1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the generic AliasAnalysis interface, which is used as the
11 // common interface used by all clients of alias analysis information, and
12 // implemented by all alias analysis implementations. Mod/Ref information is
13 // also captured by this interface.
14 //
15 // Implementations of this interface must implement the various virtual methods,
16 // which automatically provides functionality for the entire suite of client
17 // APIs.
18 //
19 // This API identifies memory regions with the MemoryLocation class. The pointer
20 // component specifies the base memory address of the region. The Size specifies
21 // the maximum size (in address units) of the memory region, or
22 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
23 // identifies the "type" of the memory reference; see the
24 // TypeBasedAliasAnalysis class for details.
25 //
26 // Some non-obvious details include:
27 // - Pointers that point to two completely different objects in memory never
28 // alias, regardless of the value of the Size component.
29 // - NoAlias doesn't imply inequal pointers. The most obvious example of this
30 // is two pointers to constant memory. Even if they are equal, constant
31 // memory is never stored to, so there will never be any dependencies.
32 // In this and other situations, the pointers may be both NoAlias and
33 // MustAlias at the same time. The current API can only return one result,
34 // though this is rarely a problem in practice.
35 //
36 //===----------------------------------------------------------------------===//
37
38 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
39 #define LLVM_ANALYSIS_ALIASANALYSIS_H
40
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46
47 namespace llvm {
48 class BasicAAResult;
49 class LoadInst;
50 class StoreInst;
51 class VAArgInst;
52 class DataLayout;
53 class TargetLibraryInfo;
54 class Pass;
55 class AnalysisUsage;
56 class MemTransferInst;
57 class MemIntrinsic;
58 class DominatorTree;
59 class OrderedBasicBlock;
60
61 /// The possible results of an alias query.
62 ///
63 /// These results are always computed between two MemoryLocation objects as
64 /// a query to some alias analysis.
65 ///
66 /// Note that these are unscoped enumerations because we would like to support
67 /// implicitly testing a result for the existence of any possible aliasing with
68 /// a conversion to bool, but an "enum class" doesn't support this. The
69 /// canonical names from the literature are suffixed and unique anyways, and so
70 /// they serve as global constants in LLVM for these results.
71 ///
72 /// See docs/AliasAnalysis.html for more information on the specific meanings
73 /// of these values.
74 enum AliasResult {
75 /// The two locations do not alias at all.
76 ///
77 /// This value is arranged to convert to false, while all other values
78 /// convert to true. This allows a boolean context to convert the result to
79 /// a binary flag indicating whether there is the possibility of aliasing.
80 NoAlias = 0,
81 /// The two locations may or may not alias. This is the least precise result.
82 MayAlias,
83 /// The two locations alias, but only due to a partial overlap.
84 PartialAlias,
85 /// The two locations precisely alias each other.
86 MustAlias,
87 };
88
89 /// Flags indicating whether a memory access modifies or references memory.
90 ///
91 /// This is no access at all, a modification, a reference, or both
92 /// a modification and a reference. These are specifically structured such that
93 /// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
94 /// of the possible values.
95 enum ModRefInfo {
96 /// The access neither references nor modifies the value stored in memory.
97 MRI_NoModRef = 0,
98 /// The access references the value stored in memory.
99 MRI_Ref = 1,
100 /// The access modifies the value stored in memory.
101 MRI_Mod = 2,
102 /// The access both references and modifies the value stored in memory.
103 MRI_ModRef = MRI_Ref | MRI_Mod
104 };
105
106 /// The locations at which a function might access memory.
107 ///
108 /// These are primarily used in conjunction with the \c AccessKind bits to
109 /// describe both the nature of access and the locations of access for a
110 /// function call.
111 enum FunctionModRefLocation {
112 /// Base case is no access to memory.
113 FMRL_Nowhere = 0,
114 /// Access to memory via argument pointers.
115 FMRL_ArgumentPointees = 4,
116 /// Access to any memory.
117 FMRL_Anywhere = 8 | FMRL_ArgumentPointees
118 };
119
120 /// Summary of how a function affects memory in the program.
121 ///
122 /// Loads from constant globals are not considered memory accesses for this
123 /// interface. Also, functions may freely modify stack space local to their
124 /// invocation without having to report it through these interfaces.
125 enum FunctionModRefBehavior {
126 /// This function does not perform any non-local loads or stores to memory.
127 ///
128 /// This property corresponds to the GCC 'const' attribute.
129 /// This property corresponds to the LLVM IR 'readnone' attribute.
130 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
131 FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,
132
133 /// The only memory references in this function (if it has any) are
134 /// non-volatile loads from objects pointed to by its pointer-typed
135 /// arguments, with arbitrary offsets.
136 ///
137 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
138 FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,
139
140 /// The only memory references in this function (if it has any) are
141 /// non-volatile loads and stores from objects pointed to by its
142 /// pointer-typed arguments, with arbitrary offsets.
