• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/factory.h"
6 
7 #include "src/allocation-site-scopes.h"
8 #include "src/base/bits.h"
9 #include "src/bootstrapper.h"
10 #include "src/conversions.h"
11 #include "src/isolate-inl.h"
12 #include "src/macro-assembler.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 
18 // Calls the FUNCTION_CALL function and retries it up to three times
19 // to guarantee that any allocations performed during the call will
20 // succeed if there's enough memory.
21 //
22 // Warning: Do not use the identifiers __object__, __maybe_object__,
23 // __allocation__ or __scope__ in a call to this macro.
24 
25 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)         \
26   if (__allocation__.To(&__object__)) {                   \
27     DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
28     return Handle<TYPE>(TYPE::cast(__object__), ISOLATE); \
29   }
30 
31 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)                      \
32   do {                                                                        \
33     AllocationResult __allocation__ = FUNCTION_CALL;                          \
34     Object* __object__ = NULL;                                                \
35     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                                 \
36     /* Two GCs before panicking.  In newspace will almost always succeed. */  \
37     for (int __i__ = 0; __i__ < 2; __i__++) {                                 \
38       (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(),          \
39                                         "allocation failure");                \
40       __allocation__ = FUNCTION_CALL;                                         \
41       RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                               \
42     }                                                                         \
43     (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment();        \
44     (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc");          \
45     {                                                                         \
46       AlwaysAllocateScope __scope__(ISOLATE);                                 \
47       __allocation__ = FUNCTION_CALL;                                         \
48     }                                                                         \
49     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                                 \
50     /* TODO(1181417): Fix this. */                                            \
51     v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
52     return Handle<TYPE>();                                                    \
53   } while (false)
54 
55 
56 template<typename T>
New(Handle<Map> map,AllocationSpace space)57 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
58   CALL_HEAP_FUNCTION(
59       isolate(),
60       isolate()->heap()->Allocate(*map, space),
61       T);
62 }
63 
64 
65 template<typename T>
New(Handle<Map> map,AllocationSpace space,Handle<AllocationSite> allocation_site)66 Handle<T> Factory::New(Handle<Map> map,
67                        AllocationSpace space,
68                        Handle<AllocationSite> allocation_site) {
69   CALL_HEAP_FUNCTION(
70       isolate(),
71       isolate()->heap()->Allocate(*map, space, *allocation_site),
72       T);
73 }
74 
75 
NewFillerObject(int size,bool double_align,AllocationSpace space)76 Handle<HeapObject> Factory::NewFillerObject(int size,
77                                             bool double_align,
78                                             AllocationSpace space) {
79   CALL_HEAP_FUNCTION(
80       isolate(),
81       isolate()->heap()->AllocateFillerObject(size, double_align, space),
82       HeapObject);
83 }
84 
85 
NewBox(Handle<Object> value)86 Handle<Box> Factory::NewBox(Handle<Object> value) {
87   Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
88   result->set_value(*value);
89   return result;
90 }
91 
92 
NewPrototypeInfo()93 Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
94   Handle<PrototypeInfo> result =
95       Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE));
96   result->set_prototype_users(WeakFixedArray::Empty());
97   result->set_registry_slot(PrototypeInfo::UNREGISTERED);
98   result->set_validity_cell(Smi::FromInt(0));
99   result->set_bit_field(0);
100   return result;
101 }
102 
103 
104 Handle<SloppyBlockWithEvalContextExtension>
NewSloppyBlockWithEvalContextExtension(Handle<ScopeInfo> scope_info,Handle<JSObject> extension)105 Factory::NewSloppyBlockWithEvalContextExtension(
106     Handle<ScopeInfo> scope_info, Handle<JSObject> extension) {
107   DCHECK(scope_info->is_declaration_scope());
108   Handle<SloppyBlockWithEvalContextExtension> result =
109       Handle<SloppyBlockWithEvalContextExtension>::cast(
110           NewStruct(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE));
111   result->set_scope_info(*scope_info);
112   result->set_extension(*extension);
113   return result;
114 }
115 
NewOddball(Handle<Map> map,const char * to_string,Handle<Object> to_number,bool to_boolean,const char * type_of,byte kind)116 Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
117                                     Handle<Object> to_number, bool to_boolean,
118                                     const char* type_of, byte kind) {
119   Handle<Oddball> oddball = New<Oddball>(map, OLD_SPACE);
120   Oddball::Initialize(isolate(), oddball, to_string, to_number, to_boolean,
121                       type_of, kind);
122   return oddball;
123 }
124 
125 
NewFixedArray(int size,PretenureFlag pretenure)126 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
127   DCHECK(0 <= size);
128   CALL_HEAP_FUNCTION(
129       isolate(),
130       isolate()->heap()->AllocateFixedArray(size, pretenure),
131       FixedArray);
132 }
133 
134 
NewFixedArrayWithHoles(int size,PretenureFlag pretenure)135 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
136                                                    PretenureFlag pretenure) {
137   DCHECK(0 <= size);
138   CALL_HEAP_FUNCTION(
139       isolate(),
140       isolate()->heap()->AllocateFixedArrayWithFiller(size,
141                                                       pretenure,
142                                                       *the_hole_value()),
143       FixedArray);
144 }
145 
146 
NewUninitializedFixedArray(int size)147 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
148   CALL_HEAP_FUNCTION(
149       isolate(),
150       isolate()->heap()->AllocateUninitializedFixedArray(size),
151       FixedArray);
152 }
153 
154 
NewFixedDoubleArray(int size,PretenureFlag pretenure)155 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
156                                                     PretenureFlag pretenure) {
157   DCHECK(0 <= size);
158   CALL_HEAP_FUNCTION(
159       isolate(),
160       isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
161       FixedArrayBase);
162 }
163 
164 
NewFixedDoubleArrayWithHoles(int size,PretenureFlag pretenure)165 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
166     int size,
167     PretenureFlag pretenure) {
168   DCHECK(0 <= size);
169   Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
170   if (size > 0) {
171     Handle<FixedDoubleArray> double_array =
172         Handle<FixedDoubleArray>::cast(array);
173     for (int i = 0; i < size; ++i) {
174       double_array->set_the_hole(i);
175     }
176   }
177   return array;
178 }
179 
180 
NewOrderedHashSet()181 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
182   return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity);
183 }
184 
185 
NewOrderedHashMap()186 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
187   return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity);
188 }
189 
190 
NewAccessorPair()191 Handle<AccessorPair> Factory::NewAccessorPair() {
192   Handle<AccessorPair> accessors =
193       Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
194   accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER);
195   accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER);
196   return accessors;
197 }
198 
199 
NewTypeFeedbackInfo()200 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
201   Handle<TypeFeedbackInfo> info =
202       Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
203   info->initialize_storage();
204   return info;
205 }
206 
207 
208 // Internalized strings are created in the old generation (data space).
InternalizeUtf8String(Vector<const char> string)209 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
210   Utf8StringKey key(string, isolate()->heap()->HashSeed());
211   return InternalizeStringWithKey(&key);
212 }
213 
214 
InternalizeOneByteString(Vector<const uint8_t> string)215 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
216   OneByteStringKey key(string, isolate()->heap()->HashSeed());
217   return InternalizeStringWithKey(&key);
218 }
219 
220 
InternalizeOneByteString(Handle<SeqOneByteString> string,int from,int length)221 Handle<String> Factory::InternalizeOneByteString(
222     Handle<SeqOneByteString> string, int from, int length) {
223   SeqOneByteSubStringKey key(string, from, length);
224   return InternalizeStringWithKey(&key);
225 }
226 
227 
InternalizeTwoByteString(Vector<const uc16> string)228 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
229   TwoByteStringKey key(string, isolate()->heap()->HashSeed());
230   return InternalizeStringWithKey(&key);
231 }
232 
233 
234 template<class StringTableKey>
InternalizeStringWithKey(StringTableKey * key)235 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
236   return StringTable::LookupKey(isolate(), key);
237 }
238 
239 
NewStringFromOneByte(Vector<const uint8_t> string,PretenureFlag pretenure)240 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
241                                                   PretenureFlag pretenure) {
242   int length = string.length();
243   if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
244   Handle<SeqOneByteString> result;
245   ASSIGN_RETURN_ON_EXCEPTION(
246       isolate(),
247       result,
248       NewRawOneByteString(string.length(), pretenure),
249       String);
250 
251   DisallowHeapAllocation no_gc;
252   // Copy the characters into the new object.
253   CopyChars(SeqOneByteString::cast(*result)->GetChars(),
254             string.start(),
255             length);
256   return result;
257 }
258 
NewStringFromUtf8(Vector<const char> string,PretenureFlag pretenure)259 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
260                                                PretenureFlag pretenure) {
261   // Check for ASCII first since this is the common case.
262   const char* start = string.start();
263   int length = string.length();
264   int non_ascii_start = String::NonAsciiStart(start, length);
265   if (non_ascii_start >= length) {
266     // If the string is ASCII, we do not need to convert the characters
267     // since UTF8 is backwards compatible with ASCII.
268     return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
269   }
270 
271   // Non-ASCII and we need to decode.
272   Access<UnicodeCache::Utf8Decoder>
273       decoder(isolate()->unicode_cache()->utf8_decoder());
274   decoder->Reset(string.start() + non_ascii_start,
275                  length - non_ascii_start);
276   int utf16_length = static_cast<int>(decoder->Utf16Length());
277   DCHECK(utf16_length > 0);
278   // Allocate string.
279   Handle<SeqTwoByteString> result;
280   ASSIGN_RETURN_ON_EXCEPTION(
281       isolate(), result,
282       NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
283       String);
284   // Copy ASCII portion.
285   uint16_t* data = result->GetChars();
286   const char* ascii_data = string.start();
287   for (int i = 0; i < non_ascii_start; i++) {
288     *data++ = *ascii_data++;
289   }
290   // Now write the remainder.
291   decoder->WriteUtf16(data, utf16_length);
292   return result;
293 }
294 
NewStringFromTwoByte(const uc16 * string,int length,PretenureFlag pretenure)295 MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
296                                                   int length,
297                                                   PretenureFlag pretenure) {
298   if (String::IsOneByte(string, length)) {
299     if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
300     Handle<SeqOneByteString> result;
301     ASSIGN_RETURN_ON_EXCEPTION(
302         isolate(),
303         result,
304         NewRawOneByteString(length, pretenure),
305         String);
306     CopyChars(result->GetChars(), string, length);
307     return result;
308   } else {
309     Handle<SeqTwoByteString> result;
310     ASSIGN_RETURN_ON_EXCEPTION(
311         isolate(),
312         result,
313         NewRawTwoByteString(length, pretenure),
314         String);
315     CopyChars(result->GetChars(), string, length);
316     return result;
317   }
318 }
319 
NewStringFromTwoByte(Vector<const uc16> string,PretenureFlag pretenure)320 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
321                                                   PretenureFlag pretenure) {
322   return NewStringFromTwoByte(string.start(), string.length(), pretenure);
323 }
324 
NewStringFromTwoByte(const ZoneVector<uc16> * string,PretenureFlag pretenure)325 MaybeHandle<String> Factory::NewStringFromTwoByte(
326     const ZoneVector<uc16>* string, PretenureFlag pretenure) {
327   return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
328                               pretenure);
329 }
330 
NewInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)331 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
332                                                       int chars,
333                                                       uint32_t hash_field) {
334   CALL_HEAP_FUNCTION(
335       isolate(),
336       isolate()->heap()->AllocateInternalizedStringFromUtf8(
337           str, chars, hash_field),
338       String);
339 }
340 
341 
NewOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)342 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
343       Vector<const uint8_t> str,
344       uint32_t hash_field) {
345   CALL_HEAP_FUNCTION(
346       isolate(),
347       isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
348       String);
349 }
350 
351 
NewOneByteInternalizedSubString(Handle<SeqOneByteString> string,int offset,int length,uint32_t hash_field)352 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
353     Handle<SeqOneByteString> string, int offset, int length,
354     uint32_t hash_field) {
355   CALL_HEAP_FUNCTION(
356       isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
357                      Vector<const uint8_t>(string->GetChars() + offset, length),
358                      hash_field),
359       String);
360 }
361 
362 
NewTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)363 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
364       Vector<const uc16> str,
365       uint32_t hash_field) {
366   CALL_HEAP_FUNCTION(
367       isolate(),
368       isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
369       String);
370 }
371 
372 
NewInternalizedStringImpl(Handle<String> string,int chars,uint32_t hash_field)373 Handle<String> Factory::NewInternalizedStringImpl(
374     Handle<String> string, int chars, uint32_t hash_field) {
375   CALL_HEAP_FUNCTION(
376       isolate(),
377       isolate()->heap()->AllocateInternalizedStringImpl(
378           *string, chars, hash_field),
379       String);
380 }
381 
382 
InternalizedStringMapForString(Handle<String> string)383 MaybeHandle<Map> Factory::InternalizedStringMapForString(
384     Handle<String> string) {
385   // If the string is in new space it cannot be used as internalized.
