• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Platform-specific code for Win32.
6 
7 // Secure API functions are not available using MinGW with msvcrt.dll
8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9 // disable definition of secure API functions in standard headers that
10 // would conflict with our own implementation.
11 #ifdef __MINGW32__
12 #include <_mingw.h>
13 #ifdef MINGW_HAS_SECURE_API
14 #undef MINGW_HAS_SECURE_API
15 #endif  // MINGW_HAS_SECURE_API
16 #endif  // __MINGW32__
17 
18 #include <limits>
19 
20 #include "src/base/win32-headers.h"
21 
22 #include "src/base/bits.h"
23 #include "src/base/lazy-instance.h"
24 #include "src/base/macros.h"
25 #include "src/base/platform/platform.h"
26 #include "src/base/platform/time.h"
27 #include "src/base/utils/random-number-generator.h"
28 
29 
30 // Extra functions for MinGW. Most of these are the _s functions which are in
31 // the Microsoft Visual Studio C++ CRT.
32 #ifdef __MINGW32__
33 
34 
35 #ifndef __MINGW64_VERSION_MAJOR
36 
37 #define _TRUNCATE 0
38 #define STRUNCATE 80
39 
MemoryBarrier()40 inline void MemoryBarrier() {
41   int barrier = 0;
42   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
43 }
44 
45 #endif  // __MINGW64_VERSION_MAJOR
46 
47 
localtime_s(tm * out_tm,const time_t * time)48 int localtime_s(tm* out_tm, const time_t* time) {
49   tm* posix_local_time_struct = localtime(time);  // NOLINT
50   if (posix_local_time_struct == NULL) return 1;
51   *out_tm = *posix_local_time_struct;
52   return 0;
53 }
54 
55 
fopen_s(FILE ** pFile,const char * filename,const char * mode)56 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
57   *pFile = fopen(filename, mode);
58   return *pFile != NULL ? 0 : 1;
59 }
60 
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)61 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
62                  const char* format, va_list argptr) {
63   DCHECK(count == _TRUNCATE);
64   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
65 }
66 
67 
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)68 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
69   CHECK(source != NULL);
70   CHECK(dest != NULL);
71   CHECK_GT(dest_size, 0);
72 
73   if (count == _TRUNCATE) {
74     while (dest_size > 0 && *source != 0) {
75       *(dest++) = *(source++);
76       --dest_size;
77     }
78     if (dest_size == 0) {
79       *(dest - 1) = 0;
80       return STRUNCATE;
81     }
82   } else {
83     while (dest_size > 0 && count > 0 && *source != 0) {
84       *(dest++) = *(source++);
85       --dest_size;
86       --count;
87     }
88   }
89   CHECK_GT(dest_size, 0);
90   *dest = 0;
91   return 0;
92 }
93 
94 #endif  // __MINGW32__
95 
96 namespace v8 {
97 namespace base {
98 
99 namespace {
100 
101 bool g_hard_abort = false;
102 
103 }  // namespace
104 
105 class TimezoneCache {
106  public:
TimezoneCache()107   TimezoneCache() : initialized_(false) { }
108 
Clear()109   void Clear() {
110     initialized_ = false;
111   }
112 
113   // Initialize timezone information. The timezone information is obtained from
114   // windows. If we cannot get the timezone information we fall back to CET.
InitializeIfNeeded()115   void InitializeIfNeeded() {
116     // Just return if timezone information has already been initialized.
117     if (initialized_) return;
118 
119     // Initialize POSIX time zone data.
120     _tzset();
121     // Obtain timezone information from operating system.
122     memset(&tzinfo_, 0, sizeof(tzinfo_));
123     if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
124       // If we cannot get timezone information we fall back to CET.
125       tzinfo_.Bias = -60;
126       tzinfo_.StandardDate.wMonth = 10;
127       tzinfo_.StandardDate.wDay = 5;
128       tzinfo_.StandardDate.wHour = 3;
129       tzinfo_.StandardBias = 0;
130       tzinfo_.DaylightDate.wMonth = 3;
131       tzinfo_.DaylightDate.wDay = 5;
132       tzinfo_.DaylightDate.wHour = 2;
133       tzinfo_.DaylightBias = -60;
134     }
135 
136     // Make standard and DST timezone names.
137     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
138                         std_tz_name_, kTzNameSize, NULL, NULL);
139     std_tz_name_[kTzNameSize - 1] = '\0';
140     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
141                         dst_tz_name_, kTzNameSize, NULL, NULL);
142     dst_tz_name_[kTzNameSize - 1] = '\0';
143 
144     // If OS returned empty string or resource id (like "@tzres.dll,-211")
145     // simply guess the name from the UTC bias of the timezone.
146     // To properly resolve the resource identifier requires a library load,
147     // which is not possible in a sandbox.
