1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/crankshaft/arm64/lithium-codegen-arm64.h"
6
7 #include "src/arm64/frames-arm64.h"
8 #include "src/base/bits.h"
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h"
12 #include "src/crankshaft/hydrogen-osr.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15
16 namespace v8 {
17 namespace internal {
18
19
20 class SafepointGenerator final : public CallWrapper {
21 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)22 SafepointGenerator(LCodeGen* codegen,
23 LPointerMap* pointers,
24 Safepoint::DeoptMode mode)
25 : codegen_(codegen),
26 pointers_(pointers),
27 deopt_mode_(mode) { }
~SafepointGenerator()28 virtual ~SafepointGenerator() { }
29
BeforeCall(int call_size) const30 virtual void BeforeCall(int call_size) const { }
31
AfterCall() const32 virtual void AfterCall() const {
33 codegen_->RecordSafepoint(pointers_, deopt_mode_);
34 }
35
36 private:
37 LCodeGen* codegen_;
38 LPointerMap* pointers_;
39 Safepoint::DeoptMode deopt_mode_;
40 };
41
42
43 #define __ masm()->
44
45 // Emit code to branch if the given condition holds.
46 // The code generated here doesn't modify the flags and they must have
47 // been set by some prior instructions.
48 //
49 // The EmitInverted function simply inverts the condition.
50 class BranchOnCondition : public BranchGenerator {
51 public:
BranchOnCondition(LCodeGen * codegen,Condition cond)52 BranchOnCondition(LCodeGen* codegen, Condition cond)
53 : BranchGenerator(codegen),
54 cond_(cond) { }
55
Emit(Label * label) const56 virtual void Emit(Label* label) const {
57 __ B(cond_, label);
58 }
59
EmitInverted(Label * label) const60 virtual void EmitInverted(Label* label) const {
61 if (cond_ != al) {
62 __ B(NegateCondition(cond_), label);
63 }
64 }
65
66 private:
67 Condition cond_;
68 };
69
70
71 // Emit code to compare lhs and rhs and branch if the condition holds.
72 // This uses MacroAssembler's CompareAndBranch function so it will handle
73 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
74 //
75 // EmitInverted still compares the two operands but inverts the condition.
76 class CompareAndBranch : public BranchGenerator {
77 public:
CompareAndBranch(LCodeGen * codegen,Condition cond,const Register & lhs,const Operand & rhs)78 CompareAndBranch(LCodeGen* codegen,
79 Condition cond,
80 const Register& lhs,
81 const Operand& rhs)
82 : BranchGenerator(codegen),
83 cond_(cond),
84 lhs_(lhs),
85 rhs_(rhs) { }
86
Emit(Label * label) const87 virtual void Emit(Label* label) const {
88 __ CompareAndBranch(lhs_, rhs_, cond_, label);
89 }
90
EmitInverted(Label * label) const91 virtual void EmitInverted(Label* label) const {
92 __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
93 }
94
95 private:
96 Condition cond_;
97 const Register& lhs_;
98 const Operand& rhs_;
99 };
100
101
102 // Test the input with the given mask and branch if the condition holds.
103 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
104 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
105 // conversion to Tbz/Tbnz when possible.
106 class TestAndBranch : public BranchGenerator {
107 public:
TestAndBranch(LCodeGen * codegen,Condition cond,const Register & value,uint64_t mask)108 TestAndBranch(LCodeGen* codegen,
109 Condition cond,
110 const Register& value,
111 uint64_t mask)
112 : BranchGenerator(codegen),
113 cond_(cond),
114 value_(value),
115 mask_(mask) { }
116
Emit(Label * label) const117 virtual void Emit(Label* label) const {
118 switch (cond_) {
119 case eq:
120 __ TestAndBranchIfAllClear(value_, mask_, label);
121 break;
122 case ne:
123 __ TestAndBranchIfAnySet(value_, mask_, label);
124 break;
125 default:
126 __ Tst(value_, mask_);
127 __ B(cond_, label);
128 }
129 }
130
EmitInverted(Label * label) const131 virtual void EmitInverted(Label* label) const {
132 // The inverse of "all clear" is "any set" and vice versa.
133 switch (cond_) {
134 case eq:
135 __ TestAndBranchIfAnySet(value_, mask_, label);
136 break;
137 case ne:
138 __ TestAndBranchIfAllClear(value_, mask_, label);
139 break;
140 default:
141 __ Tst(value_, mask_);
142 __ B(NegateCondition(cond_), label);
143 }
144 }
145
146 private:
147 Condition cond_;
148 const Register& value_;
149 uint64_t mask_;
150 };
151
152
153 // Test the input and branch if it is non-zero and not a NaN.
154 class BranchIfNonZeroNumber : public BranchGenerator {
155 public:
BranchIfNonZeroNumber(LCodeGen * codegen,const FPRegister & value,const FPRegister & scratch)156 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
157 const FPRegister& scratch)
158 : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
159
Emit(Label * label) const160 virtual void Emit(Label* label) const {
161 __ Fabs(scratch_, value_);
162 // Compare with 0.0. Because scratch_ is positive, the result can be one of
163 // nZCv (equal), nzCv (greater) or nzCV (unordered).
164 __ Fcmp(scratch_, 0.0);
165 __ B(gt, label);
166 }
167
EmitInverted(Label * label) const168 virtual void EmitInverted(Label* label) const {
169 __ Fabs(scratch_, value_);
170 __ Fcmp(scratch_, 0.0);
171 __ B(le, label);
172 }
173
174 private:
175 const FPRegister& value_;
176 const FPRegister& scratch_;
177 };
178
179
180 // Test the input and branch if it is a heap number.
181 class BranchIfHeapNumber : public BranchGenerator {
182 public:
BranchIfHeapNumber(LCodeGen * codegen,const Register & value)183 BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
184 : BranchGenerator(codegen), value_(value) { }
185
Emit(Label * label) const186 virtual void Emit(Label* label) const {
187 __ JumpIfHeapNumber(value_, label);
188 }
189
EmitInverted(Label * label) const190 virtual void EmitInverted(Label* label) const {
191 __ JumpIfNotHeapNumber(value_, label);
192 }
193
194 private:
195 const Register& value_;
196 };
197
198
199 // Test the input and branch if it is the specified root value.
200 class BranchIfRoot : public BranchGenerator {
201 public:
BranchIfRoot(LCodeGen * codegen,const Register & value,Heap::RootListIndex index)202 BranchIfRoot(LCodeGen* codegen, const Register& value,
203 Heap::RootListIndex index)
204 : BranchGenerator(codegen), value_(value), index_(index) { }
205
Emit(Label * label) const206 virtual void Emit(Label* label) const {
207 __ JumpIfRoot(value_, index_, label);
208 }
209
EmitInverted(Label * label) const210 virtual void EmitInverted(Label* label) const {
211 __ JumpIfNotRoot(value_, index_, label);
212 }
213
214 private:
215 const Register& value_;
216 const Heap::RootListIndex index_;
217 };
218
219
WriteTranslation(LEnvironment * environment,Translation * translation)220 void LCodeGen::WriteTranslation(LEnvironment* environment,
221 Translation* translation) {
222 if (environment == NULL) return;
223
224 // The translation includes one command per value in the environment.
225 int translation_size = environment->translation_size();
226
227 WriteTranslation(environment->outer(), translation);
228 WriteTranslationFrame(environment, translation);
229
230 int object_index = 0;
231 int dematerialized_index = 0;
232 for (int i = 0; i < translation_size; ++i) {
233 LOperand* value = environment->values()->at(i);
234 AddToTranslation(
235 environment, translation, value, environment->HasTaggedValueAt(i),
236 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
237 }
238 }
239
240
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)241 void LCodeGen::AddToTranslation(LEnvironment* environment,
242 Translation* translation,
243 LOperand* op,
244 bool is_tagged,
245 bool is_uint32,
246 int* object_index_pointer,
247 int* dematerialized_index_pointer) {
248 if (op == LEnvironment::materialization_marker()) {
249 int object_index = (*object_index_pointer)++;
250 if (environment->ObjectIsDuplicateAt(object_index)) {
251 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
252 translation->DuplicateObject(dupe_of);
253 return;
254 }
255 int object_length = environment->ObjectLengthAt(object_index);
256 if (environment->ObjectIsArgumentsAt(object_index)) {
257 translation->BeginArgumentsObject(object_length);
258 } else {
259 translation->BeginCapturedObject(object_length);
260 }
261 int dematerialized_index = *dematerialized_index_pointer;
262 int env_offset = environment->translation_size() + dematerialized_index;
263 *dematerialized_index_pointer += object_length;
264 for (int i = 0; i < object_length; ++i) {
265 LOperand* value = environment->values()->at(env_offset + i);
266 AddToTranslation(environment,
267 translation,
268 value,
269 environment->HasTaggedValueAt(env_offset + i),
270 environment->HasUint32ValueAt(env_offset + i),
271 object_index_pointer,
272 dematerialized_index_pointer);
273 }
274 return;
275 }
276
277 if (op->IsStackSlot()) {
278 int index = op->index();
279 if (is_tagged) {
280 translation->StoreStackSlot(index);
281 } else if (is_uint32) {
282 translation->StoreUint32StackSlot(index);
283 } else {
284 translation->StoreInt32StackSlot(index);
285 }
286 } else if (op->IsDoubleStackSlot()) {
287 int index = op->index();
288 translation->StoreDoubleStackSlot(index);
289 } else if (op->IsRegister()) {
290 Register reg = ToRegister(op);
291 if (is_tagged) {
292 translation->StoreRegister(reg);
293 } else if (is_uint32) {
294 translation->StoreUint32Register(reg);
295 } else {
296 translation->StoreInt32Register(reg);
297 }
298 } else if (op->IsDoubleRegister()) {
299 DoubleRegister reg = ToDoubleRegister(op);
300 translation->StoreDoubleRegister(reg);
301 } else if (op->IsConstantOperand()) {
302 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
303 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
304 translation->StoreLiteral(src_index);
305 } else {
306 UNREACHABLE();
307 }
308 }
309
310
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)311 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
312 Safepoint::DeoptMode mode) {
313 environment->set_has_been_used();
314 if (!environment->HasBeenRegistered()) {
315 int frame_count = 0;
316 int jsframe_count = 0;
317 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
318 ++frame_count;
319 if (e->frame_type() == JS_FUNCTION) {
320 ++jsframe_count;
321 }
322 }
323 Translation translation(&translations_, frame_count, jsframe_count, zone());
324 WriteTranslation(environment, &translation);
325 int deoptimization_index = deoptimizations_.length();
326 int pc_offset = masm()->pc_offset();
327 environment->Register(deoptimization_index,
328 translation.index(),
329 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
330 deoptimizations_.Add(environment, zone());
331 }
332 }
333
334
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)335 void LCodeGen::CallCode(Handle<Code> code,
336 RelocInfo::Mode mode,
337 LInstruction* instr) {
338 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
339 }
340
341
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)342 void LCodeGen::CallCodeGeneric(Handle<Code> code,
343 RelocInfo::Mode mode,
344 LInstruction* instr,
345 SafepointMode safepoint_mode) {
346 DCHECK(instr != NULL);
347
348 Assembler::BlockPoolsScope scope(masm_);
349 __ Call(code, mode);
350 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
351
352 if ((code->kind() == Code::BINARY_OP_IC) ||
353 (code->kind() == Code::COMPARE_IC)) {
354 // Signal that we don't inline smi code before these stubs in the
355 // optimizing code generator.
356 InlineSmiCheckInfo::EmitNotInlined(masm());
357 }
358 }
359
360
DoCallNewArray(LCallNewArray * instr)361 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
362 DCHECK(instr->IsMarkedAsCall());
363 DCHECK(ToRegister(instr->context()).is(cp));
364 DCHECK(ToRegister(instr->constructor()).is(x1));
365
366 __ Mov(x0, Operand(instr->arity()));
367 __ Mov(x2, instr->hydrogen()->site());
368
369 ElementsKind kind = instr->hydrogen()->elements_kind();
370 AllocationSiteOverrideMode override_mode =
371 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
372 ? DISABLE_ALLOCATION_SITES
373 : DONT_OVERRIDE;
374
375 if (instr->arity() == 0) {
376 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
377 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
378 } else if (instr->arity() == 1) {
379 Label done;
380 if (IsFastPackedElementsKind(kind)) {
381 Label packed_case;
382
383 // We might need to create a holey array; look at the first argument.
384 __ Peek(x10, 0);
385 __ Cbz(x10, &packed_case);
386
387 ElementsKind holey_kind = GetHoleyElementsKind(kind);
388 ArraySingleArgumentConstructorStub stub(isolate(),
389 holey_kind,
390 override_mode);
391 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
392 __ B(&done);
393 __ Bind(&packed_case);
394 }
395
396 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
397 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
398 __ Bind(&done);
399 } else {
400 ArrayNArgumentsConstructorStub stub(isolate());
401 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
402 }
403 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
404
405 DCHECK(ToRegister(instr->result()).is(x0));
406 }
407
408
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)409 void LCodeGen::CallRuntime(const Runtime::Function* function,
410 int num_arguments,
411 LInstruction* instr,
412 SaveFPRegsMode save_doubles) {
413 DCHECK(instr != NULL);
414
415 __ CallRuntime(function, num_arguments, save_doubles);
416
417 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
418 }
419
420
LoadContextFromDeferred(LOperand * context)421 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
422 if (context->IsRegister()) {
423 __ Mov(cp, ToRegister(context));
424 } else if (context->IsStackSlot()) {
425 __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
426 } else if (context->IsConstantOperand()) {
427 HConstant* constant =
428 chunk_->LookupConstant(LConstantOperand::cast(context));
429 __ LoadHeapObject(cp,
430 Handle<HeapObject>::cast(constant->handle(isolate())));
431 } else {
432 UNREACHABLE();
433 }
434 }
435
436
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)437 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
438 int argc,
439 LInstruction* instr,
440 LOperand* context) {
441 LoadContextFromDeferred(context);
442 __ CallRuntimeSaveDoubles(id);
443 RecordSafepointWithRegisters(
444 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
445 }
446
447
RecordAndWritePosition(int position)448 void LCodeGen::RecordAndWritePosition(int position) {
449 if (position == RelocInfo::kNoPosition) return;
450 masm()->positions_recorder()->RecordPosition(position);
451 }
452
453
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)454 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
455 SafepointMode safepoint_mode) {
456 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
457 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
458 } else {
459 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
460 RecordSafepointWithRegisters(
461 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
462 }
463 }
464
465
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)466 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
467 Safepoint::Kind kind,
468 int arguments,
469 Safepoint::DeoptMode deopt_mode) {
470 DCHECK(expected_safepoint_kind_ == kind);
471
472 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
473 Safepoint safepoint = safepoints_.DefineSafepoint(
474 masm(), kind, arguments, deopt_mode);
475
476 for (int i = 0; i < operands->length(); i++) {
477 LOperand* pointer = operands->at(i);
478 if (pointer->IsStackSlot()) {
479 safepoint.DefinePointerSlot(pointer->index(), zone());
480 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
481 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
482 }
483 }
484 }
485
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)486 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
487 Safepoint::DeoptMode deopt_mode) {
488 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
489 }
490
491
RecordSafepoint(Safepoint::DeoptMode deopt_mode)492 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
493 LPointerMap empty_pointers(zone());
494 RecordSafepoint(&empty_pointers, deopt_mode);
495 }
496
497
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)498 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
499 int arguments,
500 Safepoint::DeoptMode deopt_mode) {
501 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
502 }
503
504
GenerateCode()505 bool LCodeGen::GenerateCode() {
506 LPhase phase("Z_Code generation", chunk());
507 DCHECK(is_unused());
508 status_ = GENERATING;
509
510 // Open a frame scope to indicate that there is a frame on the stack. The
511 // NONE indicates that the scope shouldn't actually generate code to set up
512 // the frame (that is done in GeneratePrologue).
513 FrameScope frame_scope(masm_, StackFrame::NONE);
514
515 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
516 GenerateJumpTable() && GenerateSafepointTable();
517 }
518
519
SaveCallerDoubles()520 void LCodeGen::SaveCallerDoubles() {
521 DCHECK(info()->saves_caller_doubles());
522 DCHECK(NeedsEagerFrame());
523 Comment(";;; Save clobbered callee double registers");
524 BitVector* doubles = chunk()->allocated_double_registers();
525 BitVector::Iterator iterator(doubles);
526 int count = 0;
527 while (!iterator.Done()) {
528 // TODO(all): Is this supposed to save just the callee-saved doubles? It
529 // looks like it's saving all of them.
530 FPRegister value = FPRegister::from_code(iterator.Current());
531 __ Poke(value, count * kDoubleSize);
532 iterator.Advance();
533 count++;
534 }
535 }
536
537
RestoreCallerDoubles()538 void LCodeGen::RestoreCallerDoubles() {
539 DCHECK(info()->saves_caller_doubles());
540 DCHECK(NeedsEagerFrame());
541 Comment(";;; Restore clobbered callee double registers");
542 BitVector* doubles = chunk()->allocated_double_registers();
543 BitVector::Iterator iterator(doubles);
544 int count = 0;
545 while (!iterator.Done()) {
546 // TODO(all): Is this supposed to restore just the callee-saved doubles? It
547 // looks like it's restoring all of them.
548 FPRegister value = FPRegister::from_code(iterator.Current());
549 __ Peek(value, count * kDoubleSize);
550 iterator.Advance();
551 count++;
552 }
553 }
554
555
GeneratePrologue()556 bool LCodeGen::GeneratePrologue() {
557 DCHECK(is_generating());
558
559 if (info()->IsOptimizing()) {
560 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
561 }
562
563 DCHECK(__ StackPointer().Is(jssp));
564 info()->set_prologue_offset(masm_->pc_offset());
565 if (NeedsEagerFrame()) {
566 if (info()->IsStub()) {
567 __ StubPrologue(
568 StackFrame::STUB,
569 GetStackSlotCount() + TypedFrameConstants::kFixedSlotCount);
570 } else {
571 __ Prologue(info()->GeneratePreagedPrologue());
572 // Reserve space for the stack slots needed by the code.
573 int slots = GetStackSlotCount();
574 if (slots > 0) {
575 __ Claim(slots, kPointerSize);
576 }
577 }
578 frame_is_built_ = true;
579 }
580
581 if (info()->saves_caller_doubles()) {
582 SaveCallerDoubles();
583 }
584 return !is_aborted();
585 }
586
587
DoPrologue(LPrologue * instr)588 void LCodeGen::DoPrologue(LPrologue* instr) {
589 Comment(";;; Prologue begin");
590
591 // Allocate a local context if needed.
592 if (info()->scope()->num_heap_slots() > 0) {
593 Comment(";;; Allocate local context");
594 bool need_write_barrier = true;
595 // Argument to NewContext is the function, which is in x1.
596 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
597 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
598 if (info()->scope()->is_script_scope()) {
599 __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate())));
600 __ Push(x1, x10);
601 __ CallRuntime(Runtime::kNewScriptContext);
602 deopt_mode = Safepoint::kLazyDeopt;
603 } else if (slots <= FastNewContextStub::kMaximumSlots) {
604 FastNewContextStub stub(isolate(), slots);
605 __ CallStub(&stub);
606 // Result of FastNewContextStub is always in new space.
607 need_write_barrier = false;
608 } else {
609 __ Push(x1);
610 __ CallRuntime(Runtime::kNewFunctionContext);
611 }
612 RecordSafepoint(deopt_mode);
613 // Context is returned in x0. It replaces the context passed to us. It's
614 // saved in the stack and kept live in cp.
615 __ Mov(cp, x0);
616 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
617 // Copy any necessary parameters into the context.
618 int num_parameters = scope()->num_parameters();
619 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
620 for (int i = first_parameter; i < num_parameters; i++) {
621 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
622 if (var->IsContextSlot()) {
623 Register value = x0;
624 Register scratch = x3;
625
626 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
627 (num_parameters - 1 - i) * kPointerSize;
628 // Load parameter from stack.
629 __ Ldr(value, MemOperand(fp, parameter_offset));
630 // Store it in the context.
631 MemOperand target = ContextMemOperand(cp, var->index());
632 __ Str(value, target);
633 // Update the write barrier. This clobbers value and scratch.
634 if (need_write_barrier) {
635 __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()),
636 value, scratch, GetLinkRegisterState(),
637 kSaveFPRegs);
638 } else if (FLAG_debug_code) {
639 Label done;
640 __ JumpIfInNewSpace(cp, &done);
641 __ Abort(kExpectedNewSpaceObject);
642 __ bind(&done);
643 }
644 }
645 }
646 Comment(";;; End allocate local context");
647 }
648
649 Comment(";;; Prologue end");
650 }
651
652
GenerateOsrPrologue()653 void LCodeGen::GenerateOsrPrologue() {
654 // Generate the OSR entry prologue at the first unknown OSR value, or if there
655 // are none, at the OSR entrypoint instruction.
656 if (osr_pc_offset_ >= 0) return;
657
658 osr_pc_offset_ = masm()->pc_offset();
659
660 // Adjust the frame size, subsuming the unoptimized frame into the
661 // optimized frame.
662 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
663 DCHECK(slots >= 0);
664 __ Claim(slots);
665 }
666
667
GenerateBodyInstructionPre(LInstruction * instr)668 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
669 if (instr->IsCall()) {
670 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
671 }
672 if (!instr->IsLazyBailout() && !instr->IsGap()) {
673 safepoints_.BumpLastLazySafepointIndex();
674 }
675 }
676
677
GenerateDeferredCode()678 bool LCodeGen::GenerateDeferredCode() {
679 DCHECK(is_generating());
680 if (deferred_.length() > 0) {
681 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
682 LDeferredCode* code = deferred_[i];
683
684 HValue* value =
685 instructions_->at(code->instruction_index())->hydrogen_value();
686 RecordAndWritePosition(
687 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
688
689 Comment(";;; <@%d,#%d> "
690 "-------------------- Deferred %s --------------------",
691 code->instruction_index(),
692 code->instr()->hydrogen_value()->id(),
693 code->instr()->Mnemonic());
694
695 __ Bind(code->entry());
696
697 if (NeedsDeferredFrame()) {
698 Comment(";;; Build frame");
699 DCHECK(!frame_is_built_);
700 DCHECK(info()->IsStub());
701 frame_is_built_ = true;
702 __ Push(lr, fp);
703 __ Mov(fp, Smi::FromInt(StackFrame::STUB));
704 __ Push(fp);
705 __ Add(fp, __ StackPointer(),
706 TypedFrameConstants::kFixedFrameSizeFromFp);
707 Comment(";;; Deferred code");
708 }
709
710 code->Generate();
711
712 if (NeedsDeferredFrame()) {
713 Comment(";;; Destroy frame");
714 DCHECK(frame_is_built_);
715 __ Pop(xzr, fp, lr);
716 frame_is_built_ = false;
717 }
718
719 __ B(code->exit());
720 }
721 }
722
723 // Force constant pool emission at the end of the deferred code to make
724 // sure that no constant pools are emitted after deferred code because
725 // deferred code generation is the last step which generates code. The two
726 // following steps will only output data used by crakshaft.
727 masm()->CheckConstPool(true, false);
728
729 return !is_aborted();
730 }
731
732
GenerateJumpTable()733 bool LCodeGen::GenerateJumpTable() {
734 Label needs_frame, call_deopt_entry;
735
736 if (jump_table_.length() > 0) {
737 Comment(";;; -------------------- Jump table --------------------");
738 Address base = jump_table_[0]->address;
739
740 UseScratchRegisterScope temps(masm());
741 Register entry_offset = temps.AcquireX();
742
743 int length = jump_table_.length();
744 for (int i = 0; i < length; i++) {
745 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
746 __ Bind(&table_entry->label);
747
748 Address entry = table_entry->address;
749 DeoptComment(table_entry->deopt_info);
750
751 // Second-level deopt table entries are contiguous and small, so instead
752 // of loading the full, absolute address of each one, load the base
753 // address and add an immediate offset.
754 __ Mov(entry_offset, entry - base);
755
756 if (table_entry->needs_frame) {
757 DCHECK(!info()->saves_caller_doubles());
758 Comment(";;; call deopt with frame");
759 // Save lr before Bl, fp will be adjusted in the needs_frame code.