143 ///
144 /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
145 FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,
146
147 /// This function does not perform any non-local stores or volatile loads,
148 /// but may read from any memory location.
149 ///
150 /// This property corresponds to the GCC 'pure' attribute.
151 /// This property corresponds to the LLVM IR 'readonly' attribute.
152 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
153 FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,
154
155 /// This indicates that the function could not be classified into one of the
156 /// behaviors above.
157 FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
158 };
159
160 class AAResults {
161 public:
162 // Make these results default constructable and movable. We have to spell
163 // these out because MSVC won't synthesize them.
AAResults()164 AAResults() {}
165 AAResults(AAResults &&Arg);
166 AAResults &operator=(AAResults &&Arg);
167 ~AAResults();
168
169 /// Register a specific AA result.
addAAResult(AAResultT & AAResult)170 template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
171 // FIXME: We should use a much lighter weight system than the usual
172 // polymorphic pattern because we don't own AAResult. It should
173 // ideally involve two pointers and no separate allocation.
174 AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
175 }
176
177 //===--------------------------------------------------------------------===//
178 /// \name Alias Queries
179 /// @{
180
181 /// The main low level interface to the alias analysis implementation.
182 /// Returns an AliasResult indicating whether the two pointers are aliased to
183 /// each other. This is the interface that must be implemented by specific
184 /// alias analysis implementations.
185 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
186
187 /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,uint64_t V1Size,const Value * V2,uint64_t V2Size)188 AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2,
189 uint64_t V2Size) {
190 return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
191 }
192
193 /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,const Value * V2)194 AliasResult alias(const Value *V1, const Value *V2) {
195 return alias(V1, MemoryLocation::UnknownSize, V2,
196 MemoryLocation::UnknownSize);
197 }
198
199 /// A trivial helper function to check to see if the specified pointers are
200 /// no-alias.
isNoAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)201 bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
202 return alias(LocA, LocB) == NoAlias;
203 }
204
205 /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,uint64_t V1Size,const Value * V2,uint64_t V2Size)206 bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2,
207 uint64_t V2Size) {
208 return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
209 }
210
211 /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,const Value * V2)212 bool isNoAlias(const Value *V1, const Value *V2) {
213 return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
214 }
215
216 /// A trivial helper function to check to see if the specified pointers are
217 /// must-alias.
isMustAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)218 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
219 return alias(LocA, LocB) == MustAlias;
220 }
221
222 /// A convenience wrapper around the \c isMustAlias helper interface.
isMustAlias(const Value * V1,const Value * V2)223 bool isMustAlias(const Value *V1, const Value *V2) {
224 return alias(V1, 1, V2, 1) == MustAlias;
225 }
226
227 /// Checks whether the given location points to constant memory, or if
228 /// \p OrLocal is true whether it points to a local alloca.
229 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
230
231 /// A convenience wrapper around the primary \c pointsToConstantMemory
232 /// interface.
233 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
234 return pointsToConstantMemory(MemoryLocation(P), OrLocal);
235 }
236
237 /// @}
238 //===--------------------------------------------------------------------===//
239 /// \name Simple mod/ref information
240 /// @{
241
242 /// Get the ModRef info associated with a pointer argument of a callsite. The
243 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
244 /// that these bits do not necessarily account for the overall behavior of
245 /// the function, but rather only provide additional per-argument
246 /// information.
247 ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
248
249 /// Return the behavior of the given call site.
250 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
251
252 /// Return the behavior when calling the given function.
253 FunctionModRefBehavior getModRefBehavior(const Function *F);
254
255 /// Checks if the specified call is known to never read or write memory.
256 ///
257 /// Note that if the call only reads from known-constant memory, it is also
258 /// legal to return true. Also, calls that unwind the stack are legal for
259 /// this predicate.
260 ///
261 /// Many optimizations (such as CSE and LICM) can be performed on such calls
262 /// without worrying about aliasing properties, and many calls have this
263 /// property (e.g. calls to 'sin' and 'cos').
264 ///
265 /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(ImmutableCallSite CS)266 bool doesNotAccessMemory(ImmutableCallSite CS) {
267 return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
268 }
269
270 /// Checks if the specified function is known to never read or write memory.
271 ///
272 /// Note that if the function only reads from known-constant memory, it is
273 /// also legal to return true. Also, function that unwind the stack are legal
274 /// for this predicate.
275 ///
276 /// Many optimizations (such as CSE and LICM) can be performed on such calls
277 /// to such functions without worrying about aliasing properties, and many
278 /// functions have this property (e.g. 'sin' and 'cos').
279 ///
280 /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const Function * F)281 bool doesNotAccessMemory(const Function *F) {
282 return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
283 }
284
285 /// Checks if the specified call is known to only read from non-volatile
286 /// memory (or not access memory at all).
287 ///
288 /// Calls that unwind the stack are legal for this predicate.
289 ///
290 /// This property allows many common optimizations to be performed in the
291 /// absence of interfering store instructions, such as CSE of strlen calls.
