1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetFrameLowering.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25
26 #define DEBUG_TYPE "target-reg-info"
27
28 using namespace llvm;
29
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const unsigned * SRILaneMasks,unsigned SRICoveringLanes)30 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
31 regclass_iterator RCB, regclass_iterator RCE,
32 const char *const *SRINames,
33 const unsigned *SRILaneMasks,
34 unsigned SRICoveringLanes)
35 : InfoDesc(ID), SubRegIndexNames(SRINames),
36 SubRegIndexLaneMasks(SRILaneMasks),
37 RegClassBegin(RCB), RegClassEnd(RCE),
38 CoveringLanes(SRICoveringLanes) {
39 }
40
~TargetRegisterInfo()41 TargetRegisterInfo::~TargetRegisterInfo() {}
42
43 namespace llvm {
44
PrintReg(unsigned Reg,const TargetRegisterInfo * TRI,unsigned SubIdx)45 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI,
46 unsigned SubIdx) {
47 return Printable([Reg, TRI, SubIdx](raw_ostream &OS) {
48 if (!Reg)
49 OS << "%noreg";
50 else if (TargetRegisterInfo::isStackSlot(Reg))
51 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
52 else if (TargetRegisterInfo::isVirtualRegister(Reg))
53 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
54 else if (TRI && Reg < TRI->getNumRegs())
55 OS << '%' << TRI->getName(Reg);
56 else
57 OS << "%physreg" << Reg;
58 if (SubIdx) {
59 if (TRI)
60 OS << ':' << TRI->getSubRegIndexName(SubIdx);
61 else
62 OS << ":sub(" << SubIdx << ')';
63 }
64 });
65 }
66
PrintRegUnit(unsigned Unit,const TargetRegisterInfo * TRI)67 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
68 return Printable([Unit, TRI](raw_ostream &OS) {
69 // Generic printout when TRI is missing.
70 if (!TRI) {
71 OS << "Unit~" << Unit;
72 return;
73 }
74
75 // Check for invalid register units.
76 if (Unit >= TRI->getNumRegUnits()) {
77 OS << "BadUnit~" << Unit;
78 return;
79 }
80
81 // Normal units have at least one root.
82 MCRegUnitRootIterator Roots(Unit, TRI);
83 assert(Roots.isValid() && "Unit has no roots.");
84 OS << TRI->getName(*Roots);
85 for (++Roots; Roots.isValid(); ++Roots)
86 OS << '~' << TRI->getName(*Roots);
87 });
88 }
89
PrintVRegOrUnit(unsigned Unit,const TargetRegisterInfo * TRI)90 Printable PrintVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
91 return Printable([Unit, TRI](raw_ostream &OS) {
92 if (TRI && TRI->isVirtualRegister(Unit)) {
93 OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
94 } else {
95 OS << PrintRegUnit(Unit, TRI);
96 }
97 });
98 }
99
PrintLaneMask(LaneBitmask LaneMask)100 Printable PrintLaneMask(LaneBitmask LaneMask) {
101 return Printable([LaneMask](raw_ostream &OS) {
102 OS << format("%08X", LaneMask);
103 });
104 }
105
106 } // End of llvm namespace
107
108 /// getAllocatableClass - Return the maximal subclass of the given register
109 /// class that is alloctable, or NULL.
110 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const111 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
112 if (!RC || RC->isAllocatable())
113 return RC;
114
115 const unsigned *SubClass = RC->getSubClassMask();
116 for (unsigned Base = 0, BaseE = getNumRegClasses();
117 Base < BaseE; Base += 32) {
118 unsigned Idx = Base;
119 for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
120 unsigned Offset = countTrailingZeros(Mask);
121 const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
122 if (SubRC->isAllocatable())
123 return SubRC;
124 Mask >>= Offset;
125 Idx += Offset + 1;
126 }
127 }
128 return nullptr;
129 }
130
131 /// getMinimalPhysRegClass - Returns the Register Class of a physical
132 /// register of the given type, picking the most sub register class of
133 /// the right type that contains this physreg.
134 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,MVT VT) const135 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
136 assert(isPhysicalRegister(reg) && "reg must be a physical register");
137
138 // Pick the most sub register class of the right type that contains
139 // this physreg.