386   if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
387 
388   // Find the corresponding internalized string map for strings.
389   switch (string->map()->instance_type()) {
390     case STRING_TYPE: return internalized_string_map();
391     case ONE_BYTE_STRING_TYPE:
392       return one_byte_internalized_string_map();
393     case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
394     case EXTERNAL_ONE_BYTE_STRING_TYPE:
395       return external_one_byte_internalized_string_map();
396     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
397       return external_internalized_string_with_one_byte_data_map();
398     case SHORT_EXTERNAL_STRING_TYPE:
399       return short_external_internalized_string_map();
400     case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
401       return short_external_one_byte_internalized_string_map();
402     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
403       return short_external_internalized_string_with_one_byte_data_map();
404     default: return MaybeHandle<Map>();  // No match found.
405   }
406 }
407 
408 
NewRawOneByteString(int length,PretenureFlag pretenure)409 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
410     int length, PretenureFlag pretenure) {
411   if (length > String::kMaxLength || length < 0) {
412     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
413   }
414   CALL_HEAP_FUNCTION(
415       isolate(),
416       isolate()->heap()->AllocateRawOneByteString(length, pretenure),
417       SeqOneByteString);
418 }
419 
420 
NewRawTwoByteString(int length,PretenureFlag pretenure)421 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
422     int length, PretenureFlag pretenure) {
423   if (length > String::kMaxLength || length < 0) {
424     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
425   }
426   CALL_HEAP_FUNCTION(
427       isolate(),
428       isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
429       SeqTwoByteString);
430 }
431 
432 
LookupSingleCharacterStringFromCode(uint32_t code)433 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
434   if (code <= String::kMaxOneByteCharCodeU) {
435     {
436       DisallowHeapAllocation no_allocation;
437       Object* value = single_character_string_cache()->get(code);
438       if (value != *undefined_value()) {
439         return handle(String::cast(value), isolate());
440       }
441     }
442     uint8_t buffer[1];
443     buffer[0] = static_cast<uint8_t>(code);
444     Handle<String> result =
445         InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
446     single_character_string_cache()->set(code, *result);
447     return result;
448   }
449   DCHECK(code <= String::kMaxUtf16CodeUnitU);
450 
451   Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
452   result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
453   return result;
454 }
455 
456 
457 // Returns true for a character in a range.  Both limits are inclusive.
Between(uint32_t character,uint32_t from,uint32_t to)458 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
459   // This makes uses of the the unsigned wraparound.
460   return character - from <= to - from;
461 }
462 
463 
MakeOrFindTwoCharacterString(Isolate * isolate,uint16_t c1,uint16_t c2)464 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
465                                                           uint16_t c1,
466                                                           uint16_t c2) {
467   // Numeric strings have a different hash algorithm not known by
468   // LookupTwoCharsStringIfExists, so we skip this step for such strings.
469   if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
470     Handle<String> result;
471     if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
472         ToHandle(&result)) {
473       return result;
474     }
475   }
476 
477   // Now we know the length is 2, we might as well make use of that fact
478   // when building the new string.
479   if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
480     // We can do this.
481     DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
482                                       1));  // because of this.
483     Handle<SeqOneByteString> str =
484         isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
485     uint8_t* dest = str->GetChars();
486     dest[0] = static_cast<uint8_t>(c1);
487     dest[1] = static_cast<uint8_t>(c2);
488     return str;
489   } else {
490     Handle<SeqTwoByteString> str =
491         isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
492     uc16* dest = str->GetChars();
493     dest[0] = c1;
494     dest[1] = c2;
495     return str;
496   }
497 }
498 
499 
500 template<typename SinkChar, typename StringType>
ConcatStringContent(Handle<StringType> result,Handle<String> first,Handle<String> second)501 Handle<String> ConcatStringContent(Handle<StringType> result,
502                                    Handle<String> first,
503                                    Handle<String> second) {
504   DisallowHeapAllocation pointer_stays_valid;
505   SinkChar* sink = result->GetChars();
506   String::WriteToFlat(*first, sink, 0, first->length());
507   String::WriteToFlat(*second, sink + first->length(), 0, second->length());
508   return result;
509 }
510 
511 
NewConsString(Handle<String> left,Handle<String> right)512 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
513                                            Handle<String> right) {
514   int left_length = left->length();
515   if (left_length == 0) return right;
516   int right_length = right->length();
517   if (right_length == 0) return left;
518 
519   int length = left_length + right_length;
520 
521   if (length == 2) {
522     uint16_t c1 = left->Get(0);
523     uint16_t c2 = right->Get(0);
524     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
525   }
526 
527   // Make sure that an out of memory exception is thrown if the length
528   // of the new cons string is too large.
529   if (length > String::kMaxLength || length < 0) {
530     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
531   }
532 
533   bool left_is_one_byte = left->IsOneByteRepresentation();
534   bool right_is_one_byte = right->IsOneByteRepresentation();
535   bool is_one_byte = left_is_one_byte && right_is_one_byte;
536   bool is_one_byte_data_in_two_byte_string = false;
537   if (!is_one_byte) {
538     // At least one of the strings uses two-byte representation so we
539     // can't use the fast case code for short one-byte strings below, but
540     // we can try to save memory if all chars actually fit in one-byte.
541     is_one_byte_data_in_two_byte_string =
542         left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
543     if (is_one_byte_data_in_two_byte_string) {
544       isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
545     }
546   }
547 
548   // If the resulting string is small make a flat string.
549   if (length < ConsString::kMinLength) {
550     // Note that neither of the two inputs can be a slice because:
551     STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
552     DCHECK(left->IsFlat());
553     DCHECK(right->IsFlat());
554 
555     STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
556     if (is_one_byte) {
557       Handle<SeqOneByteString> result =
558           NewRawOneByteString(length).ToHandleChecked();
559       DisallowHeapAllocation no_gc;
560       uint8_t* dest = result->GetChars();
561       // Copy left part.
562       const uint8_t* src =
563           left->IsExternalString()
564               ? Handle<ExternalOneByteString>::cast(left)->GetChars()
565               : Handle<SeqOneByteString>::cast(left)->GetChars();
566       for (int i = 0; i < left_length; i++) *dest++ = src[i];
567       // Copy right part.
568       src = right->IsExternalString()
569                 ? Handle<ExternalOneByteString>::cast(right)->GetChars()
570                 : Handle<SeqOneByteString>::cast(right)->GetChars();
571       for (int i = 0; i < right_length; i++) *dest++ = src[i];
572       return result;
573     }
574 
575     return (is_one_byte_data_in_two_byte_string)
576         ? ConcatStringContent<uint8_t>(
577             NewRawOneByteString(length).ToHandleChecked(), left, right)
578         : ConcatStringContent<uc16>(
579             NewRawTwoByteString(length).ToHandleChecked(), left, right);
580   }
581 
582   Handle<ConsString> result =
583       (is_one_byte || is_one_byte_data_in_two_byte_string)
584           ? New<ConsString>(cons_one_byte_string_map(), NEW_SPACE)
585           : New<ConsString>(cons_string_map(), NEW_SPACE);
586 
587   DisallowHeapAllocation no_gc;
588   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
589 
590   result->set_hash_field(String::kEmptyHashField);
591   result->set_length(length);
592   result->set_first(*left, mode);
593   result->set_second(*right, mode);
594   return result;
595 }
596 
597 
NewProperSubString(Handle<String> str,int begin,int end)598 Handle<String> Factory::NewProperSubString(Handle<String> str,
599                                            int begin,
600                                            int end) {
601 #if VERIFY_HEAP
602   if (FLAG_verify_heap) str->StringVerify();
603 #endif
604   DCHECK(begin > 0 || end < str->length());
605 
606   str = String::Flatten(str);
607 
608   int length = end - begin;
609   if (length <= 0) return empty_string();
610   if (length == 1) {
611     return LookupSingleCharacterStringFromCode(str->Get(begin));
612   }
613   if (length == 2) {
614     // Optimization for 2-byte strings often used as keys in a decompression
615     // dictionary.  Check whether we already have the string in the string
616     // table to prevent creation of many unnecessary strings.
617     uint16_t c1 = str->Get(begin);
618     uint16_t c2 = str->Get(begin + 1);
619     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
620   }
621 
622   if (!FLAG_string_slices || length < SlicedString::kMinLength) {
623     if (str->IsOneByteRepresentation()) {
624       Handle<SeqOneByteString> result =
625           NewRawOneByteString(length).ToHandleChecked();
626       uint8_t* dest = result->GetChars();
627       DisallowHeapAllocation no_gc;
628       String::WriteToFlat(*str, dest, begin, end);
629       return result;
630     } else {
631       Handle<SeqTwoByteString> result =
632           NewRawTwoByteString(length).ToHandleChecked();
633       uc16* dest = result->GetChars();
634       DisallowHeapAllocation no_gc;
635       String::WriteToFlat(*str, dest, begin, end);
636       return result;
637     }
638   }
639 
640   int offset = begin;
641 
642   if (str->IsSlicedString()) {
643     Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
644     str = Handle<String>(slice->parent(), isolate());
645     offset += slice->offset();
646   }
647 
648   DCHECK(str->IsSeqString() || str->IsExternalString());
649   Handle<Map> map = str->IsOneByteRepresentation()
650                         ? sliced_one_byte_string_map()
651                         : sliced_string_map();
652   Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
653 
654   slice->set_hash_field(String::kEmptyHashField);
655   slice->set_length(length);
656   slice->set_parent(*str);
657   slice->set_offset(offset);
658   return slice;
659 }
660 
661 
NewExternalStringFromOneByte(const ExternalOneByteString::Resource * resource)662 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
663     const ExternalOneByteString::Resource* resource) {
664   size_t length = resource->length();
665   if (length > static_cast<size_t>(String::kMaxLength)) {
666     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
667   }
668 
669   Handle<Map> map;
670   if (resource->IsCompressible()) {
671     // TODO(hajimehoshi): Rename this to 'uncached_external_one_byte_string_map'
672     map = short_external_one_byte_string_map();
673   } else {
674     map = external_one_byte_string_map();
675   }
676   Handle<ExternalOneByteString> external_string =
677       New<ExternalOneByteString>(map, NEW_SPACE);
678   external_string->set_length(static_cast<int>(length));
679   external_string->set_hash_field(String::kEmptyHashField);
680   external_string->set_resource(resource);
681 
682   return external_string;
683 }
684 
685 
NewExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)686 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
687     const ExternalTwoByteString::Resource* resource) {
688   size_t length = resource->length();
689   if (length > static_cast<size_t>(String::kMaxLength)) {
690     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
691   }
692 
693   // For small strings we check whether the resource contains only
694   // one byte characters.  If yes, we use a different string map.