292 ///
293 /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(ImmutableCallSite CS)294 bool onlyReadsMemory(ImmutableCallSite CS) {
295 return onlyReadsMemory(getModRefBehavior(CS));
296 }
297
298 /// Checks if the specified function is known to only read from non-volatile
299 /// memory (or not access memory at all).
300 ///
301 /// Functions that unwind the stack are legal for this predicate.
302 ///
303 /// This property allows many common optimizations to be performed in the
304 /// absence of interfering store instructions, such as CSE of strlen calls.
305 ///
306 /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const Function * F)307 bool onlyReadsMemory(const Function *F) {
308 return onlyReadsMemory(getModRefBehavior(F));
309 }
310
311 /// Checks if functions with the specified behavior are known to only read
312 /// from non-volatile memory (or not access memory at all).
onlyReadsMemory(FunctionModRefBehavior MRB)313 static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
314 return !(MRB & MRI_Mod);
315 }
316
317 /// Checks if functions with the specified behavior are known to read and
318 /// write at most from objects pointed to by their pointer-typed arguments
319 /// (with arbitrary offsets).
onlyAccessesArgPointees(FunctionModRefBehavior MRB)320 static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
321 return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
322 }
323
324 /// Checks if functions with the specified behavior are known to potentially
325 /// read or write from objects pointed to be their pointer-typed arguments
326 /// (with arbitrary offsets).
doesAccessArgPointees(FunctionModRefBehavior MRB)327 static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
328 return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
329 }
330
331 /// getModRefInfo (for call sites) - Return information about whether
332 /// a particular call site modifies or reads the specified memory location.
333 ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
334
335 /// getModRefInfo (for call sites) - A convenience wrapper.
getModRefInfo(ImmutableCallSite CS,const Value * P,uint64_t Size)336 ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
337 uint64_t Size) {
338 return getModRefInfo(CS, MemoryLocation(P, Size));
339 }
340
341 /// getModRefInfo (for calls) - Return information about whether
342 /// a particular call modifies or reads the specified memory location.
getModRefInfo(const CallInst * C,const MemoryLocation & Loc)343 ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
344 return getModRefInfo(ImmutableCallSite(C), Loc);
345 }
346
347 /// getModRefInfo (for calls) - A convenience wrapper.
getModRefInfo(const CallInst * C,const Value * P,uint64_t Size)348 ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
349 return getModRefInfo(C, MemoryLocation(P, Size));
350 }
351
352 /// getModRefInfo (for invokes) - Return information about whether
353 /// a particular invoke modifies or reads the specified memory location.
getModRefInfo(const InvokeInst * I,const MemoryLocation & Loc)354 ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
355 return getModRefInfo(ImmutableCallSite(I), Loc);
356 }
357
358 /// getModRefInfo (for invokes) - A convenience wrapper.
getModRefInfo(const InvokeInst * I,const Value * P,uint64_t Size)359 ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
360 return getModRefInfo(I, MemoryLocation(P, Size));
361 }
362
363 /// getModRefInfo (for loads) - Return information about whether
364 /// a particular load modifies or reads the specified memory location.
365 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
366
367 /// getModRefInfo (for loads) - A convenience wrapper.
getModRefInfo(const LoadInst * L,const Value * P,uint64_t Size)368 ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
369 return getModRefInfo(L, MemoryLocation(P, Size));
370 }
371
372 /// getModRefInfo (for stores) - Return information about whether
373 /// a particular store modifies or reads the specified memory location.
374 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
375
376 /// getModRefInfo (for stores) - A convenience wrapper.
getModRefInfo(const StoreInst * S,const Value * P,uint64_t Size)377 ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
378 return getModRefInfo(S, MemoryLocation(P, Size));
379 }
380
381 /// getModRefInfo (for fences) - Return information about whether
382 /// a particular store modifies or reads the specified memory location.
getModRefInfo(const FenceInst * S,const MemoryLocation & Loc)383 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
384 // Conservatively correct. (We could possibly be a bit smarter if
385 // Loc is a alloca that doesn't escape.)
386 return MRI_ModRef;
387 }
388
389 /// getModRefInfo (for fences) - A convenience wrapper.
getModRefInfo(const FenceInst * S,const Value * P,uint64_t Size)390 ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
391 return getModRefInfo(S, MemoryLocation(P, Size));
392 }
393
394 /// getModRefInfo (for cmpxchges) - Return information about whether
395 /// a particular cmpxchg modifies or reads the specified memory location.
396 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
397 const MemoryLocation &Loc);
398
399 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
getModRefInfo(const AtomicCmpXchgInst * CX,const Value * P,unsigned Size)400 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
401 unsigned Size) {
402 return getModRefInfo(CX, MemoryLocation(P, Size));
403 }
404
405 /// getModRefInfo (for atomicrmws) - Return information about whether
406 /// a particular atomicrmw modifies or reads the specified memory location.