140 const TargetRegisterClass* BestRC = nullptr;
141 for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
142 const TargetRegisterClass* RC = *I;
143 if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
144 (!BestRC || BestRC->hasSubClass(RC)))
145 BestRC = RC;
146 }
147
148 assert(BestRC && "Couldn't find the register class");
149 return BestRC;
150 }
151
152 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
153 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)154 static void getAllocatableSetForRC(const MachineFunction &MF,
155 const TargetRegisterClass *RC, BitVector &R){
156 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
157 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
158 for (unsigned i = 0; i != Order.size(); ++i)
159 R.set(Order[i]);
160 }
161
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const162 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
163 const TargetRegisterClass *RC) const {
164 BitVector Allocatable(getNumRegs());
165 if (RC) {
166 // A register class with no allocatable subclass returns an empty set.
167 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
168 if (SubClass)
169 getAllocatableSetForRC(MF, SubClass, Allocatable);
170 } else {
171 for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
172 E = regclass_end(); I != E; ++I)
173 if ((*I)->isAllocatable())
174 getAllocatableSetForRC(MF, *I, Allocatable);
175 }
176
177 // Mask out the reserved registers
178 BitVector Reserved = getReservedRegs(MF);
179 Allocatable &= Reserved.flip();
180
181 return Allocatable;
182 }
183
184 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI,const MVT::SimpleValueType SVT=MVT::SimpleValueType::Any)185 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
186 const uint32_t *B,
187 const TargetRegisterInfo *TRI,
188 const MVT::SimpleValueType SVT =
189 MVT::SimpleValueType::Any) {
190 const MVT VT(SVT);
191 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
192 if (unsigned Common = *A++ & *B++) {
193 const TargetRegisterClass *RC =
194 TRI->getRegClass(I + countTrailingZeros(Common));
195 if (SVT == MVT::SimpleValueType::Any || RC->hasType(VT))
196 return RC;
197 }
198 return nullptr;
199 }
200
201 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B,const MVT::SimpleValueType SVT) const202 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
203 const TargetRegisterClass *B,
204 const MVT::SimpleValueType SVT) const {
205 // First take care of the trivial cases.
206 if (A == B)
207 return A;
208 if (!A || !B)
209 return nullptr;
210
211 // Register classes are ordered topologically, so the largest common
212 // sub-class it the common sub-class with the smallest ID.
213 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
214 }
215
216 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const217 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
218 const TargetRegisterClass *B,
219 unsigned Idx) const {
220 assert(A && B && "Missing register class");
221 assert(Idx && "Bad sub-register index");
222
223 // Find Idx in the list of super-register indices.
224 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
225 if (RCI.getSubReg() == Idx)
226 // The bit mask contains all register classes that are projected into B
227 // by Idx. Find a class that is also a sub-class of A.
228 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
229 return nullptr;
230 }
231
232 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const233 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
234 const TargetRegisterClass *RCB, unsigned SubB,
235 unsigned &PreA, unsigned &PreB) const {
236 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
237
238 // Search all pairs of sub-register indices that project into RCA and RCB
239 // respectively. This is quadratic, but usually the sets are very small. On
240 // most targets like X86, there will only be a single sub-register index
241 // (e.g., sub_16bit projecting into GR16).
242 //
243 // The worst case is a register class like DPR on ARM.
244 // We have indices dsub_0..dsub_7 projecting into that class.
245 //
246 // It is very common that one register class is a sub-register of the other.
247 // Arrange for RCA to be the larger register so the answer will be found in
248 // the first iteration. This makes the search linear for the most common
249 // case.
250 const TargetRegisterClass *BestRC = nullptr;
251 unsigned *BestPreA = &PreA;
252 unsigned *BestPreB = &PreB;
253 if (RCA->getSize() < RCB->getSize()) {
254 std::swap(RCA, RCB);
255 std::swap(SubA, SubB);
256 std::swap(BestPreA, BestPreB);
257 }
258
259 // Also terminate the search one we have found a register class as small as
260 // RCA.
261 unsigned MinSize = RCA->getSize();
262
263 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
264 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
265 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
266 // Check if a common super-register class exists for this index pair.
267 const TargetRegisterClass *RC =
268 firstCommonClass(IA.getMask(), IB.getMask(), this);
269 if (!RC || RC->getSize() < MinSize)
270 continue;
271
272 // The indexes must compose identically: PreA+SubA == PreB+SubB.