695   static const size_t kOneByteCheckLengthLimit = 32;
696   bool is_one_byte = length <= kOneByteCheckLengthLimit &&
697       String::IsOneByte(resource->data(), static_cast<int>(length));
698   Handle<Map> map;
699   if (resource->IsCompressible()) {
700     // TODO(hajimehoshi): Rename these to 'uncached_external_string_...'.
701     map = is_one_byte ? short_external_string_with_one_byte_data_map()
702                       : short_external_string_map();
703   } else {
704     map = is_one_byte ? external_string_with_one_byte_data_map()
705                       : external_string_map();
706   }
707   Handle<ExternalTwoByteString> external_string =
708       New<ExternalTwoByteString>(map, NEW_SPACE);
709   external_string->set_length(static_cast<int>(length));
710   external_string->set_hash_field(String::kEmptyHashField);
711   external_string->set_resource(resource);
712 
713   return external_string;
714 }
715 
NewNativeSourceString(const ExternalOneByteString::Resource * resource)716 Handle<ExternalOneByteString> Factory::NewNativeSourceString(
717     const ExternalOneByteString::Resource* resource) {
718   size_t length = resource->length();
719   DCHECK_LE(length, static_cast<size_t>(String::kMaxLength));
720 
721   Handle<Map> map = native_source_string_map();
722   Handle<ExternalOneByteString> external_string =
723       New<ExternalOneByteString>(map, OLD_SPACE);
724   external_string->set_length(static_cast<int>(length));
725   external_string->set_hash_field(String::kEmptyHashField);
726   external_string->set_resource(resource);
727 
728   return external_string;
729 }
730 
731 
NewSymbol()732 Handle<Symbol> Factory::NewSymbol() {
733   CALL_HEAP_FUNCTION(
734       isolate(),
735       isolate()->heap()->AllocateSymbol(),
736       Symbol);
737 }
738 
739 
NewPrivateSymbol()740 Handle<Symbol> Factory::NewPrivateSymbol() {
741   Handle<Symbol> symbol = NewSymbol();
742   symbol->set_is_private(true);
743   return symbol;
744 }
745 
746 
NewNativeContext()747 Handle<Context> Factory::NewNativeContext() {
748   Handle<FixedArray> array =
749       NewFixedArray(Context::NATIVE_CONTEXT_SLOTS, TENURED);
750   array->set_map_no_write_barrier(*native_context_map());
751   Handle<Context> context = Handle<Context>::cast(array);
752   context->set_native_context(*context);
753   context->set_errors_thrown(Smi::FromInt(0));
754   Handle<WeakCell> weak_cell = NewWeakCell(context);
755   context->set_self_weak_cell(*weak_cell);
756   DCHECK(context->IsNativeContext());
757   return context;
758 }
759 
760 
NewScriptContext(Handle<JSFunction> function,Handle<ScopeInfo> scope_info)761 Handle<Context> Factory::NewScriptContext(Handle<JSFunction> function,
762                                           Handle<ScopeInfo> scope_info) {
763   Handle<FixedArray> array =
764       NewFixedArray(scope_info->ContextLength(), TENURED);
765   array->set_map_no_write_barrier(*script_context_map());
766   Handle<Context> context = Handle<Context>::cast(array);
767   context->set_closure(*function);
768   context->set_previous(function->context());
769   context->set_extension(*scope_info);
770   context->set_native_context(function->native_context());
771   DCHECK(context->IsScriptContext());
772   return context;
773 }
774 
775 
NewScriptContextTable()776 Handle<ScriptContextTable> Factory::NewScriptContextTable() {
777   Handle<FixedArray> array = NewFixedArray(1);
778   array->set_map_no_write_barrier(*script_context_table_map());
779   Handle<ScriptContextTable> context_table =
780       Handle<ScriptContextTable>::cast(array);
781   context_table->set_used(0);
782   return context_table;
783 }
784 
785 
NewModuleContext(Handle<ScopeInfo> scope_info)786 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
787   Handle<FixedArray> array =
788       NewFixedArray(scope_info->ContextLength(), TENURED);
789   array->set_map_no_write_barrier(*module_context_map());
790   // Instance link will be set later.
791   Handle<Context> context = Handle<Context>::cast(array);
792   context->set_extension(*the_hole_value());
793   return context;
794 }
795 
796 
NewFunctionContext(int length,Handle<JSFunction> function)797 Handle<Context> Factory::NewFunctionContext(int length,
798                                             Handle<JSFunction> function) {
799   DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
800   Handle<FixedArray> array = NewFixedArray(length);
801   array->set_map_no_write_barrier(*function_context_map());
802   Handle<Context> context = Handle<Context>::cast(array);
803   context->set_closure(*function);
804   context->set_previous(function->context());
805   context->set_extension(*the_hole_value());
806   context->set_native_context(function->native_context());
807   return context;
808 }
809 
810 
NewCatchContext(Handle<JSFunction> function,Handle<Context> previous,Handle<String> name,Handle<Object> thrown_object)811 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
812                                          Handle<Context> previous,
813                                          Handle<String> name,
814                                          Handle<Object> thrown_object) {
815   STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
816   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
817   array->set_map_no_write_barrier(*catch_context_map());
818   Handle<Context> context = Handle<Context>::cast(array);
819   context->set_closure(*function);
820   context->set_previous(*previous);
821   context->set_extension(*name);
822   context->set_native_context(previous->native_context());
823   context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
824   return context;
825 }
826 
NewDebugEvaluateContext(Handle<Context> previous,Handle<JSReceiver> extension,Handle<Context> wrapped,Handle<StringSet> whitelist)827 Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
828                                                  Handle<JSReceiver> extension,
829                                                  Handle<Context> wrapped,
830                                                  Handle<StringSet> whitelist) {
831   STATIC_ASSERT(Context::WHITE_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1);
832   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 2);
833   array->set_map_no_write_barrier(*debug_evaluate_context_map());
834   Handle<Context> c = Handle<Context>::cast(array);
835   c->set_closure(wrapped.is_null() ? previous->closure() : wrapped->closure());
836   c->set_previous(*previous);
837   c->set_native_context(previous->native_context());
838   if (!extension.is_null()) c->set(Context::EXTENSION_INDEX, *extension);
839   if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped);
840   if (!whitelist.is_null()) c->set(Context::WHITE_LIST_INDEX, *whitelist);
841   return c;
842 }
843 
NewWithContext(Handle<JSFunction> function,Handle<Context> previous,Handle<JSReceiver> extension)844 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
845                                         Handle<Context> previous,
846                                         Handle<JSReceiver> extension) {
847   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
848   array->set_map_no_write_barrier(*with_context_map());
849   Handle<Context> context = Handle<Context>::cast(array);
850   context->set_closure(*function);
851   context->set_previous(*previous);
852   context->set_extension(*extension);
853   context->set_native_context(previous->native_context());
854   return context;
855 }
856 
857 
NewBlockContext(Handle<JSFunction> function,Handle<Context> previous,Handle<ScopeInfo> scope_info)858 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
859                                          Handle<Context> previous,
860                                          Handle<ScopeInfo> scope_info) {
861   Handle<FixedArray> array = NewFixedArray(scope_info->ContextLength());
862   array->set_map_no_write_barrier(*block_context_map());
863   Handle<Context> context = Handle<Context>::cast(array);
864   context->set_closure(*function);
865   context->set_previous(*previous);
866   context->set_extension(*scope_info);
867   context->set_native_context(previous->native_context());
868   return context;
869 }
870 
871 
NewStruct(InstanceType type)872 Handle<Struct> Factory::NewStruct(InstanceType type) {
873   CALL_HEAP_FUNCTION(
874       isolate(),
875       isolate()->heap()->AllocateStruct(type),
876       Struct);
877 }
878 
879 
NewAliasedArgumentsEntry(int aliased_context_slot)880 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
881     int aliased_context_slot) {
882   Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
883       NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
884   entry->set_aliased_context_slot(aliased_context_slot);
885   return entry;
886 }
887 
888 
NewAccessorInfo()889 Handle<AccessorInfo> Factory::NewAccessorInfo() {
890   Handle<AccessorInfo> info =
891       Handle<AccessorInfo>::cast(NewStruct(ACCESSOR_INFO_TYPE));
892   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
893   info->set_is_sloppy(true);
894   return info;
895 }
896 
897 
NewScript(Handle<String> source)898 Handle<Script> Factory::NewScript(Handle<String> source) {
899   // Create and initialize script object.
900   Heap* heap = isolate()->heap();
901   Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
902   script->set_source(*source);
903   script->set_name(heap->undefined_value());
904   script->set_id(isolate()->heap()->NextScriptId());
905   script->set_line_offset(0);
906   script->set_column_offset(0);
907   script->set_context_data(heap->undefined_value());
908   script->set_type(Script::TYPE_NORMAL);
909   script->set_wrapper(heap->undefined_value());
910   script->set_line_ends(heap->undefined_value());
911   script->set_eval_from_shared(heap->undefined_value());
912   script->set_eval_from_position(0);
913   script->set_shared_function_infos(Smi::FromInt(0));
914   script->set_flags(0);
915 
916   heap->set_script_list(*WeakFixedArray::Add(script_list(), script));
917   return script;
918 }
919 
920 
NewForeign(Address addr,PretenureFlag pretenure)921 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
922   CALL_HEAP_FUNCTION(isolate(),
923                      isolate()->heap()->AllocateForeign(addr, pretenure),
924                      Foreign);
925 }
926 
927 
NewForeign(const AccessorDescriptor * desc)928 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
929   return NewForeign((Address) desc, TENURED);
930 }
931 
932 
NewByteArray(int length,PretenureFlag pretenure)933 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
934   DCHECK(0 <= length);
935   CALL_HEAP_FUNCTION(
936       isolate(),
937       isolate()->heap()->AllocateByteArray(length, pretenure),
938       ByteArray);
939 }
940 
941 
NewBytecodeArray(int length,const byte * raw_bytecodes,int frame_size,int parameter_count,Handle<FixedArray> constant_pool)942 Handle<BytecodeArray> Factory::NewBytecodeArray(
943     int length, const byte* raw_bytecodes, int frame_size, int parameter_count,
944     Handle<FixedArray> constant_pool) {
945   DCHECK(0 <= length);
946   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateBytecodeArray(
947                                     length, raw_bytecodes, frame_size,
948                                     parameter_count, *constant_pool),
949                      BytecodeArray);
950 }
951 
952 
NewFixedTypedArrayWithExternalPointer(int length,ExternalArrayType array_type,void * external_pointer,PretenureFlag pretenure)953 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer(
954     int length, ExternalArrayType array_type, void* external_pointer,
955     PretenureFlag pretenure) {
956   DCHECK(0 <= length && length <= Smi::kMaxValue);
957   CALL_HEAP_FUNCTION(
958       isolate(), isolate()->heap()->AllocateFixedTypedArrayWithExternalPointer(
959                      length, array_type, external_pointer, pretenure),
960       FixedTypedArrayBase);
961 }
962 
963 
NewFixedTypedArray(int length,ExternalArrayType array_type,bool initialize,PretenureFlag pretenure)964 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
965     int length, ExternalArrayType array_type, bool initialize,
966     PretenureFlag pretenure) {
967   DCHECK(0 <= length && length <= Smi::kMaxValue);
968   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateFixedTypedArray(
969                                     length, array_type, initialize, pretenure),
970                      FixedTypedArrayBase);
971 }
972 
973 
NewCell(Handle<Object> value)974 Handle<Cell> Factory::NewCell(Handle<Object> value) {
975   AllowDeferredHandleDereference convert_to_cell;
976   CALL_HEAP_FUNCTION(
977       isolate(),
978       isolate()->heap()->AllocateCell(*value),
979       Cell);
980 }
981 
982 
NewPropertyCell()983 Handle<PropertyCell> Factory::NewPropertyCell() {
984   CALL_HEAP_FUNCTION(
985       isolate(),
986       isolate()->heap()->AllocatePropertyCell(),
987       PropertyCell);
988 }
989 
990 
NewWeakCell(Handle<HeapObject> value)991 Handle<WeakCell> Factory::NewWeakCell(Handle<HeapObject> value) {
992   // It is safe to dereference the value because we are embedding it
993   // in cell and not inspecting its fields.
