1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/PrettyDeclStackTrace.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/SemaDiagnostic.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/StringSwitch.h"
31
32 using namespace clang;
33
34 //===----------------------------------------------------------------------===//
35 // C99 6.7: Declarations.
36 //===----------------------------------------------------------------------===//
37
38 /// ParseTypeName
39 /// type-name: [C99 6.7.6]
40 /// specifier-qualifier-list abstract-declarator[opt]
41 ///
42 /// Called type-id in C++.
ParseTypeName(SourceRange * Range,Declarator::TheContext Context,AccessSpecifier AS,Decl ** OwnedType,ParsedAttributes * Attrs)43 TypeResult Parser::ParseTypeName(SourceRange *Range,
44 Declarator::TheContext Context,
45 AccessSpecifier AS,
46 Decl **OwnedType,
47 ParsedAttributes *Attrs) {
48 DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
49 if (DSC == DSC_normal)
50 DSC = DSC_type_specifier;
51
52 // Parse the common declaration-specifiers piece.
53 DeclSpec DS(AttrFactory);
54 if (Attrs)
55 DS.addAttributes(Attrs->getList());
56 ParseSpecifierQualifierList(DS, AS, DSC);
57 if (OwnedType)
58 *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
59
60 // Parse the abstract-declarator, if present.
61 Declarator DeclaratorInfo(DS, Context);
62 ParseDeclarator(DeclaratorInfo);
63 if (Range)
64 *Range = DeclaratorInfo.getSourceRange();
65
66 if (DeclaratorInfo.isInvalidType())
67 return true;
68
69 return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
70 }
71
72 /// isAttributeLateParsed - Return true if the attribute has arguments that
73 /// require late parsing.
isAttributeLateParsed(const IdentifierInfo & II)74 static bool isAttributeLateParsed(const IdentifierInfo &II) {
75 #define CLANG_ATTR_LATE_PARSED_LIST
76 return llvm::StringSwitch<bool>(II.getName())
77 #include "clang/Parse/AttrParserStringSwitches.inc"
78 .Default(false);
79 #undef CLANG_ATTR_LATE_PARSED_LIST
80 }
81
82 /// ParseGNUAttributes - Parse a non-empty attributes list.
83 ///
84 /// [GNU] attributes:
85 /// attribute
86 /// attributes attribute
87 ///
88 /// [GNU] attribute:
89 /// '__attribute__' '(' '(' attribute-list ')' ')'
90 ///
91 /// [GNU] attribute-list:
92 /// attrib
93 /// attribute_list ',' attrib
94 ///
95 /// [GNU] attrib:
96 /// empty
97 /// attrib-name
98 /// attrib-name '(' identifier ')'
99 /// attrib-name '(' identifier ',' nonempty-expr-list ')'
100 /// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
101 ///
102 /// [GNU] attrib-name:
103 /// identifier
104 /// typespec
105 /// typequal
106 /// storageclass
107 ///
108 /// Whether an attribute takes an 'identifier' is determined by the
109 /// attrib-name. GCC's behavior here is not worth imitating:
110 ///
111 /// * In C mode, if the attribute argument list starts with an identifier
112 /// followed by a ',' or an ')', and the identifier doesn't resolve to
113 /// a type, it is parsed as an identifier. If the attribute actually
114 /// wanted an expression, it's out of luck (but it turns out that no
115 /// attributes work that way, because C constant expressions are very
116 /// limited).
117 /// * In C++ mode, if the attribute argument list starts with an identifier,
118 /// and the attribute *wants* an identifier, it is parsed as an identifier.
119 /// At block scope, any additional tokens between the identifier and the
120 /// ',' or ')' are ignored, otherwise they produce a parse error.
121 ///
122 /// We follow the C++ model, but don't allow junk after the identifier.
ParseGNUAttributes(ParsedAttributes & attrs,SourceLocation * endLoc,LateParsedAttrList * LateAttrs,Declarator * D)123 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
124 SourceLocation *endLoc,
125 LateParsedAttrList *LateAttrs,
126 Declarator *D) {
127 assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
128
129 while (Tok.is(tok::kw___attribute)) {
130 ConsumeToken();
131 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
132 "attribute")) {
133 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
134 return;
135 }
136 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
137 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
138 return;
139 }
140 // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
141 while (true) {
142 // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
143 if (TryConsumeToken(tok::comma))
144 continue;
145
146 // Expect an identifier or declaration specifier (const, int, etc.)
147 if (Tok.isAnnotation())
148 break;
149 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
150 if (!AttrName)
151 break;
152
153 SourceLocation AttrNameLoc = ConsumeToken();
154
155 if (Tok.isNot(tok::l_paren)) {
156 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
157 AttributeList::AS_GNU);
158 continue;
159 }
160
161 // Handle "parameterized" attributes
162 if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
163 ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
164 SourceLocation(), AttributeList::AS_GNU, D);
165 continue;
166 }
167
168 // Handle attributes with arguments that require late parsing.
169 LateParsedAttribute *LA =
170 new LateParsedAttribute(this, *AttrName, AttrNameLoc);
171 LateAttrs->push_back(LA);
172
173 // Attributes in a class are parsed at the end of the class, along
174 // with other late-parsed declarations.
175 if (!ClassStack.empty() && !LateAttrs->parseSoon())
176 getCurrentClass().LateParsedDeclarations.push_back(LA);
177
178 // consume everything up to and including the matching right parens
179 ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
180
181 Token Eof;
182 Eof.startToken();
183 Eof.setLocation(Tok.getLocation());
184 LA->Toks.push_back(Eof);
185 }
186
187 if (ExpectAndConsume(tok::r_paren))
188 SkipUntil(tok::r_paren, StopAtSemi);
189 SourceLocation Loc = Tok.getLocation();
190 if (ExpectAndConsume(tok::r_paren))
191 SkipUntil(tok::r_paren, StopAtSemi);
192 if (endLoc)
193 *endLoc = Loc;
194 }
195 }
196
197 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
normalizeAttrName(StringRef Name)198 static StringRef normalizeAttrName(StringRef Name) {
199 if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
200 Name = Name.drop_front(2).drop_back(2);
201 return Name;
202 }
203
204 /// \brief Determine whether the given attribute has an identifier argument.
attributeHasIdentifierArg(const IdentifierInfo & II)205 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
206 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
207 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
208 #include "clang/Parse/AttrParserStringSwitches.inc"
209 .Default(false);
210 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
211 }
212
213 /// \brief Determine whether the given attribute parses a type argument.
attributeIsTypeArgAttr(const IdentifierInfo & II)214 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
215 #define CLANG_ATTR_TYPE_ARG_LIST
216 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
217 #include "clang/Parse/AttrParserStringSwitches.inc"
218 .Default(false);
219 #undef CLANG_ATTR_TYPE_ARG_LIST
220 }
221
222 /// \brief Determine whether the given attribute requires parsing its arguments
223 /// in an unevaluated context or not.
attributeParsedArgsUnevaluated(const IdentifierInfo & II)224 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
225 #define CLANG_ATTR_ARG_CONTEXT_LIST
226 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
227 #include "clang/Parse/AttrParserStringSwitches.inc"
228 .Default(false);
229 #undef CLANG_ATTR_ARG_CONTEXT_LIST
230 }
231
ParseIdentifierLoc()232 IdentifierLoc *Parser::ParseIdentifierLoc() {
233 assert(Tok.is(tok::identifier) && "expected an identifier");
234 IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
235 Tok.getLocation(),
236 Tok.getIdentifierInfo());
237 ConsumeToken();
238 return IL;
239 }
240
ParseAttributeWithTypeArg(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)241 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
242 SourceLocation AttrNameLoc,
243 ParsedAttributes &Attrs,
244 SourceLocation *EndLoc,
245 IdentifierInfo *ScopeName,
246 SourceLocation ScopeLoc,
247 AttributeList::Syntax Syntax) {
248 BalancedDelimiterTracker Parens(*this, tok::l_paren);
249 Parens.consumeOpen();
250
251 TypeResult T;
252 if (Tok.isNot(tok::r_paren))
253 T = ParseTypeName();
254
255 if (Parens.consumeClose())
256 return;
257
258 if (T.isInvalid())
259 return;
260
261 if (T.isUsable())
262 Attrs.addNewTypeAttr(&AttrName,
263 SourceRange(AttrNameLoc, Parens.getCloseLocation()),
264 ScopeName, ScopeLoc, T.get(), Syntax);
265 else
266 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
267 ScopeName, ScopeLoc, nullptr, 0, Syntax);
268 }
269
ParseAttributeArgsCommon(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)270 unsigned Parser::ParseAttributeArgsCommon(
271 IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
272 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
273 SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
274 // Ignore the left paren location for now.
275 ConsumeParen();
276
277 ArgsVector ArgExprs;
278 if (Tok.is(tok::identifier)) {
279 // If this attribute wants an 'identifier' argument, make it so.
280 bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
281 AttributeList::Kind AttrKind =
282 AttributeList::getKind(AttrName, ScopeName, Syntax);
283
284 // If we don't know how to parse this attribute, but this is the only
285 // token in this argument, assume it's meant to be an identifier.
286 if (AttrKind == AttributeList::UnknownAttribute ||
287 AttrKind == AttributeList::IgnoredAttribute) {
288 const Token &Next = NextToken();
289 IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
290 }
291
292 if (IsIdentifierArg)
293 ArgExprs.push_back(ParseIdentifierLoc());
294 }
295
296 if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
297 // Eat the comma.
298 if (!ArgExprs.empty())
299 ConsumeToken();
300
301 // Parse the non-empty comma-separated list of expressions.
302 do {
303 std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
304 if (attributeParsedArgsUnevaluated(*AttrName))
305 Unevaluated.reset(
306 new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
307
308 ExprResult ArgExpr(
309 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
310 if (ArgExpr.isInvalid()) {
311 SkipUntil(tok::r_paren, StopAtSemi);
312 return 0;
313 }
314 ArgExprs.push_back(ArgExpr.get());
315 // Eat the comma, move to the next argument
316 } while (TryConsumeToken(tok::comma));
317 }
318
319 SourceLocation RParen = Tok.getLocation();
320 if (!ExpectAndConsume(tok::r_paren)) {
321 SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
322 Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
323 ArgExprs.data(), ArgExprs.size(), Syntax);
324 }
325
326 if (EndLoc)
327 *EndLoc = RParen;
328
329 return static_cast<unsigned>(ArgExprs.size());
330 }
331
332 /// Parse the arguments to a parameterized GNU attribute or
333 /// a C++11 attribute in "gnu" namespace.
ParseGNUAttributeArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax,Declarator * D)334 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
335 SourceLocation AttrNameLoc,
336 ParsedAttributes &Attrs,
337 SourceLocation *EndLoc,
338 IdentifierInfo *ScopeName,
339 SourceLocation ScopeLoc,
340 AttributeList::Syntax Syntax,
341 Declarator *D) {
342
343 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
344
345 AttributeList::Kind AttrKind =
346 AttributeList::getKind(AttrName, ScopeName, Syntax);
347
348 if (AttrKind == AttributeList::AT_Availability) {
349 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
350 ScopeLoc, Syntax);
351 return;
352 } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
353 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
354 ScopeName, ScopeLoc, Syntax);
355 return;
356 } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
357 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
358 ScopeName, ScopeLoc, Syntax);
359 return;
360 } else if (attributeIsTypeArgAttr(*AttrName)) {
361 ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
362 ScopeLoc, Syntax);
363 return;
364 }
365
366 // These may refer to the function arguments, but need to be parsed early to
367 // participate in determining whether it's a redeclaration.
368 std::unique_ptr<ParseScope> PrototypeScope;
369 if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
370 D && D->isFunctionDeclarator()) {
371 DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
372 PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
373 Scope::FunctionDeclarationScope |
374 Scope::DeclScope));
375 for (unsigned i = 0; i != FTI.NumParams; ++i) {
376 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
377 Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
378 }
379 }
380
381 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
382 ScopeLoc, Syntax);
383 }
384
ParseMicrosoftDeclSpecArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs)385 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
386 SourceLocation AttrNameLoc,
387 ParsedAttributes &Attrs) {
388 // If the attribute isn't known, we will not attempt to parse any
389 // arguments.
390 if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
391 getTargetInfo(), getLangOpts())) {
392 // Eat the left paren, then skip to the ending right paren.
393 ConsumeParen();
394 SkipUntil(tok::r_paren);
395 return false;
396 }
397
398 SourceLocation OpenParenLoc = Tok.getLocation();
399
400 if (AttrName->getName() == "property") {
401 // The property declspec is more complex in that it can take one or two
402 // assignment expressions as a parameter, but the lhs of the assignment
403 // must be named get or put.
404
405 BalancedDelimiterTracker T(*this, tok::l_paren);
406 T.expectAndConsume(diag::err_expected_lparen_after,
407 AttrName->getNameStart(), tok::r_paren);
408
409 enum AccessorKind {
410 AK_Invalid = -1,
411 AK_Put = 0,
412 AK_Get = 1 // indices into AccessorNames
413 };
414 IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
415 bool HasInvalidAccessor = false;
416
417 // Parse the accessor specifications.
418 while (true) {
419 // Stop if this doesn't look like an accessor spec.
420 if (!Tok.is(tok::identifier)) {
421 // If the user wrote a completely empty list, use a special diagnostic.
422 if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
423 AccessorNames[AK_Put] == nullptr &&
424 AccessorNames[AK_Get] == nullptr) {
425 Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
426 break;
427 }
428
429 Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
430 break;
431 }
432
433 AccessorKind Kind;
434 SourceLocation KindLoc = Tok.getLocation();
435 StringRef KindStr = Tok.getIdentifierInfo()->getName();
436 if (KindStr == "get") {
437 Kind = AK_Get;
438 } else if (KindStr == "put") {
439 Kind = AK_Put;
440
441 // Recover from the common mistake of using 'set' instead of 'put'.
442 } else if (KindStr == "set") {
443 Diag(KindLoc, diag::err_ms_property_has_set_accessor)
444 << FixItHint::CreateReplacement(KindLoc, "put");
445 Kind = AK_Put;
446
447 // Handle the mistake of forgetting the accessor kind by skipping
448 // this accessor.
449 } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
450 Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
451 ConsumeToken();
452 HasInvalidAccessor = true;
453 goto next_property_accessor;
454
455 // Otherwise, complain about the unknown accessor kind.
456 } else {
457 Diag(KindLoc, diag::err_ms_property_unknown_accessor);
458 HasInvalidAccessor = true;
459 Kind = AK_Invalid;
460
461 // Try to keep parsing unless it doesn't look like an accessor spec.
462 if (!NextToken().is(tok::equal))
463 break;
464 }
465
466 // Consume the identifier.
467 ConsumeToken();
468
469 // Consume the '='.
470 if (!TryConsumeToken(tok::equal)) {
471 Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
472 << KindStr;
473 break;
474 }
475
476 // Expect the method name.
477 if (!Tok.is(tok::identifier)) {
478 Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
479 break;
480 }
481
482 if (Kind == AK_Invalid) {
483 // Just drop invalid accessors.
484 } else if (AccessorNames[Kind] != nullptr) {
485 // Complain about the repeated accessor, ignore it, and keep parsing.
486 Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
487 } else {
488 AccessorNames[Kind] = Tok.getIdentifierInfo();
489 }
490 ConsumeToken();
491
492 next_property_accessor:
493 // Keep processing accessors until we run out.
494 if (TryConsumeToken(tok::comma))
495 continue;
496
497 // If we run into the ')', stop without consuming it.
498 if (Tok.is(tok::r_paren))
499 break;
500
501 Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
502 break;
503 }
504
505 // Only add the property attribute if it was well-formed.
506 if (!HasInvalidAccessor)
507 Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
508 AccessorNames[AK_Get], AccessorNames[AK_Put],
509 AttributeList::AS_Declspec);
510 T.skipToEnd();
511 return !HasInvalidAccessor;
512 }
513
514 unsigned NumArgs =
515 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
516 SourceLocation(), AttributeList::AS_Declspec);
517
518 // If this attribute's args were parsed, and it was expected to have
519 // arguments but none were provided, emit a diagnostic.
520 const AttributeList *Attr = Attrs.getList();
521 if (Attr && Attr->getMaxArgs() && !NumArgs) {
522 Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
523 return false;
524 }
525 return true;
526 }
527
528 /// [MS] decl-specifier:
529 /// __declspec ( extended-decl-modifier-seq )
530 ///
531 /// [MS] extended-decl-modifier-seq:
532 /// extended-decl-modifier[opt]
533 /// extended-decl-modifier extended-decl-modifier-seq
ParseMicrosoftDeclSpecs(ParsedAttributes & Attrs,SourceLocation * End)534 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
535 SourceLocation *End) {
536 assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
537 assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
538
539 while (Tok.is(tok::kw___declspec)) {
540 ConsumeToken();
541 BalancedDelimiterTracker T(*this, tok::l_paren);
542 if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
543 tok::r_paren))
544 return;
545
546 // An empty declspec is perfectly legal and should not warn. Additionally,
547 // you can specify multiple attributes per declspec.
548 while (Tok.isNot(tok::r_paren)) {
549 // Attribute not present.
550 if (TryConsumeToken(tok::comma))
551 continue;
552
553 // We expect either a well-known identifier or a generic string. Anything
554 // else is a malformed declspec.
555 bool IsString = Tok.getKind() == tok::string_literal;
556 if (!IsString && Tok.getKind() != tok::identifier &&
557 Tok.getKind() != tok::kw_restrict) {
558 Diag(Tok, diag::err_ms_declspec_type);
559 T.skipToEnd();
560 return;
561 }
562
563 IdentifierInfo *AttrName;
564 SourceLocation AttrNameLoc;
565 if (IsString) {
566 SmallString<8> StrBuffer;
567 bool Invalid = false;
568 StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
569 if (Invalid) {
570 T.skipToEnd();
571 return;
572 }
573 AttrName = PP.getIdentifierInfo(Str);
574 AttrNameLoc = ConsumeStringToken();
575 } else {
576 AttrName = Tok.getIdentifierInfo();
577 AttrNameLoc = ConsumeToken();
578 }
579
580 bool AttrHandled = false;
581
582 // Parse attribute arguments.
583 if (Tok.is(tok::l_paren))
584 AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
585 else if (AttrName->getName() == "property")
586 // The property attribute must have an argument list.
587 Diag(Tok.getLocation(), diag::err_expected_lparen_after)
588 << AttrName->getName();
589
590 if (!AttrHandled)
591 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
592 AttributeList::AS_Declspec);
593 }
594 T.consumeClose();
595 if (End)
596 *End = T.getCloseLocation();
597 }
598 }
599
ParseMicrosoftTypeAttributes(ParsedAttributes & attrs)600 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
601 // Treat these like attributes
602 while (true) {
603 switch (Tok.getKind()) {
604 case tok::kw___fastcall:
605 case tok::kw___stdcall:
606 case tok::kw___thiscall:
607 case tok::kw___cdecl:
608 case tok::kw___vectorcall:
609 case tok::kw___ptr64:
610 case tok::kw___w64:
611 case tok::kw___ptr32:
612 case tok::kw___unaligned:
613 case tok::kw___sptr:
614 case tok::kw___uptr: {
615 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
616 SourceLocation AttrNameLoc = ConsumeToken();
617 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
618 AttributeList::AS_Keyword);
619 break;
620 }
621 default:
622 return;
623 }
624 }
625 }
626
DiagnoseAndSkipExtendedMicrosoftTypeAttributes()627 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
628 SourceLocation StartLoc = Tok.getLocation();
629 SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
630
631 if (EndLoc.isValid()) {
632 SourceRange Range(StartLoc, EndLoc);
633 Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
634 }
635 }
636
SkipExtendedMicrosoftTypeAttributes()637 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
638 SourceLocation EndLoc;
639
640 while (true) {
641 switch (Tok.getKind()) {
642 case tok::kw_const:
643 case tok::kw_volatile:
644 case tok::kw___fastcall:
645 case tok::kw___stdcall:
646 case tok::kw___thiscall:
647 case tok::kw___cdecl:
648 case tok::kw___vectorcall:
649 case tok::kw___ptr32:
650 case tok::kw___ptr64:
651 case tok::kw___w64:
652 case tok::kw___unaligned:
653 case tok::kw___sptr:
654 case tok::kw___uptr:
655 EndLoc = ConsumeToken();
656 break;
657 default:
658 return EndLoc;
659 }
660 }
661 }
662
ParseBorlandTypeAttributes(ParsedAttributes & attrs)663 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
664 // Treat these like attributes
665 while (Tok.is(tok::kw___pascal)) {
666 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
667 SourceLocation AttrNameLoc = ConsumeToken();
668 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
669 AttributeList::AS_Keyword);
670 }
671 }
672
ParseOpenCLAttributes(ParsedAttributes & attrs)673 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
674 // Treat these like attributes
675 while (Tok.is(tok::kw___kernel)) {
676 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
677 SourceLocation AttrNameLoc = ConsumeToken();
678 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
679 AttributeList::AS_Keyword);
680 }
681 }
682
ParseOpenCLQualifiers(ParsedAttributes & Attrs)683 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
684 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
685 SourceLocation AttrNameLoc = Tok.getLocation();
686 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
687 AttributeList::AS_Keyword);
688 }
689
ParseNullabilityTypeSpecifiers(ParsedAttributes & attrs)690 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
691 // Treat these like attributes, even though they're type specifiers.
692 while (true) {
693 switch (Tok.getKind()) {
694 case tok::kw__Nonnull:
695 case tok::kw__Nullable:
696 case tok::kw__Null_unspecified: {
697 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
698 SourceLocation AttrNameLoc = ConsumeToken();
699 if (!getLangOpts().ObjC1)
700 Diag(AttrNameLoc, diag::ext_nullability)
701 << AttrName;
702 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
703 AttributeList::AS_Keyword);
704 break;
705 }
706 default:
707 return;
708 }
709 }
710 }
711
VersionNumberSeparator(const char Separator)712 static bool VersionNumberSeparator(const char Separator) {
713 return (Separator == '.' || Separator == '_');
714 }
715
716 /// \brief Parse a version number.
717 ///
718 /// version:
719 /// simple-integer
720 /// simple-integer ',' simple-integer
721 /// simple-integer ',' simple-integer ',' simple-integer
ParseVersionTuple(SourceRange & Range)722 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
723 Range = Tok.getLocation();
724
725 if (!Tok.is(tok::numeric_constant)) {
726 Diag(Tok, diag::err_expected_version);
727 SkipUntil(tok::comma, tok::r_paren,
728 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
729 return VersionTuple();
730 }
731
732 // Parse the major (and possibly minor and subminor) versions, which
733 // are stored in the numeric constant. We utilize a quirk of the
734 // lexer, which is that it handles something like 1.2.3 as a single
735 // numeric constant, rather than two separate tokens.
736 SmallString<512> Buffer;
737 Buffer.resize(Tok.getLength()+1);
738 const char *ThisTokBegin = &Buffer[0];
739
740 // Get the spelling of the token, which eliminates trigraphs, etc.
741 bool Invalid = false;
742 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
743 if (Invalid)
744 return VersionTuple();
745
746 // Parse the major version.
747 unsigned AfterMajor = 0;
748 unsigned Major = 0;
749 while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
750 Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
751 ++AfterMajor;
752 }
753
754 if (AfterMajor == 0) {
755 Diag(Tok, diag::err_expected_version);
756 SkipUntil(tok::comma, tok::r_paren,
757 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
758 return VersionTuple();
759 }
760
761 if (AfterMajor == ActualLength) {
762 ConsumeToken();
763
764 // We only had a single version component.
765 if (Major == 0) {
766 Diag(Tok, diag::err_zero_version);
767 return VersionTuple();
768 }
769
770 return VersionTuple(Major);
771 }
772
773 const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
774 if (!VersionNumberSeparator(AfterMajorSeparator)
775 || (AfterMajor + 1 == ActualLength)) {
776 Diag(Tok, diag::err_expected_version);
777 SkipUntil(tok::comma, tok::r_paren,
778 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
779 return VersionTuple();
780 }
781
782 // Parse the minor version.
783 unsigned AfterMinor = AfterMajor + 1;
784 unsigned Minor = 0;
785 while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
786 Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
787 ++AfterMinor;
788 }
789
790 if (AfterMinor == ActualLength) {
791 ConsumeToken();
792
793 // We had major.minor.
794 if (Major == 0 && Minor == 0) {
795 Diag(Tok, diag::err_zero_version);
796 return VersionTuple();
797 }
798
799 return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
800 }
801
802 const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
803 // If what follows is not a '.' or '_', we have a problem.
804 if (!VersionNumberSeparator(AfterMinorSeparator)) {
805 Diag(Tok, diag::err_expected_version);
806 SkipUntil(tok::comma, tok::r_paren,
807 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
808 return VersionTuple();
809 }
810
811 // Warn if separators, be it '.' or '_', do not match.
812 if (AfterMajorSeparator != AfterMinorSeparator)
813 Diag(Tok, diag::warn_expected_consistent_version_separator);
814
815 // Parse the subminor version.
816 unsigned AfterSubminor = AfterMinor + 1;
817 unsigned Subminor = 0;
818 while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
819 Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
820 ++AfterSubminor;
821 }
822
823 if (AfterSubminor != ActualLength) {
824 Diag(Tok, diag::err_expected_version);
825 SkipUntil(tok::comma, tok::r_paren,
826 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
827 return VersionTuple();
828 }
829 ConsumeToken();
830 return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
831 }
832
833 /// \brief Parse the contents of the "availability" attribute.
834 ///
835 /// availability-attribute:
836 /// 'availability' '(' platform ',' version-arg-list, opt-message')'
837 ///
838 /// platform:
839 /// identifier
840 ///
841 /// version-arg-list:
842 /// version-arg
843 /// version-arg ',' version-arg-list
844 ///
845 /// version-arg:
846 /// 'introduced' '=' version
847 /// 'deprecated' '=' version
848 /// 'obsoleted' = version
849 /// 'unavailable'
850 /// opt-message:
851 /// 'message' '=' <string>
ParseAvailabilityAttribute(IdentifierInfo & Availability,SourceLocation AvailabilityLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)852 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
853 SourceLocation AvailabilityLoc,
854 ParsedAttributes &attrs,
855 SourceLocation *endLoc,
856 IdentifierInfo *ScopeName,
857 SourceLocation ScopeLoc,
858 AttributeList::Syntax Syntax) {
859 enum { Introduced, Deprecated, Obsoleted, Unknown };
860 AvailabilityChange Changes[Unknown];
861 ExprResult MessageExpr;
862
863 // Opening '('.
864 BalancedDelimiterTracker T(*this, tok::l_paren);
865 if (T.consumeOpen()) {
866 Diag(Tok, diag::err_expected) << tok::l_paren;
867 return;
868 }
869
870 // Parse the platform name,
871 if (Tok.isNot(tok::identifier)) {
872 Diag(Tok, diag::err_availability_expected_platform);
873 SkipUntil(tok::r_paren, StopAtSemi);
874 return;
875 }
876 IdentifierLoc *Platform = ParseIdentifierLoc();
877
878 // Parse the ',' following the platform name.
879 if (ExpectAndConsume(tok::comma)) {
880 SkipUntil(tok::r_paren, StopAtSemi);
881 return;
882 }
883
884 // If we haven't grabbed the pointers for the identifiers
885 // "introduced", "deprecated", and "obsoleted", do so now.