407 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
408
409 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
getModRefInfo(const AtomicRMWInst * RMW,const Value * P,unsigned Size)410 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
411 unsigned Size) {
412 return getModRefInfo(RMW, MemoryLocation(P, Size));
413 }
414
415 /// getModRefInfo (for va_args) - Return information about whether
416 /// a particular va_arg modifies or reads the specified memory location.
417 ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
418
419 /// getModRefInfo (for va_args) - A convenience wrapper.
getModRefInfo(const VAArgInst * I,const Value * P,uint64_t Size)420 ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
421 return getModRefInfo(I, MemoryLocation(P, Size));
422 }
423
424 /// getModRefInfo (for catchpads) - Return information about whether
425 /// a particular catchpad modifies or reads the specified memory location.
426 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
427
428 /// getModRefInfo (for catchpads) - A convenience wrapper.
getModRefInfo(const CatchPadInst * I,const Value * P,uint64_t Size)429 ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
430 uint64_t Size) {
431 return getModRefInfo(I, MemoryLocation(P, Size));
432 }
433
434 /// getModRefInfo (for catchrets) - Return information about whether
435 /// a particular catchret modifies or reads the specified memory location.
436 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
437
438 /// getModRefInfo (for catchrets) - A convenience wrapper.
getModRefInfo(const CatchReturnInst * I,const Value * P,uint64_t Size)439 ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
440 uint64_t Size) {
441 return getModRefInfo(I, MemoryLocation(P, Size));
442 }
443
444 /// Check whether or not an instruction may read or write memory (without
445 /// regard to a specific location).
446 ///
447 /// For function calls, this delegates to the alias-analysis specific
448 /// call-site mod-ref behavior queries. Otherwise it delegates to the generic
449 /// mod ref information query without a location.
getModRefInfo(const Instruction * I)450 ModRefInfo getModRefInfo(const Instruction *I) {
451 if (auto CS = ImmutableCallSite(I)) {
452 auto MRB = getModRefBehavior(CS);
453 if (MRB & MRI_ModRef)
454 return MRI_ModRef;
455 else if (MRB & MRI_Ref)
456 return MRI_Ref;
457 else if (MRB & MRI_Mod)
458 return MRI_Mod;
459 return MRI_NoModRef;
460 }
461
462 return getModRefInfo(I, MemoryLocation());
463 }
464
465 /// Check whether or not an instruction may read or write the specified
466 /// memory location.
467 ///
468 /// An instruction that doesn't read or write memory may be trivially LICM'd
469 /// for example.
470 ///
471 /// This primarily delegates to specific helpers above.
getModRefInfo(const Instruction * I,const MemoryLocation & Loc)472 ModRefInfo getModRefInfo(const Instruction *I, const MemoryLocation &Loc) {
473 switch (I->getOpcode()) {
474 case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
475 case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
476 case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
477 case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
478 case Instruction::AtomicCmpXchg:
479 return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
480 case Instruction::AtomicRMW:
481 return getModRefInfo((const AtomicRMWInst*)I, Loc);
482 case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
483 case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
484 case Instruction::CatchPad:
485 return getModRefInfo((const CatchPadInst *)I, Loc);
486 case Instruction::CatchRet:
487 return getModRefInfo((const CatchReturnInst *)I, Loc);
488 default:
489 return MRI_NoModRef;
490 }
491 }
492
493 /// A convenience wrapper for constructing the memory location.
getModRefInfo(const Instruction * I,const Value * P,uint64_t Size)494 ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
495 uint64_t Size) {
496 return getModRefInfo(I, MemoryLocation(P, Size));
497 }
498
499 /// Return information about whether a call and an instruction may refer to
500 /// the same memory locations.
501 ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
502
503 /// Return information about whether two call sites may refer to the same set
504 /// of memory locations. See the AA documentation for details:
505 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
506 ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
507
508 /// \brief Return information about whether a particular call site modifies
509 /// or reads the specified memory location \p MemLoc before instruction \p I
510 /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
511 /// instruction ordering queries inside the BasicBlock containing \p I.
512 ModRefInfo callCapturesBefore(const Instruction *I,
513 const MemoryLocation &MemLoc, DominatorTree *DT,
514 OrderedBasicBlock *OBB = nullptr);
515
516 /// \brief A convenience wrapper to synthesize a memory location.
517 ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
518 uint64_t Size, DominatorTree *DT,
519 OrderedBasicBlock *OBB = nullptr) {
520 return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
521 }
522
523 /// @}
524 //===--------------------------------------------------------------------===//
525 /// \name Higher level methods for querying mod/ref information.
526 /// @{
527
528 /// Check if it is possible for execution of the specified basic block to
529 /// modify the location Loc.
530 bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
531
532 /// A convenience wrapper synthesizing a memory location.
canBasicBlockModify(const BasicBlock & BB,const Value * P,uint64_t Size)533 bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
534 uint64_t Size) {
535 return canBasicBlockModify(BB, MemoryLocation(P, Size));
536 }
537
538 /// Check if it is possible for the execution of the specified instructions
539 /// to mod\ref (according to the mode) the location Loc.
