);
assigned_register()206   int assigned_register() const { return assigned_register_; }
spill_start_index()207   int spill_start_index() const { return spill_start_index_; }
208   void set_assigned_register(int reg, Zone* zone);
209   void MakeSpilled(Zone* zone);
210 
211   // Returns use position in this live range that follows both start
212   // and last processed use position.
213   // Modifies internal state of live range!
214   UsePosition* NextUsePosition(LifetimePosition start);
215 
216   // Returns use position for which register is required in this live
217   // range and which follows both start and last processed use position
218   // Modifies internal state of live range!
219   UsePosition* NextRegisterPosition(LifetimePosition start);
220 
221   // Returns use position for which register is beneficial in this live
222   // range and which follows both start and last processed use position
223   // Modifies internal state of live range!
224   UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
225 
226   // Returns use position for which register is beneficial in this live
227   // range and which precedes start.
228   UsePosition* PreviousUsePositionRegisterIsBeneficial(LifetimePosition start);
229 
230   // Can this live range be spilled at this position.
231   bool CanBeSpilled(LifetimePosition pos);
232 
233   // Split this live range at the given position which must follow the start of
234   // the range.
235   // All uses following the given position will be moved from this
236   // live range to the result live range.
237   void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);
238 
Kind()239   RegisterKind Kind() const { return kind_; }
HasRegisterAssigned()240   bool HasRegisterAssigned() const {
241     return assigned_register_ != kInvalidAssignment;
242   }
IsSpilled()243   bool IsSpilled() const { return spilled_; }
244 
current_hint_operand()245   LOperand* current_hint_operand() const {
246     DCHECK(current_hint_operand_ == FirstHint());
247     return current_hint_operand_;
248   }
FirstHint()249   LOperand* FirstHint() const {
250     UsePosition* pos = first_pos_;
251     while (pos != NULL && !pos->HasHint()) pos = pos->next();
252     if (pos != NULL) return pos->hint();
253     return NULL;
254   }
255 
Start()256   LifetimePosition Start() const {
257     DCHECK(!IsEmpty());
258     return first_interval()->start();
259   }
260 
End()261   LifetimePosition End() const {
262     DCHECK(!IsEmpty());
263     return last_interval_->end();
264   }
265 
266   bool HasAllocatedSpillOperand() const;
GetSpillOperand()267   LOperand* GetSpillOperand() const { return spill_operand_; }
268   void SetSpillOperand(LOperand* operand);
269 
SetSpillStartIndex(int start)270   void SetSpillStartIndex(int start) {
271     spill_start_index_ = Min(start, spill_start_index_);
272   }
273 
274   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
275   bool CanCover(LifetimePosition position) const;
276   bool Covers(LifetimePosition position);
277   LifetimePosition FirstIntersection(LiveRange* other);
278 
279   // Add a new interval or a new use position to this live range.
280   void EnsureInterval(LifetimePosition start,
281                       LifetimePosition end,
282                       Zone* zone);
283   void AddUseInterval(LifetimePosition start,
284                       LifetimePosition end,
285                       Zone* zone);
286   void AddUsePosition(LifetimePosition pos,
287                       LOperand* operand,
288                       LOperand* hint,
289                       Zone* zone);
290 
291   // Shorten the most recently added interval by setting a new start.
292   void ShortenTo(LifetimePosition start);
293 
294 #ifdef DEBUG
295   // True if target overlaps an existing interval.
296   bool HasOverlap(UseInterval* target) const;
297   void Verify() const;
298 #endif
299 
300  private:
301   void ConvertOperands(Zone* zone);
302   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
303   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
304                                   LifetimePosition but_not_past) const;
305 
306   int id_;
307   bool spilled_;
308   RegisterKind kind_;
309   int assigned_register_;
310   UseInterval* last_interval_;
311   UseInterval* first_interval_;
312   UsePosition* first_pos_;
313   LiveRange* parent_;
314   LiveRange* next_;
315   // This is used as a cache, it doesn't affect correctness.
316   mutable UseInterval* current_interval_;
317   UsePosition* last_processed_use_;
318   // This is used as a cache, it's invalid outside of BuildLiveRanges.
319   LOperand* current_hint_operand_;
320   LOperand* spill_operand_;
321   int spill_start_index_;
322 
323   friend class LAllocator;  // Assigns to kind_.
324 };
325 
326 
327 class LAllocator BASE_EMBEDDED {
328  public:
329   LAllocator(int first_virtual_register, HGraph* graph);
330 
331   static PRINTF_FORMAT(1, 2) void TraceAlloc(const char* msg, ...);
332 
333   // Checks whether the value of a given virtual register is tagged.
