• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_INCOMPLETE_LUT_H
11 #define EIGEN_INCOMPLETE_LUT_H
12 
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /** \internal
19   * Compute a quick-sort split of a vector
20   * On output, the vector row is permuted such that its elements satisfy
21   * abs(row(i)) >= abs(row(ncut)) if i<ncut
22   * abs(row(i)) <= abs(row(ncut)) if i>ncut
23   * \param row The vector of values
24   * \param ind The array of index for the elements in @p row
25   * \param ncut  The number of largest elements to keep
26   **/
27 template <typename VectorV, typename VectorI, typename Index>
QuickSplit(VectorV & row,VectorI & ind,Index ncut)28 Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
29 {
30   typedef typename VectorV::RealScalar RealScalar;
31   using std::swap;
32   using std::abs;
33   Index mid;
34   Index n = row.size(); /* length of the vector */
35   Index first, last ;
36 
37   ncut--; /* to fit the zero-based indices */
38   first = 0;
39   last = n-1;
40   if (ncut < first || ncut > last ) return 0;
41 
42   do {
43     mid = first;
44     RealScalar abskey = abs(row(mid));
45     for (Index j = first + 1; j <= last; j++) {
46       if ( abs(row(j)) > abskey) {
47         ++mid;
48         swap(row(mid), row(j));
49         swap(ind(mid), ind(j));
50       }
51     }
52     /* Interchange for the pivot element */
53     swap(row(mid), row(first));
54     swap(ind(mid), ind(first));
55 
56     if (mid > ncut) last = mid - 1;
57     else if (mid < ncut ) first = mid + 1;
58   } while (mid != ncut );
59 
60   return 0; /* mid is equal to ncut */
61 }
62 
63 }// end namespace internal
64 
65 /** \ingroup IterativeLinearSolvers_Module
66   * \class IncompleteLUT
67   * \brief Incomplete LU factorization with dual-threshold strategy
68   *
69   * During the numerical factorization, two dropping rules are used :
70   *  1) any element whose magnitude is less than some tolerance is dropped.
71   *    This tolerance is obtained by multiplying the input tolerance @p droptol
72   *    by the average magnitude of all the original elements in the current row.
73   *  2) After the elimination of the row, only the @p fill largest elements in
74   *    the L part and the @p fill largest elements in the U part are kept
75   *    (in addition to the diagonal element ). Note that @p fill is computed from
76   *    the input parameter @p fillfactor which is used the ratio to control the fill_in
77   *    relatively to the initial number of nonzero elements.
78   *
79   * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
80   * and when @p fill=n/2 with @p droptol being different to zero.
81   *
82   * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
83   *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
84   *
85   * NOTE : The following implementation is derived from the ILUT implementation
86   * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
87   *  released under the terms of the GNU LGPL:
88   *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
89   * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
90   * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
91   *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
92   * alternatively, on GMANE:
93   *   http://comments.gmane.org/gmane.comp.lib.eigen/3302
94   */
95 template <typename _Scalar>
96 class IncompleteLUT : internal::noncopyable
97 {
98     typedef _Scalar Scalar;
99     typedef typename NumTraits<Scalar>::Real RealScalar;
100     typedef Matrix<Scalar,Dynamic,1> Vector;
101     typedef SparseMatrix<Scalar,RowMajor> FactorType;
102     typedef SparseMatrix<Scalar,ColMajor> PermutType;
103     typedef typename FactorType::Index Index;
104 
105   public:
106     typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
107 
IncompleteLUT()108     IncompleteLUT()
109       : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
110         m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
111     {}
112 
113     template<typename MatrixType>
114     IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
m_droptol(droptol)115       : m_droptol(droptol),m_fillfactor(fillfactor),
116         m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
117     {
118       eigen_assert(fillfactor != 0);
119       compute(mat);
120     }
121 
rows()122     Index rows() const { return m_lu.rows(); }
123 
cols()124     Index cols() const { return m_lu.cols(); }
125 
126     /** \brief Reports whether previous computation was successful.
127       *
128       * \returns \c Success if computation was succesful,
129       *          \c NumericalIssue if the matrix.appears to be negative.
