• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/arm64/lithium-codegen-arm64.h"
6 
7 #include "src/arm64/frames-arm64.h"
8 #include "src/base/bits.h"
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h"
12 #include "src/crankshaft/hydrogen-osr.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 
16 namespace v8 {
17 namespace internal {
18 
19 
20 class SafepointGenerator final : public CallWrapper {
21  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)22   SafepointGenerator(LCodeGen* codegen,
23                      LPointerMap* pointers,
24                      Safepoint::DeoptMode mode)
25       : codegen_(codegen),
26         pointers_(pointers),
27         deopt_mode_(mode) { }
~SafepointGenerator()28   virtual ~SafepointGenerator() { }
29 
BeforeCall(int call_size) const30   virtual void BeforeCall(int call_size) const { }
31 
AfterCall() const32   virtual void AfterCall() const {
33     codegen_->RecordSafepoint(pointers_, deopt_mode_);
34   }
35 
36  private:
37   LCodeGen* codegen_;
38   LPointerMap* pointers_;
39   Safepoint::DeoptMode deopt_mode_;
40 };
41 
42 
43 #define __ masm()->
44 
45 // Emit code to branch if the given condition holds.
46 // The code generated here doesn't modify the flags and they must have
47 // been set by some prior instructions.
48 //
49 // The EmitInverted function simply inverts the condition.
50 class BranchOnCondition : public BranchGenerator {
51  public:
BranchOnCondition(LCodeGen * codegen,Condition cond)52   BranchOnCondition(LCodeGen* codegen, Condition cond)
53     : BranchGenerator(codegen),
54       cond_(cond) { }
55 
Emit(Label * label) const56   virtual void Emit(Label* label) const {
57     __ B(cond_, label);
58   }
59 
EmitInverted(Label * label) const60   virtual void EmitInverted(Label* label) const {
61     if (cond_ != al) {
62       __ B(NegateCondition(cond_), label);
63     }
64   }
65 
66  private:
67   Condition cond_;
68 };
69 
70 
71 // Emit code to compare lhs and rhs and branch if the condition holds.
72 // This uses MacroAssembler's CompareAndBranch function so it will handle
73 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
74 //
75 // EmitInverted still compares the two operands but inverts the condition.
76 class CompareAndBranch : public BranchGenerator {
77  public:
CompareAndBranch(LCodeGen * codegen,Condition cond,const Register & lhs,const Operand & rhs)78   CompareAndBranch(LCodeGen* codegen,
79                    Condition cond,
80                    const Register& lhs,
81                    const Operand& rhs)
82     : BranchGenerator(codegen),
83       cond_(cond),
84       lhs_(lhs),
85       rhs_(rhs) { }
86 
Emit(Label * label) const87   virtual void Emit(Label* label) const {
88     __ CompareAndBranch(lhs_, rhs_, cond_, label);
89   }
90 
EmitInverted(Label * label) const91   virtual void EmitInverted(Label* label) const {
92     __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
93   }
94 
95  private:
96   Condition cond_;
97   const Register& lhs_;
98   const Operand& rhs_;
99 };
100 
101 
102 // Test the input with the given mask and branch if the condition holds.
103 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
104 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
105 // conversion to Tbz/Tbnz when possible.
106 class TestAndBranch : public BranchGenerator {
107  public:
TestAndBranch(LCodeGen * codegen,Condition cond,const Register & value,uint64_t mask)108   TestAndBranch(LCodeGen* codegen,
109                 Condition cond,
110                 const Register& value,
111                 uint64_t mask)
112     : BranchGenerator(codegen),
113       cond_(cond),
114       value_(value),
115       mask_(mask) { }
116 
Emit(Label * label) const117   virtual void Emit(Label* label) const {
118     switch (cond_) {
119       case eq:
120         __ TestAndBranchIfAllClear(value_, mask_, label);
121         break;
122       case ne:
123         __ TestAndBranchIfAnySet(value_, mask_, label);
124         break;
125       default:
126         __ Tst(value_, mask_);
127         __ B(cond_, label);
128     }
129   }
130 
EmitInverted(Label * label) const131   virtual void EmitInverted(Label* label) const {
132     // The inverse of "all clear" is "any set" and vice versa.
133     switch (cond_) {
134       case eq:
135         __ TestAndBranchIfAnySet(value_, mask_, label);
136         break;
137       case ne:
138         __ TestAndBranchIfAllClear(value_, mask_, label);
139         break;
140       default:
141         __ Tst(value_, mask_);
142         __ B(NegateCondition(cond_), label);
143     }
144   }
145 
146  private:
147   Condition cond_;
148   const Register& value_;
149   uint64_t mask_;
150 };
151 
152 
153 // Test the input and branch if it is non-zero and not a NaN.
154 class BranchIfNonZeroNumber : public BranchGenerator {
155  public:
BranchIfNonZeroNumber(LCodeGen * codegen,const FPRegister & value,const FPRegister & scratch)156   BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
157                         const FPRegister& scratch)
158     : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
159 
Emit(Label * label) const160   virtual void Emit(Label* label) const {
161     __ Fabs(scratch_, value_);
162     // Compare with 0.0. Because scratch_ is positive, the result can be one of
163     // nZCv (equal), nzCv (greater) or nzCV (unordered).
164     __ Fcmp(scratch_, 0.0);
165     __ B(gt, label);
166   }
167 
EmitInverted(Label * label) const168   virtual void EmitInverted(Label* label) const {
169     __ Fabs(scratch_, value_);
170     __ Fcmp(scratch_, 0.0);
171     __ B(le, label);
172   }
173 
174  private:
175   const FPRegister& value_;
176   const FPRegister& scratch_;
177 };
178 
179 
180 // Test the input and branch if it is a heap number.
181 class BranchIfHeapNumber : public BranchGenerator {
182  public:
BranchIfHeapNumber(LCodeGen * codegen,const Register & value)183   BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
184       : BranchGenerator(codegen), value_(value) { }
185 
Emit(Label * label) const186   virtual void Emit(Label* label) const {
187     __ JumpIfHeapNumber(value_, label);
188   }
189 
EmitInverted(Label * label) const190   virtual void EmitInverted(Label* label) const {
191     __ JumpIfNotHeapNumber(value_, label);
192   }
193 
194  private:
195   const Register& value_;
196 };
197 
198 
199 // Test the input and branch if it is the specified root value.
200 class BranchIfRoot : public BranchGenerator {
201  public:
BranchIfRoot(LCodeGen * codegen,const Register & value,Heap::RootListIndex index)202   BranchIfRoot(LCodeGen* codegen, const Register& value,
203                Heap::RootListIndex index)
204       : BranchGenerator(codegen), value_(value), index_(index) { }
205 
Emit(Label * label) const206   virtual void Emit(Label* label) const {
207     __ JumpIfRoot(value_, index_, label);
208   }
209 
EmitInverted(Label * label) const210   virtual void EmitInverted(Label* label) const {
211     __ JumpIfNotRoot(value_, index_, label);
212   }
213 
214  private:
215   const Register& value_;
216   const Heap::RootListIndex index_;
217 };
218 
219 
WriteTranslation(LEnvironment * environment,Translation * translation)220 void LCodeGen::WriteTranslation(LEnvironment* environment,
221                                 Translation* translation) {
222   if (environment == NULL) return;
223 
224   // The translation includes one command per value in the environment.
225   int translation_size = environment->translation_size();
226 
227   WriteTranslation(environment->outer(), translation);
228   WriteTranslationFrame(environment, translation);
229 
230   int object_index = 0;
231   int dematerialized_index = 0;
232   for (int i = 0; i < translation_size; ++i) {
233     LOperand* value = environment->values()->at(i);
234     AddToTranslation(
235         environment, translation, value, environment->HasTaggedValueAt(i),
236         environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
237   }
238 }
239 
240 
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)241 void LCodeGen::AddToTranslation(LEnvironment* environment,
242                                 Translation* translation,
243                                 LOperand* op,
244                                 bool is_tagged,
245                                 bool is_uint32,
246                                 int* object_index_pointer,
247                                 int* dematerialized_index_pointer) {
248   if (op == LEnvironment::materialization_marker()) {
249     int object_index = (*object_index_pointer)++;
250     if (environment->ObjectIsDuplicateAt(object_index)) {
251       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
252       translation->DuplicateObject(dupe_of);
253       return;
254     }
255     int object_length = environment->ObjectLengthAt(object_index);
256     if (environment->ObjectIsArgumentsAt(object_index)) {
257       translation->BeginArgumentsObject(object_length);
258     } else {
259       translation->BeginCapturedObject(object_length);
260     }
261     int dematerialized_index = *dematerialized_index_pointer;
262     int env_offset = environment->translation_size() + dematerialized_index;
263     *dematerialized_index_pointer += object_length;
264     for (int i = 0; i < object_length; ++i) {
265       LOperand* value = environment->values()->at(env_offset + i);
266       AddToTranslation(environment,
267                        translation,
268                        value,
269                        environment->HasTaggedValueAt(env_offset + i),
270                        environment->HasUint32ValueAt(env_offset + i),
271                        object_index_pointer,
272                        dematerialized_index_pointer);
273     }
274     return;
275   }
276 
277   if (op->IsStackSlot()) {
278     int index = op->index();
279     if (is_tagged) {
280       translation->StoreStackSlot(index);
281     } else if (is_uint32) {
282       translation->StoreUint32StackSlot(index);
283     } else {
284       translation->StoreInt32StackSlot(index);
285     }
286   } else if (op->IsDoubleStackSlot()) {
287     int index = op->index();
288     translation->StoreDoubleStackSlot(index);
289   } else if (op->IsRegister()) {
290     Register reg = ToRegister(op);
291     if (is_tagged) {
292       translation->StoreRegister(reg);
293     } else if (is_uint32) {
294       translation->StoreUint32Register(reg);
295     } else {
296       translation->StoreInt32Register(reg);
297     }
298   } else if (op->IsDoubleRegister()) {
299     DoubleRegister reg = ToDoubleRegister(op);
300     translation->StoreDoubleRegister(reg);
301   } else if (op->IsConstantOperand()) {
302     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
303     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
304     translation->StoreLiteral(src_index);
305   } else {
306     UNREACHABLE();
307   }
308 }
309 
310 
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)311 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
312                                                     Safepoint::DeoptMode mode) {
313   environment->set_has_been_used();
314   if (!environment->HasBeenRegistered()) {
315     int frame_count = 0;
316     int jsframe_count = 0;
317     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
318       ++frame_count;
319       if (e->frame_type() == JS_FUNCTION) {
320         ++jsframe_count;
321       }
322     }
323     Translation translation(&translations_, frame_count, jsframe_count, zone());
324     WriteTranslation(environment, &translation);
325     int deoptimization_index = deoptimizations_.length();
326     int pc_offset = masm()->pc_offset();
327     environment->Register(deoptimization_index,
328                           translation.index(),
329                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
330     deoptimizations_.Add(environment, zone());
331   }
332 }
333 
334 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)335 void LCodeGen::CallCode(Handle<Code> code,
336                         RelocInfo::Mode mode,
337                         LInstruction* instr) {
338   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
339 }
340 
341 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)342 void LCodeGen::CallCodeGeneric(Handle<Code> code,
343                                RelocInfo::Mode mode,
344                                LInstruction* instr,
345                                SafepointMode safepoint_mode) {
346   DCHECK(instr != NULL);
347 
348   Assembler::BlockPoolsScope scope(masm_);
349   __ Call(code, mode);
350   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
351 
352   if ((code->kind() == Code::BINARY_OP_IC) ||
353       (code->kind() == Code::COMPARE_IC)) {
354     // Signal that we don't inline smi code before these stubs in the
355     // optimizing code generator.
356     InlineSmiCheckInfo::EmitNotInlined(masm());
357   }
358 }
359 
360 
DoCallNewArray(LCallNewArray * instr)361 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
362   DCHECK(instr->IsMarkedAsCall());
363   DCHECK(ToRegister(instr->context()).is(cp));
364   DCHECK(ToRegister(instr->constructor()).is(x1));
365 
366   __ Mov(x0, Operand(instr->arity()));
367   __ Mov(x2, instr->hydrogen()->site());
368 
369   ElementsKind kind = instr->hydrogen()->elements_kind();
370   AllocationSiteOverrideMode override_mode =
371       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
372           ? DISABLE_ALLOCATION_SITES
373           : DONT_OVERRIDE;
374 
375   if (instr->arity() == 0) {
376     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
377     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
378   } else if (instr->arity() == 1) {
379     Label done;
380     if (IsFastPackedElementsKind(kind)) {
381       Label packed_case;
382 
383       // We might need to create a holey array; look at the first argument.
384       __ Peek(x10, 0);
385       __ Cbz(x10, &packed_case);
386 
387       ElementsKind holey_kind = GetHoleyElementsKind(kind);
388       ArraySingleArgumentConstructorStub stub(isolate(),
389                                               holey_kind,
390                                               override_mode);
391       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
392       __ B(&done);
393       __ Bind(&packed_case);
394     }
395 
396     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
397     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
398     __ Bind(&done);
399   } else {
400     ArrayNArgumentsConstructorStub stub(isolate());
401     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
402   }
403   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
404 
405   DCHECK(ToRegister(instr->result()).is(x0));
406 }
407 
408 
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)409 void LCodeGen::CallRuntime(const Runtime::Function* function,
410                            int num_arguments,
411                            LInstruction* instr,
412                            SaveFPRegsMode save_doubles) {
413   DCHECK(instr != NULL);
414 
415   __ CallRuntime(function, num_arguments, save_doubles);
416 
417   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
418 }
419 
420 
LoadContextFromDeferred(LOperand * context)421 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
422   if (context->IsRegister()) {
423     __ Mov(cp, ToRegister(context));
424   } else if (context->IsStackSlot()) {
425     __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
426   } else if (context->IsConstantOperand()) {
427     HConstant* constant =
428         chunk_->LookupConstant(LConstantOperand::cast(context));
429     __ LoadHeapObject(cp,
430                       Handle<HeapObject>::cast(constant->handle(isolate())));
431   } else {
432     UNREACHABLE();
433   }
434 }
435 
436 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)437 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
438                                        int argc,
439                                        LInstruction* instr,
440                                        LOperand* context) {
441   LoadContextFromDeferred(context);
442   __ CallRuntimeSaveDoubles(id);
443   RecordSafepointWithRegisters(
444       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
445 }
446 
447 
RecordAndWritePosition(int position)448 void LCodeGen::RecordAndWritePosition(int position) {
449   if (position == RelocInfo::kNoPosition) return;
450   masm()->positions_recorder()->RecordPosition(position);
451 }
452 
453 
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)454 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
455                                             SafepointMode safepoint_mode) {
456   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
457     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
458   } else {
459     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
460     RecordSafepointWithRegisters(
461         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
462   }
463 }
464 
465 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)466 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
467                                Safepoint::Kind kind,
468                                int arguments,
469                                Safepoint::DeoptMode deopt_mode) {
470   DCHECK(expected_safepoint_kind_ == kind);
471 
472   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
473   Safepoint safepoint = safepoints_.DefineSafepoint(
474       masm(), kind, arguments, deopt_mode);
475 
476   for (int i = 0; i < operands->length(); i++) {
477     LOperand* pointer = operands->at(i);
478     if (pointer->IsStackSlot()) {
479       safepoint.DefinePointerSlot(pointer->index(), zone());
480     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
481       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
482     }
483   }
484 }
485 
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)486 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
487                                Safepoint::DeoptMode deopt_mode) {
488   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
489 }
490 
491 
RecordSafepoint(Safepoint::DeoptMode deopt_mode)492 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
493   LPointerMap empty_pointers(zone());
494   RecordSafepoint(&empty_pointers, deopt_mode);
495 }
496 
497 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)498 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
499                                             int arguments,
500                                             Safepoint::DeoptMode deopt_mode) {
501   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
502 }
503 
504 
GenerateCode()505 bool LCodeGen::GenerateCode() {
506   LPhase phase("Z_Code generation", chunk());
507   DCHECK(is_unused());
508   status_ = GENERATING;
509 
510   // Open a frame scope to indicate that there is a frame on the stack.  The
511   // NONE indicates that the scope shouldn't actually generate code to set up
512   // the frame (that is done in GeneratePrologue).
513   FrameScope frame_scope(masm_, StackFrame::NONE);
514 
515   return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
516          GenerateJumpTable() && GenerateSafepointTable();
517 }
518 
519 
SaveCallerDoubles()520 void LCodeGen::SaveCallerDoubles() {
521   DCHECK(info()->saves_caller_doubles());
522   DCHECK(NeedsEagerFrame());
523   Comment(";;; Save clobbered callee double registers");
524   BitVector* doubles = chunk()->allocated_double_registers();
525   BitVector::Iterator iterator(doubles);
526   int count = 0;
527   while (!iterator.Done()) {
528     // TODO(all): Is this supposed to save just the callee-saved doubles? It
529     // looks like it's saving all of them.
530     FPRegister value = FPRegister::from_code(iterator.Current());
531     __ Poke(value, count * kDoubleSize);
532     iterator.Advance();
533     count++;
534   }
535 }
536 
537 
RestoreCallerDoubles()538 void LCodeGen::RestoreCallerDoubles() {
539   DCHECK(info()->saves_caller_doubles());
540   DCHECK(NeedsEagerFrame());
541   Comment(";;; Restore clobbered callee double registers");
542   BitVector* doubles = chunk()->allocated_double_registers();
543   BitVector::Iterator iterator(doubles);
544   int count = 0;
545   while (!iterator.Done()) {
546     // TODO(all): Is this supposed to restore just the callee-saved doubles? It
547     // looks like it's restoring all of them.
548     FPRegister value = FPRegister::from_code(iterator.Current());
549     __ Peek(value, count * kDoubleSize);
550     iterator.Advance();
551     count++;
552   }
553 }
554 
555 
GeneratePrologue()556 bool LCodeGen::GeneratePrologue() {
557   DCHECK(is_generating());
558 
559   if (info()->IsOptimizing()) {
560     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
561   }
562 
563   DCHECK(__ StackPointer().Is(jssp));
564   info()->set_prologue_offset(masm_->pc_offset());
565   if (NeedsEagerFrame()) {
566     if (info()->IsStub()) {
567       __ StubPrologue(
568           StackFrame::STUB,
569           GetStackSlotCount() + TypedFrameConstants::kFixedSlotCount);
570     } else {
571       __ Prologue(info()->GeneratePreagedPrologue());
572       // Reserve space for the stack slots needed by the code.
573       int slots = GetStackSlotCount();
574       if (slots > 0) {
575         __ Claim(slots, kPointerSize);
576       }
577     }
578     frame_is_built_ = true;
579   }
580 
581   if (info()->saves_caller_doubles()) {
582     SaveCallerDoubles();
583   }
584   return !is_aborted();
585 }
586 
587 
DoPrologue(LPrologue * instr)588 void LCodeGen::DoPrologue(LPrologue* instr) {
589   Comment(";;; Prologue begin");
590 
591   // Allocate a local context if needed.
592   if (info()->scope()->num_heap_slots() > 0) {
593     Comment(";;; Allocate local context");
594     bool need_write_barrier = true;
595     // Argument to NewContext is the function, which is in x1.
596     int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
597     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
598     if (info()->scope()->is_script_scope()) {
599       __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate())));
600       __ Push(x1, x10);
601       __ CallRuntime(Runtime::kNewScriptContext);
602       deopt_mode = Safepoint::kLazyDeopt;
603     } else if (slots <= FastNewContextStub::kMaximumSlots) {
604       FastNewContextStub stub(isolate(), slots);
605       __ CallStub(&stub);
606       // Result of FastNewContextStub is always in new space.
607       need_write_barrier = false;
608     } else {
609       __ Push(x1);
610       __ CallRuntime(Runtime::kNewFunctionContext);
611     }
612     RecordSafepoint(deopt_mode);
613     // Context is returned in x0. It replaces the context passed to us. It's
614     // saved in the stack and kept live in cp.
615     __ Mov(cp, x0);
616     __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
617     // Copy any necessary parameters into the context.
618     int num_parameters = scope()->num_parameters();
619     int first_parameter = scope()->has_this_declaration() ? -1 : 0;
620     for (int i = first_parameter; i < num_parameters; i++) {
621       Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
622       if (var->IsContextSlot()) {
623         Register value = x0;
624         Register scratch = x3;
625 
626         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
627             (num_parameters - 1 - i) * kPointerSize;
628         // Load parameter from stack.
629         __ Ldr(value, MemOperand(fp, parameter_offset));
630         // Store it in the context.
631         MemOperand target = ContextMemOperand(cp, var->index());
632         __ Str(value, target);
633         // Update the write barrier. This clobbers value and scratch.
634         if (need_write_barrier) {
635           __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()),
636                                     value, scratch, GetLinkRegisterState(),
637                                     kSaveFPRegs);
638         } else if (FLAG_debug_code) {
639           Label done;
640           __ JumpIfInNewSpace(cp, &done);
641           __ Abort(kExpectedNewSpaceObject);
642           __ bind(&done);
643         }
644       }
645     }
646     Comment(";;; End allocate local context");
647   }
648 
649   Comment(";;; Prologue end");
650 }
651 
652 
GenerateOsrPrologue()653 void LCodeGen::GenerateOsrPrologue() {
654   // Generate the OSR entry prologue at the first unknown OSR value, or if there
655   // are none, at the OSR entrypoint instruction.
656   if (osr_pc_offset_ >= 0) return;
657 
658   osr_pc_offset_ = masm()->pc_offset();
659 
660   // Adjust the frame size, subsuming the unoptimized frame into the
661   // optimized frame.
662   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
663   DCHECK(slots >= 0);
664   __ Claim(slots);
665 }
666 
667 
GenerateBodyInstructionPre(LInstruction * instr)668 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
669   if (instr->IsCall()) {
670     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
671   }
672   if (!instr->IsLazyBailout() && !instr->IsGap()) {
673     safepoints_.BumpLastLazySafepointIndex();
674   }
675 }
676 
677 
GenerateDeferredCode()678 bool LCodeGen::GenerateDeferredCode() {
679   DCHECK(is_generating());
680   if (deferred_.length() > 0) {
681     for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
682       LDeferredCode* code = deferred_[i];
683 
684       HValue* value =
685           instructions_->at(code->instruction_index())->hydrogen_value();
686       RecordAndWritePosition(
687           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
688 
689       Comment(";;; <@%d,#%d> "
690               "-------------------- Deferred %s --------------------",
691               code->instruction_index(),
692               code->instr()->hydrogen_value()->id(),
693               code->instr()->Mnemonic());
694 
695       __ Bind(code->entry());
696 
697       if (NeedsDeferredFrame()) {
698         Comment(";;; Build frame");
699         DCHECK(!frame_is_built_);
700         DCHECK(info()->IsStub());
701         frame_is_built_ = true;
702         __ Push(lr, fp);
703         __ Mov(fp, Smi::FromInt(StackFrame::STUB));
704         __ Push(fp);
705         __ Add(fp, __ StackPointer(),
706                TypedFrameConstants::kFixedFrameSizeFromFp);
707         Comment(";;; Deferred code");
708       }
709 
710       code->Generate();
711 
712       if (NeedsDeferredFrame()) {
713         Comment(";;; Destroy frame");
714         DCHECK(frame_is_built_);
715         __ Pop(xzr, fp, lr);
716         frame_is_built_ = false;
717       }
718 
719       __ B(code->exit());
720     }
721   }
722 
723   // Force constant pool emission at the end of the deferred code to make
724   // sure that no constant pools are emitted after deferred code because
725   // deferred code generation is the last step which generates code. The two
726   // following steps will only output data used by crakshaft.
727   masm()->CheckConstPool(true, false);
728 
729   return !is_aborted();
730 }
731 
732 
GenerateJumpTable()733 bool LCodeGen::GenerateJumpTable() {
734   Label needs_frame, call_deopt_entry;
735 
736   if (jump_table_.length() > 0) {
737     Comment(";;; -------------------- Jump table --------------------");
738     Address base = jump_table_[0]->address;
739 
740     UseScratchRegisterScope temps(masm());
741     Register entry_offset = temps.AcquireX();
742 
743     int length = jump_table_.length();
744     for (int i = 0; i < length; i++) {
745       Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
746       __ Bind(&table_entry->label);
747 
748       Address entry = table_entry->address;
749       DeoptComment(table_entry->deopt_info);
750 
751       // Second-level deopt table entries are contiguous and small, so instead
752       // of loading the full, absolute address of each one, load the base
753       // address and add an immediate offset.
754       __ Mov(entry_offset, entry - base);
755 
756       if (table_entry->needs_frame) {
757         DCHECK(!info()->saves_caller_doubles());
758         Comment(";;; call deopt with frame");
759         // Save lr before Bl, fp will be adjusted in the needs_frame code.
760         __ Push(lr, fp);
761         // Reuse the existing needs_frame code.
762         __ Bl(&needs_frame);
763       } else {
764         // There is nothing special to do, so just continue to the second-level
765         // table.