334   bool HasTaggedValue(int virtual_register) const;
335 
336   // Returns the register kind required by the given virtual register.
337   RegisterKind RequiredRegisterKind(int virtual_register) const;
338 
339   bool Allocate(LChunk* chunk);
340 
live_ranges()341   const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
fixed_live_ranges()342   const Vector<LiveRange*>* fixed_live_ranges() const {
343     return &fixed_live_ranges_;
344   }
fixed_double_live_ranges()345   const Vector<LiveRange*>* fixed_double_live_ranges() const {
346     return &fixed_double_live_ranges_;
347   }
348 
chunk()349   LPlatformChunk* chunk() const { return chunk_; }
graph()350   HGraph* graph() const { return graph_; }
isolate()351   Isolate* isolate() const { return graph_->isolate(); }
zone()352   Zone* zone() { return &zone_; }
353 
GetVirtualRegister()354   int GetVirtualRegister() {
355     if (next_virtual_register_ >= LUnallocated::kMaxVirtualRegisters) {
356       allocation_ok_ = false;
357       // Maintain the invariant that we return something below the maximum.
358       return 0;
359     }
360     return next_virtual_register_++;
361   }
362 
AllocationOk()363   bool AllocationOk() { return allocation_ok_; }
364 
MarkAsOsrEntry()365   void MarkAsOsrEntry() {
366     // There can be only one.
367     DCHECK(!has_osr_entry_);
368     // Simply set a flag to find and process instruction later.
369     has_osr_entry_ = true;
370   }
371 
372 #ifdef DEBUG
373   void Verify() const;
374 #endif
375 
assigned_registers()376   BitVector* assigned_registers() {
377     return assigned_registers_;
378   }
assigned_double_registers()379   BitVector* assigned_double_registers() {
380     return assigned_double_registers_;
381   }
382 
383  private:
384   void MeetRegisterConstraints();
385   void ResolvePhis();
386   void BuildLiveRanges();
387   void AllocateGeneralRegisters();
388   void AllocateDoubleRegisters();
389   void ConnectRanges();
390   void ResolveControlFlow();
391   void PopulatePointerMaps();
392   void AllocateRegisters();
393   bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
394   inline bool SafePointsAreInOrder() const;
395 
396   // Liveness analysis support.
397   void InitializeLivenessAnalysis();
398   BitVector* ComputeLiveOut(HBasicBlock* block);
399   void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
400   void ProcessInstructions(HBasicBlock* block, BitVector* live);
401   void MeetRegisterConstraints(HBasicBlock* block);
402   void MeetConstraintsBetween(LInstruction* first,
403                               LInstruction* second,
404                               int gap_index);
405   void ResolvePhis(HBasicBlock* block);
406 
407   // Helper methods for building intervals.
408   LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
409   LiveRange* LiveRangeFor(LOperand* operand);
410   void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
411   void Use(LifetimePosition block_start,
412            LifetimePosition position,
413            LOperand* operand,
414            LOperand* hint);
415   void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
416 
417   // Helper methods for updating the life range lists.
418   void AddToActive(LiveRange* range);
419   void AddToInactive(LiveRange* range);
420   void AddToUnhandledSorted(LiveRange* range);
421   void AddToUnhandledUnsorted(LiveRange* range);
422   void SortUnhandled();
423   bool UnhandledIsSorted();
424   void ActiveToHandled(LiveRange* range);
425   void ActiveToInactive(LiveRange* range);
426   void InactiveToHandled(LiveRange* range);
427   void InactiveToActive(LiveRange* range);
428   void FreeSpillSlot(LiveRange* range);
429   LOperand* TryReuseSpillSlot(LiveRange* range);
430 
431   // Helper methods for allocating registers.
432   bool TryAllocateFreeReg(LiveRange* range);
433   void AllocateBlockedReg(LiveRange* range);
434 
435   // Live range splitting helpers.
436 
437   // Split the given range at the given position.
438   // If range starts at or after the given position then the
439   // original range is returned.
440   // Otherwise returns the live range that starts at pos and contains
441   // all uses from the original range that follow pos. Uses at pos will
442   // still be owned by the original range after splitting.
443   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
444 
445   // Split the given range in a position from the interval [start, end].
446   LiveRange* SplitBetween(LiveRange* range,
447                           LifetimePosition start,
448                           LifetimePosition end);
449 
450   // Find a lifetime position in the interval [start, end] which
451   // is optimal for splitting: it is either header of the outermost
452   // loop covered by this interval or the latest possible position.