130       */
info()131     ComputationInfo info() const
132     {
133       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
134       return m_info;
135     }
136 
137     template<typename MatrixType>
138     void analyzePattern(const MatrixType& amat);
139 
140     template<typename MatrixType>
141     void factorize(const MatrixType& amat);
142 
143     /**
144       * Compute an incomplete LU factorization with dual threshold on the matrix mat
145       * No pivoting is done in this version
146       *
147       **/
148     template<typename MatrixType>
compute(const MatrixType & amat)149     IncompleteLUT<Scalar>& compute(const MatrixType& amat)
150     {
151       analyzePattern(amat);
152       factorize(amat);
153       return *this;
154     }
155 
156     void setDroptol(const RealScalar& droptol);
157     void setFillfactor(int fillfactor);
158 
159     template<typename Rhs, typename Dest>
_solve(const Rhs & b,Dest & x)160     void _solve(const Rhs& b, Dest& x) const
161     {
162       x = m_Pinv * b;
163       x = m_lu.template triangularView<UnitLower>().solve(x);
164       x = m_lu.template triangularView<Upper>().solve(x);
165       x = m_P * x;
166     }
167 
168     template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
solve(const MatrixBase<Rhs> & b)169      solve(const MatrixBase<Rhs>& b) const
170     {
171       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
172       eigen_assert(cols()==b.rows()
173                 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
174       return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
175     }
176 
177 protected:
178 
179     /** keeps off-diagonal entries; drops diagonal entries */
180     struct keep_diag {
operatorkeep_diag181       inline bool operator() (const Index& row, const Index& col, const Scalar&) const
182       {
183         return row!=col;
184       }
185     };
186 
187 protected:
188 
189     FactorType m_lu;
190     RealScalar m_droptol;
191     int m_fillfactor;
192     bool m_analysisIsOk;
193     bool m_factorizationIsOk;
194     bool m_isInitialized;
195     ComputationInfo m_info;
196     PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // Fill-reducing permutation
197     PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // Inverse permutation
198 };
199 
200 /**
201  * Set control parameter droptol
202  *  \param droptol   Drop any element whose magnitude is less than this tolerance
203  **/
204 template<typename Scalar>
setDroptol(const RealScalar & droptol)205 void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
206 {
207   this->m_droptol = droptol;
208 }
209 
210 /**
211  * Set control parameter fillfactor
212  * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row.
213  **/
214 template<typename Scalar>
setFillfactor(int fillfactor)215 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
216 {
217   this->m_fillfactor = fillfactor;
218 }
219 
220 template <typename Scalar>
221 template<typename _MatrixType>
analyzePattern(const _MatrixType & amat)222 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
223 {
224   // Compute the Fill-reducing permutation
225   SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
226   SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
227   // Symmetrize the pattern
228   // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
229   //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
230   SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
231   AtA.prune(keep_diag());
232   internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P);  // Then compute the AMD ordering...
233 
234   m_Pinv  = m_P.inverse(); // ... and the inverse permutation
235 
236   m_analysisIsOk = true;
237   m_factorizationIsOk = false;
238   m_isInitialized = false;
239 }
240 
241 template <typename Scalar>
242 template<typename _MatrixType>
factorize(const _MatrixType & amat)243 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
244 {
245   using std::sqrt;
246   using std::swap;
247   using std::abs;
248 
249   eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
250   Index n = amat.cols();  // Size of the matrix
251   m_lu.resize(n,n);
252   // Declare Working vectors and variables
253   Vector u(n) ;     // real values of the row -- maximum size is n --
254   VectorXi ju(n);   // column position of the values in u -- maximum size  is n
255   VectorXi jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
256 
257   // Apply the fill-reducing permutation
258   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
259   SparseMatrix<Scalar,RowMajor, Index> mat;
260   mat = amat.twistedBy(m_Pinv);
261 
262   // Initialization
263   jr.fill(-1);
264   ju.fill(0);
265   u.fill(0);
266 
267   // number of largest elements to keep in each row:
268   Index fill_in =   static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
269   if (fill_in > n) fill_in = n;
270 
271   // number of largest nonzero elements to keep in the L and the U part of the current row:
272   Index nnzL = fill_in/2;
273   Index nnzU = nnzL;
274   m_lu.reserve(n * (nnzL + nnzU + 1));
275 
276   // global loop over the rows of the sparse matrix
277   for (Index ii = 0; ii < n; ii++)
278   {
279     // 1 - copy the lower and the upper part of the row i of mat in the working vector u
280 
281     Index sizeu = 1; // number of nonzero elements in the upper part of the current row
282     Index sizel = 0; // number of nonzero elements in the lower part of the current row
283     ju(ii)    = ii;
284     u(ii)     = 0;
285     jr(ii)    = ii;