766         __ Bl(&call_deopt_entry);
767       }
768 
769       masm()->CheckConstPool(false, false);
770     }
771 
772     if (needs_frame.is_linked()) {
773       // This variant of deopt can only be used with stubs. Since we don't
774       // have a function pointer to install in the stack frame that we're
775       // building, install a special marker there instead.
776       DCHECK(info()->IsStub());
777 
778       Comment(";;; needs_frame common code");
779       UseScratchRegisterScope temps(masm());
780       Register stub_marker = temps.AcquireX();
781       __ Bind(&needs_frame);
782       __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
783       __ Push(cp, stub_marker);
784       __ Add(fp, __ StackPointer(), 2 * kPointerSize);
785     }
786 
787     // Generate common code for calling the second-level deopt table.
788     __ Bind(&call_deopt_entry);
789 
790     if (info()->saves_caller_doubles()) {
791       DCHECK(info()->IsStub());
792       RestoreCallerDoubles();
793     }
794 
795     Register deopt_entry = temps.AcquireX();
796     __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
797                                 RelocInfo::RUNTIME_ENTRY));
798     __ Add(deopt_entry, deopt_entry, entry_offset);
799     __ Br(deopt_entry);
800   }
801 
802   // Force constant pool emission at the end of the deopt jump table to make
803   // sure that no constant pools are emitted after.
804   masm()->CheckConstPool(true, false);
805 
806   // The deoptimization jump table is the last part of the instruction
807   // sequence. Mark the generated code as done unless we bailed out.
808   if (!is_aborted()) status_ = DONE;
809   return !is_aborted();
810 }
811 
812 
GenerateSafepointTable()813 bool LCodeGen::GenerateSafepointTable() {
814   DCHECK(is_done());
815   // We do not know how much data will be emitted for the safepoint table, so
816   // force emission of the veneer pool.
817   masm()->CheckVeneerPool(true, true);
818   safepoints_.Emit(masm(), GetTotalFrameSlotCount());
819   return !is_aborted();
820 }
821 
822 
FinishCode(Handle<Code> code)823 void LCodeGen::FinishCode(Handle<Code> code) {
824   DCHECK(is_done());
825   code->set_stack_slots(GetTotalFrameSlotCount());
826   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
827   PopulateDeoptimizationData(code);
828 }
829 
830 
DeoptimizeBranch(LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,BranchType branch_type,Register reg,int bit,Deoptimizer::BailoutType * override_bailout_type)831 void LCodeGen::DeoptimizeBranch(
832     LInstruction* instr, Deoptimizer::DeoptReason deopt_reason,
833     BranchType branch_type, Register reg, int bit,
834     Deoptimizer::BailoutType* override_bailout_type) {
835   LEnvironment* environment = instr->environment();
836   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
837   Deoptimizer::BailoutType bailout_type =
838     info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
839 
840   if (override_bailout_type != NULL) {
841     bailout_type = *override_bailout_type;
842   }
843 
844   DCHECK(environment->HasBeenRegistered());
845   int id = environment->deoptimization_index();
846   Address entry =
847       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
848 
849   if (entry == NULL) {
850     Abort(kBailoutWasNotPrepared);
851   }
852 
853   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
854     Label not_zero;
855     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
856 
857     __ Push(x0, x1, x2);
858     __ Mrs(x2, NZCV);
859     __ Mov(x0, count);
860     __ Ldr(w1, MemOperand(x0));
861     __ Subs(x1, x1, 1);
862     __ B(gt, &not_zero);
863     __ Mov(w1, FLAG_deopt_every_n_times);
864     __ Str(w1, MemOperand(x0));
865     __ Pop(x2, x1, x0);
866     DCHECK(frame_is_built_);
867     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
868     __ Unreachable();
869 
870     __ Bind(&not_zero);
871     __ Str(w1, MemOperand(x0));
872     __ Msr(NZCV, x2);
873     __ Pop(x2, x1, x0);
874   }
875 
876   if (info()->ShouldTrapOnDeopt()) {
877     Label dont_trap;
878     __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
879     __ Debug("trap_on_deopt", __LINE__, BREAK);
880     __ Bind(&dont_trap);
881   }
882 
883   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
884 
885   DCHECK(info()->IsStub() || frame_is_built_);
886   // Go through jump table if we need to build frame, or restore caller doubles.
887   if (branch_type == always &&
888       frame_is_built_ && !info()->saves_caller_doubles()) {
889     DeoptComment(deopt_info);
890     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
891   } else {
892     Deoptimizer::JumpTableEntry* table_entry =
893         new (zone()) Deoptimizer::JumpTableEntry(
894             entry, deopt_info, bailout_type, !frame_is_built_);
895     // We often have several deopts to the same entry, reuse the last
896     // jump entry if this is the case.
897     if (FLAG_trace_deopt || isolate()->is_profiling() ||
898         jump_table_.is_empty() ||
899         !table_entry->IsEquivalentTo(*jump_table_.last())) {
900       jump_table_.Add(table_entry, zone());
901     }
902     __ B(&jump_table_.last()->label, branch_type, reg, bit);
903   }
904 }
905 
906 
Deoptimize(LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,Deoptimizer::BailoutType * override_bailout_type)907 void LCodeGen::Deoptimize(LInstruction* instr,
908                           Deoptimizer::DeoptReason deopt_reason,
909                           Deoptimizer::BailoutType* override_bailout_type) {
910   DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1,
911                    override_bailout_type);
912 }
913 
914 
DeoptimizeIf(Condition cond,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)915 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
916                             Deoptimizer::DeoptReason deopt_reason) {
917   DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond));
918 }
919 
920 
DeoptimizeIfZero(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)921 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
922                                 Deoptimizer::DeoptReason deopt_reason) {
923   DeoptimizeBranch(instr, deopt_reason, reg_zero, rt);
924 }
925 
926 
DeoptimizeIfNotZero(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)927 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
928                                    Deoptimizer::DeoptReason deopt_reason) {
929   DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt);
930 }
931 
932 
DeoptimizeIfNegative(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)933 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
934                                     Deoptimizer::DeoptReason deopt_reason) {
935   int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
936   DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason);
937 }
938 
939 
DeoptimizeIfSmi(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)940 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
941                                Deoptimizer::DeoptReason deopt_reason) {
942   DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
943 }
944 
945 
DeoptimizeIfNotSmi(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)946 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
947                                   Deoptimizer::DeoptReason deopt_reason) {
948   DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
949 }
950 
951 
DeoptimizeIfRoot(Register rt,Heap::RootListIndex index,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)952 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
953                                 LInstruction* instr,
954                                 Deoptimizer::DeoptReason deopt_reason) {
955   __ CompareRoot(rt, index);
956   DeoptimizeIf(eq, instr, deopt_reason);
957 }
958 
959 
DeoptimizeIfNotRoot(Register rt,Heap::RootListIndex index,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)960 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
961                                    LInstruction* instr,
962                                    Deoptimizer::DeoptReason deopt_reason) {
963   __ CompareRoot(rt, index);
964   DeoptimizeIf(ne, instr, deopt_reason);
965 }
966 
967 
DeoptimizeIfMinusZero(DoubleRegister input,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)968 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
969                                      Deoptimizer::DeoptReason deopt_reason) {
970   __ TestForMinusZero(input);
971   DeoptimizeIf(vs, instr, deopt_reason);
972 }
973 
974 
DeoptimizeIfNotHeapNumber(Register object,LInstruction * instr)975 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
976   __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
977   DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
978 }
979 
980 
DeoptimizeIfBitSet(Register rt,int bit,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)981 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
982                                   Deoptimizer::DeoptReason deopt_reason) {
983   DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit);
984 }
985 
986 
DeoptimizeIfBitClear(Register rt,int bit,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)987 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
988                                     Deoptimizer::DeoptReason deopt_reason) {
989   DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit);
990 }
991 
992 
EnsureSpaceForLazyDeopt(int space_needed)993 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
994   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
995     // Ensure that we have enough space after the previous lazy-bailout
996     // instruction for patching the code here.
997     intptr_t current_pc = masm()->pc_offset();
998 
999     if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
1000       ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
1001       DCHECK((padding_size % kInstructionSize) == 0);
1002       InstructionAccurateScope instruction_accurate(
1003           masm(), padding_size / kInstructionSize);
1004 
1005       while (padding_size > 0) {
1006         __ nop();
1007         padding_size -= kInstructionSize;
1008       }
1009     }
1010   }
1011   last_lazy_deopt_pc_ = masm()->pc_offset();
1012 }
1013 
1014 
ToRegister(LOperand * op) const1015 Register LCodeGen::ToRegister(LOperand* op) const {
1016   // TODO(all): support zero register results, as ToRegister32.
1017   DCHECK((op != NULL) && op->IsRegister());
1018   return Register::from_code(op->index());
1019 }
1020 
1021 
ToRegister32(LOperand * op) const1022 Register LCodeGen::ToRegister32(LOperand* op) const {
1023   DCHECK(op != NULL);
1024   if (op->IsConstantOperand()) {
1025     // If this is a constant operand, the result must be the zero register.
1026     DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
1027     return wzr;
1028   } else {
1029     return ToRegister(op).W();
1030   }
1031 }
1032 
1033 
ToSmi(LConstantOperand * op) const1034 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
1035   HConstant* constant = chunk_->LookupConstant(op);
1036   return Smi::FromInt(constant->Integer32Value());
1037 }
1038 
1039 
ToDoubleRegister(LOperand * op) const1040 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
1041   DCHECK((op != NULL) && op->IsDoubleRegister());
1042   return DoubleRegister::from_code(op->index());
1043 }
1044 
1045 
ToOperand(LOperand * op)1046 Operand LCodeGen::ToOperand(LOperand* op) {
1047   DCHECK(op != NULL);
1048   if (op->IsConstantOperand()) {
1049     LConstantOperand* const_op = LConstantOperand::cast(op);
1050     HConstant* constant = chunk()->LookupConstant(const_op);
1051     Representation r = chunk_->LookupLiteralRepresentation(const_op);
1052     if (r.IsSmi()) {
1053       DCHECK(constant->HasSmiValue());
1054       return Operand(Smi::FromInt(constant->Integer32Value()));
1055     } else if (r.IsInteger32()) {
1056       DCHECK(constant->HasInteger32Value());
1057       return Operand(constant->Integer32Value());
1058     } else if (r.IsDouble()) {
1059       Abort(kToOperandUnsupportedDoubleImmediate);
1060     }
1061     DCHECK(r.IsTagged());
1062     return Operand(constant->handle(isolate()));
1063   } else if (op->IsRegister()) {
1064     return Operand(ToRegister(op));
1065   } else if (op->IsDoubleRegister()) {
1066     Abort(kToOperandIsDoubleRegisterUnimplemented);
1067     return Operand(0);
1068   }
1069   // Stack slots not implemented, use ToMemOperand instead.
1070   UNREACHABLE();
1071   return Operand(0);
1072 }
1073 
1074 
ToOperand32(LOperand * op)1075 Operand LCodeGen::ToOperand32(LOperand* op) {
1076   DCHECK(op != NULL);
1077   if (op->IsRegister()) {
1078     return Operand(ToRegister32(op));
1079   } else if (op->IsConstantOperand()) {
1080     LConstantOperand* const_op = LConstantOperand::cast(op);
1081     HConstant* constant = chunk()->LookupConstant(const_op);
1082     Representation r = chunk_->LookupLiteralRepresentation(const_op);
1083     if (r.IsInteger32()) {
1084       return Operand(constant->Integer32Value());
1085     } else {
1086       // Other constants not implemented.
1087       Abort(kToOperand32UnsupportedImmediate);
1088     }
1089   }
1090   // Other cases are not implemented.
1091   UNREACHABLE();
1092   return Operand(0);
1093 }
1094 
1095 
ArgumentsOffsetWithoutFrame(int index)1096 static int64_t ArgumentsOffsetWithoutFrame(int index) {
1097   DCHECK(index < 0);
1098   return -(index + 1) * kPointerSize;
1099 }
1100 
1101 
ToMemOperand(LOperand * op,StackMode stack_mode) const1102 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
1103   DCHECK(op != NULL);
1104   DCHECK(!op->IsRegister());
1105   DCHECK(!op->IsDoubleRegister());
1106   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
1107   if (NeedsEagerFrame()) {
1108     int fp_offset = FrameSlotToFPOffset(op->index());
1109     // Loads and stores have a bigger reach in positive offset than negative.
1110     // We try to access using jssp (positive offset) first, then fall back to
1111     // fp (negative offset) if that fails.
1112     //
1113     // We can reference a stack slot from jssp only if we know how much we've
1114     // put on the stack. We don't know this in the following cases:
1115     // - stack_mode != kCanUseStackPointer: this is the case when deferred
1116     //   code has saved the registers.
1117     // - saves_caller_doubles(): some double registers have been pushed, jssp
1118     //   references the end of the double registers and not the end of the stack
1119     //   slots.
1120     // In both of the cases above, we _could_ add the tracking information
1121     // required so that we can use jssp here, but in practice it isn't worth it.
1122     if ((stack_mode == kCanUseStackPointer) &&
1123         !info()->saves_caller_doubles()) {
1124       int jssp_offset_to_fp =
1125           (pushed_arguments_ + GetTotalFrameSlotCount()) * kPointerSize -
1126           StandardFrameConstants::kFixedFrameSizeAboveFp;
1127       int jssp_offset = fp_offset + jssp_offset_to_fp;
1128       if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) {
1129         return MemOperand(masm()->StackPointer(), jssp_offset);
1130       }
1131     }
1132     return MemOperand(fp, fp_offset);
1133   } else {
1134     // Retrieve parameter without eager stack-frame relative to the
1135     // stack-pointer.
1136     return MemOperand(masm()->StackPointer(),
1137                       ArgumentsOffsetWithoutFrame(op->index()));
1138   }
1139 }
1140 
1141 
ToHandle(LConstantOperand * op) const1142 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
1143   HConstant* constant = chunk_->LookupConstant(op);
1144   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
1145   return constant->handle(isolate());
1146 }
1147 
1148 
1149 template <class LI>
ToShiftedRightOperand32(LOperand * right,LI * shift_info)1150 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
1151   if (shift_info->shift() == NO_SHIFT) {
1152     return ToOperand32(right);
1153   } else {
1154     return Operand(
1155         ToRegister32(right),
1156         shift_info->shift(),
1157         JSShiftAmountFromLConstant(shift_info->shift_amount()));
1158   }
1159 }
1160 
1161 
IsSmi(LConstantOperand * op) const1162 bool LCodeGen::IsSmi(LConstantOperand* op) const {
1163   return chunk_->LookupLiteralRepresentation(op).IsSmi();
1164 }
1165 
1166 
IsInteger32Constant(LConstantOperand * op) const1167 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
1168   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
1169 }
1170 
1171 
ToInteger32(LConstantOperand * op) const1172 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
1173   HConstant* constant = chunk_->LookupConstant(op);
1174   return constant->Integer32Value();
1175 }
1176 
1177 
ToDouble(LConstantOperand * op) const1178 double LCodeGen::ToDouble(LConstantOperand* op) const {
1179   HConstant* constant = chunk_->LookupConstant(op);
1180   DCHECK(constant->HasDoubleValue());
1181   return constant->DoubleValue();
1182 }
1183 
1184 
TokenToCondition(Token::Value op,bool is_unsigned)1185 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1186   Condition cond = nv;
1187   switch (op) {
1188     case Token::EQ:
1189     case Token::EQ_STRICT:
1190       cond = eq;
1191       break;
1192     case Token::NE:
1193     case Token::NE_STRICT:
1194       cond = ne;
1195       break;
1196     case Token::LT:
1197       cond = is_unsigned ? lo : lt;
1198       break;
1199     case Token::GT:
1200       cond = is_unsigned ? hi : gt;
1201       break;
1202     case Token::LTE:
1203       cond = is_unsigned ? ls : le;
1204       break;
1205     case Token::GTE:
1206       cond = is_unsigned ? hs : ge;
1207       break;
1208     case Token::IN:
1209     case Token::INSTANCEOF:
1210     default:
1211       UNREACHABLE();
1212   }
1213   return cond;
1214 }
1215 
1216 
1217 template<class InstrType>
EmitBranchGeneric(InstrType instr,const BranchGenerator & branch)1218 void LCodeGen::EmitBranchGeneric(InstrType instr,
1219                                  const BranchGenerator& branch) {
1220   int left_block = instr->TrueDestination(chunk_);
1221   int right_block = instr->FalseDestination(chunk_);
1222 
1223   int next_block = GetNextEmittedBlock();
1224 
1225   if (right_block == left_block) {
1226     EmitGoto(left_block);
1227   } else if (left_block == next_block) {
1228     branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
1229   } else {
1230     branch.Emit(chunk_->GetAssemblyLabel(left_block));
1231     if (right_block != next_block) {
1232       __ B(chunk_->GetAssemblyLabel(right_block));
1233     }
1234   }
1235 }
1236 
1237 
1238 template<class InstrType>
EmitBranch(InstrType instr,Condition condition)1239 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1240   DCHECK((condition != al) && (condition != nv));
1241   BranchOnCondition branch(this, condition);
1242   EmitBranchGeneric(instr, branch);
1243 }
1244 
1245 
1246 template<class InstrType>
EmitCompareAndBranch(InstrType instr,Condition condition,const Register & lhs,const Operand & rhs)1247 void LCodeGen::EmitCompareAndBranch(InstrType instr,
1248                                     Condition condition,
1249                                     const Register& lhs,
1250                                     const Operand& rhs) {
1251   DCHECK((condition != al) && (condition != nv));
1252   CompareAndBranch branch(this, condition, lhs, rhs);
1253   EmitBranchGeneric(instr, branch);
1254 }
1255 
1256 
1257 template<class InstrType>
EmitTestAndBranch(InstrType instr,Condition condition,const Register & value,uint64_t mask)1258 void LCodeGen::EmitTestAndBranch(InstrType instr,
1259                                  Condition condition,
1260                                  const Register& value,
1261                                  uint64_t mask) {
1262   DCHECK((condition != al) && (condition != nv));
1263   TestAndBranch branch(this, condition, value, mask);
1264   EmitBranchGeneric(instr, branch);
1265 }
1266 
1267 
1268 template<class InstrType>
EmitBranchIfNonZeroNumber(InstrType instr,const FPRegister & value,const FPRegister & scratch)1269 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
1270                                          const FPRegister& value,
1271                                          const FPRegister& scratch) {
1272   BranchIfNonZeroNumber branch(this, value, scratch);
1273   EmitBranchGeneric(instr, branch);
1274 }
1275 
1276 
1277 template<class InstrType>
EmitBranchIfHeapNumber(InstrType instr,const Register & value)1278 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
1279                                       const Register& value) {
1280   BranchIfHeapNumber branch(this, value);
1281   EmitBranchGeneric(instr, branch);
1282 }
1283 
1284 
1285 template<class InstrType>
EmitBranchIfRoot(InstrType instr,const Register & value,Heap::RootListIndex index)1286 void LCodeGen::EmitBranchIfRoot(InstrType instr,
1287                                 const Register& value,
1288                                 Heap::RootListIndex index) {
1289   BranchIfRoot branch(this, value, index);
1290   EmitBranchGeneric(instr, branch);
1291 }
1292 
1293 
DoGap(LGap * gap)1294 void LCodeGen::DoGap(LGap* gap) {
1295   for (int i = LGap::FIRST_INNER_POSITION;
1296        i <= LGap::LAST_INNER_POSITION;
1297        i++) {
1298     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1299     LParallelMove* move = gap->GetParallelMove(inner_pos);
1300     if (move != NULL) {
1301       resolver_.Resolve(move);
1302     }
1303   }
1304 }
1305 
1306 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)1307 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
1308   Register arguments = ToRegister(instr->arguments());
1309   Register result = ToRegister(instr->result());
1310 
1311   // The pointer to the arguments array come from DoArgumentsElements.
1312   // It does not point directly to the arguments and there is an offest of
1313   // two words that we must take into account when accessing an argument.
1314   // Subtracting the index from length accounts for one, so we add one more.
1315 
1316   if (instr->length()->IsConstantOperand() &&
1317       instr->index()->IsConstantOperand()) {
1318     int index = ToInteger32(LConstantOperand::cast(instr->index()));
1319     int length = ToInteger32(LConstantOperand::cast(instr->length()));
1320     int offset = ((length - index) + 1) * kPointerSize;
1321     __ Ldr(result, MemOperand(arguments, offset));
1322   } else if (instr->index()->IsConstantOperand()) {
1323     Register length = ToRegister32(instr->length());
1324     int index = ToInteger32(LConstantOperand::cast(instr->index()));
1325     int loc = index - 1;
1326     if (loc != 0) {
1327       __ Sub(result.W(), length, loc);
1328       __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1329     } else {
1330       __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
1331     }
1332   } else {
1333     Register length = ToRegister32(instr->length());
1334     Operand index = ToOperand32(instr->index());
1335     __ Sub(result.W(), length, index);
1336     __ Add(result.W(), result.W(), 1);
1337     __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1338   }
1339 }
1340 
1341 
DoAddE(LAddE * instr)1342 void LCodeGen::DoAddE(LAddE* instr) {
1343   Register result = ToRegister(instr->result());
1344   Register left = ToRegister(instr->left());
1345   Operand right = Operand(x0);  // Dummy initialization.
1346   if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) {
1347     right = Operand(ToRegister(instr->right()));
1348   } else if (instr->right()->IsConstantOperand()) {
1349     right = ToInteger32(LConstantOperand::cast(instr->right()));
1350   } else {
1351     right = Operand(ToRegister32(instr->right()), SXTW);
1352   }
1353 
1354   DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1355   __ Add(result, left, right);
1356 }
1357 
1358 
DoAddI(LAddI * instr)1359 void LCodeGen::DoAddI(LAddI* instr) {
1360   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1361   Register result = ToRegister32(instr->result());
1362   Register left = ToRegister32(instr->left());
1363   Operand right = ToShiftedRightOperand32(instr->right(), instr);
1364 
1365   if (can_overflow) {
1366     __ Adds(result, left, right);
1367     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1368   } else {
1369     __ Add(result, left, right);
1370   }
1371 }
1372 
1373 
DoAddS(LAddS * instr)1374 void LCodeGen::DoAddS(LAddS* instr) {
1375   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1376   Register result = ToRegister(instr->result());
1377   Register left = ToRegister(instr->left());
1378   Operand right = ToOperand(instr->right());
1379   if (can_overflow) {
1380     __ Adds(result, left, right);
1381     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1382   } else {
1383     __ Add(result, left, right);
1384   }
1385 }
1386 
1387 
DoAllocate(LAllocate * instr)1388 void LCodeGen::DoAllocate(LAllocate* instr) {
1389   class DeferredAllocate: public LDeferredCode {
1390    public:
1391     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
1392         : LDeferredCode(codegen), instr_(instr) { }
1393     virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
1394     virtual LInstruction* instr() { return instr_; }
1395    private:
1396     LAllocate* instr_;
1397   };
1398 
1399   DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
1400 
1401   Register result = ToRegister(instr->result());
1402   Register temp1 = ToRegister(instr->temp1());
1403   Register temp2 = ToRegister(instr->temp2());
1404 
1405   // Allocate memory for the object.
1406   AllocationFlags flags = NO_ALLOCATION_FLAGS;
1407   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1408     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1409   }
1410 
1411   if (instr->hydrogen()->IsOldSpaceAllocation()) {
1412     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1413     flags = static_cast<AllocationFlags>(flags | PRETENURE);
1414   }
1415 
1416   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
1417     flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
1418   }
1419   DCHECK(!instr->hydrogen()->IsAllocationFolded());
1420 
1421   if (instr->size()->IsConstantOperand()) {
1422     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1423     CHECK(size <= Page::kMaxRegularHeapObjectSize);
1424     __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
1425   } else {
1426     Register size = ToRegister32(instr->size());
1427     __ Sxtw(size.X(), size);
1428     __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
1429   }
1430 
1431   __ Bind(deferred->exit());
1432 
1433   if (instr->hydrogen()->MustPrefillWithFiller()) {
1434     Register start = temp1;
1435     Register end = temp2;
1436     Register filler = ToRegister(instr->temp3());
1437 
1438     __ Sub(start, result, kHeapObjectTag);
1439 
1440     if (instr->size()->IsConstantOperand()) {
1441       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1442       __ Add(end, start, size);
1443     } else {
1444       __ Add(end, start, ToRegister(instr->size()));
1445     }
1446     __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex);
1447     __ InitializeFieldsWithFiller(start, end, filler);
1448   } else {
1449     DCHECK(instr->temp3() == NULL);
1450   }
1451 }
1452 
1453 
DoDeferredAllocate(LAllocate * instr)1454 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
1455   // TODO(3095996): Get rid of this. For now, we need to make the
1456   // result register contain a valid pointer because it is already
1457   // contained in the register pointer map.