886 if (!Ident_introduced) {
887 Ident_introduced = PP.getIdentifierInfo("introduced");
888 Ident_deprecated = PP.getIdentifierInfo("deprecated");
889 Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
890 Ident_unavailable = PP.getIdentifierInfo("unavailable");
891 Ident_message = PP.getIdentifierInfo("message");
892 }
893
894 // Parse the set of introductions/deprecations/removals.
895 SourceLocation UnavailableLoc;
896 do {
897 if (Tok.isNot(tok::identifier)) {
898 Diag(Tok, diag::err_availability_expected_change);
899 SkipUntil(tok::r_paren, StopAtSemi);
900 return;
901 }
902 IdentifierInfo *Keyword = Tok.getIdentifierInfo();
903 SourceLocation KeywordLoc = ConsumeToken();
904
905 if (Keyword == Ident_unavailable) {
906 if (UnavailableLoc.isValid()) {
907 Diag(KeywordLoc, diag::err_availability_redundant)
908 << Keyword << SourceRange(UnavailableLoc);
909 }
910 UnavailableLoc = KeywordLoc;
911 continue;
912 }
913
914 if (Tok.isNot(tok::equal)) {
915 Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
916 SkipUntil(tok::r_paren, StopAtSemi);
917 return;
918 }
919 ConsumeToken();
920 if (Keyword == Ident_message) {
921 if (Tok.isNot(tok::string_literal)) {
922 Diag(Tok, diag::err_expected_string_literal)
923 << /*Source='availability attribute'*/2;
924 SkipUntil(tok::r_paren, StopAtSemi);
925 return;
926 }
927 MessageExpr = ParseStringLiteralExpression();
928 // Also reject wide string literals.
929 if (StringLiteral *MessageStringLiteral =
930 cast_or_null<StringLiteral>(MessageExpr.get())) {
931 if (MessageStringLiteral->getCharByteWidth() != 1) {
932 Diag(MessageStringLiteral->getSourceRange().getBegin(),
933 diag::err_expected_string_literal)
934 << /*Source='availability attribute'*/ 2;
935 SkipUntil(tok::r_paren, StopAtSemi);
936 return;
937 }
938 }
939 break;
940 }
941
942 // Special handling of 'NA' only when applied to introduced or
943 // deprecated.
944 if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
945 Tok.is(tok::identifier)) {
946 IdentifierInfo *NA = Tok.getIdentifierInfo();
947 if (NA->getName() == "NA") {
948 ConsumeToken();
949 if (Keyword == Ident_introduced)
950 UnavailableLoc = KeywordLoc;
951 continue;
952 }
953 }
954
955 SourceRange VersionRange;
956 VersionTuple Version = ParseVersionTuple(VersionRange);
957
958 if (Version.empty()) {
959 SkipUntil(tok::r_paren, StopAtSemi);
960 return;
961 }
962
963 unsigned Index;
964 if (Keyword == Ident_introduced)
965 Index = Introduced;
966 else if (Keyword == Ident_deprecated)
967 Index = Deprecated;
968 else if (Keyword == Ident_obsoleted)
969 Index = Obsoleted;
970 else
971 Index = Unknown;
972
973 if (Index < Unknown) {
974 if (!Changes[Index].KeywordLoc.isInvalid()) {
975 Diag(KeywordLoc, diag::err_availability_redundant)
976 << Keyword
977 << SourceRange(Changes[Index].KeywordLoc,
978 Changes[Index].VersionRange.getEnd());
979 }
980
981 Changes[Index].KeywordLoc = KeywordLoc;
982 Changes[Index].Version = Version;
983 Changes[Index].VersionRange = VersionRange;
984 } else {
985 Diag(KeywordLoc, diag::err_availability_unknown_change)
986 << Keyword << VersionRange;
987 }
988
989 } while (TryConsumeToken(tok::comma));
990
991 // Closing ')'.
992 if (T.consumeClose())
993 return;
994
995 if (endLoc)
996 *endLoc = T.getCloseLocation();
997
998 // The 'unavailable' availability cannot be combined with any other
999 // availability changes. Make sure that hasn't happened.
1000 if (UnavailableLoc.isValid()) {
1001 bool Complained = false;
1002 for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1003 if (Changes[Index].KeywordLoc.isValid()) {
1004 if (!Complained) {
1005 Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1006 << SourceRange(Changes[Index].KeywordLoc,
1007 Changes[Index].VersionRange.getEnd());
1008 Complained = true;
1009 }
1010
1011 // Clear out the availability.
1012 Changes[Index] = AvailabilityChange();
1013 }
1014 }
1015 }
1016
1017 // Record this attribute
1018 attrs.addNew(&Availability,
1019 SourceRange(AvailabilityLoc, T.getCloseLocation()),
1020 ScopeName, ScopeLoc,
1021 Platform,
1022 Changes[Introduced],
1023 Changes[Deprecated],
1024 Changes[Obsoleted],
1025 UnavailableLoc, MessageExpr.get(),
1026 Syntax);
1027 }
1028
1029 /// \brief Parse the contents of the "objc_bridge_related" attribute.
1030 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1031 /// related_class:
1032 /// Identifier
1033 ///
1034 /// opt-class_method:
1035 /// Identifier: | <empty>
1036 ///
1037 /// opt-instance_method:
1038 /// Identifier | <empty>
1039 ///
ParseObjCBridgeRelatedAttribute(IdentifierInfo & ObjCBridgeRelated,SourceLocation ObjCBridgeRelatedLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1040 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1041 SourceLocation ObjCBridgeRelatedLoc,
1042 ParsedAttributes &attrs,
1043 SourceLocation *endLoc,
1044 IdentifierInfo *ScopeName,
1045 SourceLocation ScopeLoc,
1046 AttributeList::Syntax Syntax) {
1047 // Opening '('.
1048 BalancedDelimiterTracker T(*this, tok::l_paren);
1049 if (T.consumeOpen()) {
1050 Diag(Tok, diag::err_expected) << tok::l_paren;
1051 return;
1052 }
1053
1054 // Parse the related class name.
1055 if (Tok.isNot(tok::identifier)) {
1056 Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1057 SkipUntil(tok::r_paren, StopAtSemi);
1058 return;
1059 }
1060 IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1061 if (ExpectAndConsume(tok::comma)) {
1062 SkipUntil(tok::r_paren, StopAtSemi);
1063 return;
1064 }
1065
1066 // Parse optional class method name.
1067 IdentifierLoc *ClassMethod = nullptr;
1068 if (Tok.is(tok::identifier)) {
1069 ClassMethod = ParseIdentifierLoc();
1070 if (!TryConsumeToken(tok::colon)) {
1071 Diag(Tok, diag::err_objcbridge_related_selector_name);
1072 SkipUntil(tok::r_paren, StopAtSemi);
1073 return;
1074 }
1075 }
1076 if (!TryConsumeToken(tok::comma)) {
1077 if (Tok.is(tok::colon))
1078 Diag(Tok, diag::err_objcbridge_related_selector_name);
1079 else
1080 Diag(Tok, diag::err_expected) << tok::comma;
1081 SkipUntil(tok::r_paren, StopAtSemi);
1082 return;
1083 }
1084
1085 // Parse optional instance method name.
1086 IdentifierLoc *InstanceMethod = nullptr;
1087 if (Tok.is(tok::identifier))
1088 InstanceMethod = ParseIdentifierLoc();
1089 else if (Tok.isNot(tok::r_paren)) {
1090 Diag(Tok, diag::err_expected) << tok::r_paren;
1091 SkipUntil(tok::r_paren, StopAtSemi);
1092 return;
1093 }
1094
1095 // Closing ')'.
1096 if (T.consumeClose())
1097 return;
1098
1099 if (endLoc)
1100 *endLoc = T.getCloseLocation();
1101
1102 // Record this attribute
1103 attrs.addNew(&ObjCBridgeRelated,
1104 SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1105 ScopeName, ScopeLoc,
1106 RelatedClass,
1107 ClassMethod,
1108 InstanceMethod,
1109 Syntax);
1110 }
1111
1112 // Late Parsed Attributes:
1113 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1114
ParseLexedAttributes()1115 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1116
ParseLexedAttributes()1117 void Parser::LateParsedClass::ParseLexedAttributes() {
1118 Self->ParseLexedAttributes(*Class);
1119 }
1120
ParseLexedAttributes()1121 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1122 Self->ParseLexedAttribute(*this, true, false);
1123 }
1124
1125 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1126 /// scope appropriately.
ParseLexedAttributes(ParsingClass & Class)1127 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1128 // Deal with templates
1129 // FIXME: Test cases to make sure this does the right thing for templates.
1130 bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1131 ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1132 HasTemplateScope);
1133 if (HasTemplateScope)
1134 Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1135
1136 // Set or update the scope flags.
1137 bool AlreadyHasClassScope = Class.TopLevelClass;
1138 unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1139 ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1140 ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1141
1142 // Enter the scope of nested classes
1143 if (!AlreadyHasClassScope)
1144 Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1145 Class.TagOrTemplate);
1146 if (!Class.LateParsedDeclarations.empty()) {
1147 for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1148 Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1149 }
1150 }
1151
1152 if (!AlreadyHasClassScope)
1153 Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1154 Class.TagOrTemplate);
1155 }
1156
1157 /// \brief Parse all attributes in LAs, and attach them to Decl D.
ParseLexedAttributeList(LateParsedAttrList & LAs,Decl * D,bool EnterScope,bool OnDefinition)1158 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1159 bool EnterScope, bool OnDefinition) {
1160 assert(LAs.parseSoon() &&
1161 "Attribute list should be marked for immediate parsing.");
1162 for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1163 if (D)
1164 LAs[i]->addDecl(D);
1165 ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1166 delete LAs[i];
1167 }
1168 LAs.clear();
1169 }
1170
1171 /// \brief Finish parsing an attribute for which parsing was delayed.
1172 /// This will be called at the end of parsing a class declaration
1173 /// for each LateParsedAttribute. We consume the saved tokens and
1174 /// create an attribute with the arguments filled in. We add this
1175 /// to the Attribute list for the decl.
ParseLexedAttribute(LateParsedAttribute & LA,bool EnterScope,bool OnDefinition)1176 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1177 bool EnterScope, bool OnDefinition) {
1178 // Create a fake EOF so that attribute parsing won't go off the end of the
1179 // attribute.
1180 Token AttrEnd;
1181 AttrEnd.startToken();
1182 AttrEnd.setKind(tok::eof);
1183 AttrEnd.setLocation(Tok.getLocation());
1184 AttrEnd.setEofData(LA.Toks.data());
1185 LA.Toks.push_back(AttrEnd);
1186
1187 // Append the current token at the end of the new token stream so that it
1188 // doesn't get lost.
1189 LA.Toks.push_back(Tok);
1190 PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
1191 // Consume the previously pushed token.
1192 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1193
1194 ParsedAttributes Attrs(AttrFactory);
1195 SourceLocation endLoc;
1196
1197 if (LA.Decls.size() > 0) {
1198 Decl *D = LA.Decls[0];
1199 NamedDecl *ND = dyn_cast<NamedDecl>(D);
1200 RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1201
1202 // Allow 'this' within late-parsed attributes.
1203 Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1204 ND && ND->isCXXInstanceMember());
1205
1206 if (LA.Decls.size() == 1) {
1207 // If the Decl is templatized, add template parameters to scope.
1208 bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1209 ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1210 if (HasTemplateScope)
1211 Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1212
1213 // If the Decl is on a function, add function parameters to the scope.
1214 bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1215 ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
1216 if (HasFunScope)
1217 Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1218
1219 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1220 nullptr, SourceLocation(), AttributeList::AS_GNU,
1221 nullptr);
1222
1223 if (HasFunScope) {
1224 Actions.ActOnExitFunctionContext();
1225 FnScope.Exit(); // Pop scope, and remove Decls from IdResolver
1226 }
1227 if (HasTemplateScope) {
1228 TempScope.Exit();
1229 }
1230 } else {
1231 // If there are multiple decls, then the decl cannot be within the
1232 // function scope.
1233 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1234 nullptr, SourceLocation(), AttributeList::AS_GNU,
1235 nullptr);
1236 }
1237 } else {
1238 Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1239 }
1240
1241 const AttributeList *AL = Attrs.getList();
1242 if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1243 AL->isKnownToGCC())
1244 Diag(Tok, diag::warn_attribute_on_function_definition)
1245 << &LA.AttrName;
1246
1247 for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1248 Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1249
1250 // Due to a parsing error, we either went over the cached tokens or
1251 // there are still cached tokens left, so we skip the leftover tokens.
1252 while (Tok.isNot(tok::eof))
1253 ConsumeAnyToken();
1254
1255 if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1256 ConsumeAnyToken();
1257 }
1258
ParseTypeTagForDatatypeAttribute(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1259 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1260 SourceLocation AttrNameLoc,
1261 ParsedAttributes &Attrs,
1262 SourceLocation *EndLoc,
1263 IdentifierInfo *ScopeName,
1264 SourceLocation ScopeLoc,
1265 AttributeList::Syntax Syntax) {
1266 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1267
1268 BalancedDelimiterTracker T(*this, tok::l_paren);
1269 T.consumeOpen();
1270
1271 if (Tok.isNot(tok::identifier)) {
1272 Diag(Tok, diag::err_expected) << tok::identifier;
1273 T.skipToEnd();
1274 return;
1275 }
1276 IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1277
1278 if (ExpectAndConsume(tok::comma)) {
1279 T.skipToEnd();
1280 return;
1281 }
1282
1283 SourceRange MatchingCTypeRange;
1284 TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1285 if (MatchingCType.isInvalid()) {
1286 T.skipToEnd();
1287 return;
1288 }
1289
1290 bool LayoutCompatible = false;
1291 bool MustBeNull = false;
1292 while (TryConsumeToken(tok::comma)) {
1293 if (Tok.isNot(tok::identifier)) {
1294 Diag(Tok, diag::err_expected) << tok::identifier;
1295 T.skipToEnd();
1296 return;
1297 }
1298 IdentifierInfo *Flag = Tok.getIdentifierInfo();
1299 if (Flag->isStr("layout_compatible"))
1300 LayoutCompatible = true;
1301 else if (Flag->isStr("must_be_null"))
1302 MustBeNull = true;
1303 else {
1304 Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1305 T.skipToEnd();
1306 return;
1307 }
1308 ConsumeToken(); // consume flag
1309 }
1310
1311 if (!T.consumeClose()) {
1312 Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1313 ArgumentKind, MatchingCType.get(),
1314 LayoutCompatible, MustBeNull, Syntax);
1315 }
1316
1317 if (EndLoc)
1318 *EndLoc = T.getCloseLocation();
1319 }
1320
1321 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1322 /// of a C++11 attribute-specifier in a location where an attribute is not
1323 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1324 /// situation.
1325 ///
1326 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1327 /// this doesn't appear to actually be an attribute-specifier, and the caller
1328 /// should try to parse it.
DiagnoseProhibitedCXX11Attribute()1329 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1330 assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1331
1332 switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1333 case CAK_NotAttributeSpecifier:
1334 // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1335 return false;
1336
1337 case CAK_InvalidAttributeSpecifier:
1338 Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1339 return false;
1340
1341 case CAK_AttributeSpecifier:
1342 // Parse and discard the attributes.
1343 SourceLocation BeginLoc = ConsumeBracket();
1344 ConsumeBracket();
1345 SkipUntil(tok::r_square);
1346 assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1347 SourceLocation EndLoc = ConsumeBracket();
1348 Diag(BeginLoc, diag::err_attributes_not_allowed)
1349 << SourceRange(BeginLoc, EndLoc);
1350 return true;
1351 }
1352 llvm_unreachable("All cases handled above.");
1353 }
1354
1355 /// \brief We have found the opening square brackets of a C++11
1356 /// attribute-specifier in a location where an attribute is not permitted, but
1357 /// we know where the attributes ought to be written. Parse them anyway, and
1358 /// provide a fixit moving them to the right place.
DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange & Attrs,SourceLocation CorrectLocation)1359 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1360 SourceLocation CorrectLocation) {
1361 assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1362 Tok.is(tok::kw_alignas));
1363
1364 // Consume the attributes.
1365 SourceLocation Loc = Tok.getLocation();
1366 ParseCXX11Attributes(Attrs);
1367 CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1368
1369 Diag(Loc, diag::err_attributes_not_allowed)
1370 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1371 << FixItHint::CreateRemoval(AttrRange);
1372 }
1373
DiagnoseProhibitedAttributes(ParsedAttributesWithRange & attrs)1374 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
1375 Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
1376 << attrs.Range;
1377 }
1378
ProhibitCXX11Attributes(ParsedAttributesWithRange & attrs)1379 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
1380 AttributeList *AttrList = attrs.getList();
1381 while (AttrList) {
1382 if (AttrList->isCXX11Attribute()) {
1383 Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
1384 << AttrList->getName();
1385 AttrList->setInvalid();
1386 }
1387 AttrList = AttrList->getNext();
1388 }
1389 }
1390
1391 // As an exception to the rule, __declspec(align(...)) before the
1392 // class-key affects the type instead of the variable.
handleDeclspecAlignBeforeClassKey(ParsedAttributesWithRange & Attrs,DeclSpec & DS,Sema::TagUseKind TUK)1393 void Parser::handleDeclspecAlignBeforeClassKey(ParsedAttributesWithRange &Attrs,
1394 DeclSpec &DS,
1395 Sema::TagUseKind TUK) {
1396 if (TUK == Sema::TUK_Reference)
1397 return;
1398
1399 ParsedAttributes &PA = DS.getAttributes();
1400 AttributeList *AL = PA.getList();
1401 AttributeList *Prev = nullptr;
1402 while (AL) {
1403 AttributeList *Next = AL->getNext();
1404
1405 // We only consider attributes using the appropriate '__declspec' spelling,
1406 // this behavior doesn't extend to any other spellings.
1407 if (AL->getKind() == AttributeList::AT_Aligned &&
1408 AL->isDeclspecAttribute()) {
1409 // Stitch the attribute into the tag's attribute list.
1410 AL->setNext(nullptr);
1411 Attrs.add(AL);
1412
1413 // Remove the attribute from the variable's attribute list.
1414 if (Prev) {
1415 // Set the last variable attribute's next attribute to be the attribute
1416 // after the current one.
1417 Prev->setNext(Next);
1418 } else {
1419 // Removing the head of the list requires us to reset the head to the
1420 // next attribute.
1421 PA.set(Next);
1422 }
1423 } else {
1424 Prev = AL;
1425 }
1426
1427 AL = Next;
1428 }
1429 }
1430
1431 /// ParseDeclaration - Parse a full 'declaration', which consists of
1432 /// declaration-specifiers, some number of declarators, and a semicolon.
1433 /// 'Context' should be a Declarator::TheContext value. This returns the
1434 /// location of the semicolon in DeclEnd.
1435 ///
1436 /// declaration: [C99 6.7]
1437 /// block-declaration ->
1438 /// simple-declaration
1439 /// others [FIXME]
1440 /// [C++] template-declaration
1441 /// [C++] namespace-definition
1442 /// [C++] using-directive
1443 /// [C++] using-declaration
1444 /// [C++11/C11] static_assert-declaration
1445 /// others... [FIXME]
1446 ///
ParseDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & attrs)1447 Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
1448 SourceLocation &DeclEnd,
1449 ParsedAttributesWithRange &attrs) {
1450 ParenBraceBracketBalancer BalancerRAIIObj(*this);
1451 // Must temporarily exit the objective-c container scope for
1452 // parsing c none objective-c decls.
1453 ObjCDeclContextSwitch ObjCDC(*this);
1454
1455 Decl *SingleDecl = nullptr;
1456 Decl *OwnedType = nullptr;
1457 switch (Tok.getKind()) {
1458 case tok::kw_template:
1459 case tok::kw_export:
1460 ProhibitAttributes(attrs);
1461 SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1462 break;
1463 case tok::kw_inline:
1464 // Could be the start of an inline namespace. Allowed as an ext in C++03.
1465 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1466 ProhibitAttributes(attrs);
1467 SourceLocation InlineLoc = ConsumeToken();
1468 return ParseNamespace(Context, DeclEnd, InlineLoc);
1469 }
1470 return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1471 true);
1472 case tok::kw_namespace:
1473 ProhibitAttributes(attrs);
1474 return ParseNamespace(Context, DeclEnd);
1475 case tok::kw_using:
1476 SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1477 DeclEnd, attrs, &OwnedType);
1478 break;
1479 case tok::kw_static_assert:
1480 case tok::kw__Static_assert:
1481 ProhibitAttributes(attrs);
1482 SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1483 break;
1484 default:
1485 return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1486 }
1487
1488 // This routine returns a DeclGroup, if the thing we parsed only contains a
1489 // single decl, convert it now. Alias declarations can also declare a type;
1490 // include that too if it is present.
1491 return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1492 }
1493
1494 /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1495 /// declaration-specifiers init-declarator-list[opt] ';'
1496 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1497 /// init-declarator-list ';'
1498 ///[C90/C++]init-declarator-list ';' [TODO]
1499 /// [OMP] threadprivate-directive [TODO]
1500 ///
1501 /// for-range-declaration: [C++11 6.5p1: stmt.ranged]
1502 /// attribute-specifier-seq[opt] type-specifier-seq declarator
1503 ///
1504 /// If RequireSemi is false, this does not check for a ';' at the end of the
1505 /// declaration. If it is true, it checks for and eats it.
1506 ///
1507 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1508 /// of a simple-declaration. If we find that we are, we also parse the
1509 /// for-range-initializer, and place it here.
1510 Parser::DeclGroupPtrTy
ParseSimpleDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & Attrs,bool RequireSemi,ForRangeInit * FRI)1511 Parser::ParseSimpleDeclaration(unsigned Context,
1512 SourceLocation &DeclEnd,
1513 ParsedAttributesWithRange &Attrs,
1514 bool RequireSemi, ForRangeInit *FRI) {
1515 // Parse the common declaration-specifiers piece.
1516 ParsingDeclSpec DS(*this);
1517
1518 DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1519 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1520
1521 // If we had a free-standing type definition with a missing semicolon, we
1522 // may get this far before the problem becomes obvious.
1523 if (DS.hasTagDefinition() &&
1524 DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1525 return DeclGroupPtrTy();
1526
1527 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1528 // declaration-specifiers init-declarator-list[opt] ';'
1529 if (Tok.is(tok::semi)) {
1530 ProhibitAttributes(Attrs);
1531 DeclEnd = Tok.getLocation();
1532 if (RequireSemi) ConsumeToken();
1533 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1534 DS);
1535 DS.complete(TheDecl);
1536 return Actions.ConvertDeclToDeclGroup(TheDecl);
1537 }
1538
1539 DS.takeAttributesFrom(Attrs);
1540 return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1541 }
1542
1543 /// Returns true if this might be the start of a declarator, or a common typo
1544 /// for a declarator.
MightBeDeclarator(unsigned Context)1545 bool Parser::MightBeDeclarator(unsigned Context) {
1546 switch (Tok.getKind()) {
1547 case tok::annot_cxxscope:
1548 case tok::annot_template_id:
1549 case tok::caret:
1550 case tok::code_completion:
1551 case tok::coloncolon:
1552 case tok::ellipsis:
1553 case tok::kw___attribute:
1554 case tok::kw_operator:
1555 case tok::l_paren:
1556 case tok::star:
1557 return true;
1558
1559 case tok::amp:
1560 case tok::ampamp:
1561 return getLangOpts().CPlusPlus;
1562
1563 case tok::l_square: // Might be an attribute on an unnamed bit-field.
1564 return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
1565 NextToken().is(tok::l_square);
1566
1567 case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1568 return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1569
1570 case tok::identifier:
1571 switch (NextToken().getKind()) {
1572 case tok::code_completion:
1573 case tok::coloncolon:
1574 case tok::comma:
1575 case tok::equal:
1576 case tok::equalequal: // Might be a typo for '='.
1577 case tok::kw_alignas:
1578 case tok::kw_asm:
1579 case tok::kw___attribute:
1580 case tok::l_brace:
1581 case tok::l_paren:
1582 case tok::l_square:
1583 case tok::less:
1584 case tok::r_brace:
1585 case tok::r_paren:
1586 case tok::r_square:
1587 case tok::semi:
1588 return true;
1589
1590 case tok::colon:
1591 // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1592 // and in block scope it's probably a label. Inside a class definition,
1593 // this is a bit-field.
1594 return Context == Declarator::MemberContext ||
1595 (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1596
1597 case tok::identifier: // Possible virt-specifier.
1598 return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1599
1600 default:
1601 return false;
1602 }
1603
1604 default:
1605 return false;
1606 }
1607 }
1608
1609 /// Skip until we reach something which seems like a sensible place to pick
1610 /// up parsing after a malformed declaration. This will sometimes stop sooner
1611 /// than SkipUntil(tok::r_brace) would, but will never stop later.
SkipMalformedDecl()1612 void Parser::SkipMalformedDecl() {
1613 while (true) {
1614 switch (Tok.getKind()) {
1615 case tok::l_brace:
1616 // Skip until matching }, then stop. We've probably skipped over
1617 // a malformed class or function definition or similar.
1618 ConsumeBrace();
1619 SkipUntil(tok::r_brace);
1620 if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1621 // This declaration isn't over yet. Keep skipping.
1622 continue;
1623 }
1624 TryConsumeToken(tok::semi);
1625 return;
1626
1627 case tok::l_square:
1628 ConsumeBracket();
1629 SkipUntil(tok::r_square);
1630 continue;
1631
1632 case tok::l_paren:
1633 ConsumeParen();
1634 SkipUntil(tok::r_paren);
1635 continue;
1636
1637 case tok::r_brace:
1638 return;
1639
1640 case tok::semi:
1641 ConsumeToken();
1642 return;
1643
1644 case tok::kw_inline:
1645 // 'inline namespace' at the start of a line is almost certainly
1646 // a good place to pick back up parsing, except in an Objective-C
1647 // @interface context.
1648 if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1649 (!ParsingInObjCContainer || CurParsedObjCImpl))
1650 return;
1651 break;
1652
1653 case tok::kw_namespace:
1654 // 'namespace' at the start of a line is almost certainly a good
1655 // place to pick back up parsing, except in an Objective-C
1656 // @interface context.
1657 if (Tok.isAtStartOfLine() &&
1658 (!ParsingInObjCContainer || CurParsedObjCImpl))
1659 return;
1660 break;
1661
1662 case tok::at:
1663 // @end is very much like } in Objective-C contexts.
1664 if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1665 ParsingInObjCContainer)
1666 return;
1667 break;
1668
1669 case tok::minus:
1670 case tok::plus:
1671 // - and + probably start new method declarations in Objective-C contexts.
1672 if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1673 return;
1674 break;
1675
1676 case tok::eof:
1677 case tok::annot_module_begin:
1678 case tok::annot_module_end:
1679 case tok::annot_module_include:
1680 return;
1681
1682 default:
1683 break;
1684 }
1685
1686 ConsumeAnyToken();
1687 }
1688 }
1689
1690 /// ParseDeclGroup - Having concluded that this is either a function
1691 /// definition or a group of object declarations, actually parse the
1692 /// result.
ParseDeclGroup(ParsingDeclSpec & DS,unsigned Context,SourceLocation * DeclEnd,ForRangeInit * FRI)1693 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1694 unsigned Context,
1695 SourceLocation *DeclEnd,
1696 ForRangeInit *FRI) {
1697 // Parse the first declarator.