286     RealScalar rownorm = 0;
287 
288     typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
289     for (; j_it; ++j_it)
290     {
291       Index k = j_it.index();
292       if (k < ii)
293       {
294         // copy the lower part
295         ju(sizel) = k;
296         u(sizel) = j_it.value();
297         jr(k) = sizel;
298         ++sizel;
299       }
300       else if (k == ii)
301       {
302         u(ii) = j_it.value();
303       }
304       else
305       {
306         // copy the upper part
307         Index jpos = ii + sizeu;
308         ju(jpos) = k;
309         u(jpos) = j_it.value();
310         jr(k) = jpos;
311         ++sizeu;
312       }
313       rownorm += numext::abs2(j_it.value());
314     }
315 
316     // 2 - detect possible zero row
317     if(rownorm==0)
318     {
319       m_info = NumericalIssue;
320       return;
321     }
322     // Take the 2-norm of the current row as a relative tolerance
323     rownorm = sqrt(rownorm);
324 
325     // 3 - eliminate the previous nonzero rows
326     Index jj = 0;
327     Index len = 0;
328     while (jj < sizel)
329     {
330       // In order to eliminate in the correct order,
331       // we must select first the smallest column index among  ju(jj:sizel)
332       Index k;
333       Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
334       k += jj;
335       if (minrow != ju(jj))
336       {
337         // swap the two locations
338         Index j = ju(jj);
339         swap(ju(jj), ju(k));
340         jr(minrow) = jj;   jr(j) = k;
341         swap(u(jj), u(k));
342       }
343       // Reset this location
344       jr(minrow) = -1;
345 
346       // Start elimination
347       typename FactorType::InnerIterator ki_it(m_lu, minrow);
348       while (ki_it && ki_it.index() < minrow) ++ki_it;
349       eigen_internal_assert(ki_it && ki_it.col()==minrow);
350       Scalar fact = u(jj) / ki_it.value();
351 
352       // drop too small elements
353       if(abs(fact) <= m_droptol)
354       {
355         jj++;
356         continue;
357       }
358 
359       // linear combination of the current row ii and the row minrow
360       ++ki_it;
361       for (; ki_it; ++ki_it)
362       {
363         Scalar prod = fact * ki_it.value();
364         Index j       = ki_it.index();
365         Index jpos    = jr(j);
366         if (jpos == -1) // fill-in element
367         {
368           Index newpos;
369           if (j >= ii) // dealing with the upper part
370           {
371             newpos = ii + sizeu;
372             sizeu++;
373             eigen_internal_assert(sizeu<=n);
374           }
375           else // dealing with the lower part
376           {
377             newpos = sizel;
378             sizel++;
379             eigen_internal_assert(sizel<=ii);
380           }
381           ju(newpos) = j;
382           u(newpos) = -prod;
383           jr(j) = newpos;
384         }
385         else
386           u(jpos) -= prod;
387       }
388       // store the pivot element
389       u(len) = fact;
390       ju(len) = minrow;
391       ++len;
392 
393       jj++;
394     } // end of the elimination on the row ii
395 
396     // reset the upper part of the pointer jr to zero
397     for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
398 
399     // 4 - partially sort and insert the elements in the m_lu matrix
400 
401     // sort the L-part of the row
402     sizel = len;
403     len = (std::min)(sizel, nnzL);
404     typename Vector::SegmentReturnType ul(u.segment(0, sizel));
405     typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
406     internal::QuickSplit(ul, jul, len);
407 
408     // store the largest m_fill elements of the L part
409     m_lu.startVec(ii);
410     for(Index k = 0; k < len; k++)
411       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
412 
413     // store the diagonal element
414     // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
415     if (u(ii) == Scalar(0))
416       u(ii) = sqrt(m_droptol) * rownorm;
417     m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
418 
419     // sort the U-part of the row
420     // apply the dropping rule first
421     len = 0;
422     for(Index k = 1; k < sizeu; k++)
423     {
424       if(abs(u(ii+k)) > m_droptol * rownorm )
425       {
426         ++len;
427         u(ii + len)  = u(ii + k);
428         ju(ii + len) = ju(ii + k);
429       }
430     }
431     sizeu = len + 1; // +1 to take into account the diagonal element
432     len = (std::min)(sizeu, nnzU);
433     typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
434     typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
435     internal::QuickSplit(uu, juu, len);
436 
437     // store the largest elements of the U part
438     for(Index k = ii + 1; k < ii + len; k++)
439       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
440   }
441 
442   m_lu.finalize();
443   m_lu.makeCompressed();
444 
445   m_factorizationIsOk = true;
446   m_isInitialized = m_factorizationIsOk;
447   m_info = Success;
448 }
449 
450 namespace internal {
451 
452 template<typename _MatrixType, typename Rhs>
453 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
454   : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
455 {
456   typedef IncompleteLUT<_MatrixType> Dec;
457   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
458 
459   template<typename Dest> void evalTo(Dest& dst) const
460   {
461     dec()._solve(rhs(),dst);
462   }
463 };
464 
465 } // end namespace internal
466 
467 } // end namespace Eigen
468 
469 #endif // EIGEN_INCOMPLETE_LUT_H
470