148     if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
149       OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
150                    "%s Standard Time",
151                    GuessTimezoneNameFromBias(tzinfo_.Bias));
152     }
153     if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
154       OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
155                    "%s Daylight Time",
156                    GuessTimezoneNameFromBias(tzinfo_.Bias));
157     }
158     // Timezone information initialized.
159     initialized_ = true;
160   }
161 
162   // Guess the name of the timezone from the bias.
163   // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)164   const char* GuessTimezoneNameFromBias(int bias) {
165     static const int kHour = 60;
166     switch (-bias) {
167       case -9*kHour: return "Alaska";
168       case -8*kHour: return "Pacific";
169       case -7*kHour: return "Mountain";
170       case -6*kHour: return "Central";
171       case -5*kHour: return "Eastern";
172       case -4*kHour: return "Atlantic";
173       case  0*kHour: return "GMT";
174       case +1*kHour: return "Central Europe";
175       case +2*kHour: return "Eastern Europe";
176       case +3*kHour: return "Russia";
177       case +5*kHour + 30: return "India";
178       case +8*kHour: return "China";
179       case +9*kHour: return "Japan";
180       case +12*kHour: return "New Zealand";
181       default: return "Local";
182     }
183   }
184 
185 
186  private:
187   static const int kTzNameSize = 128;
188   bool initialized_;
189   char std_tz_name_[kTzNameSize];
190   char dst_tz_name_[kTzNameSize];
191   TIME_ZONE_INFORMATION tzinfo_;
192   friend class Win32Time;
193 };
194 
195 
196 // ----------------------------------------------------------------------------
197 // The Time class represents time on win32. A timestamp is represented as
198 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
199 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
200 // January 1, 1970.
201 
202 class Win32Time {
203  public:
204   // Constructors.
205   Win32Time();
206   explicit Win32Time(double jstime);
207   Win32Time(int year, int mon, int day, int hour, int min, int sec);
208 
209   // Convert timestamp to JavaScript representation.
210   double ToJSTime();
211 
212   // Set timestamp to current time.
213   void SetToCurrentTime();
214 
215   // Returns the local timezone offset in milliseconds east of UTC. This is
216   // the number of milliseconds you must add to UTC to get local time, i.e.
217   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
218   // routine also takes into account whether daylight saving is effect
219   // at the time.
220   int64_t LocalOffset(TimezoneCache* cache);
221 
222   // Returns the daylight savings time offset for the time in milliseconds.
223   int64_t DaylightSavingsOffset(TimezoneCache* cache);
224 
225   // Returns a string identifying the current timezone for the
226   // timestamp taking into account daylight saving.
227   char* LocalTimezone(TimezoneCache* cache);
228 
229  private:
230   // Constants for time conversion.
231   static const int64_t kTimeEpoc = 116444736000000000LL;
232   static const int64_t kTimeScaler = 10000;
233   static const int64_t kMsPerMinute = 60000;
234 
235   // Constants for timezone information.
236   static const bool kShortTzNames = false;
237 
238   // Return whether or not daylight savings time is in effect at this time.
239   bool InDST(TimezoneCache* cache);
240 
241   // Accessor for FILETIME representation.
ft()242   FILETIME& ft() { return time_.ft_; }
243 
244   // Accessor for integer representation.
t()245   int64_t& t() { return time_.t_; }
246 
247   // Although win32 uses 64-bit integers for representing timestamps,
248   // these are packed into a FILETIME structure. The FILETIME structure
249   // is just a struct representing a 64-bit integer. The TimeStamp union
250   // allows access to both a FILETIME and an integer representation of
251   // the timestamp.
252   union TimeStamp {
253     FILETIME ft_;
254     int64_t t_;
255   };
256 
257   TimeStamp time_;
258 };
259 
260 
261 // Initialize timestamp to start of epoc.
Win32Time()262 Win32Time::Win32Time() {
263   t() = 0;
264 }
265 
266 
267 // Initialize timestamp from a JavaScript timestamp.
Win32Time(double jstime)268 Win32Time::Win32Time(double jstime) {
269   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
270 }
271 
272 
273 // Initialize timestamp from date/time components.
Win32Time(int year,int mon,int day,int hour,int min,int sec)274 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
275   SYSTEMTIME st;
276   st.wYear = year;
277   st.wMonth = mon;
278   st.wDay = day;
279   st.wHour = hour;
280   st.wMinute = min;
281   st.wSecond = sec;
282   st.wMilliseconds = 0;
283   SystemTimeToFileTime(&st, &ft());
284 }
285 
286 
287 // Convert timestamp to JavaScript timestamp.
ToJSTime()288 double Win32Time::ToJSTime() {
289   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
290 }
291 
292 
293 // Set timestamp to current time.