760 __ Push(lr, fp);
761 // Reuse the existing needs_frame code.
762 __ Bl(&needs_frame);
763 } else {
764 // There is nothing special to do, so just continue to the second-level
765 // table.
766 __ Bl(&call_deopt_entry);
767 }
768
769 masm()->CheckConstPool(false, false);
770 }
771
772 if (needs_frame.is_linked()) {
773 // This variant of deopt can only be used with stubs. Since we don't
774 // have a function pointer to install in the stack frame that we're
775 // building, install a special marker there instead.
776 DCHECK(info()->IsStub());
777
778 Comment(";;; needs_frame common code");
779 UseScratchRegisterScope temps(masm());
780 Register stub_marker = temps.AcquireX();
781 __ Bind(&needs_frame);
782 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
783 __ Push(cp, stub_marker);
784 __ Add(fp, __ StackPointer(), 2 * kPointerSize);
785 }
786
787 // Generate common code for calling the second-level deopt table.
788 __ Bind(&call_deopt_entry);
789
790 if (info()->saves_caller_doubles()) {
791 DCHECK(info()->IsStub());
792 RestoreCallerDoubles();
793 }
794
795 Register deopt_entry = temps.AcquireX();
796 __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
797 RelocInfo::RUNTIME_ENTRY));
798 __ Add(deopt_entry, deopt_entry, entry_offset);
799 __ Br(deopt_entry);
800 }
801
802 // Force constant pool emission at the end of the deopt jump table to make
803 // sure that no constant pools are emitted after.
804 masm()->CheckConstPool(true, false);
805
806 // The deoptimization jump table is the last part of the instruction
807 // sequence. Mark the generated code as done unless we bailed out.
808 if (!is_aborted()) status_ = DONE;
809 return !is_aborted();
810 }
811
812
GenerateSafepointTable()813 bool LCodeGen::GenerateSafepointTable() {
814 DCHECK(is_done());
815 // We do not know how much data will be emitted for the safepoint table, so
816 // force emission of the veneer pool.
817 masm()->CheckVeneerPool(true, true);
818 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
819 return !is_aborted();
820 }
821
822
FinishCode(Handle<Code> code)823 void LCodeGen::FinishCode(Handle<Code> code) {
824 DCHECK(is_done());
825 code->set_stack_slots(GetTotalFrameSlotCount());
826 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
827 PopulateDeoptimizationData(code);
828 }
829
830
DeoptimizeBranch(LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,BranchType branch_type,Register reg,int bit,Deoptimizer::BailoutType * override_bailout_type)831 void LCodeGen::DeoptimizeBranch(
832 LInstruction* instr, Deoptimizer::DeoptReason deopt_reason,
833 BranchType branch_type, Register reg, int bit,
834 Deoptimizer::BailoutType* override_bailout_type) {
835 LEnvironment* environment = instr->environment();
836 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
837 Deoptimizer::BailoutType bailout_type =
838 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
839
840 if (override_bailout_type != NULL) {
841 bailout_type = *override_bailout_type;
842 }
843
844 DCHECK(environment->HasBeenRegistered());
845 int id = environment->deoptimization_index();
846 Address entry =
847 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
848
849 if (entry == NULL) {
850 Abort(kBailoutWasNotPrepared);
851 }
852
853 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
854 Label not_zero;
855 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
856
857 __ Push(x0, x1, x2);
858 __ Mrs(x2, NZCV);
859 __ Mov(x0, count);
860 __ Ldr(w1, MemOperand(x0));
861 __ Subs(x1, x1, 1);
862 __ B(gt, ¬_zero);
863 __ Mov(w1, FLAG_deopt_every_n_times);
864 __ Str(w1, MemOperand(x0));
865 __ Pop(x2, x1, x0);
866 DCHECK(frame_is_built_);
867 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
868 __ Unreachable();
869
870 __ Bind(¬_zero);
871 __ Str(w1, MemOperand(x0));
872 __ Msr(NZCV, x2);
873 __ Pop(x2, x1, x0);
874 }
875
876 if (info()->ShouldTrapOnDeopt()) {
877 Label dont_trap;
878 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
879 __ Debug("trap_on_deopt", __LINE__, BREAK);
880 __ Bind(&dont_trap);
881 }
882
883 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
884
885 DCHECK(info()->IsStub() || frame_is_built_);
886 // Go through jump table if we need to build frame, or restore caller doubles.
887 if (branch_type == always &&
888 frame_is_built_ && !info()->saves_caller_doubles()) {
889 DeoptComment(deopt_info);
890 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
891 } else {
892 Deoptimizer::JumpTableEntry* table_entry =
893 new (zone()) Deoptimizer::JumpTableEntry(
894 entry, deopt_info, bailout_type, !frame_is_built_);
895 // We often have several deopts to the same entry, reuse the last
896 // jump entry if this is the case.
897 if (FLAG_trace_deopt || isolate()->is_profiling() ||
898 jump_table_.is_empty() ||
899 !table_entry->IsEquivalentTo(*jump_table_.last())) {
900 jump_table_.Add(table_entry, zone());
901 }
902 __ B(&jump_table_.last()->label, branch_type, reg, bit);
903 }
904 }
905
906
Deoptimize(LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,Deoptimizer::BailoutType * override_bailout_type)907 void LCodeGen::Deoptimize(LInstruction* instr,
908 Deoptimizer::DeoptReason deopt_reason,
909 Deoptimizer::BailoutType* override_bailout_type) {
910 DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1,
911 override_bailout_type);
912 }
913
914
DeoptimizeIf(Condition cond,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)915 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
916 Deoptimizer::DeoptReason deopt_reason) {
917 DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond));
918 }
919
920
DeoptimizeIfZero(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)921 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
922 Deoptimizer::DeoptReason deopt_reason) {
923 DeoptimizeBranch(instr, deopt_reason, reg_zero, rt);
924 }
925
926
DeoptimizeIfNotZero(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)927 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
928 Deoptimizer::DeoptReason deopt_reason) {
929 DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt);
930 }
931
932
DeoptimizeIfNegative(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)933 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
934 Deoptimizer::DeoptReason deopt_reason) {
935 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
936 DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason);
937 }
938
939
DeoptimizeIfSmi(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)940 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
941 Deoptimizer::DeoptReason deopt_reason) {
942 DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
943 }
944
945
DeoptimizeIfNotSmi(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)946 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
947 Deoptimizer::DeoptReason deopt_reason) {
948 DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
949 }
950
951
DeoptimizeIfRoot(Register rt,Heap::RootListIndex index,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)952 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
953 LInstruction* instr,
954 Deoptimizer::DeoptReason deopt_reason) {
955 __ CompareRoot(rt, index);
956 DeoptimizeIf(eq, instr, deopt_reason);
957 }
958
959
DeoptimizeIfNotRoot(Register rt,Heap::RootListIndex index,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)960 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
961 LInstruction* instr,
962 Deoptimizer::DeoptReason deopt_reason) {
963 __ CompareRoot(rt, index);
964 DeoptimizeIf(ne, instr, deopt_reason);
965 }
966
967
DeoptimizeIfMinusZero(DoubleRegister input,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)968 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
969 Deoptimizer::DeoptReason deopt_reason) {
970 __ TestForMinusZero(input);
971 DeoptimizeIf(vs, instr, deopt_reason);
972 }
973
974
DeoptimizeIfNotHeapNumber(Register object,LInstruction * instr)975 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
976 __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
977 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
978 }
979
980
DeoptimizeIfBitSet(Register rt,int bit,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)981 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
982 Deoptimizer::DeoptReason deopt_reason) {
983 DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit);
984 }
985
986
DeoptimizeIfBitClear(Register rt,int bit,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)987 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
988 Deoptimizer::DeoptReason deopt_reason) {
989 DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit);
990 }
991
992
EnsureSpaceForLazyDeopt(int space_needed)993 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
994 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
995 // Ensure that we have enough space after the previous lazy-bailout
996 // instruction for patching the code here.
997 intptr_t current_pc = masm()->pc_offset();
998
999 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
1000 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
1001 DCHECK((padding_size % kInstructionSize) == 0);
1002 InstructionAccurateScope instruction_accurate(
1003 masm(), padding_size / kInstructionSize);
1004
1005 while (padding_size > 0) {
1006 __ nop();
1007 padding_size -= kInstructionSize;
1008 }
1009 }
1010 }
1011 last_lazy_deopt_pc_ = masm()->pc_offset();
1012 }
1013
1014
ToRegister(LOperand * op) const1015 Register LCodeGen::ToRegister(LOperand* op) const {
1016 // TODO(all): support zero register results, as ToRegister32.
1017 DCHECK((op != NULL) && op->IsRegister());
1018 return Register::from_code(op->index());
1019 }
1020
1021
ToRegister32(LOperand * op) const1022 Register LCodeGen::ToRegister32(LOperand* op) const {
1023 DCHECK(op != NULL);
1024 if (op->IsConstantOperand()) {
1025 // If this is a constant operand, the result must be the zero register.
1026 DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
1027 return wzr;
1028 } else {
1029 return ToRegister(op).W();
1030 }
1031 }
1032
1033
ToSmi(LConstantOperand * op) const1034 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
1035 HConstant* constant = chunk_->LookupConstant(op);
1036 return Smi::FromInt(constant->Integer32Value());
1037 }
1038
1039
ToDoubleRegister(LOperand * op) const1040 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
1041 DCHECK((op != NULL) && op->IsDoubleRegister());
1042 return DoubleRegister::from_code(op->index());
1043 }
1044
1045
ToOperand(LOperand * op)1046 Operand LCodeGen::ToOperand(LOperand* op) {
1047 DCHECK(op != NULL);
1048 if (op->IsConstantOperand()) {
1049 LConstantOperand* const_op = LConstantOperand::cast(op);
1050 HConstant* constant = chunk()->LookupConstant(const_op);
1051 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1052 if (r.IsSmi()) {
1053 DCHECK(constant->HasSmiValue());
1054 return Operand(Smi::FromInt(constant->Integer32Value()));
1055 } else if (r.IsInteger32()) {
1056 DCHECK(constant->HasInteger32Value());
1057 return Operand(constant->Integer32Value());
1058 } else if (r.IsDouble()) {
1059 Abort(kToOperandUnsupportedDoubleImmediate);
1060 }
1061 DCHECK(r.IsTagged());
1062 return Operand(constant->handle(isolate()));
1063 } else if (op->IsRegister()) {
1064 return Operand(ToRegister(op));
1065 } else if (op->IsDoubleRegister()) {
1066 Abort(kToOperandIsDoubleRegisterUnimplemented);
1067 return Operand(0);
1068 }
1069 // Stack slots not implemented, use ToMemOperand instead.
1070 UNREACHABLE();
1071 return Operand(0);
1072 }
1073
1074
ToOperand32(LOperand * op)1075 Operand LCodeGen::ToOperand32(LOperand* op) {
1076 DCHECK(op != NULL);
1077 if (op->IsRegister()) {
1078 return Operand(ToRegister32(op));
1079 } else if (op->IsConstantOperand()) {
1080 LConstantOperand* const_op = LConstantOperand::cast(op);
1081 HConstant* constant = chunk()->LookupConstant(const_op);
1082 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1083 if (r.IsInteger32()) {
1084 return Operand(constant->Integer32Value());
1085 } else {
1086 // Other constants not implemented.
1087 Abort(kToOperand32UnsupportedImmediate);
1088 }
1089 }
1090 // Other cases are not implemented.
1091 UNREACHABLE();
1092 return Operand(0);
1093 }
1094
1095
ArgumentsOffsetWithoutFrame(int index)1096 static int64_t ArgumentsOffsetWithoutFrame(int index) {
1097 DCHECK(index < 0);
1098 return -(index + 1) * kPointerSize;
1099 }
1100
1101
ToMemOperand(LOperand * op,StackMode stack_mode) const1102 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
1103 DCHECK(op != NULL);
1104 DCHECK(!op->IsRegister());
1105 DCHECK(!op->IsDoubleRegister());
1106 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
1107 if (NeedsEagerFrame()) {
1108 int fp_offset = FrameSlotToFPOffset(op->index());
1109 // Loads and stores have a bigger reach in positive offset than negative.
1110 // We try to access using jssp (positive offset) first, then fall back to
1111 // fp (negative offset) if that fails.
1112 //
1113 // We can reference a stack slot from jssp only if we know how much we've
1114 // put on the stack. We don't know this in the following cases:
1115 // - stack_mode != kCanUseStackPointer: this is the case when deferred
1116 // code has saved the registers.
1117 // - saves_caller_doubles(): some double registers have been pushed, jssp
1118 // references the end of the double registers and not the end of the stack
1119 // slots.
1120 // In both of the cases above, we _could_ add the tracking information
1121 // required so that we can use jssp here, but in practice it isn't worth it.
1122 if ((stack_mode == kCanUseStackPointer) &&
1123 !info()->saves_caller_doubles()) {
1124 int jssp_offset_to_fp =
1125 (pushed_arguments_ + GetTotalFrameSlotCount()) * kPointerSize -
1126 StandardFrameConstants::kFixedFrameSizeAboveFp;
1127 int jssp_offset = fp_offset + jssp_offset_to_fp;
1128 if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) {
1129 return MemOperand(masm()->StackPointer(), jssp_offset);
1130 }
1131 }
1132 return MemOperand(fp, fp_offset);
1133 } else {
1134 // Retrieve parameter without eager stack-frame relative to the
1135 // stack-pointer.
1136 return MemOperand(masm()->StackPointer(),
1137 ArgumentsOffsetWithoutFrame(op->index()));
1138 }
1139 }
1140
1141
ToHandle(LConstantOperand * op) const1142 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
1143 HConstant* constant = chunk_->LookupConstant(op);
1144 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
1145 return constant->handle(isolate());
1146 }
1147
1148
1149 template <class LI>
ToShiftedRightOperand32(LOperand * right,LI * shift_info)1150 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
1151 if (shift_info->shift() == NO_SHIFT) {
1152 return ToOperand32(right);
1153 } else {
1154 return Operand(
1155 ToRegister32(right),
1156 shift_info->shift(),
1157 JSShiftAmountFromLConstant(shift_info->shift_amount()));
1158 }
1159 }
1160
1161
IsSmi(LConstantOperand * op) const1162 bool LCodeGen::IsSmi(LConstantOperand* op) const {
1163 return chunk_->LookupLiteralRepresentation(op).IsSmi();
1164 }
1165
1166
IsInteger32Constant(LConstantOperand * op) const1167 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
1168 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
1169 }
1170
1171
ToInteger32(LConstantOperand * op) const1172 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
1173 HConstant* constant = chunk_->LookupConstant(op);
1174 return constant->Integer32Value();
1175 }
1176
1177
ToDouble(LConstantOperand * op) const1178 double LCodeGen::ToDouble(LConstantOperand* op) const {
1179 HConstant* constant = chunk_->LookupConstant(op);
1180 DCHECK(constant->HasDoubleValue());
1181 return constant->DoubleValue();
1182 }
1183
1184
TokenToCondition(Token::Value op,bool is_unsigned)1185 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1186 Condition cond = nv;
1187 switch (op) {
1188 case Token::EQ:
1189 case Token::EQ_STRICT:
1190 cond = eq;
1191 break;
1192 case Token::NE:
1193 case Token::NE_STRICT:
1194 cond = ne;
1195 break;
1196 case Token::LT:
1197 cond = is_unsigned ? lo : lt;
1198 break;
1199 case Token::GT:
1200 cond = is_unsigned ? hi : gt;
1201 break;
1202 case Token::LTE:
1203 cond = is_unsigned ? ls : le;
1204 break;
1205 case Token::GTE:
1206 cond = is_unsigned ? hs : ge;
1207 break;
1208 case Token::IN:
1209 case Token::INSTANCEOF:
1210 default:
1211 UNREACHABLE();
1212 }
1213 return cond;
1214 }
1215
1216
1217 template<class InstrType>
EmitBranchGeneric(InstrType instr,const BranchGenerator & branch)1218 void LCodeGen::EmitBranchGeneric(InstrType instr,
1219 const BranchGenerator& branch) {
1220 int left_block = instr->TrueDestination(chunk_);
1221 int right_block = instr->FalseDestination(chunk_);
1222
1223 int next_block = GetNextEmittedBlock();
1224
1225 if (right_block == left_block) {
1226 EmitGoto(left_block);
1227 } else if (left_block == next_block) {
1228 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
1229 } else {
1230 branch.Emit(chunk_->GetAssemblyLabel(left_block));
1231 if (right_block != next_block) {
1232 __ B(chunk_->GetAssemblyLabel(right_block));
1233 }
1234 }
1235 }
1236
1237
1238 template<class InstrType>
EmitBranch(InstrType instr,Condition condition)1239 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1240 DCHECK((condition != al) && (condition != nv));
1241 BranchOnCondition branch(this, condition);
1242 EmitBranchGeneric(instr, branch);
1243 }
1244
1245
1246 template<class InstrType>
EmitCompareAndBranch(InstrType instr,Condition condition,const Register & lhs,const Operand & rhs)1247 void LCodeGen::EmitCompareAndBranch(InstrType instr,
1248 Condition condition,
1249 const Register& lhs,
1250 const Operand& rhs) {
1251 DCHECK((condition != al) && (condition != nv));
1252 CompareAndBranch branch(this, condition, lhs, rhs);
1253 EmitBranchGeneric(instr, branch);
1254 }
1255
1256
1257 template<class InstrType>
EmitTestAndBranch(InstrType instr,Condition condition,const Register & value,uint64_t mask)1258 void LCodeGen::EmitTestAndBranch(InstrType instr,
1259 Condition condition,
1260 const Register& value,
1261 uint64_t mask) {
1262 DCHECK((condition != al) && (condition != nv));
1263 TestAndBranch branch(this, condition, value, mask);
1264 EmitBranchGeneric(instr, branch);
1265 }
1266
1267
1268 template<class InstrType>
EmitBranchIfNonZeroNumber(InstrType instr,const FPRegister & value,const FPRegister & scratch)1269 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
1270 const FPRegister& value,
1271 const FPRegister& scratch) {
1272 BranchIfNonZeroNumber branch(this, value, scratch);
1273 EmitBranchGeneric(instr, branch);
1274 }
1275
1276
1277 template<class InstrType>
EmitBranchIfHeapNumber(InstrType instr,const Register & value)1278 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
1279 const Register& value) {
1280 BranchIfHeapNumber branch(this, value);
1281 EmitBranchGeneric(instr, branch);
1282 }
1283
1284
1285 template<class InstrType>
EmitBranchIfRoot(InstrType instr,const Register & value,Heap::RootListIndex index)1286 void LCodeGen::EmitBranchIfRoot(InstrType instr,
1287 const Register& value,
1288 Heap::RootListIndex index) {
1289 BranchIfRoot branch(this, value, index);
1290 EmitBranchGeneric(instr, branch);
1291 }
1292
1293
DoGap(LGap * gap)1294 void LCodeGen::DoGap(LGap* gap) {
1295 for (int i = LGap::FIRST_INNER_POSITION;
1296 i <= LGap::LAST_INNER_POSITION;
1297 i++) {
1298 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1299 LParallelMove* move = gap->GetParallelMove(inner_pos);
1300 if (move != NULL) {
1301 resolver_.Resolve(move);
1302 }
1303 }
1304 }
1305
1306
DoAccessArgumentsAt(LAccessArgumentsAt * instr)1307 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
1308 Register arguments = ToRegister(instr->arguments());
1309 Register result = ToRegister(instr->result());
1310
1311 // The pointer to the arguments array come from DoArgumentsElements.
1312 // It does not point directly to the arguments and there is an offest of
1313 // two words that we must take into account when accessing an argument.
1314 // Subtracting the index from length accounts for one, so we add one more.
1315
1316 if (instr->length()->IsConstantOperand() &&
1317 instr->index()->IsConstantOperand()) {
1318 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1319 int length = ToInteger32(LConstantOperand::cast(instr->length()));
1320 int offset = ((length - index) + 1) * kPointerSize;
1321 __ Ldr(result, MemOperand(arguments, offset));
1322 } else if (instr->index()->IsConstantOperand()) {
1323 Register length = ToRegister32(instr->length());
1324 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1325 int loc = index - 1;
1326 if (loc != 0) {
1327 __ Sub(result.W(), length, loc);
1328 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1329 } else {
1330 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
1331 }
1332 } else {
1333 Register length = ToRegister32(instr->length());
1334 Operand index = ToOperand32(instr->index());
1335 __ Sub(result.W(), length, index);
1336 __ Add(result.W(), result.W(), 1);
1337 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1338 }
1339 }
1340
1341
DoAddE(LAddE * instr)1342 void LCodeGen::DoAddE(LAddE* instr) {
1343 Register result = ToRegister(instr->result());
1344 Register left = ToRegister(instr->left());
1345 Operand right = Operand(x0); // Dummy initialization.
1346 if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) {
1347 right = Operand(ToRegister(instr->right()));
1348 } else if (instr->right()->IsConstantOperand()) {
1349 right = ToInteger32(LConstantOperand::cast(instr->right()));
1350 } else {
1351 right = Operand(ToRegister32(instr->right()), SXTW);
1352 }
1353
1354 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1355 __ Add(result, left, right);
1356 }
1357
1358
DoAddI(LAddI * instr)1359 void LCodeGen::DoAddI(LAddI* instr) {
1360 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1361 Register result = ToRegister32(instr->result());
1362 Register left = ToRegister32(instr->left());
1363 Operand right = ToShiftedRightOperand32(instr->right(), instr);
1364
1365 if (can_overflow) {
1366 __ Adds(result, left, right);
1367 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1368 } else {
1369 __ Add(result, left, right);
1370 }
1371 }
1372
1373
DoAddS(LAddS * instr)1374 void LCodeGen::DoAddS(LAddS* instr) {
1375 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1376 Register result = ToRegister(instr->result());
1377 Register left = ToRegister(instr->left());
1378 Operand right = ToOperand(instr->right());
1379 if (can_overflow) {
1380 __ Adds(result, left, right);
1381 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1382 } else {
1383 __ Add(result, left, right);
1384 }
1385 }
1386
1387
DoAllocate(LAllocate * instr)1388 void LCodeGen::DoAllocate(LAllocate* instr) {
1389 class DeferredAllocate: public LDeferredCode {
1390 public:
1391 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
1392 : LDeferredCode(codegen), instr_(instr) { }
1393 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
1394 virtual LInstruction* instr() { return instr_; }
1395 private:
1396 LAllocate* instr_;
1397 };
1398
1399 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
1400
1401 Register result = ToRegister(instr->result());
1402 Register temp1 = ToRegister(instr->temp1());
1403 Register temp2 = ToRegister(instr->temp2());
1404
1405 // Allocate memory for the object.
1406 AllocationFlags flags = NO_ALLOCATION_FLAGS;
1407 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1408 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1409 }
1410
1411 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1412 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1413 flags = static_cast<AllocationFlags>(flags | PRETENURE);
1414 }
1415
1416 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
1417 flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
1418 }
1419 DCHECK(!instr->hydrogen()->IsAllocationFolded());
1420
1421 if (instr->size()->IsConstantOperand()) {
1422 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1423 CHECK(size <= Page::kMaxRegularHeapObjectSize);
1424 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
1425 } else {
1426 Register size = ToRegister32(instr->size());
1427 __ Sxtw(size.X(), size);
1428 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
1429 }
1430
1431 __ Bind(deferred->exit());
1432
1433 if (instr->hydrogen()->MustPrefillWithFiller()) {
1434 Register start = temp1;
1435 Register end = temp2;
1436 Register filler = ToRegister(instr->temp3());
1437
1438 __ Sub(start, result, kHeapObjectTag);
1439
1440 if (instr->size()->IsConstantOperand()) {
1441 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1442 __ Add(end, start, size);
1443 } else {
1444 __ Add(end, start, ToRegister(instr->size()));
1445 }
1446 __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex);
1447 __ InitializeFieldsWithFiller(start, end, filler);
1448 } else {
1449 DCHECK(instr->temp3() == NULL);
1450 }
1451 }
1452
1453
DoDeferredAllocate(LAllocate * instr)1454 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
1455 // TODO(3095996): Get rid of this. For now, we need to make the
1456 // result register contain a valid pointer because it is already
1457 // contained in the register pointer map.
