1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread.h"
18
19 #include <pthread.h>
20 #include <signal.h>
21 #include <sys/resource.h>
22 #include <sys/time.h>
23
24 #include <algorithm>
25 #include <bitset>
26 #include <cerrno>
27 #include <iostream>
28 #include <list>
29 #include <sstream>
30
31 #include "arch/context.h"
32 #include "art_field-inl.h"
33 #include "art_method-inl.h"
34 #include "base/bit_utils.h"
35 #include "base/memory_tool.h"
36 #include "base/mutex.h"
37 #include "base/timing_logger.h"
38 #include "base/to_str.h"
39 #include "base/systrace.h"
40 #include "class_linker-inl.h"
41 #include "debugger.h"
42 #include "dex_file-inl.h"
43 #include "entrypoints/entrypoint_utils.h"
44 #include "entrypoints/quick/quick_alloc_entrypoints.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "gc/accounting/heap_bitmap-inl.h"
47 #include "gc/allocator/rosalloc.h"
48 #include "gc/heap.h"
49 #include "gc/space/space-inl.h"
50 #include "handle_scope-inl.h"
51 #include "indirect_reference_table-inl.h"
52 #include "jni_internal.h"
53 #include "mirror/class_loader.h"
54 #include "mirror/class-inl.h"
55 #include "mirror/object_array-inl.h"
56 #include "mirror/stack_trace_element.h"
57 #include "monitor.h"
58 #include "oat_quick_method_header.h"
59 #include "object_lock.h"
60 #include "quick_exception_handler.h"
61 #include "quick/quick_method_frame_info.h"
62 #include "reflection.h"
63 #include "runtime.h"
64 #include "scoped_thread_state_change.h"
65 #include "ScopedLocalRef.h"
66 #include "ScopedUtfChars.h"
67 #include "stack.h"
68 #include "stack_map.h"
69 #include "thread_list.h"
70 #include "thread-inl.h"
71 #include "utils.h"
72 #include "verifier/method_verifier.h"
73 #include "verify_object-inl.h"
74 #include "well_known_classes.h"
75 #include "interpreter/interpreter.h"
76
77 #if ART_USE_FUTEXES
78 #include "linux/futex.h"
79 #include "sys/syscall.h"
80 #ifndef SYS_futex
81 #define SYS_futex __NR_futex
82 #endif
83 #endif // ART_USE_FUTEXES
84
85 namespace art {
86
87 bool Thread::is_started_ = false;
88 pthread_key_t Thread::pthread_key_self_;
89 ConditionVariable* Thread::resume_cond_ = nullptr;
90 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
91 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
92 Thread* Thread::jit_sensitive_thread_ = nullptr;
93
94 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
95
96 // For implicit overflow checks we reserve an extra piece of memory at the bottom
97 // of the stack (lowest memory). The higher portion of the memory
98 // is protected against reads and the lower is available for use while
99 // throwing the StackOverflow exception.
100 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
101
102 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
103
InitCardTable()104 void Thread::InitCardTable() {
105 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
106 }
107
UnimplementedEntryPoint()108 static void UnimplementedEntryPoint() {
109 UNIMPLEMENTED(FATAL);
110 }
111
112 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
113
InitTlsEntryPoints()114 void Thread::InitTlsEntryPoints() {
115 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
116 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
117 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) +
118 sizeof(tlsPtr_.quick_entrypoints));
119 for (uintptr_t* it = begin; it != end; ++it) {
120 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
121 }
122 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
123 }
124
InitStringEntryPoints()125 void Thread::InitStringEntryPoints() {
126 ScopedObjectAccess soa(this);
127 QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints;
128 qpoints->pNewEmptyString = reinterpret_cast<void(*)()>(
129 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString));
130 qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>(
131 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B));
132 qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>(
133 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI));
134 qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>(
135 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII));
136 qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>(
137 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII));
138 qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>(
139 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString));
140 qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>(
141 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString));
142 qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>(
143 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset));
144 qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>(
145 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset));
146 qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>(
147 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C));
148 qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>(
149 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII));
150 qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>(
151 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC));
152 qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>(
153 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints));
154 qpoints->pNewStringFromString = reinterpret_cast<void(*)()>(
155 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString));
156 qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>(
157 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer));
158 qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>(
159 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder));
160 }
161
ResetQuickAllocEntryPointsForThread()162 void Thread::ResetQuickAllocEntryPointsForThread() {
163 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
164 }
165
166 class DeoptimizationContextRecord {
167 public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,mirror::Throwable * pending_exception,DeoptimizationContextRecord * link)168 DeoptimizationContextRecord(const JValue& ret_val,
169 bool is_reference,
170 bool from_code,
171 mirror::Throwable* pending_exception,
172 DeoptimizationContextRecord* link)
173 : ret_val_(ret_val),
174 is_reference_(is_reference),
175 from_code_(from_code),
176 pending_exception_(pending_exception),
177 link_(link) {}
178
GetReturnValue() const179 JValue GetReturnValue() const { return ret_val_; }
IsReference() const180 bool IsReference() const { return is_reference_; }
GetFromCode() const181 bool GetFromCode() const { return from_code_; }
GetPendingException() const182 mirror::Throwable* GetPendingException() const { return pending_exception_; }
GetLink() const183 DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()184 mirror::Object** GetReturnValueAsGCRoot() {
185 DCHECK(is_reference_);
186 return ret_val_.GetGCRoot();
187 }
GetPendingExceptionAsGCRoot()188 mirror::Object** GetPendingExceptionAsGCRoot() {
189 return reinterpret_cast<mirror::Object**>(&pending_exception_);
190 }
191
192 private:
193 // The value returned by the method at the top of the stack before deoptimization.
194 JValue ret_val_;
195
196 // Indicates whether the returned value is a reference. If so, the GC will visit it.
197 const bool is_reference_;
198
199 // Whether the context was created from an explicit deoptimization in the code.
200 const bool from_code_;
201
202 // The exception that was pending before deoptimization (or null if there was no pending
203 // exception).
204 mirror::Throwable* pending_exception_;
205
206 // A link to the previous DeoptimizationContextRecord.
207 DeoptimizationContextRecord* const link_;
208
209 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
210 };
211
212 class StackedShadowFrameRecord {
213 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)214 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
215 StackedShadowFrameType type,
216 StackedShadowFrameRecord* link)
217 : shadow_frame_(shadow_frame),
218 type_(type),
219 link_(link) {}
220
GetShadowFrame() const221 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const222 StackedShadowFrameType GetType() const { return type_; }
GetLink() const223 StackedShadowFrameRecord* GetLink() const { return link_; }
224
225 private:
226 ShadowFrame* const shadow_frame_;
227 const StackedShadowFrameType type_;
228 StackedShadowFrameRecord* const link_;
229
230 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
231 };
232
PushDeoptimizationContext(const JValue & return_value,bool is_reference,bool from_code,mirror::Throwable * exception)233 void Thread::PushDeoptimizationContext(const JValue& return_value,
234 bool is_reference,
235 bool from_code,
236 mirror::Throwable* exception) {
237 DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
238 return_value,
239 is_reference,
240 from_code,
241 exception,
242 tlsPtr_.deoptimization_context_stack);
243 tlsPtr_.deoptimization_context_stack = record;
244 }
245
PopDeoptimizationContext(JValue * result,mirror::Throwable ** exception,bool * from_code)246 void Thread::PopDeoptimizationContext(JValue* result,
247 mirror::Throwable** exception,
248 bool* from_code) {
249 AssertHasDeoptimizationContext();
250 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
251 tlsPtr_.deoptimization_context_stack = record->GetLink();
252 result->SetJ(record->GetReturnValue().GetJ());
253 *exception = record->GetPendingException();
254 *from_code = record->GetFromCode();
255 delete record;
256 }
257
AssertHasDeoptimizationContext()258 void Thread::AssertHasDeoptimizationContext() {
259 CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
260 << "No deoptimization context for thread " << *this;
261 }
262
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)263 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
264 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
265 sf, type, tlsPtr_.stacked_shadow_frame_record);
266 tlsPtr_.stacked_shadow_frame_record = record;
267 }
268
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)269 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
270 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
271 if (must_be_present) {
272 DCHECK(record != nullptr);
273 DCHECK_EQ(record->GetType(), type);
274 } else {
275 if (record == nullptr || record->GetType() != type) {
276 return nullptr;
277 }
278 }
279 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
280 ShadowFrame* shadow_frame = record->GetShadowFrame();
281 delete record;
282 return shadow_frame;
283 }
284
285 class FrameIdToShadowFrame {
286 public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)287 static FrameIdToShadowFrame* Create(size_t frame_id,
288 ShadowFrame* shadow_frame,
289 FrameIdToShadowFrame* next,
290 size_t num_vregs) {
291 // Append a bool array at the end to keep track of what vregs are updated by the debugger.
292 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
293 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
294 }
295
Delete(FrameIdToShadowFrame * f)296 static void Delete(FrameIdToShadowFrame* f) {
297 uint8_t* memory = reinterpret_cast<uint8_t*>(f);
298 delete[] memory;
299 }
300
GetFrameId() const301 size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const302 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const303 FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)304 void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()305 bool* GetUpdatedVRegFlags() {
306 return updated_vreg_flags_;
307 }
308
309 private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)310 FrameIdToShadowFrame(size_t frame_id,
311 ShadowFrame* shadow_frame,
312 FrameIdToShadowFrame* next)
313 : frame_id_(frame_id),
314 shadow_frame_(shadow_frame),
315 next_(next) {}
316
317 const size_t frame_id_;
318 ShadowFrame* const shadow_frame_;
319 FrameIdToShadowFrame* next_;
320 bool updated_vreg_flags_[0];
321
322 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
323 };
324
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)325 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
326 size_t frame_id) {
327 FrameIdToShadowFrame* found = nullptr;
328 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
329 if (record->GetFrameId() == frame_id) {
330 if (kIsDebugBuild) {
331 // Sanity check we have at most one record for this frame.
332 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
333 found = record;
334 } else {
335 return record;
336 }
337 }
338 }
339 return found;
340 }
341
FindDebuggerShadowFrame(size_t frame_id)342 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
343 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
344 tlsPtr_.frame_id_to_shadow_frame, frame_id);
345 if (record != nullptr) {
346 return record->GetShadowFrame();
347 }
348 return nullptr;
349 }
350
351 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)352 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
353 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
354 tlsPtr_.frame_id_to_shadow_frame, frame_id);
355 CHECK(record != nullptr);
356 return record->GetUpdatedVRegFlags();
357 }
358
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)359 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
360 uint32_t num_vregs,
361 ArtMethod* method,
362 uint32_t dex_pc) {
363 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
364 if (shadow_frame != nullptr) {
365 return shadow_frame;
366 }
367 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << PrettyMethod(method);
368 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
369 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
370 shadow_frame,
371 tlsPtr_.frame_id_to_shadow_frame,
372 num_vregs);
373 for (uint32_t i = 0; i < num_vregs; i++) {
374 // Do this to clear all references for root visitors.
375 shadow_frame->SetVRegReference(i, nullptr);
376 // This flag will be changed to true if the debugger modifies the value.
377 record->GetUpdatedVRegFlags()[i] = false;
378 }
379 tlsPtr_.frame_id_to_shadow_frame = record;
380 return shadow_frame;
381 }
382
RemoveDebuggerShadowFrameMapping(size_t frame_id)383 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
384 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
385 if (head->GetFrameId() == frame_id) {
386 tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
387 FrameIdToShadowFrame::Delete(head);
388 return;
389 }
390 FrameIdToShadowFrame* prev = head;
391 for (FrameIdToShadowFrame* record = head->GetNext();
392 record != nullptr;
393 prev = record, record = record->GetNext()) {
394 if (record->GetFrameId() == frame_id) {
395 prev->SetNext(record->GetNext());
396 FrameIdToShadowFrame::Delete(record);
397 return;
398 }
399 }
400 LOG(FATAL) << "No shadow frame for frame " << frame_id;
401 UNREACHABLE();
402 }
403
InitTid()404 void Thread::InitTid() {
405 tls32_.tid = ::art::GetTid();
406 }
407
InitAfterFork()408 void Thread::InitAfterFork() {
409 // One thread (us) survived the fork, but we have a new tid so we need to
410 // update the value stashed in this Thread*.