SetToCurrentTime()294 void Win32Time::SetToCurrentTime() {
295   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
296   // Because we're fast, we like fast timers which have at least a
297   // 1ms resolution.
298   //
299   // timeGetTime() provides 1ms granularity when combined with
300   // timeBeginPeriod().  If the host application for v8 wants fast
301   // timers, it can use timeBeginPeriod to increase the resolution.
302   //
303   // Using timeGetTime() has a drawback because it is a 32bit value
304   // and hence rolls-over every ~49days.
305   //
306   // To use the clock, we use GetSystemTimeAsFileTime as our base;
307   // and then use timeGetTime to extrapolate current time from the
308   // start time.  To deal with rollovers, we resync the clock
309   // any time when more than kMaxClockElapsedTime has passed or
310   // whenever timeGetTime creates a rollover.
311 
312   static bool initialized = false;
313   static TimeStamp init_time;
314   static DWORD init_ticks;
315   static const int64_t kHundredNanosecondsPerSecond = 10000000;
316   static const int64_t kMaxClockElapsedTime =
317       60*kHundredNanosecondsPerSecond;  // 1 minute
318 
319   // If we are uninitialized, we need to resync the clock.
320   bool needs_resync = !initialized;
321 
322   // Get the current time.
323   TimeStamp time_now;
324   GetSystemTimeAsFileTime(&time_now.ft_);
325   DWORD ticks_now = timeGetTime();
326 
327   // Check if we need to resync due to clock rollover.
328   needs_resync |= ticks_now < init_ticks;
329 
330   // Check if we need to resync due to elapsed time.
331   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
332 
333   // Check if we need to resync due to backwards time change.
334   needs_resync |= time_now.t_ < init_time.t_;
335 
336   // Resync the clock if necessary.
337   if (needs_resync) {
338     GetSystemTimeAsFileTime(&init_time.ft_);
339     init_ticks = ticks_now = timeGetTime();
340     initialized = true;
341   }
342 
343   // Finally, compute the actual time.  Why is this so hard.
344   DWORD elapsed = ticks_now - init_ticks;
345   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
346 }
347 
348 
349 // Return the local timezone offset in milliseconds east of UTC. This
350 // takes into account whether daylight saving is in effect at the time.
351 // Only times in the 32-bit Unix range may be passed to this function.
352 // Also, adding the time-zone offset to the input must not overflow.
353 // The function EquivalentTime() in date.js guarantees this.
LocalOffset(TimezoneCache * cache)354 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
355   cache->InitializeIfNeeded();
356 
357   Win32Time rounded_to_second(*this);
358   rounded_to_second.t() =
359       rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler;
360   // Convert to local time using POSIX localtime function.
361   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
362   // very slow.  Other browsers use localtime().
363 
364   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
365   // POSIX seconds past 1/1/1970 0:00:00.
366   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
367   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
368     return 0;
369   }
370   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
371   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
372 
373   // Convert to local time, as struct with fields for day, hour, year, etc.
374   tm posix_local_time_struct;
375   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
376 
377   if (posix_local_time_struct.tm_isdst > 0) {
378     return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
379   } else if (posix_local_time_struct.tm_isdst == 0) {
380     return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
381   } else {
382     return cache->tzinfo_.Bias * -kMsPerMinute;
383   }
384 }
385 
386 
387 // Return whether or not daylight savings time is in effect at this time.
InDST(TimezoneCache * cache)388 bool Win32Time::InDST(TimezoneCache* cache) {
389   cache->InitializeIfNeeded();
390 
391   // Determine if DST is in effect at the specified time.
392   bool in_dst = false;
393   if (cache->tzinfo_.StandardDate.wMonth != 0 ||
394       cache->tzinfo_.DaylightDate.wMonth != 0) {
395     // Get the local timezone offset for the timestamp in milliseconds.
396     int64_t offset = LocalOffset(cache);
397 
398     // Compute the offset for DST. The bias parameters in the timezone info
399     // are specified in minutes. These must be converted to milliseconds.
400     int64_t dstofs =
401         -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
402 
403     // If the local time offset equals the timezone bias plus the daylight
404     // bias then DST is in effect.
405     in_dst = offset == dstofs;
406   }
407 
408   return in_dst;
409 }
410 
411 
412 // Return the daylight savings time offset for this time.
DaylightSavingsOffset(TimezoneCache * cache)413 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
414   return InDST(cache) ? 60 * kMsPerMinute : 0;
415 }
416 
417 
418 // Returns a string identifying the current timezone for the
419 // timestamp taking into account daylight saving.
LocalTimezone(TimezoneCache * cache)420 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
421   // Return the standard or DST time zone name based on whether daylight
422   // saving is in effect at the given time.
