• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetFrameLowering.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 
26 #define DEBUG_TYPE "target-reg-info"
27 
28 using namespace llvm;
29 
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const unsigned * SRILaneMasks,unsigned SRICoveringLanes)30 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
31                              regclass_iterator RCB, regclass_iterator RCE,
32                              const char *const *SRINames,
33                              const unsigned *SRILaneMasks,
34                              unsigned SRICoveringLanes)
35   : InfoDesc(ID), SubRegIndexNames(SRINames),
36     SubRegIndexLaneMasks(SRILaneMasks),
37     RegClassBegin(RCB), RegClassEnd(RCE),
38     CoveringLanes(SRICoveringLanes) {
39 }
40 
~TargetRegisterInfo()41 TargetRegisterInfo::~TargetRegisterInfo() {}
42 
43 namespace llvm {
44 
PrintReg(unsigned Reg,const TargetRegisterInfo * TRI,unsigned SubIdx)45 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI,
46                    unsigned SubIdx) {
47   return Printable([Reg, TRI, SubIdx](raw_ostream &OS) {
48     if (!Reg)
49       OS << "%noreg";
50     else if (TargetRegisterInfo::isStackSlot(Reg))
51       OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
52     else if (TargetRegisterInfo::isVirtualRegister(Reg))
53       OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
54     else if (TRI && Reg < TRI->getNumRegs())
55       OS << '%' << TRI->getName(Reg);
56     else
57       OS << "%physreg" << Reg;
58     if (SubIdx) {
59       if (TRI)
60         OS << ':' << TRI->getSubRegIndexName(SubIdx);
61       else
62         OS << ":sub(" << SubIdx << ')';
63     }
64   });
65 }
66 
PrintRegUnit(unsigned Unit,const TargetRegisterInfo * TRI)67 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
68   return Printable([Unit, TRI](raw_ostream &OS) {
69     // Generic printout when TRI is missing.
70     if (!TRI) {
71       OS << "Unit~" << Unit;
72       return;
73     }
74 
75     // Check for invalid register units.
76     if (Unit >= TRI->getNumRegUnits()) {
77       OS << "BadUnit~" << Unit;
78       return;
79     }
80 
81     // Normal units have at least one root.
82     MCRegUnitRootIterator Roots(Unit, TRI);
83     assert(Roots.isValid() && "Unit has no roots.");
84     OS << TRI->getName(*Roots);
85     for (++Roots; Roots.isValid(); ++Roots)
86       OS << '~' << TRI->getName(*Roots);
87   });
88 }
89 
PrintVRegOrUnit(unsigned Unit,const TargetRegisterInfo * TRI)90 Printable PrintVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
91   return Printable([Unit, TRI](raw_ostream &OS) {
92     if (TRI && TRI->isVirtualRegister(Unit)) {
93       OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
94     } else {
95       OS << PrintRegUnit(Unit, TRI);
96     }
97   });
98 }
99 
PrintLaneMask(LaneBitmask LaneMask)100 Printable PrintLaneMask(LaneBitmask LaneMask) {
101   return Printable([LaneMask](raw_ostream &OS) {
102     OS << format("%08X", LaneMask);
103   });
104 }
105 
106 } // End of llvm namespace
107 
108 /// getAllocatableClass - Return the maximal subclass of the given register
109 /// class that is alloctable, or NULL.
110 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const111 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
112   if (!RC || RC->isAllocatable())
113     return RC;
114 
115   const unsigned *SubClass = RC->getSubClassMask();
116   for (unsigned Base = 0, BaseE = getNumRegClasses();
117        Base < BaseE; Base += 32) {
118     unsigned Idx = Base;
119     for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
120       unsigned Offset = countTrailingZeros(Mask);
121       const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
122       if (SubRC->isAllocatable())
123         return SubRC;
124       Mask >>= Offset;
125       Idx += Offset + 1;
126     }
127   }
128   return nullptr;
129 }
130 
131 /// getMinimalPhysRegClass - Returns the Register Class of a physical
132 /// register of the given type, picking the most sub register class of
133 /// the right type that contains this physreg.
134 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,MVT VT) const135 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
136   assert(isPhysicalRegister(reg) && "reg must be a physical register");
137 
138   // Pick the most sub register class of the right type that contains
139   // this physreg.