411 InitTid();
412 }
413
CreateCallback(void * arg)414 void* Thread::CreateCallback(void* arg) {
415 Thread* self = reinterpret_cast<Thread*>(arg);
416 Runtime* runtime = Runtime::Current();
417 if (runtime == nullptr) {
418 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
419 return nullptr;
420 }
421 {
422 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
423 // after self->Init().
424 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
425 // Check that if we got here we cannot be shutting down (as shutdown should never have started
426 // while threads are being born).
427 CHECK(!runtime->IsShuttingDownLocked());
428 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
429 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
430 // the runtime in such a case. In case this ever changes, we need to make sure here to
431 // delete the tmp_jni_env, as we own it at this point.
432 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
433 self->tlsPtr_.tmp_jni_env = nullptr;
434 Runtime::Current()->EndThreadBirth();
435 }
436 {
437 ScopedObjectAccess soa(self);
438 self->InitStringEntryPoints();
439
440 // Copy peer into self, deleting global reference when done.
441 CHECK(self->tlsPtr_.jpeer != nullptr);
442 self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
443 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
444 self->tlsPtr_.jpeer = nullptr;
445 self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
446
447 ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
448 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
449 Dbg::PostThreadStart(self);
450
451 // Invoke the 'run' method of our java.lang.Thread.
452 mirror::Object* receiver = self->tlsPtr_.opeer;
453 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
454 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
455 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
456 }
457 // Detach and delete self.
458 Runtime::Current()->GetThreadList()->Unregister(self);
459
460 return nullptr;
461 }
462
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,mirror::Object * thread_peer)463 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
464 mirror::Object* thread_peer) {
465 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
466 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
467 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
468 // to stop it from going away.
469 if (kIsDebugBuild) {
470 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
471 if (result != nullptr && !result->IsSuspended()) {
472 Locks::thread_list_lock_->AssertHeld(soa.Self());
473 }
474 }
475 return result;
476 }
477
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)478 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
479 jobject java_thread) {
480 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
481 }
482
FixStackSize(size_t stack_size)483 static size_t FixStackSize(size_t stack_size) {
484 // A stack size of zero means "use the default".
485 if (stack_size == 0) {
486 stack_size = Runtime::Current()->GetDefaultStackSize();
487 }
488
489 // Dalvik used the bionic pthread default stack size for native threads,
490 // so include that here to support apps that expect large native stacks.
491 stack_size += 1 * MB;
492
493 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
494 if (stack_size < PTHREAD_STACK_MIN) {
495 stack_size = PTHREAD_STACK_MIN;
496 }
497
498 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
499 // It's likely that callers are trying to ensure they have at least a certain amount of
500 // stack space, so we should add our reserved space on top of what they requested, rather
501 // than implicitly take it away from them.
502 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
503 } else {
504 // If we are going to use implicit stack checks, allocate space for the protected
505 // region at the bottom of the stack.
506 stack_size += Thread::kStackOverflowImplicitCheckSize +
507 GetStackOverflowReservedBytes(kRuntimeISA);
508 }
509
510 // Some systems require the stack size to be a multiple of the system page size, so round up.
511 stack_size = RoundUp(stack_size, kPageSize);
512
513 return stack_size;
514 }
515
516 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
517 // overflow is detected. It is located right below the stack_begin_.
518 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()519 void Thread::InstallImplicitProtection() {
520 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
521 uint8_t* stack_himem = tlsPtr_.stack_end;
522 uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) &
523 ~(kPageSize - 1)); // Page containing current top of stack.
524
525 // Try to directly protect the stack.
526 VLOG(threads) << "installing stack protected region at " << std::hex <<
527 static_cast<void*>(pregion) << " to " <<
528 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
529 if (ProtectStack(/* fatal_on_error */ false)) {
530 // Tell the kernel that we won't be needing these pages any more.
531 // NB. madvise will probably write zeroes into the memory (on linux it does).
532 uint32_t unwanted_size = stack_top - pregion - kPageSize;
533 madvise(pregion, unwanted_size, MADV_DONTNEED);
534 return;
535 }
536
537 // There is a little complexity here that deserves a special mention. On some
538 // architectures, the stack is created using a VM_GROWSDOWN flag
539 // to prevent memory being allocated when it's not needed. This flag makes the
540 // kernel only allocate memory for the stack by growing down in memory. Because we
541 // want to put an mprotected region far away from that at the stack top, we need
542 // to make sure the pages for the stack are mapped in before we call mprotect.
543 //
544 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
545 // with a non-mapped stack (usually only the main thread).
546 //
547 // We map in the stack by reading every page from the stack bottom (highest address)
548 // to the stack top. (We then madvise this away.) This must be done by reading from the
549 // current stack pointer downwards. Any access more than a page below the current SP
550 // might cause a segv.
551 // TODO: This comment may be out of date. It seems possible to speed this up. As
552 // this is normally done once in the zygote on startup, ignore for now.
553 //
554 // AddressSanitizer does not like the part of this functions that reads every stack page.
555 // Looks a lot like an out-of-bounds access.
556
557 // (Defensively) first remove the protection on the protected region as will want to read
558 // and write it. Ignore errors.
559 UnprotectStack();
560
561 VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
562 static_cast<void*>(pregion);
563
564 // Read every page from the high address to the low.
565 volatile uint8_t dont_optimize_this;
566 UNUSED(dont_optimize_this);
567 for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
568 dont_optimize_this = *p;
569 }
570
571 VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
572 static_cast<void*>(pregion) << " to " <<
573 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
574
575 // Protect the bottom of the stack to prevent read/write to it.
576 ProtectStack(/* fatal_on_error */ true);
577
578 // Tell the kernel that we won't be needing these pages any more.
579 // NB. madvise will probably write zeroes into the memory (on linux it does).
580 uint32_t unwanted_size = stack_top - pregion - kPageSize;
581 madvise(pregion, unwanted_size, MADV_DONTNEED);
582 }
583
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)584 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
585 CHECK(java_peer != nullptr);
586 Thread* self = static_cast<JNIEnvExt*>(env)->self;
587
588 if (VLOG_IS_ON(threads)) {
589 ScopedObjectAccess soa(env);
590
591 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
592 mirror::String* java_name = reinterpret_cast<mirror::String*>(f->GetObject(
593 soa.Decode<mirror::Object*>(java_peer)));
594 std::string thread_name;
595 if (java_name != nullptr) {
596 thread_name = java_name->ToModifiedUtf8();
597 } else {
598 thread_name = "(Unnamed)";
599 }
600
601 VLOG(threads) << "Creating native thread for " << thread_name;
602 self->Dump(LOG(INFO));
603 }
604
605 Runtime* runtime = Runtime::Current();
606
607 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
608 bool thread_start_during_shutdown = false;
609 {
610 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
611 if (runtime->IsShuttingDownLocked()) {
612 thread_start_during_shutdown = true;
613 } else {
614 runtime->StartThreadBirth();
615 }
616 }
617 if (thread_start_during_shutdown) {
618 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
619 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
620 return;
621 }
622
623 Thread* child_thread = new Thread(is_daemon);
624 // Use global JNI ref to hold peer live while child thread starts.
625 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
626 stack_size = FixStackSize(stack_size);
627
628 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
629 // assign it.
630 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
631 reinterpret_cast<jlong>(child_thread));
632
633 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
634 // do not have a good way to report this on the child's side.
635 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
636 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM()));
637
638 int pthread_create_result = 0;
639 if (child_jni_env_ext.get() != nullptr) {
640 pthread_t new_pthread;
641 pthread_attr_t attr;
642 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
643 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
644 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
645 "PTHREAD_CREATE_DETACHED");
646 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
647 pthread_create_result = pthread_create(&new_pthread,
648 &attr,
649 Thread::CreateCallback,
650 child_thread);
651 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
652
653 if (pthread_create_result == 0) {
654 // pthread_create started the new thread. The child is now responsible for managing the
655 // JNIEnvExt we created.
656 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
657 // between the threads.
658 child_jni_env_ext.release();
659 return;
660 }
661 }
662
663 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
664 {
665 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
666 runtime->EndThreadBirth();
667 }
668 // Manually delete the global reference since Thread::Init will not have been run.
669 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
670 child_thread->tlsPtr_.jpeer = nullptr;
671 delete child_thread;
672 child_thread = nullptr;
673 // TODO: remove from thread group?
674 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
675 {
676 std::string msg(child_jni_env_ext.get() == nullptr ?
677 "Could not allocate JNI Env" :
678 StringPrintf("pthread_create (%s stack) failed: %s",
679 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
680 ScopedObjectAccess soa(env);
681 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
682 }
683 }
684
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)685 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
686 // This function does all the initialization that must be run by the native thread it applies to.
687 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
688 // we can handshake with the corresponding native thread when it's ready.) Check this native
689 // thread hasn't been through here already...
690 CHECK(Thread::Current() == nullptr);
691
692 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
693 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
694 tlsPtr_.pthread_self = pthread_self();
695 CHECK(is_started_);
696
697 SetUpAlternateSignalStack();
698 if (!InitStackHwm()) {
699 return false;
700 }
701 InitCpu();
702 InitTlsEntryPoints();
703 RemoveSuspendTrigger();
704 InitCardTable();
705 InitTid();
706 interpreter::InitInterpreterTls(this);
707
708 #ifdef __ANDROID__
709 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
710 #else
711 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
712 #endif
713 DCHECK_EQ(Thread::Current(), this);
714
715 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
716
717 if (jni_env_ext != nullptr) {
718 DCHECK_EQ(jni_env_ext->vm, java_vm);
719 DCHECK_EQ(jni_env_ext->self, this);
720 tlsPtr_.jni_env = jni_env_ext;
721 } else {
722 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm);
723 if (tlsPtr_.jni_env == nullptr) {
724 return false;
725 }
726 }
727
728 thread_list->Register(this);
729 return true;
730 }
731
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)732 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
733 bool create_peer) {
734 Runtime* runtime = Runtime::Current();
735 if (runtime == nullptr) {
736 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
737 return nullptr;
738 }
739 Thread* self;
740 {
741 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
742 if (runtime->IsShuttingDownLocked()) {
743 LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
744 return nullptr;
745 } else {
746 Runtime::Current()->StartThreadBirth();
747 self = new Thread(as_daemon);
748 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
749 Runtime::Current()->EndThreadBirth();
750 if (!init_success) {
751 delete self;
752 return nullptr;
753 }
754 }
755 }
756
757 self->InitStringEntryPoints();
758
759 CHECK_NE(self->GetState(), kRunnable);
760 self->SetState(kNative);
761
762 // If we're the main thread, ClassLinker won't be created until after we're attached,
763 // so that thread needs a two-stage attach. Regular threads don't need this hack.
764 // In the compiler, all threads need this hack, because no-one's going to be getting
765 // a native peer!
766 if (create_peer) {
767 self->CreatePeer(thread_name, as_daemon, thread_group);
768 if (self->IsExceptionPending()) {
769 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
770 {
771 ScopedObjectAccess soa(self);
772 LOG(ERROR) << "Exception creating thread peer:";
773 LOG(ERROR) << self->GetException()->Dump();
774 self->ClearException();
775 }
776 runtime->GetThreadList()->Unregister(self);
777 // Unregister deletes self, no need to do this here.
778 return nullptr;
779 }
780 } else {
781 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
782 if (thread_name != nullptr) {
783 self->tlsPtr_.name->assign(thread_name);
784 ::art::SetThreadName(thread_name);
785 } else if (self->GetJniEnv()->check_jni) {
786 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
787 }
788 }
789
790 if (VLOG_IS_ON(threads)) {
791 if (thread_name != nullptr) {
792 VLOG(threads) << "Attaching thread " << thread_name;
793 } else {
794 VLOG(threads) << "Attaching unnamed thread.";
795 }
796 ScopedObjectAccess soa(self);
797 self->Dump(LOG(INFO));
798 }
799
800 {
801 ScopedObjectAccess soa(self);
802 Dbg::PostThreadStart(self);
803 }
804
805 return self;
806 }
807
CreatePeer(const char * name,bool as_daemon,jobject thread_group)808 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
809 Runtime* runtime = Runtime::Current();
810 CHECK(runtime->IsStarted());
811 JNIEnv* env = tlsPtr_.jni_env;
812
813 if (thread_group == nullptr) {
814 thread_group = runtime->GetMainThreadGroup();
815 }
816 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
817 // Add missing null check in case of OOM b/18297817
818 if (name != nullptr && thread_name.get() == nullptr) {
819 CHECK(IsExceptionPending());
820 return;
821 }
822 jint thread_priority = GetNativePriority();
823 jboolean thread_is_daemon = as_daemon;
824
825 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
826 if (peer.get() == nullptr) {
827 CHECK(IsExceptionPending());
828 return;
829 }
830 {
831 ScopedObjectAccess soa(this);
832 tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
833 }
834 env->CallNonvirtualVoidMethod(peer.get(),
835 WellKnownClasses::java_lang_Thread,
836 WellKnownClasses::java_lang_Thread_init,
837 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
838 if (IsExceptionPending()) {
839 return;
840 }
841
842 Thread* self = this;
843 DCHECK_EQ(self, Thread::Current());
844 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
845 reinterpret_cast<jlong>(self));
846
847 ScopedObjectAccess soa(self);
848 StackHandleScope<1> hs(self);
849 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
850 if (peer_thread_name.Get() == nullptr) {
851 // The Thread constructor should have set the Thread.name to a
852 // non-null value. However, because we can run without code
853 // available (in the compiler, in tests), we manually assign the
854 // fields the constructor should have set.