540 ///
541 /// The instructions to consider are all of the instructions in the range of
542 /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
543 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
544 const MemoryLocation &Loc,
545 const ModRefInfo Mode);
546
547 /// A convenience wrapper synthesizing a memory location.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const Value * Ptr,uint64_t Size,const ModRefInfo Mode)548 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
549 const Value *Ptr, uint64_t Size,
550 const ModRefInfo Mode) {
551 return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
552 }
553
554 private:
555 class Concept;
556 template <typename T> class Model;
557
558 template <typename T> friend class AAResultBase;
559
560 std::vector<std::unique_ptr<Concept>> AAs;
561 };
562
563 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
564 /// pointer or reference.
565 typedef AAResults AliasAnalysis;
566
567 /// A private abstract base class describing the concept of an individual alias
568 /// analysis implementation.
569 ///
570 /// This interface is implemented by any \c Model instantiation. It is also the
571 /// interface which a type used to instantiate the model must provide.
572 ///
573 /// All of these methods model methods by the same name in the \c
574 /// AAResults class. Only differences and specifics to how the
575 /// implementations are called are documented here.
576 class AAResults::Concept {
577 public:
578 virtual ~Concept() = 0;
579
580 /// An update API used internally by the AAResults to provide
581 /// a handle back to the top level aggregation.
582 virtual void setAAResults(AAResults *NewAAR) = 0;
583
584 //===--------------------------------------------------------------------===//
585 /// \name Alias Queries
586 /// @{
587
588 /// The main low level interface to the alias analysis implementation.
589 /// Returns an AliasResult indicating whether the two pointers are aliased to
590 /// each other. This is the interface that must be implemented by specific
591 /// alias analysis implementations.
592 virtual AliasResult alias(const MemoryLocation &LocA,
593 const MemoryLocation &LocB) = 0;
594
595 /// Checks whether the given location points to constant memory, or if
596 /// \p OrLocal is true whether it points to a local alloca.
597 virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
598 bool OrLocal) = 0;
599
600 /// @}
601 //===--------------------------------------------------------------------===//
602 /// \name Simple mod/ref information
603 /// @{
604
605 /// Get the ModRef info associated with a pointer argument of a callsite. The
606 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
607 /// that these bits do not necessarily account for the overall behavior of
608 /// the function, but rather only provide additional per-argument
609 /// information.
610 virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
611 unsigned ArgIdx) = 0;
612
613 /// Return the behavior of the given call site.
614 virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0;
615
616 /// Return the behavior when calling the given function.
617 virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
618
619 /// getModRefInfo (for call sites) - Return information about whether
620 /// a particular call site modifies or reads the specified memory location.
621 virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
622 const MemoryLocation &Loc) = 0;
623
624 /// Return information about whether two call sites may refer to the same set
625 /// of memory locations. See the AA documentation for details:
626 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
627 virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
628 ImmutableCallSite CS2) = 0;
629
630 /// @}
631 };
632
633 /// A private class template which derives from \c Concept and wraps some other
634 /// type.
635 ///
636 /// This models the concept by directly forwarding each interface point to the
637 /// wrapped type which must implement a compatible interface. This provides
638 /// a type erased binding.
639 template <typename AAResultT> class AAResults::Model final : public Concept {
640 AAResultT &Result;
641
642 public:
Model(AAResultT & Result,AAResults & AAR)643 explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
644 Result.setAAResults(&AAR);
645 }
~Model()646 ~Model() override {}
647
setAAResults(AAResults * NewAAR)648 void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
649
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)650 AliasResult alias(const MemoryLocation &LocA,
651 const MemoryLocation &LocB) override {
652 return Result.alias(LocA, LocB);
653 }
654
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)655 bool pointsToConstantMemory(const MemoryLocation &Loc,
656 bool OrLocal) override {
657 return Result.pointsToConstantMemory(Loc, OrLocal);
658 }
659
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)660 ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override {
661 return Result.getArgModRefInfo(CS, ArgIdx);
662 }
663
getModRefBehavior(ImmutableCallSite CS)664 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
665 return Result.getModRefBehavior(CS);
666 }
667
getModRefBehavior(const Function * F)668 FunctionModRefBehavior getModRefBehavior(const Function *F) override {
669 return Result.getModRefBehavior(F);
670 }
671
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)672 ModRefInfo getModRefInfo(ImmutableCallSite CS,
673 const MemoryLocation &Loc) override {
674 return Result.getModRefInfo(CS, Loc);
675 }
676
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)677 ModRefInfo getModRefInfo(ImmutableCallSite CS1,
678 ImmutableCallSite CS2) override {
679 return Result.getModRefInfo(CS1, CS2);
680 }
681 };
682
683 /// A CRTP-driven "mixin" base class to help implement the function alias
684 /// analysis results concept.
685 ///
686 /// Because of the nature of many alias analysis implementations, they often
687 /// only implement a subset of the interface. This base class will attempt to
688 /// implement the remaining portions of the interface in terms of simpler forms
689 /// of the interface where possible, and otherwise provide conservatively
690 /// correct fallback implementations.