994   AllowDeferredHandleDereference convert_to_cell;
995   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateWeakCell(*value),
996                      WeakCell);
997 }
998 
999 
NewTransitionArray(int capacity)1000 Handle<TransitionArray> Factory::NewTransitionArray(int capacity) {
1001   CALL_HEAP_FUNCTION(isolate(),
1002                      isolate()->heap()->AllocateTransitionArray(capacity),
1003                      TransitionArray);
1004 }
1005 
1006 
NewAllocationSite()1007 Handle<AllocationSite> Factory::NewAllocationSite() {
1008   Handle<Map> map = allocation_site_map();
1009   Handle<AllocationSite> site = New<AllocationSite>(map, OLD_SPACE);
1010   site->Initialize();
1011 
1012   // Link the site
1013   site->set_weak_next(isolate()->heap()->allocation_sites_list());
1014   isolate()->heap()->set_allocation_sites_list(*site);
1015   return site;
1016 }
1017 
1018 
NewMap(InstanceType type,int instance_size,ElementsKind elements_kind)1019 Handle<Map> Factory::NewMap(InstanceType type,
1020                             int instance_size,
1021                             ElementsKind elements_kind) {
1022   CALL_HEAP_FUNCTION(
1023       isolate(),
1024       isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
1025       Map);
1026 }
1027 
1028 
CopyJSObject(Handle<JSObject> object)1029 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
1030   CALL_HEAP_FUNCTION(isolate(),
1031                      isolate()->heap()->CopyJSObject(*object, NULL),
1032                      JSObject);
1033 }
1034 
1035 
CopyJSObjectWithAllocationSite(Handle<JSObject> object,Handle<AllocationSite> site)1036 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
1037     Handle<JSObject> object,
1038     Handle<AllocationSite> site) {
1039   CALL_HEAP_FUNCTION(isolate(),
1040                      isolate()->heap()->CopyJSObject(
1041                          *object,
1042                          site.is_null() ? NULL : *site),
1043                      JSObject);
1044 }
1045 
1046 
CopyFixedArrayWithMap(Handle<FixedArray> array,Handle<Map> map)1047 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
1048                                                   Handle<Map> map) {
1049   CALL_HEAP_FUNCTION(isolate(),
1050                      isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
1051                      FixedArray);
1052 }
1053 
1054 
CopyFixedArrayAndGrow(Handle<FixedArray> array,int grow_by,PretenureFlag pretenure)1055 Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
1056                                                   int grow_by,
1057                                                   PretenureFlag pretenure) {
1058   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayAndGrow(
1059                                     *array, grow_by, pretenure),
1060                      FixedArray);
1061 }
1062 
CopyFixedArrayUpTo(Handle<FixedArray> array,int new_len,PretenureFlag pretenure)1063 Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
1064                                                int new_len,
1065                                                PretenureFlag pretenure) {
1066   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayUpTo(
1067                                     *array, new_len, pretenure),
1068                      FixedArray);
1069 }
1070 
CopyFixedArray(Handle<FixedArray> array)1071 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
1072   CALL_HEAP_FUNCTION(isolate(),
1073                      isolate()->heap()->CopyFixedArray(*array),
1074                      FixedArray);
1075 }
1076 
1077 
CopyAndTenureFixedCOWArray(Handle<FixedArray> array)1078 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
1079     Handle<FixedArray> array) {
1080   DCHECK(isolate()->heap()->InNewSpace(*array));
1081   CALL_HEAP_FUNCTION(isolate(),
1082                      isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
1083                      FixedArray);
1084 }
1085 
1086 
CopyFixedDoubleArray(Handle<FixedDoubleArray> array)1087 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
1088     Handle<FixedDoubleArray> array) {
1089   CALL_HEAP_FUNCTION(isolate(),
1090                      isolate()->heap()->CopyFixedDoubleArray(*array),
1091                      FixedDoubleArray);
1092 }
1093 
1094 
NewNumber(double value,PretenureFlag pretenure)1095 Handle<Object> Factory::NewNumber(double value,
1096                                   PretenureFlag pretenure) {
1097   // We need to distinguish the minus zero value and this cannot be
1098   // done after conversion to int. Doing this by comparing bit
1099   // patterns is faster than using fpclassify() et al.
1100   if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
1101 
1102   int int_value = FastD2IChecked(value);
1103   if (value == int_value && Smi::IsValid(int_value)) {
1104     return handle(Smi::FromInt(int_value), isolate());
1105   }
1106 
1107   // Materialize the value in the heap.
1108   return NewHeapNumber(value, IMMUTABLE, pretenure);
1109 }
1110 
1111 
NewNumberFromInt(int32_t value,PretenureFlag pretenure)1112 Handle<Object> Factory::NewNumberFromInt(int32_t value,
1113                                          PretenureFlag pretenure) {
1114   if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1115   // Bypass NewNumber to avoid various redundant checks.
1116   return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
1117 }
1118 
1119 
NewNumberFromUint(uint32_t value,PretenureFlag pretenure)1120 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1121                                           PretenureFlag pretenure) {
1122   int32_t int32v = static_cast<int32_t>(value);
1123   if (int32v >= 0 && Smi::IsValid(int32v)) {
1124     return handle(Smi::FromInt(int32v), isolate());
1125   }
1126   return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
1127 }
1128 
1129 
NewHeapNumber(double value,MutableMode mode,PretenureFlag pretenure)1130 Handle<HeapNumber> Factory::NewHeapNumber(double value,
1131                                           MutableMode mode,
1132                                           PretenureFlag pretenure) {
1133   CALL_HEAP_FUNCTION(
1134       isolate(),
1135       isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
1136       HeapNumber);
1137 }
1138 
1139 
1140 #define SIMD128_NEW_DEF(TYPE, Type, type, lane_count, lane_type)               \
1141   Handle<Type> Factory::New##Type(lane_type lanes[lane_count],                 \
1142                                   PretenureFlag pretenure) {                   \
1143     CALL_HEAP_FUNCTION(                                                        \
1144         isolate(), isolate()->heap()->Allocate##Type(lanes, pretenure), Type); \
1145   }
SIMD128_TYPES(SIMD128_NEW_DEF)1146 SIMD128_TYPES(SIMD128_NEW_DEF)
1147 #undef SIMD128_NEW_DEF
1148 
1149 
1150 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
1151                                  MessageTemplate::Template template_index,
1152                                  Handle<Object> arg0, Handle<Object> arg1,
1153                                  Handle<Object> arg2) {
1154   HandleScope scope(isolate());
1155   if (isolate()->bootstrapper()->IsActive()) {
1156     // During bootstrapping we cannot construct error objects.
1157     return scope.CloseAndEscape(NewStringFromAsciiChecked(
1158         MessageTemplate::TemplateString(template_index)));
1159   }
1160 
1161   Handle<JSFunction> fun = isolate()->make_error_function();
1162   Handle<Object> message_type(Smi::FromInt(template_index), isolate());
1163   if (arg0.is_null()) arg0 = undefined_value();
1164   if (arg1.is_null()) arg1 = undefined_value();
1165   if (arg2.is_null()) arg2 = undefined_value();
1166   Handle<Object> argv[] = {constructor, message_type, arg0, arg1, arg2};
1167 
1168   // Invoke the JavaScript factory method. If an exception is thrown while
1169   // running the factory method, use the exception as the result.
1170   Handle<Object> result;
1171   MaybeHandle<Object> exception;
1172   if (!Execution::TryCall(isolate(), fun, undefined_value(), arraysize(argv),
1173                           argv, &exception)
1174            .ToHandle(&result)) {
1175     Handle<Object> exception_obj;
1176     if (exception.ToHandle(&exception_obj)) {
1177       result = exception_obj;
1178     } else {
1179       result = undefined_value();
1180     }
1181   }
1182   return scope.CloseAndEscape(result);
1183 }
1184 
1185 
NewError(Handle<JSFunction> constructor,Handle<String> message)1186 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
1187                                  Handle<String> message) {
1188   Handle<Object> argv[] = { message };
1189 
1190   // Invoke the JavaScript factory method. If an exception is thrown while
1191   // running the factory method, use the exception as the result.
1192   Handle<Object> result;
1193   MaybeHandle<Object> exception;
1194   if (!Execution::TryCall(isolate(), constructor, undefined_value(),
1195                           arraysize(argv), argv, &exception)
1196            .ToHandle(&result)) {
1197     Handle<Object> exception_obj;
1198     if (exception.ToHandle(&exception_obj)) return exception_obj;
1199     return undefined_value();
1200   }
1201   return result;
1202 }
1203 
1204 
1205 #define DEFINE_ERROR(NAME, name)                                              \
1206   Handle<Object> Factory::New##NAME(MessageTemplate::Template template_index, \
1207                                     Handle<Object> arg0, Handle<Object> arg1, \
1208                                     Handle<Object> arg2) {                    \
1209     return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
1210                     arg2);                                                    \
1211   }
DEFINE_ERROR(Error,error)1212 DEFINE_ERROR(Error, error)
1213 DEFINE_ERROR(EvalError, eval_error)
1214 DEFINE_ERROR(RangeError, range_error)
1215 DEFINE_ERROR(ReferenceError, reference_error)
1216 DEFINE_ERROR(SyntaxError, syntax_error)
1217 DEFINE_ERROR(TypeError, type_error)
1218 #undef DEFINE_ERROR
1219 
1220 
1221 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1222                                         Handle<SharedFunctionInfo> info,
1223                                         Handle<Context> context,
1224                                         PretenureFlag pretenure) {
1225   AllocationSpace space = pretenure == TENURED ? OLD_SPACE : NEW_SPACE;
1226   Handle<JSFunction> function = New<JSFunction>(map, space);
1227 
1228   function->initialize_properties();
1229   function->initialize_elements();
1230   function->set_shared(*info);
1231   function->set_code(info->code());
1232   function->set_context(*context);
1233   function->set_prototype_or_initial_map(*the_hole_value());
1234   function->set_literals(LiteralsArray::cast(*empty_literals_array()));
1235   function->set_next_function_link(*undefined_value(), SKIP_WRITE_BARRIER);
1236   isolate()->heap()->InitializeJSObjectBody(*function, *map, JSFunction::kSize);
1237   return function;
1238 }
1239 
1240 
NewFunction(Handle<Map> map,Handle<String> name,MaybeHandle<Code> code)1241 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1242                                         Handle<String> name,
1243                                         MaybeHandle<Code> code) {
1244   Handle<Context> context(isolate()->native_context());
1245   Handle<SharedFunctionInfo> info =
1246       NewSharedFunctionInfo(name, code, map->is_constructor());
1247   DCHECK(is_sloppy(info->language_mode()));
1248   DCHECK(!map->IsUndefined(isolate()));
1249   DCHECK(
1250       map.is_identical_to(isolate()->sloppy_function_map()) ||
1251       map.is_identical_to(isolate()->sloppy_function_without_prototype_map()) ||
1252       map.is_identical_to(
1253           isolate()->sloppy_function_with_readonly_prototype_map()) ||
1254       map.is_identical_to(isolate()->strict_function_map()) ||
1255       map.is_identical_to(isolate()->strict_function_without_prototype_map()) ||
1256       // TODO(titzer): wasm_function_map() could be undefined here. ugly.