1458 __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
1459
1460 PushSafepointRegistersScope scope(this);
1461 // We're in a SafepointRegistersScope so we can use any scratch registers.
1462 Register size = x0;
1463 if (instr->size()->IsConstantOperand()) {
1464 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
1465 } else {
1466 __ SmiTag(size, ToRegister32(instr->size()).X());
1467 }
1468 int flags = AllocateDoubleAlignFlag::encode(
1469 instr->hydrogen()->MustAllocateDoubleAligned());
1470 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1471 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1472 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
1473 } else {
1474 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
1475 }
1476 __ Mov(x10, Smi::FromInt(flags));
1477 __ Push(size, x10);
1478
1479 CallRuntimeFromDeferred(
1480 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
1481 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
1482
1483 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
1484 AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
1485 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1486 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1487 allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
1488 }
1489 // If the allocation folding dominator allocate triggered a GC, allocation
1490 // happend in the runtime. We have to reset the top pointer to virtually
1491 // undo the allocation.
1492 ExternalReference allocation_top =
1493 AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
1494 Register top_address = x10;
1495 __ Sub(x0, x0, Operand(kHeapObjectTag));
1496 __ Mov(top_address, Operand(allocation_top));
1497 __ Str(x0, MemOperand(top_address));
1498 __ Add(x0, x0, Operand(kHeapObjectTag));
1499 }
1500 }
1501
DoFastAllocate(LFastAllocate * instr)1502 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
1503 DCHECK(instr->hydrogen()->IsAllocationFolded());
1504 DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
1505 Register result = ToRegister(instr->result());
1506 Register scratch1 = ToRegister(instr->temp1());
1507 Register scratch2 = ToRegister(instr->temp2());
1508
1509 AllocationFlags flags = ALLOCATION_FOLDED;
1510 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1511 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1512 }
1513 if (instr->hydrogen()->IsOldSpaceAllocation()) {
1514 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1515 flags = static_cast<AllocationFlags>(flags | PRETENURE);
1516 }
1517 if (instr->size()->IsConstantOperand()) {
1518 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1519 CHECK(size <= Page::kMaxRegularHeapObjectSize);
1520 __ FastAllocate(size, result, scratch1, scratch2, flags);
1521 } else {
1522 Register size = ToRegister(instr->size());
1523 __ FastAllocate(size, result, scratch1, scratch2, flags);
1524 }
1525 }
1526
1527
DoApplyArguments(LApplyArguments * instr)1528 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
1529 Register receiver = ToRegister(instr->receiver());
1530 Register function = ToRegister(instr->function());
1531 Register length = ToRegister32(instr->length());
1532
1533 Register elements = ToRegister(instr->elements());
1534 Register scratch = x5;
1535 DCHECK(receiver.Is(x0)); // Used for parameter count.
1536 DCHECK(function.Is(x1)); // Required by InvokeFunction.
1537 DCHECK(ToRegister(instr->result()).Is(x0));
1538 DCHECK(instr->IsMarkedAsCall());
1539
1540 // Copy the arguments to this function possibly from the
1541 // adaptor frame below it.
1542 const uint32_t kArgumentsLimit = 1 * KB;
1543 __ Cmp(length, kArgumentsLimit);
1544 DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments);
1545
1546 // Push the receiver and use the register to keep the original
1547 // number of arguments.
1548 __ Push(receiver);
1549 Register argc = receiver;
1550 receiver = NoReg;
1551 __ Sxtw(argc, length);
1552 // The arguments are at a one pointer size offset from elements.
1553 __ Add(elements, elements, 1 * kPointerSize);
1554
1555 // Loop through the arguments pushing them onto the execution
1556 // stack.
1557 Label invoke, loop;
1558 // length is a small non-negative integer, due to the test above.
1559 __ Cbz(length, &invoke);
1560 __ Bind(&loop);
1561 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
1562 __ Push(scratch);
1563 __ Subs(length, length, 1);
1564 __ B(ne, &loop);
1565
1566 __ Bind(&invoke);
1567
1568 InvokeFlag flag = CALL_FUNCTION;
1569 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
1570 DCHECK(!info()->saves_caller_doubles());
1571 // TODO(ishell): drop current frame before pushing arguments to the stack.
1572 flag = JUMP_FUNCTION;
1573 ParameterCount actual(x0);
1574 // It is safe to use x3, x4 and x5 as scratch registers here given that
1575 // 1) we are not going to return to caller function anyway,
1576 // 2) x3 (new.target) will be initialized below.
1577 PrepareForTailCall(actual, x3, x4, x5);
1578 }
1579
1580 DCHECK(instr->HasPointerMap());
1581 LPointerMap* pointers = instr->pointer_map();
1582 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
1583 // The number of arguments is stored in argc (receiver) which is x0, as
1584 // expected by InvokeFunction.
1585 ParameterCount actual(argc);
1586 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
1587 }
1588
1589
DoArgumentsElements(LArgumentsElements * instr)1590 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
1591 Register result = ToRegister(instr->result());
1592
1593 if (instr->hydrogen()->from_inlined()) {
1594 // When we are inside an inlined function, the arguments are the last things
1595 // that have been pushed on the stack. Therefore the arguments array can be
1596 // accessed directly from jssp.
1597 // However in the normal case, it is accessed via fp but there are two words
1598 // on the stack between fp and the arguments (the saved lr and fp) and the
1599 // LAccessArgumentsAt implementation take that into account.
1600 // In the inlined case we need to subtract the size of 2 words to jssp to
1601 // get a pointer which will work well with LAccessArgumentsAt.
1602 DCHECK(masm()->StackPointer().Is(jssp));
1603 __ Sub(result, jssp, 2 * kPointerSize);
1604 } else if (instr->hydrogen()->arguments_adaptor()) {
1605 DCHECK(instr->temp() != NULL);
1606 Register previous_fp = ToRegister(instr->temp());
1607
1608 __ Ldr(previous_fp,
1609 MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1610 __ Ldr(result, MemOperand(previous_fp,
1611 CommonFrameConstants::kContextOrFrameTypeOffset));
1612 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1613 __ Csel(result, fp, previous_fp, ne);
1614 } else {
1615 __ Mov(result, fp);
1616 }
1617 }
1618
1619
DoArgumentsLength(LArgumentsLength * instr)1620 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
1621 Register elements = ToRegister(instr->elements());
1622 Register result = ToRegister32(instr->result());
1623 Label done;
1624
1625 // If no arguments adaptor frame the number of arguments is fixed.
1626 __ Cmp(fp, elements);
1627 __ Mov(result, scope()->num_parameters());
1628 __ B(eq, &done);
1629
1630 // Arguments adaptor frame present. Get argument length from there.
1631 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1632 __ Ldr(result,
1633 UntagSmiMemOperand(result.X(),
1634 ArgumentsAdaptorFrameConstants::kLengthOffset));
1635
1636 // Argument length is in result register.
1637 __ Bind(&done);
1638 }
1639
1640
DoArithmeticD(LArithmeticD * instr)1641 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1642 DoubleRegister left = ToDoubleRegister(instr->left());
1643 DoubleRegister right = ToDoubleRegister(instr->right());
1644 DoubleRegister result = ToDoubleRegister(instr->result());
1645
1646 switch (instr->op()) {
1647 case Token::ADD: __ Fadd(result, left, right); break;
1648 case Token::SUB: __ Fsub(result, left, right); break;
1649 case Token::MUL: __ Fmul(result, left, right); break;
1650 case Token::DIV: __ Fdiv(result, left, right); break;
1651 case Token::MOD: {
1652 // The ECMA-262 remainder operator is the remainder from a truncating
1653 // (round-towards-zero) division. Note that this differs from IEEE-754.
1654 //
1655 // TODO(jbramley): See if it's possible to do this inline, rather than by
1656 // calling a helper function. With frintz (to produce the intermediate
1657 // quotient) and fmsub (to calculate the remainder without loss of
1658 // precision), it should be possible. However, we would need support for
1659 // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
1660 // support that yet.
1661 DCHECK(left.Is(d0));
1662 DCHECK(right.Is(d1));
1663 __ CallCFunction(
1664 ExternalReference::mod_two_doubles_operation(isolate()),
1665 0, 2);
1666 DCHECK(result.Is(d0));
1667 break;
1668 }
1669 default:
1670 UNREACHABLE();
1671 break;
1672 }
1673 }
1674
1675
DoArithmeticT(LArithmeticT * instr)1676 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1677 DCHECK(ToRegister(instr->context()).is(cp));
1678 DCHECK(ToRegister(instr->left()).is(x1));
1679 DCHECK(ToRegister(instr->right()).is(x0));
1680 DCHECK(ToRegister(instr->result()).is(x0));
1681
1682 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
1683 CallCode(code, RelocInfo::CODE_TARGET, instr);
1684 }
1685
1686
DoBitI(LBitI * instr)1687 void LCodeGen::DoBitI(LBitI* instr) {
1688 Register result = ToRegister32(instr->result());
1689 Register left = ToRegister32(instr->left());
1690 Operand right = ToShiftedRightOperand32(instr->right(), instr);
1691
1692 switch (instr->op()) {
1693 case Token::BIT_AND: __ And(result, left, right); break;
1694 case Token::BIT_OR: __ Orr(result, left, right); break;
1695 case Token::BIT_XOR: __ Eor(result, left, right); break;
1696 default:
1697 UNREACHABLE();
1698 break;
1699 }
1700 }
1701
1702
DoBitS(LBitS * instr)1703 void LCodeGen::DoBitS(LBitS* instr) {
1704 Register result = ToRegister(instr->result());
1705 Register left = ToRegister(instr->left());
1706 Operand right = ToOperand(instr->right());
1707
1708 switch (instr->op()) {
1709 case Token::BIT_AND: __ And(result, left, right); break;
1710 case Token::BIT_OR: __ Orr(result, left, right); break;
1711 case Token::BIT_XOR: __ Eor(result, left, right); break;
1712 default:
1713 UNREACHABLE();
1714 break;
1715 }
1716 }
1717
1718
DoBoundsCheck(LBoundsCheck * instr)1719 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
1720 Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
1721 DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
1722 DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
1723 if (instr->index()->IsConstantOperand()) {
1724 Operand index = ToOperand32(instr->index());
1725 Register length = ToRegister32(instr->length());
1726 __ Cmp(length, index);
1727 cond = CommuteCondition(cond);
1728 } else {
1729 Register index = ToRegister32(instr->index());
1730 Operand length = ToOperand32(instr->length());
1731 __ Cmp(index, length);
1732 }
1733 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
1734 __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
1735 } else {
1736 DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds);
1737 }
1738 }
1739
1740
DoBranch(LBranch * instr)1741 void LCodeGen::DoBranch(LBranch* instr) {
1742 Representation r = instr->hydrogen()->value()->representation();
1743 Label* true_label = instr->TrueLabel(chunk_);
1744 Label* false_label = instr->FalseLabel(chunk_);
1745
1746 if (r.IsInteger32()) {
1747 DCHECK(!info()->IsStub());
1748 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
1749 } else if (r.IsSmi()) {
1750 DCHECK(!info()->IsStub());
1751 STATIC_ASSERT(kSmiTag == 0);
1752 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
1753 } else if (r.IsDouble()) {
1754 DoubleRegister value = ToDoubleRegister(instr->value());
1755 // Test the double value. Zero and NaN are false.
1756 EmitBranchIfNonZeroNumber(instr, value, double_scratch());
1757 } else {
1758 DCHECK(r.IsTagged());
1759 Register value = ToRegister(instr->value());
1760 HType type = instr->hydrogen()->value()->type();
1761
1762 if (type.IsBoolean()) {
1763 DCHECK(!info()->IsStub());
1764 __ CompareRoot(value, Heap::kTrueValueRootIndex);
1765 EmitBranch(instr, eq);
1766 } else if (type.IsSmi()) {
1767 DCHECK(!info()->IsStub());
1768 EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
1769 } else if (type.IsJSArray()) {
1770 DCHECK(!info()->IsStub());
1771 EmitGoto(instr->TrueDestination(chunk()));
1772 } else if (type.IsHeapNumber()) {
1773 DCHECK(!info()->IsStub());
1774 __ Ldr(double_scratch(), FieldMemOperand(value,
1775 HeapNumber::kValueOffset));
1776 // Test the double value. Zero and NaN are false.
1777 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
1778 } else if (type.IsString()) {
1779 DCHECK(!info()->IsStub());
1780 Register temp = ToRegister(instr->temp1());
1781 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
1782 EmitCompareAndBranch(instr, ne, temp, 0);
1783 } else {
1784 ToBooleanICStub::Types expected =
1785 instr->hydrogen()->expected_input_types();
1786 // Avoid deopts in the case where we've never executed this path before.
1787 if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
1788
1789 if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
1790 // undefined -> false.
1791 __ JumpIfRoot(
1792 value, Heap::kUndefinedValueRootIndex, false_label);
1793 }
1794
1795 if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
1796 // Boolean -> its value.
1797 __ JumpIfRoot(
1798 value, Heap::kTrueValueRootIndex, true_label);
1799 __ JumpIfRoot(
1800 value, Heap::kFalseValueRootIndex, false_label);
1801 }
1802
1803 if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
1804 // 'null' -> false.
1805 __ JumpIfRoot(
1806 value, Heap::kNullValueRootIndex, false_label);
1807 }
1808
1809 if (expected.Contains(ToBooleanICStub::SMI)) {
1810 // Smis: 0 -> false, all other -> true.
1811 DCHECK(Smi::FromInt(0) == 0);
1812 __ Cbz(value, false_label);
1813 __ JumpIfSmi(value, true_label);
1814 } else if (expected.NeedsMap()) {
1815 // If we need a map later and have a smi, deopt.
1816 DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi);
1817 }
1818
1819 Register map = NoReg;
1820 Register scratch = NoReg;
1821
1822 if (expected.NeedsMap()) {
1823 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
1824 map = ToRegister(instr->temp1());
1825 scratch = ToRegister(instr->temp2());
1826
1827 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
1828
1829 if (expected.CanBeUndetectable()) {
1830 // Undetectable -> false.
1831 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
1832 __ TestAndBranchIfAnySet(
1833 scratch, 1 << Map::kIsUndetectable, false_label);
1834 }
1835 }
1836
1837 if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
1838 // spec object -> true.
1839 __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE);
1840 __ B(ge, true_label);
1841 }
1842
1843 if (expected.Contains(ToBooleanICStub::STRING)) {
1844 // String value -> false iff empty.
1845 Label not_string;
1846 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
1847 __ B(ge, ¬_string);
1848 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
1849 __ Cbz(scratch, false_label);
1850 __ B(true_label);
1851 __ Bind(¬_string);
1852 }
1853
1854 if (expected.Contains(ToBooleanICStub::SYMBOL)) {
1855 // Symbol value -> true.
1856 __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
1857 __ B(eq, true_label);
1858 }
1859
1860 if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
1861 // SIMD value -> true.
1862 __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE);
1863 __ B(eq, true_label);
1864 }
1865
1866 if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
1867 Label not_heap_number;
1868 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number);
1869
1870 __ Ldr(double_scratch(),
1871 FieldMemOperand(value, HeapNumber::kValueOffset));
1872 __ Fcmp(double_scratch(), 0.0);
1873 // If we got a NaN (overflow bit is set), jump to the false branch.
1874 __ B(vs, false_label);
1875 __ B(eq, false_label);
1876 __ B(true_label);
1877 __ Bind(¬_heap_number);
1878 }
1879
1880 if (!expected.IsGeneric()) {
1881 // We've seen something for the first time -> deopt.
1882 // This can only happen if we are not generic already.
1883 Deoptimize(instr, Deoptimizer::kUnexpectedObject);
1884 }
1885 }
1886 }
1887 }
1888
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)1889 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
1890 int formal_parameter_count, int arity,
1891 bool is_tail_call, LInstruction* instr) {
1892 bool dont_adapt_arguments =
1893 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1894 bool can_invoke_directly =
1895 dont_adapt_arguments || formal_parameter_count == arity;
1896
1897 // The function interface relies on the following register assignments.
1898 Register function_reg = x1;
1899 Register arity_reg = x0;
1900
1901 LPointerMap* pointers = instr->pointer_map();
1902
1903 if (FLAG_debug_code) {
1904 Label is_not_smi;
1905 // Try to confirm that function_reg (x1) is a tagged pointer.
1906 __ JumpIfNotSmi(function_reg, &is_not_smi);
1907 __ Abort(kExpectedFunctionObject);
1908 __ Bind(&is_not_smi);
1909 }
1910
1911 if (can_invoke_directly) {
1912 // Change context.
1913 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
1914
1915 // Always initialize new target and number of actual arguments.
1916 __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
1917 __ Mov(arity_reg, arity);
1918
1919 bool is_self_call = function.is_identical_to(info()->closure());
1920
1921 // Invoke function.
1922 if (is_self_call) {
1923 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
1924 if (is_tail_call) {
1925 __ Jump(self, RelocInfo::CODE_TARGET);
1926 } else {
1927 __ Call(self, RelocInfo::CODE_TARGET);
1928 }
1929 } else {
1930 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
1931 if (is_tail_call) {
1932 __ Jump(x10);
1933 } else {
1934 __ Call(x10);
1935 }
1936 }
1937
1938 if (!is_tail_call) {
1939 // Set up deoptimization.
1940 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
1941 }
1942 } else {
1943 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1944 ParameterCount actual(arity);
1945 ParameterCount expected(formal_parameter_count);
1946 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
1947 __ InvokeFunction(function_reg, expected, actual, flag, generator);
1948 }
1949 }
1950
DoCallWithDescriptor(LCallWithDescriptor * instr)1951 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
1952 DCHECK(instr->IsMarkedAsCall());
1953 DCHECK(ToRegister(instr->result()).Is(x0));
1954
1955 if (instr->hydrogen()->IsTailCall()) {
1956 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
1957
1958 if (instr->target()->IsConstantOperand()) {
1959 LConstantOperand* target = LConstantOperand::cast(instr->target());
1960 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
1961 // TODO(all): on ARM we use a call descriptor to specify a storage mode
1962 // but on ARM64 we only have one storage mode so it isn't necessary. Check
1963 // this understanding is correct.
1964 __ Jump(code, RelocInfo::CODE_TARGET);
1965 } else {
1966 DCHECK(instr->target()->IsRegister());
1967 Register target = ToRegister(instr->target());
1968 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
1969 __ Br(target);
1970 }
1971 } else {
1972 LPointerMap* pointers = instr->pointer_map();
1973 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1974
1975 if (instr->target()->IsConstantOperand()) {
1976 LConstantOperand* target = LConstantOperand::cast(instr->target());
1977 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
1978 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
1979 // TODO(all): on ARM we use a call descriptor to specify a storage mode
1980 // but on ARM64 we only have one storage mode so it isn't necessary. Check
1981 // this understanding is correct.
1982 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
1983 } else {
1984 DCHECK(instr->target()->IsRegister());
1985 Register target = ToRegister(instr->target());
1986 generator.BeforeCall(__ CallSize(target));
1987 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
1988 __ Call(target);
1989 }
1990 generator.AfterCall();
1991 }
1992
1993 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
1994 }
1995
1996
DoCallRuntime(LCallRuntime * instr)1997 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
1998 CallRuntime(instr->function(), instr->arity(), instr);
1999 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2000 }
2001
2002
DoUnknownOSRValue(LUnknownOSRValue * instr)2003 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
2004 GenerateOsrPrologue();
2005 }
2006
2007
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)2008 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
2009 Register temp = ToRegister(instr->temp());
2010 {
2011 PushSafepointRegistersScope scope(this);
2012 __ Push(object);
2013 __ Mov(cp, 0);
2014 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
2015 RecordSafepointWithRegisters(
2016 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
2017 __ StoreToSafepointRegisterSlot(x0, temp);
2018 }
2019 DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed);
2020 }
2021
2022
DoCheckMaps(LCheckMaps * instr)2023 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
2024 class DeferredCheckMaps: public LDeferredCode {
2025 public:
2026 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
2027 : LDeferredCode(codegen), instr_(instr), object_(object) {
2028 SetExit(check_maps());
2029 }
2030 virtual void Generate() {
2031 codegen()->DoDeferredInstanceMigration(instr_, object_);
2032 }
2033 Label* check_maps() { return &check_maps_; }
2034 virtual LInstruction* instr() { return instr_; }
2035 private:
2036 LCheckMaps* instr_;
2037 Label check_maps_;
2038 Register object_;
2039 };
2040
2041 if (instr->hydrogen()->IsStabilityCheck()) {
2042 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2043 for (int i = 0; i < maps->size(); ++i) {
2044 AddStabilityDependency(maps->at(i).handle());
2045 }
2046 return;
2047 }
2048
2049 Register object = ToRegister(instr->value());
2050 Register map_reg = ToRegister(instr->temp());
2051
2052 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
2053
2054 DeferredCheckMaps* deferred = NULL;
2055 if (instr->hydrogen()->HasMigrationTarget()) {
2056 deferred = new(zone()) DeferredCheckMaps(this, instr, object);
2057 __ Bind(deferred->check_maps());
2058 }
2059
2060 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2061 Label success;
2062 for (int i = 0; i < maps->size() - 1; i++) {
2063 Handle<Map> map = maps->at(i).handle();
2064 __ CompareMap(map_reg, map);
2065 __ B(eq, &success);
2066 }
2067 Handle<Map> map = maps->at(maps->size() - 1).handle();
2068 __ CompareMap(map_reg, map);
2069
2070 // We didn't match a map.
2071 if (instr->hydrogen()->HasMigrationTarget()) {
2072 __ B(ne, deferred->entry());
2073 } else {
2074 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
2075 }
2076
2077 __ Bind(&success);
2078 }
2079
2080
DoCheckNonSmi(LCheckNonSmi * instr)2081 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
2082 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2083 DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi);
2084 }
2085 }
2086
2087
DoCheckSmi(LCheckSmi * instr)2088 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
2089 Register value = ToRegister(instr->value());
2090 DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
2091 DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi);
2092 }
2093
2094
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)2095 void LCodeGen::DoCheckArrayBufferNotNeutered(
2096 LCheckArrayBufferNotNeutered* instr) {
2097 UseScratchRegisterScope temps(masm());
2098 Register view = ToRegister(instr->view());
2099 Register scratch = temps.AcquireX();
2100
2101 __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
2102 __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
2103 __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
2104 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds);
2105 }
2106
2107
DoCheckInstanceType(LCheckInstanceType * instr)2108 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
2109 Register input = ToRegister(instr->value());
2110 Register scratch = ToRegister(instr->temp());
2111
2112 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2113 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2114
2115 if (instr->hydrogen()->is_interval_check()) {
2116 InstanceType first, last;
2117 instr->hydrogen()->GetCheckInterval(&first, &last);
2118
2119 __ Cmp(scratch, first);
2120 if (first == last) {
2121 // If there is only one type in the interval check for equality.
2122 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
2123 } else if (last == LAST_TYPE) {
2124 // We don't need to compare with the higher bound of the interval.
2125 DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType);
2126 } else {
2127 // If we are below the lower bound, set the C flag and clear the Z flag
2128 // to force a deopt.
2129 __ Ccmp(scratch, last, CFlag, hs);
2130 DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType);
2131 }
2132 } else {
2133 uint8_t mask;
2134 uint8_t tag;
2135 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
2136
2137 if (base::bits::IsPowerOfTwo32(mask)) {
2138 DCHECK((tag == 0) || (tag == mask));
2139 if (tag == 0) {
2140 DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
2141 Deoptimizer::kWrongInstanceType);
2142 } else {
2143 DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
2144 Deoptimizer::kWrongInstanceType);
2145 }
2146 } else {
2147 if (tag == 0) {
2148 __ Tst(scratch, mask);
2149 } else {
2150 __ And(scratch, scratch, mask);
2151 __ Cmp(scratch, tag);
2152 }
2153 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
2154 }
2155 }
2156 }
2157
2158
DoClampDToUint8(LClampDToUint8 * instr)2159 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
2160 DoubleRegister input = ToDoubleRegister(instr->unclamped());
2161 Register result = ToRegister32(instr->result());
2162 __ ClampDoubleToUint8(result, input, double_scratch());
2163 }
2164
2165
DoClampIToUint8(LClampIToUint8 * instr)2166 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
2167 Register input = ToRegister32(instr->unclamped());
2168 Register result = ToRegister32(instr->result());
2169 __ ClampInt32ToUint8(result, input);
2170 }
2171
2172
DoClampTToUint8(LClampTToUint8 * instr)2173 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
2174 Register input = ToRegister(instr->unclamped());
2175 Register result = ToRegister32(instr->result());
2176 Label done;
2177
2178 // Both smi and heap number cases are handled.