423   return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
424 }
425 
426 
427 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)428 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
429   FILETIME dummy;
430   uint64_t usertime;
431 
432   // Get the amount of time that the thread has executed in user mode.
433   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
434                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
435 
436   // Adjust the resolution to micro-seconds.
437   usertime /= 10;
438 
439   // Convert to seconds and microseconds
440   *secs = static_cast<uint32_t>(usertime / 1000000);
441   *usecs = static_cast<uint32_t>(usertime % 1000000);
442   return 0;
443 }
444 
445 
446 // Returns current time as the number of milliseconds since
447 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()448 double OS::TimeCurrentMillis() {
449   return Time::Now().ToJsTime();
450 }
451 
452 
CreateTimezoneCache()453 TimezoneCache* OS::CreateTimezoneCache() {
454   return new TimezoneCache();
455 }
456 
457 
DisposeTimezoneCache(TimezoneCache * cache)458 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
459   delete cache;
460 }
461 
462 
ClearTimezoneCache(TimezoneCache * cache)463 void OS::ClearTimezoneCache(TimezoneCache* cache) {
464   cache->Clear();
465 }
466 
467 
468 // Returns a string identifying the current timezone taking into
469 // account daylight saving.
LocalTimezone(double time,TimezoneCache * cache)470 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
471   return Win32Time(time).LocalTimezone(cache);
472 }
473 
474 
475 // Returns the local time offset in milliseconds east of UTC without
476 // taking daylight savings time into account.
LocalTimeOffset(TimezoneCache * cache)477 double OS::LocalTimeOffset(TimezoneCache* cache) {
478   // Use current time, rounded to the millisecond.
479   Win32Time t(TimeCurrentMillis());
480   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
481   return static_cast<double>(t.LocalOffset(cache) -
482                              t.DaylightSavingsOffset(cache));
483 }
484 
485 
486 // Returns the daylight savings offset in milliseconds for the given
487 // time.
DaylightSavingsOffset(double time,TimezoneCache * cache)488 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
489   int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
490   return static_cast<double>(offset);
491 }
492 
493 
GetLastError()494 int OS::GetLastError() {
495   return ::GetLastError();
496 }
497 
498 
GetCurrentProcessId()499 int OS::GetCurrentProcessId() {
500   return static_cast<int>(::GetCurrentProcessId());
501 }
502 
503 
GetCurrentThreadId()504 int OS::GetCurrentThreadId() {
505   return static_cast<int>(::GetCurrentThreadId());
506 }
507 
508 
509 // ----------------------------------------------------------------------------
510 // Win32 console output.
511 //
512 // If a Win32 application is linked as a console application it has a normal
513 // standard output and standard error. In this case normal printf works fine
514 // for output. However, if the application is linked as a GUI application,
515 // the process doesn't have a console, and therefore (debugging) output is lost.
516 // This is the case if we are embedded in a windows program (like a browser).
517 // In order to be able to get debug output in this case the the debugging
518 // facility using OutputDebugString. This output goes to the active debugger
519 // for the process (if any). Else the output can be monitored using DBMON.EXE.
520 
521 enum OutputMode {
522   UNKNOWN,  // Output method has not yet been determined.
523   CONSOLE,  // Output is written to stdout.
524   ODS       // Output is written to debug facility.
525 };
526 
527 static OutputMode output_mode = UNKNOWN;  // Current output mode.
528 
529 
530 // Determine if the process has a console for output.
HasConsole()531 static bool HasConsole() {
532   // Only check the first time. Eventual race conditions are not a problem,
533   // because all threads will eventually determine the same mode.
534   if (output_mode == UNKNOWN) {
535     // We cannot just check that the standard output is attached to a console
536     // because this would fail if output is redirected to a file. Therefore we
537     // say that a process does not have an output console if either the
538     // standard output handle is invalid or its file type is unknown.
539     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
540         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
541       output_mode = CONSOLE;
542     else
543       output_mode = ODS;
544   }
545   return output_mode == CONSOLE;
546 }
547 
548 
VPrintHelper(FILE * stream,const char * format,va_list args)549 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
550   if ((stream == stdout || stream == stderr) && !HasConsole()) {
551     // It is important to use safe print here in order to avoid
552     // overflowing the buffer. We might truncate the output, but this
553     // does not crash.
554     char buffer[4096];
555     OS::VSNPrintF(buffer, sizeof(buffer), format, args);
556     OutputDebugStringA(buffer);
557   } else {
558     vfprintf(stream, format, args);
559   }
560 }
561 
562 
FOpen(const char * path,const char * mode)563 FILE* OS::FOpen(const char* path, const char* mode) {
564   FILE* result;
565   if (fopen_s(&result, path, mode) == 0) {
566     return result;
567   } else {
568     return NULL;
569   }
570 }
571 
572 
Remove(const char * path)573 bool OS::Remove(const char* path) {
574   return (DeleteFileA(path) != 0);
575 }
576 
DirectorySeparator()577 char OS::DirectorySeparator() { return '\\'; }
578 
isDirectorySeparator(const char ch)579 bool OS::isDirectorySeparator(const char ch) {
580   return ch == '/' || ch == '\\';
581 }
582 
583 
OpenTemporaryFile()584 FILE* OS::OpenTemporaryFile() {
585   // tmpfile_s tries to use the root dir, don't use it.