1458   __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
1459 
1460   PushSafepointRegistersScope scope(this);
1461   // We're in a SafepointRegistersScope so we can use any scratch registers.
1462   Register size = x0;
1463   if (instr->size()->IsConstantOperand()) {
1464     __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
1465   } else {
1466     __ SmiTag(size, ToRegister32(instr->size()).X());
1467   }
1468   int flags = AllocateDoubleAlignFlag::encode(
1469       instr->hydrogen()->MustAllocateDoubleAligned());
1470   if (instr->hydrogen()->IsOldSpaceAllocation()) {
1471     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1472     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
1473   } else {
1474     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
1475   }
1476   __ Mov(x10, Smi::FromInt(flags));
1477   __ Push(size, x10);
1478 
1479   CallRuntimeFromDeferred(
1480       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
1481   __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
1482 
1483   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
1484     AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
1485     if (instr->hydrogen()->IsOldSpaceAllocation()) {
1486       DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1487       allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
1488     }
1489     // If the allocation folding dominator allocate triggered a GC, allocation
1490     // happend in the runtime. We have to reset the top pointer to virtually
1491     // undo the allocation.
1492     ExternalReference allocation_top =
1493         AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
1494     Register top_address = x10;
1495     __ Sub(x0, x0, Operand(kHeapObjectTag));
1496     __ Mov(top_address, Operand(allocation_top));
1497     __ Str(x0, MemOperand(top_address));
1498     __ Add(x0, x0, Operand(kHeapObjectTag));
1499   }
1500 }
1501 
DoFastAllocate(LFastAllocate * instr)1502 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
1503   DCHECK(instr->hydrogen()->IsAllocationFolded());
1504   DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
1505   Register result = ToRegister(instr->result());
1506   Register scratch1 = ToRegister(instr->temp1());
1507   Register scratch2 = ToRegister(instr->temp2());
1508 
1509   AllocationFlags flags = ALLOCATION_FOLDED;
1510   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1511     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1512   }
1513   if (instr->hydrogen()->IsOldSpaceAllocation()) {
1514     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1515     flags = static_cast<AllocationFlags>(flags | PRETENURE);
1516   }
1517   if (instr->size()->IsConstantOperand()) {
1518     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1519     CHECK(size <= Page::kMaxRegularHeapObjectSize);
1520     __ FastAllocate(size, result, scratch1, scratch2, flags);
1521   } else {
1522     Register size = ToRegister(instr->size());
1523     __ FastAllocate(size, result, scratch1, scratch2, flags);
1524   }
1525 }
1526 
1527 
DoApplyArguments(LApplyArguments * instr)1528 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
1529   Register receiver = ToRegister(instr->receiver());
1530   Register function = ToRegister(instr->function());
1531   Register length = ToRegister32(instr->length());
1532 
1533   Register elements = ToRegister(instr->elements());
1534   Register scratch = x5;
1535   DCHECK(receiver.Is(x0));  // Used for parameter count.
1536   DCHECK(function.Is(x1));  // Required by InvokeFunction.
1537   DCHECK(ToRegister(instr->result()).Is(x0));
1538   DCHECK(instr->IsMarkedAsCall());
1539 
1540   // Copy the arguments to this function possibly from the
1541   // adaptor frame below it.
1542   const uint32_t kArgumentsLimit = 1 * KB;
1543   __ Cmp(length, kArgumentsLimit);
1544   DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments);
1545 
1546   // Push the receiver and use the register to keep the original
1547   // number of arguments.
1548   __ Push(receiver);
1549   Register argc = receiver;
1550   receiver = NoReg;
1551   __ Sxtw(argc, length);
1552   // The arguments are at a one pointer size offset from elements.
1553   __ Add(elements, elements, 1 * kPointerSize);
1554 
1555   // Loop through the arguments pushing them onto the execution
1556   // stack.
1557   Label invoke, loop;
1558   // length is a small non-negative integer, due to the test above.
1559   __ Cbz(length, &invoke);
1560   __ Bind(&loop);
1561   __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
1562   __ Push(scratch);
1563   __ Subs(length, length, 1);
1564   __ B(ne, &loop);
1565 
1566   __ Bind(&invoke);
1567 
1568   InvokeFlag flag = CALL_FUNCTION;
1569   if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
1570     DCHECK(!info()->saves_caller_doubles());
1571     // TODO(ishell): drop current frame before pushing arguments to the stack.
1572     flag = JUMP_FUNCTION;
1573     ParameterCount actual(x0);
1574     // It is safe to use x3, x4 and x5 as scratch registers here given that
1575     // 1) we are not going to return to caller function anyway,
1576     // 2) x3 (new.target) will be initialized below.
1577     PrepareForTailCall(actual, x3, x4, x5);
1578   }
1579 
1580   DCHECK(instr->HasPointerMap());
1581   LPointerMap* pointers = instr->pointer_map();
1582   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
1583   // The number of arguments is stored in argc (receiver) which is x0, as
1584   // expected by InvokeFunction.
1585   ParameterCount actual(argc);
1586   __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
1587 }
1588 
1589 
DoArgumentsElements(LArgumentsElements * instr)1590 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
1591   Register result = ToRegister(instr->result());
1592 
1593   if (instr->hydrogen()->from_inlined()) {
1594     // When we are inside an inlined function, the arguments are the last things
1595     // that have been pushed on the stack. Therefore the arguments array can be
1596     // accessed directly from jssp.
1597     // However in the normal case, it is accessed via fp but there are two words
1598     // on the stack between fp and the arguments (the saved lr and fp) and the
1599     // LAccessArgumentsAt implementation take that into account.
1600     // In the inlined case we need to subtract the size of 2 words to jssp to
1601     // get a pointer which will work well with LAccessArgumentsAt.
1602     DCHECK(masm()->StackPointer().Is(jssp));
1603     __ Sub(result, jssp, 2 * kPointerSize);
1604   } else if (instr->hydrogen()->arguments_adaptor()) {
1605     DCHECK(instr->temp() != NULL);
1606     Register previous_fp = ToRegister(instr->temp());
1607 
1608     __ Ldr(previous_fp,
1609            MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1610     __ Ldr(result, MemOperand(previous_fp,
1611                               CommonFrameConstants::kContextOrFrameTypeOffset));
1612     __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1613     __ Csel(result, fp, previous_fp, ne);
1614   } else {
1615     __ Mov(result, fp);
1616   }
1617 }
1618 
1619 
DoArgumentsLength(LArgumentsLength * instr)1620 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
1621   Register elements = ToRegister(instr->elements());
1622   Register result = ToRegister32(instr->result());
1623   Label done;
1624 
1625   // If no arguments adaptor frame the number of arguments is fixed.
1626   __ Cmp(fp, elements);
1627   __ Mov(result, scope()->num_parameters());
1628   __ B(eq, &done);
1629 
1630   // Arguments adaptor frame present. Get argument length from there.
1631   __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1632   __ Ldr(result,
1633          UntagSmiMemOperand(result.X(),
1634                             ArgumentsAdaptorFrameConstants::kLengthOffset));
1635 
1636   // Argument length is in result register.
1637   __ Bind(&done);
1638 }
1639 
1640 
DoArithmeticD(LArithmeticD * instr)1641 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1642   DoubleRegister left = ToDoubleRegister(instr->left());
1643   DoubleRegister right = ToDoubleRegister(instr->right());
1644   DoubleRegister result = ToDoubleRegister(instr->result());
1645 
1646   switch (instr->op()) {
1647     case Token::ADD: __ Fadd(result, left, right); break;
1648     case Token::SUB: __ Fsub(result, left, right); break;
1649     case Token::MUL: __ Fmul(result, left, right); break;
1650     case Token::DIV: __ Fdiv(result, left, right); break;
1651     case Token::MOD: {
1652       // The ECMA-262 remainder operator is the remainder from a truncating
1653       // (round-towards-zero) division. Note that this differs from IEEE-754.
1654       //
1655       // TODO(jbramley): See if it's possible to do this inline, rather than by
1656       // calling a helper function. With frintz (to produce the intermediate
1657       // quotient) and fmsub (to calculate the remainder without loss of
1658       // precision), it should be possible. However, we would need support for
1659       // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
1660       // support that yet.
1661       DCHECK(left.Is(d0));
1662       DCHECK(right.Is(d1));
1663       __ CallCFunction(
1664           ExternalReference::mod_two_doubles_operation(isolate()),
1665           0, 2);
1666       DCHECK(result.Is(d0));
1667       break;
1668     }
1669     default:
1670       UNREACHABLE();
1671       break;
1672   }
1673 }
1674 
1675 
DoArithmeticT(LArithmeticT * instr)1676 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1677   DCHECK(ToRegister(instr->context()).is(cp));
1678   DCHECK(ToRegister(instr->left()).is(x1));
1679   DCHECK(ToRegister(instr->right()).is(x0));
1680   DCHECK(ToRegister(instr->result()).is(x0));
1681 
1682   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
1683   CallCode(code, RelocInfo::CODE_TARGET, instr);
1684 }
1685 
1686 
DoBitI(LBitI * instr)1687 void LCodeGen::DoBitI(LBitI* instr) {
1688   Register result = ToRegister32(instr->result());
1689   Register left = ToRegister32(instr->left());
1690   Operand right = ToShiftedRightOperand32(instr->right(), instr);
1691 
1692   switch (instr->op()) {
1693     case Token::BIT_AND: __ And(result, left, right); break;
1694     case Token::BIT_OR:  __ Orr(result, left, right); break;
1695     case Token::BIT_XOR: __ Eor(result, left, right); break;
1696     default:
1697       UNREACHABLE();
1698       break;
1699   }
1700 }
1701 
1702 
DoBitS(LBitS * instr)1703 void LCodeGen::DoBitS(LBitS* instr) {
1704   Register result = ToRegister(instr->result());
1705   Register left = ToRegister(instr->left());
1706   Operand right = ToOperand(instr->right());
1707 
1708   switch (instr->op()) {
1709     case Token::BIT_AND: __ And(result, left, right); break;
1710     case Token::BIT_OR:  __ Orr(result, left, right); break;
1711     case Token::BIT_XOR: __ Eor(result, left, right); break;
1712     default:
1713       UNREACHABLE();
1714       break;
1715   }
1716 }
1717 
1718 
DoBoundsCheck(LBoundsCheck * instr)1719 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
1720   Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
1721   DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
1722   DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
1723   if (instr->index()->IsConstantOperand()) {
1724     Operand index = ToOperand32(instr->index());
1725     Register length = ToRegister32(instr->length());
1726     __ Cmp(length, index);
1727     cond = CommuteCondition(cond);
1728   } else {
1729     Register index = ToRegister32(instr->index());
1730     Operand length = ToOperand32(instr->length());
1731     __ Cmp(index, length);
1732   }
1733   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
1734     __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
1735   } else {
1736     DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds);
1737   }
1738 }
1739 
1740 
DoBranch(LBranch * instr)1741 void LCodeGen::DoBranch(LBranch* instr) {
1742   Representation r = instr->hydrogen()->value()->representation();
1743   Label* true_label = instr->TrueLabel(chunk_);
1744   Label* false_label = instr->FalseLabel(chunk_);
1745 
1746   if (r.IsInteger32()) {
1747     DCHECK(!info()->IsStub());
1748     EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
1749   } else if (r.IsSmi()) {
1750     DCHECK(!info()->IsStub());
1751     STATIC_ASSERT(kSmiTag == 0);
1752     EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
1753   } else if (r.IsDouble()) {
1754     DoubleRegister value = ToDoubleRegister(instr->value());
1755     // Test the double value. Zero and NaN are false.
1756     EmitBranchIfNonZeroNumber(instr, value, double_scratch());
1757   } else {
1758     DCHECK(r.IsTagged());
1759     Register value = ToRegister(instr->value());
1760     HType type = instr->hydrogen()->value()->type();
1761 
1762     if (type.IsBoolean()) {
1763       DCHECK(!info()->IsStub());
1764       __ CompareRoot(value, Heap::kTrueValueRootIndex);
1765       EmitBranch(instr, eq);
1766     } else if (type.IsSmi()) {
1767       DCHECK(!info()->IsStub());
1768       EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
1769     } else if (type.IsJSArray()) {
1770       DCHECK(!info()->IsStub());
1771       EmitGoto(instr->TrueDestination(chunk()));
1772     } else if (type.IsHeapNumber()) {
1773       DCHECK(!info()->IsStub());
1774       __ Ldr(double_scratch(), FieldMemOperand(value,
1775                                                HeapNumber::kValueOffset));
1776       // Test the double value. Zero and NaN are false.
1777       EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
1778     } else if (type.IsString()) {
1779       DCHECK(!info()->IsStub());
1780       Register temp = ToRegister(instr->temp1());
1781       __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
1782       EmitCompareAndBranch(instr, ne, temp, 0);
1783     } else {
1784       ToBooleanICStub::Types expected =
1785           instr->hydrogen()->expected_input_types();
1786       // Avoid deopts in the case where we've never executed this path before.
1787       if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
1788 
1789       if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
1790         // undefined -> false.
1791         __ JumpIfRoot(
1792             value, Heap::kUndefinedValueRootIndex, false_label);
1793       }
1794 
1795       if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
1796         // Boolean -> its value.
1797         __ JumpIfRoot(
1798             value, Heap::kTrueValueRootIndex, true_label);
1799         __ JumpIfRoot(
1800             value, Heap::kFalseValueRootIndex, false_label);
1801       }
1802 
1803       if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
1804         // 'null' -> false.
1805         __ JumpIfRoot(
1806             value, Heap::kNullValueRootIndex, false_label);
1807       }
1808 
1809       if (expected.Contains(ToBooleanICStub::SMI)) {
1810         // Smis: 0 -> false, all other -> true.
1811         DCHECK(Smi::FromInt(0) == 0);
1812         __ Cbz(value, false_label);
1813         __ JumpIfSmi(value, true_label);
1814       } else if (expected.NeedsMap()) {
1815         // If we need a map later and have a smi, deopt.
1816         DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi);
1817       }
1818 
1819       Register map = NoReg;
1820       Register scratch = NoReg;
1821 
1822       if (expected.NeedsMap()) {
1823         DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
1824         map = ToRegister(instr->temp1());
1825         scratch = ToRegister(instr->temp2());
1826 
1827         __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
1828 
1829         if (expected.CanBeUndetectable()) {
1830           // Undetectable -> false.
1831           __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
1832           __ TestAndBranchIfAnySet(
1833               scratch, 1 << Map::kIsUndetectable, false_label);
1834         }
1835       }
1836 
1837       if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
1838         // spec object -> true.
1839         __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE);
1840         __ B(ge, true_label);
1841       }
1842 
1843       if (expected.Contains(ToBooleanICStub::STRING)) {
1844         // String value -> false iff empty.
1845         Label not_string;
1846         __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
1847         __ B(ge, &not_string);
1848         __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
1849         __ Cbz(scratch, false_label);
1850         __ B(true_label);
1851         __ Bind(&not_string);
1852       }
1853 
1854       if (expected.Contains(ToBooleanICStub::SYMBOL)) {
1855         // Symbol value -> true.
1856         __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
1857         __ B(eq, true_label);
1858       }
1859 
1860       if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
1861         // SIMD value -> true.
1862         __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE);
1863         __ B(eq, true_label);
1864       }
1865 
1866       if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
1867         Label not_heap_number;
1868         __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
1869 
1870         __ Ldr(double_scratch(),
1871                FieldMemOperand(value, HeapNumber::kValueOffset));
1872         __ Fcmp(double_scratch(), 0.0);
1873         // If we got a NaN (overflow bit is set), jump to the false branch.
1874         __ B(vs, false_label);
1875         __ B(eq, false_label);
1876         __ B(true_label);
1877         __ Bind(&not_heap_number);
1878       }
1879 
1880       if (!expected.IsGeneric()) {
1881         // We've seen something for the first time -> deopt.
1882         // This can only happen if we are not generic already.
1883         Deoptimize(instr, Deoptimizer::kUnexpectedObject);
1884       }
1885     }
1886   }
1887 }
1888 
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)1889 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
1890                                  int formal_parameter_count, int arity,
1891                                  bool is_tail_call, LInstruction* instr) {
1892   bool dont_adapt_arguments =
1893       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1894   bool can_invoke_directly =
1895       dont_adapt_arguments || formal_parameter_count == arity;
1896 
1897   // The function interface relies on the following register assignments.
1898   Register function_reg = x1;
1899   Register arity_reg = x0;
1900 
1901   LPointerMap* pointers = instr->pointer_map();
1902 
1903   if (FLAG_debug_code) {
1904     Label is_not_smi;
1905     // Try to confirm that function_reg (x1) is a tagged pointer.
1906     __ JumpIfNotSmi(function_reg, &is_not_smi);
1907     __ Abort(kExpectedFunctionObject);
1908     __ Bind(&is_not_smi);
1909   }
1910 
1911   if (can_invoke_directly) {
1912     // Change context.
1913     __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
1914 
1915     // Always initialize new target and number of actual arguments.
1916     __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
1917     __ Mov(arity_reg, arity);
1918 
1919     bool is_self_call = function.is_identical_to(info()->closure());
1920 
1921     // Invoke function.
1922     if (is_self_call) {
1923       Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
1924       if (is_tail_call) {
1925         __ Jump(self, RelocInfo::CODE_TARGET);
1926       } else {
1927         __ Call(self, RelocInfo::CODE_TARGET);
1928       }
1929     } else {
1930       __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
1931       if (is_tail_call) {
1932         __ Jump(x10);
1933       } else {
1934         __ Call(x10);
1935       }
1936     }
1937 
1938     if (!is_tail_call) {
1939       // Set up deoptimization.
1940       RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
1941     }
1942   } else {
1943     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1944     ParameterCount actual(arity);
1945     ParameterCount expected(formal_parameter_count);
1946     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
1947     __ InvokeFunction(function_reg, expected, actual, flag, generator);
1948   }
1949 }
1950 
DoCallWithDescriptor(LCallWithDescriptor * instr)1951 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
1952   DCHECK(instr->IsMarkedAsCall());
1953   DCHECK(ToRegister(instr->result()).Is(x0));
1954 
1955   if (instr->hydrogen()->IsTailCall()) {
1956     if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
1957 
1958     if (instr->target()->IsConstantOperand()) {
1959       LConstantOperand* target = LConstantOperand::cast(instr->target());
1960       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
1961       // TODO(all): on ARM we use a call descriptor to specify a storage mode
1962       // but on ARM64 we only have one storage mode so it isn't necessary. Check
1963       // this understanding is correct.
1964       __ Jump(code, RelocInfo::CODE_TARGET);
1965     } else {
1966       DCHECK(instr->target()->IsRegister());
1967       Register target = ToRegister(instr->target());
1968       __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
1969       __ Br(target);
1970     }
1971   } else {
1972     LPointerMap* pointers = instr->pointer_map();
1973     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1974 
1975     if (instr->target()->IsConstantOperand()) {
1976       LConstantOperand* target = LConstantOperand::cast(instr->target());
1977       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
1978       generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
1979       // TODO(all): on ARM we use a call descriptor to specify a storage mode
1980       // but on ARM64 we only have one storage mode so it isn't necessary. Check
1981       // this understanding is correct.
1982       __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
1983     } else {
1984       DCHECK(instr->target()->IsRegister());
1985       Register target = ToRegister(instr->target());
1986       generator.BeforeCall(__ CallSize(target));
1987       __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
1988       __ Call(target);
1989     }
1990     generator.AfterCall();
1991   }
1992 
1993   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
1994 }
1995 
1996 
DoCallRuntime(LCallRuntime * instr)1997 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
1998   CallRuntime(instr->function(), instr->arity(), instr);
1999   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2000 }
2001 
2002 
DoUnknownOSRValue(LUnknownOSRValue * instr)2003 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
2004   GenerateOsrPrologue();
2005 }
2006 
2007 
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)2008 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
2009   Register temp = ToRegister(instr->temp());
2010   {
2011     PushSafepointRegistersScope scope(this);
2012     __ Push(object);
2013     __ Mov(cp, 0);
2014     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
2015     RecordSafepointWithRegisters(
2016         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
2017     __ StoreToSafepointRegisterSlot(x0, temp);
2018   }
2019   DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed);
2020 }
2021 
2022 
DoCheckMaps(LCheckMaps * instr)2023 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
2024   class DeferredCheckMaps: public LDeferredCode {
2025    public:
2026     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
2027         : LDeferredCode(codegen), instr_(instr), object_(object) {
2028       SetExit(check_maps());
2029     }
2030     virtual void Generate() {
2031       codegen()->DoDeferredInstanceMigration(instr_, object_);
2032     }
2033     Label* check_maps() { return &check_maps_; }
2034     virtual LInstruction* instr() { return instr_; }
2035    private:
2036     LCheckMaps* instr_;
2037     Label check_maps_;
2038     Register object_;
2039   };
2040 
2041   if (instr->hydrogen()->IsStabilityCheck()) {
2042     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2043     for (int i = 0; i < maps->size(); ++i) {
2044       AddStabilityDependency(maps->at(i).handle());
2045     }
2046     return;
2047   }
2048 
2049   Register object = ToRegister(instr->value());
2050   Register map_reg = ToRegister(instr->temp());
2051 
2052   __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
2053 
2054   DeferredCheckMaps* deferred = NULL;
2055   if (instr->hydrogen()->HasMigrationTarget()) {
2056     deferred = new(zone()) DeferredCheckMaps(this, instr, object);
2057     __ Bind(deferred->check_maps());
2058   }
2059 
2060   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2061   Label success;
2062   for (int i = 0; i < maps->size() - 1; i++) {
2063     Handle<Map> map = maps->at(i).handle();
2064     __ CompareMap(map_reg, map);
2065     __ B(eq, &success);
2066   }
2067   Handle<Map> map = maps->at(maps->size() - 1).handle();
2068   __ CompareMap(map_reg, map);
2069 
2070   // We didn't match a map.
2071   if (instr->hydrogen()->HasMigrationTarget()) {
2072     __ B(ne, deferred->entry());
2073   } else {
2074     DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
2075   }
2076 
2077   __ Bind(&success);
2078 }
2079 
2080 
DoCheckNonSmi(LCheckNonSmi * instr)2081 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
2082   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2083     DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi);
2084   }
2085 }
2086 
2087 
DoCheckSmi(LCheckSmi * instr)2088 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
2089   Register value = ToRegister(instr->value());
2090   DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
2091   DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi);
2092 }
2093 
2094 
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)2095 void LCodeGen::DoCheckArrayBufferNotNeutered(
2096     LCheckArrayBufferNotNeutered* instr) {
2097   UseScratchRegisterScope temps(masm());
2098   Register view = ToRegister(instr->view());
2099   Register scratch = temps.AcquireX();
2100 
2101   __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
2102   __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
2103   __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
2104   DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds);
2105 }
2106 
2107 
DoCheckInstanceType(LCheckInstanceType * instr)2108 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
2109   Register input = ToRegister(instr->value());
2110   Register scratch = ToRegister(instr->temp());
2111 
2112   __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2113   __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2114 
2115   if (instr->hydrogen()->is_interval_check()) {
2116     InstanceType first, last;
2117     instr->hydrogen()->GetCheckInterval(&first, &last);
2118 
2119     __ Cmp(scratch, first);
2120     if (first == last) {
2121       // If there is only one type in the interval check for equality.
2122       DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
2123     } else if (last == LAST_TYPE) {
2124       // We don't need to compare with the higher bound of the interval.
2125       DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType);
2126     } else {
2127       // If we are below the lower bound, set the C flag and clear the Z flag
2128       // to force a deopt.
2129       __ Ccmp(scratch, last, CFlag, hs);
2130       DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType);
2131     }
2132   } else {
2133     uint8_t mask;
2134     uint8_t tag;
2135     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
2136 
2137     if (base::bits::IsPowerOfTwo32(mask)) {
2138       DCHECK((tag == 0) || (tag == mask));
2139       if (tag == 0) {
2140         DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
2141                            Deoptimizer::kWrongInstanceType);
2142       } else {
2143         DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
2144                              Deoptimizer::kWrongInstanceType);
2145       }
2146     } else {
2147       if (tag == 0) {
2148         __ Tst(scratch, mask);
2149       } else {
2150         __ And(scratch, scratch, mask);
2151         __ Cmp(scratch, tag);
2152       }
2153       DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
2154     }
2155   }
2156 }
2157 
2158 
DoClampDToUint8(LClampDToUint8 * instr)2159 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
2160   DoubleRegister input = ToDoubleRegister(instr->unclamped());
2161   Register result = ToRegister32(instr->result());
2162   __ ClampDoubleToUint8(result, input, double_scratch());
2163 }
2164 
2165 
DoClampIToUint8(LClampIToUint8 * instr)2166 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
2167   Register input = ToRegister32(instr->unclamped());
2168   Register result = ToRegister32(instr->result());
2169   __ ClampInt32ToUint8(result, input);
2170 }
2171 
2172 
DoClampTToUint8(LClampTToUint8 * instr)2173 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
2174   Register input = ToRegister(instr->unclamped());
2175   Register result = ToRegister32(instr->result());
2176   Label done;
2177 
2178   // Both smi and heap number cases are handled.