2179 Label is_not_smi;
2180 __ JumpIfNotSmi(input, &is_not_smi);
2181 __ SmiUntag(result.X(), input);
2182 __ ClampInt32ToUint8(result);
2183 __ B(&done);
2184
2185 __ Bind(&is_not_smi);
2186
2187 // Check for heap number.
2188 Label is_heap_number;
2189 __ JumpIfHeapNumber(input, &is_heap_number);
2190
2191 // Check for undefined. Undefined is coverted to zero for clamping conversion.
2192 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
2193 Deoptimizer::kNotAHeapNumberUndefined);
2194 __ Mov(result, 0);
2195 __ B(&done);
2196
2197 // Heap number case.
2198 __ Bind(&is_heap_number);
2199 DoubleRegister dbl_scratch = double_scratch();
2200 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
2201 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2202 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
2203
2204 __ Bind(&done);
2205 }
2206
2207
DoDoubleBits(LDoubleBits * instr)2208 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
2209 DoubleRegister value_reg = ToDoubleRegister(instr->value());
2210 Register result_reg = ToRegister(instr->result());
2211 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
2212 __ Fmov(result_reg, value_reg);
2213 __ Lsr(result_reg, result_reg, 32);
2214 } else {
2215 __ Fmov(result_reg.W(), value_reg.S());
2216 }
2217 }
2218
2219
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2220 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2221 Handle<String> class_name = instr->hydrogen()->class_name();
2222 Label* true_label = instr->TrueLabel(chunk_);
2223 Label* false_label = instr->FalseLabel(chunk_);
2224 Register input = ToRegister(instr->value());
2225 Register scratch1 = ToRegister(instr->temp1());
2226 Register scratch2 = ToRegister(instr->temp2());
2227
2228 __ JumpIfSmi(input, false_label);
2229
2230 Register map = scratch2;
2231 __ CompareObjectType(input, map, scratch1, FIRST_FUNCTION_TYPE);
2232 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2233 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2234 __ B(hs, true_label);
2235 } else {
2236 __ B(hs, false_label);
2237 }
2238
2239 // Check if the constructor in the map is a function.
2240 {
2241 UseScratchRegisterScope temps(masm());
2242 Register instance_type = temps.AcquireX();
2243 __ GetMapConstructor(scratch1, map, scratch2, instance_type);
2244 __ Cmp(instance_type, JS_FUNCTION_TYPE);
2245 }
2246 // Objects with a non-function constructor have class 'Object'.
2247 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2248 __ B(ne, true_label);
2249 } else {
2250 __ B(ne, false_label);
2251 }
2252
2253 // The constructor function is in scratch1. Get its instance class name.
2254 __ Ldr(scratch1,
2255 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2256 __ Ldr(scratch1,
2257 FieldMemOperand(scratch1,
2258 SharedFunctionInfo::kInstanceClassNameOffset));
2259
2260 // The class name we are testing against is internalized since it's a literal.
2261 // The name in the constructor is internalized because of the way the context
2262 // is booted. This routine isn't expected to work for random API-created
2263 // classes and it doesn't have to because you can't access it with natives
2264 // syntax. Since both sides are internalized it is sufficient to use an
2265 // identity comparison.
2266 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
2267 }
2268
2269
DoCmpHoleAndBranchD(LCmpHoleAndBranchD * instr)2270 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
2271 DCHECK(instr->hydrogen()->representation().IsDouble());
2272 FPRegister object = ToDoubleRegister(instr->object());
2273 Register temp = ToRegister(instr->temp());
2274
2275 // If we don't have a NaN, we don't have the hole, so branch now to avoid the
2276 // (relatively expensive) hole-NaN check.
2277 __ Fcmp(object, object);
2278 __ B(vc, instr->FalseLabel(chunk_));
2279
2280 // We have a NaN, but is it the hole?
2281 __ Fmov(temp, object);
2282 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
2283 }
2284
2285
DoCmpHoleAndBranchT(LCmpHoleAndBranchT * instr)2286 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
2287 DCHECK(instr->hydrogen()->representation().IsTagged());
2288 Register object = ToRegister(instr->object());
2289
2290 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
2291 }
2292
2293
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2294 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2295 Register value = ToRegister(instr->value());
2296 Register map = ToRegister(instr->temp());
2297
2298 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
2299 EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
2300 }
2301
2302
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2303 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2304 LOperand* left = instr->left();
2305 LOperand* right = instr->right();
2306 bool is_unsigned =
2307 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2308 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2309 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2310
2311 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2312 // We can statically evaluate the comparison.
2313 double left_val = ToDouble(LConstantOperand::cast(left));
2314 double right_val = ToDouble(LConstantOperand::cast(right));
2315 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2316 ? instr->TrueDestination(chunk_)
2317 : instr->FalseDestination(chunk_);
2318 EmitGoto(next_block);
2319 } else {
2320 if (instr->is_double()) {
2321 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
2322
2323 // If a NaN is involved, i.e. the result is unordered (V set),
2324 // jump to false block label.
2325 __ B(vs, instr->FalseLabel(chunk_));
2326 EmitBranch(instr, cond);
2327 } else {
2328 if (instr->hydrogen_value()->representation().IsInteger32()) {
2329 if (right->IsConstantOperand()) {
2330 EmitCompareAndBranch(instr, cond, ToRegister32(left),
2331 ToOperand32(right));
2332 } else {
2333 // Commute the operands and the condition.
2334 EmitCompareAndBranch(instr, CommuteCondition(cond),
2335 ToRegister32(right), ToOperand32(left));
2336 }
2337 } else {
2338 DCHECK(instr->hydrogen_value()->representation().IsSmi());
2339 if (right->IsConstantOperand()) {
2340 int32_t value = ToInteger32(LConstantOperand::cast(right));
2341 EmitCompareAndBranch(instr,
2342 cond,
2343 ToRegister(left),
2344 Operand(Smi::FromInt(value)));
2345 } else if (left->IsConstantOperand()) {
2346 // Commute the operands and the condition.
2347 int32_t value = ToInteger32(LConstantOperand::cast(left));
2348 EmitCompareAndBranch(instr,
2349 CommuteCondition(cond),
2350 ToRegister(right),
2351 Operand(Smi::FromInt(value)));
2352 } else {
2353 EmitCompareAndBranch(instr,
2354 cond,
2355 ToRegister(left),
2356 ToRegister(right));
2357 }
2358 }
2359 }
2360 }
2361 }
2362
2363
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2364 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2365 Register left = ToRegister(instr->left());
2366 Register right = ToRegister(instr->right());
2367 EmitCompareAndBranch(instr, eq, left, right);
2368 }
2369
2370
DoCmpT(LCmpT * instr)2371 void LCodeGen::DoCmpT(LCmpT* instr) {
2372 DCHECK(ToRegister(instr->context()).is(cp));
2373 Token::Value op = instr->op();
2374 Condition cond = TokenToCondition(op, false);
2375
2376 DCHECK(ToRegister(instr->left()).Is(x1));
2377 DCHECK(ToRegister(instr->right()).Is(x0));
2378 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2379 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2380 // Signal that we don't inline smi code before this stub.
2381 InlineSmiCheckInfo::EmitNotInlined(masm());
2382
2383 // Return true or false depending on CompareIC result.
2384 // This instruction is marked as call. We can clobber any register.
2385 DCHECK(instr->IsMarkedAsCall());
2386 __ LoadTrueFalseRoots(x1, x2);
2387 __ Cmp(x0, 0);
2388 __ Csel(ToRegister(instr->result()), x1, x2, cond);
2389 }
2390
2391
DoConstantD(LConstantD * instr)2392 void LCodeGen::DoConstantD(LConstantD* instr) {
2393 DCHECK(instr->result()->IsDoubleRegister());
2394 DoubleRegister result = ToDoubleRegister(instr->result());
2395 if (instr->value() == 0) {
2396 if (copysign(1.0, instr->value()) == 1.0) {
2397 __ Fmov(result, fp_zero);
2398 } else {
2399 __ Fneg(result, fp_zero);
2400 }
2401 } else {
2402 __ Fmov(result, instr->value());
2403 }
2404 }
2405
2406
DoConstantE(LConstantE * instr)2407 void LCodeGen::DoConstantE(LConstantE* instr) {
2408 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2409 }
2410
2411
DoConstantI(LConstantI * instr)2412 void LCodeGen::DoConstantI(LConstantI* instr) {
2413 DCHECK(is_int32(instr->value()));
2414 // Cast the value here to ensure that the value isn't sign extended by the
2415 // implicit Operand constructor.
2416 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
2417 }
2418
2419
DoConstantS(LConstantS * instr)2420 void LCodeGen::DoConstantS(LConstantS* instr) {
2421 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2422 }
2423
2424
DoConstantT(LConstantT * instr)2425 void LCodeGen::DoConstantT(LConstantT* instr) {
2426 Handle<Object> object = instr->value(isolate());
2427 AllowDeferredHandleDereference smi_check;
2428 __ LoadObject(ToRegister(instr->result()), object);
2429 }
2430
2431
DoContext(LContext * instr)2432 void LCodeGen::DoContext(LContext* instr) {
2433 // If there is a non-return use, the context must be moved to a register.
2434 Register result = ToRegister(instr->result());
2435 if (info()->IsOptimizing()) {
2436 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
2437 } else {
2438 // If there is no frame, the context must be in cp.
2439 DCHECK(result.is(cp));
2440 }
2441 }
2442
2443
DoCheckValue(LCheckValue * instr)2444 void LCodeGen::DoCheckValue(LCheckValue* instr) {
2445 Register reg = ToRegister(instr->value());
2446 Handle<HeapObject> object = instr->hydrogen()->object().handle();
2447 AllowDeferredHandleDereference smi_check;
2448 if (isolate()->heap()->InNewSpace(*object)) {
2449 UseScratchRegisterScope temps(masm());
2450 Register temp = temps.AcquireX();
2451 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2452 __ Mov(temp, Operand(cell));
2453 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
2454 __ Cmp(reg, temp);
2455 } else {
2456 __ Cmp(reg, Operand(object));
2457 }
2458 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
2459 }
2460
2461
DoLazyBailout(LLazyBailout * instr)2462 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
2463 last_lazy_deopt_pc_ = masm()->pc_offset();
2464 DCHECK(instr->HasEnvironment());
2465 LEnvironment* env = instr->environment();
2466 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
2467 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2468 }
2469
2470
DoDeoptimize(LDeoptimize * instr)2471 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
2472 Deoptimizer::BailoutType type = instr->hydrogen()->type();
2473 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
2474 // needed return address), even though the implementation of LAZY and EAGER is
2475 // now identical. When LAZY is eventually completely folded into EAGER, remove
2476 // the special case below.
2477 if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
2478 type = Deoptimizer::LAZY;
2479 }
2480
2481 Deoptimize(instr, instr->hydrogen()->reason(), &type);
2482 }
2483
2484
DoDivByPowerOf2I(LDivByPowerOf2I * instr)2485 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
2486 Register dividend = ToRegister32(instr->dividend());
2487 int32_t divisor = instr->divisor();
2488 Register result = ToRegister32(instr->result());
2489 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
2490 DCHECK(!result.is(dividend));
2491
2492 // Check for (0 / -x) that will produce negative zero.
2493 HDiv* hdiv = instr->hydrogen();
2494 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2495 DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero);
2496 }
2497 // Check for (kMinInt / -1).
2498 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
2499 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2500 // overflow.
2501 __ Cmp(dividend, 1);
2502 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
2503 }
2504 // Deoptimize if remainder will not be 0.
2505 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
2506 divisor != 1 && divisor != -1) {
2507 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
2508 __ Tst(dividend, mask);
2509 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
2510 }
2511
2512 if (divisor == -1) { // Nice shortcut, not needed for correctness.
2513 __ Neg(result, dividend);
2514 return;
2515 }
2516 int32_t shift = WhichPowerOf2Abs(divisor);
2517 if (shift == 0) {
2518 __ Mov(result, dividend);
2519 } else if (shift == 1) {
2520 __ Add(result, dividend, Operand(dividend, LSR, 31));
2521 } else {
2522 __ Mov(result, Operand(dividend, ASR, 31));
2523 __ Add(result, dividend, Operand(result, LSR, 32 - shift));
2524 }
2525 if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
2526 if (divisor < 0) __ Neg(result, result);
2527 }
2528
2529
DoDivByConstI(LDivByConstI * instr)2530 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
2531 Register dividend = ToRegister32(instr->dividend());
2532 int32_t divisor = instr->divisor();
2533 Register result = ToRegister32(instr->result());
2534 DCHECK(!AreAliased(dividend, result));
2535
2536 if (divisor == 0) {
2537 Deoptimize(instr, Deoptimizer::kDivisionByZero);
2538 return;
2539 }
2540
2541 // Check for (0 / -x) that will produce negative zero.
2542 HDiv* hdiv = instr->hydrogen();
2543 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2544 DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
2545 }
2546
2547 __ TruncatingDiv(result, dividend, Abs(divisor));
2548 if (divisor < 0) __ Neg(result, result);
2549
2550 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
2551 Register temp = ToRegister32(instr->temp());
2552 DCHECK(!AreAliased(dividend, result, temp));
2553 __ Sxtw(dividend.X(), dividend);
2554 __ Mov(temp, divisor);
2555 __ Smsubl(temp.X(), result, temp, dividend.X());
2556 DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision);
2557 }
2558 }
2559
2560
2561 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)2562 void LCodeGen::DoDivI(LDivI* instr) {
2563 HBinaryOperation* hdiv = instr->hydrogen();
2564 Register dividend = ToRegister32(instr->dividend());
2565 Register divisor = ToRegister32(instr->divisor());
2566 Register result = ToRegister32(instr->result());
2567
2568 // Issue the division first, and then check for any deopt cases whilst the
2569 // result is computed.
2570 __ Sdiv(result, dividend, divisor);
2571
2572 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
2573 DCHECK(!instr->temp());
2574 return;
2575 }
2576
2577 // Check for x / 0.
2578 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
2579 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
2580 }
2581
2582 // Check for (0 / -x) as that will produce negative zero.
2583 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
2584 __ Cmp(divisor, 0);
2585
2586 // If the divisor < 0 (mi), compare the dividend, and deopt if it is
2587 // zero, ie. zero dividend with negative divisor deopts.
2588 // If the divisor >= 0 (pl, the opposite of mi) set the flags to
2589 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
2590 __ Ccmp(dividend, 0, NoFlag, mi);
2591 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
2592 }
2593
2594 // Check for (kMinInt / -1).
2595 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
2596 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2597 // overflow.
2598 __ Cmp(dividend, 1);
2599 // If overflow is set, ie. dividend = kMinInt, compare the divisor with
2600 // -1. If overflow is clear, set the flags for condition ne, as the
2601 // dividend isn't -1, and thus we shouldn't deopt.
2602 __ Ccmp(divisor, -1, NoFlag, vs);
2603 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
2604 }
2605
2606 // Compute remainder and deopt if it's not zero.
2607 Register remainder = ToRegister32(instr->temp());
2608 __ Msub(remainder, result, divisor, dividend);
2609 DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision);
2610 }
2611
2612
DoDoubleToIntOrSmi(LDoubleToIntOrSmi * instr)2613 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
2614 DoubleRegister input = ToDoubleRegister(instr->value());
2615 Register result = ToRegister32(instr->result());
2616
2617 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2618 DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
2619 }
2620
2621 __ TryRepresentDoubleAsInt32(result, input, double_scratch());
2622 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
2623
2624 if (instr->tag_result()) {
2625 __ SmiTag(result.X());
2626 }
2627 }
2628
2629
DoDrop(LDrop * instr)2630 void LCodeGen::DoDrop(LDrop* instr) {
2631 __ Drop(instr->count());
2632
2633 RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta());
2634 }
2635
2636
DoDummy(LDummy * instr)2637 void LCodeGen::DoDummy(LDummy* instr) {
2638 // Nothing to see here, move on!
2639 }
2640
2641
DoDummyUse(LDummyUse * instr)2642 void LCodeGen::DoDummyUse(LDummyUse* instr) {
2643 // Nothing to see here, move on!
2644 }
2645
2646
DoForInCacheArray(LForInCacheArray * instr)2647 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
2648 Register map = ToRegister(instr->map());
2649 Register result = ToRegister(instr->result());
2650 Label load_cache, done;
2651
2652 __ EnumLengthUntagged(result, map);
2653 __ Cbnz(result, &load_cache);
2654
2655 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
2656 __ B(&done);
2657
2658 __ Bind(&load_cache);
2659 __ LoadInstanceDescriptors(map, result);
2660 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
2661 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
2662 DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache);
2663
2664 __ Bind(&done);
2665 }
2666
2667
DoForInPrepareMap(LForInPrepareMap * instr)2668 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
2669 Register object = ToRegister(instr->object());
2670
2671 DCHECK(instr->IsMarkedAsCall());
2672 DCHECK(object.Is(x0));
2673
2674 Label use_cache, call_runtime;
2675 __ CheckEnumCache(object, x5, x1, x2, x3, x4, &call_runtime);
2676
2677 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2678 __ B(&use_cache);
2679
2680 // Get the set of properties to enumerate.
2681 __ Bind(&call_runtime);
2682 __ Push(object);
2683 CallRuntime(Runtime::kForInEnumerate, instr);
2684 __ Bind(&use_cache);
2685 }
2686
2687
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)2688 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2689 Register input = ToRegister(instr->value());
2690 Register result = ToRegister(instr->result());
2691
2692 __ AssertString(input);
2693
2694 // Assert that we can use a W register load to get the hash.
2695 DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
2696 __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
2697 __ IndexFromHash(result, result);
2698 }
2699
2700
EmitGoto(int block)2701 void LCodeGen::EmitGoto(int block) {
2702 // Do not emit jump if we are emitting a goto to the next block.
2703 if (!IsNextEmittedBlock(block)) {
2704 __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
2705 }
2706 }
2707
2708
DoGoto(LGoto * instr)2709 void LCodeGen::DoGoto(LGoto* instr) {
2710 EmitGoto(instr->block_id());
2711 }
2712
2713
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)2714 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2715 LHasCachedArrayIndexAndBranch* instr) {
2716 Register input = ToRegister(instr->value());
2717 Register temp = ToRegister32(instr->temp());
2718
2719 // Assert that the cache status bits fit in a W register.
2720 DCHECK(is_uint32(String::kContainsCachedArrayIndexMask));
2721 __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
2722 __ Tst(temp, String::kContainsCachedArrayIndexMask);
2723 EmitBranch(instr, eq);
2724 }
2725
2726
2727 // HHasInstanceTypeAndBranch instruction is built with an interval of type
2728 // to test but is only used in very restricted ways. The only possible kinds
2729 // of intervals are:
2730 // - [ FIRST_TYPE, instr->to() ]
2731 // - [ instr->form(), LAST_TYPE ]
2732 // - instr->from() == instr->to()
2733 //
2734 // These kinds of intervals can be check with only one compare instruction
2735 // providing the correct value and test condition are used.
2736 //
2737 // TestType() will return the value to use in the compare instruction and
2738 // BranchCondition() will return the condition to use depending on the kind
2739 // of interval actually specified in the instruction.
TestType(HHasInstanceTypeAndBranch * instr)2740 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2741 InstanceType from = instr->from();
2742 InstanceType to = instr->to();
2743 if (from == FIRST_TYPE) return to;
2744 DCHECK((from == to) || (to == LAST_TYPE));
2745 return from;
2746 }
2747
2748
2749 // See comment above TestType function for what this function does.
BranchCondition(HHasInstanceTypeAndBranch * instr)2750 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2751 InstanceType from = instr->from();
2752 InstanceType to = instr->to();
2753 if (from == to) return eq;
2754 if (to == LAST_TYPE) return hs;
2755 if (from == FIRST_TYPE) return ls;
2756 UNREACHABLE();
2757 return eq;
2758 }
2759
2760
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2761 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2762 Register input = ToRegister(instr->value());
2763 Register scratch = ToRegister(instr->temp());
2764
2765 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2766 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2767 }
2768 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2769 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2770 }
2771
2772
DoInnerAllocatedObject(LInnerAllocatedObject * instr)2773 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
2774 Register result = ToRegister(instr->result());
2775 Register base = ToRegister(instr->base_object());
2776 if (instr->offset()->IsConstantOperand()) {
2777 __ Add(result, base, ToOperand32(instr->offset()));
2778 } else {
2779 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
2780 }
2781 }
2782
2783
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2784 void LCodeGen::DoHasInPrototypeChainAndBranch(
2785 LHasInPrototypeChainAndBranch* instr) {
2786 Register const object = ToRegister(instr->object());
2787 Register const object_map = ToRegister(instr->scratch1());
2788 Register const object_instance_type = ToRegister(instr->scratch2());
2789 Register const object_prototype = object_map;
2790 Register const prototype = ToRegister(instr->prototype());
2791
2792 // The {object} must be a spec object. It's sufficient to know that {object}
2793 // is not a smi, since all other non-spec objects have {null} prototypes and
2794 // will be ruled out below.
2795 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2796 __ JumpIfSmi(object, instr->FalseLabel(chunk_));
2797 }
2798
2799 // Loop through the {object}s prototype chain looking for the {prototype}.
2800 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2801 Label loop;
2802 __ Bind(&loop);
2803
2804 // Deoptimize if the object needs to be access checked.
2805 __ Ldrb(object_instance_type,
2806 FieldMemOperand(object_map, Map::kBitFieldOffset));
2807 __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
2808 DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck);
2809 // Deoptimize for proxies.
2810 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2811 DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
2812
2813 __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2814 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2815 __ B(eq, instr->FalseLabel(chunk_));
2816 __ Cmp(object_prototype, prototype);
2817 __ B(eq, instr->TrueLabel(chunk_));
2818 __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2819 __ B(&loop);
2820 }
2821
2822
DoInstructionGap(LInstructionGap * instr)2823 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
2824 DoGap(instr);
2825 }
2826
2827
DoInteger32ToDouble(LInteger32ToDouble * instr)2828 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
2829 Register value = ToRegister32(instr->value());
2830 DoubleRegister result = ToDoubleRegister(instr->result());
2831 __ Scvtf(result, value);
2832 }
2833
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)2834 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
2835 Register scratch1, Register scratch2,
2836 Register scratch3) {
2837 #if DEBUG
2838 if (actual.is_reg()) {
2839 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
2840 } else {
2841 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
2842 }
2843 #endif
2844 if (FLAG_code_comments) {
2845 if (actual.is_reg()) {
2846 Comment(";;; PrepareForTailCall, actual: %s {",
2847 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
2848 actual.reg().code()));
2849 } else {
2850 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
2851 }
2852 }
2853
2854 // Check if next frame is an arguments adaptor frame.
2855 Register caller_args_count_reg = scratch1;
2856 Label no_arguments_adaptor, formal_parameter_count_loaded;
2857 __ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2858 __ Ldr(scratch3,
2859 MemOperand(scratch2, StandardFrameConstants::kContextOffset));
2860 __ Cmp(scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2861 __ B(ne, &no_arguments_adaptor);
2862
2863 // Drop current frame and load arguments count from arguments adaptor frame.
2864 __ mov(fp, scratch2);
2865 __ Ldr(caller_args_count_reg,
2866 MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
2867 __ SmiUntag(caller_args_count_reg);
2868 __ B(&formal_parameter_count_loaded);
2869
2870 __ bind(&no_arguments_adaptor);
2871 // Load caller's formal parameter count
2872 __ Mov(caller_args_count_reg,
2873 Immediate(info()->literal()->parameter_count()));
2874
2875 __ bind(&formal_parameter_count_loaded);
2876 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
2877
2878 Comment(";;; }");
2879 }
2880
DoInvokeFunction(LInvokeFunction * instr)2881 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
2882 HInvokeFunction* hinstr = instr->hydrogen();
2883 DCHECK(ToRegister(instr->context()).is(cp));
2884 // The function is required to be in x1.