855 if (runtime->IsActiveTransaction()) {
856 InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
857 } else {
858 InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
859 }
860 peer_thread_name.Assign(GetThreadName(soa));
861 }
862 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
863 if (peer_thread_name.Get() != nullptr) {
864 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
865 }
866 }
867
868 template<bool kTransactionActive>
InitPeer(ScopedObjectAccess & soa,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)869 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
870 jobject thread_name, jint thread_priority) {
871 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
872 SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
873 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
874 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
875 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
876 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
877 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
878 SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
879 }
880
SetThreadName(const char * name)881 void Thread::SetThreadName(const char* name) {
882 tlsPtr_.name->assign(name);
883 ::art::SetThreadName(name);
884 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
885 }
886
InitStackHwm()887 bool Thread::InitStackHwm() {
888 void* read_stack_base;
889 size_t read_stack_size;
890 size_t read_guard_size;
891 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
892
893 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
894 tlsPtr_.stack_size = read_stack_size;
895
896 // The minimum stack size we can cope with is the overflow reserved bytes (typically
897 // 8K) + the protected region size (4K) + another page (4K). Typically this will
898 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
899 // between 8K and 12K.
900 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
901 + 4 * KB;
902 if (read_stack_size <= min_stack) {
903 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
904 LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR,
905 "Attempt to attach a thread with a too-small stack");
906 return false;
907 }
908
909 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
910 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
911 read_stack_base,
912 PrettySize(read_stack_size).c_str(),
913 PrettySize(read_guard_size).c_str());
914
915 // Set stack_end_ to the bottom of the stack saving space of stack overflows
916
917 Runtime* runtime = Runtime::Current();
918 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
919 ResetDefaultStackEnd();
920
921 // Install the protected region if we are doing implicit overflow checks.
922 if (implicit_stack_check) {
923 // The thread might have protected region at the bottom. We need
924 // to install our own region so we need to move the limits
925 // of the stack to make room for it.
926
927 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
928 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
929 tlsPtr_.stack_size -= read_guard_size;
930
931 InstallImplicitProtection();
932 }
933
934 // Sanity check.
935 int stack_variable;
936 CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
937
938 return true;
939 }
940
ShortDump(std::ostream & os) const941 void Thread::ShortDump(std::ostream& os) const {
942 os << "Thread[";
943 if (GetThreadId() != 0) {
944 // If we're in kStarting, we won't have a thin lock id or tid yet.
945 os << GetThreadId()
946 << ",tid=" << GetTid() << ',';
947 }
948 os << GetState()
949 << ",Thread*=" << this
950 << ",peer=" << tlsPtr_.opeer
951 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
952 << "]";
953 }
954
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map) const955 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map) const {
956 DumpState(os);
957 DumpStack(os, dump_native_stack, backtrace_map);
958 }
959
GetThreadName(const ScopedObjectAccessAlreadyRunnable & soa) const960 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
961 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
962 return (tlsPtr_.opeer != nullptr) ?
963 reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
964 }
965
GetThreadName(std::string & name) const966 void Thread::GetThreadName(std::string& name) const {
967 name.assign(*tlsPtr_.name);
968 }
969
GetCpuMicroTime() const970 uint64_t Thread::GetCpuMicroTime() const {
971 #if defined(__linux__)
972 clockid_t cpu_clock_id;
973 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
974 timespec now;
975 clock_gettime(cpu_clock_id, &now);
976 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
977 #else // __APPLE__
978 UNIMPLEMENTED(WARNING);
979 return -1;
980 #endif
981 }
982
983 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)984 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
985 LOG(ERROR) << *thread << " suspend count already zero.";
986 Locks::thread_suspend_count_lock_->Unlock(self);
987 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
988 Locks::mutator_lock_->SharedTryLock(self);
989 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
990 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
991 }
992 }
993 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
994 Locks::thread_list_lock_->TryLock(self);
995 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
996 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
997 }
998 }
999 std::ostringstream ss;
1000 Runtime::Current()->GetThreadList()->Dump(ss);
1001 LOG(FATAL) << ss.str();
1002 }
1003
ModifySuspendCount(Thread * self,int delta,AtomicInteger * suspend_barrier,bool for_debugger)1004 bool Thread::ModifySuspendCount(Thread* self, int delta, AtomicInteger* suspend_barrier,
1005 bool for_debugger) {
1006 if (kIsDebugBuild) {
1007 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1008 << delta << " " << tls32_.debug_suspend_count << " " << this;
1009 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1010 Locks::thread_suspend_count_lock_->AssertHeld(self);
1011 if (this != self && !IsSuspended()) {
1012 Locks::thread_list_lock_->AssertHeld(self);
1013 }
1014 }
1015 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1016 UnsafeLogFatalForSuspendCount(self, this);
1017 return false;
1018 }
1019
1020 uint16_t flags = kSuspendRequest;
1021 if (delta > 0 && suspend_barrier != nullptr) {
1022 uint32_t available_barrier = kMaxSuspendBarriers;
1023 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1024 if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1025 available_barrier = i;
1026 break;
1027 }
1028 }
1029 if (available_barrier == kMaxSuspendBarriers) {
1030 // No barrier spaces available, we can't add another.
1031 return false;
1032 }
1033 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1034 flags |= kActiveSuspendBarrier;
1035 }
1036
1037 tls32_.suspend_count += delta;
1038 if (for_debugger) {
1039 tls32_.debug_suspend_count += delta;
1040 }
1041
1042 if (tls32_.suspend_count == 0) {
1043 AtomicClearFlag(kSuspendRequest);
1044 } else {
1045 // Two bits might be set simultaneously.
1046 tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
1047 TriggerSuspend();
1048 }
1049 return true;
1050 }
1051
PassActiveSuspendBarriers(Thread * self)1052 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1053 // Grab the suspend_count lock and copy the current set of
1054 // barriers. Then clear the list and the flag. The ModifySuspendCount
1055 // function requires the lock so we prevent a race between setting
1056 // the kActiveSuspendBarrier flag and clearing it.
1057 AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1058 {
1059 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1060 if (!ReadFlag(kActiveSuspendBarrier)) {
1061 // quick exit test: the barriers have already been claimed - this is
1062 // possible as there may be a race to claim and it doesn't matter
1063 // who wins.
1064 // All of the callers of this function (except the SuspendAllInternal)
1065 // will first test the kActiveSuspendBarrier flag without lock. Here
1066 // double-check whether the barrier has been passed with the
1067 // suspend_count lock.
1068 return false;
1069 }
1070
1071 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1072 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1073 tlsPtr_.active_suspend_barriers[i] = nullptr;
1074 }
1075 AtomicClearFlag(kActiveSuspendBarrier);
1076 }
1077
1078 uint32_t barrier_count = 0;
1079 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1080 AtomicInteger* pending_threads = pass_barriers[i];
1081 if (pending_threads != nullptr) {
1082 bool done = false;
1083 do {
1084 int32_t cur_val = pending_threads->LoadRelaxed();
1085 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1086 // Reduce value by 1.
1087 done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
1088 #if ART_USE_FUTEXES
1089 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously.
1090 futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1091 }
1092 #endif
1093 } while (!done);
1094 ++barrier_count;
1095 }
1096 }
1097 CHECK_GT(barrier_count, 0U);
1098 return true;
1099 }
1100
ClearSuspendBarrier(AtomicInteger * target)1101 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1102 CHECK(ReadFlag(kActiveSuspendBarrier));
1103 bool clear_flag = true;
1104 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1105 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1106 if (ptr == target) {
1107 tlsPtr_.active_suspend_barriers[i] = nullptr;
1108 } else if (ptr != nullptr) {
1109 clear_flag = false;
1110 }
1111 }
1112 if (LIKELY(clear_flag)) {
1113 AtomicClearFlag(kActiveSuspendBarrier);
1114 }
1115 }
1116
RunCheckpointFunction()1117 void Thread::RunCheckpointFunction() {
1118 Closure *checkpoints[kMaxCheckpoints];
1119
1120 // Grab the suspend_count lock and copy the current set of
1121 // checkpoints. Then clear the list and the flag. The RequestCheckpoint
1122 // function will also grab this lock so we prevent a race between setting
1123 // the kCheckpointRequest flag and clearing it.
1124 {
1125 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1126 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1127 checkpoints[i] = tlsPtr_.checkpoint_functions[i];
1128 tlsPtr_.checkpoint_functions[i] = nullptr;
1129 }
1130 AtomicClearFlag(kCheckpointRequest);
1131 }
1132
1133 // Outside the lock, run all the checkpoint functions that
1134 // we collected.
1135 bool found_checkpoint = false;
1136 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1137 if (checkpoints[i] != nullptr) {
1138 ScopedTrace trace("Run checkpoint function");
1139 checkpoints[i]->Run(this);
1140 found_checkpoint = true;
1141 }
1142 }
1143 CHECK(found_checkpoint);
1144 }
1145
RequestCheckpoint(Closure * function)1146 bool Thread::RequestCheckpoint(Closure* function) {
1147 union StateAndFlags old_state_and_flags;
1148 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1149 if (old_state_and_flags.as_struct.state != kRunnable) {
1150 return false; // Fail, thread is suspended and so can't run a checkpoint.
1151 }
1152
1153 uint32_t available_checkpoint = kMaxCheckpoints;
1154 for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
1155 if (tlsPtr_.checkpoint_functions[i] == nullptr) {
1156 available_checkpoint = i;
1157 break;
1158 }
1159 }
1160 if (available_checkpoint == kMaxCheckpoints) {
1161 // No checkpoint functions available, we can't run a checkpoint
1162 return false;
1163 }
1164 tlsPtr_.checkpoint_functions[available_checkpoint] = function;
1165
1166 // Checkpoint function installed now install flag bit.
1167 // We must be runnable to request a checkpoint.
1168 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1169 union StateAndFlags new_state_and_flags;
1170 new_state_and_flags.as_int = old_state_and_flags.as_int;
1171 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1172 bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1173 old_state_and_flags.as_int, new_state_and_flags.as_int);
1174 if (UNLIKELY(!success)) {
1175 // The thread changed state before the checkpoint was installed.
1176 CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
1177 tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
1178 } else {
1179 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1180 TriggerSuspend();
1181 }
1182 return success;
1183 }
1184
GetFlipFunction()1185 Closure* Thread::GetFlipFunction() {
1186 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1187 Closure* func;
1188 do {
1189 func = atomic_func->LoadRelaxed();
1190 if (func == nullptr) {
1191 return nullptr;
1192 }
1193 } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
1194 DCHECK(func != nullptr);
1195 return func;
1196 }
1197
SetFlipFunction(Closure * function)1198 void Thread::SetFlipFunction(Closure* function) {
1199 CHECK(function != nullptr);
1200 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1201 atomic_func->StoreSequentiallyConsistent(function);
1202 }
1203
FullSuspendCheck()1204 void Thread::FullSuspendCheck() {
1205 ScopedTrace trace(__FUNCTION__);
1206 VLOG(threads) << this << " self-suspending";
1207 // Make thread appear suspended to other threads, release mutator_lock_.