1698 ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1699 ParseDeclarator(D);
1700
1701 // Bail out if the first declarator didn't seem well-formed.
1702 if (!D.hasName() && !D.mayOmitIdentifier()) {
1703 SkipMalformedDecl();
1704 return DeclGroupPtrTy();
1705 }
1706
1707 // Save late-parsed attributes for now; they need to be parsed in the
1708 // appropriate function scope after the function Decl has been constructed.
1709 // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1710 LateParsedAttrList LateParsedAttrs(true);
1711 if (D.isFunctionDeclarator()) {
1712 MaybeParseGNUAttributes(D, &LateParsedAttrs);
1713
1714 // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1715 // attribute. If we find the keyword here, tell the user to put it
1716 // at the start instead.
1717 if (Tok.is(tok::kw__Noreturn)) {
1718 SourceLocation Loc = ConsumeToken();
1719 const char *PrevSpec;
1720 unsigned DiagID;
1721
1722 // We can offer a fixit if it's valid to mark this function as _Noreturn
1723 // and we don't have any other declarators in this declaration.
1724 bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1725 MaybeParseGNUAttributes(D, &LateParsedAttrs);
1726 Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
1727
1728 Diag(Loc, diag::err_c11_noreturn_misplaced)
1729 << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1730 << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
1731 : FixItHint());
1732 }
1733 }
1734
1735 // Check to see if we have a function *definition* which must have a body.
1736 if (D.isFunctionDeclarator() &&
1737 // Look at the next token to make sure that this isn't a function
1738 // declaration. We have to check this because __attribute__ might be the
1739 // start of a function definition in GCC-extended K&R C.
1740 !isDeclarationAfterDeclarator()) {
1741
1742 // Function definitions are only allowed at file scope and in C++ classes.
1743 // The C++ inline method definition case is handled elsewhere, so we only
1744 // need to handle the file scope definition case.
1745 if (Context == Declarator::FileContext) {
1746 if (isStartOfFunctionDefinition(D)) {
1747 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1748 Diag(Tok, diag::err_function_declared_typedef);
1749
1750 // Recover by treating the 'typedef' as spurious.
1751 DS.ClearStorageClassSpecs();
1752 }
1753
1754 Decl *TheDecl =
1755 ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1756 return Actions.ConvertDeclToDeclGroup(TheDecl);
1757 }
1758
1759 if (isDeclarationSpecifier()) {
1760 // If there is an invalid declaration specifier right after the
1761 // function prototype, then we must be in a missing semicolon case
1762 // where this isn't actually a body. Just fall through into the code
1763 // that handles it as a prototype, and let the top-level code handle
1764 // the erroneous declspec where it would otherwise expect a comma or
1765 // semicolon.
1766 } else {
1767 Diag(Tok, diag::err_expected_fn_body);
1768 SkipUntil(tok::semi);
1769 return DeclGroupPtrTy();
1770 }
1771 } else {
1772 if (Tok.is(tok::l_brace)) {
1773 Diag(Tok, diag::err_function_definition_not_allowed);
1774 SkipMalformedDecl();
1775 return DeclGroupPtrTy();
1776 }
1777 }
1778 }
1779
1780 if (ParseAsmAttributesAfterDeclarator(D))
1781 return DeclGroupPtrTy();
1782
1783 // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1784 // must parse and analyze the for-range-initializer before the declaration is
1785 // analyzed.
1786 //
1787 // Handle the Objective-C for-in loop variable similarly, although we
1788 // don't need to parse the container in advance.
1789 if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1790 bool IsForRangeLoop = false;
1791 if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1792 IsForRangeLoop = true;
1793 if (Tok.is(tok::l_brace))
1794 FRI->RangeExpr = ParseBraceInitializer();
1795 else
1796 FRI->RangeExpr = ParseExpression();
1797 }
1798
1799 Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1800 if (IsForRangeLoop)
1801 Actions.ActOnCXXForRangeDecl(ThisDecl);
1802 Actions.FinalizeDeclaration(ThisDecl);
1803 D.complete(ThisDecl);
1804 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1805 }
1806
1807 SmallVector<Decl *, 8> DeclsInGroup;
1808 Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1809 D, ParsedTemplateInfo(), FRI);
1810 if (LateParsedAttrs.size() > 0)
1811 ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1812 D.complete(FirstDecl);
1813 if (FirstDecl)
1814 DeclsInGroup.push_back(FirstDecl);
1815
1816 bool ExpectSemi = Context != Declarator::ForContext;
1817
1818 // If we don't have a comma, it is either the end of the list (a ';') or an
1819 // error, bail out.
1820 SourceLocation CommaLoc;
1821 while (TryConsumeToken(tok::comma, CommaLoc)) {
1822 if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1823 // This comma was followed by a line-break and something which can't be
1824 // the start of a declarator. The comma was probably a typo for a
1825 // semicolon.
1826 Diag(CommaLoc, diag::err_expected_semi_declaration)
1827 << FixItHint::CreateReplacement(CommaLoc, ";");
1828 ExpectSemi = false;
1829 break;
1830 }
1831
1832 // Parse the next declarator.
1833 D.clear();
1834 D.setCommaLoc(CommaLoc);
1835
1836 // Accept attributes in an init-declarator. In the first declarator in a
1837 // declaration, these would be part of the declspec. In subsequent
1838 // declarators, they become part of the declarator itself, so that they
1839 // don't apply to declarators after *this* one. Examples:
1840 // short __attribute__((common)) var; -> declspec
1841 // short var __attribute__((common)); -> declarator
1842 // short x, __attribute__((common)) var; -> declarator
1843 MaybeParseGNUAttributes(D);
1844
1845 // MSVC parses but ignores qualifiers after the comma as an extension.
1846 if (getLangOpts().MicrosoftExt)
1847 DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
1848
1849 ParseDeclarator(D);
1850 if (!D.isInvalidType()) {
1851 Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1852 D.complete(ThisDecl);
1853 if (ThisDecl)
1854 DeclsInGroup.push_back(ThisDecl);
1855 }
1856 }
1857
1858 if (DeclEnd)
1859 *DeclEnd = Tok.getLocation();
1860
1861 if (ExpectSemi &&
1862 ExpectAndConsumeSemi(Context == Declarator::FileContext
1863 ? diag::err_invalid_token_after_toplevel_declarator
1864 : diag::err_expected_semi_declaration)) {
1865 // Okay, there was no semicolon and one was expected. If we see a
1866 // declaration specifier, just assume it was missing and continue parsing.
1867 // Otherwise things are very confused and we skip to recover.
1868 if (!isDeclarationSpecifier()) {
1869 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
1870 TryConsumeToken(tok::semi);
1871 }
1872 }
1873
1874 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
1875 }
1876
1877 /// Parse an optional simple-asm-expr and attributes, and attach them to a
1878 /// declarator. Returns true on an error.
ParseAsmAttributesAfterDeclarator(Declarator & D)1879 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1880 // If a simple-asm-expr is present, parse it.
1881 if (Tok.is(tok::kw_asm)) {
1882 SourceLocation Loc;
1883 ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1884 if (AsmLabel.isInvalid()) {
1885 SkipUntil(tok::semi, StopBeforeMatch);
1886 return true;
1887 }
1888
1889 D.setAsmLabel(AsmLabel.get());
1890 D.SetRangeEnd(Loc);
1891 }
1892
1893 MaybeParseGNUAttributes(D);
1894 return false;
1895 }
1896
1897 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
1898 /// declarator'. This method parses the remainder of the declaration
1899 /// (including any attributes or initializer, among other things) and
1900 /// finalizes the declaration.
1901 ///
1902 /// init-declarator: [C99 6.7]
1903 /// declarator
1904 /// declarator '=' initializer
1905 /// [GNU] declarator simple-asm-expr[opt] attributes[opt]
1906 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1907 /// [C++] declarator initializer[opt]
1908 ///
1909 /// [C++] initializer:
1910 /// [C++] '=' initializer-clause
1911 /// [C++] '(' expression-list ')'
1912 /// [C++0x] '=' 'default' [TODO]
1913 /// [C++0x] '=' 'delete'
1914 /// [C++0x] braced-init-list
1915 ///
1916 /// According to the standard grammar, =default and =delete are function
1917 /// definitions, but that definitely doesn't fit with the parser here.
1918 ///
ParseDeclarationAfterDeclarator(Declarator & D,const ParsedTemplateInfo & TemplateInfo)1919 Decl *Parser::ParseDeclarationAfterDeclarator(
1920 Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
1921 if (ParseAsmAttributesAfterDeclarator(D))
1922 return nullptr;
1923
1924 return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1925 }
1926
ParseDeclarationAfterDeclaratorAndAttributes(Declarator & D,const ParsedTemplateInfo & TemplateInfo,ForRangeInit * FRI)1927 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
1928 Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
1929 // Inform the current actions module that we just parsed this declarator.
1930 Decl *ThisDecl = nullptr;
1931 switch (TemplateInfo.Kind) {
1932 case ParsedTemplateInfo::NonTemplate:
1933 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1934 break;
1935
1936 case ParsedTemplateInfo::Template:
1937 case ParsedTemplateInfo::ExplicitSpecialization: {
1938 ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1939 *TemplateInfo.TemplateParams,
1940 D);
1941 if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
1942 // Re-direct this decl to refer to the templated decl so that we can
1943 // initialize it.
1944 ThisDecl = VT->getTemplatedDecl();
1945 break;
1946 }
1947 case ParsedTemplateInfo::ExplicitInstantiation: {
1948 if (Tok.is(tok::semi)) {
1949 DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
1950 getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
1951 if (ThisRes.isInvalid()) {
1952 SkipUntil(tok::semi, StopBeforeMatch);
1953 return nullptr;
1954 }
1955 ThisDecl = ThisRes.get();
1956 } else {
1957 // FIXME: This check should be for a variable template instantiation only.
1958
1959 // Check that this is a valid instantiation
1960 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
1961 // If the declarator-id is not a template-id, issue a diagnostic and
1962 // recover by ignoring the 'template' keyword.
1963 Diag(Tok, diag::err_template_defn_explicit_instantiation)
1964 << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
1965 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1966 } else {
1967 SourceLocation LAngleLoc =
1968 PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1969 Diag(D.getIdentifierLoc(),
1970 diag::err_explicit_instantiation_with_definition)
1971 << SourceRange(TemplateInfo.TemplateLoc)
1972 << FixItHint::CreateInsertion(LAngleLoc, "<>");
1973
1974 // Recover as if it were an explicit specialization.
1975 TemplateParameterLists FakedParamLists;
1976 FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
1977 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
1978 0, LAngleLoc));
1979
1980 ThisDecl =
1981 Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
1982 }
1983 }
1984 break;
1985 }
1986 }
1987
1988 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1989
1990 // Parse declarator '=' initializer.
1991 // If a '==' or '+=' is found, suggest a fixit to '='.
1992 if (isTokenEqualOrEqualTypo()) {
1993 SourceLocation EqualLoc = ConsumeToken();
1994
1995 if (Tok.is(tok::kw_delete)) {
1996 if (D.isFunctionDeclarator())
1997 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1998 << 1 /* delete */;
1999 else
2000 Diag(ConsumeToken(), diag::err_deleted_non_function);
2001 } else if (Tok.is(tok::kw_default)) {
2002 if (D.isFunctionDeclarator())
2003 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2004 << 0 /* default */;
2005 else
2006 Diag(ConsumeToken(), diag::err_default_special_members);
2007 } else {
2008 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2009 EnterScope(0);
2010 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2011 }
2012
2013 if (Tok.is(tok::code_completion)) {
2014 Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2015 Actions.FinalizeDeclaration(ThisDecl);
2016 cutOffParsing();
2017 return nullptr;
2018 }
2019
2020 ExprResult Init(ParseInitializer());
2021
2022 // If this is the only decl in (possibly) range based for statement,
2023 // our best guess is that the user meant ':' instead of '='.
2024 if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2025 Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2026 << FixItHint::CreateReplacement(EqualLoc, ":");
2027 // We are trying to stop parser from looking for ';' in this for
2028 // statement, therefore preventing spurious errors to be issued.
2029 FRI->ColonLoc = EqualLoc;
2030 Init = ExprError();
2031 FRI->RangeExpr = Init;
2032 }
2033
2034 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2035 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2036 ExitScope();
2037 }
2038
2039 if (Init.isInvalid()) {
2040 SmallVector<tok::TokenKind, 2> StopTokens;
2041 StopTokens.push_back(tok::comma);
2042 if (D.getContext() == Declarator::ForContext)
2043 StopTokens.push_back(tok::r_paren);
2044 SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2045 Actions.ActOnInitializerError(ThisDecl);
2046 } else
2047 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2048 /*DirectInit=*/false, TypeContainsAuto);
2049 }
2050 } else if (Tok.is(tok::l_paren)) {
2051 // Parse C++ direct initializer: '(' expression-list ')'
2052 BalancedDelimiterTracker T(*this, tok::l_paren);
2053 T.consumeOpen();
2054
2055 ExprVector Exprs;
2056 CommaLocsTy CommaLocs;
2057
2058 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2059 EnterScope(0);
2060 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2061 }
2062
2063 if (ParseExpressionList(Exprs, CommaLocs, [&] {
2064 Actions.CodeCompleteConstructor(getCurScope(),
2065 cast<VarDecl>(ThisDecl)->getType()->getCanonicalTypeInternal(),
2066 ThisDecl->getLocation(), Exprs);
2067 })) {
2068 Actions.ActOnInitializerError(ThisDecl);
2069 SkipUntil(tok::r_paren, StopAtSemi);
2070
2071 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2072 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2073 ExitScope();
2074 }
2075 } else {
2076 // Match the ')'.
2077 T.consumeClose();
2078
2079 assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2080 "Unexpected number of commas!");
2081
2082 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2083 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2084 ExitScope();
2085 }
2086
2087 ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2088 T.getCloseLocation(),
2089 Exprs);
2090 Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2091 /*DirectInit=*/true, TypeContainsAuto);
2092 }
2093 } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2094 (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2095 // Parse C++0x braced-init-list.
2096 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2097
2098 if (D.getCXXScopeSpec().isSet()) {
2099 EnterScope(0);
2100 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2101 }
2102
2103 ExprResult Init(ParseBraceInitializer());
2104
2105 if (D.getCXXScopeSpec().isSet()) {
2106 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2107 ExitScope();
2108 }
2109
2110 if (Init.isInvalid()) {
2111 Actions.ActOnInitializerError(ThisDecl);
2112 } else
2113 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2114 /*DirectInit=*/true, TypeContainsAuto);
2115
2116 } else {
2117 Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
2118 }
2119
2120 Actions.FinalizeDeclaration(ThisDecl);
2121
2122 return ThisDecl;
2123 }
2124
2125 /// ParseSpecifierQualifierList
2126 /// specifier-qualifier-list:
2127 /// type-specifier specifier-qualifier-list[opt]
2128 /// type-qualifier specifier-qualifier-list[opt]
2129 /// [GNU] attributes specifier-qualifier-list[opt]
2130 ///
ParseSpecifierQualifierList(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSC)2131 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2132 DeclSpecContext DSC) {
2133 /// specifier-qualifier-list is a subset of declaration-specifiers. Just
2134 /// parse declaration-specifiers and complain about extra stuff.
2135 /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2136 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2137
2138 // Validate declspec for type-name.
2139 unsigned Specs = DS.getParsedSpecifiers();
2140 if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2141 Diag(Tok, diag::err_expected_type);
2142 DS.SetTypeSpecError();
2143 } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2144 Diag(Tok, diag::err_typename_requires_specqual);
2145 if (!DS.hasTypeSpecifier())
2146 DS.SetTypeSpecError();
2147 }
2148
2149 // Issue diagnostic and remove storage class if present.
2150 if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2151 if (DS.getStorageClassSpecLoc().isValid())
2152 Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2153 else
2154 Diag(DS.getThreadStorageClassSpecLoc(),
2155 diag::err_typename_invalid_storageclass);
2156 DS.ClearStorageClassSpecs();
2157 }
2158
2159 // Issue diagnostic and remove function specifier if present.
2160 if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2161 if (DS.isInlineSpecified())
2162 Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2163 if (DS.isVirtualSpecified())
2164 Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2165 if (DS.isExplicitSpecified())
2166 Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2167 DS.ClearFunctionSpecs();
2168 }
2169
2170 // Issue diagnostic and remove constexpr specfier if present.
2171 if (DS.isConstexprSpecified() && DSC != DSC_condition) {
2172 Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2173 DS.ClearConstexprSpec();
2174 }
2175 }
2176
2177 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2178 /// specified token is valid after the identifier in a declarator which
2179 /// immediately follows the declspec. For example, these things are valid:
2180 ///
2181 /// int x [ 4]; // direct-declarator
2182 /// int x ( int y); // direct-declarator
2183 /// int(int x ) // direct-declarator
2184 /// int x ; // simple-declaration
2185 /// int x = 17; // init-declarator-list
2186 /// int x , y; // init-declarator-list
2187 /// int x __asm__ ("foo"); // init-declarator-list
2188 /// int x : 4; // struct-declarator
2189 /// int x { 5}; // C++'0x unified initializers
2190 ///
2191 /// This is not, because 'x' does not immediately follow the declspec (though
2192 /// ')' happens to be valid anyway).
2193 /// int (x)
2194 ///
isValidAfterIdentifierInDeclarator(const Token & T)2195 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2196 return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2197 tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2198 tok::colon);
2199 }
2200
2201 /// ParseImplicitInt - This method is called when we have an non-typename
2202 /// identifier in a declspec (which normally terminates the decl spec) when
2203 /// the declspec has no type specifier. In this case, the declspec is either
2204 /// malformed or is "implicit int" (in K&R and C89).
2205 ///
2206 /// This method handles diagnosing this prettily and returns false if the
2207 /// declspec is done being processed. If it recovers and thinks there may be
2208 /// other pieces of declspec after it, it returns true.
2209 ///
ParseImplicitInt(DeclSpec & DS,CXXScopeSpec * SS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC,ParsedAttributesWithRange & Attrs)2210 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2211 const ParsedTemplateInfo &TemplateInfo,
2212 AccessSpecifier AS, DeclSpecContext DSC,
2213 ParsedAttributesWithRange &Attrs) {
2214 assert(Tok.is(tok::identifier) && "should have identifier");
2215
2216 SourceLocation Loc = Tok.getLocation();
2217 // If we see an identifier that is not a type name, we normally would
2218 // parse it as the identifer being declared. However, when a typename
2219 // is typo'd or the definition is not included, this will incorrectly
2220 // parse the typename as the identifier name and fall over misparsing
2221 // later parts of the diagnostic.
2222 //
2223 // As such, we try to do some look-ahead in cases where this would
2224 // otherwise be an "implicit-int" case to see if this is invalid. For
2225 // example: "static foo_t x = 4;" In this case, if we parsed foo_t as
2226 // an identifier with implicit int, we'd get a parse error because the
2227 // next token is obviously invalid for a type. Parse these as a case
2228 // with an invalid type specifier.
2229 assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2230
2231 // Since we know that this either implicit int (which is rare) or an
2232 // error, do lookahead to try to do better recovery. This never applies
2233 // within a type specifier. Outside of C++, we allow this even if the
2234 // language doesn't "officially" support implicit int -- we support
2235 // implicit int as an extension in C99 and C11.
2236 if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2237 isValidAfterIdentifierInDeclarator(NextToken())) {
2238 // If this token is valid for implicit int, e.g. "static x = 4", then
2239 // we just avoid eating the identifier, so it will be parsed as the
2240 // identifier in the declarator.
2241 return false;
2242 }
2243
2244 if (getLangOpts().CPlusPlus &&
2245 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2246 // Don't require a type specifier if we have the 'auto' storage class
2247 // specifier in C++98 -- we'll promote it to a type specifier.
2248 if (SS)
2249 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2250 return false;
2251 }
2252
2253 // Otherwise, if we don't consume this token, we are going to emit an
2254 // error anyway. Try to recover from various common problems. Check
2255 // to see if this was a reference to a tag name without a tag specified.
2256 // This is a common problem in C (saying 'foo' instead of 'struct foo').
2257 //
2258 // C++ doesn't need this, and isTagName doesn't take SS.
2259 if (SS == nullptr) {
2260 const char *TagName = nullptr, *FixitTagName = nullptr;
2261 tok::TokenKind TagKind = tok::unknown;
2262
2263 switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2264 default: break;
2265 case DeclSpec::TST_enum:
2266 TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
2267 case DeclSpec::TST_union:
2268 TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2269 case DeclSpec::TST_struct:
2270 TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2271 case DeclSpec::TST_interface:
2272 TagName="__interface"; FixitTagName = "__interface ";
2273 TagKind=tok::kw___interface;break;
2274 case DeclSpec::TST_class:
2275 TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2276 }
2277
2278 if (TagName) {
2279 IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2280 LookupResult R(Actions, TokenName, SourceLocation(),
2281 Sema::LookupOrdinaryName);
2282
2283 Diag(Loc, diag::err_use_of_tag_name_without_tag)
2284 << TokenName << TagName << getLangOpts().CPlusPlus
2285 << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2286
2287 if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2288 for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2289 I != IEnd; ++I)
2290 Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2291 << TokenName << TagName;
2292 }
2293
2294 // Parse this as a tag as if the missing tag were present.
2295 if (TagKind == tok::kw_enum)
2296 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
2297 else
2298 ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2299 /*EnteringContext*/ false, DSC_normal, Attrs);
2300 return true;
2301 }
2302 }
2303
2304 // Determine whether this identifier could plausibly be the name of something
2305 // being declared (with a missing type).
2306 if (!isTypeSpecifier(DSC) &&
2307 (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
2308 // Look ahead to the next token to try to figure out what this declaration
2309 // was supposed to be.
2310 switch (NextToken().getKind()) {
2311 case tok::l_paren: {
2312 // static x(4); // 'x' is not a type
2313 // x(int n); // 'x' is not a type
2314 // x (*p)[]; // 'x' is a type
2315 //
2316 // Since we're in an error case, we can afford to perform a tentative
2317 // parse to determine which case we're in.
2318 TentativeParsingAction PA(*this);
2319 ConsumeToken();
2320 TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2321 PA.Revert();
2322
2323 if (TPR != TPResult::False) {
2324 // The identifier is followed by a parenthesized declarator.
2325 // It's supposed to be a type.
2326 break;
2327 }
2328
2329 // If we're in a context where we could be declaring a constructor,
2330 // check whether this is a constructor declaration with a bogus name.
2331 if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
2332 IdentifierInfo *II = Tok.getIdentifierInfo();
2333 if (Actions.isCurrentClassNameTypo(II, SS)) {
2334 Diag(Loc, diag::err_constructor_bad_name)
2335 << Tok.getIdentifierInfo() << II
2336 << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2337 Tok.setIdentifierInfo(II);
2338 }
2339 }
2340 // Fall through.
2341 }
2342 case tok::comma:
2343 case tok::equal:
2344 case tok::kw_asm:
2345 case tok::l_brace:
2346 case tok::l_square:
2347 case tok::semi:
2348 // This looks like a variable or function declaration. The type is
2349 // probably missing. We're done parsing decl-specifiers.
2350 if (SS)
2351 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2352 return false;
2353
2354 default:
2355 // This is probably supposed to be a type. This includes cases like:
2356 // int f(itn);
2357 // struct S { unsinged : 4; };
2358 break;
2359 }
2360 }
2361
2362 // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2363 // and attempt to recover.
2364 ParsedType T;
2365 IdentifierInfo *II = Tok.getIdentifierInfo();
2366 Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2367 getLangOpts().CPlusPlus &&
2368 NextToken().is(tok::less));
2369 if (T) {
2370 // The action has suggested that the type T could be used. Set that as
2371 // the type in the declaration specifiers, consume the would-be type
2372 // name token, and we're done.
2373 const char *PrevSpec;
2374 unsigned DiagID;
2375 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2376 Actions.getASTContext().getPrintingPolicy());
2377 DS.SetRangeEnd(Tok.getLocation());
2378 ConsumeToken();
2379 // There may be other declaration specifiers after this.
2380 return true;
2381 } else if (II != Tok.getIdentifierInfo()) {
2382 // If no type was suggested, the correction is to a keyword
2383 Tok.setKind(II->getTokenID());
2384 // There may be other declaration specifiers after this.
2385 return true;
2386 }
2387
2388 // Otherwise, the action had no suggestion for us. Mark this as an error.
2389 DS.SetTypeSpecError();
2390 DS.SetRangeEnd(Tok.getLocation());
2391 ConsumeToken();
2392
2393 // TODO: Could inject an invalid typedef decl in an enclosing scope to
2394 // avoid rippling error messages on subsequent uses of the same type,
2395 // could be useful if #include was forgotten.
2396 return false;
2397 }
2398
2399 /// \brief Determine the declaration specifier context from the declarator
2400 /// context.
2401 ///
2402 /// \param Context the declarator context, which is one of the
2403 /// Declarator::TheContext enumerator values.
2404 Parser::DeclSpecContext
getDeclSpecContextFromDeclaratorContext(unsigned Context)2405 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
2406 if (Context == Declarator::MemberContext)
2407 return DSC_class;
2408 if (Context == Declarator::FileContext)
2409 return DSC_top_level;
2410 if (Context == Declarator::TemplateTypeArgContext)
2411 return DSC_template_type_arg;
2412 if (Context == Declarator::TrailingReturnContext)
2413 return DSC_trailing;
2414 if (Context == Declarator::AliasDeclContext ||
2415 Context == Declarator::AliasTemplateContext)
2416 return DSC_alias_declaration;
2417 return DSC_normal;
2418 }
2419
2420 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2421 ///
2422 /// FIXME: Simply returns an alignof() expression if the argument is a
2423 /// type. Ideally, the type should be propagated directly into Sema.
2424 ///
2425 /// [C11] type-id
2426 /// [C11] constant-expression
2427 /// [C++0x] type-id ...[opt]
2428 /// [C++0x] assignment-expression ...[opt]
ParseAlignArgument(SourceLocation Start,SourceLocation & EllipsisLoc)2429 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2430 SourceLocation &EllipsisLoc) {
2431 ExprResult ER;
2432 if (isTypeIdInParens()) {
2433 SourceLocation TypeLoc = Tok.getLocation();
2434 ParsedType Ty = ParseTypeName().get();
2435 SourceRange TypeRange(Start, Tok.getLocation());
2436 ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2437 Ty.getAsOpaquePtr(), TypeRange);
2438 } else
2439 ER = ParseConstantExpression();
2440
2441 if (getLangOpts().CPlusPlus11)
2442 TryConsumeToken(tok::ellipsis, EllipsisLoc);
2443
2444 return ER;
2445 }
2446
2447 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2448 /// attribute to Attrs.