2885 DCHECK(ToRegister(instr->function()).is(x1));
2886 DCHECK(instr->HasPointerMap());
2887
2888 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
2889
2890 if (is_tail_call) {
2891 DCHECK(!info()->saves_caller_doubles());
2892 ParameterCount actual(instr->arity());
2893 // It is safe to use x3, x4 and x5 as scratch registers here given that
2894 // 1) we are not going to return to caller function anyway,
2895 // 2) x3 (new.target) will be initialized below.
2896 PrepareForTailCall(actual, x3, x4, x5);
2897 }
2898
2899 Handle<JSFunction> known_function = hinstr->known_function();
2900 if (known_function.is_null()) {
2901 LPointerMap* pointers = instr->pointer_map();
2902 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2903 ParameterCount actual(instr->arity());
2904 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
2905 __ InvokeFunction(x1, no_reg, actual, flag, generator);
2906 } else {
2907 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
2908 instr->arity(), is_tail_call, instr);
2909 }
2910 RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2911 }
2912
2913
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2914 Condition LCodeGen::EmitIsString(Register input,
2915 Register temp1,
2916 Label* is_not_string,
2917 SmiCheck check_needed = INLINE_SMI_CHECK) {
2918 if (check_needed == INLINE_SMI_CHECK) {
2919 __ JumpIfSmi(input, is_not_string);
2920 }
2921 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2922
2923 return lt;
2924 }
2925
2926
DoIsStringAndBranch(LIsStringAndBranch * instr)2927 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2928 Register val = ToRegister(instr->value());
2929 Register scratch = ToRegister(instr->temp());
2930
2931 SmiCheck check_needed =
2932 instr->hydrogen()->value()->type().IsHeapObject()
2933 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2934 Condition true_cond =
2935 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
2936
2937 EmitBranch(instr, true_cond);
2938 }
2939
2940
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2941 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2942 Register value = ToRegister(instr->value());
2943 STATIC_ASSERT(kSmiTag == 0);
2944 EmitTestAndBranch(instr, eq, value, kSmiTagMask);
2945 }
2946
2947
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2948 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2949 Register input = ToRegister(instr->value());
2950 Register temp = ToRegister(instr->temp());
2951
2952 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2953 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2954 }
2955 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2956 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2957
2958 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
2959 }
2960
2961
LabelType(LLabel * label)2962 static const char* LabelType(LLabel* label) {
2963 if (label->is_loop_header()) return " (loop header)";
2964 if (label->is_osr_entry()) return " (OSR entry)";
2965 return "";
2966 }
2967
2968
DoLabel(LLabel * label)2969 void LCodeGen::DoLabel(LLabel* label) {
2970 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
2971 current_instruction_,
2972 label->hydrogen_value()->id(),
2973 label->block_id(),
2974 LabelType(label));
2975
2976 // Inherit pushed_arguments_ from the predecessor's argument count.
2977 if (label->block()->HasPredecessor()) {
2978 pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count();
2979 #ifdef DEBUG
2980 for (auto p : *label->block()->predecessors()) {
2981 DCHECK_EQ(p->argument_count(), pushed_arguments_);
2982 }
2983 #endif
2984 }
2985
2986 __ Bind(label->label());
2987 current_block_ = label->block_id();
2988 DoGap(label);
2989 }
2990
2991
DoLoadContextSlot(LLoadContextSlot * instr)2992 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2993 Register context = ToRegister(instr->context());
2994 Register result = ToRegister(instr->result());
2995 __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
2996 if (instr->hydrogen()->RequiresHoleCheck()) {
2997 if (instr->hydrogen()->DeoptimizesOnHole()) {
2998 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
2999 Deoptimizer::kHole);
3000 } else {
3001 Label not_the_hole;
3002 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole);
3003 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3004 __ Bind(¬_the_hole);
3005 }
3006 }
3007 }
3008
3009
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)3010 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3011 Register function = ToRegister(instr->function());
3012 Register result = ToRegister(instr->result());
3013 Register temp = ToRegister(instr->temp());
3014
3015 // Get the prototype or initial map from the function.
3016 __ Ldr(result, FieldMemOperand(function,
3017 JSFunction::kPrototypeOrInitialMapOffset));
3018
3019 // Check that the function has a prototype or an initial map.
3020 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3021 Deoptimizer::kHole);
3022
3023 // If the function does not have an initial map, we're done.
3024 Label done;
3025 __ CompareObjectType(result, temp, temp, MAP_TYPE);
3026 __ B(ne, &done);
3027
3028 // Get the prototype from the initial map.
3029 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3030
3031 // All done.
3032 __ Bind(&done);
3033 }
3034
3035
3036 template <class T>
EmitVectorLoadICRegisters(T * instr)3037 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
3038 Register vector_register = ToRegister(instr->temp_vector());
3039 Register slot_register = LoadWithVectorDescriptor::SlotRegister();
3040 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
3041 DCHECK(slot_register.is(x0));
3042
3043 AllowDeferredHandleDereference vector_structure_check;
3044 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3045 __ Mov(vector_register, vector);
3046 // No need to allocate this register.
3047 FeedbackVectorSlot slot = instr->hydrogen()->slot();
3048 int index = vector->GetIndex(slot);
3049 __ Mov(slot_register, Smi::FromInt(index));
3050 }
3051
3052
3053 template <class T>
EmitVectorStoreICRegisters(T * instr)3054 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
3055 Register vector_register = ToRegister(instr->temp_vector());
3056 Register slot_register = ToRegister(instr->temp_slot());
3057
3058 AllowDeferredHandleDereference vector_structure_check;
3059 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3060 __ Mov(vector_register, vector);
3061 FeedbackVectorSlot slot = instr->hydrogen()->slot();
3062 int index = vector->GetIndex(slot);
3063 __ Mov(slot_register, Smi::FromInt(index));
3064 }
3065
3066
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)3067 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
3068 DCHECK(ToRegister(instr->context()).is(cp));
3069 DCHECK(ToRegister(instr->result()).Is(x0));
3070
3071 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
3072 Handle<Code> ic =
3073 CodeFactory::LoadGlobalICInOptimizedCode(isolate(), instr->typeof_mode())
3074 .code();
3075 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3076 }
3077
3078
PrepareKeyedExternalArrayOperand(Register key,Register base,Register scratch,bool key_is_smi,bool key_is_constant,int constant_key,ElementsKind elements_kind,int base_offset)3079 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
3080 Register key,
3081 Register base,
3082 Register scratch,
3083 bool key_is_smi,
3084 bool key_is_constant,
3085 int constant_key,
3086 ElementsKind elements_kind,
3087 int base_offset) {
3088 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3089
3090 if (key_is_constant) {
3091 int key_offset = constant_key << element_size_shift;
3092 return MemOperand(base, key_offset + base_offset);
3093 }
3094
3095 if (key_is_smi) {
3096 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
3097 return MemOperand(scratch, base_offset);
3098 }
3099
3100 if (base_offset == 0) {
3101 return MemOperand(base, key, SXTW, element_size_shift);
3102 }
3103
3104 DCHECK(!AreAliased(scratch, key));
3105 __ Add(scratch, base, base_offset);
3106 return MemOperand(scratch, key, SXTW, element_size_shift);
3107 }
3108
3109
DoLoadKeyedExternal(LLoadKeyedExternal * instr)3110 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
3111 Register ext_ptr = ToRegister(instr->elements());
3112 Register scratch;
3113 ElementsKind elements_kind = instr->elements_kind();
3114
3115 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3116 bool key_is_constant = instr->key()->IsConstantOperand();
3117 Register key = no_reg;
3118 int constant_key = 0;
3119 if (key_is_constant) {
3120 DCHECK(instr->temp() == NULL);
3121 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3122 if (constant_key & 0xf0000000) {
3123 Abort(kArrayIndexConstantValueTooBig);
3124 }
3125 } else {
3126 scratch = ToRegister(instr->temp());
3127 key = ToRegister(instr->key());
3128 }
3129
3130 MemOperand mem_op =
3131 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
3132 key_is_constant, constant_key,
3133 elements_kind,
3134 instr->base_offset());
3135
3136 if (elements_kind == FLOAT32_ELEMENTS) {
3137 DoubleRegister result = ToDoubleRegister(instr->result());
3138 __ Ldr(result.S(), mem_op);
3139 __ Fcvt(result, result.S());
3140 } else if (elements_kind == FLOAT64_ELEMENTS) {
3141 DoubleRegister result = ToDoubleRegister(instr->result());
3142 __ Ldr(result, mem_op);
3143 } else {
3144 Register result = ToRegister(instr->result());
3145
3146 switch (elements_kind) {
3147 case INT8_ELEMENTS:
3148 __ Ldrsb(result, mem_op);
3149 break;
3150 case UINT8_ELEMENTS:
3151 case UINT8_CLAMPED_ELEMENTS:
3152 __ Ldrb(result, mem_op);
3153 break;
3154 case INT16_ELEMENTS:
3155 __ Ldrsh(result, mem_op);
3156 break;
3157 case UINT16_ELEMENTS:
3158 __ Ldrh(result, mem_op);
3159 break;
3160 case INT32_ELEMENTS:
3161 __ Ldrsw(result, mem_op);
3162 break;
3163 case UINT32_ELEMENTS:
3164 __ Ldr(result.W(), mem_op);
3165 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3166 // Deopt if value > 0x80000000.
3167 __ Tst(result, 0xFFFFFFFF80000000);
3168 DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue);
3169 }
3170 break;
3171 case FLOAT32_ELEMENTS:
3172 case FLOAT64_ELEMENTS:
3173 case FAST_HOLEY_DOUBLE_ELEMENTS:
3174 case FAST_HOLEY_ELEMENTS:
3175 case FAST_HOLEY_SMI_ELEMENTS:
3176 case FAST_DOUBLE_ELEMENTS:
3177 case FAST_ELEMENTS:
3178 case FAST_SMI_ELEMENTS:
3179 case DICTIONARY_ELEMENTS:
3180 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3181 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3182 case FAST_STRING_WRAPPER_ELEMENTS:
3183 case SLOW_STRING_WRAPPER_ELEMENTS:
3184 case NO_ELEMENTS:
3185 UNREACHABLE();
3186 break;
3187 }
3188 }
3189 }
3190
3191
PrepareKeyedArrayOperand(Register base,Register elements,Register key,bool key_is_tagged,ElementsKind elements_kind,Representation representation,int base_offset)3192 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
3193 Register elements,
3194 Register key,
3195 bool key_is_tagged,
3196 ElementsKind elements_kind,
3197 Representation representation,
3198 int base_offset) {
3199 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3200 STATIC_ASSERT(kSmiTag == 0);
3201 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3202
3203 // Even though the HLoad/StoreKeyed instructions force the input
3204 // representation for the key to be an integer, the input gets replaced during
3205 // bounds check elimination with the index argument to the bounds check, which
3206 // can be tagged, so that case must be handled here, too.
3207 if (key_is_tagged) {
3208 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
3209 if (representation.IsInteger32()) {
3210 DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3211 // Read or write only the smi payload in the case of fast smi arrays.
3212 return UntagSmiMemOperand(base, base_offset);
3213 } else {
3214 return MemOperand(base, base_offset);
3215 }
3216 } else {
3217 // Sign extend key because it could be a 32-bit negative value or contain
3218 // garbage in the top 32-bits. The address computation happens in 64-bit.
3219 DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
3220 if (representation.IsInteger32()) {
3221 DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3222 // Read or write only the smi payload in the case of fast smi arrays.
3223 __ Add(base, elements, Operand(key, SXTW, element_size_shift));
3224 return UntagSmiMemOperand(base, base_offset);
3225 } else {
3226 __ Add(base, elements, base_offset);
3227 return MemOperand(base, key, SXTW, element_size_shift);
3228 }
3229 }
3230 }
3231
3232
DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble * instr)3233 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
3234 Register elements = ToRegister(instr->elements());
3235 DoubleRegister result = ToDoubleRegister(instr->result());
3236 MemOperand mem_op;
3237
3238 if (instr->key()->IsConstantOperand()) {
3239 DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
3240 (instr->temp() == NULL));
3241
3242 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3243 if (constant_key & 0xf0000000) {
3244 Abort(kArrayIndexConstantValueTooBig);
3245 }
3246 int offset = instr->base_offset() + constant_key * kDoubleSize;
3247 mem_op = MemOperand(elements, offset);
3248 } else {
3249 Register load_base = ToRegister(instr->temp());
3250 Register key = ToRegister(instr->key());
3251 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3252 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3253 instr->hydrogen()->elements_kind(),
3254 instr->hydrogen()->representation(),
3255 instr->base_offset());
3256 }
3257
3258 __ Ldr(result, mem_op);
3259
3260 if (instr->hydrogen()->RequiresHoleCheck()) {
3261 Register scratch = ToRegister(instr->temp());
3262 __ Fmov(scratch, result);
3263 __ Eor(scratch, scratch, kHoleNanInt64);
3264 DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole);
3265 }
3266 }
3267
3268
DoLoadKeyedFixed(LLoadKeyedFixed * instr)3269 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
3270 Register elements = ToRegister(instr->elements());
3271 Register result = ToRegister(instr->result());
3272 MemOperand mem_op;
3273
3274 Representation representation = instr->hydrogen()->representation();
3275 if (instr->key()->IsConstantOperand()) {
3276 DCHECK(instr->temp() == NULL);
3277 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3278 int offset = instr->base_offset() +
3279 ToInteger32(const_operand) * kPointerSize;
3280 if (representation.IsInteger32()) {
3281 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
3282 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3283 STATIC_ASSERT(kSmiTag == 0);
3284 mem_op = UntagSmiMemOperand(elements, offset);
3285 } else {
3286 mem_op = MemOperand(elements, offset);
3287 }
3288 } else {
3289 Register load_base = ToRegister(instr->temp());
3290 Register key = ToRegister(instr->key());
3291 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3292
3293 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3294 instr->hydrogen()->elements_kind(),
3295 representation, instr->base_offset());
3296 }
3297
3298 __ Load(result, mem_op, representation);
3299
3300 if (instr->hydrogen()->RequiresHoleCheck()) {
3301 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3302 DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi);
3303 } else {
3304 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3305 Deoptimizer::kHole);
3306 }
3307 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3308 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3309 Label done;
3310 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
3311 __ B(ne, &done);
3312 if (info()->IsStub()) {
3313 // A stub can safely convert the hole to undefined only if the array
3314 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
3315 // it needs to bail out.
3316 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3317 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
3318 __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
3319 DeoptimizeIf(ne, instr, Deoptimizer::kHole);
3320 }
3321 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3322 __ Bind(&done);
3323 }
3324 }
3325
3326
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)3327 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3328 DCHECK(ToRegister(instr->context()).is(cp));
3329 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3330 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3331
3332 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3333
3334 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate()).code();
3335 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3336
3337 DCHECK(ToRegister(instr->result()).Is(x0));
3338 }
3339
3340
DoLoadNamedField(LLoadNamedField * instr)3341 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3342 HObjectAccess access = instr->hydrogen()->access();
3343 int offset = access.offset();
3344 Register object = ToRegister(instr->object());
3345
3346 if (access.IsExternalMemory()) {
3347 Register result = ToRegister(instr->result());
3348 __ Load(result, MemOperand(object, offset), access.representation());
3349 return;
3350 }
3351
3352 if (instr->hydrogen()->representation().IsDouble()) {
3353 DCHECK(access.IsInobject());
3354 FPRegister result = ToDoubleRegister(instr->result());
3355 __ Ldr(result, FieldMemOperand(object, offset));
3356 return;
3357 }
3358
3359 Register result = ToRegister(instr->result());
3360 Register source;
3361 if (access.IsInobject()) {
3362 source = object;
3363 } else {
3364 // Load the properties array, using result as a scratch register.
3365 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3366 source = result;
3367 }
3368
3369 if (access.representation().IsSmi() &&
3370 instr->hydrogen()->representation().IsInteger32()) {
3371 // Read int value directly from upper half of the smi.
3372 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3373 STATIC_ASSERT(kSmiTag == 0);
3374 __ Load(result, UntagSmiFieldMemOperand(source, offset),
3375 Representation::Integer32());
3376 } else {
3377 __ Load(result, FieldMemOperand(source, offset), access.representation());
3378 }
3379 }
3380
3381
DoLoadNamedGeneric(LLoadNamedGeneric * instr)3382 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3383 DCHECK(ToRegister(instr->context()).is(cp));
3384 // LoadIC expects name and receiver in registers.
3385 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3386 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
3387 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
3388 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate()).code();
3389 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3390
3391 DCHECK(ToRegister(instr->result()).is(x0));
3392 }
3393
3394
DoLoadRoot(LLoadRoot * instr)3395 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3396 Register result = ToRegister(instr->result());
3397 __ LoadRoot(result, instr->index());
3398 }
3399
3400
DoMathAbs(LMathAbs * instr)3401 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3402 Representation r = instr->hydrogen()->value()->representation();
3403 if (r.IsDouble()) {
3404 DoubleRegister input = ToDoubleRegister(instr->value());
3405 DoubleRegister result = ToDoubleRegister(instr->result());
3406 __ Fabs(result, input);
3407 } else if (r.IsSmi() || r.IsInteger32()) {
3408 Register input = r.IsSmi() ? ToRegister(instr->value())
3409 : ToRegister32(instr->value());
3410 Register result = r.IsSmi() ? ToRegister(instr->result())
3411 : ToRegister32(instr->result());
3412 __ Abs(result, input);
3413 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3414 }
3415 }
3416
3417
DoDeferredMathAbsTagged(LMathAbsTagged * instr,Label * exit,Label * allocation_entry)3418 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
3419 Label* exit,
3420 Label* allocation_entry) {
3421 // Handle the tricky cases of MathAbsTagged:
3422 // - HeapNumber inputs.
3423 // - Negative inputs produce a positive result, so a new HeapNumber is
3424 // allocated to hold it.
3425 // - Positive inputs are returned as-is, since there is no need to allocate
3426 // a new HeapNumber for the result.
3427 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
3428 // a smi. In this case, the inline code sets the result and jumps directly
3429 // to the allocation_entry label.
3430 DCHECK(instr->context() != NULL);
3431 DCHECK(ToRegister(instr->context()).is(cp));
3432 Register input = ToRegister(instr->value());
3433 Register temp1 = ToRegister(instr->temp1());
3434 Register temp2 = ToRegister(instr->temp2());
3435 Register result_bits = ToRegister(instr->temp3());
3436 Register result = ToRegister(instr->result());
3437
3438 Label runtime_allocation;
3439
3440 // Deoptimize if the input is not a HeapNumber.
3441 DeoptimizeIfNotHeapNumber(input, instr);
3442
3443 // If the argument is positive, we can return it as-is, without any need to
3444 // allocate a new HeapNumber for the result. We have to do this in integer
3445 // registers (rather than with fabs) because we need to be able to distinguish
3446 // the two zeroes.
3447 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
3448 __ Mov(result, input);
3449 __ Tbz(result_bits, kXSignBit, exit);
3450
3451 // Calculate abs(input) by clearing the sign bit.
3452 __ Bic(result_bits, result_bits, kXSignMask);
3453
3454 // Allocate a new HeapNumber to hold the result.
3455 // result_bits The bit representation of the (double) result.
3456 __ Bind(allocation_entry);
3457 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
3458 // The inline (non-deferred) code will store result_bits into result.
3459 __ B(exit);
3460
3461 __ Bind(&runtime_allocation);
3462 if (FLAG_debug_code) {
3463 // Because result is in the pointer map, we need to make sure it has a valid
3464 // tagged value before we call the runtime. We speculatively set it to the
3465 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
3466 // be valid.
3467 Label result_ok;
3468 Register input = ToRegister(instr->value());
3469 __ JumpIfSmi(result, &result_ok);
3470 __ Cmp(input, result);
3471 __ Assert(eq, kUnexpectedValue);
3472 __ Bind(&result_ok);
3473 }
3474
3475 { PushSafepointRegistersScope scope(this);
3476 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3477 instr->context());
3478 __ StoreToSafepointRegisterSlot(x0, result);
3479 }
3480 // The inline (non-deferred) code will store result_bits into result.
3481 }
3482
3483
DoMathAbsTagged(LMathAbsTagged * instr)3484 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
3485 // Class for deferred case.
3486 class DeferredMathAbsTagged: public LDeferredCode {
3487 public:
3488 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
3489 : LDeferredCode(codegen), instr_(instr) { }
3490 virtual void Generate() {
3491 codegen()->DoDeferredMathAbsTagged(instr_, exit(),
3492 allocation_entry());
3493 }
3494 virtual LInstruction* instr() { return instr_; }
3495 Label* allocation_entry() { return &allocation; }
3496 private:
3497 LMathAbsTagged* instr_;
3498 Label allocation;
3499 };
3500
3501 // TODO(jbramley): The early-exit mechanism would skip the new frame handling
3502 // in GenerateDeferredCode. Tidy this up.
3503 DCHECK(!NeedsDeferredFrame());
3504
3505 DeferredMathAbsTagged* deferred =
3506 new(zone()) DeferredMathAbsTagged(this, instr);
3507
3508 DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
3509 instr->hydrogen()->value()->representation().IsSmi());
3510 Register input = ToRegister(instr->value());
3511 Register result_bits = ToRegister(instr->temp3());
3512 Register result = ToRegister(instr->result());
3513 Label done;
3514
3515 // Handle smis inline.
3516 // We can treat smis as 64-bit integers, since the (low-order) tag bits will
3517 // never get set by the negation. This is therefore the same as the Integer32
3518 // case in DoMathAbs, except that it operates on 64-bit values.
3519 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3520
3521 __ JumpIfNotSmi(input, deferred->entry());
3522
3523 __ Abs(result, input, NULL, &done);
3524
3525 // The result is the magnitude (abs) of the smallest value a smi can
3526 // represent, encoded as a double.
3527 __ Mov(result_bits, double_to_rawbits(0x80000000));
3528 __ B(deferred->allocation_entry());
3529
3530 __ Bind(deferred->exit());
3531 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
3532
3533 __ Bind(&done);
3534 }
3535
DoMathCos(LMathCos * instr)3536 void LCodeGen::DoMathCos(LMathCos* instr) {
3537 DCHECK(instr->IsMarkedAsCall());
3538 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3539 __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3540 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3541 }
3542
DoMathSin(LMathSin * instr)3543 void LCodeGen::DoMathSin(LMathSin* instr) {
3544 DCHECK(instr->IsMarkedAsCall());
3545 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3546 __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3547 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3548 }
3549
DoMathExp(LMathExp * instr)3550 void LCodeGen::DoMathExp(LMathExp* instr) {
3551 DCHECK(instr->IsMarkedAsCall());
3552 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3553 __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3554 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3555 }
3556
3557
DoMathFloorD(LMathFloorD * instr)3558 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3559 DoubleRegister input = ToDoubleRegister(instr->value());
3560 DoubleRegister result = ToDoubleRegister(instr->result());
3561
3562 __ Frintm(result, input);
3563 }
3564
3565
DoMathFloorI(LMathFloorI * instr)3566 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
3567 DoubleRegister input = ToDoubleRegister(instr->value());
3568 Register result = ToRegister(instr->result());
3569
3570 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3571 DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
3572 }
3573
3574 __ Fcvtms(result, input);
3575
3576 // Check that the result fits into a 32-bit integer.
3577 // - The result did not overflow.
3578 __ Cmp(result, Operand(result, SXTW));
3579 // - The input was not NaN.
3580 __ Fccmp(input, input, NoFlag, eq);
3581 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
3582 }
3583
3584
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)3585 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
3586 Register dividend = ToRegister32(instr->dividend());
3587 Register result = ToRegister32(instr->result());
3588 int32_t divisor = instr->divisor();
3589
3590 // If the divisor is 1, return the dividend.
3591 if (divisor == 1) {
3592 __ Mov(result, dividend, kDiscardForSameWReg);
3593 return;
3594 }
3595
3596 // If the divisor is positive, things are easy: There can be no deopts and we
3597 // can simply do an arithmetic right shift.