586   char tempPathBuffer[MAX_PATH];
587   DWORD path_result = 0;
588   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
589   if (path_result > MAX_PATH || path_result == 0) return NULL;
590   UINT name_result = 0;
591   char tempNameBuffer[MAX_PATH];
592   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
593   if (name_result == 0) return NULL;
594   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
595   if (result != NULL) {
596     Remove(tempNameBuffer);  // Delete on close.
597   }
598   return result;
599 }
600 
601 
602 // Open log file in binary mode to avoid /n -> /r/n conversion.
603 const char* const OS::LogFileOpenMode = "wb";
604 
605 
606 // Print (debug) message to console.
Print(const char * format,...)607 void OS::Print(const char* format, ...) {
608   va_list args;
609   va_start(args, format);
610   VPrint(format, args);
611   va_end(args);
612 }
613 
614 
VPrint(const char * format,va_list args)615 void OS::VPrint(const char* format, va_list args) {
616   VPrintHelper(stdout, format, args);
617 }
618 
619 
FPrint(FILE * out,const char * format,...)620 void OS::FPrint(FILE* out, const char* format, ...) {
621   va_list args;
622   va_start(args, format);
623   VFPrint(out, format, args);
624   va_end(args);
625 }
626 
627 
VFPrint(FILE * out,const char * format,va_list args)628 void OS::VFPrint(FILE* out, const char* format, va_list args) {
629   VPrintHelper(out, format, args);
630 }
631 
632 
633 // Print error message to console.
PrintError(const char * format,...)634 void OS::PrintError(const char* format, ...) {
635   va_list args;
636   va_start(args, format);
637   VPrintError(format, args);
638   va_end(args);
639 }
640 
641 
VPrintError(const char * format,va_list args)642 void OS::VPrintError(const char* format, va_list args) {
643   VPrintHelper(stderr, format, args);
644 }
645 
646 
SNPrintF(char * str,int length,const char * format,...)647 int OS::SNPrintF(char* str, int length, const char* format, ...) {
648   va_list args;
649   va_start(args, format);
650   int result = VSNPrintF(str, length, format, args);
651   va_end(args);
652   return result;
653 }
654 
655 
VSNPrintF(char * str,int length,const char * format,va_list args)656 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
657   int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
658   // Make sure to zero-terminate the string if the output was
659   // truncated or if there was an error.
660   if (n < 0 || n >= length) {
661     if (length > 0)
662       str[length - 1] = '\0';
663     return -1;
664   } else {
665     return n;
666   }
667 }
668 
669 
StrChr(char * str,int c)670 char* OS::StrChr(char* str, int c) {
671   return const_cast<char*>(strchr(str, c));
672 }
673 
674 
StrNCpy(char * dest,int length,const char * src,size_t n)675 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
676   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
677   size_t buffer_size = static_cast<size_t>(length);
678   if (n + 1 > buffer_size)  // count for trailing '\0'
679     n = _TRUNCATE;
680   int result = strncpy_s(dest, length, src, n);
681   USE(result);
682   DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
683 }
684 
685 
686 #undef _TRUNCATE
687 #undef STRUNCATE
688 
689 
690 // Get the system's page size used by VirtualAlloc() or the next power
691 // of two. The reason for always returning a power of two is that the
692 // rounding up in OS::Allocate expects that.
GetPageSize()693 static size_t GetPageSize() {
694   static size_t page_size = 0;
695   if (page_size == 0) {
696     SYSTEM_INFO info;
697     GetSystemInfo(&info);
698     page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize);
699   }
700   return page_size;
701 }
702 
703 
704 // The allocation alignment is the guaranteed alignment for
705 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()706 size_t OS::AllocateAlignment() {
707   static size_t allocate_alignment = 0;
708   if (allocate_alignment == 0) {
709     SYSTEM_INFO info;
710     GetSystemInfo(&info);
711     allocate_alignment = info.dwAllocationGranularity;
712   }
713   return allocate_alignment;
714 }
715 
716 
717 static LazyInstance<RandomNumberGenerator>::type
718     platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
719 
720 
Initialize(int64_t random_seed,bool hard_abort,const char * const gc_fake_mmap)721 void OS::Initialize(int64_t random_seed, bool hard_abort,
722                     const char* const gc_fake_mmap) {
723   if (random_seed) {
724     platform_random_number_generator.Pointer()->SetSeed(random_seed);
725   }
726   g_hard_abort = hard_abort;
727 }
728 
729 
GetRandomMmapAddr()730 void* OS::GetRandomMmapAddr() {
731   // The address range used to randomize RWX allocations in OS::Allocate
732   // Try not to map pages into the default range that windows loads DLLs
733   // Use a multiple of 64k to prevent committing unused memory.