2449 ///
2450 /// alignment-specifier:
2451 /// [C11] '_Alignas' '(' type-id ')'
2452 /// [C11] '_Alignas' '(' constant-expression ')'
2453 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2454 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
ParseAlignmentSpecifier(ParsedAttributes & Attrs,SourceLocation * EndLoc)2455 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2456 SourceLocation *EndLoc) {
2457 assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2458 "Not an alignment-specifier!");
2459
2460 IdentifierInfo *KWName = Tok.getIdentifierInfo();
2461 SourceLocation KWLoc = ConsumeToken();
2462
2463 BalancedDelimiterTracker T(*this, tok::l_paren);
2464 if (T.expectAndConsume())
2465 return;
2466
2467 SourceLocation EllipsisLoc;
2468 ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2469 if (ArgExpr.isInvalid()) {
2470 T.skipToEnd();
2471 return;
2472 }
2473
2474 T.consumeClose();
2475 if (EndLoc)
2476 *EndLoc = T.getCloseLocation();
2477
2478 ArgsVector ArgExprs;
2479 ArgExprs.push_back(ArgExpr.get());
2480 Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2481 AttributeList::AS_Keyword, EllipsisLoc);
2482 }
2483
2484 /// Determine whether we're looking at something that might be a declarator
2485 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2486 /// diagnose a missing semicolon after a prior tag definition in the decl
2487 /// specifier.
2488 ///
2489 /// \return \c true if an error occurred and this can't be any kind of
2490 /// declaration.
2491 bool
DiagnoseMissingSemiAfterTagDefinition(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2492 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2493 DeclSpecContext DSContext,
2494 LateParsedAttrList *LateAttrs) {
2495 assert(DS.hasTagDefinition() && "shouldn't call this");
2496
2497 bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2498
2499 if (getLangOpts().CPlusPlus &&
2500 Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2501 tok::annot_template_id) &&
2502 TryAnnotateCXXScopeToken(EnteringContext)) {
2503 SkipMalformedDecl();
2504 return true;
2505 }
2506
2507 bool HasScope = Tok.is(tok::annot_cxxscope);
2508 // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2509 Token AfterScope = HasScope ? NextToken() : Tok;
2510
2511 // Determine whether the following tokens could possibly be a
2512 // declarator.
2513 bool MightBeDeclarator = true;
2514 if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2515 // A declarator-id can't start with 'typename'.
2516 MightBeDeclarator = false;
2517 } else if (AfterScope.is(tok::annot_template_id)) {
2518 // If we have a type expressed as a template-id, this cannot be a
2519 // declarator-id (such a type cannot be redeclared in a simple-declaration).
2520 TemplateIdAnnotation *Annot =
2521 static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2522 if (Annot->Kind == TNK_Type_template)
2523 MightBeDeclarator = false;
2524 } else if (AfterScope.is(tok::identifier)) {
2525 const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2526
2527 // These tokens cannot come after the declarator-id in a
2528 // simple-declaration, and are likely to come after a type-specifier.
2529 if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2530 tok::annot_cxxscope, tok::coloncolon)) {
2531 // Missing a semicolon.
2532 MightBeDeclarator = false;
2533 } else if (HasScope) {
2534 // If the declarator-id has a scope specifier, it must redeclare a
2535 // previously-declared entity. If that's a type (and this is not a
2536 // typedef), that's an error.
2537 CXXScopeSpec SS;
2538 Actions.RestoreNestedNameSpecifierAnnotation(
2539 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2540 IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2541 Sema::NameClassification Classification = Actions.ClassifyName(
2542 getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2543 /*IsAddressOfOperand*/false);
2544 switch (Classification.getKind()) {
2545 case Sema::NC_Error:
2546 SkipMalformedDecl();
2547 return true;
2548
2549 case Sema::NC_Keyword:
2550 case Sema::NC_NestedNameSpecifier:
2551 llvm_unreachable("typo correction and nested name specifiers not "
2552 "possible here");
2553
2554 case Sema::NC_Type:
2555 case Sema::NC_TypeTemplate:
2556 // Not a previously-declared non-type entity.
2557 MightBeDeclarator = false;
2558 break;
2559
2560 case Sema::NC_Unknown:
2561 case Sema::NC_Expression:
2562 case Sema::NC_VarTemplate:
2563 case Sema::NC_FunctionTemplate:
2564 // Might be a redeclaration of a prior entity.
2565 break;
2566 }
2567 }
2568 }
2569
2570 if (MightBeDeclarator)
2571 return false;
2572
2573 const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2574 Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2575 diag::err_expected_after)
2576 << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2577
2578 // Try to recover from the typo, by dropping the tag definition and parsing
2579 // the problematic tokens as a type.
2580 //
2581 // FIXME: Split the DeclSpec into pieces for the standalone
2582 // declaration and pieces for the following declaration, instead
2583 // of assuming that all the other pieces attach to new declaration,
2584 // and call ParsedFreeStandingDeclSpec as appropriate.
2585 DS.ClearTypeSpecType();
2586 ParsedTemplateInfo NotATemplate;
2587 ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2588 return false;
2589 }
2590
2591 /// ParseDeclarationSpecifiers
2592 /// declaration-specifiers: [C99 6.7]
2593 /// storage-class-specifier declaration-specifiers[opt]
2594 /// type-specifier declaration-specifiers[opt]
2595 /// [C99] function-specifier declaration-specifiers[opt]
2596 /// [C11] alignment-specifier declaration-specifiers[opt]
2597 /// [GNU] attributes declaration-specifiers[opt]
2598 /// [Clang] '__module_private__' declaration-specifiers[opt]
2599 /// [ObjC1] '__kindof' declaration-specifiers[opt]
2600 ///
2601 /// storage-class-specifier: [C99 6.7.1]
2602 /// 'typedef'
2603 /// 'extern'
2604 /// 'static'
2605 /// 'auto'
2606 /// 'register'
2607 /// [C++] 'mutable'
2608 /// [C++11] 'thread_local'
2609 /// [C11] '_Thread_local'
2610 /// [GNU] '__thread'
2611 /// function-specifier: [C99 6.7.4]
2612 /// [C99] 'inline'
2613 /// [C++] 'virtual'
2614 /// [C++] 'explicit'
2615 /// [OpenCL] '__kernel'
2616 /// 'friend': [C++ dcl.friend]
2617 /// 'constexpr': [C++0x dcl.constexpr]
ParseDeclarationSpecifiers(DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2618 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2619 const ParsedTemplateInfo &TemplateInfo,
2620 AccessSpecifier AS,
2621 DeclSpecContext DSContext,
2622 LateParsedAttrList *LateAttrs) {
2623 if (DS.getSourceRange().isInvalid()) {
2624 // Start the range at the current token but make the end of the range
2625 // invalid. This will make the entire range invalid unless we successfully
2626 // consume a token.
2627 DS.SetRangeStart(Tok.getLocation());
2628 DS.SetRangeEnd(SourceLocation());
2629 }
2630
2631 bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2632 bool AttrsLastTime = false;
2633 ParsedAttributesWithRange attrs(AttrFactory);
2634 // We use Sema's policy to get bool macros right.
2635 const PrintingPolicy &Policy = Actions.getPrintingPolicy();
2636 while (1) {
2637 bool isInvalid = false;
2638 bool isStorageClass = false;
2639 const char *PrevSpec = nullptr;
2640 unsigned DiagID = 0;
2641
2642 // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
2643 // implementation for VS2013 uses _Atomic as an identifier for one of the
2644 // classes in <atomic>.
2645 //
2646 // A typedef declaration containing _Atomic<...> is among the places where
2647 // the class is used. If we are currently parsing such a declaration, treat
2648 // the token as an identifier.
2649 if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
2650 DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
2651 !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
2652 Tok.setKind(tok::identifier);
2653
2654 SourceLocation Loc = Tok.getLocation();
2655
2656 switch (Tok.getKind()) {
2657 default:
2658 DoneWithDeclSpec:
2659 if (!AttrsLastTime)
2660 ProhibitAttributes(attrs);
2661 else {
2662 // Reject C++11 attributes that appertain to decl specifiers as
2663 // we don't support any C++11 attributes that appertain to decl
2664 // specifiers. This also conforms to what g++ 4.8 is doing.
2665 ProhibitCXX11Attributes(attrs);
2666
2667 DS.takeAttributesFrom(attrs);
2668 }
2669
2670 // If this is not a declaration specifier token, we're done reading decl
2671 // specifiers. First verify that DeclSpec's are consistent.
2672 DS.Finish(Actions, Policy);
2673 return;
2674
2675 case tok::l_square:
2676 case tok::kw_alignas:
2677 if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
2678 goto DoneWithDeclSpec;
2679
2680 ProhibitAttributes(attrs);
2681 // FIXME: It would be good to recover by accepting the attributes,
2682 // but attempting to do that now would cause serious
2683 // madness in terms of diagnostics.
2684 attrs.clear();
2685 attrs.Range = SourceRange();
2686
2687 ParseCXX11Attributes(attrs);
2688 AttrsLastTime = true;
2689 continue;
2690
2691 case tok::code_completion: {
2692 Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2693 if (DS.hasTypeSpecifier()) {
2694 bool AllowNonIdentifiers
2695 = (getCurScope()->getFlags() & (Scope::ControlScope |
2696 Scope::BlockScope |
2697 Scope::TemplateParamScope |
2698 Scope::FunctionPrototypeScope |
2699 Scope::AtCatchScope)) == 0;
2700 bool AllowNestedNameSpecifiers
2701 = DSContext == DSC_top_level ||
2702 (DSContext == DSC_class && DS.isFriendSpecified());
2703
2704 Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2705 AllowNonIdentifiers,
2706 AllowNestedNameSpecifiers);
2707 return cutOffParsing();
2708 }
2709
2710 if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2711 CCC = Sema::PCC_LocalDeclarationSpecifiers;
2712 else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2713 CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
2714 : Sema::PCC_Template;
2715 else if (DSContext == DSC_class)
2716 CCC = Sema::PCC_Class;
2717 else if (CurParsedObjCImpl)
2718 CCC = Sema::PCC_ObjCImplementation;
2719
2720 Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
2721 return cutOffParsing();
2722 }
2723
2724 case tok::coloncolon: // ::foo::bar
2725 // C++ scope specifier. Annotate and loop, or bail out on error.
2726 if (TryAnnotateCXXScopeToken(EnteringContext)) {
2727 if (!DS.hasTypeSpecifier())
2728 DS.SetTypeSpecError();
2729 goto DoneWithDeclSpec;
2730 }
2731 if (Tok.is(tok::coloncolon)) // ::new or ::delete
2732 goto DoneWithDeclSpec;
2733 continue;
2734
2735 case tok::annot_cxxscope: {
2736 if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
2737 goto DoneWithDeclSpec;
2738
2739 CXXScopeSpec SS;
2740 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
2741 Tok.getAnnotationRange(),
2742 SS);
2743
2744 // We are looking for a qualified typename.
2745 Token Next = NextToken();
2746 if (Next.is(tok::annot_template_id) &&
2747 static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
2748 ->Kind == TNK_Type_template) {
2749 // We have a qualified template-id, e.g., N::A<int>
2750
2751 // C++ [class.qual]p2:
2752 // In a lookup in which the constructor is an acceptable lookup
2753 // result and the nested-name-specifier nominates a class C:
2754 //
2755 // - if the name specified after the
2756 // nested-name-specifier, when looked up in C, is the
2757 // injected-class-name of C (Clause 9), or
2758 //
2759 // - if the name specified after the nested-name-specifier
2760 // is the same as the identifier or the
2761 // simple-template-id's template-name in the last
2762 // component of the nested-name-specifier,
2763 //
2764 // the name is instead considered to name the constructor of
2765 // class C.
2766 //
2767 // Thus, if the template-name is actually the constructor
2768 // name, then the code is ill-formed; this interpretation is
2769 // reinforced by the NAD status of core issue 635.
2770 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
2771 if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2772 TemplateId->Name &&
2773 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2774 if (isConstructorDeclarator(/*Unqualified*/false)) {
2775 // The user meant this to be an out-of-line constructor
2776 // definition, but template arguments are not allowed
2777 // there. Just allow this as a constructor; we'll
2778 // complain about it later.
2779 goto DoneWithDeclSpec;
2780 }
2781
2782 // The user meant this to name a type, but it actually names
2783 // a constructor with some extraneous template
2784 // arguments. Complain, then parse it as a type as the user
2785 // intended.
2786 Diag(TemplateId->TemplateNameLoc,
2787 diag::err_out_of_line_template_id_type_names_constructor)
2788 << TemplateId->Name << 0 /* template name */;
2789 }
2790
2791 DS.getTypeSpecScope() = SS;
2792 ConsumeToken(); // The C++ scope.
2793 assert(Tok.is(tok::annot_template_id) &&
2794 "ParseOptionalCXXScopeSpecifier not working");
2795 AnnotateTemplateIdTokenAsType();
2796 continue;
2797 }
2798
2799 if (Next.is(tok::annot_typename)) {
2800 DS.getTypeSpecScope() = SS;
2801 ConsumeToken(); // The C++ scope.
2802 if (Tok.getAnnotationValue()) {
2803 ParsedType T = getTypeAnnotation(Tok);
2804 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2805 Tok.getAnnotationEndLoc(),
2806 PrevSpec, DiagID, T, Policy);
2807 if (isInvalid)
2808 break;
2809 }
2810 else
2811 DS.SetTypeSpecError();
2812 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2813 ConsumeToken(); // The typename
2814 }
2815
2816 if (Next.isNot(tok::identifier))
2817 goto DoneWithDeclSpec;
2818
2819 // If we're in a context where the identifier could be a class name,
2820 // check whether this is a constructor declaration.
2821 if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2822 Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2823 &SS)) {
2824 if (isConstructorDeclarator(/*Unqualified*/false))
2825 goto DoneWithDeclSpec;
2826
2827 // As noted in C++ [class.qual]p2 (cited above), when the name
2828 // of the class is qualified in a context where it could name
2829 // a constructor, its a constructor name. However, we've
2830 // looked at the declarator, and the user probably meant this
2831 // to be a type. Complain that it isn't supposed to be treated
2832 // as a type, then proceed to parse it as a type.
2833 Diag(Next.getLocation(),
2834 diag::err_out_of_line_template_id_type_names_constructor)
2835 << Next.getIdentifierInfo() << 1 /* type */;
2836 }
2837
2838 ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2839 Next.getLocation(),
2840 getCurScope(), &SS,
2841 false, false, ParsedType(),
2842 /*IsCtorOrDtorName=*/false,
2843 /*NonTrivialSourceInfo=*/true);
2844
2845 // If the referenced identifier is not a type, then this declspec is
2846 // erroneous: We already checked about that it has no type specifier, and
2847 // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
2848 // typename.
2849 if (!TypeRep) {
2850 ConsumeToken(); // Eat the scope spec so the identifier is current.
2851 ParsedAttributesWithRange Attrs(AttrFactory);
2852 if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
2853 if (!Attrs.empty()) {
2854 AttrsLastTime = true;
2855 attrs.takeAllFrom(Attrs);
2856 }
2857 continue;
2858 }
2859 goto DoneWithDeclSpec;
2860 }
2861
2862 DS.getTypeSpecScope() = SS;
2863 ConsumeToken(); // The C++ scope.
2864
2865 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2866 DiagID, TypeRep, Policy);
2867 if (isInvalid)
2868 break;
2869
2870 DS.SetRangeEnd(Tok.getLocation());
2871 ConsumeToken(); // The typename.
2872
2873 continue;
2874 }
2875
2876 case tok::annot_typename: {
2877 // If we've previously seen a tag definition, we were almost surely
2878 // missing a semicolon after it.
2879 if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
2880 goto DoneWithDeclSpec;
2881
2882 if (Tok.getAnnotationValue()) {
2883 ParsedType T = getTypeAnnotation(Tok);
2884 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2885 DiagID, T, Policy);
2886 } else
2887 DS.SetTypeSpecError();
2888
2889 if (isInvalid)
2890 break;
2891
2892 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2893 ConsumeToken(); // The typename
2894
2895 continue;
2896 }
2897
2898 case tok::kw___is_signed:
2899 // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2900 // typically treats it as a trait. If we see __is_signed as it appears
2901 // in libstdc++, e.g.,
2902 //
2903 // static const bool __is_signed;
2904 //
2905 // then treat __is_signed as an identifier rather than as a keyword.
2906 if (DS.getTypeSpecType() == TST_bool &&
2907 DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2908 DS.getStorageClassSpec() == DeclSpec::SCS_static)
2909 TryKeywordIdentFallback(true);
2910
2911 // We're done with the declaration-specifiers.
2912 goto DoneWithDeclSpec;
2913
2914 // typedef-name
2915 case tok::kw___super:
2916 case tok::kw_decltype:
2917 case tok::identifier: {
2918 // This identifier can only be a typedef name if we haven't already seen
2919 // a type-specifier. Without this check we misparse:
2920 // typedef int X; struct Y { short X; }; as 'short int'.
2921 if (DS.hasTypeSpecifier())
2922 goto DoneWithDeclSpec;
2923
2924 // In C++, check to see if this is a scope specifier like foo::bar::, if
2925 // so handle it as such. This is important for ctor parsing.
2926 if (getLangOpts().CPlusPlus) {
2927 if (TryAnnotateCXXScopeToken(EnteringContext)) {
2928 DS.SetTypeSpecError();
2929 goto DoneWithDeclSpec;
2930 }
2931 if (!Tok.is(tok::identifier))
2932 continue;
2933 }
2934
2935 // Check for need to substitute AltiVec keyword tokens.
2936 if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2937 break;
2938
2939 // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
2940 // allow the use of a typedef name as a type specifier.
2941 if (DS.isTypeAltiVecVector())
2942 goto DoneWithDeclSpec;
2943
2944 if (DSContext == DSC_objc_method_result && isObjCInstancetype()) {
2945 ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
2946 assert(TypeRep);
2947 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2948 DiagID, TypeRep, Policy);
2949 if (isInvalid)
2950 break;
2951
2952 DS.SetRangeEnd(Loc);
2953 ConsumeToken();
2954 continue;
2955 }
2956
2957 ParsedType TypeRep =
2958 Actions.getTypeName(*Tok.getIdentifierInfo(),
2959 Tok.getLocation(), getCurScope());
2960
2961 // MSVC: If we weren't able to parse a default template argument, and it's
2962 // just a simple identifier, create a DependentNameType. This will allow
2963 // us to defer the name lookup to template instantiation time, as long we
2964 // forge a NestedNameSpecifier for the current context.
2965 if (!TypeRep && DSContext == DSC_template_type_arg &&
2966 getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
2967 TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
2968 *Tok.getIdentifierInfo(), Tok.getLocation());
2969 }
2970
2971 // If this is not a typedef name, don't parse it as part of the declspec,
2972 // it must be an implicit int or an error.
2973 if (!TypeRep) {
2974 ParsedAttributesWithRange Attrs(AttrFactory);
2975 if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
2976 if (!Attrs.empty()) {
2977 AttrsLastTime = true;
2978 attrs.takeAllFrom(Attrs);
2979 }
2980 continue;
2981 }
2982 goto DoneWithDeclSpec;
2983 }
2984
2985 // If we're in a context where the identifier could be a class name,
2986 // check whether this is a constructor declaration.
2987 if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2988 Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2989 isConstructorDeclarator(/*Unqualified*/true))
2990 goto DoneWithDeclSpec;
2991
2992 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2993 DiagID, TypeRep, Policy);
2994 if (isInvalid)
2995 break;
2996
2997 DS.SetRangeEnd(Tok.getLocation());
2998 ConsumeToken(); // The identifier
2999
3000 // Objective-C supports type arguments and protocol references
3001 // following an Objective-C object or object pointer
3002 // type. Handle either one of them.
3003 if (Tok.is(tok::less) && getLangOpts().ObjC1) {
3004 SourceLocation NewEndLoc;
3005 TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3006 Loc, TypeRep, /*consumeLastToken=*/true,
3007 NewEndLoc);
3008 if (NewTypeRep.isUsable()) {
3009 DS.UpdateTypeRep(NewTypeRep.get());
3010 DS.SetRangeEnd(NewEndLoc);
3011 }
3012 }
3013
3014 // Need to support trailing type qualifiers (e.g. "id<p> const").
3015 // If a type specifier follows, it will be diagnosed elsewhere.
3016 continue;
3017 }
3018
3019 // type-name
3020 case tok::annot_template_id: {
3021 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3022 if (TemplateId->Kind != TNK_Type_template) {
3023 // This template-id does not refer to a type name, so we're
3024 // done with the type-specifiers.
3025 goto DoneWithDeclSpec;
3026 }
3027
3028 // If we're in a context where the template-id could be a
3029 // constructor name or specialization, check whether this is a
3030 // constructor declaration.
3031 if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
3032 Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3033 isConstructorDeclarator(TemplateId->SS.isEmpty()))
3034 goto DoneWithDeclSpec;
3035
3036 // Turn the template-id annotation token into a type annotation
3037 // token, then try again to parse it as a type-specifier.
3038 AnnotateTemplateIdTokenAsType();
3039 continue;
3040 }
3041
3042 // GNU attributes support.
3043 case tok::kw___attribute:
3044 ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3045 continue;
3046
3047 // Microsoft declspec support.
3048 case tok::kw___declspec:
3049 ParseMicrosoftDeclSpecs(DS.getAttributes());
3050 continue;
3051
3052 // Microsoft single token adornments.
3053 case tok::kw___forceinline: {
3054 isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3055 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3056 SourceLocation AttrNameLoc = Tok.getLocation();
3057 DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3058 nullptr, 0, AttributeList::AS_Keyword);
3059 break;
3060 }
3061
3062 case tok::kw___sptr:
3063 case tok::kw___uptr:
3064 case tok::kw___ptr64:
3065 case tok::kw___ptr32:
3066 case tok::kw___w64:
3067 case tok::kw___cdecl:
3068 case tok::kw___stdcall:
3069 case tok::kw___fastcall:
3070 case tok::kw___thiscall:
3071 case tok::kw___vectorcall:
3072 case tok::kw___unaligned:
3073 ParseMicrosoftTypeAttributes(DS.getAttributes());
3074 continue;
3075
3076 // Borland single token adornments.
3077 case tok::kw___pascal:
3078 ParseBorlandTypeAttributes(DS.getAttributes());
3079 continue;
3080
3081 // OpenCL single token adornments.
3082 case tok::kw___kernel:
3083 ParseOpenCLAttributes(DS.getAttributes());
3084 continue;
3085
3086 // Nullability type specifiers.
3087 case tok::kw__Nonnull:
3088 case tok::kw__Nullable:
3089 case tok::kw__Null_unspecified:
3090 ParseNullabilityTypeSpecifiers(DS.getAttributes());
3091 continue;
3092
3093 // Objective-C 'kindof' types.
3094 case tok::kw___kindof:
3095 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3096 nullptr, 0, AttributeList::AS_Keyword);
3097 (void)ConsumeToken();
3098 continue;
3099
3100 // storage-class-specifier
3101 case tok::kw_typedef:
3102 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3103 PrevSpec, DiagID, Policy);
3104 isStorageClass = true;
3105 break;
3106 case tok::kw_extern:
3107 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3108 Diag(Tok, diag::ext_thread_before) << "extern";
3109 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3110 PrevSpec, DiagID, Policy);
3111 isStorageClass = true;
3112 break;
3113 case tok::kw___private_extern__:
3114 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3115 Loc, PrevSpec, DiagID, Policy);
3116 isStorageClass = true;
3117 break;
3118 case tok::kw_static:
3119 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3120 Diag(Tok, diag::ext_thread_before) << "static";
3121 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3122 PrevSpec, DiagID, Policy);
3123 isStorageClass = true;
3124 break;
3125 case tok::kw_auto:
3126 if (getLangOpts().CPlusPlus11) {
3127 if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3128 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3129 PrevSpec, DiagID, Policy);
3130 if (!isInvalid)
3131 Diag(Tok, diag::ext_auto_storage_class)
3132 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3133 } else
3134 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3135 DiagID, Policy);
3136 } else
3137 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3138 PrevSpec, DiagID, Policy);
3139 isStorageClass = true;
3140 break;
3141 case tok::kw___auto_type:
3142 Diag(Tok, diag::ext_auto_type);
3143 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3144 DiagID, Policy);
3145 break;
3146 case tok::kw_register:
3147 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3148 PrevSpec, DiagID, Policy);
3149 isStorageClass = true;
3150 break;
3151 case tok::kw_mutable:
3152 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3153 PrevSpec, DiagID, Policy);
3154 isStorageClass = true;
3155 break;
3156 case tok::kw___thread:
3157 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3158 PrevSpec, DiagID);
3159 isStorageClass = true;
3160 break;
3161 case tok::kw_thread_local:
3162 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3163 PrevSpec, DiagID);
3164 break;
3165 case tok::kw__Thread_local:
3166 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3167 Loc, PrevSpec, DiagID);
3168 isStorageClass = true;
3169 break;
3170
3171 // function-specifier
3172 case tok::kw_inline:
3173 isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3174 break;
3175 case tok::kw_virtual:
3176 isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3177 break;
3178 case tok::kw_explicit:
3179 isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3180 break;
3181 case tok::kw__Noreturn:
3182 if (!getLangOpts().C11)
3183 Diag(Loc, diag::ext_c11_noreturn);
3184 isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3185 break;
3186
3187 // alignment-specifier
3188 case tok::kw__Alignas:
3189 if (!getLangOpts().C11)
3190 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3191 ParseAlignmentSpecifier(DS.getAttributes());
3192 continue;
3193
3194 // friend
3195 case tok::kw_friend:
3196 if (DSContext == DSC_class)
3197 isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3198 else {
3199 PrevSpec = ""; // not actually used by the diagnostic
3200 DiagID = diag::err_friend_invalid_in_context;
3201 isInvalid = true;
3202 }
3203 break;
3204
3205 // Modules
3206 case tok::kw___module_private__:
3207 isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3208 break;
3209
3210 // constexpr
3211 case tok::kw_constexpr:
3212 isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3213 break;
3214
3215 // concept
3216 case tok::kw_concept:
3217 isInvalid = DS.SetConceptSpec(Loc, PrevSpec, DiagID);
3218 break;
3219
3220 // type-specifier
3221 case tok::kw_short:
3222 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3223 DiagID, Policy);
3224 break;
3225 case tok::kw_long:
3226 if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3227 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3228 DiagID, Policy);
3229 else
3230 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3231 DiagID, Policy);
3232 break;
3233 case tok::kw___int64:
3234 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3235 DiagID, Policy);
3236 break;
3237 case tok::kw_signed:
3238 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3239 DiagID);
3240 break;
3241 case tok::kw_unsigned:
3242 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3243 DiagID);
3244 break;
3245 case tok::kw__Complex:
3246 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3247 DiagID);
3248 break;
3249 case tok::kw__Imaginary:
3250 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3251 DiagID);
3252 break;
3253 case tok::kw_void:
3254 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3255 DiagID, Policy);
3256 break;
3257 case tok::kw_char:
3258 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3259 DiagID, Policy);
3260 break;
3261 case tok::kw_int:
3262 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3263 DiagID, Policy);
3264 break;
3265 case tok::kw___int128:
3266 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3267 DiagID, Policy);
3268 break;
3269 case tok::kw_half:
3270 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3271 DiagID, Policy);
3272 break;
3273 case tok::kw_float:
3274 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3275 DiagID, Policy);
3276 break;
3277 case tok::kw_double:
3278 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3279 DiagID, Policy);
3280 break;
3281 case tok::kw_wchar_t:
3282 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3283 DiagID, Policy);
3284 break;
3285 case tok::kw_char16_t:
3286 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3287 DiagID, Policy);
3288 break;
3289 case tok::kw_char32_t:
3290 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3291 DiagID, Policy);
3292 break;
3293 case tok::kw_bool:
3294 case tok::kw__Bool:
3295 if (Tok.is(tok::kw_bool) &&
3296 DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3297 DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3298 PrevSpec = ""; // Not used by the diagnostic.