3598 int32_t shift = WhichPowerOf2Abs(divisor);
3599 if (divisor > 1) {
3600 __ Mov(result, Operand(dividend, ASR, shift));
3601 return;
3602 }
3603
3604 // If the divisor is negative, we have to negate and handle edge cases.
3605 __ Negs(result, dividend);
3606 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3607 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3608 }
3609
3610 // Dividing by -1 is basically negation, unless we overflow.
3611 if (divisor == -1) {
3612 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3613 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3614 }
3615 return;
3616 }
3617
3618 // If the negation could not overflow, simply shifting is OK.
3619 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3620 __ Mov(result, Operand(dividend, ASR, shift));
3621 return;
3622 }
3623
3624 __ Asr(result, result, shift);
3625 __ Csel(result, result, kMinInt / divisor, vc);
3626 }
3627
3628
DoFlooringDivByConstI(LFlooringDivByConstI * instr)3629 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
3630 Register dividend = ToRegister32(instr->dividend());
3631 int32_t divisor = instr->divisor();
3632 Register result = ToRegister32(instr->result());
3633 DCHECK(!AreAliased(dividend, result));
3634
3635 if (divisor == 0) {
3636 Deoptimize(instr, Deoptimizer::kDivisionByZero);
3637 return;
3638 }
3639
3640 // Check for (0 / -x) that will produce negative zero.
3641 HMathFloorOfDiv* hdiv = instr->hydrogen();
3642 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
3643 DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
3644 }
3645
3646 // Easy case: We need no dynamic check for the dividend and the flooring
3647 // division is the same as the truncating division.
3648 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
3649 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
3650 __ TruncatingDiv(result, dividend, Abs(divisor));
3651 if (divisor < 0) __ Neg(result, result);
3652 return;
3653 }
3654
3655 // In the general case we may need to adjust before and after the truncating
3656 // division to get a flooring division.
3657 Register temp = ToRegister32(instr->temp());
3658 DCHECK(!AreAliased(temp, dividend, result));
3659 Label needs_adjustment, done;
3660 __ Cmp(dividend, 0);
3661 __ B(divisor > 0 ? lt : gt, &needs_adjustment);
3662 __ TruncatingDiv(result, dividend, Abs(divisor));
3663 if (divisor < 0) __ Neg(result, result);
3664 __ B(&done);
3665 __ Bind(&needs_adjustment);
3666 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
3667 __ TruncatingDiv(result, temp, Abs(divisor));
3668 if (divisor < 0) __ Neg(result, result);
3669 __ Sub(result, result, Operand(1));
3670 __ Bind(&done);
3671 }
3672
3673
3674 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)3675 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
3676 Register dividend = ToRegister32(instr->dividend());
3677 Register divisor = ToRegister32(instr->divisor());
3678 Register remainder = ToRegister32(instr->temp());
3679 Register result = ToRegister32(instr->result());
3680
3681 // This can't cause an exception on ARM, so we can speculatively
3682 // execute it already now.
3683 __ Sdiv(result, dividend, divisor);
3684
3685 // Check for x / 0.
3686 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
3687
3688 // Check for (kMinInt / -1).
3689 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
3690 // The V flag will be set iff dividend == kMinInt.
3691 __ Cmp(dividend, 1);
3692 __ Ccmp(divisor, -1, NoFlag, vs);
3693 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
3694 }
3695
3696 // Check for (0 / -x) that will produce negative zero.
3697 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3698 __ Cmp(divisor, 0);
3699 __ Ccmp(dividend, 0, ZFlag, mi);
3700 // "divisor" can't be null because the code would have already been
3701 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
3702 // In this case we need to deoptimize to produce a -0.
3703 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3704 }
3705
3706 Label done;
3707 // If both operands have the same sign then we are done.
3708 __ Eor(remainder, dividend, divisor);
3709 __ Tbz(remainder, kWSignBit, &done);
3710
3711 // Check if the result needs to be corrected.
3712 __ Msub(remainder, result, divisor, dividend);
3713 __ Cbz(remainder, &done);
3714 __ Sub(result, result, 1);
3715
3716 __ Bind(&done);
3717 }
3718
3719
DoMathLog(LMathLog * instr)3720 void LCodeGen::DoMathLog(LMathLog* instr) {
3721 DCHECK(instr->IsMarkedAsCall());
3722 DCHECK(ToDoubleRegister(instr->value()).is(d0));
3723 __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3724 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3725 }
3726
3727
DoMathClz32(LMathClz32 * instr)3728 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3729 Register input = ToRegister32(instr->value());
3730 Register result = ToRegister32(instr->result());
3731 __ Clz(result, input);
3732 }
3733
3734
DoMathPowHalf(LMathPowHalf * instr)3735 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3736 DoubleRegister input = ToDoubleRegister(instr->value());
3737 DoubleRegister result = ToDoubleRegister(instr->result());
3738 Label done;
3739
3740 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
3741 // Math.pow(-Infinity, 0.5) == +Infinity
3742 // Math.pow(-0.0, 0.5) == +0.0
3743
3744 // Catch -infinity inputs first.
3745 // TODO(jbramley): A constant infinity register would be helpful here.
3746 __ Fmov(double_scratch(), kFP64NegativeInfinity);
3747 __ Fcmp(double_scratch(), input);
3748 __ Fabs(result, input);
3749 __ B(&done, eq);
3750
3751 // Add +0.0 to convert -0.0 to +0.0.
3752 __ Fadd(double_scratch(), input, fp_zero);
3753 __ Fsqrt(result, double_scratch());
3754
3755 __ Bind(&done);
3756 }
3757
3758
DoPower(LPower * instr)3759 void LCodeGen::DoPower(LPower* instr) {
3760 Representation exponent_type = instr->hydrogen()->right()->representation();
3761 // Having marked this as a call, we can use any registers.
3762 // Just make sure that the input/output registers are the expected ones.
3763 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3764 Register integer_exponent = MathPowIntegerDescriptor::exponent();
3765 DCHECK(!instr->right()->IsDoubleRegister() ||
3766 ToDoubleRegister(instr->right()).is(d1));
3767 DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
3768 ToRegister(instr->right()).is(tagged_exponent));
3769 DCHECK(!exponent_type.IsInteger32() ||
3770 ToRegister(instr->right()).is(integer_exponent));
3771 DCHECK(ToDoubleRegister(instr->left()).is(d0));
3772 DCHECK(ToDoubleRegister(instr->result()).is(d0));
3773
3774 if (exponent_type.IsSmi()) {
3775 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3776 __ CallStub(&stub);
3777 } else if (exponent_type.IsTagged()) {
3778 Label no_deopt;
3779 __ JumpIfSmi(tagged_exponent, &no_deopt);
3780 DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
3781 __ Bind(&no_deopt);
3782 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3783 __ CallStub(&stub);
3784 } else if (exponent_type.IsInteger32()) {
3785 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
3786 // supports large integer exponents.
3787 __ Sxtw(integer_exponent, integer_exponent);
3788 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3789 __ CallStub(&stub);
3790 } else {
3791 DCHECK(exponent_type.IsDouble());
3792 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3793 __ CallStub(&stub);
3794 }
3795 }
3796
3797
DoMathRoundD(LMathRoundD * instr)3798 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
3799 DoubleRegister input = ToDoubleRegister(instr->value());
3800 DoubleRegister result = ToDoubleRegister(instr->result());
3801 DoubleRegister scratch_d = double_scratch();
3802
3803 DCHECK(!AreAliased(input, result, scratch_d));
3804
3805 Label done;
3806
3807 __ Frinta(result, input);
3808 __ Fcmp(input, 0.0);
3809 __ Fccmp(result, input, ZFlag, lt);
3810 // The result is correct if the input was in [-0, +infinity], or was a
3811 // negative integral value.
3812 __ B(eq, &done);
3813
3814 // Here the input is negative, non integral, with an exponent lower than 52.
3815 // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
3816 // case. So we can safely add 0.5.
3817 __ Fmov(scratch_d, 0.5);
3818 __ Fadd(result, input, scratch_d);
3819 __ Frintm(result, result);
3820 // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
3821 __ Fabs(result, result);
3822 __ Fneg(result, result);
3823
3824 __ Bind(&done);
3825 }
3826
3827
DoMathRoundI(LMathRoundI * instr)3828 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
3829 DoubleRegister input = ToDoubleRegister(instr->value());
3830 DoubleRegister temp = ToDoubleRegister(instr->temp1());
3831 DoubleRegister dot_five = double_scratch();
3832 Register result = ToRegister(instr->result());
3833 Label done;
3834
3835 // Math.round() rounds to the nearest integer, with ties going towards
3836 // +infinity. This does not match any IEEE-754 rounding mode.
3837 // - Infinities and NaNs are propagated unchanged, but cause deopts because
3838 // they can't be represented as integers.
3839 // - The sign of the result is the same as the sign of the input. This means
3840 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
3841 // result of -0.0.
3842
3843 // Add 0.5 and round towards -infinity.
3844 __ Fmov(dot_five, 0.5);
3845 __ Fadd(temp, input, dot_five);
3846 __ Fcvtms(result, temp);
3847
3848 // The result is correct if:
3849 // result is not 0, as the input could be NaN or [-0.5, -0.0].
3850 // result is not 1, as 0.499...94 will wrongly map to 1.
3851 // result fits in 32 bits.
3852 __ Cmp(result, Operand(result.W(), SXTW));
3853 __ Ccmp(result, 1, ZFlag, eq);
3854 __ B(hi, &done);
3855
3856 // At this point, we have to handle possible inputs of NaN or numbers in the
3857 // range [-0.5, 1.5[, or numbers larger than 32 bits.
3858
3859 // Deoptimize if the result > 1, as it must be larger than 32 bits.
3860 __ Cmp(result, 1);
3861 DeoptimizeIf(hi, instr, Deoptimizer::kOverflow);
3862
3863 // Deoptimize for negative inputs, which at this point are only numbers in
3864 // the range [-0.5, -0.0]
3865 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3866 __ Fmov(result, input);
3867 DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero);
3868 }
3869
3870 // Deoptimize if the input was NaN.
3871 __ Fcmp(input, dot_five);
3872 DeoptimizeIf(vs, instr, Deoptimizer::kNaN);
3873
3874 // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
3875 // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
3876 // else 0; we avoid dealing with 0.499...94 directly.
3877 __ Cset(result, ge);
3878 __ Bind(&done);
3879 }
3880
3881
DoMathFround(LMathFround * instr)3882 void LCodeGen::DoMathFround(LMathFround* instr) {
3883 DoubleRegister input = ToDoubleRegister(instr->value());
3884 DoubleRegister result = ToDoubleRegister(instr->result());
3885 __ Fcvt(result.S(), input);
3886 __ Fcvt(result, result.S());
3887 }
3888
3889
DoMathSqrt(LMathSqrt * instr)3890 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3891 DoubleRegister input = ToDoubleRegister(instr->value());
3892 DoubleRegister result = ToDoubleRegister(instr->result());
3893 __ Fsqrt(result, input);
3894 }
3895
3896
DoMathMinMax(LMathMinMax * instr)3897 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
3898 HMathMinMax::Operation op = instr->hydrogen()->operation();
3899 if (instr->hydrogen()->representation().IsInteger32()) {
3900 Register result = ToRegister32(instr->result());
3901 Register left = ToRegister32(instr->left());
3902 Operand right = ToOperand32(instr->right());
3903
3904 __ Cmp(left, right);
3905 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
3906 } else if (instr->hydrogen()->representation().IsSmi()) {
3907 Register result = ToRegister(instr->result());
3908 Register left = ToRegister(instr->left());
3909 Operand right = ToOperand(instr->right());
3910
3911 __ Cmp(left, right);
3912 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
3913 } else {
3914 DCHECK(instr->hydrogen()->representation().IsDouble());
3915 DoubleRegister result = ToDoubleRegister(instr->result());
3916 DoubleRegister left = ToDoubleRegister(instr->left());
3917 DoubleRegister right = ToDoubleRegister(instr->right());
3918
3919 if (op == HMathMinMax::kMathMax) {
3920 __ Fmax(result, left, right);
3921 } else {
3922 DCHECK(op == HMathMinMax::kMathMin);
3923 __ Fmin(result, left, right);
3924 }
3925 }
3926 }
3927
3928
DoModByPowerOf2I(LModByPowerOf2I * instr)3929 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
3930 Register dividend = ToRegister32(instr->dividend());
3931 int32_t divisor = instr->divisor();
3932 DCHECK(dividend.is(ToRegister32(instr->result())));
3933
3934 // Theoretically, a variation of the branch-free code for integer division by
3935 // a power of 2 (calculating the remainder via an additional multiplication
3936 // (which gets simplified to an 'and') and subtraction) should be faster, and
3937 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
3938 // indicate that positive dividends are heavily favored, so the branching
3939 // version performs better.
3940 HMod* hmod = instr->hydrogen();
3941 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
3942 Label dividend_is_not_negative, done;
3943 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
3944 __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative);
3945 // Note that this is correct even for kMinInt operands.
3946 __ Neg(dividend, dividend);
3947 __ And(dividend, dividend, mask);
3948 __ Negs(dividend, dividend);
3949 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
3950 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3951 }
3952 __ B(&done);
3953 }
3954
3955 __ bind(÷nd_is_not_negative);
3956 __ And(dividend, dividend, mask);
3957 __ bind(&done);
3958 }
3959
3960
DoModByConstI(LModByConstI * instr)3961 void LCodeGen::DoModByConstI(LModByConstI* instr) {
3962 Register dividend = ToRegister32(instr->dividend());
3963 int32_t divisor = instr->divisor();
3964 Register result = ToRegister32(instr->result());
3965 Register temp = ToRegister32(instr->temp());
3966 DCHECK(!AreAliased(dividend, result, temp));
3967
3968 if (divisor == 0) {
3969 Deoptimize(instr, Deoptimizer::kDivisionByZero);
3970 return;
3971 }
3972
3973 __ TruncatingDiv(result, dividend, Abs(divisor));
3974 __ Sxtw(dividend.X(), dividend);
3975 __ Mov(temp, Abs(divisor));
3976 __ Smsubl(result.X(), result, temp, dividend.X());
3977
3978 // Check for negative zero.
3979 HMod* hmod = instr->hydrogen();
3980 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
3981 Label remainder_not_zero;
3982 __ Cbnz(result, &remainder_not_zero);
3983 DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
3984 __ bind(&remainder_not_zero);
3985 }
3986 }
3987
3988
DoModI(LModI * instr)3989 void LCodeGen::DoModI(LModI* instr) {
3990 Register dividend = ToRegister32(instr->left());
3991 Register divisor = ToRegister32(instr->right());
3992 Register result = ToRegister32(instr->result());
3993
3994 Label done;
3995 // modulo = dividend - quotient * divisor
3996 __ Sdiv(result, dividend, divisor);
3997 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
3998 DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
3999 }
4000 __ Msub(result, result, divisor, dividend);
4001 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4002 __ Cbnz(result, &done);
4003 DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
4004 }
4005 __ Bind(&done);
4006 }
4007
4008
DoMulConstIS(LMulConstIS * instr)4009 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
4010 DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
4011 bool is_smi = instr->hydrogen()->representation().IsSmi();
4012 Register result =
4013 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
4014 Register left =
4015 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left());
4016 int32_t right = ToInteger32(instr->right());
4017 DCHECK((right > -kMaxInt) && (right < kMaxInt));
4018
4019 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4020 bool bailout_on_minus_zero =
4021 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4022
4023 if (bailout_on_minus_zero) {
4024 if (right < 0) {
4025 // The result is -0 if right is negative and left is zero.
4026 DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero);
4027 } else if (right == 0) {
4028 // The result is -0 if the right is zero and the left is negative.
4029 DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero);
4030 }
4031 }
4032
4033 switch (right) {
4034 // Cases which can detect overflow.
4035 case -1:
4036 if (can_overflow) {
4037 // Only 0x80000000 can overflow here.
4038 __ Negs(result, left);
4039 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4040 } else {
4041 __ Neg(result, left);
4042 }
4043 break;
4044 case 0:
4045 // This case can never overflow.
4046 __ Mov(result, 0);
4047 break;
4048 case 1:
4049 // This case can never overflow.
4050 __ Mov(result, left, kDiscardForSameWReg);
4051 break;
4052 case 2:
4053 if (can_overflow) {
4054 __ Adds(result, left, left);
4055 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4056 } else {
4057 __ Add(result, left, left);
4058 }
4059 break;
4060
4061 default:
4062 // Multiplication by constant powers of two (and some related values)
4063 // can be done efficiently with shifted operands.
4064 int32_t right_abs = Abs(right);
4065
4066 if (base::bits::IsPowerOfTwo32(right_abs)) {
4067 int right_log2 = WhichPowerOf2(right_abs);
4068
4069 if (can_overflow) {
4070 Register scratch = result;
4071 DCHECK(!AreAliased(scratch, left));
4072 __ Cls(scratch, left);
4073 __ Cmp(scratch, right_log2);
4074 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow);
4075 }
4076
4077 if (right >= 0) {
4078 // result = left << log2(right)
4079 __ Lsl(result, left, right_log2);
4080 } else {
4081 // result = -left << log2(-right)
4082 if (can_overflow) {
4083 __ Negs(result, Operand(left, LSL, right_log2));
4084 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4085 } else {
4086 __ Neg(result, Operand(left, LSL, right_log2));
4087 }
4088 }
4089 return;
4090 }
4091
4092
4093 // For the following cases, we could perform a conservative overflow check
4094 // with CLS as above. However the few cycles saved are likely not worth
4095 // the risk of deoptimizing more often than required.
4096 DCHECK(!can_overflow);
4097
4098 if (right >= 0) {
4099 if (base::bits::IsPowerOfTwo32(right - 1)) {
4100 // result = left + left << log2(right - 1)
4101 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
4102 } else if (base::bits::IsPowerOfTwo32(right + 1)) {
4103 // result = -left + left << log2(right + 1)
4104 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
4105 __ Neg(result, result);
4106 } else {
4107 UNREACHABLE();
4108 }
4109 } else {
4110 if (base::bits::IsPowerOfTwo32(-right + 1)) {
4111 // result = left - left << log2(-right + 1)
4112 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
4113 } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
4114 // result = -left - left << log2(-right - 1)
4115 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
4116 __ Neg(result, result);
4117 } else {
4118 UNREACHABLE();
4119 }
4120 }
4121 }
4122 }
4123
4124
DoMulI(LMulI * instr)4125 void LCodeGen::DoMulI(LMulI* instr) {
4126 Register result = ToRegister32(instr->result());
4127 Register left = ToRegister32(instr->left());
4128 Register right = ToRegister32(instr->right());
4129
4130 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4131 bool bailout_on_minus_zero =
4132 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4133
4134 if (bailout_on_minus_zero && !left.Is(right)) {
4135 // If one operand is zero and the other is negative, the result is -0.
4136 // - Set Z (eq) if either left or right, or both, are 0.
4137 __ Cmp(left, 0);
4138 __ Ccmp(right, 0, ZFlag, ne);
4139 // - If so (eq), set N (mi) if left + right is negative.
4140 // - Otherwise, clear N.
4141 __ Ccmn(left, right, NoFlag, eq);
4142 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
4143 }
4144
4145 if (can_overflow) {
4146 __ Smull(result.X(), left, right);
4147 __ Cmp(result.X(), Operand(result, SXTW));
4148 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4149 } else {
4150 __ Mul(result, left, right);
4151 }
4152 }
4153
4154
DoMulS(LMulS * instr)4155 void LCodeGen::DoMulS(LMulS* instr) {
4156 Register result = ToRegister(instr->result());
4157 Register left = ToRegister(instr->left());
4158 Register right = ToRegister(instr->right());
4159
4160 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4161 bool bailout_on_minus_zero =
4162 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4163
4164 if (bailout_on_minus_zero && !left.Is(right)) {
4165 // If one operand is zero and the other is negative, the result is -0.
4166 // - Set Z (eq) if either left or right, or both, are 0.
4167 __ Cmp(left, 0);
4168 __ Ccmp(right, 0, ZFlag, ne);
4169 // - If so (eq), set N (mi) if left + right is negative.
4170 // - Otherwise, clear N.
4171 __ Ccmn(left, right, NoFlag, eq);
4172 DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
4173 }
4174
4175 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
4176 if (can_overflow) {
4177 __ Smulh(result, left, right);
4178 __ Cmp(result, Operand(result.W(), SXTW));
4179 __ SmiTag(result);
4180 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4181 } else {
4182 if (AreAliased(result, left, right)) {
4183 // All three registers are the same: half untag the input and then
4184 // multiply, giving a tagged result.
4185 STATIC_ASSERT((kSmiShift % 2) == 0);
4186 __ Asr(result, left, kSmiShift / 2);
4187 __ Mul(result, result, result);
4188 } else if (result.Is(left) && !left.Is(right)) {
4189 // Registers result and left alias, right is distinct: untag left into
4190 // result, and then multiply by right, giving a tagged result.
4191 __ SmiUntag(result, left);
4192 __ Mul(result, result, right);
4193 } else {
4194 DCHECK(!left.Is(result));
4195 // Registers result and right alias, left is distinct, or all registers
4196 // are distinct: untag right into result, and then multiply by left,
4197 // giving a tagged result.
4198 __ SmiUntag(result, right);
4199 __ Mul(result, left, result);
4200 }
4201 }
4202 }
4203
4204
DoDeferredNumberTagD(LNumberTagD * instr)4205 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4206 // TODO(3095996): Get rid of this. For now, we need to make the
4207 // result register contain a valid pointer because it is already
4208 // contained in the register pointer map.
4209 Register result = ToRegister(instr->result());
4210 __ Mov(result, 0);
4211
4212 PushSafepointRegistersScope scope(this);
4213 // NumberTagU and NumberTagD use the context from the frame, rather than
4214 // the environment's HContext or HInlinedContext value.
4215 // They only call Runtime::kAllocateHeapNumber.
4216 // The corresponding HChange instructions are added in a phase that does
4217 // not have easy access to the local context.
4218 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4219 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4220 RecordSafepointWithRegisters(
4221 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4222 __ StoreToSafepointRegisterSlot(x0, result);
4223 }
4224
4225
DoNumberTagD(LNumberTagD * instr)4226 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4227 class DeferredNumberTagD: public LDeferredCode {
4228 public:
4229 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4230 : LDeferredCode(codegen), instr_(instr) { }
4231 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
4232 virtual LInstruction* instr() { return instr_; }
4233 private:
4234 LNumberTagD* instr_;
4235 };
4236
4237 DoubleRegister input = ToDoubleRegister(instr->value());
4238 Register result = ToRegister(instr->result());
4239 Register temp1 = ToRegister(instr->temp1());
4240 Register temp2 = ToRegister(instr->temp2());
4241
4242 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4243 if (FLAG_inline_new) {
4244 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
4245 } else {
4246 __ B(deferred->entry());
4247 }
4248
4249 __ Bind(deferred->exit());
4250 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
4251 }
4252
4253
DoDeferredNumberTagU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2)4254 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
4255 LOperand* value,
4256 LOperand* temp1,
4257 LOperand* temp2) {
4258 Label slow, convert_and_store;
4259 Register src = ToRegister32(value);
4260 Register dst = ToRegister(instr->result());
4261 Register scratch1 = ToRegister(temp1);
4262
4263 if (FLAG_inline_new) {
4264 Register scratch2 = ToRegister(temp2);
4265 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
4266 __ B(&convert_and_store);
4267 }
4268
4269 // Slow case: call the runtime system to do the number allocation.
4270 __ Bind(&slow);
4271 // TODO(3095996): Put a valid pointer value in the stack slot where the result
4272 // register is stored, as this register is in the pointer map, but contains an
4273 // integer value.
4274 __ Mov(dst, 0);
4275 {
4276 // Preserve the value of all registers.
4277 PushSafepointRegistersScope scope(this);
4278
4279 // NumberTagU and NumberTagD use the context from the frame, rather than
4280 // the environment's HContext or HInlinedContext value.
4281 // They only call Runtime::kAllocateHeapNumber.
4282 // The corresponding HChange instructions are added in a phase that does
4283 // not have easy access to the local context.
4284 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4285 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4286 RecordSafepointWithRegisters(
4287 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4288 __ StoreToSafepointRegisterSlot(x0, dst);
4289 }
4290
4291 // Convert number to floating point and store in the newly allocated heap
4292 // number.