2179   Label is_not_smi;
2180   __ JumpIfNotSmi(input, &is_not_smi);
2181   __ SmiUntag(result.X(), input);
2182   __ ClampInt32ToUint8(result);
2183   __ B(&done);
2184 
2185   __ Bind(&is_not_smi);
2186 
2187   // Check for heap number.
2188   Label is_heap_number;
2189   __ JumpIfHeapNumber(input, &is_heap_number);
2190 
2191   // Check for undefined. Undefined is coverted to zero for clamping conversion.
2192   DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
2193                       Deoptimizer::kNotAHeapNumberUndefined);
2194   __ Mov(result, 0);
2195   __ B(&done);
2196 
2197   // Heap number case.
2198   __ Bind(&is_heap_number);
2199   DoubleRegister dbl_scratch = double_scratch();
2200   DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
2201   __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2202   __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
2203 
2204   __ Bind(&done);
2205 }
2206 
2207 
DoDoubleBits(LDoubleBits * instr)2208 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
2209   DoubleRegister value_reg = ToDoubleRegister(instr->value());
2210   Register result_reg = ToRegister(instr->result());
2211   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
2212     __ Fmov(result_reg, value_reg);
2213     __ Lsr(result_reg, result_reg, 32);
2214   } else {
2215     __ Fmov(result_reg.W(), value_reg.S());
2216   }
2217 }
2218 
2219 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2220 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2221   Handle<String> class_name = instr->hydrogen()->class_name();
2222   Label* true_label = instr->TrueLabel(chunk_);
2223   Label* false_label = instr->FalseLabel(chunk_);
2224   Register input = ToRegister(instr->value());
2225   Register scratch1 = ToRegister(instr->temp1());
2226   Register scratch2 = ToRegister(instr->temp2());
2227 
2228   __ JumpIfSmi(input, false_label);
2229 
2230   Register map = scratch2;
2231   __ CompareObjectType(input, map, scratch1, FIRST_FUNCTION_TYPE);
2232   STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2233   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2234     __ B(hs, true_label);
2235   } else {
2236     __ B(hs, false_label);
2237   }
2238 
2239   // Check if the constructor in the map is a function.
2240   {
2241     UseScratchRegisterScope temps(masm());
2242     Register instance_type = temps.AcquireX();
2243     __ GetMapConstructor(scratch1, map, scratch2, instance_type);
2244     __ Cmp(instance_type, JS_FUNCTION_TYPE);
2245   }
2246   // Objects with a non-function constructor have class 'Object'.
2247   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2248     __ B(ne, true_label);
2249   } else {
2250     __ B(ne, false_label);
2251   }
2252 
2253   // The constructor function is in scratch1. Get its instance class name.
2254   __ Ldr(scratch1,
2255          FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2256   __ Ldr(scratch1,
2257          FieldMemOperand(scratch1,
2258                          SharedFunctionInfo::kInstanceClassNameOffset));
2259 
2260   // The class name we are testing against is internalized since it's a literal.
2261   // The name in the constructor is internalized because of the way the context
2262   // is booted. This routine isn't expected to work for random API-created
2263   // classes and it doesn't have to because you can't access it with natives
2264   // syntax. Since both sides are internalized it is sufficient to use an
2265   // identity comparison.
2266   EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
2267 }
2268 
2269 
DoCmpHoleAndBranchD(LCmpHoleAndBranchD * instr)2270 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
2271   DCHECK(instr->hydrogen()->representation().IsDouble());
2272   FPRegister object = ToDoubleRegister(instr->object());
2273   Register temp = ToRegister(instr->temp());
2274 
2275   // If we don't have a NaN, we don't have the hole, so branch now to avoid the
2276   // (relatively expensive) hole-NaN check.
2277   __ Fcmp(object, object);
2278   __ B(vc, instr->FalseLabel(chunk_));
2279 
2280   // We have a NaN, but is it the hole?
2281   __ Fmov(temp, object);
2282   EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
2283 }
2284 
2285 
DoCmpHoleAndBranchT(LCmpHoleAndBranchT * instr)2286 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
2287   DCHECK(instr->hydrogen()->representation().IsTagged());
2288   Register object = ToRegister(instr->object());
2289 
2290   EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
2291 }
2292 
2293 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2294 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2295   Register value = ToRegister(instr->value());
2296   Register map = ToRegister(instr->temp());
2297 
2298   __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
2299   EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
2300 }
2301 
2302 
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2303 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2304   LOperand* left = instr->left();
2305   LOperand* right = instr->right();
2306   bool is_unsigned =
2307       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2308       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2309   Condition cond = TokenToCondition(instr->op(), is_unsigned);
2310 
2311   if (left->IsConstantOperand() && right->IsConstantOperand()) {
2312     // We can statically evaluate the comparison.
2313     double left_val = ToDouble(LConstantOperand::cast(left));
2314     double right_val = ToDouble(LConstantOperand::cast(right));
2315     int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2316                          ? instr->TrueDestination(chunk_)
2317                          : instr->FalseDestination(chunk_);
2318     EmitGoto(next_block);
2319   } else {
2320     if (instr->is_double()) {
2321       __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
2322 
2323       // If a NaN is involved, i.e. the result is unordered (V set),
2324       // jump to false block label.
2325       __ B(vs, instr->FalseLabel(chunk_));
2326       EmitBranch(instr, cond);
2327     } else {
2328       if (instr->hydrogen_value()->representation().IsInteger32()) {
2329         if (right->IsConstantOperand()) {
2330           EmitCompareAndBranch(instr, cond, ToRegister32(left),
2331                                ToOperand32(right));
2332         } else {
2333           // Commute the operands and the condition.
2334           EmitCompareAndBranch(instr, CommuteCondition(cond),
2335                                ToRegister32(right), ToOperand32(left));
2336         }
2337       } else {
2338         DCHECK(instr->hydrogen_value()->representation().IsSmi());
2339         if (right->IsConstantOperand()) {
2340           int32_t value = ToInteger32(LConstantOperand::cast(right));
2341           EmitCompareAndBranch(instr,
2342                                cond,
2343                                ToRegister(left),
2344                                Operand(Smi::FromInt(value)));
2345         } else if (left->IsConstantOperand()) {
2346           // Commute the operands and the condition.
2347           int32_t value = ToInteger32(LConstantOperand::cast(left));
2348           EmitCompareAndBranch(instr,
2349                                CommuteCondition(cond),
2350                                ToRegister(right),
2351                                Operand(Smi::FromInt(value)));
2352         } else {
2353           EmitCompareAndBranch(instr,
2354                                cond,
2355                                ToRegister(left),
2356                                ToRegister(right));
2357         }
2358       }
2359     }
2360   }
2361 }
2362 
2363 
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2364 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2365   Register left = ToRegister(instr->left());
2366   Register right = ToRegister(instr->right());
2367   EmitCompareAndBranch(instr, eq, left, right);
2368 }
2369 
2370 
DoCmpT(LCmpT * instr)2371 void LCodeGen::DoCmpT(LCmpT* instr) {
2372   DCHECK(ToRegister(instr->context()).is(cp));
2373   Token::Value op = instr->op();
2374   Condition cond = TokenToCondition(op, false);
2375 
2376   DCHECK(ToRegister(instr->left()).Is(x1));
2377   DCHECK(ToRegister(instr->right()).Is(x0));
2378   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2379   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2380   // Signal that we don't inline smi code before this stub.
2381   InlineSmiCheckInfo::EmitNotInlined(masm());
2382 
2383   // Return true or false depending on CompareIC result.
2384   // This instruction is marked as call. We can clobber any register.
2385   DCHECK(instr->IsMarkedAsCall());
2386   __ LoadTrueFalseRoots(x1, x2);
2387   __ Cmp(x0, 0);
2388   __ Csel(ToRegister(instr->result()), x1, x2, cond);
2389 }
2390 
2391 
DoConstantD(LConstantD * instr)2392 void LCodeGen::DoConstantD(LConstantD* instr) {
2393   DCHECK(instr->result()->IsDoubleRegister());
2394   DoubleRegister result = ToDoubleRegister(instr->result());
2395   if (instr->value() == 0) {
2396     if (copysign(1.0, instr->value()) == 1.0) {
2397       __ Fmov(result, fp_zero);
2398     } else {
2399       __ Fneg(result, fp_zero);
2400     }
2401   } else {
2402     __ Fmov(result, instr->value());
2403   }
2404 }
2405 
2406 
DoConstantE(LConstantE * instr)2407 void LCodeGen::DoConstantE(LConstantE* instr) {
2408   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2409 }
2410 
2411 
DoConstantI(LConstantI * instr)2412 void LCodeGen::DoConstantI(LConstantI* instr) {
2413   DCHECK(is_int32(instr->value()));
2414   // Cast the value here to ensure that the value isn't sign extended by the
2415   // implicit Operand constructor.
2416   __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
2417 }
2418 
2419 
DoConstantS(LConstantS * instr)2420 void LCodeGen::DoConstantS(LConstantS* instr) {
2421   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2422 }
2423 
2424 
DoConstantT(LConstantT * instr)2425 void LCodeGen::DoConstantT(LConstantT* instr) {
2426   Handle<Object> object = instr->value(isolate());
2427   AllowDeferredHandleDereference smi_check;
2428   __ LoadObject(ToRegister(instr->result()), object);
2429 }
2430 
2431 
DoContext(LContext * instr)2432 void LCodeGen::DoContext(LContext* instr) {
2433   // If there is a non-return use, the context must be moved to a register.
2434   Register result = ToRegister(instr->result());
2435   if (info()->IsOptimizing()) {
2436     __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
2437   } else {
2438     // If there is no frame, the context must be in cp.
2439     DCHECK(result.is(cp));
2440   }
2441 }
2442 
2443 
DoCheckValue(LCheckValue * instr)2444 void LCodeGen::DoCheckValue(LCheckValue* instr) {
2445   Register reg = ToRegister(instr->value());
2446   Handle<HeapObject> object = instr->hydrogen()->object().handle();
2447   AllowDeferredHandleDereference smi_check;
2448   if (isolate()->heap()->InNewSpace(*object)) {
2449     UseScratchRegisterScope temps(masm());
2450     Register temp = temps.AcquireX();
2451     Handle<Cell> cell = isolate()->factory()->NewCell(object);
2452     __ Mov(temp, Operand(cell));
2453     __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
2454     __ Cmp(reg, temp);
2455   } else {
2456     __ Cmp(reg, Operand(object));
2457   }
2458   DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
2459 }
2460 
2461 
DoLazyBailout(LLazyBailout * instr)2462 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
2463   last_lazy_deopt_pc_ = masm()->pc_offset();
2464   DCHECK(instr->HasEnvironment());
2465   LEnvironment* env = instr->environment();
2466   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
2467   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2468 }
2469 
2470 
DoDeoptimize(LDeoptimize * instr)2471 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
2472   Deoptimizer::BailoutType type = instr->hydrogen()->type();
2473   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
2474   // needed return address), even though the implementation of LAZY and EAGER is
2475   // now identical. When LAZY is eventually completely folded into EAGER, remove
2476   // the special case below.
2477   if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
2478     type = Deoptimizer::LAZY;
2479   }
2480 
2481   Deoptimize(instr, instr->hydrogen()->reason(), &type);
2482 }
2483 
2484 
DoDivByPowerOf2I(LDivByPowerOf2I * instr)2485 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
2486   Register dividend = ToRegister32(instr->dividend());
2487   int32_t divisor = instr->divisor();
2488   Register result = ToRegister32(instr->result());
2489   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
2490   DCHECK(!result.is(dividend));
2491 
2492   // Check for (0 / -x) that will produce negative zero.
2493   HDiv* hdiv = instr->hydrogen();
2494   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2495     DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero);
2496   }
2497   // Check for (kMinInt / -1).
2498   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
2499     // Test dividend for kMinInt by subtracting one (cmp) and checking for
2500     // overflow.
2501     __ Cmp(dividend, 1);
2502     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
2503   }
2504   // Deoptimize if remainder will not be 0.
2505   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
2506       divisor != 1 && divisor != -1) {
2507     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
2508     __ Tst(dividend, mask);
2509     DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
2510   }
2511 
2512   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
2513     __ Neg(result, dividend);
2514     return;
2515   }
2516   int32_t shift = WhichPowerOf2Abs(divisor);
2517   if (shift == 0) {
2518     __ Mov(result, dividend);
2519   } else if (shift == 1) {
2520     __ Add(result, dividend, Operand(dividend, LSR, 31));
2521   } else {
2522     __ Mov(result, Operand(dividend, ASR, 31));
2523     __ Add(result, dividend, Operand(result, LSR, 32 - shift));
2524   }
2525   if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
2526   if (divisor < 0) __ Neg(result, result);
2527 }
2528 
2529 
DoDivByConstI(LDivByConstI * instr)2530 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
2531   Register dividend = ToRegister32(instr->dividend());
2532   int32_t divisor = instr->divisor();
2533   Register result = ToRegister32(instr->result());
2534   DCHECK(!AreAliased(dividend, result));
2535 
2536   if (divisor == 0) {
2537     Deoptimize(instr, Deoptimizer::kDivisionByZero);
2538     return;
2539   }
2540 
2541   // Check for (0 / -x) that will produce negative zero.
2542   HDiv* hdiv = instr->hydrogen();
2543   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2544     DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
2545   }
2546 
2547   __ TruncatingDiv(result, dividend, Abs(divisor));
2548   if (divisor < 0) __ Neg(result, result);
2549 
2550   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
2551     Register temp = ToRegister32(instr->temp());
2552     DCHECK(!AreAliased(dividend, result, temp));
2553     __ Sxtw(dividend.X(), dividend);
2554     __ Mov(temp, divisor);
2555     __ Smsubl(temp.X(), result, temp, dividend.X());
2556     DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision);
2557   }
2558 }
2559 
2560 
2561 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)2562 void LCodeGen::DoDivI(LDivI* instr) {
2563   HBinaryOperation* hdiv = instr->hydrogen();
2564   Register dividend = ToRegister32(instr->dividend());
2565   Register divisor = ToRegister32(instr->divisor());
2566   Register result = ToRegister32(instr->result());
2567 
2568   // Issue the division first, and then check for any deopt cases whilst the
2569   // result is computed.
2570   __ Sdiv(result, dividend, divisor);
2571 
2572   if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
2573     DCHECK(!instr->temp());
2574     return;
2575   }
2576 
2577   // Check for x / 0.
2578   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
2579     DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
2580   }
2581 
2582   // Check for (0 / -x) as that will produce negative zero.
2583   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
2584     __ Cmp(divisor, 0);
2585 
2586     // If the divisor < 0 (mi), compare the dividend, and deopt if it is
2587     // zero, ie. zero dividend with negative divisor deopts.
2588     // If the divisor >= 0 (pl, the opposite of mi) set the flags to
2589     // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
2590     __ Ccmp(dividend, 0, NoFlag, mi);
2591     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
2592   }
2593 
2594   // Check for (kMinInt / -1).
2595   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
2596     // Test dividend for kMinInt by subtracting one (cmp) and checking for
2597     // overflow.
2598     __ Cmp(dividend, 1);
2599     // If overflow is set, ie. dividend = kMinInt, compare the divisor with
2600     // -1. If overflow is clear, set the flags for condition ne, as the
2601     // dividend isn't -1, and thus we shouldn't deopt.
2602     __ Ccmp(divisor, -1, NoFlag, vs);
2603     DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
2604   }
2605 
2606   // Compute remainder and deopt if it's not zero.
2607   Register remainder = ToRegister32(instr->temp());
2608   __ Msub(remainder, result, divisor, dividend);
2609   DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision);
2610 }
2611 
2612 
DoDoubleToIntOrSmi(LDoubleToIntOrSmi * instr)2613 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
2614   DoubleRegister input = ToDoubleRegister(instr->value());
2615   Register result = ToRegister32(instr->result());
2616 
2617   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2618     DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
2619   }
2620 
2621   __ TryRepresentDoubleAsInt32(result, input, double_scratch());
2622   DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
2623 
2624   if (instr->tag_result()) {
2625     __ SmiTag(result.X());
2626   }
2627 }
2628 
2629 
DoDrop(LDrop * instr)2630 void LCodeGen::DoDrop(LDrop* instr) {
2631   __ Drop(instr->count());
2632 
2633   RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta());
2634 }
2635 
2636 
DoDummy(LDummy * instr)2637 void LCodeGen::DoDummy(LDummy* instr) {
2638   // Nothing to see here, move on!
2639 }
2640 
2641 
DoDummyUse(LDummyUse * instr)2642 void LCodeGen::DoDummyUse(LDummyUse* instr) {
2643   // Nothing to see here, move on!
2644 }
2645 
2646 
DoForInCacheArray(LForInCacheArray * instr)2647 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
2648   Register map = ToRegister(instr->map());
2649   Register result = ToRegister(instr->result());
2650   Label load_cache, done;
2651 
2652   __ EnumLengthUntagged(result, map);
2653   __ Cbnz(result, &load_cache);
2654 
2655   __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
2656   __ B(&done);
2657 
2658   __ Bind(&load_cache);
2659   __ LoadInstanceDescriptors(map, result);
2660   __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
2661   __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
2662   DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache);
2663 
2664   __ Bind(&done);
2665 }
2666 
2667 
DoForInPrepareMap(LForInPrepareMap * instr)2668 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
2669   Register object = ToRegister(instr->object());
2670 
2671   DCHECK(instr->IsMarkedAsCall());
2672   DCHECK(object.Is(x0));
2673 
2674   Label use_cache, call_runtime;
2675   __ CheckEnumCache(object, x5, x1, x2, x3, x4, &call_runtime);
2676 
2677   __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2678   __ B(&use_cache);
2679 
2680   // Get the set of properties to enumerate.
2681   __ Bind(&call_runtime);
2682   __ Push(object);
2683   CallRuntime(Runtime::kForInEnumerate, instr);
2684   __ Bind(&use_cache);
2685 }
2686 
2687 
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)2688 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2689   Register input = ToRegister(instr->value());
2690   Register result = ToRegister(instr->result());
2691 
2692   __ AssertString(input);
2693 
2694   // Assert that we can use a W register load to get the hash.
2695   DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
2696   __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
2697   __ IndexFromHash(result, result);
2698 }
2699 
2700 
EmitGoto(int block)2701 void LCodeGen::EmitGoto(int block) {
2702   // Do not emit jump if we are emitting a goto to the next block.
2703   if (!IsNextEmittedBlock(block)) {
2704     __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
2705   }
2706 }
2707 
2708 
DoGoto(LGoto * instr)2709 void LCodeGen::DoGoto(LGoto* instr) {
2710   EmitGoto(instr->block_id());
2711 }
2712 
2713 
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)2714 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2715     LHasCachedArrayIndexAndBranch* instr) {
2716   Register input = ToRegister(instr->value());
2717   Register temp = ToRegister32(instr->temp());
2718 
2719   // Assert that the cache status bits fit in a W register.
2720   DCHECK(is_uint32(String::kContainsCachedArrayIndexMask));
2721   __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
2722   __ Tst(temp, String::kContainsCachedArrayIndexMask);
2723   EmitBranch(instr, eq);
2724 }
2725 
2726 
2727 // HHasInstanceTypeAndBranch instruction is built with an interval of type
2728 // to test but is only used in very restricted ways. The only possible kinds
2729 // of intervals are:
2730 //  - [ FIRST_TYPE, instr->to() ]
2731 //  - [ instr->form(), LAST_TYPE ]
2732 //  - instr->from() == instr->to()
2733 //
2734 // These kinds of intervals can be check with only one compare instruction
2735 // providing the correct value and test condition are used.
2736 //
2737 // TestType() will return the value to use in the compare instruction and
2738 // BranchCondition() will return the condition to use depending on the kind
2739 // of interval actually specified in the instruction.
TestType(HHasInstanceTypeAndBranch * instr)2740 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2741   InstanceType from = instr->from();
2742   InstanceType to = instr->to();
2743   if (from == FIRST_TYPE) return to;
2744   DCHECK((from == to) || (to == LAST_TYPE));
2745   return from;
2746 }
2747 
2748 
2749 // See comment above TestType function for what this function does.
BranchCondition(HHasInstanceTypeAndBranch * instr)2750 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2751   InstanceType from = instr->from();
2752   InstanceType to = instr->to();
2753   if (from == to) return eq;
2754   if (to == LAST_TYPE) return hs;
2755   if (from == FIRST_TYPE) return ls;
2756   UNREACHABLE();
2757   return eq;
2758 }
2759 
2760 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2761 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2762   Register input = ToRegister(instr->value());
2763   Register scratch = ToRegister(instr->temp());
2764 
2765   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2766     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2767   }
2768   __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2769   EmitBranch(instr, BranchCondition(instr->hydrogen()));
2770 }
2771 
2772 
DoInnerAllocatedObject(LInnerAllocatedObject * instr)2773 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
2774   Register result = ToRegister(instr->result());
2775   Register base = ToRegister(instr->base_object());
2776   if (instr->offset()->IsConstantOperand()) {
2777     __ Add(result, base, ToOperand32(instr->offset()));
2778   } else {
2779     __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
2780   }
2781 }
2782 
2783 
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2784 void LCodeGen::DoHasInPrototypeChainAndBranch(
2785     LHasInPrototypeChainAndBranch* instr) {
2786   Register const object = ToRegister(instr->object());
2787   Register const object_map = ToRegister(instr->scratch1());
2788   Register const object_instance_type = ToRegister(instr->scratch2());
2789   Register const object_prototype = object_map;
2790   Register const prototype = ToRegister(instr->prototype());
2791 
2792   // The {object} must be a spec object.  It's sufficient to know that {object}
2793   // is not a smi, since all other non-spec objects have {null} prototypes and
2794   // will be ruled out below.
2795   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2796     __ JumpIfSmi(object, instr->FalseLabel(chunk_));
2797   }
2798 
2799   // Loop through the {object}s prototype chain looking for the {prototype}.
2800   __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2801   Label loop;
2802   __ Bind(&loop);
2803 
2804   // Deoptimize if the object needs to be access checked.
2805   __ Ldrb(object_instance_type,
2806           FieldMemOperand(object_map, Map::kBitFieldOffset));
2807   __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
2808   DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck);
2809   // Deoptimize for proxies.
2810   __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2811   DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
2812 
2813   __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2814   __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2815   __ B(eq, instr->FalseLabel(chunk_));
2816   __ Cmp(object_prototype, prototype);
2817   __ B(eq, instr->TrueLabel(chunk_));
2818   __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2819   __ B(&loop);
2820 }
2821 
2822 
DoInstructionGap(LInstructionGap * instr)2823 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
2824   DoGap(instr);
2825 }
2826 
2827 
DoInteger32ToDouble(LInteger32ToDouble * instr)2828 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
2829   Register value = ToRegister32(instr->value());
2830   DoubleRegister result = ToDoubleRegister(instr->result());
2831   __ Scvtf(result, value);
2832 }
2833 
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)2834 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
2835                                   Register scratch1, Register scratch2,
2836                                   Register scratch3) {
2837 #if DEBUG
2838   if (actual.is_reg()) {
2839     DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
2840   } else {
2841     DCHECK(!AreAliased(scratch1, scratch2, scratch3));
2842   }
2843 #endif
2844   if (FLAG_code_comments) {
2845     if (actual.is_reg()) {
2846       Comment(";;; PrepareForTailCall, actual: %s {",
2847               RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
2848                   actual.reg().code()));
2849     } else {
2850       Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
2851     }
2852   }
2853 
2854   // Check if next frame is an arguments adaptor frame.
2855   Register caller_args_count_reg = scratch1;
2856   Label no_arguments_adaptor, formal_parameter_count_loaded;
2857   __ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2858   __ Ldr(scratch3,
2859          MemOperand(scratch2, StandardFrameConstants::kContextOffset));
2860   __ Cmp(scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2861   __ B(ne, &no_arguments_adaptor);
2862 
2863   // Drop current frame and load arguments count from arguments adaptor frame.
2864   __ mov(fp, scratch2);
2865   __ Ldr(caller_args_count_reg,
2866          MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
2867   __ SmiUntag(caller_args_count_reg);
2868   __ B(&formal_parameter_count_loaded);
2869 
2870   __ bind(&no_arguments_adaptor);
2871   // Load caller's formal parameter count
2872   __ Mov(caller_args_count_reg,
2873          Immediate(info()->literal()->parameter_count()));
2874 
2875   __ bind(&formal_parameter_count_loaded);
2876   __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
2877 
2878   Comment(";;; }");
2879 }
2880 
DoInvokeFunction(LInvokeFunction * instr)2881 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
2882   HInvokeFunction* hinstr = instr->hydrogen();
2883   DCHECK(ToRegister(instr->context()).is(cp));
2884   // The function is required to be in x1.