3299 DiagID = diag::err_bool_redeclaration;
3300 // For better error recovery.
3301 Tok.setKind(tok::identifier);
3302 isInvalid = true;
3303 } else {
3304 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3305 DiagID, Policy);
3306 }
3307 break;
3308 case tok::kw__Decimal32:
3309 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3310 DiagID, Policy);
3311 break;
3312 case tok::kw__Decimal64:
3313 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3314 DiagID, Policy);
3315 break;
3316 case tok::kw__Decimal128:
3317 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3318 DiagID, Policy);
3319 break;
3320 case tok::kw___vector:
3321 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3322 break;
3323 case tok::kw___pixel:
3324 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3325 break;
3326 case tok::kw___bool:
3327 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3328 break;
3329 case tok::kw___unknown_anytype:
3330 isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3331 PrevSpec, DiagID, Policy);
3332 break;
3333
3334 // class-specifier:
3335 case tok::kw_class:
3336 case tok::kw_struct:
3337 case tok::kw___interface:
3338 case tok::kw_union: {
3339 tok::TokenKind Kind = Tok.getKind();
3340 ConsumeToken();
3341
3342 // These are attributes following class specifiers.
3343 // To produce better diagnostic, we parse them when
3344 // parsing class specifier.
3345 ParsedAttributesWithRange Attributes(AttrFactory);
3346 ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3347 EnteringContext, DSContext, Attributes);
3348
3349 // If there are attributes following class specifier,
3350 // take them over and handle them here.
3351 if (!Attributes.empty()) {
3352 AttrsLastTime = true;
3353 attrs.takeAllFrom(Attributes);
3354 }
3355 continue;
3356 }
3357
3358 // enum-specifier:
3359 case tok::kw_enum:
3360 ConsumeToken();
3361 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3362 continue;
3363
3364 // cv-qualifier:
3365 case tok::kw_const:
3366 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3367 getLangOpts());
3368 break;
3369 case tok::kw_volatile:
3370 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3371 getLangOpts());
3372 break;
3373 case tok::kw_restrict:
3374 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3375 getLangOpts());
3376 break;
3377
3378 // C++ typename-specifier:
3379 case tok::kw_typename:
3380 if (TryAnnotateTypeOrScopeToken()) {
3381 DS.SetTypeSpecError();
3382 goto DoneWithDeclSpec;
3383 }
3384 if (!Tok.is(tok::kw_typename))
3385 continue;
3386 break;
3387
3388 // GNU typeof support.
3389 case tok::kw_typeof:
3390 ParseTypeofSpecifier(DS);
3391 continue;
3392
3393 case tok::annot_decltype:
3394 ParseDecltypeSpecifier(DS);
3395 continue;
3396
3397 case tok::kw___underlying_type:
3398 ParseUnderlyingTypeSpecifier(DS);
3399 continue;
3400
3401 case tok::kw__Atomic:
3402 // C11 6.7.2.4/4:
3403 // If the _Atomic keyword is immediately followed by a left parenthesis,
3404 // it is interpreted as a type specifier (with a type name), not as a
3405 // type qualifier.
3406 if (NextToken().is(tok::l_paren)) {
3407 ParseAtomicSpecifier(DS);
3408 continue;
3409 }
3410 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3411 getLangOpts());
3412 break;
3413
3414 // OpenCL qualifiers:
3415 case tok::kw___generic:
3416 // generic address space is introduced only in OpenCL v2.0
3417 // see OpenCL C Spec v2.0 s6.5.5
3418 if (Actions.getLangOpts().OpenCLVersion < 200) {
3419 DiagID = diag::err_opencl_unknown_type_specifier;
3420 PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3421 isInvalid = true;
3422 break;
3423 };
3424 case tok::kw___private:
3425 case tok::kw___global:
3426 case tok::kw___local:
3427 case tok::kw___constant:
3428 case tok::kw___read_only:
3429 case tok::kw___write_only:
3430 case tok::kw___read_write:
3431 ParseOpenCLQualifiers(DS.getAttributes());
3432 break;
3433
3434 case tok::less:
3435 // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3436 // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
3437 // but we support it.
3438 if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3439 goto DoneWithDeclSpec;
3440
3441 SourceLocation StartLoc = Tok.getLocation();
3442 SourceLocation EndLoc;
3443 TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
3444 if (Type.isUsable()) {
3445 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
3446 PrevSpec, DiagID, Type.get(),
3447 Actions.getASTContext().getPrintingPolicy()))
3448 Diag(StartLoc, DiagID) << PrevSpec;
3449
3450 DS.SetRangeEnd(EndLoc);
3451 } else {
3452 DS.SetTypeSpecError();
3453 }
3454
3455 // Need to support trailing type qualifiers (e.g. "id<p> const").
3456 // If a type specifier follows, it will be diagnosed elsewhere.
3457 continue;
3458 }
3459 // If the specifier wasn't legal, issue a diagnostic.
3460 if (isInvalid) {
3461 assert(PrevSpec && "Method did not return previous specifier!");
3462 assert(DiagID);
3463
3464 if (DiagID == diag::ext_duplicate_declspec)
3465 Diag(Tok, DiagID)
3466 << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3467 else if (DiagID == diag::err_opencl_unknown_type_specifier)
3468 Diag(Tok, DiagID) << PrevSpec << isStorageClass;
3469 else
3470 Diag(Tok, DiagID) << PrevSpec;
3471 }
3472
3473 DS.SetRangeEnd(Tok.getLocation());
3474 if (DiagID != diag::err_bool_redeclaration)
3475 ConsumeToken();
3476
3477 AttrsLastTime = false;
3478 }
3479 }
3480
3481 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3482 /// semicolon.
3483 ///
3484 /// struct-declaration:
3485 /// specifier-qualifier-list struct-declarator-list
3486 /// [GNU] __extension__ struct-declaration
3487 /// [GNU] specifier-qualifier-list
3488 /// struct-declarator-list:
3489 /// struct-declarator
3490 /// struct-declarator-list ',' struct-declarator
3491 /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
3492 /// struct-declarator:
3493 /// declarator
3494 /// [GNU] declarator attributes[opt]
3495 /// declarator[opt] ':' constant-expression
3496 /// [GNU] declarator[opt] ':' constant-expression attributes[opt]
3497 ///
ParseStructDeclaration(ParsingDeclSpec & DS,llvm::function_ref<void (ParsingFieldDeclarator &)> FieldsCallback)3498 void Parser::ParseStructDeclaration(
3499 ParsingDeclSpec &DS,
3500 llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3501
3502 if (Tok.is(tok::kw___extension__)) {
3503 // __extension__ silences extension warnings in the subexpression.
3504 ExtensionRAIIObject O(Diags); // Use RAII to do this.
3505 ConsumeToken();
3506 return ParseStructDeclaration(DS, FieldsCallback);
3507 }
3508
3509 // Parse the common specifier-qualifiers-list piece.
3510 ParseSpecifierQualifierList(DS);
3511
3512 // If there are no declarators, this is a free-standing declaration
3513 // specifier. Let the actions module cope with it.
3514 if (Tok.is(tok::semi)) {
3515 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3516 DS);
3517 DS.complete(TheDecl);
3518 return;
3519 }
3520
3521 // Read struct-declarators until we find the semicolon.
3522 bool FirstDeclarator = true;
3523 SourceLocation CommaLoc;
3524 while (1) {
3525 ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3526 DeclaratorInfo.D.setCommaLoc(CommaLoc);
3527
3528 // Attributes are only allowed here on successive declarators.
3529 if (!FirstDeclarator)
3530 MaybeParseGNUAttributes(DeclaratorInfo.D);
3531
3532 /// struct-declarator: declarator
3533 /// struct-declarator: declarator[opt] ':' constant-expression
3534 if (Tok.isNot(tok::colon)) {
3535 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3536 ColonProtectionRAIIObject X(*this);
3537 ParseDeclarator(DeclaratorInfo.D);
3538 } else
3539 DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3540
3541 if (TryConsumeToken(tok::colon)) {
3542 ExprResult Res(ParseConstantExpression());
3543 if (Res.isInvalid())
3544 SkipUntil(tok::semi, StopBeforeMatch);
3545 else
3546 DeclaratorInfo.BitfieldSize = Res.get();
3547 }
3548
3549 // If attributes exist after the declarator, parse them.
3550 MaybeParseGNUAttributes(DeclaratorInfo.D);
3551
3552 // We're done with this declarator; invoke the callback.
3553 FieldsCallback(DeclaratorInfo);
3554
3555 // If we don't have a comma, it is either the end of the list (a ';')
3556 // or an error, bail out.
3557 if (!TryConsumeToken(tok::comma, CommaLoc))
3558 return;
3559
3560 FirstDeclarator = false;
3561 }
3562 }
3563
3564 /// ParseStructUnionBody
3565 /// struct-contents:
3566 /// struct-declaration-list
3567 /// [EXT] empty
3568 /// [GNU] "struct-declaration-list" without terminatoring ';'
3569 /// struct-declaration-list:
3570 /// struct-declaration
3571 /// struct-declaration-list struct-declaration
3572 /// [OBC] '@' 'defs' '(' class-name ')'
3573 ///
ParseStructUnionBody(SourceLocation RecordLoc,unsigned TagType,Decl * TagDecl)3574 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3575 unsigned TagType, Decl *TagDecl) {
3576 PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
3577 "parsing struct/union body");
3578 assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3579
3580 BalancedDelimiterTracker T(*this, tok::l_brace);
3581 if (T.consumeOpen())
3582 return;
3583
3584 ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3585 Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3586
3587 SmallVector<Decl *, 32> FieldDecls;
3588
3589 // While we still have something to read, read the declarations in the struct.
3590 while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
3591 Tok.isNot(tok::eof)) {
3592 // Each iteration of this loop reads one struct-declaration.
3593
3594 // Check for extraneous top-level semicolon.
3595 if (Tok.is(tok::semi)) {
3596 ConsumeExtraSemi(InsideStruct, TagType);
3597 continue;
3598 }
3599
3600 // Parse _Static_assert declaration.
3601 if (Tok.is(tok::kw__Static_assert)) {
3602 SourceLocation DeclEnd;
3603 ParseStaticAssertDeclaration(DeclEnd);
3604 continue;
3605 }
3606
3607 if (Tok.is(tok::annot_pragma_pack)) {
3608 HandlePragmaPack();
3609 continue;
3610 }
3611
3612 if (Tok.is(tok::annot_pragma_align)) {
3613 HandlePragmaAlign();
3614 continue;
3615 }
3616
3617 if (Tok.is(tok::annot_pragma_openmp)) {
3618 // Result can be ignored, because it must be always empty.
3619 auto Res = ParseOpenMPDeclarativeDirective();
3620 assert(!Res);
3621 // Silence possible warnings.
3622 (void)Res;
3623 continue;
3624 }
3625 if (!Tok.is(tok::at)) {
3626 auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
3627 // Install the declarator into the current TagDecl.
3628 Decl *Field =
3629 Actions.ActOnField(getCurScope(), TagDecl,
3630 FD.D.getDeclSpec().getSourceRange().getBegin(),
3631 FD.D, FD.BitfieldSize);
3632 FieldDecls.push_back(Field);
3633 FD.complete(Field);
3634 };
3635
3636 // Parse all the comma separated declarators.
3637 ParsingDeclSpec DS(*this);
3638 ParseStructDeclaration(DS, CFieldCallback);
3639 } else { // Handle @defs
3640 ConsumeToken();
3641 if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
3642 Diag(Tok, diag::err_unexpected_at);
3643 SkipUntil(tok::semi);
3644 continue;
3645 }
3646 ConsumeToken();
3647 ExpectAndConsume(tok::l_paren);
3648 if (!Tok.is(tok::identifier)) {
3649 Diag(Tok, diag::err_expected) << tok::identifier;
3650 SkipUntil(tok::semi);
3651 continue;
3652 }
3653 SmallVector<Decl *, 16> Fields;
3654 Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
3655 Tok.getIdentifierInfo(), Fields);
3656 FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
3657 ConsumeToken();
3658 ExpectAndConsume(tok::r_paren);
3659 }
3660
3661 if (TryConsumeToken(tok::semi))
3662 continue;
3663
3664 if (Tok.is(tok::r_brace)) {
3665 ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
3666 break;
3667 }
3668
3669 ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
3670 // Skip to end of block or statement to avoid ext-warning on extra ';'.
3671 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
3672 // If we stopped at a ';', eat it.
3673 TryConsumeToken(tok::semi);
3674 }
3675
3676 T.consumeClose();
3677
3678 ParsedAttributes attrs(AttrFactory);
3679 // If attributes exist after struct contents, parse them.
3680 MaybeParseGNUAttributes(attrs);
3681
3682 Actions.ActOnFields(getCurScope(),
3683 RecordLoc, TagDecl, FieldDecls,
3684 T.getOpenLocation(), T.getCloseLocation(),
3685 attrs.getList());
3686 StructScope.Exit();
3687 Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
3688 T.getCloseLocation());
3689 }
3690
3691 /// ParseEnumSpecifier
3692 /// enum-specifier: [C99 6.7.2.2]
3693 /// 'enum' identifier[opt] '{' enumerator-list '}'
3694 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
3695 /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
3696 /// '}' attributes[opt]
3697 /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
3698 /// '}'
3699 /// 'enum' identifier
3700 /// [GNU] 'enum' attributes[opt] identifier
3701 ///
3702 /// [C++11] enum-head '{' enumerator-list[opt] '}'
3703 /// [C++11] enum-head '{' enumerator-list ',' '}'
3704 ///
3705 /// enum-head: [C++11]
3706 /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
3707 /// enum-key attribute-specifier-seq[opt] nested-name-specifier
3708 /// identifier enum-base[opt]
3709 ///
3710 /// enum-key: [C++11]
3711 /// 'enum'
3712 /// 'enum' 'class'
3713 /// 'enum' 'struct'
3714 ///
3715 /// enum-base: [C++11]
3716 /// ':' type-specifier-seq
3717 ///
3718 /// [C++] elaborated-type-specifier:
3719 /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
3720 ///
ParseEnumSpecifier(SourceLocation StartLoc,DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC)3721 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
3722 const ParsedTemplateInfo &TemplateInfo,
3723 AccessSpecifier AS, DeclSpecContext DSC) {
3724 // Parse the tag portion of this.
3725 if (Tok.is(tok::code_completion)) {
3726 // Code completion for an enum name.
3727 Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
3728 return cutOffParsing();
3729 }
3730
3731 // If attributes exist after tag, parse them.
3732 ParsedAttributesWithRange attrs(AttrFactory);
3733 MaybeParseGNUAttributes(attrs);
3734 MaybeParseCXX11Attributes(attrs);
3735 MaybeParseMicrosoftDeclSpecs(attrs);
3736
3737 SourceLocation ScopedEnumKWLoc;
3738 bool IsScopedUsingClassTag = false;
3739
3740 // In C++11, recognize 'enum class' and 'enum struct'.
3741 if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
3742 Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
3743 : diag::ext_scoped_enum);
3744 IsScopedUsingClassTag = Tok.is(tok::kw_class);
3745 ScopedEnumKWLoc = ConsumeToken();
3746
3747 // Attributes are not allowed between these keywords. Diagnose,
3748 // but then just treat them like they appeared in the right place.
3749 ProhibitAttributes(attrs);
3750
3751 // They are allowed afterwards, though.
3752 MaybeParseGNUAttributes(attrs);
3753 MaybeParseCXX11Attributes(attrs);
3754 MaybeParseMicrosoftDeclSpecs(attrs);
3755 }
3756
3757 // C++11 [temp.explicit]p12:
3758 // The usual access controls do not apply to names used to specify
3759 // explicit instantiations.
3760 // We extend this to also cover explicit specializations. Note that
3761 // we don't suppress if this turns out to be an elaborated type
3762 // specifier.
3763 bool shouldDelayDiagsInTag =
3764 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3765 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3766 SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
3767
3768 // Enum definitions should not be parsed in a trailing-return-type.
3769 bool AllowDeclaration = DSC != DSC_trailing;
3770
3771 bool AllowFixedUnderlyingType = AllowDeclaration &&
3772 (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
3773 getLangOpts().ObjC2);
3774
3775 CXXScopeSpec &SS = DS.getTypeSpecScope();
3776 if (getLangOpts().CPlusPlus) {
3777 // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
3778 // if a fixed underlying type is allowed.
3779 ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
3780
3781 CXXScopeSpec Spec;
3782 if (ParseOptionalCXXScopeSpecifier(Spec, ParsedType(),
3783 /*EnteringContext=*/true))
3784 return;
3785
3786 if (Spec.isSet() && Tok.isNot(tok::identifier)) {
3787 Diag(Tok, diag::err_expected) << tok::identifier;
3788 if (Tok.isNot(tok::l_brace)) {
3789 // Has no name and is not a definition.
3790 // Skip the rest of this declarator, up until the comma or semicolon.
3791 SkipUntil(tok::comma, StopAtSemi);
3792 return;
3793 }
3794 }
3795
3796 SS = Spec;
3797 }
3798
3799 // Must have either 'enum name' or 'enum {...}'.
3800 if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
3801 !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
3802 Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
3803
3804 // Skip the rest of this declarator, up until the comma or semicolon.
3805 SkipUntil(tok::comma, StopAtSemi);
3806 return;
3807 }
3808
3809 // If an identifier is present, consume and remember it.
3810 IdentifierInfo *Name = nullptr;
3811 SourceLocation NameLoc;
3812 if (Tok.is(tok::identifier)) {
3813 Name = Tok.getIdentifierInfo();
3814 NameLoc = ConsumeToken();
3815 }
3816
3817 if (!Name && ScopedEnumKWLoc.isValid()) {
3818 // C++0x 7.2p2: The optional identifier shall not be omitted in the
3819 // declaration of a scoped enumeration.
3820 Diag(Tok, diag::err_scoped_enum_missing_identifier);
3821 ScopedEnumKWLoc = SourceLocation();
3822 IsScopedUsingClassTag = false;
3823 }
3824
3825 // Okay, end the suppression area. We'll decide whether to emit the
3826 // diagnostics in a second.
3827 if (shouldDelayDiagsInTag)
3828 diagsFromTag.done();
3829
3830 TypeResult BaseType;
3831
3832 // Parse the fixed underlying type.
3833 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3834 if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
3835 bool PossibleBitfield = false;
3836 if (CanBeBitfield) {
3837 // If we're in class scope, this can either be an enum declaration with
3838 // an underlying type, or a declaration of a bitfield member. We try to
3839 // use a simple disambiguation scheme first to catch the common cases
3840 // (integer literal, sizeof); if it's still ambiguous, we then consider
3841 // anything that's a simple-type-specifier followed by '(' as an
3842 // expression. This suffices because function types are not valid
3843 // underlying types anyway.
3844 EnterExpressionEvaluationContext Unevaluated(Actions,
3845 Sema::ConstantEvaluated);
3846 TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
3847 // If the next token starts an expression, we know we're parsing a
3848 // bit-field. This is the common case.
3849 if (TPR == TPResult::True)
3850 PossibleBitfield = true;
3851 // If the next token starts a type-specifier-seq, it may be either a
3852 // a fixed underlying type or the start of a function-style cast in C++;
3853 // lookahead one more token to see if it's obvious that we have a
3854 // fixed underlying type.
3855 else if (TPR == TPResult::False &&
3856 GetLookAheadToken(2).getKind() == tok::semi) {
3857 // Consume the ':'.
3858 ConsumeToken();
3859 } else {
3860 // We have the start of a type-specifier-seq, so we have to perform
3861 // tentative parsing to determine whether we have an expression or a
3862 // type.
3863 TentativeParsingAction TPA(*this);
3864
3865 // Consume the ':'.
3866 ConsumeToken();
3867
3868 // If we see a type specifier followed by an open-brace, we have an
3869 // ambiguity between an underlying type and a C++11 braced
3870 // function-style cast. Resolve this by always treating it as an
3871 // underlying type.
3872 // FIXME: The standard is not entirely clear on how to disambiguate in
3873 // this case.
3874 if ((getLangOpts().CPlusPlus &&
3875 isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
3876 (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
3877 // We'll parse this as a bitfield later.
3878 PossibleBitfield = true;
3879 TPA.Revert();
3880 } else {
3881 // We have a type-specifier-seq.
3882 TPA.Commit();
3883 }
3884 }
3885 } else {
3886 // Consume the ':'.
3887 ConsumeToken();
3888 }
3889
3890 if (!PossibleBitfield) {
3891 SourceRange Range;
3892 BaseType = ParseTypeName(&Range);
3893
3894 if (getLangOpts().CPlusPlus11) {
3895 Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3896 } else if (!getLangOpts().ObjC2) {
3897 if (getLangOpts().CPlusPlus)
3898 Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
3899 else
3900 Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
3901 }
3902 }
3903 }
3904
3905 // There are four options here. If we have 'friend enum foo;' then this is a
3906 // friend declaration, and cannot have an accompanying definition. If we have
3907 // 'enum foo;', then this is a forward declaration. If we have
3908 // 'enum foo {...' then this is a definition. Otherwise we have something
3909 // like 'enum foo xyz', a reference.
3910 //
3911 // This is needed to handle stuff like this right (C99 6.7.2.3p11):
3912 // enum foo {..}; void bar() { enum foo; } <- new foo in bar.
3913 // enum foo {..}; void bar() { enum foo x; } <- use of old foo.
3914 //
3915 Sema::TagUseKind TUK;
3916 if (!AllowDeclaration) {
3917 TUK = Sema::TUK_Reference;
3918 } else if (Tok.is(tok::l_brace)) {
3919 if (DS.isFriendSpecified()) {
3920 Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
3921 << SourceRange(DS.getFriendSpecLoc());
3922 ConsumeBrace();
3923 SkipUntil(tok::r_brace, StopAtSemi);
3924 TUK = Sema::TUK_Friend;
3925 } else {
3926 TUK = Sema::TUK_Definition;
3927 }
3928 } else if (!isTypeSpecifier(DSC) &&
3929 (Tok.is(tok::semi) ||
3930 (Tok.isAtStartOfLine() &&
3931 !isValidAfterTypeSpecifier(CanBeBitfield)))) {
3932 TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
3933 if (Tok.isNot(tok::semi)) {
3934 // A semicolon was missing after this declaration. Diagnose and recover.
3935 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3936 PP.EnterToken(Tok);
3937 Tok.setKind(tok::semi);
3938 }
3939 } else {
3940 TUK = Sema::TUK_Reference;
3941 }
3942
3943 // If this is an elaborated type specifier, and we delayed
3944 // diagnostics before, just merge them into the current pool.
3945 if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
3946 diagsFromTag.redelay();
3947 }
3948
3949 MultiTemplateParamsArg TParams;
3950 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3951 TUK != Sema::TUK_Reference) {
3952 if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
3953 // Skip the rest of this declarator, up until the comma or semicolon.
3954 Diag(Tok, diag::err_enum_template);
3955 SkipUntil(tok::comma, StopAtSemi);
3956 return;
3957 }
3958
3959 if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
3960 // Enumerations can't be explicitly instantiated.
3961 DS.SetTypeSpecError();
3962 Diag(StartLoc, diag::err_explicit_instantiation_enum);
3963 return;
3964 }
3965
3966 assert(TemplateInfo.TemplateParams && "no template parameters");
3967 TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
3968 TemplateInfo.TemplateParams->size());
3969 }
3970
3971 if (TUK == Sema::TUK_Reference)
3972 ProhibitAttributes(attrs);
3973
3974 if (!Name && TUK != Sema::TUK_Definition) {
3975 Diag(Tok, diag::err_enumerator_unnamed_no_def);
3976
3977 // Skip the rest of this declarator, up until the comma or semicolon.
3978 SkipUntil(tok::comma, StopAtSemi);
3979 return;
3980 }
3981
3982 handleDeclspecAlignBeforeClassKey(attrs, DS, TUK);
3983
3984 Sema::SkipBodyInfo SkipBody;
3985 if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
3986 NextToken().is(tok::identifier))
3987 SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
3988 NextToken().getIdentifierInfo(),
3989 NextToken().getLocation());
3990
3991 bool Owned = false;
3992 bool IsDependent = false;
3993 const char *PrevSpec = nullptr;
3994 unsigned DiagID;
3995 Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3996 StartLoc, SS, Name, NameLoc, attrs.getList(),
3997 AS, DS.getModulePrivateSpecLoc(), TParams,
3998 Owned, IsDependent, ScopedEnumKWLoc,
3999 IsScopedUsingClassTag, BaseType,
4000 DSC == DSC_type_specifier, &SkipBody);
4001
4002 if (SkipBody.ShouldSkip) {
4003 assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4004
4005 BalancedDelimiterTracker T(*this, tok::l_brace);
4006 T.consumeOpen();
4007 T.skipToEnd();
4008
4009 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4010 NameLoc.isValid() ? NameLoc : StartLoc,
4011 PrevSpec, DiagID, TagDecl, Owned,
4012 Actions.getASTContext().getPrintingPolicy()))
4013 Diag(StartLoc, DiagID) << PrevSpec;
4014 return;
4015 }
4016
4017 if (IsDependent) {
4018 // This enum has a dependent nested-name-specifier. Handle it as a
4019 // dependent tag.
4020 if (!Name) {
4021 DS.SetTypeSpecError();
4022 Diag(Tok, diag::err_expected_type_name_after_typename);
4023 return;
4024 }
4025
4026 TypeResult Type = Actions.ActOnDependentTag(
4027 getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4028 if (Type.isInvalid()) {
4029 DS.SetTypeSpecError();
4030 return;
4031 }
4032
4033 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4034 NameLoc.isValid() ? NameLoc : StartLoc,
4035 PrevSpec, DiagID, Type.get(),
4036 Actions.getASTContext().getPrintingPolicy()))
4037 Diag(StartLoc, DiagID) << PrevSpec;
4038
4039 return;
4040 }
4041
4042 if (!TagDecl) {
4043 // The action failed to produce an enumeration tag. If this is a
4044 // definition, consume the entire definition.
4045 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4046 ConsumeBrace();
4047 SkipUntil(tok::r_brace, StopAtSemi);
4048 }
4049
4050 DS.SetTypeSpecError();
4051 return;
4052 }
4053
4054 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
4055 ParseEnumBody(StartLoc, TagDecl);
4056
4057 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4058 NameLoc.isValid() ? NameLoc : StartLoc,
4059 PrevSpec, DiagID, TagDecl, Owned,
4060 Actions.getASTContext().getPrintingPolicy()))
4061 Diag(StartLoc, DiagID) << PrevSpec;
4062 }
4063
4064 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
4065 /// enumerator-list:
4066 /// enumerator
4067 /// enumerator-list ',' enumerator
4068 /// enumerator:
4069 /// enumeration-constant attributes[opt]
4070 /// enumeration-constant attributes[opt] '=' constant-expression
4071 /// enumeration-constant:
4072 /// identifier
4073 ///
ParseEnumBody(SourceLocation StartLoc,Decl * EnumDecl)4074 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4075 // Enter the scope of the enum body and start the definition.
4076 ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4077 Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4078
4079 BalancedDelimiterTracker T(*this, tok::l_brace);
4080 T.consumeOpen();
4081
4082 // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4083 if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4084 Diag(Tok, diag::error_empty_enum);
4085
4086 SmallVector<Decl *, 32> EnumConstantDecls;
4087 SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4088
4089 Decl *LastEnumConstDecl = nullptr;
4090
4091 // Parse the enumerator-list.