1257       (*map == context->get(Context::WASM_FUNCTION_MAP_INDEX)) ||
1258       map.is_identical_to(isolate()->proxy_function_map()));
1259   return NewFunction(map, info, context);
1260 }
1261 
1262 
NewFunction(Handle<String> name)1263 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1264   return NewFunction(
1265       isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1266 }
1267 
1268 
NewFunctionWithoutPrototype(Handle<String> name,Handle<Code> code,bool is_strict)1269 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1270                                                         Handle<Code> code,
1271                                                         bool is_strict) {
1272   Handle<Map> map = is_strict
1273                         ? isolate()->strict_function_without_prototype_map()
1274                         : isolate()->sloppy_function_without_prototype_map();
1275   return NewFunction(map, name, code);
1276 }
1277 
1278 
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,bool is_strict)1279 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
1280                                         Handle<Object> prototype,
1281                                         bool is_strict) {
1282   Handle<Map> map = is_strict ? isolate()->strict_function_map()
1283                               : isolate()->sloppy_function_map();
1284   Handle<JSFunction> result = NewFunction(map, name, code);
1285   result->set_prototype_or_initial_map(*prototype);
1286   return result;
1287 }
1288 
1289 
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,InstanceType type,int instance_size,bool is_strict)1290 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
1291                                         Handle<Object> prototype,
1292                                         InstanceType type, int instance_size,
1293                                         bool is_strict) {
1294   // Allocate the function
1295   Handle<JSFunction> function = NewFunction(name, code, prototype, is_strict);
1296 
1297   ElementsKind elements_kind =
1298       type == JS_ARRAY_TYPE ? FAST_SMI_ELEMENTS : FAST_HOLEY_SMI_ELEMENTS;
1299   Handle<Map> initial_map = NewMap(type, instance_size, elements_kind);
1300   // TODO(littledan): Why do we have this is_generator test when
1301   // NewFunctionPrototype already handles finding an appropriately
1302   // shared prototype?
1303   if (!function->shared()->is_resumable()) {
1304     if (prototype->IsTheHole(isolate())) {
1305       prototype = NewFunctionPrototype(function);
1306     }
1307   }
1308 
1309   JSFunction::SetInitialMap(function, initial_map,
1310                             Handle<JSReceiver>::cast(prototype));
1311 
1312   return function;
1313 }
1314 
1315 
NewFunction(Handle<String> name,Handle<Code> code,InstanceType type,int instance_size)1316 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1317                                         Handle<Code> code,
1318                                         InstanceType type,
1319                                         int instance_size) {
1320   return NewFunction(name, code, the_hole_value(), type, instance_size);
1321 }
1322 
1323 
NewFunctionPrototype(Handle<JSFunction> function)1324 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1325   // Make sure to use globals from the function's context, since the function
1326   // can be from a different context.
1327   Handle<Context> native_context(function->context()->native_context());
1328   Handle<Map> new_map;
1329   if (function->shared()->is_resumable()) {
1330     // Generator and async function prototypes can share maps since they
1331     // don't have "constructor" properties.
1332     new_map = handle(native_context->generator_object_prototype_map());
1333   } else {
1334     CHECK(!function->shared()->is_async());
1335     // Each function prototype gets a fresh map to avoid unwanted sharing of
1336     // maps between prototypes of different constructors.
1337     Handle<JSFunction> object_function(native_context->object_function());
1338     DCHECK(object_function->has_initial_map());
1339     new_map = handle(object_function->initial_map());
1340   }
1341 
1342   DCHECK(!new_map->is_prototype_map());
1343   Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1344 
1345   if (!function->shared()->is_resumable()) {
1346     JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
1347   }
1348 
1349   return prototype;
1350 }
1351 
1352 
NewFunctionFromSharedFunctionInfo(Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1353 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1354     Handle<SharedFunctionInfo> info,
1355     Handle<Context> context,
1356     PretenureFlag pretenure) {
1357   int map_index =
1358       Context::FunctionMapIndex(info->language_mode(), info->kind());
1359   Handle<Map> initial_map(Map::cast(context->native_context()->get(map_index)));
1360 
1361   return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
1362                                            pretenure);
1363 }
1364 
1365 
NewFunctionFromSharedFunctionInfo(Handle<Map> initial_map,Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1366 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1367     Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
1368     Handle<Context> context, PretenureFlag pretenure) {
1369   DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
1370   Handle<JSFunction> result =
1371       NewFunction(initial_map, info, context, pretenure);
1372 
1373   if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1374     info->ResetForNewContext(isolate()->heap()->global_ic_age());
1375   }
1376 
1377   // Give compiler a chance to pre-initialize.
1378   Compiler::PostInstantiation(result, pretenure);
1379 
1380   return result;
1381 }
1382 
1383 
NewScopeInfo(int length)1384 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1385   Handle<FixedArray> array = NewFixedArray(length, TENURED);
1386   array->set_map_no_write_barrier(*scope_info_map());
1387   Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1388   return scope_info;
1389 }
1390 
1391 
NewExternal(void * value)1392 Handle<JSObject> Factory::NewExternal(void* value) {
1393   Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1394   Handle<JSObject> external = NewJSObjectFromMap(external_map());
1395   external->SetInternalField(0, *foreign);
1396   return external;
1397 }
1398 
1399 
NewCodeRaw(int object_size,bool immovable)1400 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1401   CALL_HEAP_FUNCTION(isolate(),
1402                      isolate()->heap()->AllocateCode(object_size, immovable),
1403                      Code);
1404 }
1405 
1406 
NewCode(const CodeDesc & desc,Code::Flags flags,Handle<Object> self_ref,bool immovable,bool crankshafted,int prologue_offset,bool is_debug)1407 Handle<Code> Factory::NewCode(const CodeDesc& desc,
1408                               Code::Flags flags,
1409                               Handle<Object> self_ref,
1410                               bool immovable,
1411                               bool crankshafted,
1412                               int prologue_offset,
1413                               bool is_debug) {
1414   Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1415 
1416   bool has_unwinding_info = desc.unwinding_info != nullptr;
1417   DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) ||
1418          (!has_unwinding_info && desc.unwinding_info_size == 0));
1419 
1420   // Compute size.
1421   int body_size = desc.instr_size;
1422   int unwinding_info_size_field_size = kInt64Size;
1423   if (has_unwinding_info) {
1424     body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size +
1425                 unwinding_info_size_field_size;
1426   }
1427   int obj_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment));
1428 
1429   Handle<Code> code = NewCodeRaw(obj_size, immovable);
1430   DCHECK(!isolate()->heap()->memory_allocator()->code_range()->valid() ||
1431          isolate()->heap()->memory_allocator()->code_range()->contains(
1432              code->address()) ||
1433          obj_size <= isolate()->heap()->code_space()->AreaSize());
1434 
1435   // The code object has not been fully initialized yet.  We rely on the
1436   // fact that no allocation will happen from this point on.
1437   DisallowHeapAllocation no_gc;
1438   code->set_gc_metadata(Smi::FromInt(0));
1439   code->set_ic_age(isolate()->heap()->global_ic_age());
1440   code->set_instruction_size(desc.instr_size);
1441   code->set_relocation_info(*reloc_info);
1442   code->set_flags(flags);
1443   code->set_has_unwinding_info(has_unwinding_info);
1444   code->set_raw_kind_specific_flags1(0);
1445   code->set_raw_kind_specific_flags2(0);
1446   code->set_is_crankshafted(crankshafted);
1447   code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1448   code->set_raw_type_feedback_info(Smi::FromInt(0));
1449   code->set_next_code_link(*undefined_value());
1450   code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1451   code->set_prologue_offset(prologue_offset);
1452   code->set_constant_pool_offset(desc.instr_size - desc.constant_pool_size);
1453 
1454   if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1455     code->set_marked_for_deoptimization(false);
1456   }
1457 
1458   if (is_debug) {
1459     DCHECK(code->kind() == Code::FUNCTION);
1460     code->set_has_debug_break_slots(true);
1461   }
1462 
1463   // Allow self references to created code object by patching the handle to
1464   // point to the newly allocated Code object.
1465   if (!self_ref.is_null()) *(self_ref.location()) = *code;
1466 
1467   // Migrate generated code.
1468   // The generated code can contain Object** values (typically from handles)
1469   // that are dereferenced during the copy to point directly to the actual heap
1470   // objects. These pointers can include references to the code object itself,
1471   // through the self_reference parameter.
1472   code->CopyFrom(desc);
1473 
1474 #ifdef VERIFY_HEAP
1475   if (FLAG_verify_heap) code->ObjectVerify();
1476 #endif
1477   return code;
1478 }
1479 
1480 
CopyCode(Handle<Code> code)1481 Handle<Code> Factory::CopyCode(Handle<Code> code) {
1482   CALL_HEAP_FUNCTION(isolate(),
1483                      isolate()->heap()->CopyCode(*code),
1484                      Code);
1485 }
1486 
1487 
CopyBytecodeArray(Handle<BytecodeArray> bytecode_array)1488 Handle<BytecodeArray> Factory::CopyBytecodeArray(
1489     Handle<BytecodeArray> bytecode_array) {
1490   CALL_HEAP_FUNCTION(isolate(),
1491                      isolate()->heap()->CopyBytecodeArray(*bytecode_array),
1492                      BytecodeArray);
1493 }
1494 
NewJSObject(Handle<JSFunction> constructor,PretenureFlag pretenure)1495 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1496                                       PretenureFlag pretenure) {
1497   JSFunction::EnsureHasInitialMap(constructor);
1498   CALL_HEAP_FUNCTION(
1499       isolate(),
1500       isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1501 }
1502 
1503 
NewJSObjectWithMemento(Handle<JSFunction> constructor,Handle<AllocationSite> site)1504 Handle<JSObject> Factory::NewJSObjectWithMemento(
1505     Handle<JSFunction> constructor,
1506     Handle<AllocationSite> site) {
1507   JSFunction::EnsureHasInitialMap(constructor);
1508   CALL_HEAP_FUNCTION(
1509       isolate(),
1510       isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1511       JSObject);
1512 }
1513 
NewJSObjectWithNullProto()1514 Handle<JSObject> Factory::NewJSObjectWithNullProto() {
1515   Handle<JSObject> result = NewJSObject(isolate()->object_function());
1516   Handle<Map> new_map =
1517       Map::Copy(Handle<Map>(result->map()), "ObjectWithNullProto");
1518   Map::SetPrototype(new_map, null_value());
1519   JSObject::MigrateToMap(result, new_map);
1520   return result;
1521 }
1522 
NewJSModule(Handle<Context> context,Handle<ScopeInfo> scope_info)1523 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1524                                       Handle<ScopeInfo> scope_info) {
1525   // Allocate a fresh map. Modules do not have a prototype.