2885   DCHECK(ToRegister(instr->function()).is(x1));
2886   DCHECK(instr->HasPointerMap());
2887 
2888   bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
2889 
2890   if (is_tail_call) {
2891     DCHECK(!info()->saves_caller_doubles());
2892     ParameterCount actual(instr->arity());
2893     // It is safe to use x3, x4 and x5 as scratch registers here given that
2894     // 1) we are not going to return to caller function anyway,
2895     // 2) x3 (new.target) will be initialized below.
2896     PrepareForTailCall(actual, x3, x4, x5);
2897   }
2898 
2899   Handle<JSFunction> known_function = hinstr->known_function();
2900   if (known_function.is_null()) {
2901     LPointerMap* pointers = instr->pointer_map();
2902     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2903     ParameterCount actual(instr->arity());
2904     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
2905     __ InvokeFunction(x1, no_reg, actual, flag, generator);
2906   } else {
2907     CallKnownFunction(known_function, hinstr->formal_parameter_count(),
2908                       instr->arity(), is_tail_call, instr);
2909   }
2910   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2911 }
2912 
2913 
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2914 Condition LCodeGen::EmitIsString(Register input,
2915                                  Register temp1,
2916                                  Label* is_not_string,
2917                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
2918   if (check_needed == INLINE_SMI_CHECK) {
2919     __ JumpIfSmi(input, is_not_string);
2920   }
2921   __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2922 
2923   return lt;
2924 }
2925 
2926 
DoIsStringAndBranch(LIsStringAndBranch * instr)2927 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2928   Register val = ToRegister(instr->value());
2929   Register scratch = ToRegister(instr->temp());
2930 
2931   SmiCheck check_needed =
2932       instr->hydrogen()->value()->type().IsHeapObject()
2933           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2934   Condition true_cond =
2935       EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
2936 
2937   EmitBranch(instr, true_cond);
2938 }
2939 
2940 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2941 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2942   Register value = ToRegister(instr->value());
2943   STATIC_ASSERT(kSmiTag == 0);
2944   EmitTestAndBranch(instr, eq, value, kSmiTagMask);
2945 }
2946 
2947 
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2948 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2949   Register input = ToRegister(instr->value());
2950   Register temp = ToRegister(instr->temp());
2951 
2952   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2953     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2954   }
2955   __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2956   __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2957 
2958   EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
2959 }
2960 
2961 
LabelType(LLabel * label)2962 static const char* LabelType(LLabel* label) {
2963   if (label->is_loop_header()) return " (loop header)";
2964   if (label->is_osr_entry()) return " (OSR entry)";
2965   return "";
2966 }
2967 
2968 
DoLabel(LLabel * label)2969 void LCodeGen::DoLabel(LLabel* label) {
2970   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
2971           current_instruction_,
2972           label->hydrogen_value()->id(),
2973           label->block_id(),
2974           LabelType(label));
2975 
2976   // Inherit pushed_arguments_ from the predecessor's argument count.
2977   if (label->block()->HasPredecessor()) {
2978     pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count();
2979 #ifdef DEBUG
2980     for (auto p : *label->block()->predecessors()) {
2981       DCHECK_EQ(p->argument_count(), pushed_arguments_);
2982     }
2983 #endif
2984   }
2985 
2986   __ Bind(label->label());
2987   current_block_ = label->block_id();
2988   DoGap(label);
2989 }
2990 
2991 
DoLoadContextSlot(LLoadContextSlot * instr)2992 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2993   Register context = ToRegister(instr->context());
2994   Register result = ToRegister(instr->result());
2995   __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
2996   if (instr->hydrogen()->RequiresHoleCheck()) {
2997     if (instr->hydrogen()->DeoptimizesOnHole()) {
2998       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
2999                        Deoptimizer::kHole);
3000     } else {
3001       Label not_the_hole;
3002       __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
3003       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3004       __ Bind(&not_the_hole);
3005     }
3006   }
3007 }
3008 
3009 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)3010 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3011   Register function = ToRegister(instr->function());
3012   Register result = ToRegister(instr->result());
3013   Register temp = ToRegister(instr->temp());
3014 
3015   // Get the prototype or initial map from the function.
3016   __ Ldr(result, FieldMemOperand(function,
3017                                  JSFunction::kPrototypeOrInitialMapOffset));
3018 
3019   // Check that the function has a prototype or an initial map.
3020   DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3021                    Deoptimizer::kHole);
3022 
3023   // If the function does not have an initial map, we're done.
3024   Label done;
3025   __ CompareObjectType(result, temp, temp, MAP_TYPE);
3026   __ B(ne, &done);
3027 
3028   // Get the prototype from the initial map.
3029   __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3030 
3031   // All done.
3032   __ Bind(&done);
3033 }
3034 
3035 
3036 template <class T>
EmitVectorLoadICRegisters(T * instr)3037 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
3038   Register vector_register = ToRegister(instr->temp_vector());
3039   Register slot_register = LoadWithVectorDescriptor::SlotRegister();
3040   DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
3041   DCHECK(slot_register.is(x0));
3042 
3043   AllowDeferredHandleDereference vector_structure_check;
3044   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3045   __ Mov(vector_register, vector);
3046   // No need to allocate this register.
3047   FeedbackVectorSlot slot = instr->hydrogen()->slot();
3048   int index = vector->GetIndex(slot);
3049   __ Mov(slot_register, Smi::FromInt(index));
3050 }
3051 
3052 
3053 template <class T>
EmitVectorStoreICRegisters(T * instr)3054 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
3055   Register vector_register = ToRegister(instr->temp_vector());
3056   Register slot_register = ToRegister(instr->temp_slot());
3057 
3058   AllowDeferredHandleDereference vector_structure_check;
3059   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3060   __ Mov(vector_register, vector);
3061   FeedbackVectorSlot slot = instr->hydrogen()->slot();
3062   int index = vector->GetIndex(slot);
3063   __ Mov(slot_register, Smi::FromInt(index));
3064 }
3065 
3066 
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)3067 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
3068   DCHECK(ToRegister(instr->context()).is(cp));
3069   DCHECK(ToRegister(instr->result()).Is(x0));
3070 
3071   EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
3072   Handle<Code> ic =
3073       CodeFactory::LoadGlobalICInOptimizedCode(isolate(), instr->typeof_mode())
3074           .code();
3075   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3076 }
3077 
3078 
PrepareKeyedExternalArrayOperand(Register key,Register base,Register scratch,bool key_is_smi,bool key_is_constant,int constant_key,ElementsKind elements_kind,int base_offset)3079 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
3080     Register key,
3081     Register base,
3082     Register scratch,
3083     bool key_is_smi,
3084     bool key_is_constant,
3085     int constant_key,
3086     ElementsKind elements_kind,
3087     int base_offset) {
3088   int element_size_shift = ElementsKindToShiftSize(elements_kind);
3089 
3090   if (key_is_constant) {
3091     int key_offset = constant_key << element_size_shift;
3092     return MemOperand(base, key_offset + base_offset);
3093   }
3094 
3095   if (key_is_smi) {
3096     __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
3097     return MemOperand(scratch, base_offset);
3098   }
3099 
3100   if (base_offset == 0) {
3101     return MemOperand(base, key, SXTW, element_size_shift);
3102   }
3103 
3104   DCHECK(!AreAliased(scratch, key));
3105   __ Add(scratch, base, base_offset);
3106   return MemOperand(scratch, key, SXTW, element_size_shift);
3107 }
3108 
3109 
DoLoadKeyedExternal(LLoadKeyedExternal * instr)3110 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
3111   Register ext_ptr = ToRegister(instr->elements());
3112   Register scratch;
3113   ElementsKind elements_kind = instr->elements_kind();
3114 
3115   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3116   bool key_is_constant = instr->key()->IsConstantOperand();
3117   Register key = no_reg;
3118   int constant_key = 0;
3119   if (key_is_constant) {
3120     DCHECK(instr->temp() == NULL);
3121     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3122     if (constant_key & 0xf0000000) {
3123       Abort(kArrayIndexConstantValueTooBig);
3124     }
3125   } else {
3126     scratch = ToRegister(instr->temp());
3127     key = ToRegister(instr->key());
3128   }
3129 
3130   MemOperand mem_op =
3131       PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
3132                                        key_is_constant, constant_key,
3133                                        elements_kind,
3134                                        instr->base_offset());
3135 
3136   if (elements_kind == FLOAT32_ELEMENTS) {
3137     DoubleRegister result = ToDoubleRegister(instr->result());
3138     __ Ldr(result.S(), mem_op);
3139     __ Fcvt(result, result.S());
3140   } else if (elements_kind == FLOAT64_ELEMENTS) {
3141     DoubleRegister result = ToDoubleRegister(instr->result());
3142     __ Ldr(result, mem_op);
3143   } else {
3144     Register result = ToRegister(instr->result());
3145 
3146     switch (elements_kind) {
3147       case INT8_ELEMENTS:
3148         __ Ldrsb(result, mem_op);
3149         break;
3150       case UINT8_ELEMENTS:
3151       case UINT8_CLAMPED_ELEMENTS:
3152         __ Ldrb(result, mem_op);
3153         break;
3154       case INT16_ELEMENTS:
3155         __ Ldrsh(result, mem_op);
3156         break;
3157       case UINT16_ELEMENTS:
3158         __ Ldrh(result, mem_op);
3159         break;
3160       case INT32_ELEMENTS:
3161         __ Ldrsw(result, mem_op);
3162         break;
3163       case UINT32_ELEMENTS:
3164         __ Ldr(result.W(), mem_op);
3165         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3166           // Deopt if value > 0x80000000.
3167           __ Tst(result, 0xFFFFFFFF80000000);
3168           DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue);
3169         }
3170         break;
3171       case FLOAT32_ELEMENTS:
3172       case FLOAT64_ELEMENTS:
3173       case FAST_HOLEY_DOUBLE_ELEMENTS:
3174       case FAST_HOLEY_ELEMENTS:
3175       case FAST_HOLEY_SMI_ELEMENTS:
3176       case FAST_DOUBLE_ELEMENTS:
3177       case FAST_ELEMENTS:
3178       case FAST_SMI_ELEMENTS:
3179       case DICTIONARY_ELEMENTS:
3180       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3181       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3182       case FAST_STRING_WRAPPER_ELEMENTS:
3183       case SLOW_STRING_WRAPPER_ELEMENTS:
3184       case NO_ELEMENTS:
3185         UNREACHABLE();
3186         break;
3187     }
3188   }
3189 }
3190 
3191 
PrepareKeyedArrayOperand(Register base,Register elements,Register key,bool key_is_tagged,ElementsKind elements_kind,Representation representation,int base_offset)3192 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
3193                                               Register elements,
3194                                               Register key,
3195                                               bool key_is_tagged,
3196                                               ElementsKind elements_kind,
3197                                               Representation representation,
3198                                               int base_offset) {
3199   STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3200   STATIC_ASSERT(kSmiTag == 0);
3201   int element_size_shift = ElementsKindToShiftSize(elements_kind);
3202 
3203   // Even though the HLoad/StoreKeyed instructions force the input
3204   // representation for the key to be an integer, the input gets replaced during
3205   // bounds check elimination with the index argument to the bounds check, which
3206   // can be tagged, so that case must be handled here, too.
3207   if (key_is_tagged) {
3208     __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
3209     if (representation.IsInteger32()) {
3210       DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3211       // Read or write only the smi payload in the case of fast smi arrays.
3212       return UntagSmiMemOperand(base, base_offset);
3213     } else {
3214       return MemOperand(base, base_offset);
3215     }
3216   } else {
3217     // Sign extend key because it could be a 32-bit negative value or contain
3218     // garbage in the top 32-bits. The address computation happens in 64-bit.
3219     DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
3220     if (representation.IsInteger32()) {
3221       DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3222       // Read or write only the smi payload in the case of fast smi arrays.
3223       __ Add(base, elements, Operand(key, SXTW, element_size_shift));
3224       return UntagSmiMemOperand(base, base_offset);
3225     } else {
3226       __ Add(base, elements, base_offset);
3227       return MemOperand(base, key, SXTW, element_size_shift);
3228     }
3229   }
3230 }
3231 
3232 
DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble * instr)3233 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
3234   Register elements = ToRegister(instr->elements());
3235   DoubleRegister result = ToDoubleRegister(instr->result());
3236   MemOperand mem_op;
3237 
3238   if (instr->key()->IsConstantOperand()) {
3239     DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
3240            (instr->temp() == NULL));
3241 
3242     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3243     if (constant_key & 0xf0000000) {
3244       Abort(kArrayIndexConstantValueTooBig);
3245     }
3246     int offset = instr->base_offset() + constant_key * kDoubleSize;
3247     mem_op = MemOperand(elements, offset);
3248   } else {
3249     Register load_base = ToRegister(instr->temp());
3250     Register key = ToRegister(instr->key());
3251     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3252     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3253                                       instr->hydrogen()->elements_kind(),
3254                                       instr->hydrogen()->representation(),
3255                                       instr->base_offset());
3256   }
3257 
3258   __ Ldr(result, mem_op);
3259 
3260   if (instr->hydrogen()->RequiresHoleCheck()) {
3261     Register scratch = ToRegister(instr->temp());
3262     __ Fmov(scratch, result);
3263     __ Eor(scratch, scratch, kHoleNanInt64);
3264     DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole);
3265   }
3266 }
3267 
3268 
DoLoadKeyedFixed(LLoadKeyedFixed * instr)3269 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
3270   Register elements = ToRegister(instr->elements());
3271   Register result = ToRegister(instr->result());
3272   MemOperand mem_op;
3273 
3274   Representation representation = instr->hydrogen()->representation();
3275   if (instr->key()->IsConstantOperand()) {
3276     DCHECK(instr->temp() == NULL);
3277     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3278     int offset = instr->base_offset() +
3279         ToInteger32(const_operand) * kPointerSize;
3280     if (representation.IsInteger32()) {
3281       DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
3282       STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3283       STATIC_ASSERT(kSmiTag == 0);
3284       mem_op = UntagSmiMemOperand(elements, offset);
3285     } else {
3286       mem_op = MemOperand(elements, offset);
3287     }
3288   } else {
3289     Register load_base = ToRegister(instr->temp());
3290     Register key = ToRegister(instr->key());
3291     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3292 
3293     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3294                                       instr->hydrogen()->elements_kind(),
3295                                       representation, instr->base_offset());
3296   }
3297 
3298   __ Load(result, mem_op, representation);
3299 
3300   if (instr->hydrogen()->RequiresHoleCheck()) {
3301     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3302       DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi);
3303     } else {
3304       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3305                        Deoptimizer::kHole);
3306     }
3307   } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3308     DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3309     Label done;
3310     __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
3311     __ B(ne, &done);
3312     if (info()->IsStub()) {
3313       // A stub can safely convert the hole to undefined only if the array
3314       // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
3315       // it needs to bail out.
3316       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3317       __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
3318       __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
3319       DeoptimizeIf(ne, instr, Deoptimizer::kHole);
3320     }
3321     __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3322     __ Bind(&done);
3323   }
3324 }
3325 
3326 
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)3327 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3328   DCHECK(ToRegister(instr->context()).is(cp));
3329   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3330   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3331 
3332   EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3333 
3334   Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate()).code();
3335   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3336 
3337   DCHECK(ToRegister(instr->result()).Is(x0));
3338 }
3339 
3340 
DoLoadNamedField(LLoadNamedField * instr)3341 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3342   HObjectAccess access = instr->hydrogen()->access();
3343   int offset = access.offset();
3344   Register object = ToRegister(instr->object());
3345 
3346   if (access.IsExternalMemory()) {
3347     Register result = ToRegister(instr->result());
3348     __ Load(result, MemOperand(object, offset), access.representation());
3349     return;
3350   }
3351 
3352   if (instr->hydrogen()->representation().IsDouble()) {
3353     DCHECK(access.IsInobject());
3354     FPRegister result = ToDoubleRegister(instr->result());
3355     __ Ldr(result, FieldMemOperand(object, offset));
3356     return;
3357   }
3358 
3359   Register result = ToRegister(instr->result());
3360   Register source;
3361   if (access.IsInobject()) {
3362     source = object;
3363   } else {
3364     // Load the properties array, using result as a scratch register.
3365     __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3366     source = result;
3367   }
3368 
3369   if (access.representation().IsSmi() &&
3370       instr->hydrogen()->representation().IsInteger32()) {
3371     // Read int value directly from upper half of the smi.
3372     STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3373     STATIC_ASSERT(kSmiTag == 0);
3374     __ Load(result, UntagSmiFieldMemOperand(source, offset),
3375             Representation::Integer32());
3376   } else {
3377     __ Load(result, FieldMemOperand(source, offset), access.representation());
3378   }
3379 }
3380 
3381 
DoLoadNamedGeneric(LLoadNamedGeneric * instr)3382 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3383   DCHECK(ToRegister(instr->context()).is(cp));
3384   // LoadIC expects name and receiver in registers.
3385   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3386   __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
3387   EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
3388   Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate()).code();
3389   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3390 
3391   DCHECK(ToRegister(instr->result()).is(x0));
3392 }
3393 
3394 
DoLoadRoot(LLoadRoot * instr)3395 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3396   Register result = ToRegister(instr->result());
3397   __ LoadRoot(result, instr->index());
3398 }
3399 
3400 
DoMathAbs(LMathAbs * instr)3401 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3402   Representation r = instr->hydrogen()->value()->representation();
3403   if (r.IsDouble()) {
3404     DoubleRegister input = ToDoubleRegister(instr->value());
3405     DoubleRegister result = ToDoubleRegister(instr->result());
3406     __ Fabs(result, input);
3407   } else if (r.IsSmi() || r.IsInteger32()) {
3408     Register input = r.IsSmi() ? ToRegister(instr->value())
3409                                : ToRegister32(instr->value());
3410     Register result = r.IsSmi() ? ToRegister(instr->result())
3411                                 : ToRegister32(instr->result());
3412     __ Abs(result, input);
3413     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3414   }
3415 }
3416 
3417 
DoDeferredMathAbsTagged(LMathAbsTagged * instr,Label * exit,Label * allocation_entry)3418 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
3419                                        Label* exit,
3420                                        Label* allocation_entry) {
3421   // Handle the tricky cases of MathAbsTagged:
3422   //  - HeapNumber inputs.
3423   //    - Negative inputs produce a positive result, so a new HeapNumber is
3424   //      allocated to hold it.
3425   //    - Positive inputs are returned as-is, since there is no need to allocate
3426   //      a new HeapNumber for the result.
3427   //  - The (smi) input -0x80000000, produces +0x80000000, which does not fit
3428   //    a smi. In this case, the inline code sets the result and jumps directly
3429   //    to the allocation_entry label.
3430   DCHECK(instr->context() != NULL);
3431   DCHECK(ToRegister(instr->context()).is(cp));
3432   Register input = ToRegister(instr->value());
3433   Register temp1 = ToRegister(instr->temp1());
3434   Register temp2 = ToRegister(instr->temp2());
3435   Register result_bits = ToRegister(instr->temp3());
3436   Register result = ToRegister(instr->result());
3437 
3438   Label runtime_allocation;
3439 
3440   // Deoptimize if the input is not a HeapNumber.
3441   DeoptimizeIfNotHeapNumber(input, instr);
3442 
3443   // If the argument is positive, we can return it as-is, without any need to
3444   // allocate a new HeapNumber for the result. We have to do this in integer
3445   // registers (rather than with fabs) because we need to be able to distinguish
3446   // the two zeroes.
3447   __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
3448   __ Mov(result, input);
3449   __ Tbz(result_bits, kXSignBit, exit);
3450 
3451   // Calculate abs(input) by clearing the sign bit.
3452   __ Bic(result_bits, result_bits, kXSignMask);
3453 
3454   // Allocate a new HeapNumber to hold the result.
3455   //  result_bits   The bit representation of the (double) result.
3456   __ Bind(allocation_entry);
3457   __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
3458   // The inline (non-deferred) code will store result_bits into result.
3459   __ B(exit);
3460 
3461   __ Bind(&runtime_allocation);
3462   if (FLAG_debug_code) {
3463     // Because result is in the pointer map, we need to make sure it has a valid
3464     // tagged value before we call the runtime. We speculatively set it to the
3465     // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
3466     // be valid.
3467     Label result_ok;
3468     Register input = ToRegister(instr->value());
3469     __ JumpIfSmi(result, &result_ok);
3470     __ Cmp(input, result);
3471     __ Assert(eq, kUnexpectedValue);
3472     __ Bind(&result_ok);
3473   }
3474 
3475   { PushSafepointRegistersScope scope(this);
3476     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3477                             instr->context());
3478     __ StoreToSafepointRegisterSlot(x0, result);
3479   }
3480   // The inline (non-deferred) code will store result_bits into result.
3481 }
3482 
3483 
DoMathAbsTagged(LMathAbsTagged * instr)3484 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
3485   // Class for deferred case.
3486   class DeferredMathAbsTagged: public LDeferredCode {
3487    public:
3488     DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
3489         : LDeferredCode(codegen), instr_(instr) { }
3490     virtual void Generate() {
3491       codegen()->DoDeferredMathAbsTagged(instr_, exit(),
3492                                          allocation_entry());
3493     }
3494     virtual LInstruction* instr() { return instr_; }
3495     Label* allocation_entry() { return &allocation; }
3496    private:
3497     LMathAbsTagged* instr_;
3498     Label allocation;
3499   };
3500 
3501   // TODO(jbramley): The early-exit mechanism would skip the new frame handling
3502   // in GenerateDeferredCode. Tidy this up.
3503   DCHECK(!NeedsDeferredFrame());
3504 
3505   DeferredMathAbsTagged* deferred =
3506       new(zone()) DeferredMathAbsTagged(this, instr);
3507 
3508   DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
3509          instr->hydrogen()->value()->representation().IsSmi());
3510   Register input = ToRegister(instr->value());
3511   Register result_bits = ToRegister(instr->temp3());
3512   Register result = ToRegister(instr->result());
3513   Label done;
3514 
3515   // Handle smis inline.
3516   // We can treat smis as 64-bit integers, since the (low-order) tag bits will
3517   // never get set by the negation. This is therefore the same as the Integer32
3518   // case in DoMathAbs, except that it operates on 64-bit values.
3519   STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3520 
3521   __ JumpIfNotSmi(input, deferred->entry());
3522 
3523   __ Abs(result, input, NULL, &done);
3524 
3525   // The result is the magnitude (abs) of the smallest value a smi can
3526   // represent, encoded as a double.
3527   __ Mov(result_bits, double_to_rawbits(0x80000000));
3528   __ B(deferred->allocation_entry());
3529 
3530   __ Bind(deferred->exit());
3531   __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
3532 
3533   __ Bind(&done);
3534 }
3535 
DoMathCos(LMathCos * instr)3536 void LCodeGen::DoMathCos(LMathCos* instr) {
3537   DCHECK(instr->IsMarkedAsCall());
3538   DCHECK(ToDoubleRegister(instr->value()).is(d0));
3539   __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3540   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3541 }
3542 
DoMathSin(LMathSin * instr)3543 void LCodeGen::DoMathSin(LMathSin* instr) {
3544   DCHECK(instr->IsMarkedAsCall());
3545   DCHECK(ToDoubleRegister(instr->value()).is(d0));
3546   __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3547   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3548 }
3549 
DoMathExp(LMathExp * instr)3550 void LCodeGen::DoMathExp(LMathExp* instr) {
3551   DCHECK(instr->IsMarkedAsCall());
3552   DCHECK(ToDoubleRegister(instr->value()).is(d0));
3553   __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3554   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3555 }
3556 
3557 
DoMathFloorD(LMathFloorD * instr)3558 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3559   DoubleRegister input = ToDoubleRegister(instr->value());
3560   DoubleRegister result = ToDoubleRegister(instr->result());
3561 
3562   __ Frintm(result, input);
3563 }
3564 
3565 
DoMathFloorI(LMathFloorI * instr)3566 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
3567   DoubleRegister input = ToDoubleRegister(instr->value());
3568   Register result = ToRegister(instr->result());
3569 
3570   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3571     DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
3572   }
3573 
3574   __ Fcvtms(result, input);
3575 
3576   // Check that the result fits into a 32-bit integer.
3577   //  - The result did not overflow.
3578   __ Cmp(result, Operand(result, SXTW));
3579   //  - The input was not NaN.
3580   __ Fccmp(input, input, NoFlag, eq);
3581   DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
3582 }
3583 
3584 
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)3585 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
3586   Register dividend = ToRegister32(instr->dividend());
3587   Register result = ToRegister32(instr->result());
3588   int32_t divisor = instr->divisor();
3589 
3590   // If the divisor is 1, return the dividend.