734   // Note: This does not guarantee RWX regions will be within the
735   // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
736 #ifdef V8_HOST_ARCH_64_BIT
737   static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000;
738   static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
739 #else
740   static const uintptr_t kAllocationRandomAddressMin = 0x04000000;
741   static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000;
742 #endif
743   uintptr_t address;
744   platform_random_number_generator.Pointer()->NextBytes(&address,
745                                                         sizeof(address));
746   address <<= kPageSizeBits;
747   address += kAllocationRandomAddressMin;
748   address &= kAllocationRandomAddressMax;
749   return reinterpret_cast<void *>(address);
750 }
751 
752 
RandomizedVirtualAlloc(size_t size,int action,int protection)753 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
754   LPVOID base = NULL;
755   static BOOL use_aslr = -1;
756 #ifdef V8_HOST_ARCH_32_BIT
757   // Don't bother randomizing on 32-bit hosts, because they lack the room and
758   // don't have viable ASLR anyway.
759   if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr))
760     use_aslr = FALSE;
761 #else
762   use_aslr = TRUE;
763 #endif
764 
765   if (use_aslr &&
766       (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS)) {
767     // For executable pages try and randomize the allocation address
768     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
769       base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
770     }
771   }
772 
773   // After three attempts give up and let the OS find an address to use.
774   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
775 
776   return base;
777 }
778 
779 
Allocate(const size_t requested,size_t * allocated,bool is_executable)780 void* OS::Allocate(const size_t requested,
781                    size_t* allocated,
782                    bool is_executable) {
783   // VirtualAlloc rounds allocated size to page size automatically.
784   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
785 
786   // Windows XP SP2 allows Data Excution Prevention (DEP).
787   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
788 
789   LPVOID mbase = RandomizedVirtualAlloc(msize,
790                                         MEM_COMMIT | MEM_RESERVE,
791                                         prot);
792 
793   if (mbase == NULL) return NULL;
794 
795   DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0);
796 
797   *allocated = msize;
798   return mbase;
799 }
800 
801 
Free(void * address,const size_t size)802 void OS::Free(void* address, const size_t size) {
803   // TODO(1240712): VirtualFree has a return value which is ignored here.
804   VirtualFree(address, 0, MEM_RELEASE);
805   USE(size);
806 }
807 
808 
CommitPageSize()809 intptr_t OS::CommitPageSize() {
810   return 4096;
811 }
812 
813 
ProtectCode(void * address,const size_t size)814 void OS::ProtectCode(void* address, const size_t size) {
815   DWORD old_protect;
816   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
817 }
818 
819 
Guard(void * address,const size_t size)820 void OS::Guard(void* address, const size_t size) {
821   DWORD oldprotect;
822   VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
823 }
824 
825 
Sleep(TimeDelta interval)826 void OS::Sleep(TimeDelta interval) {
827   ::Sleep(static_cast<DWORD>(interval.InMilliseconds()));
828 }
829 
830 
Abort()831 void OS::Abort() {
832   if (g_hard_abort) {
833     V8_IMMEDIATE_CRASH();
834   }
835   // Make the MSVCRT do a silent abort.
836   raise(SIGABRT);
837 
838   // Make sure function doesn't return.