1526   Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1527   // Allocate the object based on the map.
1528   Handle<JSModule> module =
1529       Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1530   module->set_context(*context);
1531   module->set_scope_info(*scope_info);
1532   return module;
1533 }
1534 
1535 
NewJSGlobalObject(Handle<JSFunction> constructor)1536 Handle<JSGlobalObject> Factory::NewJSGlobalObject(
1537     Handle<JSFunction> constructor) {
1538   DCHECK(constructor->has_initial_map());
1539   Handle<Map> map(constructor->initial_map());
1540   DCHECK(map->is_dictionary_map());
1541 
1542   // Make sure no field properties are described in the initial map.
1543   // This guarantees us that normalizing the properties does not
1544   // require us to change property values to PropertyCells.
1545   DCHECK(map->NextFreePropertyIndex() == 0);
1546 
1547   // Make sure we don't have a ton of pre-allocated slots in the
1548   // global objects. They will be unused once we normalize the object.
1549   DCHECK(map->unused_property_fields() == 0);
1550   DCHECK(map->GetInObjectProperties() == 0);
1551 
1552   // Initial size of the backing store to avoid resize of the storage during
1553   // bootstrapping. The size differs between the JS global object ad the
1554   // builtins object.
1555   int initial_size = 64;
1556 
1557   // Allocate a dictionary object for backing storage.
1558   int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1559   Handle<GlobalDictionary> dictionary =
1560       GlobalDictionary::New(isolate(), at_least_space_for);
1561 
1562   // The global object might be created from an object template with accessors.
1563   // Fill these accessors into the dictionary.
1564   Handle<DescriptorArray> descs(map->instance_descriptors());
1565   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1566     PropertyDetails details = descs->GetDetails(i);
1567     // Only accessors are expected.
1568     DCHECK_EQ(ACCESSOR_CONSTANT, details.type());
1569     PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
1570                       PropertyCellType::kMutable);
1571     Handle<Name> name(descs->GetKey(i));
1572     Handle<PropertyCell> cell = NewPropertyCell();
1573     cell->set_value(descs->GetCallbacksObject(i));
1574     // |dictionary| already contains enough space for all properties.
1575     USE(GlobalDictionary::Add(dictionary, name, cell, d));
1576   }
1577 
1578   // Allocate the global object and initialize it with the backing store.
1579   Handle<JSGlobalObject> global = New<JSGlobalObject>(map, OLD_SPACE);
1580   isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1581 
1582   // Create a new map for the global object.
1583   Handle<Map> new_map = Map::CopyDropDescriptors(map);
1584   new_map->set_dictionary_map(true);
1585 
1586   // Set up the global object as a normalized object.
1587   global->set_map(*new_map);
1588   global->set_properties(*dictionary);
1589 
1590   // Make sure result is a global object with properties in dictionary.
1591   DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
1592   return global;
1593 }
1594 
1595 
NewJSObjectFromMap(Handle<Map> map,PretenureFlag pretenure,Handle<AllocationSite> allocation_site)1596 Handle<JSObject> Factory::NewJSObjectFromMap(
1597     Handle<Map> map,
1598     PretenureFlag pretenure,
1599     Handle<AllocationSite> allocation_site) {
1600   CALL_HEAP_FUNCTION(
1601       isolate(),
1602       isolate()->heap()->AllocateJSObjectFromMap(
1603           *map,
1604           pretenure,
1605           allocation_site.is_null() ? NULL : *allocation_site),
1606       JSObject);
1607 }
1608 
1609 
NewJSArray(ElementsKind elements_kind,PretenureFlag pretenure)1610 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1611                                     PretenureFlag pretenure) {
1612   Map* map = isolate()->get_initial_js_array_map(elements_kind);
1613   if (map == nullptr) {
1614     Context* native_context = isolate()->context()->native_context();
1615     JSFunction* array_function = native_context->array_function();
1616     map = array_function->initial_map();
1617   }
1618   return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1619 }
1620 
NewJSArray(ElementsKind elements_kind,int length,int capacity,ArrayStorageAllocationMode mode,PretenureFlag pretenure)1621 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
1622                                     int capacity,
1623                                     ArrayStorageAllocationMode mode,
1624                                     PretenureFlag pretenure) {
1625   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1626   NewJSArrayStorage(array, length, capacity, mode);
1627   return array;
1628 }
1629 
NewJSArrayWithElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,PretenureFlag pretenure)1630 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1631                                                 ElementsKind elements_kind,
1632                                                 int length,
1633                                                 PretenureFlag pretenure) {
1634   DCHECK(length <= elements->length());
1635   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1636 
1637   array->set_elements(*elements);
1638   array->set_length(Smi::FromInt(length));
1639   JSObject::ValidateElements(array);
1640   return array;
1641 }
1642 
1643 
NewJSArrayStorage(Handle<JSArray> array,int length,int capacity,ArrayStorageAllocationMode mode)1644 void Factory::NewJSArrayStorage(Handle<JSArray> array,
1645                                 int length,
1646                                 int capacity,
1647                                 ArrayStorageAllocationMode mode) {
1648   DCHECK(capacity >= length);
1649 
1650   if (capacity == 0) {
1651     array->set_length(Smi::FromInt(0));
1652     array->set_elements(*empty_fixed_array());
1653     return;
1654   }
1655 
1656   HandleScope inner_scope(isolate());
1657   Handle<FixedArrayBase> elms;
1658   ElementsKind elements_kind = array->GetElementsKind();
1659   if (IsFastDoubleElementsKind(elements_kind)) {
1660     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1661       elms = NewFixedDoubleArray(capacity);
1662     } else {
1663       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1664       elms = NewFixedDoubleArrayWithHoles(capacity);
1665     }
1666   } else {
1667     DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
1668     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1669       elms = NewUninitializedFixedArray(capacity);
1670     } else {
1671       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1672       elms = NewFixedArrayWithHoles(capacity);
1673     }
1674   }
1675 
1676   array->set_elements(*elms);
1677   array->set_length(Smi::FromInt(length));
1678 }
1679 
1680 
NewJSGeneratorObject(Handle<JSFunction> function)1681 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1682     Handle<JSFunction> function) {
1683   DCHECK(function->shared()->is_resumable());
1684   JSFunction::EnsureHasInitialMap(function);
1685   Handle<Map> map(function->initial_map());
1686   DCHECK_EQ(JS_GENERATOR_OBJECT_TYPE, map->instance_type());
1687   CALL_HEAP_FUNCTION(
1688       isolate(),
1689       isolate()->heap()->AllocateJSObjectFromMap(*map),
1690       JSGeneratorObject);
1691 }
1692 
1693 
NewJSArrayBuffer(SharedFlag shared,PretenureFlag pretenure)1694 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared,
1695                                                 PretenureFlag pretenure) {
1696   Handle<JSFunction> array_buffer_fun(
1697       shared == SharedFlag::kShared
1698           ? isolate()->native_context()->shared_array_buffer_fun()
1699           : isolate()->native_context()->array_buffer_fun());
1700   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
1701                                     *array_buffer_fun, pretenure),
1702                      JSArrayBuffer);
1703 }
1704 
1705 
NewJSDataView()1706 Handle<JSDataView> Factory::NewJSDataView() {
1707   Handle<JSFunction> data_view_fun(
1708       isolate()->native_context()->data_view_fun());
1709   CALL_HEAP_FUNCTION(
1710       isolate(),
1711       isolate()->heap()->AllocateJSObject(*data_view_fun),
1712       JSDataView);
1713 }
1714 
1715 
NewJSMap()1716 Handle<JSMap> Factory::NewJSMap() {
1717   Handle<Map> map(isolate()->native_context()->js_map_map());
1718   Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
1719   JSMap::Initialize(js_map, isolate());
1720   return js_map;
1721 }
1722 
1723 
NewJSSet()1724 Handle<JSSet> Factory::NewJSSet() {
1725   Handle<Map> map(isolate()->native_context()->js_set_map());
1726   Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
1727   JSSet::Initialize(js_set, isolate());
1728   return js_set;
1729 }
1730 
1731 
NewJSMapIterator()1732 Handle<JSMapIterator> Factory::NewJSMapIterator() {
1733   Handle<Map> map(isolate()->native_context()->map_iterator_map());
1734   CALL_HEAP_FUNCTION(isolate(),
1735                      isolate()->heap()->AllocateJSObjectFromMap(*map),
1736                      JSMapIterator);
1737 }
1738 
1739 
NewJSSetIterator()1740 Handle<JSSetIterator> Factory::NewJSSetIterator() {
1741   Handle<Map> map(isolate()->native_context()->set_iterator_map());
1742   CALL_HEAP_FUNCTION(isolate(),
1743                      isolate()->heap()->AllocateJSObjectFromMap(*map),
1744                      JSSetIterator);
1745 }
1746 
1747 
1748 namespace {
1749 
GetExternalArrayElementsKind(ExternalArrayType type)1750 ElementsKind GetExternalArrayElementsKind(ExternalArrayType type) {
1751   switch (type) {
1752 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1753   case kExternal##Type##Array:                          \
1754     return TYPE##_ELEMENTS;
1755     TYPED_ARRAYS(TYPED_ARRAY_CASE)
1756   }
1757   UNREACHABLE();
1758   return FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND;
1759 #undef TYPED_ARRAY_CASE
1760 }
1761 
1762 
GetExternalArrayElementSize(ExternalArrayType type)1763 size_t GetExternalArrayElementSize(ExternalArrayType type) {
1764   switch (type) {
1765 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1766   case kExternal##Type##Array:                          \
1767     return size;
1768     TYPED_ARRAYS(TYPED_ARRAY_CASE)
1769     default:
1770       UNREACHABLE();
1771       return 0;
1772   }
1773 #undef TYPED_ARRAY_CASE
1774 }
1775 
1776 
GetFixedTypedArraysElementSize(ElementsKind kind)1777 size_t GetFixedTypedArraysElementSize(ElementsKind kind) {
1778   switch (kind) {
1779 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1780   case TYPE##_ELEMENTS:                                 \
1781     return size;
1782     TYPED_ARRAYS(TYPED_ARRAY_CASE)
1783     default:
1784       UNREACHABLE();
1785       return 0;
1786   }
1787 #undef TYPED_ARRAY_CASE
1788 }
1789 
1790 
GetArrayTypeFromElementsKind(ElementsKind kind)1791 ExternalArrayType GetArrayTypeFromElementsKind(ElementsKind kind) {
1792   switch (kind) {
1793 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1794   case TYPE##_ELEMENTS:                                 \
1795     return kExternal##Type##Array;
1796     TYPED_ARRAYS(TYPED_ARRAY_CASE)
1797     default:
1798       UNREACHABLE();
1799       return kExternalInt8Array;
1800   }
1801 #undef TYPED_ARRAY_CASE
1802 }
1803 
1804 
GetTypedArrayFun(ExternalArrayType type,Isolate * isolate)1805 JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
1806   Context* native_context = isolate->context()->native_context();
1807   switch (type) {
1808 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
1809     case kExternal##Type##Array:                                              \
1810       return native_context->type##_array_fun();
1811 
1812     TYPED_ARRAYS(TYPED_ARRAY_FUN)
1813 #undef TYPED_ARRAY_FUN
1814 
1815     default:
1816       UNREACHABLE();
1817       return NULL;
1818   }
1819 }
1820 
1821 
GetTypedArrayFun(ElementsKind elements_kind,Isolate * isolate)1822 JSFunction* GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) {
1823   Context* native_context = isolate->context()->native_context();
1824   switch (elements_kind) {
1825 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
1826   case TYPE##_ELEMENTS:                                \
1827     return native_context->type##_array_fun();
1828 
1829     TYPED_ARRAYS(TYPED_ARRAY_FUN)
1830 #undef TYPED_ARRAY_FUN
1831 
1832     default:
1833       UNREACHABLE();
1834       return NULL;
1835   }
1836 }
1837 
1838 
SetupArrayBufferView(i::Isolate * isolate,i::Handle<i::JSArrayBufferView> obj,i::Handle<i::JSArrayBuffer> buffer,size_t byte_offset,size_t byte_length,PretenureFlag pretenure=NOT_TENURED)1839 void SetupArrayBufferView(i::Isolate* isolate,
1840                           i::Handle<i::JSArrayBufferView> obj,