140   const TargetRegisterClass* BestRC = nullptr;
141   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
142     const TargetRegisterClass* RC = *I;
143     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
144         (!BestRC || BestRC->hasSubClass(RC)))
145       BestRC = RC;
146   }
147 
148   assert(BestRC && "Couldn't find the register class");
149   return BestRC;
150 }
151 
152 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
153 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)154 static void getAllocatableSetForRC(const MachineFunction &MF,
155                                    const TargetRegisterClass *RC, BitVector &R){
156   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
157   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
158   for (unsigned i = 0; i != Order.size(); ++i)
159     R.set(Order[i]);
160 }
161 
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const162 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
163                                           const TargetRegisterClass *RC) const {
164   BitVector Allocatable(getNumRegs());
165   if (RC) {
166     // A register class with no allocatable subclass returns an empty set.
167     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
168     if (SubClass)
169       getAllocatableSetForRC(MF, SubClass, Allocatable);
170   } else {
171     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
172          E = regclass_end(); I != E; ++I)
173       if ((*I)->isAllocatable())
174         getAllocatableSetForRC(MF, *I, Allocatable);
175   }
176 
177   // Mask out the reserved registers
178   BitVector Reserved = getReservedRegs(MF);
179   Allocatable &= Reserved.flip();
180 
181   return Allocatable;
182 }
183 
184 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI,const MVT::SimpleValueType SVT=MVT::SimpleValueType::Any)185 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
186                                             const uint32_t *B,
187                                             const TargetRegisterInfo *TRI,
188                                             const MVT::SimpleValueType SVT =
189                                             MVT::SimpleValueType::Any) {
190   const MVT VT(SVT);
191   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
192     if (unsigned Common = *A++ & *B++) {
193       const TargetRegisterClass *RC =
194           TRI->getRegClass(I + countTrailingZeros(Common));
195       if (SVT == MVT::SimpleValueType::Any || RC->hasType(VT))
196         return RC;
197     }
198   return nullptr;
199 }
200 
201 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B,const MVT::SimpleValueType SVT) const202 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
203                                       const TargetRegisterClass *B,
204                                       const MVT::SimpleValueType SVT) const {
205   // First take care of the trivial cases.
206   if (A == B)
207     return A;
208   if (!A || !B)
209     return nullptr;
210 
211   // Register classes are ordered topologically, so the largest common
212   // sub-class it the common sub-class with the smallest ID.
213   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
214 }
215 
216 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const217 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
218                                              const TargetRegisterClass *B,
219                                              unsigned Idx) const {
220   assert(A && B && "Missing register class");
221   assert(Idx && "Bad sub-register index");
222 
223   // Find Idx in the list of super-register indices.
224   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
225     if (RCI.getSubReg() == Idx)
226       // The bit mask contains all register classes that are projected into B
227       // by Idx. Find a class that is also a sub-class of A.
228       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
229   return nullptr;
230 }
231 
232 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const233 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
234                        const TargetRegisterClass *RCB, unsigned SubB,
235                        unsigned &PreA, unsigned &PreB) const {
236   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
237 
238   // Search all pairs of sub-register indices that project into RCA and RCB
239   // respectively. This is quadratic, but usually the sets are very small. On
240   // most targets like X86, there will only be a single sub-register index
241   // (e.g., sub_16bit projecting into GR16).
242   //
243   // The worst case is a register class like DPR on ARM.
244   // We have indices dsub_0..dsub_7 projecting into that class.
245   //
246   // It is very common that one register class is a sub-register of the other.
247   // Arrange for RCA to be the larger register so the answer will be found in
248   // the first iteration. This makes the search linear for the most common
249   // case.
250   const TargetRegisterClass *BestRC = nullptr;
251   unsigned *BestPreA = &PreA;
252   unsigned *BestPreB = &PreB;
253   if (RCA->getSize() < RCB->getSize()) {
254     std::swap(RCA, RCB);
255     std::swap(SubA, SubB);
256     std::swap(BestPreA, BestPreB);
257   }
258 
259   // Also terminate the search one we have found a register class as small as
260   // RCA.
261   unsigned MinSize = RCA->getSize();
262 
263   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
264     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
265     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
266       // Check if a common super-register class exists for this index pair.
267       const TargetRegisterClass *RC =
268         firstCommonClass(IA.getMask(), IB.getMask(), this);
269       if (!RC || RC->getSize() < MinSize)
270         continue;
271 
272       // The indexes must compose identically: PreA+SubA == PreB+SubB.
273       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
274       if (FinalA != FinalB)
275         continue;
276 
277       // Is RC a better candidate than BestRC?