839   abort();
840 }
841 
842 
DebugBreak()843 void OS::DebugBreak() {
844 #if V8_CC_MSVC
845   // To avoid Visual Studio runtime support the following code can be used
846   // instead
847   // __asm { int 3 }
848   __debugbreak();
849 #else
850   ::DebugBreak();
851 #endif
852 }
853 
854 
855 class Win32MemoryMappedFile final : public OS::MemoryMappedFile {
856  public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,size_t size)857   Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory,
858                         size_t size)
859       : file_(file),
860         file_mapping_(file_mapping),
861         memory_(memory),
862         size_(size) {}
863   ~Win32MemoryMappedFile() final;
memory() const864   void* memory() const final { return memory_; }
size() const865   size_t size() const final { return size_; }
866 
867  private:
868   HANDLE const file_;
869   HANDLE const file_mapping_;
870   void* const memory_;
871   size_t const size_;
872 };
873 
874 
875 // static
open(const char * name)876 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
877   // Open a physical file
878   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
879       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
880   if (file == INVALID_HANDLE_VALUE) return NULL;
881 
882   DWORD size = GetFileSize(file, NULL);
883 
884   // Create a file mapping for the physical file
885   HANDLE file_mapping =
886       CreateFileMapping(file, NULL, PAGE_READWRITE, 0, size, NULL);
887   if (file_mapping == NULL) return NULL;
888 
889   // Map a view of the file into memory
890   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
891   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
892 }
893 
894 
895 // static
create(const char * name,size_t size,void * initial)896 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name,
897                                                    size_t size, void* initial) {
898   // Open a physical file
899   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
900                             FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
901                             OPEN_ALWAYS, 0, NULL);
902   if (file == NULL) return NULL;
903   // Create a file mapping for the physical file
904   HANDLE file_mapping = CreateFileMapping(file, NULL, PAGE_READWRITE, 0,
905                                           static_cast<DWORD>(size), NULL);
906   if (file_mapping == NULL) return NULL;
907   // Map a view of the file into memory
908   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
909   if (memory) memmove(memory, initial, size);
910   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
911 }
912 
913 
~Win32MemoryMappedFile()914 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
915   if (memory_) UnmapViewOfFile(memory_);
916   CloseHandle(file_mapping_);
917   CloseHandle(file_);
918 }
919 
920 
921 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
922 // dynamically. This is to avoid being depending on dbghelp.dll and
923 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
924 // kernel32.dll at some point so loading functions defines in TlHelp32.h
925 // dynamically might not be necessary any more - for some versions of Windows?).
926 
927 // Function pointers to functions dynamically loaded from dbghelp.dll.
928 #define DBGHELP_FUNCTION_LIST(V)  \
929   V(SymInitialize)                \
930   V(SymGetOptions)                \
931   V(SymSetOptions)                \
932   V(SymGetSearchPath)             \
933   V(SymLoadModule64)              \
934   V(StackWalk64)                  \
935   V(SymGetSymFromAddr64)          \
936   V(SymGetLineFromAddr64)         \
937   V(SymFunctionTableAccess64)     \
938   V(SymGetModuleBase64)
939 
940 // Function pointers to functions dynamically loaded from dbghelp.dll.
941 #define TLHELP32_FUNCTION_LIST(V)  \
942   V(CreateToolhelp32Snapshot)      \
943   V(Module32FirstW)                \
944   V(Module32NextW)
945 
946 // Define the decoration to use for the type and variable name used for
947 // dynamically loaded DLL function..
948 #define DLL_FUNC_TYPE(name) _##name##_
949 #define DLL_FUNC_VAR(name) _##name
950 
951 // Define the type for each dynamically loaded DLL function. The function
952 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
953 // from the Windows include files are redefined here to have the function
954 // definitions to be as close to the ones in the original .h files as possible.
955 #ifndef IN
956 #define IN
957 #endif
958 #ifndef VOID
959 #define VOID void
960 #endif
961 
962 // DbgHelp isn't supported on MinGW yet
963 #ifndef __MINGW32__
964 // DbgHelp.h functions.
965 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
966                                                        IN PSTR UserSearchPath,
967                                                        IN BOOL fInvadeProcess);
968 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
969 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
970 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
971     IN HANDLE hProcess,
972     OUT PSTR SearchPath,
973     IN DWORD SearchPathLength);
974 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
975     IN HANDLE hProcess,
976     IN HANDLE hFile,
977     IN PSTR ImageName,
978     IN PSTR ModuleName,
979     IN DWORD64 BaseOfDll,
980     IN DWORD SizeOfDll);
981 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
982     DWORD MachineType,
983     HANDLE hProcess,
984     HANDLE hThread,
985     LPSTACKFRAME64 StackFrame,
986     PVOID ContextRecord,
987     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
988     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
989     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
990     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
991 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
992     IN HANDLE hProcess,
993     IN DWORD64 qwAddr,
994     OUT PDWORD64 pdwDisplacement,
995     OUT PIMAGEHLP_SYMBOL64 Symbol);
996 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
997     IN HANDLE hProcess,
998     IN DWORD64 qwAddr,
999     OUT PDWORD pdwDisplacement,
1000     OUT PIMAGEHLP_LINE64 Line64);
1001 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1002 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1003     HANDLE hProcess,
1004     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1005 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1006     HANDLE hProcess,
1007     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1008 
1009 // TlHelp32.h functions.
1010 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1011     DWORD dwFlags,
1012     DWORD th32ProcessID);
1013 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1014                                                         LPMODULEENTRY32W lpme);
1015 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1016                                                        LPMODULEENTRY32W lpme);
1017 
1018 #undef IN
1019 #undef VOID
1020 
1021 // Declare a variable for each dynamically loaded DLL function.