453   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
454                                        LifetimePosition end);
455 
456   // Spill the given life range after position pos.
457   void SpillAfter(LiveRange* range, LifetimePosition pos);
458 
459   // Spill the given life range after position [start] and up to position [end].
460   void SpillBetween(LiveRange* range,
461                     LifetimePosition start,
462                     LifetimePosition end);
463 
464   // Spill the given life range after position [start] and up to position [end].
465   // Range is guaranteed to be spilled at least until position [until].
466   void SpillBetweenUntil(LiveRange* range,
467                          LifetimePosition start,
468                          LifetimePosition until,
469                          LifetimePosition end);
470 
471   void SplitAndSpillIntersecting(LiveRange* range);
472 
473   // If we are trying to spill a range inside the loop try to
474   // hoist spill position out to the point just before the loop.
475   LifetimePosition FindOptimalSpillingPos(LiveRange* range,
476                                           LifetimePosition pos);
477 
478   void Spill(LiveRange* range);
479   bool IsBlockBoundary(LifetimePosition pos);
480 
481   // Helper methods for resolving control flow.
482   void ResolveControlFlow(LiveRange* range,
483                           HBasicBlock* block,
484                           HBasicBlock* pred);
485 
486   inline void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
487 
488   // Return parallel move that should be used to connect ranges split at the
489   // given position.
490   LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
491 
492   // Return the block which contains give lifetime position.
493   HBasicBlock* GetBlock(LifetimePosition pos);
494 
495   // Helper methods for the fixed registers.
496   int RegisterCount() const;
FixedLiveRangeID(int index)497   static int FixedLiveRangeID(int index) { return -index - 1; }
498   static int FixedDoubleLiveRangeID(int index);
499   LiveRange* FixedLiveRangeFor(int index);
500   LiveRange* FixedDoubleLiveRangeFor(int index);
501   LiveRange* LiveRangeFor(int index);
502   HPhi* LookupPhi(LOperand* operand) const;
503   LGap* GetLastGap(HBasicBlock* block);
504 
505   const char* RegisterName(int allocation_index);
506 
507   inline bool IsGapAt(int index);
508 
509   inline LInstruction* InstructionAt(int index);
510 
511   inline LGap* GapAt(int index);
512 
513   Zone zone_;
514 
515   LPlatformChunk* chunk_;
516 
517   // During liveness analysis keep a mapping from block id to live_in sets
518   // for blocks already analyzed.
519   ZoneList<BitVector*> live_in_sets_;
520 
521   // Liveness analysis results.
522   ZoneList<LiveRange*> live_ranges_;
523 
524   // Lists of live ranges
525   EmbeddedVector<LiveRange*, Register::kNumRegisters> fixed_live_ranges_;
526   EmbeddedVector<LiveRange*, DoubleRegister::kMaxNumRegisters>
527       fixed_double_live_ranges_;
528   ZoneList<LiveRange*> unhandled_live_ranges_;
529   ZoneList<LiveRange*> active_live_ranges_;
530   ZoneList<LiveRange*> inactive_live_ranges_;
531   ZoneList<LiveRange*> reusable_slots_;
532 
533   // Next virtual register number to be assigned to temporaries.
534   int next_virtual_register_;
535   int first_artificial_register_;
536   GrowableBitVector double_artificial_registers_;
537 
538   RegisterKind mode_;
539   int num_registers_;
540   const int* allocatable_register_codes_;
541 
542   BitVector* assigned_registers_;
543   BitVector* assigned_double_registers_;
544 
545   HGraph* graph_;
546 
547   bool has_osr_entry_;
548 
549   // Indicates success or failure during register allocation.
550   bool allocation_ok_;
551 
552 #ifdef DEBUG
553   LifetimePosition allocation_finger_;
554 #endif
555 
556   DISALLOW_COPY_AND_ASSIGN(LAllocator);
557 };
558 
559 
560 class LAllocatorPhase : public CompilationPhase {
561  public:
562   LAllocatorPhase(const char* name, LAllocator* allocator);
563   ~LAllocatorPhase();
564 
565  private:
566   LAllocator* allocator_;
567   size_t allocator_zone_start_allocation_size_;
568 
569   DISALLOW_COPY_AND_ASSIGN(LAllocatorPhase);
570 };
571 
572 
573 }  // namespace internal
574 }  // namespace v8
575 
576 #endif  // V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
577