278       if (BestRC && RC->getSize() >= BestRC->getSize())
279         continue;
280 
281       // Yes, RC is the smallest super-register seen so far.
282       BestRC = RC;
283       *BestPreA = IA.getSubReg();
284       *BestPreB = IB.getSubReg();
285 
286       // Bail early if we reached MinSize. We won't find a better candidate.
287       if (BestRC->getSize() == MinSize)
288         return BestRC;
289     }
290   }
291   return BestRC;
292 }
293 
294 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
295 /// share the same register file.
shareSameRegisterFile(const TargetRegisterInfo & TRI,const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg)296 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
297                                   const TargetRegisterClass *DefRC,
298                                   unsigned DefSubReg,
299                                   const TargetRegisterClass *SrcRC,
300                                   unsigned SrcSubReg) {
301   // Same register class.
302   if (DefRC == SrcRC)
303     return true;
304 
305   // Both operands are sub registers. Check if they share a register class.
306   unsigned SrcIdx, DefIdx;
307   if (SrcSubReg && DefSubReg) {
308     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
309                                       SrcIdx, DefIdx) != nullptr;
310   }
311 
312   // At most one of the register is a sub register, make it Src to avoid
313   // duplicating the test.
314   if (!SrcSubReg) {
315     std::swap(DefSubReg, SrcSubReg);
316     std::swap(DefRC, SrcRC);
317   }
318 
319   // One of the register is a sub register, check if we can get a superclass.
320   if (SrcSubReg)
321     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
322 
323   // Plain copy.
324   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
325 }
326 
shouldRewriteCopySrc(const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg) const327 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
328                                               unsigned DefSubReg,
329                                               const TargetRegisterClass *SrcRC,
330                                               unsigned SrcSubReg) const {
331   // If this source does not incur a cross register bank copy, use it.
332   return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
333 }
334 
335 // Compute target-independent register allocator hints to help eliminate copies.
336 void
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM,const LiveRegMatrix * Matrix) const337 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
338                                           ArrayRef<MCPhysReg> Order,
339                                           SmallVectorImpl<MCPhysReg> &Hints,
340                                           const MachineFunction &MF,
341                                           const VirtRegMap *VRM,
342                                           const LiveRegMatrix *Matrix) const {
343   const MachineRegisterInfo &MRI = MF.getRegInfo();
344   std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
345 
346   // Hints with HintType != 0 were set by target-dependent code.
347   // Such targets must provide their own implementation of
348   // TRI::getRegAllocationHints to interpret those hint types.
349   assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
350 
351   // Target-independent hints are either a physical or a virtual register.
352   unsigned Phys = Hint.second;
353   if (VRM && isVirtualRegister(Phys))
354     Phys = VRM->getPhys(Phys);
355 
356   // Check that Phys is a valid hint in VirtReg's register class.
357   if (!isPhysicalRegister(Phys))
358     return;
359   if (MRI.isReserved(Phys))
360     return;
361   // Check that Phys is in the allocation order. We shouldn't heed hints
362   // from VirtReg's register class if they aren't in the allocation order. The
363   // target probably has a reason for removing the register.
364   if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
365     return;
366 
367   // All clear, tell the register allocator to prefer this register.
368   Hints.push_back(Phys);
369 }
370 
canRealignStack(const MachineFunction & MF) const371 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
372   return !MF.getFunction()->hasFnAttribute("no-realign-stack");
373 }
374 
needsStackRealignment(const MachineFunction & MF) const375 bool TargetRegisterInfo::needsStackRealignment(
376     const MachineFunction &MF) const {
377   const MachineFrameInfo *MFI = MF.getFrameInfo();
378   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
379   const Function *F = MF.getFunction();
380   unsigned StackAlign = TFI->getStackAlignment();
381   bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
382                               F->hasFnAttribute(Attribute::StackAlignment));
383   if (MF.getFunction()->hasFnAttribute("stackrealign") || requiresRealignment) {
384     if (canRealignStack(MF))
385       return true;
386     DEBUG(dbgs() << "Can't realign function's stack: " << F->getName() << "\n");
387   }
388   return false;
389 }
390 
391 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
392 void
dumpReg(unsigned Reg,unsigned SubRegIndex,const TargetRegisterInfo * TRI)393 TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
394                             const TargetRegisterInfo *TRI) {
395   dbgs() << PrintReg(Reg, TRI, SubRegIndex) << "\n";
396 }
397 #endif
398