1841                           i::Handle<i::JSArrayBuffer> buffer,
1842                           size_t byte_offset, size_t byte_length,
1843                           PretenureFlag pretenure = NOT_TENURED) {
1844   DCHECK(byte_offset + byte_length <=
1845          static_cast<size_t>(buffer->byte_length()->Number()));
1846 
1847   obj->set_buffer(*buffer);
1848 
1849   i::Handle<i::Object> byte_offset_object =
1850       isolate->factory()->NewNumberFromSize(byte_offset, pretenure);
1851   obj->set_byte_offset(*byte_offset_object);
1852 
1853   i::Handle<i::Object> byte_length_object =
1854       isolate->factory()->NewNumberFromSize(byte_length, pretenure);
1855   obj->set_byte_length(*byte_length_object);
1856 }
1857 
1858 
1859 }  // namespace
1860 
1861 
NewJSTypedArray(ExternalArrayType type,PretenureFlag pretenure)1862 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
1863                                               PretenureFlag pretenure) {
1864   Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1865 
1866   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
1867                                     *typed_array_fun_handle, pretenure),
1868                      JSTypedArray);
1869 }
1870 
1871 
NewJSTypedArray(ElementsKind elements_kind,PretenureFlag pretenure)1872 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
1873                                               PretenureFlag pretenure) {
1874   Handle<JSFunction> typed_array_fun_handle(
1875       GetTypedArrayFun(elements_kind, isolate()));
1876 
1877   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
1878                                     *typed_array_fun_handle, pretenure),
1879                      JSTypedArray);
1880 }
1881 
1882 
NewJSTypedArray(ExternalArrayType type,Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t length,PretenureFlag pretenure)1883 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
1884                                               Handle<JSArrayBuffer> buffer,
1885                                               size_t byte_offset, size_t length,
1886                                               PretenureFlag pretenure) {
1887   Handle<JSTypedArray> obj = NewJSTypedArray(type, pretenure);
1888 
1889   size_t element_size = GetExternalArrayElementSize(type);
1890   ElementsKind elements_kind = GetExternalArrayElementsKind(type);
1891 
1892   CHECK(byte_offset % element_size == 0);
1893 
1894   CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
1895   CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
1896   size_t byte_length = length * element_size;
1897   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length,
1898                        pretenure);
1899 
1900   Handle<Object> length_object = NewNumberFromSize(length, pretenure);
1901   obj->set_length(*length_object);
1902 
1903   Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer(
1904       static_cast<int>(length), type,
1905       static_cast<uint8_t*>(buffer->backing_store()) + byte_offset, pretenure);
1906   Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
1907   JSObject::SetMapAndElements(obj, map, elements);
1908   return obj;
1909 }
1910 
1911 
NewJSTypedArray(ElementsKind elements_kind,size_t number_of_elements,PretenureFlag pretenure)1912 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
1913                                               size_t number_of_elements,
1914                                               PretenureFlag pretenure) {
1915   Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind, pretenure);
1916 
1917   size_t element_size = GetFixedTypedArraysElementSize(elements_kind);
1918   ExternalArrayType array_type = GetArrayTypeFromElementsKind(elements_kind);
1919 
1920   CHECK(number_of_elements <=
1921         (std::numeric_limits<size_t>::max() / element_size));
1922   CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue));
1923   size_t byte_length = number_of_elements * element_size;
1924 
1925   obj->set_byte_offset(Smi::FromInt(0));
1926   i::Handle<i::Object> byte_length_object =
1927       NewNumberFromSize(byte_length, pretenure);
1928   obj->set_byte_length(*byte_length_object);
1929   Handle<Object> length_object =
1930       NewNumberFromSize(number_of_elements, pretenure);
1931   obj->set_length(*length_object);
1932 
1933   Handle<JSArrayBuffer> buffer =
1934       NewJSArrayBuffer(SharedFlag::kNotShared, pretenure);
1935   JSArrayBuffer::Setup(buffer, isolate(), true, NULL, byte_length,
1936                        SharedFlag::kNotShared);
1937   obj->set_buffer(*buffer);
1938   Handle<FixedTypedArrayBase> elements = NewFixedTypedArray(
1939       static_cast<int>(number_of_elements), array_type, true, pretenure);
1940   obj->set_elements(*elements);
1941   return obj;
1942 }
1943 
1944 
NewJSDataView(Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t byte_length)1945 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
1946                                           size_t byte_offset,
1947                                           size_t byte_length) {
1948   Handle<JSDataView> obj = NewJSDataView();
1949   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
1950   return obj;
1951 }
1952 
1953 
NewJSBoundFunction(Handle<JSReceiver> target_function,Handle<Object> bound_this,Vector<Handle<Object>> bound_args)1954 MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
1955     Handle<JSReceiver> target_function, Handle<Object> bound_this,
1956     Vector<Handle<Object>> bound_args) {
1957   DCHECK(target_function->IsCallable());
1958   STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
1959   if (bound_args.length() >= Code::kMaxArguments) {
1960     THROW_NEW_ERROR(isolate(),
1961                     NewRangeError(MessageTemplate::kTooManyArguments),
1962                     JSBoundFunction);
1963   }
1964 
1965   // Determine the prototype of the {target_function}.
1966   Handle<Object> prototype;
1967   ASSIGN_RETURN_ON_EXCEPTION(
1968       isolate(), prototype,
1969       JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
1970 
1971   // Create the [[BoundArguments]] for the result.
1972   Handle<FixedArray> bound_arguments;
1973   if (bound_args.length() == 0) {
1974     bound_arguments = empty_fixed_array();
1975   } else {
1976     bound_arguments = NewFixedArray(bound_args.length());
1977     for (int i = 0; i < bound_args.length(); ++i) {
1978       bound_arguments->set(i, *bound_args[i]);
1979     }
1980   }
1981 
1982   // Setup the map for the JSBoundFunction instance.
1983   Handle<Map> map = target_function->IsConstructor()
1984                         ? isolate()->bound_function_with_constructor_map()
1985                         : isolate()->bound_function_without_constructor_map();
1986   if (map->prototype() != *prototype) {
1987     map = Map::TransitionToPrototype(map, prototype, REGULAR_PROTOTYPE);
1988   }
1989   DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
1990 
1991   // Setup the JSBoundFunction instance.
1992   Handle<JSBoundFunction> result =
1993       Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map));
1994   result->set_bound_target_function(*target_function);
1995   result->set_bound_this(*bound_this);
1996   result->set_bound_arguments(*bound_arguments);
1997   return result;
1998 }
1999 
2000 
2001 // ES6 section 9.5.15 ProxyCreate (target, handler)
NewJSProxy(Handle<JSReceiver> target,Handle<JSReceiver> handler)2002 Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
2003                                     Handle<JSReceiver> handler) {
2004   // Allocate the proxy object.
2005   Handle<Map> map;
2006   if (target->IsCallable()) {
2007     if (target->IsConstructor()) {
2008       map = Handle<Map>(isolate()->proxy_constructor_map());
2009     } else {
2010       map = Handle<Map>(isolate()->proxy_callable_map());
2011     }
2012   } else {
2013     map = Handle<Map>(isolate()->proxy_map());
2014   }
2015   DCHECK(map->prototype()->IsNull(isolate()));
2016   Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
2017   result->initialize_properties();
2018   result->set_target(*target);
2019   result->set_handler(*handler);
2020   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
2021   return result;
2022 }
2023 
2024 
NewUninitializedJSGlobalProxy()2025 Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy() {
2026   // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
2027   // via ReinitializeJSGlobalProxy later.
2028   Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, JSGlobalProxy::kSize);
2029   // Maintain invariant expected from any JSGlobalProxy.
2030   map->set_is_access_check_needed(true);
2031   CALL_HEAP_FUNCTION(
2032       isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map, NOT_TENURED),
2033       JSGlobalProxy);
2034 }
2035 
2036 
ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,Handle<JSFunction> constructor)2037 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
2038                                         Handle<JSFunction> constructor) {
2039   DCHECK(constructor->has_initial_map());
2040   Handle<Map> map(constructor->initial_map(), isolate());
2041   Handle<Map> old_map(object->map(), isolate());
2042 
2043   // The proxy's hash should be retained across reinitialization.
2044   Handle<Object> hash(object->hash(), isolate());
2045 
2046   JSObject::InvalidatePrototypeChains(*old_map);
2047   if (old_map->is_prototype_map()) {
2048     map = Map::Copy(map, "CopyAsPrototypeForJSGlobalProxy");
2049     map->set_is_prototype_map(true);
2050   }
2051   JSObject::UpdatePrototypeUserRegistration(old_map, map, isolate());
2052 
2053   // Check that the already allocated object has the same size and type as
2054   // objects allocated using the constructor.
2055   DCHECK(map->instance_size() == old_map->instance_size());
2056   DCHECK(map->instance_type() == old_map->instance_type());
2057 
2058   // Allocate the backing storage for the properties.
2059   Handle<FixedArray> properties = empty_fixed_array();
2060 
2061   // In order to keep heap in consistent state there must be no allocations
2062   // before object re-initialization is finished.
2063   DisallowHeapAllocation no_allocation;
2064 
2065   // Reset the map for the object.
2066   object->synchronized_set_map(*map);
2067 
2068   Heap* heap = isolate()->heap();
2069   // Reinitialize the object from the constructor map.
2070   heap->InitializeJSObjectFromMap(*object, *properties, *map);
2071 
2072   // Restore the saved hash.
2073   object->set_hash(*hash);
2074 }
2075 
NewSharedFunctionInfo(Handle<String> name,int number_of_literals,FunctionKind kind,Handle<Code> code,Handle<ScopeInfo> scope_info)2076 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
2077     Handle<String> name, int number_of_literals, FunctionKind kind,
2078     Handle<Code> code, Handle<ScopeInfo> scope_info) {
2079   DCHECK(IsValidFunctionKind(kind));
2080   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
2081       name, code, IsConstructable(kind, scope_info->language_mode()));
2082   shared->set_scope_info(*scope_info);
2083   shared->set_kind(kind);
2084   shared->set_num_literals(number_of_literals);
2085   if (IsGeneratorFunction(kind)) {
2086     shared->set_instance_class_name(isolate()->heap()->Generator_string());
2087   }
2088   return shared;
2089 }
2090 
2091 
NewJSMessageObject(MessageTemplate::Template message,Handle<Object> argument,int start_position,int end_position,Handle<Object> script,Handle<Object> stack_frames)2092 Handle<JSMessageObject> Factory::NewJSMessageObject(
2093     MessageTemplate::Template message, Handle<Object> argument,
2094     int start_position, int end_position, Handle<Object> script,
2095     Handle<Object> stack_frames) {
2096   Handle<Map> map = message_object_map();
2097   Handle<JSMessageObject> message_obj = New<JSMessageObject>(map, NEW_SPACE);
2098   message_obj->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2099   message_obj->initialize_elements();
2100   message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2101   message_obj->set_type(message);
2102   message_obj->set_argument(*argument);
2103   message_obj->set_start_position(start_position);
2104   message_obj->set_end_position(end_position);
2105   message_obj->set_script(*script);
2106   message_obj->set_stack_frames(*stack_frames);
2107   return message_obj;
2108 }
2109 
2110 
NewSharedFunctionInfo(Handle<String> name,MaybeHandle<Code> maybe_code,bool is_constructor)2111 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
2112     Handle<String> name, MaybeHandle<Code> maybe_code, bool is_constructor) {
2113   // Function names are assumed to be flat elsewhere. Must flatten before
2114   // allocating SharedFunctionInfo to avoid GC seeing the uninitialized SFI.