4293 __ Bind(&convert_and_store);
4294 DoubleRegister dbl_scratch = double_scratch();
4295 __ Ucvtf(dbl_scratch, src);
4296 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4297 }
4298
4299
DoNumberTagU(LNumberTagU * instr)4300 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4301 class DeferredNumberTagU: public LDeferredCode {
4302 public:
4303 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4304 : LDeferredCode(codegen), instr_(instr) { }
4305 virtual void Generate() {
4306 codegen()->DoDeferredNumberTagU(instr_,
4307 instr_->value(),
4308 instr_->temp1(),
4309 instr_->temp2());
4310 }
4311 virtual LInstruction* instr() { return instr_; }
4312 private:
4313 LNumberTagU* instr_;
4314 };
4315
4316 Register value = ToRegister32(instr->value());
4317 Register result = ToRegister(instr->result());
4318
4319 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4320 __ Cmp(value, Smi::kMaxValue);
4321 __ B(hi, deferred->entry());
4322 __ SmiTag(result, value.X());
4323 __ Bind(deferred->exit());
4324 }
4325
4326
DoNumberUntagD(LNumberUntagD * instr)4327 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4328 Register input = ToRegister(instr->value());
4329 Register scratch = ToRegister(instr->temp());
4330 DoubleRegister result = ToDoubleRegister(instr->result());
4331 bool can_convert_undefined_to_nan =
4332 instr->hydrogen()->can_convert_undefined_to_nan();
4333
4334 Label done, load_smi;
4335
4336 // Work out what untag mode we're working with.
4337 HValue* value = instr->hydrogen()->value();
4338 NumberUntagDMode mode = value->representation().IsSmi()
4339 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4340
4341 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4342 __ JumpIfSmi(input, &load_smi);
4343
4344 Label convert_undefined;
4345
4346 // Heap number map check.
4347 if (can_convert_undefined_to_nan) {
4348 __ JumpIfNotHeapNumber(input, &convert_undefined);
4349 } else {
4350 DeoptimizeIfNotHeapNumber(input, instr);
4351 }
4352
4353 // Load heap number.
4354 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
4355 if (instr->hydrogen()->deoptimize_on_minus_zero()) {
4356 DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero);
4357 }
4358 __ B(&done);
4359
4360 if (can_convert_undefined_to_nan) {
4361 __ Bind(&convert_undefined);
4362 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
4363 Deoptimizer::kNotAHeapNumberUndefined);
4364
4365 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4366 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4367 __ B(&done);
4368 }
4369
4370 } else {
4371 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4372 // Fall through to load_smi.
4373 }
4374
4375 // Smi to double register conversion.
4376 __ Bind(&load_smi);
4377 __ SmiUntagToDouble(result, input);
4378
4379 __ Bind(&done);
4380 }
4381
4382
DoOsrEntry(LOsrEntry * instr)4383 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4384 // This is a pseudo-instruction that ensures that the environment here is
4385 // properly registered for deoptimization and records the assembler's PC
4386 // offset.
4387 LEnvironment* environment = instr->environment();
4388
4389 // If the environment were already registered, we would have no way of
4390 // backpatching it with the spill slot operands.
4391 DCHECK(!environment->HasBeenRegistered());
4392 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4393
4394 GenerateOsrPrologue();
4395 }
4396
4397
DoParameter(LParameter * instr)4398 void LCodeGen::DoParameter(LParameter* instr) {
4399 // Nothing to do.
4400 }
4401
4402
DoPreparePushArguments(LPreparePushArguments * instr)4403 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
4404 __ PushPreamble(instr->argc(), kPointerSize);
4405 }
4406
4407
DoPushArguments(LPushArguments * instr)4408 void LCodeGen::DoPushArguments(LPushArguments* instr) {
4409 MacroAssembler::PushPopQueue args(masm());
4410
4411 for (int i = 0; i < instr->ArgumentCount(); ++i) {
4412 LOperand* arg = instr->argument(i);
4413 if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
4414 Abort(kDoPushArgumentNotImplementedForDoubleType);
4415 return;
4416 }
4417 args.Queue(ToRegister(arg));
4418 }
4419
4420 // The preamble was done by LPreparePushArguments.
4421 args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
4422
4423 RecordPushedArgumentsDelta(instr->ArgumentCount());
4424 }
4425
4426
DoReturn(LReturn * instr)4427 void LCodeGen::DoReturn(LReturn* instr) {
4428 if (FLAG_trace && info()->IsOptimizing()) {
4429 // Push the return value on the stack as the parameter.
4430 // Runtime::TraceExit returns its parameter in x0. We're leaving the code
4431 // managed by the register allocator and tearing down the frame, it's
4432 // safe to write to the context register.
4433 __ Push(x0);
4434 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4435 __ CallRuntime(Runtime::kTraceExit);
4436 }
4437
4438 if (info()->saves_caller_doubles()) {
4439 RestoreCallerDoubles();
4440 }
4441
4442 if (NeedsEagerFrame()) {
4443 Register stack_pointer = masm()->StackPointer();
4444 __ Mov(stack_pointer, fp);
4445 __ Pop(fp, lr);
4446 }
4447
4448 if (instr->has_constant_parameter_count()) {
4449 int parameter_count = ToInteger32(instr->constant_parameter_count());
4450 __ Drop(parameter_count + 1);
4451 } else {
4452 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
4453 Register parameter_count = ToRegister(instr->parameter_count());
4454 __ DropBySMI(parameter_count);
4455 }
4456 __ Ret();
4457 }
4458
4459
BuildSeqStringOperand(Register string,Register temp,LOperand * index,String::Encoding encoding)4460 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
4461 Register temp,
4462 LOperand* index,
4463 String::Encoding encoding) {
4464 if (index->IsConstantOperand()) {
4465 int offset = ToInteger32(LConstantOperand::cast(index));
4466 if (encoding == String::TWO_BYTE_ENCODING) {
4467 offset *= kUC16Size;
4468 }
4469 STATIC_ASSERT(kCharSize == 1);
4470 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
4471 }
4472
4473 __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
4474 if (encoding == String::ONE_BYTE_ENCODING) {
4475 return MemOperand(temp, ToRegister32(index), SXTW);
4476 } else {
4477 STATIC_ASSERT(kUC16Size == 2);
4478 return MemOperand(temp, ToRegister32(index), SXTW, 1);
4479 }
4480 }
4481
4482
DoSeqStringGetChar(LSeqStringGetChar * instr)4483 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
4484 String::Encoding encoding = instr->hydrogen()->encoding();
4485 Register string = ToRegister(instr->string());
4486 Register result = ToRegister(instr->result());
4487 Register temp = ToRegister(instr->temp());
4488
4489 if (FLAG_debug_code) {
4490 // Even though this lithium instruction comes with a temp register, we
4491 // can't use it here because we want to use "AtStart" constraints on the
4492 // inputs and the debug code here needs a scratch register.
4493 UseScratchRegisterScope temps(masm());
4494 Register dbg_temp = temps.AcquireX();
4495
4496 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
4497 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
4498
4499 __ And(dbg_temp, dbg_temp,
4500 Operand(kStringRepresentationMask | kStringEncodingMask));
4501 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4502 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4503 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
4504 ? one_byte_seq_type : two_byte_seq_type));
4505 __ Check(eq, kUnexpectedStringType);
4506 }
4507
4508 MemOperand operand =
4509 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4510 if (encoding == String::ONE_BYTE_ENCODING) {
4511 __ Ldrb(result, operand);
4512 } else {
4513 __ Ldrh(result, operand);
4514 }
4515 }
4516
4517
DoSeqStringSetChar(LSeqStringSetChar * instr)4518 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
4519 String::Encoding encoding = instr->hydrogen()->encoding();
4520 Register string = ToRegister(instr->string());
4521 Register value = ToRegister(instr->value());
4522 Register temp = ToRegister(instr->temp());
4523
4524 if (FLAG_debug_code) {
4525 DCHECK(ToRegister(instr->context()).is(cp));
4526 Register index = ToRegister(instr->index());
4527 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4528 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4529 int encoding_mask =
4530 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
4531 ? one_byte_seq_type : two_byte_seq_type;
4532 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
4533 encoding_mask);
4534 }
4535 MemOperand operand =
4536 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4537 if (encoding == String::ONE_BYTE_ENCODING) {
4538 __ Strb(value, operand);
4539 } else {
4540 __ Strh(value, operand);
4541 }
4542 }
4543
4544
DoSmiTag(LSmiTag * instr)4545 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4546 HChange* hchange = instr->hydrogen();
4547 Register input = ToRegister(instr->value());
4548 Register output = ToRegister(instr->result());
4549 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4550 hchange->value()->CheckFlag(HValue::kUint32)) {
4551 DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow);
4552 }
4553 __ SmiTag(output, input);
4554 }
4555
4556
DoSmiUntag(LSmiUntag * instr)4557 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4558 Register input = ToRegister(instr->value());
4559 Register result = ToRegister(instr->result());
4560 Label done, untag;
4561
4562 if (instr->needs_check()) {
4563 DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi);
4564 }
4565
4566 __ Bind(&untag);
4567 __ SmiUntag(result, input);
4568 __ Bind(&done);
4569 }
4570
4571
DoShiftI(LShiftI * instr)4572 void LCodeGen::DoShiftI(LShiftI* instr) {
4573 LOperand* right_op = instr->right();
4574 Register left = ToRegister32(instr->left());
4575 Register result = ToRegister32(instr->result());
4576
4577 if (right_op->IsRegister()) {
4578 Register right = ToRegister32(instr->right());
4579 switch (instr->op()) {
4580 case Token::ROR: __ Ror(result, left, right); break;
4581 case Token::SAR: __ Asr(result, left, right); break;
4582 case Token::SHL: __ Lsl(result, left, right); break;
4583 case Token::SHR:
4584 __ Lsr(result, left, right);
4585 if (instr->can_deopt()) {
4586 // If `left >>> right` >= 0x80000000, the result is not representable
4587 // in a signed 32-bit smi.
4588 DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
4589 }
4590 break;
4591 default: UNREACHABLE();
4592 }
4593 } else {
4594 DCHECK(right_op->IsConstantOperand());
4595 int shift_count = JSShiftAmountFromLConstant(right_op);
4596 if (shift_count == 0) {
4597 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4598 DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
4599 }
4600 __ Mov(result, left, kDiscardForSameWReg);
4601 } else {
4602 switch (instr->op()) {
4603 case Token::ROR: __ Ror(result, left, shift_count); break;
4604 case Token::SAR: __ Asr(result, left, shift_count); break;
4605 case Token::SHL: __ Lsl(result, left, shift_count); break;
4606 case Token::SHR: __ Lsr(result, left, shift_count); break;
4607 default: UNREACHABLE();
4608 }
4609 }
4610 }
4611 }
4612
4613
DoShiftS(LShiftS * instr)4614 void LCodeGen::DoShiftS(LShiftS* instr) {
4615 LOperand* right_op = instr->right();
4616 Register left = ToRegister(instr->left());
4617 Register result = ToRegister(instr->result());
4618
4619 if (right_op->IsRegister()) {
4620 Register right = ToRegister(instr->right());
4621
4622 // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
4623 // Since we're handling smis in X registers, we have to extract these bits
4624 // explicitly.
4625 __ Ubfx(result, right, kSmiShift, 5);
4626
4627 switch (instr->op()) {
4628 case Token::ROR: {
4629 // This is the only case that needs a scratch register. To keep things
4630 // simple for the other cases, borrow a MacroAssembler scratch register.
4631 UseScratchRegisterScope temps(masm());
4632 Register temp = temps.AcquireW();
4633 __ SmiUntag(temp, left);
4634 __ Ror(result.W(), temp.W(), result.W());
4635 __ SmiTag(result);
4636 break;
4637 }
4638 case Token::SAR:
4639 __ Asr(result, left, result);
4640 __ Bic(result, result, kSmiShiftMask);
4641 break;
4642 case Token::SHL:
4643 __ Lsl(result, left, result);
4644 break;
4645 case Token::SHR:
4646 __ Lsr(result, left, result);
4647 __ Bic(result, result, kSmiShiftMask);
4648 if (instr->can_deopt()) {
4649 // If `left >>> right` >= 0x80000000, the result is not representable
4650 // in a signed 32-bit smi.
4651 DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
4652 }
4653 break;
4654 default: UNREACHABLE();
4655 }
4656 } else {
4657 DCHECK(right_op->IsConstantOperand());
4658 int shift_count = JSShiftAmountFromLConstant(right_op);
4659 if (shift_count == 0) {
4660 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4661 DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
4662 }
4663 __ Mov(result, left);
4664 } else {
4665 switch (instr->op()) {
4666 case Token::ROR:
4667 __ SmiUntag(result, left);
4668 __ Ror(result.W(), result.W(), shift_count);
4669 __ SmiTag(result);
4670 break;
4671 case Token::SAR:
4672 __ Asr(result, left, shift_count);
4673 __ Bic(result, result, kSmiShiftMask);
4674 break;
4675 case Token::SHL:
4676 __ Lsl(result, left, shift_count);
4677 break;
4678 case Token::SHR:
4679 __ Lsr(result, left, shift_count);
4680 __ Bic(result, result, kSmiShiftMask);
4681 break;
4682 default: UNREACHABLE();
4683 }
4684 }
4685 }
4686 }
4687
4688
DoDebugBreak(LDebugBreak * instr)4689 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
4690 __ Debug("LDebugBreak", 0, BREAK);
4691 }
4692
4693
DoDeclareGlobals(LDeclareGlobals * instr)4694 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
4695 DCHECK(ToRegister(instr->context()).is(cp));
4696 Register scratch1 = x5;
4697 Register scratch2 = x6;
4698 DCHECK(instr->IsMarkedAsCall());
4699
4700 // TODO(all): if Mov could handle object in new space then it could be used
4701 // here.
4702 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
4703 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
4704 __ Push(scratch1, scratch2);
4705 CallRuntime(Runtime::kDeclareGlobals, instr);
4706 }
4707
4708
DoDeferredStackCheck(LStackCheck * instr)4709 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4710 PushSafepointRegistersScope scope(this);
4711 LoadContextFromDeferred(instr->context());
4712 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4713 RecordSafepointWithLazyDeopt(
4714 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4715 DCHECK(instr->HasEnvironment());
4716 LEnvironment* env = instr->environment();
4717 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4718 }
4719
4720
DoStackCheck(LStackCheck * instr)4721 void LCodeGen::DoStackCheck(LStackCheck* instr) {
4722 class DeferredStackCheck: public LDeferredCode {
4723 public:
4724 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4725 : LDeferredCode(codegen), instr_(instr) { }
4726 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4727 virtual LInstruction* instr() { return instr_; }
4728 private:
4729 LStackCheck* instr_;
4730 };
4731
4732 DCHECK(instr->HasEnvironment());
4733 LEnvironment* env = instr->environment();
4734 // There is no LLazyBailout instruction for stack-checks. We have to
4735 // prepare for lazy deoptimization explicitly here.
4736 if (instr->hydrogen()->is_function_entry()) {
4737 // Perform stack overflow check.
4738 Label done;
4739 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4740 __ B(hs, &done);
4741
4742 PredictableCodeSizeScope predictable(masm_,
4743 Assembler::kCallSizeWithRelocation);
4744 DCHECK(instr->context()->IsRegister());
4745 DCHECK(ToRegister(instr->context()).is(cp));
4746 CallCode(isolate()->builtins()->StackCheck(),
4747 RelocInfo::CODE_TARGET,
4748 instr);
4749 __ Bind(&done);
4750 } else {
4751 DCHECK(instr->hydrogen()->is_backwards_branch());
4752 // Perform stack overflow check if this goto needs it before jumping.
4753 DeferredStackCheck* deferred_stack_check =
4754 new(zone()) DeferredStackCheck(this, instr);
4755 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4756 __ B(lo, deferred_stack_check->entry());
4757
4758 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4759 __ Bind(instr->done_label());
4760 deferred_stack_check->SetExit(instr->done_label());
4761 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4762 // Don't record a deoptimization index for the safepoint here.
4763 // This will be done explicitly when emitting call and the safepoint in
4764 // the deferred code.
4765 }
4766 }
4767
4768
DoStoreCodeEntry(LStoreCodeEntry * instr)4769 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4770 Register function = ToRegister(instr->function());
4771 Register code_object = ToRegister(instr->code_object());
4772 Register temp = ToRegister(instr->temp());
4773 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
4774 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4775 }
4776
4777
DoStoreContextSlot(LStoreContextSlot * instr)4778 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
4779 Register context = ToRegister(instr->context());
4780 Register value = ToRegister(instr->value());
4781 Register scratch = ToRegister(instr->temp());
4782 MemOperand target = ContextMemOperand(context, instr->slot_index());
4783
4784 Label skip_assignment;
4785
4786 if (instr->hydrogen()->RequiresHoleCheck()) {
4787 __ Ldr(scratch, target);
4788 if (instr->hydrogen()->DeoptimizesOnHole()) {
4789 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr,
4790 Deoptimizer::kHole);
4791 } else {
4792 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
4793 }
4794 }
4795
4796 __ Str(value, target);
4797 if (instr->hydrogen()->NeedsWriteBarrier()) {
4798 SmiCheck check_needed =
4799 instr->hydrogen()->value()->type().IsHeapObject()
4800 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4801 __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value,
4802 scratch, GetLinkRegisterState(), kSaveFPRegs,
4803 EMIT_REMEMBERED_SET, check_needed);
4804 }
4805 __ Bind(&skip_assignment);
4806 }
4807
4808
DoStoreKeyedExternal(LStoreKeyedExternal * instr)4809 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
4810 Register ext_ptr = ToRegister(instr->elements());
4811 Register key = no_reg;
4812 Register scratch;
4813 ElementsKind elements_kind = instr->elements_kind();
4814
4815 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4816 bool key_is_constant = instr->key()->IsConstantOperand();
4817 int constant_key = 0;
4818 if (key_is_constant) {
4819 DCHECK(instr->temp() == NULL);
4820 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4821 if (constant_key & 0xf0000000) {
4822 Abort(kArrayIndexConstantValueTooBig);
4823 }
4824 } else {
4825 key = ToRegister(instr->key());
4826 scratch = ToRegister(instr->temp());
4827 }
4828
4829 MemOperand dst =
4830 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
4831 key_is_constant, constant_key,
4832 elements_kind,
4833 instr->base_offset());
4834
4835 if (elements_kind == FLOAT32_ELEMENTS) {
4836 DoubleRegister value = ToDoubleRegister(instr->value());
4837 DoubleRegister dbl_scratch = double_scratch();
4838 __ Fcvt(dbl_scratch.S(), value);
4839 __ Str(dbl_scratch.S(), dst);
4840 } else if (elements_kind == FLOAT64_ELEMENTS) {
4841 DoubleRegister value = ToDoubleRegister(instr->value());
4842 __ Str(value, dst);
4843 } else {
4844 Register value = ToRegister(instr->value());
4845
4846 switch (elements_kind) {
4847 case UINT8_ELEMENTS:
4848 case UINT8_CLAMPED_ELEMENTS:
4849 case INT8_ELEMENTS:
4850 __ Strb(value, dst);
4851 break;
4852 case INT16_ELEMENTS:
4853 case UINT16_ELEMENTS:
4854 __ Strh(value, dst);
4855 break;
4856 case INT32_ELEMENTS:
4857 case UINT32_ELEMENTS:
4858 __ Str(value.W(), dst);
4859 break;
4860 case FLOAT32_ELEMENTS:
4861 case FLOAT64_ELEMENTS:
4862 case FAST_DOUBLE_ELEMENTS:
4863 case FAST_ELEMENTS:
4864 case FAST_SMI_ELEMENTS:
4865 case FAST_HOLEY_DOUBLE_ELEMENTS:
4866 case FAST_HOLEY_ELEMENTS:
4867 case FAST_HOLEY_SMI_ELEMENTS:
4868 case DICTIONARY_ELEMENTS:
4869 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4870 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4871 case FAST_STRING_WRAPPER_ELEMENTS:
4872 case SLOW_STRING_WRAPPER_ELEMENTS:
4873 case NO_ELEMENTS:
4874 UNREACHABLE();
4875 break;
4876 }
4877 }
4878 }
4879
4880
DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble * instr)4881 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
4882 Register elements = ToRegister(instr->elements());
4883 DoubleRegister value = ToDoubleRegister(instr->value());
4884 MemOperand mem_op;
4885
4886 if (instr->key()->IsConstantOperand()) {
4887 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4888 if (constant_key & 0xf0000000) {
4889 Abort(kArrayIndexConstantValueTooBig);
4890 }
4891 int offset = instr->base_offset() + constant_key * kDoubleSize;
4892 mem_op = MemOperand(elements, offset);
4893 } else {
4894 Register store_base = ToRegister(instr->temp());
4895 Register key = ToRegister(instr->key());
4896 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
4897 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
4898 instr->hydrogen()->elements_kind(),
4899 instr->hydrogen()->representation(),
4900 instr->base_offset());
4901 }
4902
4903 if (instr->NeedsCanonicalization()) {
4904 __ CanonicalizeNaN(double_scratch(), value);
4905 __ Str(double_scratch(), mem_op);
4906 } else {
4907 __ Str(value, mem_op);
4908 }
4909 }
4910
4911
DoStoreKeyedFixed(LStoreKeyedFixed * instr)4912 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
4913 Register value = ToRegister(instr->value());
4914 Register elements = ToRegister(instr->elements());
4915 Register scratch = no_reg;
4916 Register store_base = no_reg;
4917 Register key = no_reg;
4918 MemOperand mem_op;
4919
4920 if (!instr->key()->IsConstantOperand() ||
4921 instr->hydrogen()->NeedsWriteBarrier()) {
4922 scratch = ToRegister(instr->temp());
4923 }
4924
4925 Representation representation = instr->hydrogen()->value()->representation();
4926 if (instr->key()->IsConstantOperand()) {
4927 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4928 int offset = instr->base_offset() +
4929 ToInteger32(const_operand) * kPointerSize;
4930 store_base = elements;
4931 if (representation.IsInteger32()) {
4932 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4933 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
4934 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
4935 STATIC_ASSERT(kSmiTag == 0);
4936 mem_op = UntagSmiMemOperand(store_base, offset);
4937 } else {
4938 mem_op = MemOperand(store_base, offset);
4939 }
4940 } else {
4941 store_base = scratch;
4942 key = ToRegister(instr->key());
4943 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
4944
4945 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
4946 instr->hydrogen()->elements_kind(),
4947 representation, instr->base_offset());
4948 }
4949
4950 __ Store(value, mem_op, representation);
4951
4952 if (instr->hydrogen()->NeedsWriteBarrier()) {
4953 DCHECK(representation.IsTagged());
4954 // This assignment may cause element_addr to alias store_base.
4955 Register element_addr = scratch;
4956 SmiCheck check_needed =
4957 instr->hydrogen()->value()->type().IsHeapObject()
4958 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4959 // Compute address of modified element and store it into key register.
4960 __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
4961 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
4962 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
4963 instr->hydrogen()->PointersToHereCheckForValue());
4964 }
4965 }
4966
4967
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)4968 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4969 DCHECK(ToRegister(instr->context()).is(cp));
4970 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4971 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4972 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4973
4974 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4975
4976 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4977 isolate(), instr->language_mode())
4978 .code();
4979 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4980 }
4981
4982
DoMaybeGrowElements(LMaybeGrowElements * instr)4983 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4984 class DeferredMaybeGrowElements final : public LDeferredCode {
4985 public:
4986 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4987 : LDeferredCode(codegen), instr_(instr) {}
4988 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4989 LInstruction* instr() override { return instr_; }
4990
4991 private:
4992 LMaybeGrowElements* instr_;
4993 };
4994
4995 Register result = x0;
4996 DeferredMaybeGrowElements* deferred =
4997 new (zone()) DeferredMaybeGrowElements(this, instr);
4998 LOperand* key = instr->key();
4999 LOperand* current_capacity = instr->current_capacity();
5000
5001 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
5002 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
5003 DCHECK(key->IsConstantOperand() || key->IsRegister());
5004 DCHECK(current_capacity->IsConstantOperand() ||
5005 current_capacity->IsRegister());
5006
5007 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
5008 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
5009 int32_t constant_capacity =
5010 ToInteger32(LConstantOperand::cast(current_capacity));
5011 if (constant_key >= constant_capacity) {
5012 // Deferred case.