1208 tls32_.suspended_at_suspend_check = true;
1209 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1210 ScopedThreadSuspension(this, kSuspended);
1211 tls32_.suspended_at_suspend_check = false;
1212 VLOG(threads) << this << " self-reviving";
1213 }
1214
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1215 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1216 std::string group_name;
1217 int priority;
1218 bool is_daemon = false;
1219 Thread* self = Thread::Current();
1220
1221 // If flip_function is not null, it means we have run a checkpoint
1222 // before the thread wakes up to execute the flip function and the
1223 // thread roots haven't been forwarded. So the following access to
1224 // the roots (opeer or methods in the frames) would be bad. Run it
1225 // here. TODO: clean up.
1226 if (thread != nullptr) {
1227 ScopedObjectAccessUnchecked soa(self);
1228 Thread* this_thread = const_cast<Thread*>(thread);
1229 Closure* flip_func = this_thread->GetFlipFunction();
1230 if (flip_func != nullptr) {
1231 flip_func->Run(this_thread);
1232 }
1233 }
1234
1235 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1236 // cause ScopedObjectAccessUnchecked to deadlock.
1237 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1238 ScopedObjectAccessUnchecked soa(self);
1239 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
1240 ->GetInt(thread->tlsPtr_.opeer);
1241 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
1242 ->GetBoolean(thread->tlsPtr_.opeer);
1243
1244 mirror::Object* thread_group =
1245 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
1246
1247 if (thread_group != nullptr) {
1248 ArtField* group_name_field =
1249 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
1250 mirror::String* group_name_string =
1251 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
1252 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1253 }
1254 } else {
1255 priority = GetNativePriority();
1256 }
1257
1258 std::string scheduler_group_name(GetSchedulerGroupName(tid));
1259 if (scheduler_group_name.empty()) {
1260 scheduler_group_name = "default";
1261 }
1262
1263 if (thread != nullptr) {
1264 os << '"' << *thread->tlsPtr_.name << '"';
1265 if (is_daemon) {
1266 os << " daemon";
1267 }
1268 os << " prio=" << priority
1269 << " tid=" << thread->GetThreadId()
1270 << " " << thread->GetState();
1271 if (thread->IsStillStarting()) {
1272 os << " (still starting up)";
1273 }
1274 os << "\n";
1275 } else {
1276 os << '"' << ::art::GetThreadName(tid) << '"'
1277 << " prio=" << priority
1278 << " (not attached)\n";
1279 }
1280
1281 if (thread != nullptr) {
1282 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1283 os << " | group=\"" << group_name << "\""
1284 << " sCount=" << thread->tls32_.suspend_count
1285 << " dsCount=" << thread->tls32_.debug_suspend_count
1286 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1287 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1288 }
1289
1290 os << " | sysTid=" << tid
1291 << " nice=" << getpriority(PRIO_PROCESS, tid)
1292 << " cgrp=" << scheduler_group_name;
1293 if (thread != nullptr) {
1294 int policy;
1295 sched_param sp;
1296 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1297 __FUNCTION__);
1298 os << " sched=" << policy << "/" << sp.sched_priority
1299 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1300 }
1301 os << "\n";
1302
1303 // Grab the scheduler stats for this thread.
1304 std::string scheduler_stats;
1305 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1306 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
1307 } else {
1308 scheduler_stats = "0 0 0";
1309 }
1310
1311 char native_thread_state = '?';
1312 int utime = 0;
1313 int stime = 0;
1314 int task_cpu = 0;
1315 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1316
1317 os << " | state=" << native_thread_state
1318 << " schedstat=( " << scheduler_stats << " )"
1319 << " utm=" << utime
1320 << " stm=" << stime
1321 << " core=" << task_cpu
1322 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1323 if (thread != nullptr) {
1324 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1325 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1326 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1327 // Dump the held mutexes.
1328 os << " | held mutexes=";
1329 for (size_t i = 0; i < kLockLevelCount; ++i) {
1330 if (i != kMonitorLock) {
1331 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1332 if (mutex != nullptr) {
1333 os << " \"" << mutex->GetName() << "\"";
1334 if (mutex->IsReaderWriterMutex()) {
1335 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1336 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1337 os << "(exclusive held)";
1338 } else {
1339 os << "(shared held)";
1340 }
1341 }
1342 }
1343 }
1344 }
1345 os << "\n";
1346 }
1347 }
1348
DumpState(std::ostream & os) const1349 void Thread::DumpState(std::ostream& os) const {
1350 Thread::DumpState(os, this, GetTid());
1351 }
1352
1353 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor1354 StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in)
1355 SHARED_REQUIRES(Locks::mutator_lock_)
1356 : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1357 os(os_in),
1358 can_allocate(can_allocate_in),
1359 last_method(nullptr),
1360 last_line_number(0),
1361 repetition_count(0),
1362 frame_count(0) {}
1363
~StackDumpVisitorart::StackDumpVisitor1364 virtual ~StackDumpVisitor() {
1365 if (frame_count == 0) {
1366 os << " (no managed stack frames)\n";
1367 }
1368 }
1369
VisitFrameart::StackDumpVisitor1370 bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
1371 ArtMethod* m = GetMethod();
1372 if (m->IsRuntimeMethod()) {
1373 return true;
1374 }
1375 m = m->GetInterfaceMethodIfProxy(sizeof(void*));
1376 const int kMaxRepetition = 3;
1377 mirror::Class* c = m->GetDeclaringClass();
1378 mirror::DexCache* dex_cache = c->GetDexCache();
1379 int line_number = -1;
1380 if (dex_cache != nullptr) { // be tolerant of bad input
1381 const DexFile& dex_file = *dex_cache->GetDexFile();
1382 line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
1383 }
1384 if (line_number == last_line_number && last_method == m) {
1385 ++repetition_count;
1386 } else {
1387 if (repetition_count >= kMaxRepetition) {
1388 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1389 }
1390 repetition_count = 0;
1391 last_line_number = line_number;
1392 last_method = m;
1393 }
1394 if (repetition_count < kMaxRepetition) {
1395 os << " at " << PrettyMethod(m, false);
1396 if (m->IsNative()) {
1397 os << "(Native method)";
1398 } else {
1399 const char* source_file(m->GetDeclaringClassSourceFile());
1400 os << "(" << (source_file != nullptr ? source_file : "unavailable")
1401 << ":" << line_number << ")";
1402 }
1403 os << "\n";
1404 if (frame_count == 0) {
1405 Monitor::DescribeWait(os, GetThread());
1406 }
1407 if (can_allocate) {
1408 // Visit locks, but do not abort on errors. This would trigger a nested abort.
1409 Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1410 }
1411 }
1412
1413 ++frame_count;
1414 return true;
1415 }
1416
DumpLockedObjectart::StackDumpVisitor1417 static void DumpLockedObject(mirror::Object* o, void* context)
1418 SHARED_REQUIRES(Locks::mutator_lock_) {
1419 std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1420 os << " - locked ";
1421 if (o == nullptr) {
1422 os << "an unknown object";
1423 } else {
1424 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1425 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1426 // Getting the identity hashcode here would result in lock inflation and suspension of the
1427 // current thread, which isn't safe if this is the only runnable thread.
1428 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1429 PrettyTypeOf(o).c_str());
1430 } else {
1431 // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1432 // we get the pretty type beofre we call IdentityHashCode.
1433 const std::string pretty_type(PrettyTypeOf(o));
1434 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1435 }
1436 }
1437 os << "\n";
1438 }
1439
1440 std::ostream& os;
1441 const bool can_allocate;
1442 ArtMethod* last_method;
1443 int last_line_number;
1444 int repetition_count;
1445 int frame_count;
1446 };
1447
ShouldShowNativeStack(const Thread * thread)1448 static bool ShouldShowNativeStack(const Thread* thread)
1449 SHARED_REQUIRES(Locks::mutator_lock_) {
1450 ThreadState state = thread->GetState();
1451
1452 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1453 if (state > kWaiting && state < kStarting) {
1454 return true;
1455 }
1456
1457 // In an Object.wait variant or Thread.sleep? That's not interesting.
1458 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1459 return false;
1460 }
1461
1462 // Threads with no managed stack frames should be shown.
1463 const ManagedStack* managed_stack = thread->GetManagedStack();
1464 if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1465 managed_stack->GetTopShadowFrame() == nullptr)) {
1466 return true;
1467 }
1468
1469 // In some other native method? That's interesting.
1470 // We don't just check kNative because native methods will be in state kSuspended if they're
1471 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1472 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1473 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1474 return current_method != nullptr && current_method->IsNative();
1475 }
1476
DumpJavaStack(std::ostream & os) const1477 void Thread::DumpJavaStack(std::ostream& os) const {
1478 // If flip_function is not null, it means we have run a checkpoint
1479 // before the thread wakes up to execute the flip function and the
1480 // thread roots haven't been forwarded. So the following access to
1481 // the roots (locks or methods in the frames) would be bad. Run it
1482 // here. TODO: clean up.
1483 {
1484 Thread* this_thread = const_cast<Thread*>(this);
1485 Closure* flip_func = this_thread->GetFlipFunction();
1486 if (flip_func != nullptr) {
1487 flip_func->Run(this_thread);
1488 }
1489 }
1490
1491 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1492 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1493 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1494 // thread.
1495 StackHandleScope<1> scope(Thread::Current());
1496 Handle<mirror::Throwable> exc;
1497 bool have_exception = false;
1498 if (IsExceptionPending()) {
1499 exc = scope.NewHandle(GetException());
1500 const_cast<Thread*>(this)->ClearException();
1501 have_exception = true;
1502 }
1503
1504 std::unique_ptr<Context> context(Context::Create());
1505 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1506 !tls32_.throwing_OutOfMemoryError);
1507 dumper.WalkStack();
1508
1509 if (have_exception) {
1510 const_cast<Thread*>(this)->SetException(exc.Get());
1511 }
1512 }
1513
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map) const1514 void Thread::DumpStack(std::ostream& os,
1515 bool dump_native_stack,
1516 BacktraceMap* backtrace_map) const {
1517 // TODO: we call this code when dying but may not have suspended the thread ourself. The
1518 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1519 // the race with the thread_suspend_count_lock_).
1520 bool dump_for_abort = (gAborting > 0);
1521 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1522 if (!kIsDebugBuild) {
1523 // We always want to dump the stack for an abort, however, there is no point dumping another
1524 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1525 safe_to_dump = (safe_to_dump || dump_for_abort);
1526 }
1527 if (safe_to_dump) {
1528 // If we're currently in native code, dump that stack before dumping the managed stack.
1529 if (dump_native_stack && (dump_for_abort || ShouldShowNativeStack(this))) {
1530 DumpKernelStack(os, GetTid(), " kernel: ", false);
1531 ArtMethod* method = GetCurrentMethod(nullptr, !dump_for_abort);
1532 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method);
1533 }
1534 DumpJavaStack(os);
1535 } else {
1536 os << "Not able to dump stack of thread that isn't suspended";
1537 }
1538 }
1539
ThreadExitCallback(void * arg)1540 void Thread::ThreadExitCallback(void* arg) {
1541 Thread* self = reinterpret_cast<Thread*>(arg);
1542 if (self->tls32_.thread_exit_check_count == 0) {
1543 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1544 "going to use a pthread_key_create destructor?): " << *self;
1545 CHECK(is_started_);
1546 #ifdef __ANDROID__
1547 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
1548 #else
1549 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1550 #endif
1551 self->tls32_.thread_exit_check_count = 1;
1552 } else {
1553 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1554 }
1555 }
1556
Startup()1557 void Thread::Startup() {
1558 CHECK(!is_started_);
1559 is_started_ = true;
1560 {
1561 // MutexLock to keep annotalysis happy.
1562 //
1563 // Note we use null for the thread because Thread::Current can
1564 // return garbage since (is_started_ == true) and
1565 // Thread::pthread_key_self_ is not yet initialized.
1566 // This was seen on glibc.
1567 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1568 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1569 *Locks::thread_suspend_count_lock_);
1570 }
1571
1572 // Allocate a TLS slot.
1573 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1574 "self key");
1575
1576 // Double-check the TLS slot allocation.
1577 if (pthread_getspecific(pthread_key_self_) != nullptr) {
1578 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1579 }
1580 }
1581
FinishStartup()1582 void Thread::FinishStartup() {
1583 Runtime* runtime = Runtime::Current();
1584 CHECK(runtime->IsStarted());
1585
1586 // Finish attaching the main thread.