4092 while (Tok.isNot(tok::r_brace)) {
4093 // Parse enumerator. If failed, try skipping till the start of the next
4094 // enumerator definition.
4095 if (Tok.isNot(tok::identifier)) {
4096 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4097 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4098 TryConsumeToken(tok::comma))
4099 continue;
4100 break;
4101 }
4102 IdentifierInfo *Ident = Tok.getIdentifierInfo();
4103 SourceLocation IdentLoc = ConsumeToken();
4104
4105 // If attributes exist after the enumerator, parse them.
4106 ParsedAttributesWithRange attrs(AttrFactory);
4107 MaybeParseGNUAttributes(attrs);
4108 ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4109 if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
4110 if (!getLangOpts().CPlusPlus1z)
4111 Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
4112 << 1 /*enumerator*/;
4113 ParseCXX11Attributes(attrs);
4114 }
4115
4116 SourceLocation EqualLoc;
4117 ExprResult AssignedVal;
4118 EnumAvailabilityDiags.emplace_back(*this);
4119
4120 if (TryConsumeToken(tok::equal, EqualLoc)) {
4121 AssignedVal = ParseConstantExpression();
4122 if (AssignedVal.isInvalid())
4123 SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4124 }
4125
4126 // Install the enumerator constant into EnumDecl.
4127 Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
4128 LastEnumConstDecl,
4129 IdentLoc, Ident,
4130 attrs.getList(), EqualLoc,
4131 AssignedVal.get());
4132 EnumAvailabilityDiags.back().done();
4133
4134 EnumConstantDecls.push_back(EnumConstDecl);
4135 LastEnumConstDecl = EnumConstDecl;
4136
4137 if (Tok.is(tok::identifier)) {
4138 // We're missing a comma between enumerators.
4139 SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
4140 Diag(Loc, diag::err_enumerator_list_missing_comma)
4141 << FixItHint::CreateInsertion(Loc, ", ");
4142 continue;
4143 }
4144
4145 // Emumerator definition must be finished, only comma or r_brace are
4146 // allowed here.
4147 SourceLocation CommaLoc;
4148 if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4149 if (EqualLoc.isValid())
4150 Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4151 << tok::comma;
4152 else
4153 Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4154 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4155 if (TryConsumeToken(tok::comma, CommaLoc))
4156 continue;
4157 } else {
4158 break;
4159 }
4160 }
4161
4162 // If comma is followed by r_brace, emit appropriate warning.
4163 if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4164 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4165 Diag(CommaLoc, getLangOpts().CPlusPlus ?
4166 diag::ext_enumerator_list_comma_cxx :
4167 diag::ext_enumerator_list_comma_c)
4168 << FixItHint::CreateRemoval(CommaLoc);
4169 else if (getLangOpts().CPlusPlus11)
4170 Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4171 << FixItHint::CreateRemoval(CommaLoc);
4172 break;
4173 }
4174 }
4175
4176 // Eat the }.
4177 T.consumeClose();
4178
4179 // If attributes exist after the identifier list, parse them.
4180 ParsedAttributes attrs(AttrFactory);
4181 MaybeParseGNUAttributes(attrs);
4182
4183 Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
4184 EnumDecl, EnumConstantDecls,
4185 getCurScope(),
4186 attrs.getList());
4187
4188 // Now handle enum constant availability diagnostics.
4189 assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4190 for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4191 ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
4192 EnumAvailabilityDiags[i].redelay();
4193 PD.complete(EnumConstantDecls[i]);
4194 }
4195
4196 EnumScope.Exit();
4197 Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
4198 T.getCloseLocation());
4199
4200 // The next token must be valid after an enum definition. If not, a ';'
4201 // was probably forgotten.
4202 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4203 if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4204 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4205 // Push this token back into the preprocessor and change our current token
4206 // to ';' so that the rest of the code recovers as though there were an
4207 // ';' after the definition.
4208 PP.EnterToken(Tok);
4209 Tok.setKind(tok::semi);
4210 }
4211 }
4212
4213 /// isTypeSpecifierQualifier - Return true if the current token could be the
4214 /// start of a type-qualifier-list.
isTypeQualifier() const4215 bool Parser::isTypeQualifier() const {
4216 switch (Tok.getKind()) {
4217 default: return false;
4218 // type-qualifier
4219 case tok::kw_const:
4220 case tok::kw_volatile:
4221 case tok::kw_restrict:
4222 case tok::kw___private:
4223 case tok::kw___local:
4224 case tok::kw___global:
4225 case tok::kw___constant:
4226 case tok::kw___generic:
4227 case tok::kw___read_only:
4228 case tok::kw___read_write:
4229 case tok::kw___write_only:
4230 return true;
4231 }
4232 }
4233
4234 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4235 /// is definitely a type-specifier. Return false if it isn't part of a type
4236 /// specifier or if we're not sure.
isKnownToBeTypeSpecifier(const Token & Tok) const4237 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4238 switch (Tok.getKind()) {
4239 default: return false;
4240 // type-specifiers
4241 case tok::kw_short:
4242 case tok::kw_long:
4243 case tok::kw___int64:
4244 case tok::kw___int128:
4245 case tok::kw_signed:
4246 case tok::kw_unsigned:
4247 case tok::kw__Complex:
4248 case tok::kw__Imaginary:
4249 case tok::kw_void:
4250 case tok::kw_char:
4251 case tok::kw_wchar_t:
4252 case tok::kw_char16_t:
4253 case tok::kw_char32_t:
4254 case tok::kw_int:
4255 case tok::kw_half:
4256 case tok::kw_float:
4257 case tok::kw_double:
4258 case tok::kw_bool:
4259 case tok::kw__Bool:
4260 case tok::kw__Decimal32:
4261 case tok::kw__Decimal64:
4262 case tok::kw__Decimal128:
4263 case tok::kw___vector:
4264
4265 // struct-or-union-specifier (C99) or class-specifier (C++)
4266 case tok::kw_class:
4267 case tok::kw_struct:
4268 case tok::kw___interface:
4269 case tok::kw_union:
4270 // enum-specifier
4271 case tok::kw_enum:
4272
4273 // typedef-name
4274 case tok::annot_typename:
4275 return true;
4276 }
4277 }
4278
4279 /// isTypeSpecifierQualifier - Return true if the current token could be the
4280 /// start of a specifier-qualifier-list.
isTypeSpecifierQualifier()4281 bool Parser::isTypeSpecifierQualifier() {
4282 switch (Tok.getKind()) {
4283 default: return false;
4284
4285 case tok::identifier: // foo::bar
4286 if (TryAltiVecVectorToken())
4287 return true;
4288 // Fall through.
4289 case tok::kw_typename: // typename T::type
4290 // Annotate typenames and C++ scope specifiers. If we get one, just
4291 // recurse to handle whatever we get.
4292 if (TryAnnotateTypeOrScopeToken())
4293 return true;
4294 if (Tok.is(tok::identifier))
4295 return false;
4296 return isTypeSpecifierQualifier();
4297
4298 case tok::coloncolon: // ::foo::bar
4299 if (NextToken().is(tok::kw_new) || // ::new
4300 NextToken().is(tok::kw_delete)) // ::delete
4301 return false;
4302
4303 if (TryAnnotateTypeOrScopeToken())
4304 return true;
4305 return isTypeSpecifierQualifier();
4306
4307 // GNU attributes support.
4308 case tok::kw___attribute:
4309 // GNU typeof support.
4310 case tok::kw_typeof:
4311
4312 // type-specifiers
4313 case tok::kw_short:
4314 case tok::kw_long:
4315 case tok::kw___int64:
4316 case tok::kw___int128:
4317 case tok::kw_signed:
4318 case tok::kw_unsigned:
4319 case tok::kw__Complex:
4320 case tok::kw__Imaginary:
4321 case tok::kw_void:
4322 case tok::kw_char:
4323 case tok::kw_wchar_t:
4324 case tok::kw_char16_t:
4325 case tok::kw_char32_t:
4326 case tok::kw_int:
4327 case tok::kw_half:
4328 case tok::kw_float:
4329 case tok::kw_double:
4330 case tok::kw_bool:
4331 case tok::kw__Bool:
4332 case tok::kw__Decimal32:
4333 case tok::kw__Decimal64:
4334 case tok::kw__Decimal128:
4335 case tok::kw___vector:
4336
4337 // struct-or-union-specifier (C99) or class-specifier (C++)
4338 case tok::kw_class:
4339 case tok::kw_struct:
4340 case tok::kw___interface:
4341 case tok::kw_union:
4342 // enum-specifier
4343 case tok::kw_enum:
4344
4345 // type-qualifier
4346 case tok::kw_const:
4347 case tok::kw_volatile:
4348 case tok::kw_restrict:
4349
4350 // Debugger support.
4351 case tok::kw___unknown_anytype:
4352
4353 // typedef-name
4354 case tok::annot_typename:
4355 return true;
4356
4357 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4358 case tok::less:
4359 return getLangOpts().ObjC1;
4360
4361 case tok::kw___cdecl:
4362 case tok::kw___stdcall:
4363 case tok::kw___fastcall:
4364 case tok::kw___thiscall:
4365 case tok::kw___vectorcall:
4366 case tok::kw___w64:
4367 case tok::kw___ptr64:
4368 case tok::kw___ptr32:
4369 case tok::kw___pascal:
4370 case tok::kw___unaligned:
4371
4372 case tok::kw__Nonnull:
4373 case tok::kw__Nullable:
4374 case tok::kw__Null_unspecified:
4375
4376 case tok::kw___kindof:
4377
4378 case tok::kw___private:
4379 case tok::kw___local:
4380 case tok::kw___global:
4381 case tok::kw___constant:
4382 case tok::kw___generic:
4383 case tok::kw___read_only:
4384 case tok::kw___read_write:
4385 case tok::kw___write_only:
4386
4387 return true;
4388
4389 // C11 _Atomic
4390 case tok::kw__Atomic:
4391 return true;
4392 }
4393 }
4394
4395 /// isDeclarationSpecifier() - Return true if the current token is part of a
4396 /// declaration specifier.
4397 ///
4398 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4399 /// this check is to disambiguate between an expression and a declaration.
isDeclarationSpecifier(bool DisambiguatingWithExpression)4400 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4401 switch (Tok.getKind()) {
4402 default: return false;
4403
4404 case tok::identifier: // foo::bar
4405 // Unfortunate hack to support "Class.factoryMethod" notation.
4406 if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4407 return false;
4408 if (TryAltiVecVectorToken())
4409 return true;
4410 // Fall through.
4411 case tok::kw_decltype: // decltype(T())::type
4412 case tok::kw_typename: // typename T::type
4413 // Annotate typenames and C++ scope specifiers. If we get one, just
4414 // recurse to handle whatever we get.
4415 if (TryAnnotateTypeOrScopeToken())
4416 return true;
4417 if (Tok.is(tok::identifier))
4418 return false;
4419
4420 // If we're in Objective-C and we have an Objective-C class type followed
4421 // by an identifier and then either ':' or ']', in a place where an
4422 // expression is permitted, then this is probably a class message send
4423 // missing the initial '['. In this case, we won't consider this to be
4424 // the start of a declaration.
4425 if (DisambiguatingWithExpression &&
4426 isStartOfObjCClassMessageMissingOpenBracket())
4427 return false;
4428
4429 return isDeclarationSpecifier();
4430
4431 case tok::coloncolon: // ::foo::bar
4432 if (NextToken().is(tok::kw_new) || // ::new
4433 NextToken().is(tok::kw_delete)) // ::delete
4434 return false;
4435
4436 // Annotate typenames and C++ scope specifiers. If we get one, just
4437 // recurse to handle whatever we get.
4438 if (TryAnnotateTypeOrScopeToken())
4439 return true;
4440 return isDeclarationSpecifier();
4441
4442 // storage-class-specifier
4443 case tok::kw_typedef:
4444 case tok::kw_extern:
4445 case tok::kw___private_extern__:
4446 case tok::kw_static:
4447 case tok::kw_auto:
4448 case tok::kw___auto_type:
4449 case tok::kw_register:
4450 case tok::kw___thread:
4451 case tok::kw_thread_local:
4452 case tok::kw__Thread_local:
4453
4454 // Modules
4455 case tok::kw___module_private__:
4456
4457 // Debugger support
4458 case tok::kw___unknown_anytype:
4459
4460 // type-specifiers
4461 case tok::kw_short:
4462 case tok::kw_long:
4463 case tok::kw___int64:
4464 case tok::kw___int128:
4465 case tok::kw_signed:
4466 case tok::kw_unsigned:
4467 case tok::kw__Complex:
4468 case tok::kw__Imaginary:
4469 case tok::kw_void:
4470 case tok::kw_char:
4471 case tok::kw_wchar_t:
4472 case tok::kw_char16_t:
4473 case tok::kw_char32_t:
4474
4475 case tok::kw_int:
4476 case tok::kw_half:
4477 case tok::kw_float:
4478 case tok::kw_double:
4479 case tok::kw_bool:
4480 case tok::kw__Bool:
4481 case tok::kw__Decimal32:
4482 case tok::kw__Decimal64:
4483 case tok::kw__Decimal128:
4484 case tok::kw___vector:
4485
4486 // struct-or-union-specifier (C99) or class-specifier (C++)
4487 case tok::kw_class:
4488 case tok::kw_struct:
4489 case tok::kw_union:
4490 case tok::kw___interface:
4491 // enum-specifier
4492 case tok::kw_enum:
4493
4494 // type-qualifier
4495 case tok::kw_const:
4496 case tok::kw_volatile:
4497 case tok::kw_restrict:
4498
4499 // function-specifier
4500 case tok::kw_inline:
4501 case tok::kw_virtual:
4502 case tok::kw_explicit:
4503 case tok::kw__Noreturn:
4504
4505 // alignment-specifier
4506 case tok::kw__Alignas:
4507
4508 // friend keyword.
4509 case tok::kw_friend:
4510
4511 // static_assert-declaration
4512 case tok::kw__Static_assert:
4513
4514 // GNU typeof support.
4515 case tok::kw_typeof:
4516
4517 // GNU attributes.
4518 case tok::kw___attribute:
4519
4520 // C++11 decltype and constexpr.
4521 case tok::annot_decltype:
4522 case tok::kw_constexpr:
4523
4524 // C++ Concepts TS - concept
4525 case tok::kw_concept:
4526
4527 // C11 _Atomic
4528 case tok::kw__Atomic:
4529 return true;
4530
4531 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4532 case tok::less:
4533 return getLangOpts().ObjC1;
4534
4535 // typedef-name
4536 case tok::annot_typename:
4537 return !DisambiguatingWithExpression ||
4538 !isStartOfObjCClassMessageMissingOpenBracket();
4539
4540 case tok::kw___declspec:
4541 case tok::kw___cdecl:
4542 case tok::kw___stdcall:
4543 case tok::kw___fastcall:
4544 case tok::kw___thiscall:
4545 case tok::kw___vectorcall:
4546 case tok::kw___w64:
4547 case tok::kw___sptr:
4548 case tok::kw___uptr:
4549 case tok::kw___ptr64:
4550 case tok::kw___ptr32:
4551 case tok::kw___forceinline:
4552 case tok::kw___pascal:
4553 case tok::kw___unaligned:
4554
4555 case tok::kw__Nonnull:
4556 case tok::kw__Nullable:
4557 case tok::kw__Null_unspecified:
4558
4559 case tok::kw___kindof:
4560
4561 case tok::kw___private:
4562 case tok::kw___local:
4563 case tok::kw___global:
4564 case tok::kw___constant:
4565 case tok::kw___generic:
4566 case tok::kw___read_only:
4567 case tok::kw___read_write:
4568 case tok::kw___write_only:
4569
4570 return true;
4571 }
4572 }
4573
isConstructorDeclarator(bool IsUnqualified)4574 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
4575 TentativeParsingAction TPA(*this);
4576
4577 // Parse the C++ scope specifier.
4578 CXXScopeSpec SS;
4579 if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
4580 /*EnteringContext=*/true)) {
4581 TPA.Revert();
4582 return false;
4583 }
4584
4585 // Parse the constructor name.
4586 if (Tok.isOneOf(tok::identifier, tok::annot_template_id)) {
4587 // We already know that we have a constructor name; just consume
4588 // the token.
4589 ConsumeToken();
4590 } else {
4591 TPA.Revert();
4592 return false;
4593 }
4594
4595 // Current class name must be followed by a left parenthesis.
4596 if (Tok.isNot(tok::l_paren)) {
4597 TPA.Revert();
4598 return false;
4599 }
4600 ConsumeParen();
4601
4602 // A right parenthesis, or ellipsis followed by a right parenthesis signals
4603 // that we have a constructor.
4604 if (Tok.is(tok::r_paren) ||
4605 (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4606 TPA.Revert();
4607 return true;
4608 }
4609
4610 // A C++11 attribute here signals that we have a constructor, and is an
4611 // attribute on the first constructor parameter.
4612 if (getLangOpts().CPlusPlus11 &&
4613 isCXX11AttributeSpecifier(/*Disambiguate*/ false,
4614 /*OuterMightBeMessageSend*/ true)) {
4615 TPA.Revert();
4616 return true;
4617 }
4618
4619 // If we need to, enter the specified scope.
4620 DeclaratorScopeObj DeclScopeObj(*this, SS);
4621 if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
4622 DeclScopeObj.EnterDeclaratorScope();
4623
4624 // Optionally skip Microsoft attributes.
4625 ParsedAttributes Attrs(AttrFactory);
4626 MaybeParseMicrosoftAttributes(Attrs);
4627
4628 // Check whether the next token(s) are part of a declaration
4629 // specifier, in which case we have the start of a parameter and,
4630 // therefore, we know that this is a constructor.
4631 bool IsConstructor = false;
4632 if (isDeclarationSpecifier())
4633 IsConstructor = true;
4634 else if (Tok.is(tok::identifier) ||
4635 (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
4636 // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
4637 // This might be a parenthesized member name, but is more likely to
4638 // be a constructor declaration with an invalid argument type. Keep
4639 // looking.
4640 if (Tok.is(tok::annot_cxxscope))
4641 ConsumeToken();
4642 ConsumeToken();
4643
4644 // If this is not a constructor, we must be parsing a declarator,
4645 // which must have one of the following syntactic forms (see the
4646 // grammar extract at the start of ParseDirectDeclarator):
4647 switch (Tok.getKind()) {
4648 case tok::l_paren:
4649 // C(X ( int));
4650 case tok::l_square:
4651 // C(X [ 5]);
4652 // C(X [ [attribute]]);
4653 case tok::coloncolon:
4654 // C(X :: Y);
4655 // C(X :: *p);
4656 // Assume this isn't a constructor, rather than assuming it's a
4657 // constructor with an unnamed parameter of an ill-formed type.
4658 break;
4659
4660 case tok::r_paren:
4661 // C(X )
4662 if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
4663 // Assume these were meant to be constructors:
4664 // C(X) : (the name of a bit-field cannot be parenthesized).
4665 // C(X) try (this is otherwise ill-formed).
4666 IsConstructor = true;
4667 }
4668 if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
4669 // If we have a constructor name within the class definition,
4670 // assume these were meant to be constructors:
4671 // C(X) {
4672 // C(X) ;
4673 // ... because otherwise we would be declaring a non-static data
4674 // member that is ill-formed because it's of the same type as its
4675 // surrounding class.
4676 //
4677 // FIXME: We can actually do this whether or not the name is qualified,
4678 // because if it is qualified in this context it must be being used as
4679 // a constructor name. However, we do not implement that rule correctly
4680 // currently, so we're somewhat conservative here.
4681 IsConstructor = IsUnqualified;
4682 }
4683 break;
4684
4685 default:
4686 IsConstructor = true;
4687 break;
4688 }
4689 }
4690
4691 TPA.Revert();
4692 return IsConstructor;
4693 }
4694
4695 /// ParseTypeQualifierListOpt
4696 /// type-qualifier-list: [C99 6.7.5]
4697 /// type-qualifier
4698 /// [vendor] attributes
4699 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
4700 /// type-qualifier-list type-qualifier
4701 /// [vendor] type-qualifier-list attributes
4702 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
4703 /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
4704 /// [ only if AttReqs & AR_CXX11AttributesParsed ]
4705 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
4706 /// AttrRequirements bitmask values.
ParseTypeQualifierListOpt(DeclSpec & DS,unsigned AttrReqs,bool AtomicAllowed,bool IdentifierRequired)4707 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
4708 bool AtomicAllowed,
4709 bool IdentifierRequired) {
4710 if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
4711 isCXX11AttributeSpecifier()) {
4712 ParsedAttributesWithRange attrs(AttrFactory);
4713 ParseCXX11Attributes(attrs);
4714 DS.takeAttributesFrom(attrs);
4715 }
4716
4717 SourceLocation EndLoc;
4718
4719 while (1) {
4720 bool isInvalid = false;
4721 const char *PrevSpec = nullptr;
4722 unsigned DiagID = 0;
4723 SourceLocation Loc = Tok.getLocation();
4724
4725 switch (Tok.getKind()) {
4726 case tok::code_completion:
4727 Actions.CodeCompleteTypeQualifiers(DS);
4728 return cutOffParsing();
4729
4730 case tok::kw_const:
4731 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
4732 getLangOpts());
4733 break;
4734 case tok::kw_volatile:
4735 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4736 getLangOpts());
4737 break;
4738 case tok::kw_restrict:
4739 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4740 getLangOpts());
4741 break;
4742 case tok::kw__Atomic:
4743 if (!AtomicAllowed)
4744 goto DoneWithTypeQuals;
4745 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4746 getLangOpts());
4747 break;
4748
4749 // OpenCL qualifiers:
4750 case tok::kw___private:
4751 case tok::kw___global:
4752 case tok::kw___local:
4753 case tok::kw___constant:
4754 case tok::kw___generic:
4755 case tok::kw___read_only:
4756 case tok::kw___write_only:
4757 case tok::kw___read_write:
4758 ParseOpenCLQualifiers(DS.getAttributes());
4759 break;
4760
4761 case tok::kw___uptr:
4762 // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
4763 // with the MS modifier keyword.
4764 if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
4765 IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
4766 if (TryKeywordIdentFallback(false))
4767 continue;
4768 }
4769 case tok::kw___sptr:
4770 case tok::kw___w64:
4771 case tok::kw___ptr64:
4772 case tok::kw___ptr32:
4773 case tok::kw___cdecl:
4774 case tok::kw___stdcall:
4775 case tok::kw___fastcall:
4776 case tok::kw___thiscall:
4777 case tok::kw___vectorcall:
4778 case tok::kw___unaligned:
4779 if (AttrReqs & AR_DeclspecAttributesParsed) {
4780 ParseMicrosoftTypeAttributes(DS.getAttributes());
4781 continue;
4782 }
4783 goto DoneWithTypeQuals;
4784 case tok::kw___pascal:
4785 if (AttrReqs & AR_VendorAttributesParsed) {
4786 ParseBorlandTypeAttributes(DS.getAttributes());
4787 continue;
4788 }
4789 goto DoneWithTypeQuals;
4790
4791 // Nullability type specifiers.
4792 case tok::kw__Nonnull:
4793 case tok::kw__Nullable:
4794 case tok::kw__Null_unspecified:
4795 ParseNullabilityTypeSpecifiers(DS.getAttributes());
4796 continue;
4797
4798 // Objective-C 'kindof' types.
4799 case tok::kw___kindof:
4800 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
4801 nullptr, 0, AttributeList::AS_Keyword);
4802 (void)ConsumeToken();
4803 continue;
4804
4805 case tok::kw___attribute:
4806 if (AttrReqs & AR_GNUAttributesParsedAndRejected)
4807 // When GNU attributes are expressly forbidden, diagnose their usage.
4808 Diag(Tok, diag::err_attributes_not_allowed);
4809
4810 // Parse the attributes even if they are rejected to ensure that error
4811 // recovery is graceful.
4812 if (AttrReqs & AR_GNUAttributesParsed ||
4813 AttrReqs & AR_GNUAttributesParsedAndRejected) {
4814 ParseGNUAttributes(DS.getAttributes());
4815 continue; // do *not* consume the next token!
4816 }
4817 // otherwise, FALL THROUGH!
4818 default:
4819 DoneWithTypeQuals:
4820 // If this is not a type-qualifier token, we're done reading type
4821 // qualifiers. First verify that DeclSpec's are consistent.
4822 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
4823 if (EndLoc.isValid())
4824 DS.SetRangeEnd(EndLoc);
4825 return;
4826 }
4827
4828 // If the specifier combination wasn't legal, issue a diagnostic.
4829 if (isInvalid) {
4830 assert(PrevSpec && "Method did not return previous specifier!");
4831 Diag(Tok, DiagID) << PrevSpec;
4832 }
4833 EndLoc = ConsumeToken();
4834 }
4835 }
4836
4837 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
4838 ///
ParseDeclarator(Declarator & D)4839 void Parser::ParseDeclarator(Declarator &D) {
4840 /// This implements the 'declarator' production in the C grammar, then checks
4841 /// for well-formedness and issues diagnostics.
4842 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4843 }
4844
isPtrOperatorToken(tok::TokenKind Kind,const LangOptions & Lang,unsigned TheContext)4845 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
4846 unsigned TheContext) {
4847 if (Kind == tok::star || Kind == tok::caret)
4848 return true;
4849
4850 if (!Lang.CPlusPlus)
4851 return false;
4852
4853 if (Kind == tok::amp)
4854 return true;
4855
4856 // We parse rvalue refs in C++03, because otherwise the errors are scary.
4857 // But we must not parse them in conversion-type-ids and new-type-ids, since
4858 // those can be legitimately followed by a && operator.
4859 // (The same thing can in theory happen after a trailing-return-type, but
4860 // since those are a C++11 feature, there is no rejects-valid issue there.)
4861 if (Kind == tok::ampamp)
4862 return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
4863 TheContext != Declarator::CXXNewContext);
4864
4865 return false;
4866 }
4867
4868 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
4869 /// is parsed by the function passed to it. Pass null, and the direct-declarator
4870 /// isn't parsed at all, making this function effectively parse the C++
4871 /// ptr-operator production.
4872 ///
4873 /// If the grammar of this construct is extended, matching changes must also be
4874 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
4875 /// isConstructorDeclarator.
4876 ///
4877 /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
4878 /// [C] pointer[opt] direct-declarator
4879 /// [C++] direct-declarator
4880 /// [C++] ptr-operator declarator
4881 ///
4882 /// pointer: [C99 6.7.5]
4883 /// '*' type-qualifier-list[opt]
4884 /// '*' type-qualifier-list[opt] pointer
4885 ///
4886 /// ptr-operator:
4887 /// '*' cv-qualifier-seq[opt]
4888 /// '&'
4889 /// [C++0x] '&&'
4890 /// [GNU] '&' restrict[opt] attributes[opt]
4891 /// [GNU?] '&&' restrict[opt] attributes[opt]
4892 /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
ParseDeclaratorInternal(Declarator & D,DirectDeclParseFunction DirectDeclParser)4893 void Parser::ParseDeclaratorInternal(Declarator &D,
4894 DirectDeclParseFunction DirectDeclParser) {
4895 if (Diags.hasAllExtensionsSilenced())
4896 D.setExtension();
4897
4898 // C++ member pointers start with a '::' or a nested-name.