691 ///
692 /// Implementors of an alias analysis should derive from this CRTP, and then
693 /// override specific methods that they wish to customize. There is no need to
694 /// use virtual anywhere, the CRTP base class does static dispatch to the
695 /// derived type passed into it.
696 template <typename DerivedT> class AAResultBase {
697 // Expose some parts of the interface only to the AAResults::Model
698 // for wrapping. Specifically, this allows the model to call our
699 // setAAResults method without exposing it as a fully public API.
700 friend class AAResults::Model<DerivedT>;
701
702 /// A pointer to the AAResults object that this AAResult is
703 /// aggregated within. May be null if not aggregated.
704 AAResults *AAR;
705
706 /// Helper to dispatch calls back through the derived type.
derived()707 DerivedT &derived() { return static_cast<DerivedT &>(*this); }
708
709 /// A setter for the AAResults pointer, which is used to satisfy the
710 /// AAResults::Model contract.
setAAResults(AAResults * NewAAR)711 void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
712
713 protected:
714 /// This proxy class models a common pattern where we delegate to either the
715 /// top-level \c AAResults aggregation if one is registered, or to the
716 /// current result if none are registered.
717 class AAResultsProxy {
718 AAResults *AAR;
719 DerivedT &CurrentResult;
720
721 public:
AAResultsProxy(AAResults * AAR,DerivedT & CurrentResult)722 AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
723 : AAR(AAR), CurrentResult(CurrentResult) {}
724
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)725 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
726 return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
727 }
728
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)729 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
730 return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
731 : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
732 }
733
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)734 ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
735 return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx);
736 }
737
getModRefBehavior(ImmutableCallSite CS)738 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
739 return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS);
740 }
741
getModRefBehavior(const Function * F)742 FunctionModRefBehavior getModRefBehavior(const Function *F) {
743 return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
744 }
745
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)746 ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
747 return AAR ? AAR->getModRefInfo(CS, Loc)
748 : CurrentResult.getModRefInfo(CS, Loc);
749 }
750
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)751 ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
752 return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2);
753 }
754 };
755
756 const TargetLibraryInfo &TLI;
757
AAResultBase(const TargetLibraryInfo & TLI)758 explicit AAResultBase(const TargetLibraryInfo &TLI) : TLI(TLI) {}
759
760 // Provide all the copy and move constructors so that derived types aren't
761 // constrained.
AAResultBase(const AAResultBase & Arg)762 AAResultBase(const AAResultBase &Arg) : TLI(Arg.TLI) {}
AAResultBase(AAResultBase && Arg)763 AAResultBase(AAResultBase &&Arg) : TLI(Arg.TLI) {}
764
765 /// Get a proxy for the best AA result set to query at this time.
766 ///
767 /// When this result is part of a larger aggregation, this will proxy to that
768 /// aggregation. When this result is used in isolation, it will just delegate
769 /// back to the derived class's implementation.
getBestAAResults()770 AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
771
772 public:
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)773 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
774 return MayAlias;
775 }
776
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)777 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
778 return false;
779 }
780
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)781 ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
782 return MRI_ModRef;
783 }
784
getModRefBehavior(ImmutableCallSite CS)785 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
786 if (!CS.hasOperandBundles())
787 // If CS has operand bundles then aliasing attributes from the function it
788 // calls do not directly apply to the CallSite. This can be made more
789 // precise in the future.
790 if (const Function *F = CS.getCalledFunction())
791 return getBestAAResults().getModRefBehavior(F);
792
793 return FMRB_UnknownModRefBehavior;
794 }
795
getModRefBehavior(const Function * F)796 FunctionModRefBehavior getModRefBehavior(const Function *F) {
797 return FMRB_UnknownModRefBehavior;
798 }
799
800 ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
801
802 ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
803 };
804
805 /// Synthesize \c ModRefInfo for a call site and memory location by examining
806 /// the general behavior of the call site and any specific information for its
807 /// arguments.
808 ///
809 /// This essentially, delegates across the alias analysis interface to collect
810 /// information which may be enough to (conservatively) fulfill the query.
811 template <typename DerivedT>
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)812 ModRefInfo AAResultBase<DerivedT>::getModRefInfo(ImmutableCallSite CS,
813 const MemoryLocation &Loc) {
814 auto MRB = getBestAAResults().getModRefBehavior(CS);
815 if (MRB == FMRB_DoesNotAccessMemory)
816 return MRI_NoModRef;
817
818 ModRefInfo Mask = MRI_ModRef;
819 if (AAResults::onlyReadsMemory(MRB))
820 Mask = MRI_Ref;
821
822 if (AAResults::onlyAccessesArgPointees(MRB)) {
823 bool DoesAlias = false;
824 ModRefInfo AllArgsMask = MRI_NoModRef;
825 if (AAResults::doesAccessArgPointees(MRB)) {
826 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(),
827 AE = CS.arg_end();
828 AI != AE; ++AI) {
829 const Value *Arg = *AI;
830 if (!Arg->getType()->isPointerTy())
831 continue;
832 unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
833 MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
834 AliasResult ArgAlias = getBestAAResults().alias(ArgLoc, Loc);
835 if (ArgAlias != NoAlias) {
836 ModRefInfo ArgMask = getBestAAResults().getArgModRefInfo(CS, ArgIdx);
837 DoesAlias = true;
838 AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
839 }
840 }
841 }
842 if (!DoesAlias)
843 return MRI_NoModRef;
844 Mask = ModRefInfo(Mask & AllArgsMask);
845 }
846
847 // If Loc is a constant memory location, the call definitely could not
848 // modify the memory location.