3591   if (divisor == 1) {
3592     __ Mov(result, dividend, kDiscardForSameWReg);
3593     return;
3594   }
3595 
3596   // If the divisor is positive, things are easy: There can be no deopts and we
3597   // can simply do an arithmetic right shift.
3598   int32_t shift = WhichPowerOf2Abs(divisor);
3599   if (divisor > 1) {
3600     __ Mov(result, Operand(dividend, ASR, shift));
3601     return;
3602   }
3603 
3604   // If the divisor is negative, we have to negate and handle edge cases.
3605   __ Negs(result, dividend);
3606   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3607     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3608   }
3609 
3610   // Dividing by -1 is basically negation, unless we overflow.
3611   if (divisor == -1) {
3612     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3613       DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3614     }
3615     return;
3616   }
3617 
3618   // If the negation could not overflow, simply shifting is OK.
3619   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3620     __ Mov(result, Operand(dividend, ASR, shift));
3621     return;
3622   }
3623 
3624   __ Asr(result, result, shift);
3625   __ Csel(result, result, kMinInt / divisor, vc);
3626 }
3627 
3628 
DoFlooringDivByConstI(LFlooringDivByConstI * instr)3629 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
3630   Register dividend = ToRegister32(instr->dividend());
3631   int32_t divisor = instr->divisor();
3632   Register result = ToRegister32(instr->result());
3633   DCHECK(!AreAliased(dividend, result));
3634 
3635   if (divisor == 0) {
3636     Deoptimize(instr, Deoptimizer::kDivisionByZero);
3637     return;
3638   }
3639 
3640   // Check for (0 / -x) that will produce negative zero.
3641   HMathFloorOfDiv* hdiv = instr->hydrogen();
3642   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
3643     DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
3644   }
3645 
3646   // Easy case: We need no dynamic check for the dividend and the flooring
3647   // division is the same as the truncating division.
3648   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
3649       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
3650     __ TruncatingDiv(result, dividend, Abs(divisor));
3651     if (divisor < 0) __ Neg(result, result);
3652     return;
3653   }
3654 
3655   // In the general case we may need to adjust before and after the truncating
3656   // division to get a flooring division.
3657   Register temp = ToRegister32(instr->temp());
3658   DCHECK(!AreAliased(temp, dividend, result));
3659   Label needs_adjustment, done;
3660   __ Cmp(dividend, 0);
3661   __ B(divisor > 0 ? lt : gt, &needs_adjustment);
3662   __ TruncatingDiv(result, dividend, Abs(divisor));
3663   if (divisor < 0) __ Neg(result, result);
3664   __ B(&done);
3665   __ Bind(&needs_adjustment);
3666   __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
3667   __ TruncatingDiv(result, temp, Abs(divisor));
3668   if (divisor < 0) __ Neg(result, result);
3669   __ Sub(result, result, Operand(1));
3670   __ Bind(&done);
3671 }
3672 
3673 
3674 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)3675 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
3676   Register dividend = ToRegister32(instr->dividend());
3677   Register divisor = ToRegister32(instr->divisor());
3678   Register remainder = ToRegister32(instr->temp());
3679   Register result = ToRegister32(instr->result());
3680 
3681   // This can't cause an exception on ARM, so we can speculatively
3682   // execute it already now.
3683   __ Sdiv(result, dividend, divisor);
3684 
3685   // Check for x / 0.
3686   DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
3687 
3688   // Check for (kMinInt / -1).
3689   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
3690     // The V flag will be set iff dividend == kMinInt.
3691     __ Cmp(dividend, 1);
3692     __ Ccmp(divisor, -1, NoFlag, vs);
3693     DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
3694   }
3695 
3696   // Check for (0 / -x) that will produce negative zero.
3697   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3698     __ Cmp(divisor, 0);
3699     __ Ccmp(dividend, 0, ZFlag, mi);
3700     // "divisor" can't be null because the code would have already been
3701     // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
3702     // In this case we need to deoptimize to produce a -0.
3703     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3704   }
3705 
3706   Label done;
3707   // If both operands have the same sign then we are done.
3708   __ Eor(remainder, dividend, divisor);
3709   __ Tbz(remainder, kWSignBit, &done);
3710 
3711   // Check if the result needs to be corrected.
3712   __ Msub(remainder, result, divisor, dividend);
3713   __ Cbz(remainder, &done);
3714   __ Sub(result, result, 1);
3715 
3716   __ Bind(&done);
3717 }
3718 
3719 
DoMathLog(LMathLog * instr)3720 void LCodeGen::DoMathLog(LMathLog* instr) {
3721   DCHECK(instr->IsMarkedAsCall());
3722   DCHECK(ToDoubleRegister(instr->value()).is(d0));
3723   __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3724   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3725 }
3726 
3727 
DoMathClz32(LMathClz32 * instr)3728 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3729   Register input = ToRegister32(instr->value());
3730   Register result = ToRegister32(instr->result());
3731   __ Clz(result, input);
3732 }
3733 
3734 
DoMathPowHalf(LMathPowHalf * instr)3735 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3736   DoubleRegister input = ToDoubleRegister(instr->value());
3737   DoubleRegister result = ToDoubleRegister(instr->result());
3738   Label done;
3739 
3740   // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
3741   //  Math.pow(-Infinity, 0.5) == +Infinity
3742   //  Math.pow(-0.0, 0.5) == +0.0
3743 
3744   // Catch -infinity inputs first.
3745   // TODO(jbramley): A constant infinity register would be helpful here.
3746   __ Fmov(double_scratch(), kFP64NegativeInfinity);
3747   __ Fcmp(double_scratch(), input);
3748   __ Fabs(result, input);
3749   __ B(&done, eq);
3750 
3751   // Add +0.0 to convert -0.0 to +0.0.
3752   __ Fadd(double_scratch(), input, fp_zero);
3753   __ Fsqrt(result, double_scratch());
3754 
3755   __ Bind(&done);
3756 }
3757 
3758 
DoPower(LPower * instr)3759 void LCodeGen::DoPower(LPower* instr) {
3760   Representation exponent_type = instr->hydrogen()->right()->representation();
3761   // Having marked this as a call, we can use any registers.
3762   // Just make sure that the input/output registers are the expected ones.
3763   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3764   Register integer_exponent = MathPowIntegerDescriptor::exponent();
3765   DCHECK(!instr->right()->IsDoubleRegister() ||
3766          ToDoubleRegister(instr->right()).is(d1));
3767   DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
3768          ToRegister(instr->right()).is(tagged_exponent));
3769   DCHECK(!exponent_type.IsInteger32() ||
3770          ToRegister(instr->right()).is(integer_exponent));
3771   DCHECK(ToDoubleRegister(instr->left()).is(d0));
3772   DCHECK(ToDoubleRegister(instr->result()).is(d0));
3773 
3774   if (exponent_type.IsSmi()) {
3775     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3776     __ CallStub(&stub);
3777   } else if (exponent_type.IsTagged()) {
3778     Label no_deopt;
3779     __ JumpIfSmi(tagged_exponent, &no_deopt);
3780     DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
3781     __ Bind(&no_deopt);
3782     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3783     __ CallStub(&stub);
3784   } else if (exponent_type.IsInteger32()) {
3785     // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
3786     // supports large integer exponents.
3787     __ Sxtw(integer_exponent, integer_exponent);
3788     MathPowStub stub(isolate(), MathPowStub::INTEGER);
3789     __ CallStub(&stub);
3790   } else {
3791     DCHECK(exponent_type.IsDouble());
3792     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3793     __ CallStub(&stub);
3794   }
3795 }
3796 
3797 
DoMathRoundD(LMathRoundD * instr)3798 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
3799   DoubleRegister input = ToDoubleRegister(instr->value());
3800   DoubleRegister result = ToDoubleRegister(instr->result());
3801   DoubleRegister scratch_d = double_scratch();
3802 
3803   DCHECK(!AreAliased(input, result, scratch_d));
3804 
3805   Label done;
3806 
3807   __ Frinta(result, input);
3808   __ Fcmp(input, 0.0);
3809   __ Fccmp(result, input, ZFlag, lt);
3810   // The result is correct if the input was in [-0, +infinity], or was a
3811   // negative integral value.
3812   __ B(eq, &done);
3813 
3814   // Here the input is negative, non integral, with an exponent lower than 52.
3815   // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
3816   // case. So we can safely add 0.5.
3817   __ Fmov(scratch_d, 0.5);
3818   __ Fadd(result, input, scratch_d);
3819   __ Frintm(result, result);
3820   // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
3821   __ Fabs(result, result);
3822   __ Fneg(result, result);
3823 
3824   __ Bind(&done);
3825 }
3826 
3827 
DoMathRoundI(LMathRoundI * instr)3828 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
3829   DoubleRegister input = ToDoubleRegister(instr->value());
3830   DoubleRegister temp = ToDoubleRegister(instr->temp1());
3831   DoubleRegister dot_five = double_scratch();
3832   Register result = ToRegister(instr->result());
3833   Label done;
3834 
3835   // Math.round() rounds to the nearest integer, with ties going towards
3836   // +infinity. This does not match any IEEE-754 rounding mode.
3837   //  - Infinities and NaNs are propagated unchanged, but cause deopts because
3838   //    they can't be represented as integers.
3839   //  - The sign of the result is the same as the sign of the input. This means
3840   //    that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
3841   //    result of -0.0.
3842 
3843   // Add 0.5 and round towards -infinity.
3844   __ Fmov(dot_five, 0.5);
3845   __ Fadd(temp, input, dot_five);
3846   __ Fcvtms(result, temp);
3847 
3848   // The result is correct if:
3849   //  result is not 0, as the input could be NaN or [-0.5, -0.0].
3850   //  result is not 1, as 0.499...94 will wrongly map to 1.
3851   //  result fits in 32 bits.
3852   __ Cmp(result, Operand(result.W(), SXTW));
3853   __ Ccmp(result, 1, ZFlag, eq);
3854   __ B(hi, &done);
3855 
3856   // At this point, we have to handle possible inputs of NaN or numbers in the
3857   // range [-0.5, 1.5[, or numbers larger than 32 bits.
3858 
3859   // Deoptimize if the result > 1, as it must be larger than 32 bits.
3860   __ Cmp(result, 1);
3861   DeoptimizeIf(hi, instr, Deoptimizer::kOverflow);
3862 
3863   // Deoptimize for negative inputs, which at this point are only numbers in
3864   // the range [-0.5, -0.0]
3865   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3866     __ Fmov(result, input);
3867     DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero);
3868   }
3869 
3870   // Deoptimize if the input was NaN.
3871   __ Fcmp(input, dot_five);
3872   DeoptimizeIf(vs, instr, Deoptimizer::kNaN);
3873 
3874   // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
3875   // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
3876   // else 0; we avoid dealing with 0.499...94 directly.
3877   __ Cset(result, ge);
3878   __ Bind(&done);
3879 }
3880 
3881 
DoMathFround(LMathFround * instr)3882 void LCodeGen::DoMathFround(LMathFround* instr) {
3883   DoubleRegister input = ToDoubleRegister(instr->value());
3884   DoubleRegister result = ToDoubleRegister(instr->result());
3885   __ Fcvt(result.S(), input);
3886   __ Fcvt(result, result.S());
3887 }
3888 
3889 
DoMathSqrt(LMathSqrt * instr)3890 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3891   DoubleRegister input = ToDoubleRegister(instr->value());
3892   DoubleRegister result = ToDoubleRegister(instr->result());
3893   __ Fsqrt(result, input);
3894 }
3895 
3896 
DoMathMinMax(LMathMinMax * instr)3897 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
3898   HMathMinMax::Operation op = instr->hydrogen()->operation();
3899   if (instr->hydrogen()->representation().IsInteger32()) {
3900     Register result = ToRegister32(instr->result());
3901     Register left = ToRegister32(instr->left());
3902     Operand right = ToOperand32(instr->right());
3903 
3904     __ Cmp(left, right);
3905     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
3906   } else if (instr->hydrogen()->representation().IsSmi()) {
3907     Register result = ToRegister(instr->result());
3908     Register left = ToRegister(instr->left());
3909     Operand right = ToOperand(instr->right());
3910 
3911     __ Cmp(left, right);
3912     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
3913   } else {
3914     DCHECK(instr->hydrogen()->representation().IsDouble());
3915     DoubleRegister result = ToDoubleRegister(instr->result());
3916     DoubleRegister left = ToDoubleRegister(instr->left());
3917     DoubleRegister right = ToDoubleRegister(instr->right());
3918 
3919     if (op == HMathMinMax::kMathMax) {
3920       __ Fmax(result, left, right);
3921     } else {
3922       DCHECK(op == HMathMinMax::kMathMin);
3923       __ Fmin(result, left, right);
3924     }
3925   }
3926 }
3927 
3928 
DoModByPowerOf2I(LModByPowerOf2I * instr)3929 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
3930   Register dividend = ToRegister32(instr->dividend());
3931   int32_t divisor = instr->divisor();
3932   DCHECK(dividend.is(ToRegister32(instr->result())));
3933 
3934   // Theoretically, a variation of the branch-free code for integer division by
3935   // a power of 2 (calculating the remainder via an additional multiplication
3936   // (which gets simplified to an 'and') and subtraction) should be faster, and
3937   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
3938   // indicate that positive dividends are heavily favored, so the branching
3939   // version performs better.
3940   HMod* hmod = instr->hydrogen();
3941   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
3942   Label dividend_is_not_negative, done;
3943   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
3944     __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
3945     // Note that this is correct even for kMinInt operands.
3946     __ Neg(dividend, dividend);
3947     __ And(dividend, dividend, mask);
3948     __ Negs(dividend, dividend);
3949     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
3950       DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3951     }
3952     __ B(&done);
3953   }
3954 
3955   __ bind(&dividend_is_not_negative);
3956   __ And(dividend, dividend, mask);
3957   __ bind(&done);
3958 }
3959 
3960 
DoModByConstI(LModByConstI * instr)3961 void LCodeGen::DoModByConstI(LModByConstI* instr) {
3962   Register dividend = ToRegister32(instr->dividend());
3963   int32_t divisor = instr->divisor();
3964   Register result = ToRegister32(instr->result());
3965   Register temp = ToRegister32(instr->temp());
3966   DCHECK(!AreAliased(dividend, result, temp));
3967 
3968   if (divisor == 0) {
3969     Deoptimize(instr, Deoptimizer::kDivisionByZero);
3970     return;
3971   }
3972 
3973   __ TruncatingDiv(result, dividend, Abs(divisor));
3974   __ Sxtw(dividend.X(), dividend);
3975   __ Mov(temp, Abs(divisor));
3976   __ Smsubl(result.X(), result, temp, dividend.X());
3977 
3978   // Check for negative zero.
3979   HMod* hmod = instr->hydrogen();
3980   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
3981     Label remainder_not_zero;
3982     __ Cbnz(result, &remainder_not_zero);
3983     DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
3984     __ bind(&remainder_not_zero);
3985   }
3986 }
3987 
3988 
DoModI(LModI * instr)3989 void LCodeGen::DoModI(LModI* instr) {
3990   Register dividend = ToRegister32(instr->left());
3991   Register divisor = ToRegister32(instr->right());
3992   Register result = ToRegister32(instr->result());
3993 
3994   Label done;
3995   // modulo = dividend - quotient * divisor
3996   __ Sdiv(result, dividend, divisor);
3997   if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
3998     DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
3999   }
4000   __ Msub(result, result, divisor, dividend);
4001   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4002     __ Cbnz(result, &done);
4003     DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
4004   }
4005   __ Bind(&done);
4006 }
4007 
4008 
DoMulConstIS(LMulConstIS * instr)4009 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
4010   DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
4011   bool is_smi = instr->hydrogen()->representation().IsSmi();
4012   Register result =
4013       is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
4014   Register left =
4015       is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left());
4016   int32_t right = ToInteger32(instr->right());
4017   DCHECK((right > -kMaxInt) && (right < kMaxInt));
4018 
4019   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4020   bool bailout_on_minus_zero =
4021     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4022 
4023   if (bailout_on_minus_zero) {
4024     if (right < 0) {
4025       // The result is -0 if right is negative and left is zero.
4026       DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero);
4027     } else if (right == 0) {
4028       // The result is -0 if the right is zero and the left is negative.
4029       DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero);
4030     }
4031   }
4032 
4033   switch (right) {
4034     // Cases which can detect overflow.
4035     case -1:
4036       if (can_overflow) {
4037         // Only 0x80000000 can overflow here.
4038         __ Negs(result, left);
4039         DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4040       } else {
4041         __ Neg(result, left);
4042       }
4043       break;
4044     case 0:
4045       // This case can never overflow.
4046       __ Mov(result, 0);
4047       break;
4048     case 1:
4049       // This case can never overflow.
4050       __ Mov(result, left, kDiscardForSameWReg);
4051       break;
4052     case 2:
4053       if (can_overflow) {
4054         __ Adds(result, left, left);
4055         DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4056       } else {
4057         __ Add(result, left, left);
4058       }
4059       break;
4060 
4061     default:
4062       // Multiplication by constant powers of two (and some related values)
4063       // can be done efficiently with shifted operands.
4064       int32_t right_abs = Abs(right);
4065 
4066       if (base::bits::IsPowerOfTwo32(right_abs)) {
4067         int right_log2 = WhichPowerOf2(right_abs);
4068 
4069         if (can_overflow) {
4070           Register scratch = result;
4071           DCHECK(!AreAliased(scratch, left));
4072           __ Cls(scratch, left);
4073           __ Cmp(scratch, right_log2);
4074           DeoptimizeIf(lt, instr, Deoptimizer::kOverflow);
4075         }
4076 
4077         if (right >= 0) {
4078           // result = left << log2(right)
4079           __ Lsl(result, left, right_log2);
4080         } else {
4081           // result = -left << log2(-right)
4082           if (can_overflow) {
4083             __ Negs(result, Operand(left, LSL, right_log2));
4084             DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4085           } else {
4086             __ Neg(result, Operand(left, LSL, right_log2));
4087           }
4088         }
4089         return;
4090       }
4091 
4092 
4093       // For the following cases, we could perform a conservative overflow check
4094       // with CLS as above. However the few cycles saved are likely not worth
4095       // the risk of deoptimizing more often than required.
4096       DCHECK(!can_overflow);
4097 
4098       if (right >= 0) {
4099         if (base::bits::IsPowerOfTwo32(right - 1)) {
4100           // result = left + left << log2(right - 1)
4101           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
4102         } else if (base::bits::IsPowerOfTwo32(right + 1)) {
4103           // result = -left + left << log2(right + 1)
4104           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
4105           __ Neg(result, result);
4106         } else {
4107           UNREACHABLE();
4108         }
4109       } else {
4110         if (base::bits::IsPowerOfTwo32(-right + 1)) {
4111           // result = left - left << log2(-right + 1)
4112           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
4113         } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
4114           // result = -left - left << log2(-right - 1)
4115           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
4116           __ Neg(result, result);
4117         } else {
4118           UNREACHABLE();
4119         }
4120       }
4121   }
4122 }
4123 
4124 
DoMulI(LMulI * instr)4125 void LCodeGen::DoMulI(LMulI* instr) {
4126   Register result = ToRegister32(instr->result());
4127   Register left = ToRegister32(instr->left());
4128   Register right = ToRegister32(instr->right());
4129 
4130   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4131   bool bailout_on_minus_zero =
4132     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4133 
4134   if (bailout_on_minus_zero && !left.Is(right)) {
4135     // If one operand is zero and the other is negative, the result is -0.
4136     //  - Set Z (eq) if either left or right, or both, are 0.
4137     __ Cmp(left, 0);
4138     __ Ccmp(right, 0, ZFlag, ne);
4139     //  - If so (eq), set N (mi) if left + right is negative.
4140     //  - Otherwise, clear N.
4141     __ Ccmn(left, right, NoFlag, eq);
4142     DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
4143   }
4144 
4145   if (can_overflow) {
4146     __ Smull(result.X(), left, right);
4147     __ Cmp(result.X(), Operand(result, SXTW));
4148     DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4149   } else {
4150     __ Mul(result, left, right);
4151   }
4152 }
4153 
4154 
DoMulS(LMulS * instr)4155 void LCodeGen::DoMulS(LMulS* instr) {
4156   Register result = ToRegister(instr->result());
4157   Register left = ToRegister(instr->left());
4158   Register right = ToRegister(instr->right());
4159 
4160   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4161   bool bailout_on_minus_zero =
4162     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4163 
4164   if (bailout_on_minus_zero && !left.Is(right)) {
4165     // If one operand is zero and the other is negative, the result is -0.
4166     //  - Set Z (eq) if either left or right, or both, are 0.
4167     __ Cmp(left, 0);
4168     __ Ccmp(right, 0, ZFlag, ne);
4169     //  - If so (eq), set N (mi) if left + right is negative.
4170     //  - Otherwise, clear N.
4171     __ Ccmn(left, right, NoFlag, eq);
4172     DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
4173   }
4174 
4175   STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
4176   if (can_overflow) {
4177     __ Smulh(result, left, right);
4178     __ Cmp(result, Operand(result.W(), SXTW));
4179     __ SmiTag(result);
4180     DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4181   } else {
4182     if (AreAliased(result, left, right)) {
4183       // All three registers are the same: half untag the input and then
4184       // multiply, giving a tagged result.
4185       STATIC_ASSERT((kSmiShift % 2) == 0);
4186       __ Asr(result, left, kSmiShift / 2);
4187       __ Mul(result, result, result);
4188     } else if (result.Is(left) && !left.Is(right)) {
4189       // Registers result and left alias, right is distinct: untag left into
4190       // result, and then multiply by right, giving a tagged result.
4191       __ SmiUntag(result, left);
4192       __ Mul(result, result, right);
4193     } else {
4194       DCHECK(!left.Is(result));
4195       // Registers result and right alias, left is distinct, or all registers
4196       // are distinct: untag right into result, and then multiply by left,
4197       // giving a tagged result.
4198       __ SmiUntag(result, right);
4199       __ Mul(result, left, result);
4200     }
4201   }
4202 }
4203 
4204 
DoDeferredNumberTagD(LNumberTagD * instr)4205 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4206   // TODO(3095996): Get rid of this. For now, we need to make the
4207   // result register contain a valid pointer because it is already
4208   // contained in the register pointer map.
4209   Register result = ToRegister(instr->result());
4210   __ Mov(result, 0);
4211 
4212   PushSafepointRegistersScope scope(this);
4213   // NumberTagU and NumberTagD use the context from the frame, rather than
4214   // the environment's HContext or HInlinedContext value.
4215   // They only call Runtime::kAllocateHeapNumber.
4216   // The corresponding HChange instructions are added in a phase that does
4217   // not have easy access to the local context.
4218   __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4219   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4220   RecordSafepointWithRegisters(
4221       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4222   __ StoreToSafepointRegisterSlot(x0, result);
4223 }
4224 
4225 
DoNumberTagD(LNumberTagD * instr)4226 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4227   class DeferredNumberTagD: public LDeferredCode {
4228    public:
4229     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4230         : LDeferredCode(codegen), instr_(instr) { }
4231     virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
4232     virtual LInstruction* instr() { return instr_; }
4233    private:
4234     LNumberTagD* instr_;
4235   };
4236 
4237   DoubleRegister input = ToDoubleRegister(instr->value());
4238   Register result = ToRegister(instr->result());
4239   Register temp1 = ToRegister(instr->temp1());
4240   Register temp2 = ToRegister(instr->temp2());
4241 
4242   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4243   if (FLAG_inline_new) {
4244     __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
4245   } else {
4246     __ B(deferred->entry());
4247   }
4248 
4249   __ Bind(deferred->exit());
4250   __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
4251 }
4252 
4253 
DoDeferredNumberTagU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2)4254 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
4255                                     LOperand* value,
4256                                     LOperand* temp1,
4257                                     LOperand* temp2) {
4258   Label slow, convert_and_store;
4259   Register src = ToRegister32(value);
4260   Register dst = ToRegister(instr->result());
4261   Register scratch1 = ToRegister(temp1);
4262 
4263   if (FLAG_inline_new) {
4264     Register scratch2 = ToRegister(temp2);
4265     __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
4266     __ B(&convert_and_store);
4267   }
4268 
4269   // Slow case: call the runtime system to do the number allocation.
4270   __ Bind(&slow);
4271   // TODO(3095996): Put a valid pointer value in the stack slot where the result
4272   // register is stored, as this register is in the pointer map, but contains an
4273   // integer value.
4274   __ Mov(dst, 0);
4275   {
4276     // Preserve the value of all registers.
4277     PushSafepointRegistersScope scope(this);
4278 
4279     // NumberTagU and NumberTagD use the context from the frame, rather than
4280     // the environment's HContext or HInlinedContext value.
4281     // They only call Runtime::kAllocateHeapNumber.
4282     // The corresponding HChange instructions are added in a phase that does
4283     // not have easy access to the local context.