1587 ScopedObjectAccess soa(Thread::Current());
1588 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1589 Thread::Current()->AssertNoPendingException();
1590
1591 Runtime::Current()->GetClassLinker()->RunRootClinits();
1592 }
1593
Shutdown()1594 void Thread::Shutdown() {
1595 CHECK(is_started_);
1596 is_started_ = false;
1597 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1598 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1599 if (resume_cond_ != nullptr) {
1600 delete resume_cond_;
1601 resume_cond_ = nullptr;
1602 }
1603 }
1604
Thread(bool daemon)1605 Thread::Thread(bool daemon)
1606 : tls32_(daemon),
1607 wait_monitor_(nullptr),
1608 interrupted_(false),
1609 can_call_into_java_(true) {
1610 wait_mutex_ = new Mutex("a thread wait mutex");
1611 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1612 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1613 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1614 tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1615
1616 static_assert((sizeof(Thread) % 4) == 0U,
1617 "art::Thread has a size which is not a multiple of 4.");
1618 tls32_.state_and_flags.as_struct.flags = 0;
1619 tls32_.state_and_flags.as_struct.state = kNative;
1620 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1621 std::fill(tlsPtr_.rosalloc_runs,
1622 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
1623 gc::allocator::RosAlloc::GetDedicatedFullRun());
1624 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1625 tlsPtr_.checkpoint_functions[i] = nullptr;
1626 }
1627 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1628 tlsPtr_.active_suspend_barriers[i] = nullptr;
1629 }
1630 tlsPtr_.flip_function = nullptr;
1631 tlsPtr_.thread_local_mark_stack = nullptr;
1632 tls32_.suspended_at_suspend_check = false;
1633 }
1634
IsStillStarting() const1635 bool Thread::IsStillStarting() const {
1636 // You might think you can check whether the state is kStarting, but for much of thread startup,
1637 // the thread is in kNative; it might also be in kVmWait.
1638 // You might think you can check whether the peer is null, but the peer is actually created and
1639 // assigned fairly early on, and needs to be.
1640 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1641 // this thread _ever_ entered kRunnable".
1642 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1643 (*tlsPtr_.name == kThreadNameDuringStartup);
1644 }
1645
AssertPendingException() const1646 void Thread::AssertPendingException() const {
1647 CHECK(IsExceptionPending()) << "Pending exception expected.";
1648 }
1649
AssertPendingOOMException() const1650 void Thread::AssertPendingOOMException() const {
1651 AssertPendingException();
1652 auto* e = GetException();
1653 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
1654 << e->Dump();
1655 }
1656
AssertNoPendingException() const1657 void Thread::AssertNoPendingException() const {
1658 if (UNLIKELY(IsExceptionPending())) {
1659 ScopedObjectAccess soa(Thread::Current());
1660 mirror::Throwable* exception = GetException();
1661 LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1662 }
1663 }
1664
AssertNoPendingExceptionForNewException(const char * msg) const1665 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1666 if (UNLIKELY(IsExceptionPending())) {
1667 ScopedObjectAccess soa(Thread::Current());
1668 mirror::Throwable* exception = GetException();
1669 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1670 << exception->Dump();
1671 }
1672 }
1673
1674 class MonitorExitVisitor : public SingleRootVisitor {
1675 public:
MonitorExitVisitor(Thread * self)1676 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
1677
1678 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)1679 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
1680 OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1681 if (self_->HoldsLock(entered_monitor)) {
1682 LOG(WARNING) << "Calling MonitorExit on object "
1683 << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")"
1684 << " left locked by native thread "
1685 << *Thread::Current() << " which is detaching";
1686 entered_monitor->MonitorExit(self_);
1687 }
1688 }
1689
1690 private:
1691 Thread* const self_;
1692 };
1693
Destroy()1694 void Thread::Destroy() {
1695 Thread* self = this;
1696 DCHECK_EQ(self, Thread::Current());
1697
1698 if (tlsPtr_.jni_env != nullptr) {
1699 {
1700 ScopedObjectAccess soa(self);
1701 MonitorExitVisitor visitor(self);
1702 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1703 tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
1704 }
1705 // Release locally held global references which releasing may require the mutator lock.
1706 if (tlsPtr_.jpeer != nullptr) {
1707 // If pthread_create fails we don't have a jni env here.
1708 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1709 tlsPtr_.jpeer = nullptr;
1710 }
1711 if (tlsPtr_.class_loader_override != nullptr) {
1712 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
1713 tlsPtr_.class_loader_override = nullptr;
1714 }
1715 }
1716
1717 if (tlsPtr_.opeer != nullptr) {
1718 ScopedObjectAccess soa(self);
1719 // We may need to call user-supplied managed code, do this before final clean-up.
1720 HandleUncaughtExceptions(soa);
1721 RemoveFromThreadGroup(soa);
1722
1723 // this.nativePeer = 0;
1724 if (Runtime::Current()->IsActiveTransaction()) {
1725 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1726 ->SetLong<true>(tlsPtr_.opeer, 0);
1727 } else {
1728 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1729 ->SetLong<false>(tlsPtr_.opeer, 0);
1730 }
1731 Dbg::PostThreadDeath(self);
1732
1733 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1734 // who is waiting.
1735 mirror::Object* lock =
1736 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1737 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1738 if (lock != nullptr) {
1739 StackHandleScope<1> hs(self);
1740 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1741 ObjectLock<mirror::Object> locker(self, h_obj);
1742 locker.NotifyAll();
1743 }
1744 tlsPtr_.opeer = nullptr;
1745 }
1746
1747 {
1748 ScopedObjectAccess soa(self);
1749 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1750 if (kUseReadBarrier) {
1751 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
1752 }
1753 }
1754 }
1755
~Thread()1756 Thread::~Thread() {
1757 CHECK(tlsPtr_.class_loader_override == nullptr);
1758 CHECK(tlsPtr_.jpeer == nullptr);
1759 CHECK(tlsPtr_.opeer == nullptr);
1760 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
1761 if (initialized) {
1762 delete tlsPtr_.jni_env;
1763 tlsPtr_.jni_env = nullptr;
1764 }
1765 CHECK_NE(GetState(), kRunnable);
1766 CHECK_NE(ReadFlag(kCheckpointRequest), true);
1767 CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1768 CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1769 CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1770 CHECK(tlsPtr_.flip_function == nullptr);
1771 CHECK_EQ(tls32_.suspended_at_suspend_check, false);
1772
1773 // Make sure we processed all deoptimization requests.
1774 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
1775 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
1776 "Not all deoptimized frames have been consumed by the debugger.";
1777
1778 // We may be deleting a still born thread.
1779 SetStateUnsafe(kTerminated);
1780
1781 delete wait_cond_;
1782 delete wait_mutex_;
1783
1784 if (tlsPtr_.long_jump_context != nullptr) {
1785 delete tlsPtr_.long_jump_context;
1786 }
1787
1788 if (initialized) {
1789 CleanupCpu();
1790 }
1791
1792 if (tlsPtr_.single_step_control != nullptr) {
1793 delete tlsPtr_.single_step_control;
1794 }
1795 delete tlsPtr_.instrumentation_stack;
1796 delete tlsPtr_.name;
1797 delete tlsPtr_.stack_trace_sample;
1798 free(tlsPtr_.nested_signal_state);
1799
1800 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
1801
1802 TearDownAlternateSignalStack();
1803 }
1804
HandleUncaughtExceptions(ScopedObjectAccess & soa)1805 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1806 if (!IsExceptionPending()) {
1807 return;
1808 }
1809 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1810 ScopedThreadStateChange tsc(this, kNative);
1811
1812 // Get and clear the exception.
1813 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1814 tlsPtr_.jni_env->ExceptionClear();
1815
1816 // If the thread has its own handler, use that.
1817 ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1818 tlsPtr_.jni_env->GetObjectField(peer.get(),
1819 WellKnownClasses::java_lang_Thread_uncaughtHandler));
1820 if (handler.get() == nullptr) {
1821 // Otherwise use the thread group's default handler.
1822 handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1823 WellKnownClasses::java_lang_Thread_group));
1824 }
1825
1826 // Call the handler.
1827 tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1828 WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException,
1829 peer.get(), exception.get());
1830
1831 // If the handler threw, clear that exception too.
1832 tlsPtr_.jni_env->ExceptionClear();
1833 }
1834
RemoveFromThreadGroup(ScopedObjectAccess & soa)1835 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1836 // this.group.removeThread(this);
1837 // group can be null if we're in the compiler or a test.
1838 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1839 ->GetObject(tlsPtr_.opeer);
1840 if (ogroup != nullptr) {
1841 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1842 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1843 ScopedThreadStateChange tsc(soa.Self(), kNative);
1844 tlsPtr_.jni_env->CallVoidMethod(group.get(),
1845 WellKnownClasses::java_lang_ThreadGroup_removeThread,
1846 peer.get());
1847 }
1848 }
1849
NumHandleReferences()1850 size_t Thread::NumHandleReferences() {
1851 size_t count = 0;
1852 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) {
1853 count += cur->NumberOfReferences();
1854 }
1855 return count;
1856 }
1857
HandleScopeContains(jobject obj) const1858 bool Thread::HandleScopeContains(jobject obj) const {
1859 StackReference<mirror::Object>* hs_entry =
1860 reinterpret_cast<StackReference<mirror::Object>*>(obj);
1861 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
1862 if (cur->Contains(hs_entry)) {
1863 return true;
1864 }
1865 }
1866 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1867 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1868 }
1869
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)1870 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
1871 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
1872 visitor, RootInfo(kRootNativeStack, thread_id));
1873 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1874 for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) {
1875 // GetReference returns a pointer to the stack reference within the handle scope. If this
1876 // needs to be updated, it will be done by the root visitor.
1877 buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference());
1878 }
1879 }
1880 }
1881
DecodeJObject(jobject obj) const1882 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1883 if (obj == nullptr) {
1884 return nullptr;
1885 }
1886 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1887 IndirectRefKind kind = GetIndirectRefKind(ref);
1888 mirror::Object* result;
1889 bool expect_null = false;
1890 // The "kinds" below are sorted by the frequency we expect to encounter them.
1891 if (kind == kLocal) {
1892 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1893 // Local references do not need a read barrier.
1894 result = locals.Get<kWithoutReadBarrier>(ref);
1895 } else if (kind == kHandleScopeOrInvalid) {
1896 // TODO: make stack indirect reference table lookup more efficient.
1897 // Check if this is a local reference in the handle scope.
1898 if (LIKELY(HandleScopeContains(obj))) {
1899 // Read from handle scope.
1900 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1901 VerifyObject(result);
1902 } else {
1903 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
1904 expect_null = true;
1905 result = nullptr;
1906 }
1907 } else if (kind == kGlobal) {
1908 result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
1909 } else {
1910 DCHECK_EQ(kind, kWeakGlobal);
1911 result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1912 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
1913 // This is a special case where it's okay to return null.
1914 expect_null = true;
1915 result = nullptr;
1916 }
1917 }
1918
1919 if (UNLIKELY(!expect_null && result == nullptr)) {
1920 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
1921 ToStr<IndirectRefKind>(kind).c_str(), obj);
1922 }
1923 return result;
1924 }
1925
IsJWeakCleared(jweak obj) const1926 bool Thread::IsJWeakCleared(jweak obj) const {
1927 CHECK(obj != nullptr);
1928 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1929 IndirectRefKind kind = GetIndirectRefKind(ref);
1930 CHECK_EQ(kind, kWeakGlobal);
1931 return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
1932 }
1933
1934 // Implements java.lang.Thread.interrupted.