849 if ((Mask & MRI_Mod) &&
850 getBestAAResults().pointsToConstantMemory(Loc, /*OrLocal*/ false))
851 Mask = ModRefInfo(Mask & ~MRI_Mod);
852
853 return Mask;
854 }
855
856 /// Synthesize \c ModRefInfo for two call sites by examining the general
857 /// behavior of the call site and any specific information for its arguments.
858 ///
859 /// This essentially, delegates across the alias analysis interface to collect
860 /// information which may be enough to (conservatively) fulfill the query.
861 template <typename DerivedT>
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)862 ModRefInfo AAResultBase<DerivedT>::getModRefInfo(ImmutableCallSite CS1,
863 ImmutableCallSite CS2) {
864 // If CS1 or CS2 are readnone, they don't interact.
865 auto CS1B = getBestAAResults().getModRefBehavior(CS1);
866 if (CS1B == FMRB_DoesNotAccessMemory)
867 return MRI_NoModRef;
868
869 auto CS2B = getBestAAResults().getModRefBehavior(CS2);
870 if (CS2B == FMRB_DoesNotAccessMemory)
871 return MRI_NoModRef;
872
873 // If they both only read from memory, there is no dependence.
874 if (AAResults::onlyReadsMemory(CS1B) && AAResults::onlyReadsMemory(CS2B))
875 return MRI_NoModRef;
876
877 ModRefInfo Mask = MRI_ModRef;
878
879 // If CS1 only reads memory, the only dependence on CS2 can be
880 // from CS1 reading memory written by CS2.
881 if (AAResults::onlyReadsMemory(CS1B))
882 Mask = ModRefInfo(Mask & MRI_Ref);
883
884 // If CS2 only access memory through arguments, accumulate the mod/ref
885 // information from CS1's references to the memory referenced by
886 // CS2's arguments.
887 if (AAResults::onlyAccessesArgPointees(CS2B)) {
888 ModRefInfo R = MRI_NoModRef;
889 if (AAResults::doesAccessArgPointees(CS2B)) {
890 for (ImmutableCallSite::arg_iterator I = CS2.arg_begin(),
891 E = CS2.arg_end();
892 I != E; ++I) {
893 const Value *Arg = *I;
894 if (!Arg->getType()->isPointerTy())
895 continue;
896 unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
897 auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
898
899 // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence
900 // of CS1 on that location is the inverse.
901 ModRefInfo ArgMask =
902 getBestAAResults().getArgModRefInfo(CS2, CS2ArgIdx);
903 if (ArgMask == MRI_Mod)
904 ArgMask = MRI_ModRef;
905 else if (ArgMask == MRI_Ref)
906 ArgMask = MRI_Mod;
907
908 ArgMask = ModRefInfo(ArgMask &
909 getBestAAResults().getModRefInfo(CS1, CS2ArgLoc));
910
911 R = ModRefInfo((R | ArgMask) & Mask);
912 if (R == Mask)
913 break;
914 }
915 }
916 return R;
917 }
918
919 // If CS1 only accesses memory through arguments, check if CS2 references
920 // any of the memory referenced by CS1's arguments. If not, return NoModRef.
921 if (AAResults::onlyAccessesArgPointees(CS1B)) {
922 ModRefInfo R = MRI_NoModRef;
923 if (AAResults::doesAccessArgPointees(CS1B)) {
924 for (ImmutableCallSite::arg_iterator I = CS1.arg_begin(),
925 E = CS1.arg_end();
926 I != E; ++I) {
927 const Value *Arg = *I;
928 if (!Arg->getType()->isPointerTy())
929 continue;
930 unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
931 auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
932
933 // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
934 // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
935 // might Ref, then we care only about a Mod by CS2.
936 ModRefInfo ArgMask = getBestAAResults().getArgModRefInfo(CS1, CS1ArgIdx);
937 ModRefInfo ArgR = getBestAAResults().getModRefInfo(CS2, CS1ArgLoc);
938 if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
939 (ArgR & MRI_ModRef) != MRI_NoModRef) ||
940 ((ArgMask & MRI_Ref) != MRI_NoModRef &&
941 (ArgR & MRI_Mod) != MRI_NoModRef))
942 R = ModRefInfo((R | ArgMask) & Mask);
943
944 if (R == Mask)
945 break;
946 }
947 }
948 return R;
949 }
950
951 return Mask;
952 }
953
954 /// isNoAliasCall - Return true if this pointer is returned by a noalias
955 /// function.