273 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
274 if (FinalA != FinalB)
275 continue;
276
277 // Is RC a better candidate than BestRC?
278 if (BestRC && RC->getSize() >= BestRC->getSize())
279 continue;
280
281 // Yes, RC is the smallest super-register seen so far.
282 BestRC = RC;
283 *BestPreA = IA.getSubReg();
284 *BestPreB = IB.getSubReg();
285
286 // Bail early if we reached MinSize. We won't find a better candidate.
287 if (BestRC->getSize() == MinSize)
288 return BestRC;
289 }
290 }
291 return BestRC;
292 }
293
294 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
295 /// share the same register file.
shareSameRegisterFile(const TargetRegisterInfo & TRI,const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg)296 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
297 const TargetRegisterClass *DefRC,
298 unsigned DefSubReg,
299 const TargetRegisterClass *SrcRC,
300 unsigned SrcSubReg) {
301 // Same register class.
302 if (DefRC == SrcRC)
303 return true;
304
305 // Both operands are sub registers. Check if they share a register class.
306 unsigned SrcIdx, DefIdx;
307 if (SrcSubReg && DefSubReg) {
308 return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
309 SrcIdx, DefIdx) != nullptr;
310 }
311
312 // At most one of the register is a sub register, make it Src to avoid
313 // duplicating the test.
314 if (!SrcSubReg) {
315 std::swap(DefSubReg, SrcSubReg);
316 std::swap(DefRC, SrcRC);
317 }
318
319 // One of the register is a sub register, check if we can get a superclass.
320 if (SrcSubReg)
321 return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
322
323 // Plain copy.
324 return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
325 }
326
shouldRewriteCopySrc(const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg) const327 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
328 unsigned DefSubReg,
329 const TargetRegisterClass *SrcRC,
330 unsigned SrcSubReg) const {
331 // If this source does not incur a cross register bank copy, use it.
332 return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
333 }
334
335 // Compute target-independent register allocator hints to help eliminate copies.
336 void
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM,const LiveRegMatrix * Matrix) const337 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
338 ArrayRef<MCPhysReg> Order,
339 SmallVectorImpl<MCPhysReg> &Hints,
340 const MachineFunction &MF,
341 const VirtRegMap *VRM,
342 const LiveRegMatrix *Matrix) const {
343 const MachineRegisterInfo &MRI = MF.getRegInfo();
344 std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
345
346 // Hints with HintType != 0 were set by target-dependent code.
347 // Such targets must provide their own implementation of
348 // TRI::getRegAllocationHints to interpret those hint types.
349 assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
350
351 // Target-independent hints are either a physical or a virtual register.
352 unsigned Phys = Hint.second;
353 if (VRM && isVirtualRegister(Phys))
354 Phys = VRM->getPhys(Phys);
355
356 // Check that Phys is a valid hint in VirtReg's register class.
357 if (!isPhysicalRegister(Phys))
358 return;
359 if (MRI.isReserved(Phys))
360 return;
361 // Check that Phys is in the allocation order. We shouldn't heed hints
362 // from VirtReg's register class if they aren't in the allocation order. The
363 // target probably has a reason for removing the register.
364 if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
365 return;
366
367 // All clear, tell the register allocator to prefer this register.
368 Hints.push_back(Phys);
369 }
370
canRealignStack(const MachineFunction & MF) const371 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
372 return !MF.getFunction()->hasFnAttribute("no-realign-stack");
373 }
374
needsStackRealignment(const MachineFunction & MF) const375 bool TargetRegisterInfo::needsStackRealignment(
376 const MachineFunction &MF) const {
377 const MachineFrameInfo *MFI = MF.getFrameInfo();
378 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
379 const Function *F = MF.getFunction();
380 unsigned StackAlign = TFI->getStackAlignment();
381 bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
382 F->hasFnAttribute(Attribute::StackAlignment));
383 if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) {
384 if (canRealignStack(MF))
385 return true;
386 DEBUG(dbgs() << "Can't realign function's stack: " << F->getName() << "\n");
387 }
388 return false;
389 }
390
391 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
392 void
dumpReg(unsigned Reg,unsigned SubRegIndex,const TargetRegisterInfo * TRI)393 TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
394 const TargetRegisterInfo *TRI) {
395 dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
396 }
397 #endif
398