4284     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4285     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4286     RecordSafepointWithRegisters(
4287       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4288     __ StoreToSafepointRegisterSlot(x0, dst);
4289   }
4290 
4291   // Convert number to floating point and store in the newly allocated heap
4292   // number.
4293   __ Bind(&convert_and_store);
4294   DoubleRegister dbl_scratch = double_scratch();
4295   __ Ucvtf(dbl_scratch, src);
4296   __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4297 }
4298 
4299 
DoNumberTagU(LNumberTagU * instr)4300 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4301   class DeferredNumberTagU: public LDeferredCode {
4302    public:
4303     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4304         : LDeferredCode(codegen), instr_(instr) { }
4305     virtual void Generate() {
4306       codegen()->DoDeferredNumberTagU(instr_,
4307                                       instr_->value(),
4308                                       instr_->temp1(),
4309                                       instr_->temp2());
4310     }
4311     virtual LInstruction* instr() { return instr_; }
4312    private:
4313     LNumberTagU* instr_;
4314   };
4315 
4316   Register value = ToRegister32(instr->value());
4317   Register result = ToRegister(instr->result());
4318 
4319   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4320   __ Cmp(value, Smi::kMaxValue);
4321   __ B(hi, deferred->entry());
4322   __ SmiTag(result, value.X());
4323   __ Bind(deferred->exit());
4324 }
4325 
4326 
DoNumberUntagD(LNumberUntagD * instr)4327 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4328   Register input = ToRegister(instr->value());
4329   Register scratch = ToRegister(instr->temp());
4330   DoubleRegister result = ToDoubleRegister(instr->result());
4331   bool can_convert_undefined_to_nan =
4332       instr->hydrogen()->can_convert_undefined_to_nan();
4333 
4334   Label done, load_smi;
4335 
4336   // Work out what untag mode we're working with.
4337   HValue* value = instr->hydrogen()->value();
4338   NumberUntagDMode mode = value->representation().IsSmi()
4339       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4340 
4341   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4342     __ JumpIfSmi(input, &load_smi);
4343 
4344     Label convert_undefined;
4345 
4346     // Heap number map check.
4347     if (can_convert_undefined_to_nan) {
4348       __ JumpIfNotHeapNumber(input, &convert_undefined);
4349     } else {
4350       DeoptimizeIfNotHeapNumber(input, instr);
4351     }
4352 
4353     // Load heap number.
4354     __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
4355     if (instr->hydrogen()->deoptimize_on_minus_zero()) {
4356       DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero);
4357     }
4358     __ B(&done);
4359 
4360     if (can_convert_undefined_to_nan) {
4361       __ Bind(&convert_undefined);
4362       DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
4363                           Deoptimizer::kNotAHeapNumberUndefined);
4364 
4365       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4366       __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4367       __ B(&done);
4368     }
4369 
4370   } else {
4371     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4372     // Fall through to load_smi.
4373   }
4374 
4375   // Smi to double register conversion.
4376   __ Bind(&load_smi);
4377   __ SmiUntagToDouble(result, input);
4378 
4379   __ Bind(&done);
4380 }
4381 
4382 
DoOsrEntry(LOsrEntry * instr)4383 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4384   // This is a pseudo-instruction that ensures that the environment here is
4385   // properly registered for deoptimization and records the assembler's PC
4386   // offset.
4387   LEnvironment* environment = instr->environment();
4388 
4389   // If the environment were already registered, we would have no way of
4390   // backpatching it with the spill slot operands.
4391   DCHECK(!environment->HasBeenRegistered());
4392   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4393 
4394   GenerateOsrPrologue();
4395 }
4396 
4397 
DoParameter(LParameter * instr)4398 void LCodeGen::DoParameter(LParameter* instr) {
4399   // Nothing to do.
4400 }
4401 
4402 
DoPreparePushArguments(LPreparePushArguments * instr)4403 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
4404   __ PushPreamble(instr->argc(), kPointerSize);
4405 }
4406 
4407 
DoPushArguments(LPushArguments * instr)4408 void LCodeGen::DoPushArguments(LPushArguments* instr) {
4409   MacroAssembler::PushPopQueue args(masm());
4410 
4411   for (int i = 0; i < instr->ArgumentCount(); ++i) {
4412     LOperand* arg = instr->argument(i);
4413     if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
4414       Abort(kDoPushArgumentNotImplementedForDoubleType);
4415       return;
4416     }
4417     args.Queue(ToRegister(arg));
4418   }
4419 
4420   // The preamble was done by LPreparePushArguments.
4421   args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
4422 
4423   RecordPushedArgumentsDelta(instr->ArgumentCount());
4424 }
4425 
4426 
DoReturn(LReturn * instr)4427 void LCodeGen::DoReturn(LReturn* instr) {
4428   if (FLAG_trace && info()->IsOptimizing()) {
4429     // Push the return value on the stack as the parameter.
4430     // Runtime::TraceExit returns its parameter in x0.  We're leaving the code
4431     // managed by the register allocator and tearing down the frame, it's
4432     // safe to write to the context register.
4433     __ Push(x0);
4434     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4435     __ CallRuntime(Runtime::kTraceExit);
4436   }
4437 
4438   if (info()->saves_caller_doubles()) {
4439     RestoreCallerDoubles();
4440   }
4441 
4442   if (NeedsEagerFrame()) {
4443     Register stack_pointer = masm()->StackPointer();
4444     __ Mov(stack_pointer, fp);
4445     __ Pop(fp, lr);
4446   }
4447 
4448   if (instr->has_constant_parameter_count()) {
4449     int parameter_count = ToInteger32(instr->constant_parameter_count());
4450     __ Drop(parameter_count + 1);
4451   } else {
4452     DCHECK(info()->IsStub());  // Functions would need to drop one more value.
4453     Register parameter_count = ToRegister(instr->parameter_count());
4454     __ DropBySMI(parameter_count);
4455   }
4456   __ Ret();
4457 }
4458 
4459 
BuildSeqStringOperand(Register string,Register temp,LOperand * index,String::Encoding encoding)4460 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
4461                                            Register temp,
4462                                            LOperand* index,
4463                                            String::Encoding encoding) {
4464   if (index->IsConstantOperand()) {
4465     int offset = ToInteger32(LConstantOperand::cast(index));
4466     if (encoding == String::TWO_BYTE_ENCODING) {
4467       offset *= kUC16Size;
4468     }
4469     STATIC_ASSERT(kCharSize == 1);
4470     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
4471   }
4472 
4473   __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
4474   if (encoding == String::ONE_BYTE_ENCODING) {
4475     return MemOperand(temp, ToRegister32(index), SXTW);
4476   } else {
4477     STATIC_ASSERT(kUC16Size == 2);
4478     return MemOperand(temp, ToRegister32(index), SXTW, 1);
4479   }
4480 }
4481 
4482 
DoSeqStringGetChar(LSeqStringGetChar * instr)4483 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
4484   String::Encoding encoding = instr->hydrogen()->encoding();
4485   Register string = ToRegister(instr->string());
4486   Register result = ToRegister(instr->result());
4487   Register temp = ToRegister(instr->temp());
4488 
4489   if (FLAG_debug_code) {
4490     // Even though this lithium instruction comes with a temp register, we
4491     // can't use it here because we want to use "AtStart" constraints on the
4492     // inputs and the debug code here needs a scratch register.
4493     UseScratchRegisterScope temps(masm());
4494     Register dbg_temp = temps.AcquireX();
4495 
4496     __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
4497     __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
4498 
4499     __ And(dbg_temp, dbg_temp,
4500            Operand(kStringRepresentationMask | kStringEncodingMask));
4501     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4502     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4503     __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
4504                              ? one_byte_seq_type : two_byte_seq_type));
4505     __ Check(eq, kUnexpectedStringType);
4506   }
4507 
4508   MemOperand operand =
4509       BuildSeqStringOperand(string, temp, instr->index(), encoding);
4510   if (encoding == String::ONE_BYTE_ENCODING) {
4511     __ Ldrb(result, operand);
4512   } else {
4513     __ Ldrh(result, operand);
4514   }
4515 }
4516 
4517 
DoSeqStringSetChar(LSeqStringSetChar * instr)4518 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
4519   String::Encoding encoding = instr->hydrogen()->encoding();
4520   Register string = ToRegister(instr->string());
4521   Register value = ToRegister(instr->value());
4522   Register temp = ToRegister(instr->temp());
4523 
4524   if (FLAG_debug_code) {
4525     DCHECK(ToRegister(instr->context()).is(cp));
4526     Register index = ToRegister(instr->index());
4527     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4528     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4529     int encoding_mask =
4530         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
4531         ? one_byte_seq_type : two_byte_seq_type;
4532     __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
4533                                  encoding_mask);
4534   }
4535   MemOperand operand =
4536       BuildSeqStringOperand(string, temp, instr->index(), encoding);
4537   if (encoding == String::ONE_BYTE_ENCODING) {
4538     __ Strb(value, operand);
4539   } else {
4540     __ Strh(value, operand);
4541   }
4542 }
4543 
4544 
DoSmiTag(LSmiTag * instr)4545 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4546   HChange* hchange = instr->hydrogen();
4547   Register input = ToRegister(instr->value());
4548   Register output = ToRegister(instr->result());
4549   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4550       hchange->value()->CheckFlag(HValue::kUint32)) {
4551     DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow);
4552   }
4553   __ SmiTag(output, input);
4554 }
4555 
4556 
DoSmiUntag(LSmiUntag * instr)4557 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4558   Register input = ToRegister(instr->value());
4559   Register result = ToRegister(instr->result());
4560   Label done, untag;
4561 
4562   if (instr->needs_check()) {
4563     DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi);
4564   }
4565 
4566   __ Bind(&untag);
4567   __ SmiUntag(result, input);
4568   __ Bind(&done);
4569 }
4570 
4571 
DoShiftI(LShiftI * instr)4572 void LCodeGen::DoShiftI(LShiftI* instr) {
4573   LOperand* right_op = instr->right();
4574   Register left = ToRegister32(instr->left());
4575   Register result = ToRegister32(instr->result());
4576 
4577   if (right_op->IsRegister()) {
4578     Register right = ToRegister32(instr->right());
4579     switch (instr->op()) {
4580       case Token::ROR: __ Ror(result, left, right); break;
4581       case Token::SAR: __ Asr(result, left, right); break;
4582       case Token::SHL: __ Lsl(result, left, right); break;
4583       case Token::SHR:
4584         __ Lsr(result, left, right);
4585         if (instr->can_deopt()) {
4586           // If `left >>> right` >= 0x80000000, the result is not representable
4587           // in a signed 32-bit smi.
4588           DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
4589         }
4590         break;
4591       default: UNREACHABLE();
4592     }
4593   } else {
4594     DCHECK(right_op->IsConstantOperand());
4595     int shift_count = JSShiftAmountFromLConstant(right_op);
4596     if (shift_count == 0) {
4597       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4598         DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
4599       }
4600       __ Mov(result, left, kDiscardForSameWReg);
4601     } else {
4602       switch (instr->op()) {
4603         case Token::ROR: __ Ror(result, left, shift_count); break;
4604         case Token::SAR: __ Asr(result, left, shift_count); break;
4605         case Token::SHL: __ Lsl(result, left, shift_count); break;
4606         case Token::SHR: __ Lsr(result, left, shift_count); break;
4607         default: UNREACHABLE();
4608       }
4609     }
4610   }
4611 }
4612 
4613 
DoShiftS(LShiftS * instr)4614 void LCodeGen::DoShiftS(LShiftS* instr) {
4615   LOperand* right_op = instr->right();
4616   Register left = ToRegister(instr->left());
4617   Register result = ToRegister(instr->result());
4618 
4619   if (right_op->IsRegister()) {
4620     Register right = ToRegister(instr->right());
4621 
4622     // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
4623     // Since we're handling smis in X registers, we have to extract these bits
4624     // explicitly.
4625     __ Ubfx(result, right, kSmiShift, 5);
4626 
4627     switch (instr->op()) {
4628       case Token::ROR: {
4629         // This is the only case that needs a scratch register. To keep things
4630         // simple for the other cases, borrow a MacroAssembler scratch register.
4631         UseScratchRegisterScope temps(masm());
4632         Register temp = temps.AcquireW();
4633         __ SmiUntag(temp, left);
4634         __ Ror(result.W(), temp.W(), result.W());
4635         __ SmiTag(result);
4636         break;
4637       }
4638       case Token::SAR:
4639         __ Asr(result, left, result);
4640         __ Bic(result, result, kSmiShiftMask);
4641         break;
4642       case Token::SHL:
4643         __ Lsl(result, left, result);
4644         break;
4645       case Token::SHR:
4646         __ Lsr(result, left, result);
4647         __ Bic(result, result, kSmiShiftMask);
4648         if (instr->can_deopt()) {
4649           // If `left >>> right` >= 0x80000000, the result is not representable
4650           // in a signed 32-bit smi.
4651           DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
4652         }
4653         break;
4654       default: UNREACHABLE();
4655     }
4656   } else {
4657     DCHECK(right_op->IsConstantOperand());
4658     int shift_count = JSShiftAmountFromLConstant(right_op);
4659     if (shift_count == 0) {
4660       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4661         DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
4662       }
4663       __ Mov(result, left);
4664     } else {
4665       switch (instr->op()) {
4666         case Token::ROR:
4667           __ SmiUntag(result, left);
4668           __ Ror(result.W(), result.W(), shift_count);
4669           __ SmiTag(result);
4670           break;
4671         case Token::SAR:
4672           __ Asr(result, left, shift_count);
4673           __ Bic(result, result, kSmiShiftMask);
4674           break;
4675         case Token::SHL:
4676           __ Lsl(result, left, shift_count);
4677           break;
4678         case Token::SHR:
4679           __ Lsr(result, left, shift_count);
4680           __ Bic(result, result, kSmiShiftMask);
4681           break;
4682         default: UNREACHABLE();
4683       }
4684     }
4685   }
4686 }
4687 
4688 
DoDebugBreak(LDebugBreak * instr)4689 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
4690   __ Debug("LDebugBreak", 0, BREAK);
4691 }
4692 
4693 
DoDeclareGlobals(LDeclareGlobals * instr)4694 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
4695   DCHECK(ToRegister(instr->context()).is(cp));
4696   Register scratch1 = x5;
4697   Register scratch2 = x6;
4698   DCHECK(instr->IsMarkedAsCall());
4699 
4700   // TODO(all): if Mov could handle object in new space then it could be used
4701   // here.
4702   __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
4703   __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
4704   __ Push(scratch1, scratch2);
4705   CallRuntime(Runtime::kDeclareGlobals, instr);
4706 }
4707 
4708 
DoDeferredStackCheck(LStackCheck * instr)4709 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4710   PushSafepointRegistersScope scope(this);
4711   LoadContextFromDeferred(instr->context());
4712   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4713   RecordSafepointWithLazyDeopt(
4714       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4715   DCHECK(instr->HasEnvironment());
4716   LEnvironment* env = instr->environment();
4717   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4718 }
4719 
4720 
DoStackCheck(LStackCheck * instr)4721 void LCodeGen::DoStackCheck(LStackCheck* instr) {
4722   class DeferredStackCheck: public LDeferredCode {
4723    public:
4724     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4725         : LDeferredCode(codegen), instr_(instr) { }
4726     virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4727     virtual LInstruction* instr() { return instr_; }
4728    private:
4729     LStackCheck* instr_;
4730   };
4731 
4732   DCHECK(instr->HasEnvironment());
4733   LEnvironment* env = instr->environment();
4734   // There is no LLazyBailout instruction for stack-checks. We have to
4735   // prepare for lazy deoptimization explicitly here.
4736   if (instr->hydrogen()->is_function_entry()) {
4737     // Perform stack overflow check.
4738     Label done;
4739     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4740     __ B(hs, &done);
4741 
4742     PredictableCodeSizeScope predictable(masm_,
4743                                          Assembler::kCallSizeWithRelocation);
4744     DCHECK(instr->context()->IsRegister());
4745     DCHECK(ToRegister(instr->context()).is(cp));
4746     CallCode(isolate()->builtins()->StackCheck(),
4747              RelocInfo::CODE_TARGET,
4748              instr);
4749     __ Bind(&done);
4750   } else {
4751     DCHECK(instr->hydrogen()->is_backwards_branch());
4752     // Perform stack overflow check if this goto needs it before jumping.
4753     DeferredStackCheck* deferred_stack_check =
4754         new(zone()) DeferredStackCheck(this, instr);
4755     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4756     __ B(lo, deferred_stack_check->entry());
4757 
4758     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4759     __ Bind(instr->done_label());
4760     deferred_stack_check->SetExit(instr->done_label());
4761     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4762     // Don't record a deoptimization index for the safepoint here.
4763     // This will be done explicitly when emitting call and the safepoint in
4764     // the deferred code.
4765   }
4766 }
4767 
4768 
DoStoreCodeEntry(LStoreCodeEntry * instr)4769 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4770   Register function = ToRegister(instr->function());
4771   Register code_object = ToRegister(instr->code_object());
4772   Register temp = ToRegister(instr->temp());
4773   __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
4774   __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4775 }
4776 
4777 
DoStoreContextSlot(LStoreContextSlot * instr)4778 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
4779   Register context = ToRegister(instr->context());
4780   Register value = ToRegister(instr->value());
4781   Register scratch = ToRegister(instr->temp());
4782   MemOperand target = ContextMemOperand(context, instr->slot_index());
4783 
4784   Label skip_assignment;
4785 
4786   if (instr->hydrogen()->RequiresHoleCheck()) {
4787     __ Ldr(scratch, target);
4788     if (instr->hydrogen()->DeoptimizesOnHole()) {
4789       DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr,
4790                        Deoptimizer::kHole);
4791     } else {
4792       __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
4793     }
4794   }
4795 
4796   __ Str(value, target);
4797   if (instr->hydrogen()->NeedsWriteBarrier()) {
4798     SmiCheck check_needed =
4799         instr->hydrogen()->value()->type().IsHeapObject()
4800             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4801     __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value,
4802                               scratch, GetLinkRegisterState(), kSaveFPRegs,
4803                               EMIT_REMEMBERED_SET, check_needed);
4804   }
4805   __ Bind(&skip_assignment);
4806 }
4807 
4808 
DoStoreKeyedExternal(LStoreKeyedExternal * instr)4809 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
4810   Register ext_ptr = ToRegister(instr->elements());
4811   Register key = no_reg;
4812   Register scratch;
4813   ElementsKind elements_kind = instr->elements_kind();
4814 
4815   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4816   bool key_is_constant = instr->key()->IsConstantOperand();
4817   int constant_key = 0;
4818   if (key_is_constant) {
4819     DCHECK(instr->temp() == NULL);
4820     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4821     if (constant_key & 0xf0000000) {
4822       Abort(kArrayIndexConstantValueTooBig);
4823     }
4824   } else {
4825     key = ToRegister(instr->key());
4826     scratch = ToRegister(instr->temp());
4827   }
4828 
4829   MemOperand dst =
4830     PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
4831                                      key_is_constant, constant_key,
4832                                      elements_kind,
4833                                      instr->base_offset());
4834 
4835   if (elements_kind == FLOAT32_ELEMENTS) {
4836     DoubleRegister value = ToDoubleRegister(instr->value());
4837     DoubleRegister dbl_scratch = double_scratch();
4838     __ Fcvt(dbl_scratch.S(), value);
4839     __ Str(dbl_scratch.S(), dst);
4840   } else if (elements_kind == FLOAT64_ELEMENTS) {
4841     DoubleRegister value = ToDoubleRegister(instr->value());
4842     __ Str(value, dst);
4843   } else {
4844     Register value = ToRegister(instr->value());
4845 
4846     switch (elements_kind) {
4847       case UINT8_ELEMENTS:
4848       case UINT8_CLAMPED_ELEMENTS:
4849       case INT8_ELEMENTS:
4850         __ Strb(value, dst);
4851         break;
4852       case INT16_ELEMENTS:
4853       case UINT16_ELEMENTS:
4854         __ Strh(value, dst);
4855         break;
4856       case INT32_ELEMENTS:
4857       case UINT32_ELEMENTS:
4858         __ Str(value.W(), dst);
4859         break;
4860       case FLOAT32_ELEMENTS:
4861       case FLOAT64_ELEMENTS:
4862       case FAST_DOUBLE_ELEMENTS:
4863       case FAST_ELEMENTS:
4864       case FAST_SMI_ELEMENTS:
4865       case FAST_HOLEY_DOUBLE_ELEMENTS:
4866       case FAST_HOLEY_ELEMENTS:
4867       case FAST_HOLEY_SMI_ELEMENTS:
4868       case DICTIONARY_ELEMENTS:
4869       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4870       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4871       case FAST_STRING_WRAPPER_ELEMENTS:
4872       case SLOW_STRING_WRAPPER_ELEMENTS:
4873       case NO_ELEMENTS:
4874         UNREACHABLE();
4875         break;
4876     }
4877   }
4878 }
4879 
4880 
DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble * instr)4881 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
4882   Register elements = ToRegister(instr->elements());
4883   DoubleRegister value = ToDoubleRegister(instr->value());
4884   MemOperand mem_op;
4885 
4886   if (instr->key()->IsConstantOperand()) {
4887     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4888     if (constant_key & 0xf0000000) {
4889       Abort(kArrayIndexConstantValueTooBig);
4890     }
4891     int offset = instr->base_offset() + constant_key * kDoubleSize;
4892     mem_op = MemOperand(elements, offset);
4893   } else {
4894     Register store_base = ToRegister(instr->temp());
4895     Register key = ToRegister(instr->key());
4896     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
4897     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
4898                                       instr->hydrogen()->elements_kind(),
4899                                       instr->hydrogen()->representation(),
4900                                       instr->base_offset());
4901   }
4902 
4903   if (instr->NeedsCanonicalization()) {
4904     __ CanonicalizeNaN(double_scratch(), value);
4905     __ Str(double_scratch(), mem_op);
4906   } else {
4907     __ Str(value, mem_op);
4908   }
4909 }
4910 
4911 
DoStoreKeyedFixed(LStoreKeyedFixed * instr)4912 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
4913   Register value = ToRegister(instr->value());
4914   Register elements = ToRegister(instr->elements());
4915   Register scratch = no_reg;
4916   Register store_base = no_reg;
4917   Register key = no_reg;
4918   MemOperand mem_op;
4919 
4920   if (!instr->key()->IsConstantOperand() ||
4921       instr->hydrogen()->NeedsWriteBarrier()) {
4922     scratch = ToRegister(instr->temp());
4923   }
4924 
4925   Representation representation = instr->hydrogen()->value()->representation();
4926   if (instr->key()->IsConstantOperand()) {
4927     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4928     int offset = instr->base_offset() +
4929         ToInteger32(const_operand) * kPointerSize;
4930     store_base = elements;
4931     if (representation.IsInteger32()) {
4932       DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4933       DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
4934       STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
4935       STATIC_ASSERT(kSmiTag == 0);
4936       mem_op = UntagSmiMemOperand(store_base, offset);
4937     } else {
4938       mem_op = MemOperand(store_base, offset);
4939     }
4940   } else {
4941     store_base = scratch;
4942     key = ToRegister(instr->key());
4943     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
4944 
4945     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
4946                                       instr->hydrogen()->elements_kind(),
4947                                       representation, instr->base_offset());
4948   }
4949 
4950   __ Store(value, mem_op, representation);
4951 
4952   if (instr->hydrogen()->NeedsWriteBarrier()) {
4953     DCHECK(representation.IsTagged());
4954     // This assignment may cause element_addr to alias store_base.
4955     Register element_addr = scratch;
4956     SmiCheck check_needed =
4957         instr->hydrogen()->value()->type().IsHeapObject()
4958             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4959     // Compute address of modified element and store it into key register.
4960     __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
4961     __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
4962                    kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
4963                    instr->hydrogen()->PointersToHereCheckForValue());
4964   }
4965 }
4966 
4967 
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)4968 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4969   DCHECK(ToRegister(instr->context()).is(cp));
4970   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4971   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4972   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4973 
4974   EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4975 
4976   Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4977                         isolate(), instr->language_mode())
4978                         .code();
4979   CallCode(ic, RelocInfo::CODE_TARGET, instr);
4980 }
4981 
4982 
DoMaybeGrowElements(LMaybeGrowElements * instr)4983 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4984   class DeferredMaybeGrowElements final : public LDeferredCode {
4985    public:
4986     DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4987         : LDeferredCode(codegen), instr_(instr) {}
4988     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4989     LInstruction* instr() override { return instr_; }
4990 
4991    private:
4992     LMaybeGrowElements* instr_;
4993   };
4994 
4995   Register result = x0;
4996   DeferredMaybeGrowElements* deferred =
4997       new (zone()) DeferredMaybeGrowElements(this, instr);
4998   LOperand* key = instr->key();
4999   LOperand* current_capacity = instr->current_capacity();
5000 
5001   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
5002   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
5003   DCHECK(key->IsConstantOperand() || key->IsRegister());
5004   DCHECK(current_capacity->IsConstantOperand() ||
5005          current_capacity->IsRegister());
5006 
5007   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
5008     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
5009     int32_t constant_capacity =
5010         ToInteger32(LConstantOperand::cast(current_capacity));
5011     if (constant_key >= constant_capacity) {
5012       // Deferred case.