956 bool isNoAliasCall(const Value *V);
957
958 /// isNoAliasArgument - Return true if this is an argument with the noalias
959 /// attribute.
960 bool isNoAliasArgument(const Value *V);
961
962 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
963 /// identifiable object. This returns true for:
964 /// Global Variables and Functions (but not Global Aliases)
965 /// Allocas
966 /// ByVal and NoAlias Arguments
967 /// NoAlias returns (e.g. calls to malloc)
968 ///
969 bool isIdentifiedObject(const Value *V);
970
971 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
972 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
973 /// Further, an IdentifiedFunctionLocal can not alias with any function
974 /// arguments other than itself, which is not necessarily true for
975 /// IdentifiedObjects.
976 bool isIdentifiedFunctionLocal(const Value *V);
977
978 /// A manager for alias analyses.
979 ///
980 /// This class can have analyses registered with it and when run, it will run
981 /// all of them and aggregate their results into single AA results interface
982 /// that dispatches across all of the alias analysis results available.
983 ///
984 /// Note that the order in which analyses are registered is very significant.
985 /// That is the order in which the results will be aggregated and queried.
986 ///
987 /// This manager effectively wraps the AnalysisManager for registering alias
988 /// analyses. When you register your alias analysis with this manager, it will
989 /// ensure the analysis itself is registered with its AnalysisManager.
990 class AAManager {
991 public:
992 typedef AAResults Result;
993
994 // This type hase value semantics. We have to spell these out because MSVC
995 // won't synthesize them.
AAManager()996 AAManager() {}
AAManager(AAManager && Arg)997 AAManager(AAManager &&Arg)
998 : FunctionResultGetters(std::move(Arg.FunctionResultGetters)) {}
AAManager(const AAManager & Arg)999 AAManager(const AAManager &Arg)
1000 : FunctionResultGetters(Arg.FunctionResultGetters) {}
1001 AAManager &operator=(AAManager &&RHS) {
1002 FunctionResultGetters = std::move(RHS.FunctionResultGetters);
1003 return *this;
1004 }
1005 AAManager &operator=(const AAManager &RHS) {
1006 FunctionResultGetters = RHS.FunctionResultGetters;
1007 return *this;
1008 }
1009
1010 /// Register a specific AA result.
registerFunctionAnalysis()1011 template <typename AnalysisT> void registerFunctionAnalysis() {
1012 FunctionResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1013 }
1014
run(Function & F,AnalysisManager<Function> & AM)1015 Result run(Function &F, AnalysisManager<Function> &AM) {
1016 Result R;
1017 for (auto &Getter : FunctionResultGetters)
1018 (*Getter)(F, AM, R);
1019 return R;
1020 }
1021
1022 private:
1023 SmallVector<void (*)(Function &F, AnalysisManager<Function> &AM,
1024 AAResults &AAResults),
1025 4> FunctionResultGetters;
1026
1027 template <typename AnalysisT>
getFunctionAAResultImpl(Function & F,AnalysisManager<Function> & AM,AAResults & AAResults)1028 static void getFunctionAAResultImpl(Function &F,
1029 AnalysisManager<Function> &AM,
1030 AAResults &AAResults) {
1031 AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1032 }
1033 };
1034
1035 /// A wrapper pass to provide the legacy pass manager access to a suitably
1036 /// prepared AAResults object.
1037 class AAResultsWrapperPass : public FunctionPass {
1038 std::unique_ptr<AAResults> AAR;
1039
1040 public:
1041 static char ID;
1042
1043 AAResultsWrapperPass();
1044
getAAResults()1045 AAResults &getAAResults() { return *AAR; }
getAAResults()1046 const AAResults &getAAResults() const { return *AAR; }
1047
1048 bool runOnFunction(Function &F) override;
1049
1050 void getAnalysisUsage(AnalysisUsage &AU) const override;
1051 };
1052
1053 FunctionPass *createAAResultsWrapperPass();
1054
1055 /// A wrapper pass around a callback which can be used to populate the
1056 /// AAResults in the AAResultsWrapperPass from an external AA.
1057 ///
1058 /// The callback provided here will be used each time we prepare an AAResults
1059 /// object, and will receive a reference to the function wrapper pass, the
1060 /// function, and the AAResults object to populate. This should be used when
1061 /// setting up a custom pass pipeline to inject a hook into the AA results.
1062 ImmutablePass *createExternalAAWrapperPass(
1063 std::function<void(Pass &, Function &, AAResults &)> Callback);
1064
1065 /// A helper for the legacy pass manager to create a \c AAResults
1066 /// object populated to the best of our ability for a particular function when
1067 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1068 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1069
1070 } // End llvm namespace
1071
1072 #endif
1073