Interrupted()1935 bool Thread::Interrupted() {
1936 MutexLock mu(Thread::Current(), *wait_mutex_);
1937 bool interrupted = IsInterruptedLocked();
1938 SetInterruptedLocked(false);
1939 return interrupted;
1940 }
1941
1942 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1943 bool Thread::IsInterrupted() {
1944 MutexLock mu(Thread::Current(), *wait_mutex_);
1945 return IsInterruptedLocked();
1946 }
1947
Interrupt(Thread * self)1948 void Thread::Interrupt(Thread* self) {
1949 MutexLock mu(self, *wait_mutex_);
1950 if (interrupted_) {
1951 return;
1952 }
1953 interrupted_ = true;
1954 NotifyLocked(self);
1955 }
1956
Notify()1957 void Thread::Notify() {
1958 Thread* self = Thread::Current();
1959 MutexLock mu(self, *wait_mutex_);
1960 NotifyLocked(self);
1961 }
1962
NotifyLocked(Thread * self)1963 void Thread::NotifyLocked(Thread* self) {
1964 if (wait_monitor_ != nullptr) {
1965 wait_cond_->Signal(self);
1966 }
1967 }
1968
SetClassLoaderOverride(jobject class_loader_override)1969 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
1970 if (tlsPtr_.class_loader_override != nullptr) {
1971 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
1972 }
1973 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
1974 }
1975
1976 class CountStackDepthVisitor : public StackVisitor {
1977 public:
1978 explicit CountStackDepthVisitor(Thread* thread)
SHARED_REQUIRES(Locks::mutator_lock_)1979 SHARED_REQUIRES(Locks::mutator_lock_)
1980 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1981 depth_(0), skip_depth_(0), skipping_(true) {}
1982
VisitFrame()1983 bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
1984 // We want to skip frames up to and including the exception's constructor.
1985 // Note we also skip the frame if it doesn't have a method (namely the callee
1986 // save frame)
1987 ArtMethod* m = GetMethod();
1988 if (skipping_ && !m->IsRuntimeMethod() &&
1989 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1990 skipping_ = false;
1991 }
1992 if (!skipping_) {
1993 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
1994 ++depth_;
1995 }
1996 } else {
1997 ++skip_depth_;
1998 }
1999 return true;
2000 }
2001
GetDepth() const2002 int GetDepth() const {
2003 return depth_;
2004 }
2005
GetSkipDepth() const2006 int GetSkipDepth() const {
2007 return skip_depth_;
2008 }
2009
2010 private:
2011 uint32_t depth_;
2012 uint32_t skip_depth_;
2013 bool skipping_;
2014
2015 DISALLOW_COPY_AND_ASSIGN(CountStackDepthVisitor);
2016 };
2017
2018 template<bool kTransactionActive>
2019 class BuildInternalStackTraceVisitor : public StackVisitor {
2020 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2021 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2022 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2023 self_(self),
2024 skip_depth_(skip_depth),
2025 count_(0),
2026 trace_(nullptr),
2027 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2028
Init(int depth)2029 bool Init(int depth) SHARED_REQUIRES(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2030 // Allocate method trace as an object array where the first element is a pointer array that
2031 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2032 // class of the ArtMethod pointers.
2033 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2034 StackHandleScope<1> hs(self_);
2035 mirror::Class* array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2036 // The first element is the methods and dex pc array, the other elements are declaring classes
2037 // for the methods to ensure classes in the stack trace don't get unloaded.
2038 Handle<mirror::ObjectArray<mirror::Object>> trace(
2039 hs.NewHandle(
2040 mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2041 if (trace.Get() == nullptr) {
2042 // Acquire uninterruptible_ in all paths.
2043 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2044 self_->AssertPendingOOMException();
2045 return false;
2046 }
2047 mirror::PointerArray* methods_and_pcs = class_linker->AllocPointerArray(self_, depth * 2);
2048 const char* last_no_suspend_cause =
2049 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2050 if (methods_and_pcs == nullptr) {
2051 self_->AssertPendingOOMException();
2052 return false;
2053 }
2054 trace->Set(0, methods_and_pcs);
2055 trace_ = trace.Get();
2056 // If We are called from native, use non-transactional mode.
2057 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2058 return true;
2059 }
2060
RELEASE(Roles::uninterruptible_)2061 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2062 self_->EndAssertNoThreadSuspension(nullptr);
2063 }
2064
VisitFrame()2065 bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
2066 if (trace_ == nullptr) {
2067 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2068 }
2069 if (skip_depth_ > 0) {
2070 skip_depth_--;
2071 return true;
2072 }
2073 ArtMethod* m = GetMethod();
2074 if (m->IsRuntimeMethod()) {
2075 return true; // Ignore runtime frames (in particular callee save).
2076 }
2077 mirror::PointerArray* trace_methods_and_pcs = GetTraceMethodsAndPCs();
2078 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, m, pointer_size_);
2079 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2080 trace_methods_and_pcs->GetLength() / 2 + count_,
2081 m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(),
2082 pointer_size_);
2083 // Save the declaring class of the method to ensure that the declaring classes of the methods
2084 // do not get unloaded while the stack trace is live.
2085 trace_->Set(count_ + 1, m->GetDeclaringClass());
2086 ++count_;
2087 return true;
2088 }
2089
GetTraceMethodsAndPCs() const2090 mirror::PointerArray* GetTraceMethodsAndPCs() const SHARED_REQUIRES(Locks::mutator_lock_) {
2091 return down_cast<mirror::PointerArray*>(trace_->Get(0));
2092 }
2093
GetInternalStackTrace() const2094 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2095 return trace_;
2096 }
2097
2098 private:
2099 Thread* const self_;
2100 // How many more frames to skip.
2101 int32_t skip_depth_;
2102 // Current position down stack trace.
2103 uint32_t count_;
2104 // An object array where the first element is a pointer array that contains the ArtMethod
2105 // pointers on the stack and dex PCs. The rest of the elements are the declaring
2106 // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2107 // the i'th frame.
2108 mirror::ObjectArray<mirror::Object>* trace_;
2109 // For cross compilation.
2110 const size_t pointer_size_;
2111
2112 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2113 };
2114
2115 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2116 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2117 // Compute depth of stack
2118 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
2119 count_visitor.WalkStack();
2120 int32_t depth = count_visitor.GetDepth();
2121 int32_t skip_depth = count_visitor.GetSkipDepth();
2122
2123 // Build internal stack trace.
2124 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2125 const_cast<Thread*>(this),
2126 skip_depth);
2127 if (!build_trace_visitor.Init(depth)) {
2128 return nullptr; // Allocation failed.
2129 }
2130 build_trace_visitor.WalkStack();
2131 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2132 if (kIsDebugBuild) {
2133 mirror::PointerArray* trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2134 // Second half of trace_methods is dex PCs.
2135 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2136 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2137 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2138 CHECK(method != nullptr);
2139 }
2140 }
2141 return soa.AddLocalReference<jobject>(trace);
2142 }
2143 template jobject Thread::CreateInternalStackTrace<false>(
2144 const ScopedObjectAccessAlreadyRunnable& soa) const;
2145 template jobject Thread::CreateInternalStackTrace<true>(
2146 const ScopedObjectAccessAlreadyRunnable& soa) const;
2147
IsExceptionThrownByCurrentMethod(mirror::Throwable * exception) const2148 bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const {
2149 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
2150 count_visitor.WalkStack();
2151 return count_visitor.GetDepth() == exception->GetStackDepth();
2152 }
2153
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2154 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2155 const ScopedObjectAccessAlreadyRunnable& soa,
2156 jobject internal,
2157 jobjectArray output_array,
2158 int* stack_depth) {
2159 // Decode the internal stack trace into the depth, method trace and PC trace.
2160 // Subtract one for the methods and PC trace.
2161 int32_t depth = soa.Decode<mirror::Array*>(internal)->GetLength() - 1;
2162 DCHECK_GE(depth, 0);
2163
2164 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2165
2166 jobjectArray result;
2167
2168 if (output_array != nullptr) {
2169 // Reuse the array we were given.
2170 result = output_array;
2171 // ...adjusting the number of frames we'll write to not exceed the array length.
2172 const int32_t traces_length =
2173 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
2174 depth = std::min(depth, traces_length);
2175 } else {
2176 // Create java_trace array and place in local reference table
2177 mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2178 class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2179 if (java_traces == nullptr) {
2180 return nullptr;
2181 }
2182 result = soa.AddLocalReference<jobjectArray>(java_traces);
2183 }
2184
2185 if (stack_depth != nullptr) {
2186 *stack_depth = depth;
2187 }
2188
2189 for (int32_t i = 0; i < depth; ++i) {
2190 mirror::ObjectArray<mirror::Object>* decoded_traces =
2191 soa.Decode<mirror::Object*>(internal)->AsObjectArray<mirror::Object>();
2192 // Methods and dex PC trace is element 0.
2193 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2194 mirror::PointerArray* const method_trace =
2195 down_cast<mirror::PointerArray*>(decoded_traces->Get(0));
2196 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2197 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, sizeof(void*));
2198 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2199 i + method_trace->GetLength() / 2, sizeof(void*));
2200 int32_t line_number;
2201 StackHandleScope<3> hs(soa.Self());
2202 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2203 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2204 if (method->IsProxyMethod()) {
2205 line_number = -1;
2206 class_name_object.Assign(method->GetDeclaringClass()->GetName());
2207 // source_name_object intentionally left null for proxy methods
2208 } else {
2209 line_number = method->GetLineNumFromDexPC(dex_pc);
2210 // Allocate element, potentially triggering GC
2211 // TODO: reuse class_name_object via Class::name_?
2212 const char* descriptor = method->GetDeclaringClassDescriptor();
2213 CHECK(descriptor != nullptr);
2214 std::string class_name(PrettyDescriptor(descriptor));
2215 class_name_object.Assign(
2216 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2217 if (class_name_object.Get() == nullptr) {
2218 soa.Self()->AssertPendingOOMException();
2219 return nullptr;
2220 }
2221 const char* source_file = method->GetDeclaringClassSourceFile();
2222 if (source_file != nullptr) {
2223 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2224 if (source_name_object.Get() == nullptr) {
2225 soa.Self()->AssertPendingOOMException();
2226 return nullptr;
2227 }
2228 }
2229 }
2230 const char* method_name = method->GetInterfaceMethodIfProxy(sizeof(void*))->GetName();
2231 CHECK(method_name != nullptr);
2232 Handle<mirror::String> method_name_object(
2233 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2234 if (method_name_object.Get() == nullptr) {
2235 return nullptr;
2236 }
2237 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
2238 soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
2239 if (obj == nullptr) {
2240 return nullptr;
2241 }
2242 // We are called from native: use non-transactional mode.
2243 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
2244 }
2245 return result;
2246 }
2247
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)2248 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2249 va_list args;
2250 va_start(args, fmt);
2251 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2252 va_end(args);
2253 }
2254
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)2255 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2256 const char* fmt, va_list ap) {
2257 std::string msg;
2258 StringAppendV(&msg, fmt, ap);
2259 ThrowNewException(exception_class_descriptor, msg.c_str());
2260 }
2261
ThrowNewException(const char * exception_class_descriptor,const char * msg)2262 void Thread::ThrowNewException(const char* exception_class_descriptor,
2263 const char* msg) {
2264 // Callers should either clear or call ThrowNewWrappedException.
2265 AssertNoPendingExceptionForNewException(msg);
2266 ThrowNewWrappedException(exception_class_descriptor, msg);
2267 }
2268
GetCurrentClassLoader(Thread * self)2269 static mirror::ClassLoader* GetCurrentClassLoader(Thread* self)
2270 SHARED_REQUIRES(Locks::mutator_lock_) {
2271 ArtMethod* method = self->GetCurrentMethod(nullptr);
2272 return method != nullptr
2273 ? method->GetDeclaringClass()->GetClassLoader()
2274 : nullptr;
2275 }
2276
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)2277 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2278 const char* msg) {
2279 DCHECK_EQ(this, Thread::Current());
2280 ScopedObjectAccessUnchecked soa(this);
2281 StackHandleScope<3> hs(soa.Self());
2282 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
2283 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
2284 ClearException();
2285 Runtime* runtime = Runtime::Current();
2286 auto* cl = runtime->GetClassLinker();
2287 Handle<mirror::Class> exception_class(
2288 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
2289 if (UNLIKELY(exception_class.Get() == nullptr)) {
2290 CHECK(IsExceptionPending());
2291 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
2292 return;
2293 }
2294
2295 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
2296 true))) {
2297 DCHECK(IsExceptionPending());
2298 return;
2299 }
2300 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
2301 Handle<mirror::Throwable> exception(
2302 hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
2303
2304 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
2305 if (exception.Get() == nullptr) {
2306 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2307 return;
2308 }
2309
2310 // Choose an appropriate constructor and set up the arguments.
2311 const char* signature;
2312 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
2313 if (msg != nullptr) {
2314 // Ensure we remember this and the method over the String allocation.