4899 // Member pointers get special handling, since there's no place for the
4900 // scope spec in the generic path below.
4901 if (getLangOpts().CPlusPlus &&
4902 (Tok.is(tok::coloncolon) ||
4903 (Tok.is(tok::identifier) &&
4904 (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
4905 Tok.is(tok::annot_cxxscope))) {
4906 bool EnteringContext = D.getContext() == Declarator::FileContext ||
4907 D.getContext() == Declarator::MemberContext;
4908 CXXScopeSpec SS;
4909 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
4910
4911 if (SS.isNotEmpty()) {
4912 if (Tok.isNot(tok::star)) {
4913 // The scope spec really belongs to the direct-declarator.
4914 if (D.mayHaveIdentifier())
4915 D.getCXXScopeSpec() = SS;
4916 else
4917 AnnotateScopeToken(SS, true);
4918
4919 if (DirectDeclParser)
4920 (this->*DirectDeclParser)(D);
4921 return;
4922 }
4923
4924 SourceLocation Loc = ConsumeToken();
4925 D.SetRangeEnd(Loc);
4926 DeclSpec DS(AttrFactory);
4927 ParseTypeQualifierListOpt(DS);
4928 D.ExtendWithDeclSpec(DS);
4929
4930 // Recurse to parse whatever is left.
4931 ParseDeclaratorInternal(D, DirectDeclParser);
4932
4933 // Sema will have to catch (syntactically invalid) pointers into global
4934 // scope. It has to catch pointers into namespace scope anyway.
4935 D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
4936 DS.getLocEnd()),
4937 DS.getAttributes(),
4938 /* Don't replace range end. */SourceLocation());
4939 return;
4940 }
4941 }
4942
4943 tok::TokenKind Kind = Tok.getKind();
4944 // Not a pointer, C++ reference, or block.
4945 if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
4946 if (DirectDeclParser)
4947 (this->*DirectDeclParser)(D);
4948 return;
4949 }
4950
4951 // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
4952 // '&&' -> rvalue reference
4953 SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
4954 D.SetRangeEnd(Loc);
4955
4956 if (Kind == tok::star || Kind == tok::caret) {
4957 // Is a pointer.
4958 DeclSpec DS(AttrFactory);
4959
4960 // GNU attributes are not allowed here in a new-type-id, but Declspec and
4961 // C++11 attributes are allowed.
4962 unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
4963 ((D.getContext() != Declarator::CXXNewContext)
4964 ? AR_GNUAttributesParsed
4965 : AR_GNUAttributesParsedAndRejected);
4966 ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
4967 D.ExtendWithDeclSpec(DS);
4968
4969 // Recursively parse the declarator.
4970 ParseDeclaratorInternal(D, DirectDeclParser);
4971 if (Kind == tok::star)
4972 // Remember that we parsed a pointer type, and remember the type-quals.
4973 D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
4974 DS.getConstSpecLoc(),
4975 DS.getVolatileSpecLoc(),
4976 DS.getRestrictSpecLoc(),
4977 DS.getAtomicSpecLoc()),
4978 DS.getAttributes(),
4979 SourceLocation());
4980 else
4981 // Remember that we parsed a Block type, and remember the type-quals.
4982 D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
4983 Loc),
4984 DS.getAttributes(),
4985 SourceLocation());
4986 } else {
4987 // Is a reference
4988 DeclSpec DS(AttrFactory);
4989
4990 // Complain about rvalue references in C++03, but then go on and build
4991 // the declarator.
4992 if (Kind == tok::ampamp)
4993 Diag(Loc, getLangOpts().CPlusPlus11 ?
4994 diag::warn_cxx98_compat_rvalue_reference :
4995 diag::ext_rvalue_reference);
4996
4997 // GNU-style and C++11 attributes are allowed here, as is restrict.
4998 ParseTypeQualifierListOpt(DS);
4999 D.ExtendWithDeclSpec(DS);
5000
5001 // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5002 // cv-qualifiers are introduced through the use of a typedef or of a
5003 // template type argument, in which case the cv-qualifiers are ignored.
5004 if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
5005 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5006 Diag(DS.getConstSpecLoc(),
5007 diag::err_invalid_reference_qualifier_application) << "const";
5008 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5009 Diag(DS.getVolatileSpecLoc(),
5010 diag::err_invalid_reference_qualifier_application) << "volatile";
5011 // 'restrict' is permitted as an extension.
5012 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5013 Diag(DS.getAtomicSpecLoc(),
5014 diag::err_invalid_reference_qualifier_application) << "_Atomic";
5015 }
5016
5017 // Recursively parse the declarator.
5018 ParseDeclaratorInternal(D, DirectDeclParser);
5019
5020 if (D.getNumTypeObjects() > 0) {
5021 // C++ [dcl.ref]p4: There shall be no references to references.
5022 DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5023 if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5024 if (const IdentifierInfo *II = D.getIdentifier())
5025 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5026 << II;
5027 else
5028 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5029 << "type name";
5030
5031 // Once we've complained about the reference-to-reference, we
5032 // can go ahead and build the (technically ill-formed)
5033 // declarator: reference collapsing will take care of it.
5034 }
5035 }
5036
5037 // Remember that we parsed a reference type.
5038 D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
5039 Kind == tok::amp),
5040 DS.getAttributes(),
5041 SourceLocation());
5042 }
5043 }
5044
5045 // When correcting from misplaced brackets before the identifier, the location
5046 // is saved inside the declarator so that other diagnostic messages can use
5047 // them. This extracts and returns that location, or returns the provided
5048 // location if a stored location does not exist.
getMissingDeclaratorIdLoc(Declarator & D,SourceLocation Loc)5049 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
5050 SourceLocation Loc) {
5051 if (D.getName().StartLocation.isInvalid() &&
5052 D.getName().EndLocation.isValid())
5053 return D.getName().EndLocation;
5054
5055 return Loc;
5056 }
5057
5058 /// ParseDirectDeclarator
5059 /// direct-declarator: [C99 6.7.5]
5060 /// [C99] identifier
5061 /// '(' declarator ')'
5062 /// [GNU] '(' attributes declarator ')'
5063 /// [C90] direct-declarator '[' constant-expression[opt] ']'
5064 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5065 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5066 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5067 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
5068 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5069 /// attribute-specifier-seq[opt]
5070 /// direct-declarator '(' parameter-type-list ')'
5071 /// direct-declarator '(' identifier-list[opt] ')'
5072 /// [GNU] direct-declarator '(' parameter-forward-declarations
5073 /// parameter-type-list[opt] ')'
5074 /// [C++] direct-declarator '(' parameter-declaration-clause ')'
5075 /// cv-qualifier-seq[opt] exception-specification[opt]
5076 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5077 /// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5078 /// ref-qualifier[opt] exception-specification[opt]
5079 /// [C++] declarator-id
5080 /// [C++11] declarator-id attribute-specifier-seq[opt]
5081 ///
5082 /// declarator-id: [C++ 8]
5083 /// '...'[opt] id-expression
5084 /// '::'[opt] nested-name-specifier[opt] type-name
5085 ///
5086 /// id-expression: [C++ 5.1]
5087 /// unqualified-id
5088 /// qualified-id
5089 ///
5090 /// unqualified-id: [C++ 5.1]
5091 /// identifier
5092 /// operator-function-id
5093 /// conversion-function-id
5094 /// '~' class-name
5095 /// template-id
5096 ///
5097 /// Note, any additional constructs added here may need corresponding changes
5098 /// in isConstructorDeclarator.
ParseDirectDeclarator(Declarator & D)5099 void Parser::ParseDirectDeclarator(Declarator &D) {
5100 DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5101
5102 if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5103 // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5104 // this context it is a bitfield. Also in range-based for statement colon
5105 // may delimit for-range-declaration.
5106 ColonProtectionRAIIObject X(*this,
5107 D.getContext() == Declarator::MemberContext ||
5108 (D.getContext() == Declarator::ForContext &&
5109 getLangOpts().CPlusPlus11));
5110
5111 // ParseDeclaratorInternal might already have parsed the scope.
5112 if (D.getCXXScopeSpec().isEmpty()) {
5113 bool EnteringContext = D.getContext() == Declarator::FileContext ||
5114 D.getContext() == Declarator::MemberContext;
5115 ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
5116 EnteringContext);
5117 }
5118
5119 if (D.getCXXScopeSpec().isValid()) {
5120 if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5121 D.getCXXScopeSpec()))
5122 // Change the declaration context for name lookup, until this function
5123 // is exited (and the declarator has been parsed).
5124 DeclScopeObj.EnterDeclaratorScope();
5125 }
5126
5127 // C++0x [dcl.fct]p14:
5128 // There is a syntactic ambiguity when an ellipsis occurs at the end of a
5129 // parameter-declaration-clause without a preceding comma. In this case,
5130 // the ellipsis is parsed as part of the abstract-declarator if the type
5131 // of the parameter either names a template parameter pack that has not
5132 // been expanded or contains auto; otherwise, it is parsed as part of the
5133 // parameter-declaration-clause.
5134 if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5135 !((D.getContext() == Declarator::PrototypeContext ||
5136 D.getContext() == Declarator::LambdaExprParameterContext ||
5137 D.getContext() == Declarator::BlockLiteralContext) &&
5138 NextToken().is(tok::r_paren) &&
5139 !D.hasGroupingParens() &&
5140 !Actions.containsUnexpandedParameterPacks(D) &&
5141 D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5142 SourceLocation EllipsisLoc = ConsumeToken();
5143 if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5144 // The ellipsis was put in the wrong place. Recover, and explain to
5145 // the user what they should have done.
5146 ParseDeclarator(D);
5147 if (EllipsisLoc.isValid())
5148 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5149 return;
5150 } else
5151 D.setEllipsisLoc(EllipsisLoc);
5152
5153 // The ellipsis can't be followed by a parenthesized declarator. We
5154 // check for that in ParseParenDeclarator, after we have disambiguated
5155 // the l_paren token.
5156 }
5157
5158 if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5159 tok::tilde)) {
5160 // We found something that indicates the start of an unqualified-id.
5161 // Parse that unqualified-id.
5162 bool AllowConstructorName;
5163 if (D.getDeclSpec().hasTypeSpecifier())
5164 AllowConstructorName = false;
5165 else if (D.getCXXScopeSpec().isSet())
5166 AllowConstructorName =
5167 (D.getContext() == Declarator::FileContext ||
5168 D.getContext() == Declarator::MemberContext);
5169 else
5170 AllowConstructorName = (D.getContext() == Declarator::MemberContext);
5171
5172 SourceLocation TemplateKWLoc;
5173 bool HadScope = D.getCXXScopeSpec().isValid();
5174 if (ParseUnqualifiedId(D.getCXXScopeSpec(),
5175 /*EnteringContext=*/true,
5176 /*AllowDestructorName=*/true,
5177 AllowConstructorName,
5178 ParsedType(),
5179 TemplateKWLoc,
5180 D.getName()) ||
5181 // Once we're past the identifier, if the scope was bad, mark the
5182 // whole declarator bad.
5183 D.getCXXScopeSpec().isInvalid()) {
5184 D.SetIdentifier(nullptr, Tok.getLocation());
5185 D.setInvalidType(true);
5186 } else {
5187 // ParseUnqualifiedId might have parsed a scope specifier during error
5188 // recovery. If it did so, enter that scope.
5189 if (!HadScope && D.getCXXScopeSpec().isValid() &&
5190 Actions.ShouldEnterDeclaratorScope(getCurScope(),
5191 D.getCXXScopeSpec()))
5192 DeclScopeObj.EnterDeclaratorScope();
5193
5194 // Parsed the unqualified-id; update range information and move along.
5195 if (D.getSourceRange().getBegin().isInvalid())
5196 D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5197 D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5198 }
5199 goto PastIdentifier;
5200 }
5201
5202 if (D.getCXXScopeSpec().isNotEmpty()) {
5203 // We have a scope specifier but no following unqualified-id.
5204 Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5205 diag::err_expected_unqualified_id)
5206 << /*C++*/1;
5207 D.SetIdentifier(nullptr, Tok.getLocation());
5208 goto PastIdentifier;
5209 }
5210 } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5211 assert(!getLangOpts().CPlusPlus &&
5212 "There's a C++-specific check for tok::identifier above");
5213 assert(Tok.getIdentifierInfo() && "Not an identifier?");
5214 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5215 D.SetRangeEnd(Tok.getLocation());
5216 ConsumeToken();
5217 goto PastIdentifier;
5218 } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
5219 // A virt-specifier isn't treated as an identifier if it appears after a
5220 // trailing-return-type.
5221 if (D.getContext() != Declarator::TrailingReturnContext ||
5222 !isCXX11VirtSpecifier(Tok)) {
5223 Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5224 << FixItHint::CreateRemoval(Tok.getLocation());
5225 D.SetIdentifier(nullptr, Tok.getLocation());
5226 ConsumeToken();
5227 goto PastIdentifier;
5228 }
5229 }
5230
5231 if (Tok.is(tok::l_paren)) {
5232 // direct-declarator: '(' declarator ')'
5233 // direct-declarator: '(' attributes declarator ')'
5234 // Example: 'char (*X)' or 'int (*XX)(void)'
5235 ParseParenDeclarator(D);
5236
5237 // If the declarator was parenthesized, we entered the declarator
5238 // scope when parsing the parenthesized declarator, then exited
5239 // the scope already. Re-enter the scope, if we need to.
5240 if (D.getCXXScopeSpec().isSet()) {
5241 // If there was an error parsing parenthesized declarator, declarator
5242 // scope may have been entered before. Don't do it again.
5243 if (!D.isInvalidType() &&
5244 Actions.ShouldEnterDeclaratorScope(getCurScope(),
5245 D.getCXXScopeSpec()))
5246 // Change the declaration context for name lookup, until this function
5247 // is exited (and the declarator has been parsed).
5248 DeclScopeObj.EnterDeclaratorScope();
5249 }
5250 } else if (D.mayOmitIdentifier()) {
5251 // This could be something simple like "int" (in which case the declarator
5252 // portion is empty), if an abstract-declarator is allowed.
5253 D.SetIdentifier(nullptr, Tok.getLocation());
5254
5255 // The grammar for abstract-pack-declarator does not allow grouping parens.
5256 // FIXME: Revisit this once core issue 1488 is resolved.
5257 if (D.hasEllipsis() && D.hasGroupingParens())
5258 Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5259 diag::ext_abstract_pack_declarator_parens);
5260 } else {
5261 if (Tok.getKind() == tok::annot_pragma_parser_crash)
5262 LLVM_BUILTIN_TRAP;
5263 if (Tok.is(tok::l_square))
5264 return ParseMisplacedBracketDeclarator(D);
5265 if (D.getContext() == Declarator::MemberContext) {
5266 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5267 diag::err_expected_member_name_or_semi)
5268 << (D.getDeclSpec().isEmpty() ? SourceRange()
5269 : D.getDeclSpec().getSourceRange());
5270 } else if (getLangOpts().CPlusPlus) {
5271 if (Tok.isOneOf(tok::period, tok::arrow))
5272 Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5273 else {
5274 SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5275 if (Tok.isAtStartOfLine() && Loc.isValid())
5276 Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5277 << getLangOpts().CPlusPlus;
5278 else
5279 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5280 diag::err_expected_unqualified_id)
5281 << getLangOpts().CPlusPlus;
5282 }
5283 } else {
5284 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5285 diag::err_expected_either)
5286 << tok::identifier << tok::l_paren;
5287 }
5288 D.SetIdentifier(nullptr, Tok.getLocation());
5289 D.setInvalidType(true);
5290 }
5291
5292 PastIdentifier:
5293 assert(D.isPastIdentifier() &&
5294 "Haven't past the location of the identifier yet?");
5295
5296 // Don't parse attributes unless we have parsed an unparenthesized name.
5297 if (D.hasName() && !D.getNumTypeObjects())
5298 MaybeParseCXX11Attributes(D);
5299
5300 while (1) {
5301 if (Tok.is(tok::l_paren)) {
5302 // Enter function-declaration scope, limiting any declarators to the
5303 // function prototype scope, including parameter declarators.
5304 ParseScope PrototypeScope(this,
5305 Scope::FunctionPrototypeScope|Scope::DeclScope|
5306 (D.isFunctionDeclaratorAFunctionDeclaration()
5307 ? Scope::FunctionDeclarationScope : 0));
5308
5309 // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5310 // In such a case, check if we actually have a function declarator; if it
5311 // is not, the declarator has been fully parsed.
5312 bool IsAmbiguous = false;
5313 if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
5314 // The name of the declarator, if any, is tentatively declared within
5315 // a possible direct initializer.
5316 TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5317 bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5318 TentativelyDeclaredIdentifiers.pop_back();
5319 if (!IsFunctionDecl)
5320 break;
5321 }
5322 ParsedAttributes attrs(AttrFactory);
5323 BalancedDelimiterTracker T(*this, tok::l_paren);
5324 T.consumeOpen();
5325 ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5326 PrototypeScope.Exit();
5327 } else if (Tok.is(tok::l_square)) {
5328 ParseBracketDeclarator(D);
5329 } else {
5330 break;
5331 }
5332 }
5333 }
5334
5335 /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
5336 /// only called before the identifier, so these are most likely just grouping
5337 /// parens for precedence. If we find that these are actually function
5338 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5339 ///
5340 /// direct-declarator:
5341 /// '(' declarator ')'
5342 /// [GNU] '(' attributes declarator ')'
5343 /// direct-declarator '(' parameter-type-list ')'
5344 /// direct-declarator '(' identifier-list[opt] ')'
5345 /// [GNU] direct-declarator '(' parameter-forward-declarations
5346 /// parameter-type-list[opt] ')'
5347 ///
ParseParenDeclarator(Declarator & D)5348 void Parser::ParseParenDeclarator(Declarator &D) {
5349 BalancedDelimiterTracker T(*this, tok::l_paren);
5350 T.consumeOpen();
5351
5352 assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5353
5354 // Eat any attributes before we look at whether this is a grouping or function
5355 // declarator paren. If this is a grouping paren, the attribute applies to
5356 // the type being built up, for example:
5357 // int (__attribute__(()) *x)(long y)
5358 // If this ends up not being a grouping paren, the attribute applies to the
5359 // first argument, for example:
5360 // int (__attribute__(()) int x)
5361 // In either case, we need to eat any attributes to be able to determine what
5362 // sort of paren this is.
5363 //
5364 ParsedAttributes attrs(AttrFactory);
5365 bool RequiresArg = false;
5366 if (Tok.is(tok::kw___attribute)) {
5367 ParseGNUAttributes(attrs);
5368
5369 // We require that the argument list (if this is a non-grouping paren) be
5370 // present even if the attribute list was empty.
5371 RequiresArg = true;
5372 }
5373
5374 // Eat any Microsoft extensions.
5375 ParseMicrosoftTypeAttributes(attrs);
5376
5377 // Eat any Borland extensions.
5378 if (Tok.is(tok::kw___pascal))
5379 ParseBorlandTypeAttributes(attrs);
5380
5381 // If we haven't past the identifier yet (or where the identifier would be
5382 // stored, if this is an abstract declarator), then this is probably just
5383 // grouping parens. However, if this could be an abstract-declarator, then
5384 // this could also be the start of function arguments (consider 'void()').
5385 bool isGrouping;
5386
5387 if (!D.mayOmitIdentifier()) {
5388 // If this can't be an abstract-declarator, this *must* be a grouping
5389 // paren, because we haven't seen the identifier yet.
5390 isGrouping = true;
5391 } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
5392 (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
5393 NextToken().is(tok::r_paren)) || // C++ int(...)
5394 isDeclarationSpecifier() || // 'int(int)' is a function.
5395 isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
5396 // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
5397 // considered to be a type, not a K&R identifier-list.
5398 isGrouping = false;
5399 } else {
5400 // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
5401 isGrouping = true;
5402 }
5403
5404 // If this is a grouping paren, handle:
5405 // direct-declarator: '(' declarator ')'
5406 // direct-declarator: '(' attributes declarator ')'
5407 if (isGrouping) {
5408 SourceLocation EllipsisLoc = D.getEllipsisLoc();
5409 D.setEllipsisLoc(SourceLocation());
5410
5411 bool hadGroupingParens = D.hasGroupingParens();
5412 D.setGroupingParens(true);
5413 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5414 // Match the ')'.
5415 T.consumeClose();
5416 D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
5417 T.getCloseLocation()),
5418 attrs, T.getCloseLocation());
5419
5420 D.setGroupingParens(hadGroupingParens);
5421
5422 // An ellipsis cannot be placed outside parentheses.
5423 if (EllipsisLoc.isValid())
5424 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5425
5426 return;
5427 }
5428
5429 // Okay, if this wasn't a grouping paren, it must be the start of a function
5430 // argument list. Recognize that this declarator will never have an
5431 // identifier (and remember where it would have been), then call into
5432 // ParseFunctionDeclarator to handle of argument list.
5433 D.SetIdentifier(nullptr, Tok.getLocation());
5434
5435 // Enter function-declaration scope, limiting any declarators to the
5436 // function prototype scope, including parameter declarators.
5437 ParseScope PrototypeScope(this,
5438 Scope::FunctionPrototypeScope | Scope::DeclScope |
5439 (D.isFunctionDeclaratorAFunctionDeclaration()
5440 ? Scope::FunctionDeclarationScope : 0));
5441 ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
5442 PrototypeScope.Exit();
5443 }
5444
5445 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
5446 /// declarator D up to a paren, which indicates that we are parsing function
5447 /// arguments.
5448 ///
5449 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
5450 /// immediately after the open paren - they should be considered to be the
5451 /// first argument of a parameter.
5452 ///
5453 /// If RequiresArg is true, then the first argument of the function is required
5454 /// to be present and required to not be an identifier list.
5455 ///
5456 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
5457 /// (C++11) ref-qualifier[opt], exception-specification[opt],
5458 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
5459 ///
5460 /// [C++11] exception-specification:
5461 /// dynamic-exception-specification
5462 /// noexcept-specification
5463 ///
ParseFunctionDeclarator(Declarator & D,ParsedAttributes & FirstArgAttrs,BalancedDelimiterTracker & Tracker,bool IsAmbiguous,bool RequiresArg)5464 void Parser::ParseFunctionDeclarator(Declarator &D,
5465 ParsedAttributes &FirstArgAttrs,
5466 BalancedDelimiterTracker &Tracker,
5467 bool IsAmbiguous,
5468 bool RequiresArg) {
5469 assert(getCurScope()->isFunctionPrototypeScope() &&
5470 "Should call from a Function scope");
5471 // lparen is already consumed!
5472 assert(D.isPastIdentifier() && "Should not call before identifier!");
5473
5474 // This should be true when the function has typed arguments.
5475 // Otherwise, it is treated as a K&R-style function.
5476 bool HasProto = false;
5477 // Build up an array of information about the parsed arguments.
5478 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
5479 // Remember where we see an ellipsis, if any.
5480 SourceLocation EllipsisLoc;
5481
5482 DeclSpec DS(AttrFactory);
5483 bool RefQualifierIsLValueRef = true;
5484 SourceLocation RefQualifierLoc;
5485 SourceLocation ConstQualifierLoc;
5486 SourceLocation VolatileQualifierLoc;
5487 SourceLocation RestrictQualifierLoc;
5488 ExceptionSpecificationType ESpecType = EST_None;
5489 SourceRange ESpecRange;
5490 SmallVector<ParsedType, 2> DynamicExceptions;
5491 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5492 ExprResult NoexceptExpr;
5493 CachedTokens *ExceptionSpecTokens = nullptr;
5494 ParsedAttributes FnAttrs(AttrFactory);
5495 TypeResult TrailingReturnType;
5496
5497 /* LocalEndLoc is the end location for the local FunctionTypeLoc.
5498 EndLoc is the end location for the function declarator.
5499 They differ for trailing return types. */
5500 SourceLocation StartLoc, LocalEndLoc, EndLoc;
5501 SourceLocation LParenLoc, RParenLoc;
5502 LParenLoc = Tracker.getOpenLocation();
5503 StartLoc = LParenLoc;
5504
5505 if (isFunctionDeclaratorIdentifierList()) {
5506 if (RequiresArg)
5507 Diag(Tok, diag::err_argument_required_after_attribute);
5508
5509 ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
5510
5511 Tracker.consumeClose();
5512 RParenLoc = Tracker.getCloseLocation();
5513 LocalEndLoc = RParenLoc;
5514 EndLoc = RParenLoc;
5515 } else {
5516 if (Tok.isNot(tok::r_paren))
5517 ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
5518 EllipsisLoc);
5519 else if (RequiresArg)
5520 Diag(Tok, diag::err_argument_required_after_attribute);
5521
5522 HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
5523
5524 // If we have the closing ')', eat it.
5525 Tracker.consumeClose();
5526 RParenLoc = Tracker.getCloseLocation();
5527 LocalEndLoc = RParenLoc;
5528 EndLoc = RParenLoc;
5529
5530 if (getLangOpts().CPlusPlus) {
5531 // FIXME: Accept these components in any order, and produce fixits to
5532 // correct the order if the user gets it wrong. Ideally we should deal
5533 // with the pure-specifier in the same way.
5534
5535 // Parse cv-qualifier-seq[opt].
5536 ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
5537 /*AtomicAllowed*/ false);
5538 if (!DS.getSourceRange().getEnd().isInvalid()) {
5539 EndLoc = DS.getSourceRange().getEnd();
5540 ConstQualifierLoc = DS.getConstSpecLoc();
5541 VolatileQualifierLoc = DS.getVolatileSpecLoc();
5542 RestrictQualifierLoc = DS.getRestrictSpecLoc();
5543 }
5544
5545 // Parse ref-qualifier[opt].
5546 if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
5547 EndLoc = RefQualifierLoc;
5548
5549 // C++11 [expr.prim.general]p3:
5550 // If a declaration declares a member function or member function
5551 // template of a class X, the expression this is a prvalue of type
5552 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5553 // and the end of the function-definition, member-declarator, or
5554 // declarator.
5555 // FIXME: currently, "static" case isn't handled correctly.
5556 bool IsCXX11MemberFunction =
5557 getLangOpts().CPlusPlus11 &&
5558 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5559 (D.getContext() == Declarator::MemberContext
5560 ? !D.getDeclSpec().isFriendSpecified()
5561 : D.getContext() == Declarator::FileContext &&
5562 D.getCXXScopeSpec().isValid() &&
5563 Actions.CurContext->isRecord());
5564 Sema::CXXThisScopeRAII ThisScope(Actions,
5565 dyn_cast<CXXRecordDecl>(Actions.CurContext),
5566 DS.getTypeQualifiers() |
5567 (D.getDeclSpec().isConstexprSpecified() &&
5568 !getLangOpts().CPlusPlus14
5569 ? Qualifiers::Const : 0),
5570 IsCXX11MemberFunction);
5571
5572 // Parse exception-specification[opt].
5573 bool Delayed = D.isFirstDeclarationOfMember() &&
5574 D.isFunctionDeclaratorAFunctionDeclaration();
5575 if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
5576 GetLookAheadToken(0).is(tok::kw_noexcept) &&
5577 GetLookAheadToken(1).is(tok::l_paren) &&
5578 GetLookAheadToken(2).is(tok::kw_noexcept) &&
5579 GetLookAheadToken(3).is(tok::l_paren) &&
5580 GetLookAheadToken(4).is(tok::identifier) &&
5581 GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
5582 // HACK: We've got an exception-specification
5583 // noexcept(noexcept(swap(...)))