5013 __ B(deferred->entry());
5014 }
5015 } else if (key->IsConstantOperand()) {
5016 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
5017 __ Cmp(ToRegister(current_capacity), Operand(constant_key));
5018 __ B(le, deferred->entry());
5019 } else if (current_capacity->IsConstantOperand()) {
5020 int32_t constant_capacity =
5021 ToInteger32(LConstantOperand::cast(current_capacity));
5022 __ Cmp(ToRegister(key), Operand(constant_capacity));
5023 __ B(ge, deferred->entry());
5024 } else {
5025 __ Cmp(ToRegister(key), ToRegister(current_capacity));
5026 __ B(ge, deferred->entry());
5027 }
5028
5029 __ Mov(result, ToRegister(instr->elements()));
5030
5031 __ Bind(deferred->exit());
5032 }
5033
5034
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)5035 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
5036 // TODO(3095996): Get rid of this. For now, we need to make the
5037 // result register contain a valid pointer because it is already
5038 // contained in the register pointer map.
5039 Register result = x0;
5040 __ Mov(result, 0);
5041
5042 // We have to call a stub.
5043 {
5044 PushSafepointRegistersScope scope(this);
5045 __ Move(result, ToRegister(instr->object()));
5046
5047 LOperand* key = instr->key();
5048 if (key->IsConstantOperand()) {
5049 __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key))));
5050 } else {
5051 __ Mov(x3, ToRegister(key));
5052 __ SmiTag(x3);
5053 }
5054
5055 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
5056 instr->hydrogen()->kind());
5057 __ CallStub(&stub);
5058 RecordSafepointWithLazyDeopt(
5059 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5060 __ StoreToSafepointRegisterSlot(result, result);
5061 }
5062
5063 // Deopt on smi, which means the elements array changed to dictionary mode.
5064 DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi);
5065 }
5066
5067
DoStoreNamedField(LStoreNamedField * instr)5068 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
5069 Representation representation = instr->representation();
5070
5071 Register object = ToRegister(instr->object());
5072 HObjectAccess access = instr->hydrogen()->access();
5073 int offset = access.offset();
5074
5075 if (access.IsExternalMemory()) {
5076 DCHECK(!instr->hydrogen()->has_transition());
5077 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5078 Register value = ToRegister(instr->value());
5079 __ Store(value, MemOperand(object, offset), representation);
5080 return;
5081 }
5082
5083 __ AssertNotSmi(object);
5084
5085 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
5086 DCHECK(access.IsInobject());
5087 DCHECK(!instr->hydrogen()->has_transition());
5088 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5089 FPRegister value = ToDoubleRegister(instr->value());
5090 __ Str(value, FieldMemOperand(object, offset));
5091 return;
5092 }
5093
5094 DCHECK(!representation.IsSmi() ||
5095 !instr->value()->IsConstantOperand() ||
5096 IsInteger32Constant(LConstantOperand::cast(instr->value())));
5097
5098 if (instr->hydrogen()->has_transition()) {
5099 Handle<Map> transition = instr->hydrogen()->transition_map();
5100 AddDeprecationDependency(transition);
5101 // Store the new map value.
5102 Register new_map_value = ToRegister(instr->temp0());
5103 __ Mov(new_map_value, Operand(transition));
5104 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
5105 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
5106 // Update the write barrier for the map field.
5107 __ RecordWriteForMap(object,
5108 new_map_value,
5109 ToRegister(instr->temp1()),
5110 GetLinkRegisterState(),
5111 kSaveFPRegs);
5112 }
5113 }
5114
5115 // Do the store.
5116 Register destination;
5117 if (access.IsInobject()) {
5118 destination = object;
5119 } else {
5120 Register temp0 = ToRegister(instr->temp0());
5121 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
5122 destination = temp0;
5123 }
5124
5125 if (FLAG_unbox_double_fields && representation.IsDouble()) {
5126 DCHECK(access.IsInobject());
5127 FPRegister value = ToDoubleRegister(instr->value());
5128 __ Str(value, FieldMemOperand(object, offset));
5129 } else if (representation.IsSmi() &&
5130 instr->hydrogen()->value()->representation().IsInteger32()) {
5131 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5132 #ifdef DEBUG
5133 Register temp0 = ToRegister(instr->temp0());
5134 __ Ldr(temp0, FieldMemOperand(destination, offset));
5135 __ AssertSmi(temp0);
5136 // If destination aliased temp0, restore it to the address calculated
5137 // earlier.
5138 if (destination.Is(temp0)) {
5139 DCHECK(!access.IsInobject());
5140 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
5141 }
5142 #endif
5143 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
5144 STATIC_ASSERT(kSmiTag == 0);
5145 Register value = ToRegister(instr->value());
5146 __ Store(value, UntagSmiFieldMemOperand(destination, offset),
5147 Representation::Integer32());
5148 } else {
5149 Register value = ToRegister(instr->value());
5150 __ Store(value, FieldMemOperand(destination, offset), representation);
5151 }
5152 if (instr->hydrogen()->NeedsWriteBarrier()) {
5153 Register value = ToRegister(instr->value());
5154 __ RecordWriteField(destination,
5155 offset,
5156 value, // Clobbered.
5157 ToRegister(instr->temp1()), // Clobbered.
5158 GetLinkRegisterState(),
5159 kSaveFPRegs,
5160 EMIT_REMEMBERED_SET,
5161 instr->hydrogen()->SmiCheckForWriteBarrier(),
5162 instr->hydrogen()->PointersToHereCheckForValue());
5163 }
5164 }
5165
5166
DoStoreNamedGeneric(LStoreNamedGeneric * instr)5167 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
5168 DCHECK(ToRegister(instr->context()).is(cp));
5169 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
5170 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
5171
5172 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
5173
5174 __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
5175 Handle<Code> ic =
5176 CodeFactory::StoreICInOptimizedCode(isolate(), instr->language_mode())
5177 .code();
5178 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5179 }
5180
5181
DoStringAdd(LStringAdd * instr)5182 void LCodeGen::DoStringAdd(LStringAdd* instr) {
5183 DCHECK(ToRegister(instr->context()).is(cp));
5184 DCHECK(ToRegister(instr->left()).Is(x1));
5185 DCHECK(ToRegister(instr->right()).Is(x0));
5186 StringAddStub stub(isolate(),
5187 instr->hydrogen()->flags(),
5188 instr->hydrogen()->pretenure_flag());
5189 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5190 }
5191
5192
DoStringCharCodeAt(LStringCharCodeAt * instr)5193 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
5194 class DeferredStringCharCodeAt: public LDeferredCode {
5195 public:
5196 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
5197 : LDeferredCode(codegen), instr_(instr) { }
5198 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
5199 virtual LInstruction* instr() { return instr_; }
5200 private:
5201 LStringCharCodeAt* instr_;
5202 };
5203
5204 DeferredStringCharCodeAt* deferred =
5205 new(zone()) DeferredStringCharCodeAt(this, instr);
5206
5207 StringCharLoadGenerator::Generate(masm(),
5208 ToRegister(instr->string()),
5209 ToRegister32(instr->index()),
5210 ToRegister(instr->result()),
5211 deferred->entry());
5212 __ Bind(deferred->exit());
5213 }
5214
5215
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)5216 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
5217 Register string = ToRegister(instr->string());
5218 Register result = ToRegister(instr->result());
5219
5220 // TODO(3095996): Get rid of this. For now, we need to make the
5221 // result register contain a valid pointer because it is already
5222 // contained in the register pointer map.
5223 __ Mov(result, 0);
5224
5225 PushSafepointRegistersScope scope(this);
5226 __ Push(string);
5227 // Push the index as a smi. This is safe because of the checks in
5228 // DoStringCharCodeAt above.
5229 Register index = ToRegister(instr->index());
5230 __ SmiTagAndPush(index);
5231
5232 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
5233 instr->context());
5234 __ AssertSmi(x0);
5235 __ SmiUntag(x0);
5236 __ StoreToSafepointRegisterSlot(x0, result);
5237 }
5238
5239
DoStringCharFromCode(LStringCharFromCode * instr)5240 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
5241 class DeferredStringCharFromCode: public LDeferredCode {
5242 public:
5243 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
5244 : LDeferredCode(codegen), instr_(instr) { }
5245 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
5246 virtual LInstruction* instr() { return instr_; }
5247 private:
5248 LStringCharFromCode* instr_;
5249 };
5250
5251 DeferredStringCharFromCode* deferred =
5252 new(zone()) DeferredStringCharFromCode(this, instr);
5253
5254 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
5255 Register char_code = ToRegister32(instr->char_code());
5256 Register result = ToRegister(instr->result());
5257
5258 __ Cmp(char_code, String::kMaxOneByteCharCode);
5259 __ B(hi, deferred->entry());
5260 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
5261 __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
5262 __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
5263 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
5264 __ B(eq, deferred->entry());
5265 __ Bind(deferred->exit());
5266 }
5267
5268
DoDeferredStringCharFromCode(LStringCharFromCode * instr)5269 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
5270 Register char_code = ToRegister(instr->char_code());
5271 Register result = ToRegister(instr->result());
5272
5273 // TODO(3095996): Get rid of this. For now, we need to make the
5274 // result register contain a valid pointer because it is already
5275 // contained in the register pointer map.
5276 __ Mov(result, 0);
5277
5278 PushSafepointRegistersScope scope(this);
5279 __ SmiTagAndPush(char_code);
5280 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
5281 instr->context());
5282 __ StoreToSafepointRegisterSlot(x0, result);
5283 }
5284
5285
DoStringCompareAndBranch(LStringCompareAndBranch * instr)5286 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
5287 DCHECK(ToRegister(instr->context()).is(cp));
5288 DCHECK(ToRegister(instr->left()).is(x1));
5289 DCHECK(ToRegister(instr->right()).is(x0));
5290
5291 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
5292 CallCode(code, RelocInfo::CODE_TARGET, instr);
5293 __ CompareRoot(x0, Heap::kTrueValueRootIndex);
5294 EmitBranch(instr, eq);
5295 }
5296
5297
DoSubI(LSubI * instr)5298 void LCodeGen::DoSubI(LSubI* instr) {
5299 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5300 Register result = ToRegister32(instr->result());
5301 Register left = ToRegister32(instr->left());
5302 Operand right = ToShiftedRightOperand32(instr->right(), instr);
5303
5304 if (can_overflow) {
5305 __ Subs(result, left, right);
5306 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
5307 } else {
5308 __ Sub(result, left, right);
5309 }
5310 }
5311
5312
DoSubS(LSubS * instr)5313 void LCodeGen::DoSubS(LSubS* instr) {
5314 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5315 Register result = ToRegister(instr->result());
5316 Register left = ToRegister(instr->left());
5317 Operand right = ToOperand(instr->right());
5318 if (can_overflow) {
5319 __ Subs(result, left, right);
5320 DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
5321 } else {
5322 __ Sub(result, left, right);
5323 }
5324 }
5325
5326
DoDeferredTaggedToI(LTaggedToI * instr,LOperand * value,LOperand * temp1,LOperand * temp2)5327 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
5328 LOperand* value,
5329 LOperand* temp1,
5330 LOperand* temp2) {
5331 Register input = ToRegister(value);
5332 Register scratch1 = ToRegister(temp1);
5333 DoubleRegister dbl_scratch1 = double_scratch();
5334
5335 Label done;
5336
5337 if (instr->truncating()) {
5338 Register output = ToRegister(instr->result());
5339 Label check_bools;
5340
5341 // If it's not a heap number, jump to undefined check.
5342 __ JumpIfNotHeapNumber(input, &check_bools);
5343
5344 // A heap number: load value and convert to int32 using truncating function.
5345 __ TruncateHeapNumberToI(output, input);
5346 __ B(&done);
5347
5348 __ Bind(&check_bools);
5349
5350 Register true_root = output;
5351 Register false_root = scratch1;
5352 __ LoadTrueFalseRoots(true_root, false_root);
5353 __ Cmp(input, true_root);
5354 __ Cset(output, eq);
5355 __ Ccmp(input, false_root, ZFlag, ne);
5356 __ B(eq, &done);
5357
5358 // Output contains zero, undefined is converted to zero for truncating
5359 // conversions.
5360 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
5361 Deoptimizer::kNotAHeapNumberUndefinedBoolean);
5362 } else {
5363 Register output = ToRegister32(instr->result());
5364 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
5365
5366 DeoptimizeIfNotHeapNumber(input, instr);
5367
5368 // A heap number: load value and convert to int32 using non-truncating
5369 // function. If the result is out of range, branch to deoptimize.
5370 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
5371 __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
5372 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
5373
5374 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5375 __ Cmp(output, 0);
5376 __ B(ne, &done);
5377 __ Fmov(scratch1, dbl_scratch1);
5378 DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero);
5379 }
5380 }
5381 __ Bind(&done);
5382 }
5383
5384
DoTaggedToI(LTaggedToI * instr)5385 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5386 class DeferredTaggedToI: public LDeferredCode {
5387 public:
5388 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5389 : LDeferredCode(codegen), instr_(instr) { }
5390 virtual void Generate() {
5391 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
5392 instr_->temp2());
5393 }
5394
5395 virtual LInstruction* instr() { return instr_; }
5396 private:
5397 LTaggedToI* instr_;
5398 };
5399
5400 Register input = ToRegister(instr->value());
5401 Register output = ToRegister(instr->result());
5402
5403 if (instr->hydrogen()->value()->representation().IsSmi()) {
5404 __ SmiUntag(output, input);
5405 } else {
5406 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5407
5408 __ JumpIfNotSmi(input, deferred->entry());
5409 __ SmiUntag(output, input);
5410 __ Bind(deferred->exit());
5411 }
5412 }
5413
5414
DoThisFunction(LThisFunction * instr)5415 void LCodeGen::DoThisFunction(LThisFunction* instr) {
5416 Register result = ToRegister(instr->result());
5417 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5418 }
5419
5420
DoTransitionElementsKind(LTransitionElementsKind * instr)5421 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
5422 Register object = ToRegister(instr->object());
5423
5424 Handle<Map> from_map = instr->original_map();
5425 Handle<Map> to_map = instr->transitioned_map();
5426 ElementsKind from_kind = instr->from_kind();
5427 ElementsKind to_kind = instr->to_kind();
5428
5429 Label not_applicable;
5430
5431 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
5432 Register temp1 = ToRegister(instr->temp1());
5433 Register new_map = ToRegister(instr->temp2());
5434 __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK);
5435 __ Mov(new_map, Operand(to_map));
5436 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
5437 // Write barrier.
5438 __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
5439 kDontSaveFPRegs);
5440 } else {
5441 {
5442 UseScratchRegisterScope temps(masm());
5443 // Use the temp register only in a restricted scope - the codegen checks
5444 // that we do not use any register across a call.
5445 __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable,
5446 DONT_DO_SMI_CHECK);
5447 }
5448 DCHECK(object.is(x0));
5449 DCHECK(ToRegister(instr->context()).is(cp));
5450 PushSafepointRegistersScope scope(this);
5451 __ Mov(x1, Operand(to_map));
5452 TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
5453 __ CallStub(&stub);
5454 RecordSafepointWithRegisters(
5455 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
5456 }
5457 __ Bind(¬_applicable);
5458 }
5459
5460
DoTrapAllocationMemento(LTrapAllocationMemento * instr)5461 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
5462 Register object = ToRegister(instr->object());
5463 Register temp1 = ToRegister(instr->temp1());
5464 Register temp2 = ToRegister(instr->temp2());
5465
5466 Label no_memento_found;
5467 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
5468 DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
5469 __ Bind(&no_memento_found);
5470 }
5471
5472
DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi * instr)5473 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
5474 DoubleRegister input = ToDoubleRegister(instr->value());
5475 Register result = ToRegister(instr->result());
5476 __ TruncateDoubleToI(result, input);
5477 if (instr->tag_result()) {
5478 __ SmiTag(result, result);
5479 }
5480 }
5481
5482
DoTypeof(LTypeof * instr)5483 void LCodeGen::DoTypeof(LTypeof* instr) {
5484 DCHECK(ToRegister(instr->value()).is(x3));
5485 DCHECK(ToRegister(instr->result()).is(x0));
5486 Label end, do_call;
5487 Register value_register = ToRegister(instr->value());
5488 __ JumpIfNotSmi(value_register, &do_call);
5489 __ Mov(x0, Immediate(isolate()->factory()->number_string()));
5490 __ B(&end);
5491 __ Bind(&do_call);
5492 TypeofStub stub(isolate());
5493 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5494 __ Bind(&end);
5495 }
5496
5497
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5498 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5499 Handle<String> type_name = instr->type_literal();
5500 Label* true_label = instr->TrueLabel(chunk_);
5501 Label* false_label = instr->FalseLabel(chunk_);
5502 Register value = ToRegister(instr->value());
5503
5504 Factory* factory = isolate()->factory();
5505 if (String::Equals(type_name, factory->number_string())) {
5506 __ JumpIfSmi(value, true_label);
5507
5508 int true_block = instr->TrueDestination(chunk_);
5509 int false_block = instr->FalseDestination(chunk_);
5510 int next_block = GetNextEmittedBlock();
5511
5512 if (true_block == false_block) {
5513 EmitGoto(true_block);
5514 } else if (true_block == next_block) {
5515 __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
5516 } else {
5517 __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
5518 if (false_block != next_block) {
5519 __ B(chunk_->GetAssemblyLabel(false_block));
5520 }
5521 }
5522
5523 } else if (String::Equals(type_name, factory->string_string())) {
5524 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5525 Register map = ToRegister(instr->temp1());
5526 Register scratch = ToRegister(instr->temp2());
5527
5528 __ JumpIfSmi(value, false_label);
5529 __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE);
5530 EmitBranch(instr, lt);
5531
5532 } else if (String::Equals(type_name, factory->symbol_string())) {
5533 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5534 Register map = ToRegister(instr->temp1());
5535 Register scratch = ToRegister(instr->temp2());
5536
5537 __ JumpIfSmi(value, false_label);
5538 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
5539 EmitBranch(instr, eq);
5540
5541 } else if (String::Equals(type_name, factory->boolean_string())) {
5542 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
5543 __ CompareRoot(value, Heap::kFalseValueRootIndex);
5544 EmitBranch(instr, eq);
5545
5546 } else if (String::Equals(type_name, factory->undefined_string())) {
5547 DCHECK(instr->temp1() != NULL);
5548 Register scratch = ToRegister(instr->temp1());
5549
5550 __ JumpIfRoot(value, Heap::kNullValueRootIndex, false_label);
5551 __ JumpIfSmi(value, false_label);
5552 // Check for undetectable objects and jump to the true branch in this case.
5553 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5554 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5555 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
5556
5557 } else if (String::Equals(type_name, factory->function_string())) {
5558 DCHECK(instr->temp1() != NULL);
5559 Register scratch = ToRegister(instr->temp1());
5560
5561 __ JumpIfSmi(value, false_label);
5562 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5563 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5564 __ And(scratch, scratch,
5565 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5566 EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable);
5567
5568 } else if (String::Equals(type_name, factory->object_string())) {
5569 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5570 Register map = ToRegister(instr->temp1());
5571 Register scratch = ToRegister(instr->temp2());
5572
5573 __ JumpIfSmi(value, false_label);
5574 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
5575 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5576 __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE,
5577 false_label, lt);
5578 // Check for callable or undetectable objects => false.
5579 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5580 EmitTestAndBranch(instr, eq, scratch,
5581 (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5582
5583 // clang-format off
5584 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5585 } else if (String::Equals(type_name, factory->type##_string())) { \
5586 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); \
5587 Register map = ToRegister(instr->temp1()); \
5588 \
5589 __ JumpIfSmi(value, false_label); \
5590 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); \
5591 __ CompareRoot(map, Heap::k##Type##MapRootIndex); \
5592 EmitBranch(instr, eq);
5593 SIMD128_TYPES(SIMD128_TYPE)
5594 #undef SIMD128_TYPE
5595 // clang-format on
5596
5597 } else {
5598 __ B(false_label);
5599 }
5600 }
5601
5602
DoUint32ToDouble(LUint32ToDouble * instr)5603 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
5604 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
5605 }
5606
5607
DoCheckMapValue(LCheckMapValue * instr)5608 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5609 Register object = ToRegister(instr->value());
5610 Register map = ToRegister(instr->map());
5611 Register temp = ToRegister(instr->temp());
5612 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
5613 __ Cmp(map, temp);
5614 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5615 }
5616
5617
DoWrapReceiver(LWrapReceiver * instr)5618 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
5619 Register receiver = ToRegister(instr->receiver());
5620 Register function = ToRegister(instr->function());
5621 Register result = ToRegister(instr->result());
5622
5623 // If the receiver is null or undefined, we have to pass the global object as
5624 // a receiver to normal functions. Values have to be passed unchanged to
5625 // builtins and strict-mode functions.
5626 Label global_object, done, copy_receiver;
5627
5628 if (!instr->hydrogen()->known_function()) {
5629 __ Ldr(result, FieldMemOperand(function,
5630 JSFunction::kSharedFunctionInfoOffset));
5631
5632 // CompilerHints is an int32 field. See objects.h.
5633 __ Ldr(result.W(),
5634 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
5635
5636 // Do not transform the receiver to object for strict mode functions.
5637 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver);
5638
5639 // Do not transform the receiver to object for builtins.
5640 __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver);
5641 }
5642
5643 // Normal function. Replace undefined or null with global receiver.
5644 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
5645 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
5646
5647 // Deoptimize if the receiver is not a JS object.
5648 DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi);
5649 __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE);
5650 __ B(ge, ©_receiver);
5651 Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject);
5652
5653 __ Bind(&global_object);
5654 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
5655 __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
5656 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
5657 __ B(&done);
5658
5659 __ Bind(©_receiver);
5660 __ Mov(result, receiver);
5661 __ Bind(&done);
5662 }
5663
5664
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5665 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5666 Register result,
5667 Register object,
5668 Register index) {
5669 PushSafepointRegistersScope scope(this);
5670 __ Push(object);
5671 __ Push(index);
5672 __ Mov(cp, 0);
5673 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5674 RecordSafepointWithRegisters(
5675 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5676 __ StoreToSafepointRegisterSlot(x0, result);
5677 }
5678
5679
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5680 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5681 class DeferredLoadMutableDouble final : public LDeferredCode {
5682 public:
5683 DeferredLoadMutableDouble(LCodeGen* codegen,
5684 LLoadFieldByIndex* instr,
5685 Register result,
5686 Register object,
5687 Register index)
5688 : LDeferredCode(codegen),
5689 instr_(instr),
5690 result_(result),
5691 object_(object),
5692 index_(index) {
5693 }
5694 void Generate() override {
5695 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5696 }
5697 LInstruction* instr() override { return instr_; }
5698
5699 private:
5700 LLoadFieldByIndex* instr_;
5701 Register result_;
5702 Register object_;
5703 Register index_;
5704 };
5705 Register object = ToRegister(instr->object());
5706 Register index = ToRegister(instr->index());
5707 Register result = ToRegister(instr->result());
5708
5709 __ AssertSmi(index);
5710
5711 DeferredLoadMutableDouble* deferred;
5712 deferred = new(zone()) DeferredLoadMutableDouble(
5713 this, instr, result, object, index);
5714
5715 Label out_of_object, done;
5716
5717 __ TestAndBranchIfAnySet(
5718 index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
5719 __ Mov(index, Operand(index, ASR, 1));
5720
5721 __ Cmp(index, Smi::FromInt(0));
5722 __ B(lt, &out_of_object);
5723
5724 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5725 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5726 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
5727
5728 __ B(&done);
5729
5730 __ Bind(&out_of_object);
5731 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5732 // Index is equal to negated out of object property index plus 1.
5733 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5734 __ Ldr(result, FieldMemOperand(result,
5735 FixedArray::kHeaderSize - kPointerSize));
5736 __ Bind(deferred->exit());
5737 __ Bind(&done);
5738 }
5739
5740 } // namespace internal
5741 } // namespace v8
5742