2115   name = String::Flatten(name, TENURED);
2116 
2117   Handle<Map> map = shared_function_info_map();
2118   Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map, OLD_SPACE);
2119 
2120   // Set pointer fields.
2121   share->set_name(*name);
2122   Handle<Code> code;
2123   if (!maybe_code.ToHandle(&code)) {
2124     code = isolate()->builtins()->Illegal();
2125   }
2126   share->set_code(*code);
2127   share->set_optimized_code_map(*cleared_optimized_code_map());
2128   share->set_scope_info(ScopeInfo::Empty(isolate()));
2129   Handle<Code> construct_stub =
2130       is_constructor ? isolate()->builtins()->JSConstructStubGeneric()
2131                      : isolate()->builtins()->ConstructedNonConstructable();
2132   share->set_construct_stub(*construct_stub);
2133   share->set_instance_class_name(*Object_string());
2134   share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
2135   share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
2136   share->set_debug_info(DebugInfo::uninitialized(), SKIP_WRITE_BARRIER);
2137   share->set_function_identifier(*undefined_value(), SKIP_WRITE_BARRIER);
2138   StaticFeedbackVectorSpec empty_spec;
2139   Handle<TypeFeedbackMetadata> feedback_metadata =
2140       TypeFeedbackMetadata::New(isolate(), &empty_spec);
2141   share->set_feedback_metadata(*feedback_metadata, SKIP_WRITE_BARRIER);
2142 #if TRACE_MAPS
2143   share->set_unique_id(isolate()->GetNextUniqueSharedFunctionInfoId());
2144 #endif
2145   share->set_profiler_ticks(0);
2146   share->set_ast_node_count(0);
2147   share->set_counters(0);
2148 
2149   // Set integer fields (smi or int, depending on the architecture).
2150   share->set_length(0);
2151   share->set_internal_formal_parameter_count(0);
2152   share->set_expected_nof_properties(0);
2153   share->set_num_literals(0);
2154   share->set_start_position_and_type(0);
2155   share->set_end_position(0);
2156   share->set_function_token_position(0);
2157   // All compiler hints default to false or 0.
2158   share->set_compiler_hints(0);
2159   share->set_opt_count_and_bailout_reason(0);
2160 
2161   // Link into the list.
2162   Handle<Object> new_noscript_list =
2163       WeakFixedArray::Add(noscript_shared_function_infos(), share);
2164   isolate()->heap()->set_noscript_shared_function_infos(*new_noscript_list);
2165 
2166   return share;
2167 }
2168 
2169 
NumberCacheHash(Handle<FixedArray> cache,Handle<Object> number)2170 static inline int NumberCacheHash(Handle<FixedArray> cache,
2171                                   Handle<Object> number) {
2172   int mask = (cache->length() >> 1) - 1;
2173   if (number->IsSmi()) {
2174     return Handle<Smi>::cast(number)->value() & mask;
2175   } else {
2176     DoubleRepresentation rep(number->Number());
2177     return
2178         (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2179   }
2180 }
2181 
2182 
GetNumberStringCache(Handle<Object> number)2183 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2184   DisallowHeapAllocation no_gc;
2185   int hash = NumberCacheHash(number_string_cache(), number);
2186   Object* key = number_string_cache()->get(hash * 2);
2187   if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2188                          key->Number() == number->Number())) {
2189     return Handle<String>(
2190         String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2191   }
2192   return undefined_value();
2193 }
2194 
2195 
SetNumberStringCache(Handle<Object> number,Handle<String> string)2196 void Factory::SetNumberStringCache(Handle<Object> number,
2197                                    Handle<String> string) {
2198   int hash = NumberCacheHash(number_string_cache(), number);
2199   if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2200     int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2201     if (number_string_cache()->length() != full_size) {
2202       Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2203       isolate()->heap()->set_number_string_cache(*new_cache);
2204       return;
2205     }
2206   }
2207   number_string_cache()->set(hash * 2, *number);
2208   number_string_cache()->set(hash * 2 + 1, *string);
2209 }
2210 
2211 
NumberToString(Handle<Object> number,bool check_number_string_cache)2212 Handle<String> Factory::NumberToString(Handle<Object> number,
2213                                        bool check_number_string_cache) {
2214   isolate()->counters()->number_to_string_runtime()->Increment();
2215   if (check_number_string_cache) {
2216     Handle<Object> cached = GetNumberStringCache(number);
2217     if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
2218   }
2219 
2220   char arr[100];
2221   Vector<char> buffer(arr, arraysize(arr));
2222   const char* str;
2223   if (number->IsSmi()) {
2224     int num = Handle<Smi>::cast(number)->value();
2225     str = IntToCString(num, buffer);
2226   } else {
2227     double num = Handle<HeapNumber>::cast(number)->value();
2228     str = DoubleToCString(num, buffer);
2229   }
2230 
2231   // We tenure the allocated string since it is referenced from the
2232   // number-string cache which lives in the old space.
2233   Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2234   SetNumberStringCache(number, js_string);
2235   return js_string;
2236 }
2237 
2238 
NewDebugInfo(Handle<SharedFunctionInfo> shared)2239 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2240   // Allocate initial fixed array for active break points before allocating the
2241   // debug info object to avoid allocation while setting up the debug info
2242   // object.
2243   Handle<FixedArray> break_points(
2244       NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2245 
2246   // Create and set up the debug info object. Debug info contains function, a
2247   // copy of the original code, the executing code and initial fixed array for
2248   // active break points.
2249   Handle<DebugInfo> debug_info =
2250       Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2251   debug_info->set_shared(*shared);
2252   if (shared->HasBytecodeArray()) {
2253     // We need to create a copy, but delay since this may cause heap
2254     // verification.
2255     debug_info->set_abstract_code(AbstractCode::cast(shared->bytecode_array()));
2256   } else {
2257     debug_info->set_abstract_code(AbstractCode::cast(shared->code()));
2258   }
2259   debug_info->set_break_points(*break_points);
2260   if (shared->HasBytecodeArray()) {
2261     // Create a copy for debugging.
2262     Handle<BytecodeArray> original(shared->bytecode_array());
2263     Handle<BytecodeArray> copy = CopyBytecodeArray(original);
2264     debug_info->set_abstract_code(AbstractCode::cast(*copy));
2265   }
2266 
2267   // Link debug info to function.
2268   shared->set_debug_info(*debug_info);
2269 
2270   return debug_info;
2271 }
2272 
2273 
NewArgumentsObject(Handle<JSFunction> callee,int length)2274 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
2275                                              int length) {
2276   bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
2277                             !callee->shared()->has_simple_parameters();
2278   Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
2279                                        : isolate()->sloppy_arguments_map();
2280   AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
2281                                      false);
2282   DCHECK(!isolate()->has_pending_exception());
2283   Handle<JSObject> result = NewJSObjectFromMap(map);
2284   Handle<Smi> value(Smi::FromInt(length), isolate());
2285   Object::SetProperty(result, length_string(), value, STRICT).Assert();
2286   if (!strict_mode_callee) {
2287     Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
2288   }
2289   return result;
2290 }
2291 
2292 
NewJSWeakMap()2293 Handle<JSWeakMap> Factory::NewJSWeakMap() {
2294   // TODO(adamk): Currently the map is only created three times per
2295   // isolate. If it's created more often, the map should be moved into the
2296   // strong root list.
2297   Handle<Map> map = NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
2298   return Handle<JSWeakMap>::cast(NewJSObjectFromMap(map));
2299 }
2300 
2301 
ObjectLiteralMapFromCache(Handle<Context> context,int number_of_properties,bool * is_result_from_cache)2302 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2303                                                int number_of_properties,
2304                                                bool* is_result_from_cache) {
2305   const int kMapCacheSize = 128;
2306 
2307   // We do not cache maps for too many properties or when running builtin code.
2308   if (number_of_properties > kMapCacheSize ||
2309       isolate()->bootstrapper()->IsActive()) {
2310     *is_result_from_cache = false;
2311     Handle<Map> map = Map::Create(isolate(), number_of_properties);
2312     return map;
2313   }
2314   *is_result_from_cache = true;
2315   if (number_of_properties == 0) {
2316     // Reuse the initial map of the Object function if the literal has no
2317     // predeclared properties.
2318     return handle(context->object_function()->initial_map(), isolate());
2319   }
2320 
2321   int cache_index = number_of_properties - 1;
2322   Handle<Object> maybe_cache(context->map_cache(), isolate());
2323   if (maybe_cache->IsUndefined(isolate())) {
2324     // Allocate the new map cache for the native context.
2325     maybe_cache = NewFixedArray(kMapCacheSize, TENURED);
2326     context->set_map_cache(*maybe_cache);
2327   } else {
2328     // Check to see whether there is a matching element in the cache.
2329     Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
2330     Object* result = cache->get(cache_index);
2331     if (result->IsWeakCell()) {
2332       WeakCell* cell = WeakCell::cast(result);
2333       if (!cell->cleared()) {
2334         return handle(Map::cast(cell->value()), isolate());
2335       }
2336     }
2337   }
2338   // Create a new map and add it to the cache.
2339   Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
2340   Handle<Map> map = Map::Create(isolate(), number_of_properties);
2341   Handle<WeakCell> cell = NewWeakCell(map);
2342   cache->set(cache_index, *cell);
2343   return map;
2344 }
2345 
2346 
SetRegExpAtomData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,Handle<Object> data)2347 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2348                                 JSRegExp::Type type,
2349                                 Handle<String> source,
2350                                 JSRegExp::Flags flags,
2351                                 Handle<Object> data) {
2352   Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2353 
2354   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2355   store->set(JSRegExp::kSourceIndex, *source);
2356   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
2357   store->set(JSRegExp::kAtomPatternIndex, *data);
2358   regexp->set_data(*store);
2359 }
2360 
2361 
SetRegExpIrregexpData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,int capture_count)2362 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2363                                     JSRegExp::Type type,
2364                                     Handle<String> source,
2365                                     JSRegExp::Flags flags,
2366                                     int capture_count) {
2367   Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2368   Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2369   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2370   store->set(JSRegExp::kSourceIndex, *source);
2371   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
2372   store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
2373   store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2374   store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
2375   store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2376   store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2377   store->set(JSRegExp::kIrregexpCaptureCountIndex,
2378              Smi::FromInt(capture_count));
2379   store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
2380   regexp->set_data(*store);
2381 }
2382 
2383 
GlobalConstantFor(Handle<Name> name)2384 Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
2385   if (Name::Equals(name, undefined_string())) return undefined_value();
2386   if (Name::Equals(name, nan_string())) return nan_value();
2387   if (Name::Equals(name, infinity_string())) return infinity_value();
2388   return Handle<Object>::null();
2389 }
2390 
2391 
ToBoolean(bool value)2392 Handle<Object> Factory::ToBoolean(bool value) {
2393   return value ? true_value() : false_value();
2394 }
2395 
2396 
2397 }  // namespace internal
2398 }  // namespace v8
2399