5584 // or
5585 // noexcept(noexcept(swap(...)) && noexcept(swap(...)))
5586 // on a 'swap' member function. This is a libstdc++ bug; the lookup
5587 // for 'swap' will only find the function we're currently declaring,
5588 // whereas it expects to find a non-member swap through ADL. Turn off
5589 // delayed parsing to give it a chance to find what it expects.
5590 Delayed = false;
5591 }
5592 ESpecType = tryParseExceptionSpecification(Delayed,
5593 ESpecRange,
5594 DynamicExceptions,
5595 DynamicExceptionRanges,
5596 NoexceptExpr,
5597 ExceptionSpecTokens);
5598 if (ESpecType != EST_None)
5599 EndLoc = ESpecRange.getEnd();
5600
5601 // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
5602 // after the exception-specification.
5603 MaybeParseCXX11Attributes(FnAttrs);
5604
5605 // Parse trailing-return-type[opt].
5606 LocalEndLoc = EndLoc;
5607 if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
5608 Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
5609 if (D.getDeclSpec().getTypeSpecType() == TST_auto)
5610 StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5611 LocalEndLoc = Tok.getLocation();
5612 SourceRange Range;
5613 TrailingReturnType = ParseTrailingReturnType(Range);
5614 EndLoc = Range.getEnd();
5615 }
5616 }
5617 }
5618
5619 // Remember that we parsed a function type, and remember the attributes.
5620 D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
5621 IsAmbiguous,
5622 LParenLoc,
5623 ParamInfo.data(), ParamInfo.size(),
5624 EllipsisLoc, RParenLoc,
5625 DS.getTypeQualifiers(),
5626 RefQualifierIsLValueRef,
5627 RefQualifierLoc, ConstQualifierLoc,
5628 VolatileQualifierLoc,
5629 RestrictQualifierLoc,
5630 /*MutableLoc=*/SourceLocation(),
5631 ESpecType, ESpecRange,
5632 DynamicExceptions.data(),
5633 DynamicExceptionRanges.data(),
5634 DynamicExceptions.size(),
5635 NoexceptExpr.isUsable() ?
5636 NoexceptExpr.get() : nullptr,
5637 ExceptionSpecTokens,
5638 StartLoc, LocalEndLoc, D,
5639 TrailingReturnType),
5640 FnAttrs, EndLoc);
5641 }
5642
5643 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
5644 /// true if a ref-qualifier is found.
ParseRefQualifier(bool & RefQualifierIsLValueRef,SourceLocation & RefQualifierLoc)5645 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
5646 SourceLocation &RefQualifierLoc) {
5647 if (Tok.isOneOf(tok::amp, tok::ampamp)) {
5648 Diag(Tok, getLangOpts().CPlusPlus11 ?
5649 diag::warn_cxx98_compat_ref_qualifier :
5650 diag::ext_ref_qualifier);
5651
5652 RefQualifierIsLValueRef = Tok.is(tok::amp);
5653 RefQualifierLoc = ConsumeToken();
5654 return true;
5655 }
5656 return false;
5657 }
5658
5659 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
5660 /// identifier list form for a K&R-style function: void foo(a,b,c)
5661 ///
5662 /// Note that identifier-lists are only allowed for normal declarators, not for
5663 /// abstract-declarators.
isFunctionDeclaratorIdentifierList()5664 bool Parser::isFunctionDeclaratorIdentifierList() {
5665 return !getLangOpts().CPlusPlus
5666 && Tok.is(tok::identifier)
5667 && !TryAltiVecVectorToken()
5668 // K&R identifier lists can't have typedefs as identifiers, per C99
5669 // 6.7.5.3p11.
5670 && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
5671 // Identifier lists follow a really simple grammar: the identifiers can
5672 // be followed *only* by a ", identifier" or ")". However, K&R
5673 // identifier lists are really rare in the brave new modern world, and
5674 // it is very common for someone to typo a type in a non-K&R style
5675 // list. If we are presented with something like: "void foo(intptr x,
5676 // float y)", we don't want to start parsing the function declarator as
5677 // though it is a K&R style declarator just because intptr is an
5678 // invalid type.
5679 //
5680 // To handle this, we check to see if the token after the first
5681 // identifier is a "," or ")". Only then do we parse it as an
5682 // identifier list.
5683 && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
5684 }
5685
5686 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
5687 /// we found a K&R-style identifier list instead of a typed parameter list.
5688 ///
5689 /// After returning, ParamInfo will hold the parsed parameters.
5690 ///
5691 /// identifier-list: [C99 6.7.5]
5692 /// identifier
5693 /// identifier-list ',' identifier
5694 ///
ParseFunctionDeclaratorIdentifierList(Declarator & D,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo)5695 void Parser::ParseFunctionDeclaratorIdentifierList(
5696 Declarator &D,
5697 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
5698 // If there was no identifier specified for the declarator, either we are in
5699 // an abstract-declarator, or we are in a parameter declarator which was found
5700 // to be abstract. In abstract-declarators, identifier lists are not valid:
5701 // diagnose this.
5702 if (!D.getIdentifier())
5703 Diag(Tok, diag::ext_ident_list_in_param);
5704
5705 // Maintain an efficient lookup of params we have seen so far.
5706 llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
5707
5708 do {
5709 // If this isn't an identifier, report the error and skip until ')'.
5710 if (Tok.isNot(tok::identifier)) {
5711 Diag(Tok, diag::err_expected) << tok::identifier;
5712 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
5713 // Forget we parsed anything.
5714 ParamInfo.clear();
5715 return;
5716 }
5717
5718 IdentifierInfo *ParmII = Tok.getIdentifierInfo();
5719
5720 // Reject 'typedef int y; int test(x, y)', but continue parsing.
5721 if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
5722 Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
5723
5724 // Verify that the argument identifier has not already been mentioned.
5725 if (!ParamsSoFar.insert(ParmII).second) {
5726 Diag(Tok, diag::err_param_redefinition) << ParmII;
5727 } else {
5728 // Remember this identifier in ParamInfo.
5729 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5730 Tok.getLocation(),
5731 nullptr));
5732 }
5733
5734 // Eat the identifier.
5735 ConsumeToken();
5736 // The list continues if we see a comma.
5737 } while (TryConsumeToken(tok::comma));
5738 }
5739
5740 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
5741 /// after the opening parenthesis. This function will not parse a K&R-style
5742 /// identifier list.
5743 ///
5744 /// D is the declarator being parsed. If FirstArgAttrs is non-null, then the
5745 /// caller parsed those arguments immediately after the open paren - they should
5746 /// be considered to be part of the first parameter.
5747 ///
5748 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
5749 /// be the location of the ellipsis, if any was parsed.
5750 ///
5751 /// parameter-type-list: [C99 6.7.5]
5752 /// parameter-list
5753 /// parameter-list ',' '...'
5754 /// [C++] parameter-list '...'
5755 ///
5756 /// parameter-list: [C99 6.7.5]
5757 /// parameter-declaration
5758 /// parameter-list ',' parameter-declaration
5759 ///
5760 /// parameter-declaration: [C99 6.7.5]
5761 /// declaration-specifiers declarator
5762 /// [C++] declaration-specifiers declarator '=' assignment-expression
5763 /// [C++11] initializer-clause
5764 /// [GNU] declaration-specifiers declarator attributes
5765 /// declaration-specifiers abstract-declarator[opt]
5766 /// [C++] declaration-specifiers abstract-declarator[opt]
5767 /// '=' assignment-expression
5768 /// [GNU] declaration-specifiers abstract-declarator[opt] attributes
5769 /// [C++11] attribute-specifier-seq parameter-declaration
5770 ///
ParseParameterDeclarationClause(Declarator & D,ParsedAttributes & FirstArgAttrs,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo,SourceLocation & EllipsisLoc)5771 void Parser::ParseParameterDeclarationClause(
5772 Declarator &D,
5773 ParsedAttributes &FirstArgAttrs,
5774 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
5775 SourceLocation &EllipsisLoc) {
5776 do {
5777 // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
5778 // before deciding this was a parameter-declaration-clause.
5779 if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
5780 break;
5781
5782 // Parse the declaration-specifiers.
5783 // Just use the ParsingDeclaration "scope" of the declarator.
5784 DeclSpec DS(AttrFactory);
5785
5786 // Parse any C++11 attributes.
5787 MaybeParseCXX11Attributes(DS.getAttributes());
5788
5789 // Skip any Microsoft attributes before a param.
5790 MaybeParseMicrosoftAttributes(DS.getAttributes());
5791
5792 SourceLocation DSStart = Tok.getLocation();
5793
5794 // If the caller parsed attributes for the first argument, add them now.
5795 // Take them so that we only apply the attributes to the first parameter.
5796 // FIXME: If we can leave the attributes in the token stream somehow, we can
5797 // get rid of a parameter (FirstArgAttrs) and this statement. It might be
5798 // too much hassle.
5799 DS.takeAttributesFrom(FirstArgAttrs);
5800
5801 ParseDeclarationSpecifiers(DS);
5802
5803
5804 // Parse the declarator. This is "PrototypeContext" or
5805 // "LambdaExprParameterContext", because we must accept either
5806 // 'declarator' or 'abstract-declarator' here.
5807 Declarator ParmDeclarator(DS,
5808 D.getContext() == Declarator::LambdaExprContext ?
5809 Declarator::LambdaExprParameterContext :
5810 Declarator::PrototypeContext);
5811 ParseDeclarator(ParmDeclarator);
5812
5813 // Parse GNU attributes, if present.
5814 MaybeParseGNUAttributes(ParmDeclarator);
5815
5816 // Remember this parsed parameter in ParamInfo.
5817 IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
5818
5819 // DefArgToks is used when the parsing of default arguments needs
5820 // to be delayed.
5821 CachedTokens *DefArgToks = nullptr;
5822
5823 // If no parameter was specified, verify that *something* was specified,
5824 // otherwise we have a missing type and identifier.
5825 if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
5826 ParmDeclarator.getNumTypeObjects() == 0) {
5827 // Completely missing, emit error.
5828 Diag(DSStart, diag::err_missing_param);
5829 } else {
5830 // Otherwise, we have something. Add it and let semantic analysis try
5831 // to grok it and add the result to the ParamInfo we are building.
5832
5833 // Last chance to recover from a misplaced ellipsis in an attempted
5834 // parameter pack declaration.
5835 if (Tok.is(tok::ellipsis) &&
5836 (NextToken().isNot(tok::r_paren) ||
5837 (!ParmDeclarator.getEllipsisLoc().isValid() &&
5838 !Actions.isUnexpandedParameterPackPermitted())) &&
5839 Actions.containsUnexpandedParameterPacks(ParmDeclarator))
5840 DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
5841
5842 // Inform the actions module about the parameter declarator, so it gets
5843 // added to the current scope.
5844 Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
5845 // Parse the default argument, if any. We parse the default
5846 // arguments in all dialects; the semantic analysis in
5847 // ActOnParamDefaultArgument will reject the default argument in
5848 // C.
5849 if (Tok.is(tok::equal)) {
5850 SourceLocation EqualLoc = Tok.getLocation();
5851
5852 // Parse the default argument
5853 if (D.getContext() == Declarator::MemberContext) {
5854 // If we're inside a class definition, cache the tokens
5855 // corresponding to the default argument. We'll actually parse
5856 // them when we see the end of the class definition.
5857 // FIXME: Can we use a smart pointer for Toks?
5858 DefArgToks = new CachedTokens;
5859
5860 SourceLocation ArgStartLoc = NextToken().getLocation();
5861 if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
5862 delete DefArgToks;
5863 DefArgToks = nullptr;
5864 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5865 } else {
5866 Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
5867 ArgStartLoc);
5868 }
5869 } else {
5870 // Consume the '='.
5871 ConsumeToken();
5872
5873 // The argument isn't actually potentially evaluated unless it is
5874 // used.
5875 EnterExpressionEvaluationContext Eval(Actions,
5876 Sema::PotentiallyEvaluatedIfUsed,
5877 Param);
5878
5879 ExprResult DefArgResult;
5880 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
5881 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
5882 DefArgResult = ParseBraceInitializer();
5883 } else
5884 DefArgResult = ParseAssignmentExpression();
5885 DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
5886 if (DefArgResult.isInvalid()) {
5887 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5888 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
5889 } else {
5890 // Inform the actions module about the default argument
5891 Actions.ActOnParamDefaultArgument(Param, EqualLoc,
5892 DefArgResult.get());
5893 }
5894 }
5895 }
5896
5897 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5898 ParmDeclarator.getIdentifierLoc(),
5899 Param, DefArgToks));
5900 }
5901
5902 if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
5903 if (!getLangOpts().CPlusPlus) {
5904 // We have ellipsis without a preceding ',', which is ill-formed
5905 // in C. Complain and provide the fix.
5906 Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
5907 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5908 } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
5909 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
5910 // It looks like this was supposed to be a parameter pack. Warn and
5911 // point out where the ellipsis should have gone.
5912 SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
5913 Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
5914 << ParmEllipsis.isValid() << ParmEllipsis;
5915 if (ParmEllipsis.isValid()) {
5916 Diag(ParmEllipsis,
5917 diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
5918 } else {
5919 Diag(ParmDeclarator.getIdentifierLoc(),
5920 diag::note_misplaced_ellipsis_vararg_add_ellipsis)
5921 << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
5922 "...")
5923 << !ParmDeclarator.hasName();
5924 }
5925 Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
5926 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5927 }
5928
5929 // We can't have any more parameters after an ellipsis.
5930 break;
5931 }
5932
5933 // If the next token is a comma, consume it and keep reading arguments.
5934 } while (TryConsumeToken(tok::comma));
5935 }
5936
5937 /// [C90] direct-declarator '[' constant-expression[opt] ']'
5938 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5939 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5940 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5941 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
5942 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5943 /// attribute-specifier-seq[opt]
ParseBracketDeclarator(Declarator & D)5944 void Parser::ParseBracketDeclarator(Declarator &D) {
5945 if (CheckProhibitedCXX11Attribute())
5946 return;
5947
5948 BalancedDelimiterTracker T(*this, tok::l_square);
5949 T.consumeOpen();
5950
5951 // C array syntax has many features, but by-far the most common is [] and [4].
5952 // This code does a fast path to handle some of the most obvious cases.
5953 if (Tok.getKind() == tok::r_square) {
5954 T.consumeClose();
5955 ParsedAttributes attrs(AttrFactory);
5956 MaybeParseCXX11Attributes(attrs);
5957
5958 // Remember that we parsed the empty array type.
5959 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
5960 T.getOpenLocation(),
5961 T.getCloseLocation()),
5962 attrs, T.getCloseLocation());
5963 return;
5964 } else if (Tok.getKind() == tok::numeric_constant &&
5965 GetLookAheadToken(1).is(tok::r_square)) {
5966 // [4] is very common. Parse the numeric constant expression.
5967 ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
5968 ConsumeToken();
5969
5970 T.consumeClose();
5971 ParsedAttributes attrs(AttrFactory);
5972 MaybeParseCXX11Attributes(attrs);
5973
5974 // Remember that we parsed a array type, and remember its features.
5975 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
5976 ExprRes.get(),
5977 T.getOpenLocation(),
5978 T.getCloseLocation()),
5979 attrs, T.getCloseLocation());
5980 return;
5981 }
5982
5983 // If valid, this location is the position where we read the 'static' keyword.
5984 SourceLocation StaticLoc;
5985 TryConsumeToken(tok::kw_static, StaticLoc);
5986
5987 // If there is a type-qualifier-list, read it now.
5988 // Type qualifiers in an array subscript are a C99 feature.
5989 DeclSpec DS(AttrFactory);
5990 ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
5991
5992 // If we haven't already read 'static', check to see if there is one after the
5993 // type-qualifier-list.
5994 if (!StaticLoc.isValid())
5995 TryConsumeToken(tok::kw_static, StaticLoc);
5996
5997 // Handle "direct-declarator [ type-qual-list[opt] * ]".
5998 bool isStar = false;
5999 ExprResult NumElements;
6000
6001 // Handle the case where we have '[*]' as the array size. However, a leading
6002 // star could be the start of an expression, for example 'X[*p + 4]'. Verify
6003 // the token after the star is a ']'. Since stars in arrays are
6004 // infrequent, use of lookahead is not costly here.
6005 if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
6006 ConsumeToken(); // Eat the '*'.
6007
6008 if (StaticLoc.isValid()) {
6009 Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
6010 StaticLoc = SourceLocation(); // Drop the static.
6011 }
6012 isStar = true;
6013 } else if (Tok.isNot(tok::r_square)) {
6014 // Note, in C89, this production uses the constant-expr production instead
6015 // of assignment-expr. The only difference is that assignment-expr allows
6016 // things like '=' and '*='. Sema rejects these in C89 mode because they
6017 // are not i-c-e's, so we don't need to distinguish between the two here.
6018
6019 // Parse the constant-expression or assignment-expression now (depending
6020 // on dialect).
6021 if (getLangOpts().CPlusPlus) {
6022 NumElements = ParseConstantExpression();
6023 } else {
6024 EnterExpressionEvaluationContext Unevaluated(Actions,
6025 Sema::ConstantEvaluated);
6026 NumElements =
6027 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
6028 }
6029 } else {
6030 if (StaticLoc.isValid()) {
6031 Diag(StaticLoc, diag::err_unspecified_size_with_static);
6032 StaticLoc = SourceLocation(); // Drop the static.
6033 }
6034 }
6035
6036 // If there was an error parsing the assignment-expression, recover.
6037 if (NumElements.isInvalid()) {
6038 D.setInvalidType(true);
6039 // If the expression was invalid, skip it.
6040 SkipUntil(tok::r_square, StopAtSemi);
6041 return;
6042 }
6043
6044 T.consumeClose();
6045
6046 ParsedAttributes attrs(AttrFactory);
6047 MaybeParseCXX11Attributes(attrs);
6048
6049 // Remember that we parsed a array type, and remember its features.
6050 D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
6051 StaticLoc.isValid(), isStar,
6052 NumElements.get(),
6053 T.getOpenLocation(),
6054 T.getCloseLocation()),
6055 attrs, T.getCloseLocation());
6056 }
6057
6058 /// Diagnose brackets before an identifier.
ParseMisplacedBracketDeclarator(Declarator & D)6059 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
6060 assert(Tok.is(tok::l_square) && "Missing opening bracket");
6061 assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
6062
6063 SourceLocation StartBracketLoc = Tok.getLocation();
6064 Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
6065
6066 while (Tok.is(tok::l_square)) {
6067 ParseBracketDeclarator(TempDeclarator);
6068 }
6069
6070 // Stuff the location of the start of the brackets into the Declarator.
6071 // The diagnostics from ParseDirectDeclarator will make more sense if
6072 // they use this location instead.
6073 if (Tok.is(tok::semi))
6074 D.getName().EndLocation = StartBracketLoc;
6075
6076 SourceLocation SuggestParenLoc = Tok.getLocation();
6077
6078 // Now that the brackets are removed, try parsing the declarator again.
6079 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6080
6081 // Something went wrong parsing the brackets, in which case,
6082 // ParseBracketDeclarator has emitted an error, and we don't need to emit
6083 // one here.
6084 if (TempDeclarator.getNumTypeObjects() == 0)
6085 return;
6086
6087 // Determine if parens will need to be suggested in the diagnostic.
6088 bool NeedParens = false;
6089 if (D.getNumTypeObjects() != 0) {
6090 switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
6091 case DeclaratorChunk::Pointer:
6092 case DeclaratorChunk::Reference:
6093 case DeclaratorChunk::BlockPointer:
6094 case DeclaratorChunk::MemberPointer:
6095 NeedParens = true;
6096 break;
6097 case DeclaratorChunk::Array:
6098 case DeclaratorChunk::Function:
6099 case DeclaratorChunk::Paren:
6100 break;
6101 }
6102 }
6103
6104 if (NeedParens) {
6105 // Create a DeclaratorChunk for the inserted parens.
6106 ParsedAttributes attrs(AttrFactory);
6107 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
6108 D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
6109 SourceLocation());
6110 }
6111
6112 // Adding back the bracket info to the end of the Declarator.
6113 for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
6114 const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
6115 ParsedAttributes attrs(AttrFactory);
6116 attrs.set(Chunk.Common.AttrList);
6117 D.AddTypeInfo(Chunk, attrs, SourceLocation());
6118 }
6119
6120 // The missing identifier would have been diagnosed in ParseDirectDeclarator.
6121 // If parentheses are required, always suggest them.
6122 if (!D.getIdentifier() && !NeedParens)
6123 return;
6124
6125 SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
6126
6127 // Generate the move bracket error message.
6128 SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
6129 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
6130
6131 if (NeedParens) {
6132 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6133 << getLangOpts().CPlusPlus
6134 << FixItHint::CreateInsertion(SuggestParenLoc, "(")
6135 << FixItHint::CreateInsertion(EndLoc, ")")
6136 << FixItHint::CreateInsertionFromRange(
6137 EndLoc, CharSourceRange(BracketRange, true))
6138 << FixItHint::CreateRemoval(BracketRange);
6139 } else {
6140 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6141 << getLangOpts().CPlusPlus
6142 << FixItHint::CreateInsertionFromRange(
6143 EndLoc, CharSourceRange(BracketRange, true))
6144 << FixItHint::CreateRemoval(BracketRange);
6145 }
6146 }
6147
6148 /// [GNU] typeof-specifier:
6149 /// typeof ( expressions )
6150 /// typeof ( type-name )
6151 /// [GNU/C++] typeof unary-expression
6152 ///
ParseTypeofSpecifier(DeclSpec & DS)6153 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
6154 assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
6155 Token OpTok = Tok;
6156 SourceLocation StartLoc = ConsumeToken();
6157
6158 const bool hasParens = Tok.is(tok::l_paren);
6159
6160 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
6161 Sema::ReuseLambdaContextDecl);
6162
6163 bool isCastExpr;
6164 ParsedType CastTy;
6165 SourceRange CastRange;
6166 ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
6167 ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
6168 if (hasParens)
6169 DS.setTypeofParensRange(CastRange);
6170
6171 if (CastRange.getEnd().isInvalid())
6172 // FIXME: Not accurate, the range gets one token more than it should.
6173 DS.SetRangeEnd(Tok.getLocation());
6174 else
6175 DS.SetRangeEnd(CastRange.getEnd());
6176
6177 if (isCastExpr) {
6178 if (!CastTy) {
6179 DS.SetTypeSpecError();
6180 return;
6181 }
6182
6183 const char *PrevSpec = nullptr;
6184 unsigned DiagID;
6185 // Check for duplicate type specifiers (e.g. "int typeof(int)").
6186 if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
6187 DiagID, CastTy,
6188 Actions.getASTContext().getPrintingPolicy()))
6189 Diag(StartLoc, DiagID) << PrevSpec;
6190 return;
6191 }
6192
6193 // If we get here, the operand to the typeof was an expresion.
6194 if (Operand.isInvalid()) {
6195 DS.SetTypeSpecError();
6196 return;
6197 }
6198
6199 // We might need to transform the operand if it is potentially evaluated.
6200 Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
6201 if (Operand.isInvalid()) {
6202 DS.SetTypeSpecError();
6203 return;
6204 }
6205
6206 const char *PrevSpec = nullptr;
6207 unsigned DiagID;
6208 // Check for duplicate type specifiers (e.g. "int typeof(int)").
6209 if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
6210 DiagID, Operand.get(),
6211 Actions.getASTContext().getPrintingPolicy()))
6212 Diag(StartLoc, DiagID) << PrevSpec;
6213 }
6214
6215 /// [C11] atomic-specifier:
6216 /// _Atomic ( type-name )
6217 ///
ParseAtomicSpecifier(DeclSpec & DS)6218 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
6219 assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
6220 "Not an atomic specifier");
6221
6222 SourceLocation StartLoc = ConsumeToken();
6223 BalancedDelimiterTracker T(*this, tok::l_paren);
6224 if (T.consumeOpen())
6225 return;
6226
6227 TypeResult Result = ParseTypeName();
6228 if (Result.isInvalid()) {
6229 SkipUntil(tok::r_paren, StopAtSemi);
6230 return;
6231 }
6232
6233 // Match the ')'
6234 T.consumeClose();
6235
6236 if (T.getCloseLocation().isInvalid())
6237 return;
6238
6239 DS.setTypeofParensRange(T.getRange());
6240 DS.SetRangeEnd(T.getCloseLocation());
6241
6242 const char *PrevSpec = nullptr;
6243 unsigned DiagID;
6244 if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
6245 DiagID, Result.get(),
6246 Actions.getASTContext().getPrintingPolicy()))
6247 Diag(StartLoc, DiagID) << PrevSpec;
6248 }
6249
6250 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
6251 /// from TryAltiVecVectorToken.
TryAltiVecVectorTokenOutOfLine()6252 bool Parser::TryAltiVecVectorTokenOutOfLine() {
6253 Token Next = NextToken();
6254 switch (Next.getKind()) {
6255 default: return false;
6256 case tok::kw_short:
6257 case tok::kw_long:
6258 case tok::kw_signed:
6259 case tok::kw_unsigned:
6260 case tok::kw_void:
6261 case tok::kw_char:
6262 case tok::kw_int:
6263 case tok::kw_float:
6264 case tok::kw_double:
6265 case tok::kw_bool:
6266 case tok::kw___bool:
6267 case tok::kw___pixel:
6268 Tok.setKind(tok::kw___vector);
6269 return true;
6270 case tok::identifier:
6271 if (Next.getIdentifierInfo() == Ident_pixel) {
6272 Tok.setKind(tok::kw___vector);
6273 return true;
6274 }
6275 if (Next.getIdentifierInfo() == Ident_bool) {
6276 Tok.setKind(tok::kw___vector);
6277 return true;
6278 }
6279 return false;
6280 }
6281 }
6282
TryAltiVecTokenOutOfLine(DeclSpec & DS,SourceLocation Loc,const char * & PrevSpec,unsigned & DiagID,bool & isInvalid)6283 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
6284 const char *&PrevSpec, unsigned &DiagID,
6285 bool &isInvalid) {
6286 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
6287 if (Tok.getIdentifierInfo() == Ident_vector) {
6288 Token Next = NextToken();
6289 switch (Next.getKind()) {
6290 case tok::kw_short:
6291 case tok::kw_long:
6292 case tok::kw_signed:
6293 case tok::kw_unsigned:
6294 case tok::kw_void:
6295 case tok::kw_char:
6296 case tok::kw_int:
6297 case tok::kw_float:
6298 case tok::kw_double:
6299 case tok::kw_bool:
6300 case tok::kw___bool:
6301 case tok::kw___pixel:
6302 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
6303 return true;
6304 case tok::identifier:
6305 if (Next.getIdentifierInfo() == Ident_pixel) {
6306 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6307 return true;
6308 }
6309 if (Next.getIdentifierInfo() == Ident_bool) {
6310 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6311 return true;
6312 }
6313 break;
6314 default:
6315 break;
6316 }
6317 } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
6318 DS.isTypeAltiVecVector()) {
6319 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
6320 return true;
6321 } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
6322 DS.isTypeAltiVecVector()) {
6323 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
6324 return true;
6325 }
6326 return false;
6327 }
6328