2315 msg_string.reset(
2316 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
2317 if (UNLIKELY(msg_string.get() == nullptr)) {
2318 CHECK(IsExceptionPending()); // OOME.
2319 return;
2320 }
2321 if (cause.get() == nullptr) {
2322 signature = "(Ljava/lang/String;)V";
2323 } else {
2324 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
2325 }
2326 } else {
2327 if (cause.get() == nullptr) {
2328 signature = "()V";
2329 } else {
2330 signature = "(Ljava/lang/Throwable;)V";
2331 }
2332 }
2333 ArtMethod* exception_init_method =
2334 exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
2335
2336 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
2337 << PrettyDescriptor(exception_class_descriptor);
2338
2339 if (UNLIKELY(!runtime->IsStarted())) {
2340 // Something is trying to throw an exception without a started runtime, which is the common
2341 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
2342 // the exception fields directly.
2343 if (msg != nullptr) {
2344 exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
2345 }
2346 if (cause.get() != nullptr) {
2347 exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
2348 }
2349 ScopedLocalRef<jobject> trace(GetJniEnv(),
2350 Runtime::Current()->IsActiveTransaction()
2351 ? CreateInternalStackTrace<true>(soa)
2352 : CreateInternalStackTrace<false>(soa));
2353 if (trace.get() != nullptr) {
2354 exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
2355 }
2356 SetException(exception.Get());
2357 } else {
2358 jvalue jv_args[2];
2359 size_t i = 0;
2360
2361 if (msg != nullptr) {
2362 jv_args[i].l = msg_string.get();
2363 ++i;
2364 }
2365 if (cause.get() != nullptr) {
2366 jv_args[i].l = cause.get();
2367 ++i;
2368 }
2369 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
2370 InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args);
2371 if (LIKELY(!IsExceptionPending())) {
2372 SetException(exception.Get());
2373 }
2374 }
2375 }
2376
ThrowOutOfMemoryError(const char * msg)2377 void Thread::ThrowOutOfMemoryError(const char* msg) {
2378 LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
2379 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2380 if (!tls32_.throwing_OutOfMemoryError) {
2381 tls32_.throwing_OutOfMemoryError = true;
2382 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2383 tls32_.throwing_OutOfMemoryError = false;
2384 } else {
2385 Dump(LOG(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
2386 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2387 }
2388 }
2389
CurrentFromGdb()2390 Thread* Thread::CurrentFromGdb() {
2391 return Thread::Current();
2392 }
2393
DumpFromGdb() const2394 void Thread::DumpFromGdb() const {
2395 std::ostringstream ss;
2396 Dump(ss);
2397 std::string str(ss.str());
2398 // log to stderr for debugging command line processes
2399 std::cerr << str;
2400 #ifdef __ANDROID__
2401 // log to logcat for debugging frameworks processes
2402 LOG(INFO) << str;
2403 #endif
2404 }
2405
2406 // Explicitly instantiate 32 and 64bit thread offset dumping support.
2407 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
2408 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
2409
2410 template<size_t ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)2411 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2412 #define DO_THREAD_OFFSET(x, y) \
2413 if (offset == x.Uint32Value()) { \
2414 os << y; \
2415 return; \
2416 }
2417 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2418 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2419 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2420 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2421 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2422 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2423 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2424 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2425 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2426 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2427 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2428 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2429 #undef DO_THREAD_OFFSET
2430
2431 #define JNI_ENTRY_POINT_INFO(x) \
2432 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2433 os << #x; \
2434 return; \
2435 }
2436 JNI_ENTRY_POINT_INFO(pDlsymLookup)
2437 #undef JNI_ENTRY_POINT_INFO
2438
2439 #define QUICK_ENTRY_POINT_INFO(x) \
2440 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2441 os << #x; \
2442 return; \
2443 }
2444 QUICK_ENTRY_POINT_INFO(pAllocArray)
2445 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2446 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
2447 QUICK_ENTRY_POINT_INFO(pAllocObject)
2448 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2449 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2450 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
2451 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
2452 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
2453 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2454 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2455 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2456 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2457 QUICK_ENTRY_POINT_INFO(pCheckCast)
2458 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2459 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2460 QUICK_ENTRY_POINT_INFO(pInitializeType)
2461 QUICK_ENTRY_POINT_INFO(pResolveString)
2462 QUICK_ENTRY_POINT_INFO(pSet8Instance)
2463 QUICK_ENTRY_POINT_INFO(pSet8Static)
2464 QUICK_ENTRY_POINT_INFO(pSet16Instance)
2465 QUICK_ENTRY_POINT_INFO(pSet16Static)
2466 QUICK_ENTRY_POINT_INFO(pSet32Instance)
2467 QUICK_ENTRY_POINT_INFO(pSet32Static)
2468 QUICK_ENTRY_POINT_INFO(pSet64Instance)
2469 QUICK_ENTRY_POINT_INFO(pSet64Static)
2470 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2471 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2472 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2473 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2474 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2475 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2476 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2477 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2478 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2479 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2480 QUICK_ENTRY_POINT_INFO(pGet32Instance)
2481 QUICK_ENTRY_POINT_INFO(pGet32Static)
2482 QUICK_ENTRY_POINT_INFO(pGet64Instance)
2483 QUICK_ENTRY_POINT_INFO(pGet64Static)
2484 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2485 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2486 QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
2487 QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
2488 QUICK_ENTRY_POINT_INFO(pAputObject)
2489 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
2490 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2491 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2492 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2493 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2494 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2495 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2496 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2497 QUICK_ENTRY_POINT_INFO(pLockObject)
2498 QUICK_ENTRY_POINT_INFO(pUnlockObject)
2499 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2500 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2501 QUICK_ENTRY_POINT_INFO(pCmplDouble)
2502 QUICK_ENTRY_POINT_INFO(pCmplFloat)
2503 QUICK_ENTRY_POINT_INFO(pCos)
2504 QUICK_ENTRY_POINT_INFO(pSin)
2505 QUICK_ENTRY_POINT_INFO(pAcos)
2506 QUICK_ENTRY_POINT_INFO(pAsin)
2507 QUICK_ENTRY_POINT_INFO(pAtan)
2508 QUICK_ENTRY_POINT_INFO(pAtan2)
2509 QUICK_ENTRY_POINT_INFO(pCbrt)
2510 QUICK_ENTRY_POINT_INFO(pCosh)
2511 QUICK_ENTRY_POINT_INFO(pExp)
2512 QUICK_ENTRY_POINT_INFO(pExpm1)
2513 QUICK_ENTRY_POINT_INFO(pHypot)
2514 QUICK_ENTRY_POINT_INFO(pLog)
2515 QUICK_ENTRY_POINT_INFO(pLog10)
2516 QUICK_ENTRY_POINT_INFO(pNextAfter)
2517 QUICK_ENTRY_POINT_INFO(pSinh)
2518 QUICK_ENTRY_POINT_INFO(pTan)
2519 QUICK_ENTRY_POINT_INFO(pTanh)
2520 QUICK_ENTRY_POINT_INFO(pFmod)
2521 QUICK_ENTRY_POINT_INFO(pL2d)
2522 QUICK_ENTRY_POINT_INFO(pFmodf)
2523 QUICK_ENTRY_POINT_INFO(pL2f)
2524 QUICK_ENTRY_POINT_INFO(pD2iz)
2525 QUICK_ENTRY_POINT_INFO(pF2iz)
2526 QUICK_ENTRY_POINT_INFO(pIdivmod)
2527 QUICK_ENTRY_POINT_INFO(pD2l)
2528 QUICK_ENTRY_POINT_INFO(pF2l)
2529 QUICK_ENTRY_POINT_INFO(pLdiv)
2530 QUICK_ENTRY_POINT_INFO(pLmod)
2531 QUICK_ENTRY_POINT_INFO(pLmul)
2532 QUICK_ENTRY_POINT_INFO(pShlLong)
2533 QUICK_ENTRY_POINT_INFO(pShrLong)
2534 QUICK_ENTRY_POINT_INFO(pUshrLong)
2535 QUICK_ENTRY_POINT_INFO(pIndexOf)
2536 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2537 QUICK_ENTRY_POINT_INFO(pMemcpy)
2538 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2539 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2540 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2541 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2542 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2543 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2544 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2545 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2546 QUICK_ENTRY_POINT_INFO(pTestSuspend)
2547 QUICK_ENTRY_POINT_INFO(pDeliverException)
2548 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2549 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2550 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
2551 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
2552 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
2553 QUICK_ENTRY_POINT_INFO(pDeoptimize)
2554 QUICK_ENTRY_POINT_INFO(pA64Load)
2555 QUICK_ENTRY_POINT_INFO(pA64Store)
2556 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
2557 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
2558 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
2559 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
2560 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
2561 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
2562 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
2563 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
2564 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
2565 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
2566 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
2567 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
2568 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
2569 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
2570 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
2571 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
2572 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
2573 QUICK_ENTRY_POINT_INFO(pReadBarrierMark)
2574 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
2575 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
2576 #undef QUICK_ENTRY_POINT_INFO
2577
2578 os << offset;
2579 }
2580
QuickDeliverException()2581 void Thread::QuickDeliverException() {
2582 // Get exception from thread.
2583 mirror::Throwable* exception = GetException();
2584 CHECK(exception != nullptr);
2585 bool is_deoptimization = (exception == GetDeoptimizationException());
2586 if (!is_deoptimization) {
2587 // This is a real exception: let the instrumentation know about it.
2588 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
2589 if (instrumentation->HasExceptionCaughtListeners() &&
2590 IsExceptionThrownByCurrentMethod(exception)) {
2591 // Instrumentation may cause GC so keep the exception object safe.
2592 StackHandleScope<1> hs(this);
2593 HandleWrapper<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
2594 instrumentation->ExceptionCaughtEvent(this, exception);
2595 }
2596 // Does instrumentation need to deoptimize the stack?
2597 // Note: we do this *after* reporting the exception to instrumentation in case it
2598 // now requires deoptimization. It may happen if a debugger is attached and requests
2599 // new events (single-step, breakpoint, ...) when the exception is reported.
2600 is_deoptimization = Dbg::IsForcedInterpreterNeededForException(this);
2601 if (is_deoptimization) {
2602 // Save the exception into the deoptimization context so it can be restored
2603 // before entering the interpreter.
2604 PushDeoptimizationContext(
2605 JValue(), /*is_reference */ false, /* from_code */ false, exception);
2606 }
2607 }
2608 // Don't leave exception visible while we try to find the handler, which may cause class
2609 // resolution.
2610 ClearException();
2611 QuickExceptionHandler exception_handler(this, is_deoptimization);
2612 if (is_deoptimization) {
2613 exception_handler.DeoptimizeStack();
2614 } else {
2615 exception_handler.FindCatch(exception);
2616 }
2617 exception_handler.UpdateInstrumentationStack();
2618 exception_handler.DoLongJump();
2619 }
2620
GetLongJumpContext()2621 Context* Thread::GetLongJumpContext() {
2622 Context* result = tlsPtr_.long_jump_context;
2623 if (result == nullptr) {
2624 result = Context::Create();
2625 } else {
2626 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
2627 result->Reset();
2628 }
2629 return result;
2630 }
2631
2632 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
2633 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
2634 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL2635 CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
2636 SHARED_REQUIRES(Locks::mutator_lock_)
2637 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2638 this_object_(nullptr),
2639 method_(nullptr),
2640 dex_pc_(0),
2641 abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL2642 bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
2643 ArtMethod* m = GetMethod();
2644 if (m->IsRuntimeMethod()) {
2645 // Continue if this is a runtime method.
2646 return true;
2647 }
2648 if (context_ != nullptr) {
2649 this_object_ = GetThisObject();
2650 }
2651 method_ = m;
2652 dex_pc_ = GetDexPc(abort_on_error_);
2653 return false;
2654 }
2655 mirror::Object* this_object_;
2656 ArtMethod* method_;
2657 uint32_t dex_pc_;
2658 const bool abort_on_error_;
2659 };
2660
GetCurrentMethod(uint32_t * dex_pc,bool abort_on_error) const2661 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2662 CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2663 visitor.WalkStack(false);
2664 if (dex_pc != nullptr) {
2665 *dex_pc = visitor.dex_pc_;
2666 }
2667 return visitor.method_;
2668 }
2669
HoldsLock(mirror::Object * object) const2670 bool Thread::HoldsLock(mirror::Object* object) const {
2671 if (object == nullptr) {
2672 return false;
2673 }
2674 return object->GetLockOwnerThreadId() == GetThreadId();
2675 }
2676
2677 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2678 template <typename RootVisitor>
2679 class ReferenceMapVisitor : public StackVisitor {
2680 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)2681 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
2682 SHARED_REQUIRES(Locks::mutator_lock_)
2683 // We are visiting the references in compiled frames, so we do not need
2684 // to know the inlined frames.