5013       __ B(deferred->entry());
5014     }
5015   } else if (key->IsConstantOperand()) {
5016     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
5017     __ Cmp(ToRegister(current_capacity), Operand(constant_key));
5018     __ B(le, deferred->entry());
5019   } else if (current_capacity->IsConstantOperand()) {
5020     int32_t constant_capacity =
5021         ToInteger32(LConstantOperand::cast(current_capacity));
5022     __ Cmp(ToRegister(key), Operand(constant_capacity));
5023     __ B(ge, deferred->entry());
5024   } else {
5025     __ Cmp(ToRegister(key), ToRegister(current_capacity));
5026     __ B(ge, deferred->entry());
5027   }
5028 
5029   __ Mov(result, ToRegister(instr->elements()));
5030 
5031   __ Bind(deferred->exit());
5032 }
5033 
5034 
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)5035 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
5036   // TODO(3095996): Get rid of this. For now, we need to make the
5037   // result register contain a valid pointer because it is already
5038   // contained in the register pointer map.
5039   Register result = x0;
5040   __ Mov(result, 0);
5041 
5042   // We have to call a stub.
5043   {
5044     PushSafepointRegistersScope scope(this);
5045     __ Move(result, ToRegister(instr->object()));
5046 
5047     LOperand* key = instr->key();
5048     if (key->IsConstantOperand()) {
5049       __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key))));
5050     } else {
5051       __ Mov(x3, ToRegister(key));
5052       __ SmiTag(x3);
5053     }
5054 
5055     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
5056                                instr->hydrogen()->kind());
5057     __ CallStub(&stub);
5058     RecordSafepointWithLazyDeopt(
5059         instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5060     __ StoreToSafepointRegisterSlot(result, result);
5061   }
5062 
5063   // Deopt on smi, which means the elements array changed to dictionary mode.
5064   DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi);
5065 }
5066 
5067 
DoStoreNamedField(LStoreNamedField * instr)5068 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
5069   Representation representation = instr->representation();
5070 
5071   Register object = ToRegister(instr->object());
5072   HObjectAccess access = instr->hydrogen()->access();
5073   int offset = access.offset();
5074 
5075   if (access.IsExternalMemory()) {
5076     DCHECK(!instr->hydrogen()->has_transition());
5077     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5078     Register value = ToRegister(instr->value());
5079     __ Store(value, MemOperand(object, offset), representation);
5080     return;
5081   }
5082 
5083   __ AssertNotSmi(object);
5084 
5085   if (!FLAG_unbox_double_fields && representation.IsDouble()) {
5086     DCHECK(access.IsInobject());
5087     DCHECK(!instr->hydrogen()->has_transition());
5088     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5089     FPRegister value = ToDoubleRegister(instr->value());
5090     __ Str(value, FieldMemOperand(object, offset));
5091     return;
5092   }
5093 
5094   DCHECK(!representation.IsSmi() ||
5095          !instr->value()->IsConstantOperand() ||
5096          IsInteger32Constant(LConstantOperand::cast(instr->value())));
5097 
5098   if (instr->hydrogen()->has_transition()) {
5099     Handle<Map> transition = instr->hydrogen()->transition_map();
5100     AddDeprecationDependency(transition);
5101     // Store the new map value.
5102     Register new_map_value = ToRegister(instr->temp0());
5103     __ Mov(new_map_value, Operand(transition));
5104     __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
5105     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
5106       // Update the write barrier for the map field.
5107       __ RecordWriteForMap(object,
5108                            new_map_value,
5109                            ToRegister(instr->temp1()),
5110                            GetLinkRegisterState(),
5111                            kSaveFPRegs);
5112     }
5113   }
5114 
5115   // Do the store.
5116   Register destination;
5117   if (access.IsInobject()) {
5118     destination = object;
5119   } else {
5120     Register temp0 = ToRegister(instr->temp0());
5121     __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
5122     destination = temp0;
5123   }
5124 
5125   if (FLAG_unbox_double_fields && representation.IsDouble()) {
5126     DCHECK(access.IsInobject());
5127     FPRegister value = ToDoubleRegister(instr->value());
5128     __ Str(value, FieldMemOperand(object, offset));
5129   } else if (representation.IsSmi() &&
5130              instr->hydrogen()->value()->representation().IsInteger32()) {
5131     DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5132 #ifdef DEBUG
5133     Register temp0 = ToRegister(instr->temp0());
5134     __ Ldr(temp0, FieldMemOperand(destination, offset));
5135     __ AssertSmi(temp0);
5136     // If destination aliased temp0, restore it to the address calculated
5137     // earlier.
5138     if (destination.Is(temp0)) {
5139       DCHECK(!access.IsInobject());
5140       __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
5141     }
5142 #endif
5143     STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
5144     STATIC_ASSERT(kSmiTag == 0);
5145     Register value = ToRegister(instr->value());
5146     __ Store(value, UntagSmiFieldMemOperand(destination, offset),
5147              Representation::Integer32());
5148   } else {
5149     Register value = ToRegister(instr->value());
5150     __ Store(value, FieldMemOperand(destination, offset), representation);
5151   }
5152   if (instr->hydrogen()->NeedsWriteBarrier()) {
5153     Register value = ToRegister(instr->value());
5154     __ RecordWriteField(destination,
5155                         offset,
5156                         value,                        // Clobbered.
5157                         ToRegister(instr->temp1()),   // Clobbered.
5158                         GetLinkRegisterState(),
5159                         kSaveFPRegs,
5160                         EMIT_REMEMBERED_SET,
5161                         instr->hydrogen()->SmiCheckForWriteBarrier(),
5162                         instr->hydrogen()->PointersToHereCheckForValue());
5163   }
5164 }
5165 
5166 
DoStoreNamedGeneric(LStoreNamedGeneric * instr)5167 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
5168   DCHECK(ToRegister(instr->context()).is(cp));
5169   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
5170   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
5171 
5172   EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
5173 
5174   __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
5175   Handle<Code> ic =
5176       CodeFactory::StoreICInOptimizedCode(isolate(), instr->language_mode())
5177           .code();
5178   CallCode(ic, RelocInfo::CODE_TARGET, instr);
5179 }
5180 
5181 
DoStringAdd(LStringAdd * instr)5182 void LCodeGen::DoStringAdd(LStringAdd* instr) {
5183   DCHECK(ToRegister(instr->context()).is(cp));
5184   DCHECK(ToRegister(instr->left()).Is(x1));
5185   DCHECK(ToRegister(instr->right()).Is(x0));
5186   StringAddStub stub(isolate(),
5187                      instr->hydrogen()->flags(),
5188                      instr->hydrogen()->pretenure_flag());
5189   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5190 }
5191 
5192 
DoStringCharCodeAt(LStringCharCodeAt * instr)5193 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
5194   class DeferredStringCharCodeAt: public LDeferredCode {
5195    public:
5196     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
5197         : LDeferredCode(codegen), instr_(instr) { }
5198     virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
5199     virtual LInstruction* instr() { return instr_; }
5200    private:
5201     LStringCharCodeAt* instr_;
5202   };
5203 
5204   DeferredStringCharCodeAt* deferred =
5205       new(zone()) DeferredStringCharCodeAt(this, instr);
5206 
5207   StringCharLoadGenerator::Generate(masm(),
5208                                     ToRegister(instr->string()),
5209                                     ToRegister32(instr->index()),
5210                                     ToRegister(instr->result()),
5211                                     deferred->entry());
5212   __ Bind(deferred->exit());
5213 }
5214 
5215 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)5216 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
5217   Register string = ToRegister(instr->string());
5218   Register result = ToRegister(instr->result());
5219 
5220   // TODO(3095996): Get rid of this. For now, we need to make the
5221   // result register contain a valid pointer because it is already
5222   // contained in the register pointer map.
5223   __ Mov(result, 0);
5224 
5225   PushSafepointRegistersScope scope(this);
5226   __ Push(string);
5227   // Push the index as a smi. This is safe because of the checks in
5228   // DoStringCharCodeAt above.
5229   Register index = ToRegister(instr->index());
5230   __ SmiTagAndPush(index);
5231 
5232   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
5233                           instr->context());
5234   __ AssertSmi(x0);
5235   __ SmiUntag(x0);
5236   __ StoreToSafepointRegisterSlot(x0, result);
5237 }
5238 
5239 
DoStringCharFromCode(LStringCharFromCode * instr)5240 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
5241   class DeferredStringCharFromCode: public LDeferredCode {
5242    public:
5243     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
5244         : LDeferredCode(codegen), instr_(instr) { }
5245     virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
5246     virtual LInstruction* instr() { return instr_; }
5247    private:
5248     LStringCharFromCode* instr_;
5249   };
5250 
5251   DeferredStringCharFromCode* deferred =
5252       new(zone()) DeferredStringCharFromCode(this, instr);
5253 
5254   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
5255   Register char_code = ToRegister32(instr->char_code());
5256   Register result = ToRegister(instr->result());
5257 
5258   __ Cmp(char_code, String::kMaxOneByteCharCode);
5259   __ B(hi, deferred->entry());
5260   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
5261   __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
5262   __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
5263   __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
5264   __ B(eq, deferred->entry());
5265   __ Bind(deferred->exit());
5266 }
5267 
5268 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)5269 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
5270   Register char_code = ToRegister(instr->char_code());
5271   Register result = ToRegister(instr->result());
5272 
5273   // TODO(3095996): Get rid of this. For now, we need to make the
5274   // result register contain a valid pointer because it is already
5275   // contained in the register pointer map.
5276   __ Mov(result, 0);
5277 
5278   PushSafepointRegistersScope scope(this);
5279   __ SmiTagAndPush(char_code);
5280   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
5281                           instr->context());
5282   __ StoreToSafepointRegisterSlot(x0, result);
5283 }
5284 
5285 
DoStringCompareAndBranch(LStringCompareAndBranch * instr)5286 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
5287   DCHECK(ToRegister(instr->context()).is(cp));
5288   DCHECK(ToRegister(instr->left()).is(x1));
5289   DCHECK(ToRegister(instr->right()).is(x0));
5290 
5291   Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
5292   CallCode(code, RelocInfo::CODE_TARGET, instr);
5293   __ CompareRoot(x0, Heap::kTrueValueRootIndex);
5294   EmitBranch(instr, eq);
5295 }
5296 
5297 
DoSubI(LSubI * instr)5298 void LCodeGen::DoSubI(LSubI* instr) {
5299   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5300   Register result = ToRegister32(instr->result());
5301   Register left = ToRegister32(instr->left());
5302   Operand right = ToShiftedRightOperand32(instr->right(), instr);
5303 
5304   if (can_overflow) {
5305     __ Subs(result, left, right);
5306     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
5307   } else {
5308     __ Sub(result, left, right);
5309   }
5310 }
5311 
5312 
DoSubS(LSubS * instr)5313 void LCodeGen::DoSubS(LSubS* instr) {
5314   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5315   Register result = ToRegister(instr->result());
5316   Register left = ToRegister(instr->left());
5317   Operand right = ToOperand(instr->right());
5318   if (can_overflow) {
5319     __ Subs(result, left, right);
5320     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
5321   } else {
5322     __ Sub(result, left, right);
5323   }
5324 }
5325 
5326 
DoDeferredTaggedToI(LTaggedToI * instr,LOperand * value,LOperand * temp1,LOperand * temp2)5327 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
5328                                    LOperand* value,
5329                                    LOperand* temp1,
5330                                    LOperand* temp2) {
5331   Register input = ToRegister(value);
5332   Register scratch1 = ToRegister(temp1);
5333   DoubleRegister dbl_scratch1 = double_scratch();
5334 
5335   Label done;
5336 
5337   if (instr->truncating()) {
5338     Register output = ToRegister(instr->result());
5339     Label check_bools;
5340 
5341     // If it's not a heap number, jump to undefined check.
5342     __ JumpIfNotHeapNumber(input, &check_bools);
5343 
5344     // A heap number: load value and convert to int32 using truncating function.
5345     __ TruncateHeapNumberToI(output, input);
5346     __ B(&done);
5347 
5348     __ Bind(&check_bools);
5349 
5350     Register true_root = output;
5351     Register false_root = scratch1;
5352     __ LoadTrueFalseRoots(true_root, false_root);
5353     __ Cmp(input, true_root);
5354     __ Cset(output, eq);
5355     __ Ccmp(input, false_root, ZFlag, ne);
5356     __ B(eq, &done);
5357 
5358     // Output contains zero, undefined is converted to zero for truncating
5359     // conversions.
5360     DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
5361                         Deoptimizer::kNotAHeapNumberUndefinedBoolean);
5362   } else {
5363     Register output = ToRegister32(instr->result());
5364     DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
5365 
5366     DeoptimizeIfNotHeapNumber(input, instr);
5367 
5368     // A heap number: load value and convert to int32 using non-truncating
5369     // function. If the result is out of range, branch to deoptimize.
5370     __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
5371     __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
5372     DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
5373 
5374     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5375       __ Cmp(output, 0);
5376       __ B(ne, &done);
5377       __ Fmov(scratch1, dbl_scratch1);
5378       DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero);
5379     }
5380   }
5381   __ Bind(&done);
5382 }
5383 
5384 
DoTaggedToI(LTaggedToI * instr)5385 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5386   class DeferredTaggedToI: public LDeferredCode {
5387    public:
5388     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5389         : LDeferredCode(codegen), instr_(instr) { }
5390     virtual void Generate() {
5391       codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
5392                                      instr_->temp2());
5393     }
5394 
5395     virtual LInstruction* instr() { return instr_; }
5396    private:
5397     LTaggedToI* instr_;
5398   };
5399 
5400   Register input = ToRegister(instr->value());
5401   Register output = ToRegister(instr->result());
5402 
5403   if (instr->hydrogen()->value()->representation().IsSmi()) {
5404     __ SmiUntag(output, input);
5405   } else {
5406     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5407 
5408     __ JumpIfNotSmi(input, deferred->entry());
5409     __ SmiUntag(output, input);
5410     __ Bind(deferred->exit());
5411   }
5412 }
5413 
5414 
DoThisFunction(LThisFunction * instr)5415 void LCodeGen::DoThisFunction(LThisFunction* instr) {
5416   Register result = ToRegister(instr->result());
5417   __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5418 }
5419 
5420 
DoTransitionElementsKind(LTransitionElementsKind * instr)5421 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
5422   Register object = ToRegister(instr->object());
5423 
5424   Handle<Map> from_map = instr->original_map();
5425   Handle<Map> to_map = instr->transitioned_map();
5426   ElementsKind from_kind = instr->from_kind();
5427   ElementsKind to_kind = instr->to_kind();
5428 
5429   Label not_applicable;
5430 
5431   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
5432     Register temp1 = ToRegister(instr->temp1());
5433     Register new_map = ToRegister(instr->temp2());
5434     __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
5435     __ Mov(new_map, Operand(to_map));
5436     __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
5437     // Write barrier.
5438     __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
5439                          kDontSaveFPRegs);
5440   } else {
5441     {
5442       UseScratchRegisterScope temps(masm());
5443       // Use the temp register only in a restricted scope - the codegen checks
5444       // that we do not use any register across a call.
5445       __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
5446                   DONT_DO_SMI_CHECK);
5447     }
5448     DCHECK(object.is(x0));
5449     DCHECK(ToRegister(instr->context()).is(cp));
5450     PushSafepointRegistersScope scope(this);
5451     __ Mov(x1, Operand(to_map));
5452     TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
5453     __ CallStub(&stub);
5454     RecordSafepointWithRegisters(
5455         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
5456   }
5457   __ Bind(&not_applicable);
5458 }
5459 
5460 
DoTrapAllocationMemento(LTrapAllocationMemento * instr)5461 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
5462   Register object = ToRegister(instr->object());
5463   Register temp1 = ToRegister(instr->temp1());
5464   Register temp2 = ToRegister(instr->temp2());
5465 
5466   Label no_memento_found;
5467   __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
5468   DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
5469   __ Bind(&no_memento_found);
5470 }
5471 
5472 
DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi * instr)5473 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
5474   DoubleRegister input = ToDoubleRegister(instr->value());
5475   Register result = ToRegister(instr->result());
5476   __ TruncateDoubleToI(result, input);
5477   if (instr->tag_result()) {
5478     __ SmiTag(result, result);
5479   }
5480 }
5481 
5482 
DoTypeof(LTypeof * instr)5483 void LCodeGen::DoTypeof(LTypeof* instr) {
5484   DCHECK(ToRegister(instr->value()).is(x3));
5485   DCHECK(ToRegister(instr->result()).is(x0));
5486   Label end, do_call;
5487   Register value_register = ToRegister(instr->value());
5488   __ JumpIfNotSmi(value_register, &do_call);
5489   __ Mov(x0, Immediate(isolate()->factory()->number_string()));
5490   __ B(&end);
5491   __ Bind(&do_call);
5492   TypeofStub stub(isolate());
5493   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5494   __ Bind(&end);
5495 }
5496 
5497 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5498 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5499   Handle<String> type_name = instr->type_literal();
5500   Label* true_label = instr->TrueLabel(chunk_);
5501   Label* false_label = instr->FalseLabel(chunk_);
5502   Register value = ToRegister(instr->value());
5503 
5504   Factory* factory = isolate()->factory();
5505   if (String::Equals(type_name, factory->number_string())) {
5506     __ JumpIfSmi(value, true_label);
5507 
5508     int true_block = instr->TrueDestination(chunk_);
5509     int false_block = instr->FalseDestination(chunk_);
5510     int next_block = GetNextEmittedBlock();
5511 
5512     if (true_block == false_block) {
5513       EmitGoto(true_block);
5514     } else if (true_block == next_block) {
5515       __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
5516     } else {
5517       __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
5518       if (false_block != next_block) {
5519         __ B(chunk_->GetAssemblyLabel(false_block));
5520       }
5521     }
5522 
5523   } else if (String::Equals(type_name, factory->string_string())) {
5524     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5525     Register map = ToRegister(instr->temp1());
5526     Register scratch = ToRegister(instr->temp2());
5527 
5528     __ JumpIfSmi(value, false_label);
5529     __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE);
5530     EmitBranch(instr, lt);
5531 
5532   } else if (String::Equals(type_name, factory->symbol_string())) {
5533     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5534     Register map = ToRegister(instr->temp1());
5535     Register scratch = ToRegister(instr->temp2());
5536 
5537     __ JumpIfSmi(value, false_label);
5538     __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
5539     EmitBranch(instr, eq);
5540 
5541   } else if (String::Equals(type_name, factory->boolean_string())) {
5542     __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
5543     __ CompareRoot(value, Heap::kFalseValueRootIndex);
5544     EmitBranch(instr, eq);
5545 
5546   } else if (String::Equals(type_name, factory->undefined_string())) {
5547     DCHECK(instr->temp1() != NULL);
5548     Register scratch = ToRegister(instr->temp1());
5549 
5550     __ JumpIfRoot(value, Heap::kNullValueRootIndex, false_label);
5551     __ JumpIfSmi(value, false_label);
5552     // Check for undetectable objects and jump to the true branch in this case.
5553     __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5554     __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5555     EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
5556 
5557   } else if (String::Equals(type_name, factory->function_string())) {
5558     DCHECK(instr->temp1() != NULL);
5559     Register scratch = ToRegister(instr->temp1());
5560 
5561     __ JumpIfSmi(value, false_label);
5562     __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5563     __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5564     __ And(scratch, scratch,
5565            (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5566     EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable);
5567 
5568   } else if (String::Equals(type_name, factory->object_string())) {
5569     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5570     Register map = ToRegister(instr->temp1());
5571     Register scratch = ToRegister(instr->temp2());
5572 
5573     __ JumpIfSmi(value, false_label);
5574     __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
5575     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5576     __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE,
5577                         false_label, lt);
5578     // Check for callable or undetectable objects => false.
5579     __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5580     EmitTestAndBranch(instr, eq, scratch,
5581                       (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5582 
5583 // clang-format off
5584 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)       \
5585   } else if (String::Equals(type_name, factory->type##_string())) { \
5586     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));   \
5587     Register map = ToRegister(instr->temp1());                      \
5588                                                                     \
5589     __ JumpIfSmi(value, false_label);                               \
5590     __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));    \
5591     __ CompareRoot(map, Heap::k##Type##MapRootIndex);               \
5592     EmitBranch(instr, eq);
5593   SIMD128_TYPES(SIMD128_TYPE)
5594 #undef SIMD128_TYPE
5595     // clang-format on
5596 
5597   } else {
5598     __ B(false_label);
5599   }
5600 }
5601 
5602 
DoUint32ToDouble(LUint32ToDouble * instr)5603 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
5604   __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
5605 }
5606 
5607 
DoCheckMapValue(LCheckMapValue * instr)5608 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5609   Register object = ToRegister(instr->value());
5610   Register map = ToRegister(instr->map());
5611   Register temp = ToRegister(instr->temp());
5612   __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
5613   __ Cmp(map, temp);
5614   DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5615 }
5616 
5617 
DoWrapReceiver(LWrapReceiver * instr)5618 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
5619   Register receiver = ToRegister(instr->receiver());
5620   Register function = ToRegister(instr->function());
5621   Register result = ToRegister(instr->result());
5622 
5623   // If the receiver is null or undefined, we have to pass the global object as
5624   // a receiver to normal functions. Values have to be passed unchanged to
5625   // builtins and strict-mode functions.
5626   Label global_object, done, copy_receiver;
5627 
5628   if (!instr->hydrogen()->known_function()) {
5629     __ Ldr(result, FieldMemOperand(function,
5630                                    JSFunction::kSharedFunctionInfoOffset));
5631 
5632     // CompilerHints is an int32 field. See objects.h.
5633     __ Ldr(result.W(),
5634            FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
5635 
5636     // Do not transform the receiver to object for strict mode functions.
5637     __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
5638 
5639     // Do not transform the receiver to object for builtins.
5640     __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
5641   }
5642 
5643   // Normal function. Replace undefined or null with global receiver.
5644   __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
5645   __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
5646 
5647   // Deoptimize if the receiver is not a JS object.
5648   DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi);
5649   __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE);
5650   __ B(ge, &copy_receiver);
5651   Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject);
5652 
5653   __ Bind(&global_object);
5654   __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
5655   __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
5656   __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
5657   __ B(&done);
5658 
5659   __ Bind(&copy_receiver);
5660   __ Mov(result, receiver);
5661   __ Bind(&done);
5662 }
5663 
5664 
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5665 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5666                                            Register result,
5667                                            Register object,
5668                                            Register index) {
5669   PushSafepointRegistersScope scope(this);
5670   __ Push(object);
5671   __ Push(index);
5672   __ Mov(cp, 0);
5673   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5674   RecordSafepointWithRegisters(
5675       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5676   __ StoreToSafepointRegisterSlot(x0, result);
5677 }
5678 
5679 
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5680 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5681   class DeferredLoadMutableDouble final : public LDeferredCode {
5682    public:
5683     DeferredLoadMutableDouble(LCodeGen* codegen,
5684                               LLoadFieldByIndex* instr,
5685                               Register result,
5686                               Register object,
5687                               Register index)
5688         : LDeferredCode(codegen),
5689           instr_(instr),
5690           result_(result),
5691           object_(object),
5692           index_(index) {
5693     }
5694     void Generate() override {
5695       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5696     }
5697     LInstruction* instr() override { return instr_; }
5698 
5699    private:
5700     LLoadFieldByIndex* instr_;
5701     Register result_;
5702     Register object_;
5703     Register index_;
5704   };
5705   Register object = ToRegister(instr->object());
5706   Register index = ToRegister(instr->index());
5707   Register result = ToRegister(instr->result());
5708 
5709   __ AssertSmi(index);
5710 
5711   DeferredLoadMutableDouble* deferred;
5712   deferred = new(zone()) DeferredLoadMutableDouble(
5713       this, instr, result, object, index);
5714 
5715   Label out_of_object, done;
5716 
5717   __ TestAndBranchIfAnySet(
5718       index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
5719   __ Mov(index, Operand(index, ASR, 1));
5720 
5721   __ Cmp(index, Smi::FromInt(0));
5722   __ B(lt, &out_of_object);
5723 
5724   STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5725   __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5726   __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
5727 
5728   __ B(&done);
5729 
5730   __ Bind(&out_of_object);
5731   __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5732   // Index is equal to negated out of object property index plus 1.
5733   __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5734   __ Ldr(result, FieldMemOperand(result,
5735                                  FixedArray::kHeaderSize - kPointerSize));
5736   __ Bind(deferred->exit());
5737   __ Bind(&done);
5738 }
5739 
5740 }  // namespace internal
5741 }  // namespace v8
5742