2685 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2686 visitor_(visitor) {}
2687
VisitFrame()2688 bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
2689 if (false) {
2690 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2691 << StringPrintf("@ PC:%04x", GetDexPc());
2692 }
2693 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2694 if (shadow_frame != nullptr) {
2695 VisitShadowFrame(shadow_frame);
2696 } else {
2697 VisitQuickFrame();
2698 }
2699 return true;
2700 }
2701
VisitShadowFrame(ShadowFrame * shadow_frame)2702 void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_REQUIRES(Locks::mutator_lock_) {
2703 ArtMethod* m = shadow_frame->GetMethod();
2704 VisitDeclaringClass(m);
2705 DCHECK(m != nullptr);
2706 size_t num_regs = shadow_frame->NumberOfVRegs();
2707 DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
2708 // handle scope for JNI or References for interpreter.
2709 for (size_t reg = 0; reg < num_regs; ++reg) {
2710 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2711 if (ref != nullptr) {
2712 mirror::Object* new_ref = ref;
2713 visitor_(&new_ref, reg, this);
2714 if (new_ref != ref) {
2715 shadow_frame->SetVRegReference(reg, new_ref);
2716 }
2717 }
2718 }
2719 // Mark lock count map required for structured locking checks.
2720 shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
2721 }
2722
2723 private:
2724 // Visiting the declaring class is necessary so that we don't unload the class of a method that
2725 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
2726 // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)2727 void VisitDeclaringClass(ArtMethod* method)
2728 SHARED_REQUIRES(Locks::mutator_lock_)
2729 NO_THREAD_SAFETY_ANALYSIS {
2730 mirror::Class* klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
2731 // klass can be null for runtime methods.
2732 if (klass != nullptr) {
2733 if (kVerifyImageObjectsMarked) {
2734 gc::Heap* const heap = Runtime::Current()->GetHeap();
2735 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
2736 /*fail_ok*/true);
2737 if (space != nullptr && space->IsImageSpace()) {
2738 bool failed = false;
2739 if (!space->GetLiveBitmap()->Test(klass)) {
2740 failed = true;
2741 LOG(INTERNAL_FATAL) << "Unmarked object in image " << *space;
2742 } else if (!heap->GetLiveBitmap()->Test(klass)) {
2743 failed = true;
2744 LOG(INTERNAL_FATAL) << "Unmarked object in image through live bitmap " << *space;
2745 }
2746 if (failed) {
2747 GetThread()->Dump(LOG(INTERNAL_FATAL));
2748 space->AsImageSpace()->DumpSections(LOG(INTERNAL_FATAL));
2749 LOG(INTERNAL_FATAL) << "Method@" << method->GetDexMethodIndex() << ":" << method
2750 << " klass@" << klass;
2751 // Pretty info last in case it crashes.
2752 LOG(FATAL) << "Method " << PrettyMethod(method) << " klass " << PrettyClass(klass);
2753 }
2754 }
2755 }
2756 mirror::Object* new_ref = klass;
2757 visitor_(&new_ref, -1, this);
2758 if (new_ref != klass) {
2759 method->CASDeclaringClass(klass, new_ref->AsClass());
2760 }
2761 }
2762 }
2763
VisitQuickFrame()2764 void VisitQuickFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
2765 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
2766 DCHECK(cur_quick_frame != nullptr);
2767 ArtMethod* m = *cur_quick_frame;
2768 VisitDeclaringClass(m);
2769
2770 // Process register map (which native and runtime methods don't have)
2771 if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
2772 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
2773 DCHECK(method_header->IsOptimized());
2774 auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
2775 reinterpret_cast<uintptr_t>(cur_quick_frame));
2776 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
2777 CodeInfo code_info = method_header->GetOptimizedCodeInfo();
2778 CodeInfoEncoding encoding = code_info.ExtractEncoding();
2779 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
2780 DCHECK(map.IsValid());
2781 // Visit stack entries that hold pointers.
2782 size_t number_of_bits = map.GetNumberOfStackMaskBits(encoding.stack_map_encoding);
2783 for (size_t i = 0; i < number_of_bits; ++i) {
2784 if (map.GetStackMaskBit(encoding.stack_map_encoding, i)) {
2785 auto* ref_addr = vreg_base + i;
2786 mirror::Object* ref = ref_addr->AsMirrorPtr();
2787 if (ref != nullptr) {
2788 mirror::Object* new_ref = ref;
2789 visitor_(&new_ref, -1, this);
2790 if (ref != new_ref) {
2791 ref_addr->Assign(new_ref);
2792 }
2793 }
2794 }
2795 }
2796 // Visit callee-save registers that hold pointers.
2797 uint32_t register_mask = map.GetRegisterMask(encoding.stack_map_encoding);
2798 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
2799 if (register_mask & (1 << i)) {
2800 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
2801 if (*ref_addr != nullptr) {
2802 visitor_(ref_addr, -1, this);
2803 }
2804 }
2805 }
2806 }
2807 }
2808
2809 // Visitor for when we visit a root.
2810 RootVisitor& visitor_;
2811 };
2812
2813 class RootCallbackVisitor {
2814 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)2815 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
2816
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const2817 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
2818 SHARED_REQUIRES(Locks::mutator_lock_) {
2819 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
2820 }
2821
2822 private:
2823 RootVisitor* const visitor_;
2824 const uint32_t tid_;
2825 };
2826
VisitRoots(RootVisitor * visitor)2827 void Thread::VisitRoots(RootVisitor* visitor) {
2828 const uint32_t thread_id = GetThreadId();
2829 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
2830 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2831 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
2832 RootInfo(kRootNativeStack, thread_id));
2833 }
2834 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
2835 tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
2836 tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
2837 HandleScopeVisitRoots(visitor, thread_id);
2838 if (tlsPtr_.debug_invoke_req != nullptr) {
2839 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
2840 }
2841 // Visit roots for deoptimization.
2842 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
2843 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2844 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2845 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
2846 record != nullptr;
2847 record = record->GetLink()) {
2848 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
2849 shadow_frame != nullptr;
2850 shadow_frame = shadow_frame->GetLink()) {
2851 mapper.VisitShadowFrame(shadow_frame);
2852 }
2853 }
2854 }
2855 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
2856 record != nullptr;
2857 record = record->GetLink()) {
2858 if (record->IsReference()) {
2859 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
2860 RootInfo(kRootThreadObject, thread_id));
2861 }
2862 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
2863 RootInfo(kRootThreadObject, thread_id));
2864 }
2865 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
2866 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2867 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2868 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
2869 record != nullptr;
2870 record = record->GetNext()) {
2871 mapper.VisitShadowFrame(record->GetShadowFrame());
2872 }
2873 }
2874 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
2875 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
2876 }
2877 // Visit roots on this thread's stack
2878 Context* context = GetLongJumpContext();
2879 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2880 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
2881 mapper.WalkStack();
2882 ReleaseLongJumpContext(context);
2883 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2884 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
2885 }
2886 }
2887
2888 class VerifyRootVisitor : public SingleRootVisitor {
2889 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)2890 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
2891 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
2892 VerifyObject(root);
2893 }
2894 };
2895
VerifyStackImpl()2896 void Thread::VerifyStackImpl() {
2897 VerifyRootVisitor visitor;
2898 std::unique_ptr<Context> context(Context::Create());
2899 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
2900 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
2901 mapper.WalkStack();
2902 }
2903
2904 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2905 void Thread::SetStackEndForStackOverflow() {
2906 // During stack overflow we allow use of the full stack.
2907 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2908 // However, we seem to have already extended to use the full stack.
2909 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2910 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2911 DumpStack(LOG(ERROR));
2912 LOG(FATAL) << "Recursive stack overflow.";
2913 }
2914
2915 tlsPtr_.stack_end = tlsPtr_.stack_begin;
2916
2917 // Remove the stack overflow protection if is it set up.
2918 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2919 if (implicit_stack_check) {
2920 if (!UnprotectStack()) {
2921 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2922 }
2923 }
2924 }
2925
SetTlab(uint8_t * start,uint8_t * end)2926 void Thread::SetTlab(uint8_t* start, uint8_t* end) {
2927 DCHECK_LE(start, end);
2928 tlsPtr_.thread_local_start = start;
2929 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
2930 tlsPtr_.thread_local_end = end;
2931 tlsPtr_.thread_local_objects = 0;
2932 }
2933
HasTlab() const2934 bool Thread::HasTlab() const {
2935 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2936 if (has_tlab) {
2937 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2938 } else {
2939 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2940 }
2941 return has_tlab;
2942 }
2943
operator <<(std::ostream & os,const Thread & thread)2944 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2945 thread.ShortDump(os);
2946 return os;
2947 }
2948
ProtectStack(bool fatal_on_error)2949 bool Thread::ProtectStack(bool fatal_on_error) {
2950 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2951 VLOG(threads) << "Protecting stack at " << pregion;
2952 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2953 if (fatal_on_error) {
2954 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2955 "Reason: "
2956 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
2957 }
2958 return false;
2959 }
2960 return true;
2961 }
2962
UnprotectStack()2963 bool Thread::UnprotectStack() {
2964 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2965 VLOG(threads) << "Unprotecting stack at " << pregion;
2966 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2967 }
2968
ActivateSingleStepControl(SingleStepControl * ssc)2969 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
2970 CHECK(Dbg::IsDebuggerActive());
2971 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
2972 CHECK(ssc != nullptr);
2973 tlsPtr_.single_step_control = ssc;
2974 }
2975
DeactivateSingleStepControl()2976 void Thread::DeactivateSingleStepControl() {
2977 CHECK(Dbg::IsDebuggerActive());
2978 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
2979 SingleStepControl* ssc = GetSingleStepControl();
2980 tlsPtr_.single_step_control = nullptr;
2981 delete ssc;
2982 }
2983
SetDebugInvokeReq(DebugInvokeReq * req)2984 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
2985 CHECK(Dbg::IsDebuggerActive());
2986 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
2987 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
2988 CHECK(req != nullptr);
2989 tlsPtr_.debug_invoke_req = req;
2990 }
2991
ClearDebugInvokeReq()2992 void Thread::ClearDebugInvokeReq() {
2993 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
2994 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
2995 DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
2996 tlsPtr_.debug_invoke_req = nullptr;
2997 delete req;
2998 }
2999
PushVerifier(verifier::MethodVerifier * verifier)3000 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3001 verifier->link_ = tlsPtr_.method_verifier;
3002 tlsPtr_.method_verifier = verifier;
3003 }
3004
PopVerifier(verifier::MethodVerifier * verifier)3005 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3006 CHECK_EQ(tlsPtr_.method_verifier, verifier);
3007 tlsPtr_.method_verifier = verifier->link_;
3008 }
3009
NumberOfHeldMutexes() const3010 size_t Thread::NumberOfHeldMutexes() const {
3011 size_t count = 0;
3012 for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3013 count += mu != nullptr ? 1 : 0;
3014 }
3015 return count;
3016 }
3017
DeoptimizeWithDeoptimizationException(JValue * result)3018 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3019 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3020 ClearException();
3021 ShadowFrame* shadow_frame =
3022 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3023 mirror::Throwable* pending_exception = nullptr;
3024 bool from_code = false;
3025 PopDeoptimizationContext(result, &pending_exception, &from_code);
3026 CHECK(!from_code) << "Deoptimizing from code should be done with single frame deoptimization";
3027 SetTopOfStack(nullptr);
3028 SetTopOfShadowStack(shadow_frame);
3029
3030 // Restore the exception that was pending before deoptimization then interpret the
3031 // deoptimized frames.
3032 if (pending_exception != nullptr) {
3033 SetException(pending_exception);
3034 }
3035 interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
3036 }
3037
SetException(mirror::Throwable * new_exception)3038 void Thread::SetException(mirror::Throwable* new_exception) {
3039 CHECK(new_exception != nullptr);
3040 // TODO: DCHECK(!IsExceptionPending());
3041 tlsPtr_.exception = new_exception;
3042 // LOG(ERROR) << new_exception->Dump();
3043 }
3044
3045 } // namespace art
3046