1022 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1023 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1024 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1025 #undef DEF_DLL_FUNCTION
1026 
1027 // Load the functions. This function has a lot of "ugly" macros in order to
1028 // keep down code duplication.
1029 
1030 static bool LoadDbgHelpAndTlHelp32() {
1031   static bool dbghelp_loaded = false;
1032 
1033   if (dbghelp_loaded) return true;
1034 
1035   HMODULE module;
1036 
1037   // Load functions from the dbghelp.dll module.
1038   module = LoadLibrary(TEXT("dbghelp.dll"));
1039   if (module == NULL) {
1040     return false;
1041   }
1042 
1043 #define LOAD_DLL_FUNC(name)                                                 \
1044   DLL_FUNC_VAR(name) =                                                      \
1045       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1046 
1047 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1048 
1049 #undef LOAD_DLL_FUNC
1050 
1051   // Load functions from the kernel32.dll module (the TlHelp32.h function used
1052   // to be in tlhelp32.dll but are now moved to kernel32.dll).
1053   module = LoadLibrary(TEXT("kernel32.dll"));
1054   if (module == NULL) {
1055     return false;
1056   }
1057 
1058 #define LOAD_DLL_FUNC(name)                                                 \
1059   DLL_FUNC_VAR(name) =                                                      \
1060       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1061 
1062 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1063 
1064 #undef LOAD_DLL_FUNC
1065 
1066   // Check that all functions where loaded.
1067   bool result =
1068 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1069 
1070 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1071 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1072 
1073 #undef DLL_FUNC_LOADED
1074   true;
1075 
1076   dbghelp_loaded = result;
1077   return result;
1078   // NOTE: The modules are never unloaded and will stay around until the
1079   // application is closed.
1080 }
1081 
1082 #undef DBGHELP_FUNCTION_LIST
1083 #undef TLHELP32_FUNCTION_LIST
1084 #undef DLL_FUNC_VAR
1085 #undef DLL_FUNC_TYPE
1086 
1087 
1088 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1089 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1090     HANDLE process_handle) {
1091   static std::vector<OS::SharedLibraryAddress> result;
1092 
1093   static bool symbols_loaded = false;
1094 
1095   if (symbols_loaded) return result;
1096 
1097   BOOL ok;
1098 
1099   // Initialize the symbol engine.
1100   ok = _SymInitialize(process_handle,  // hProcess
1101                       NULL,            // UserSearchPath
1102                       false);          // fInvadeProcess
1103   if (!ok) return result;
1104 
1105   DWORD options = _SymGetOptions();
1106   options |= SYMOPT_LOAD_LINES;
1107   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1108   options = _SymSetOptions(options);
1109 
1110   char buf[OS::kStackWalkMaxNameLen] = {0};
1111   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1112   if (!ok) {
1113     int err = GetLastError();
1114     OS::Print("%d\n", err);
1115     return result;
1116   }
1117 
1118   HANDLE snapshot = _CreateToolhelp32Snapshot(
1119       TH32CS_SNAPMODULE,       // dwFlags
1120       GetCurrentProcessId());  // th32ProcessId
1121   if (snapshot == INVALID_HANDLE_VALUE) return result;
1122   MODULEENTRY32W module_entry;
1123   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1124   BOOL cont = _Module32FirstW(snapshot, &module_entry);
1125   while (cont) {
1126     DWORD64 base;
1127     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1128     // both unicode and ASCII strings even though the parameter is PSTR.
1129     base = _SymLoadModule64(
1130         process_handle,                                       // hProcess
1131         0,                                                    // hFile
1132         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1133         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1134         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1135         module_entry.modBaseSize);                            // SizeOfDll
1136     if (base == 0) {
1137       int err = GetLastError();
1138       if (err != ERROR_MOD_NOT_FOUND &&
1139           err != ERROR_INVALID_HANDLE) {
1140         result.clear();
1141         return result;
1142       }
1143     }
1144     int lib_name_length = WideCharToMultiByte(
1145         CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
1146     std::string lib_name(lib_name_length, 0);
1147     WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1148                         lib_name_length, NULL, NULL);
1149     result.push_back(OS::SharedLibraryAddress(
1150         lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr),
1151         reinterpret_cast<uintptr_t>(module_entry.modBaseAddr +
1152                                     module_entry.modBaseSize)));
1153     cont = _Module32NextW(snapshot, &module_entry);
1154   }
1155   CloseHandle(snapshot);
1156 
1157   symbols_loaded = true;
1158   return result;
1159 }
1160 
1161 
GetSharedLibraryAddresses()1162 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1163   // SharedLibraryEvents are logged when loading symbol information.
1164   // Only the shared libraries loaded at the time of the call to
1165   // GetSharedLibraryAddresses are logged.  DLLs loaded after
1166   // initialization are not accounted for.
1167   if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1168   HANDLE process_handle = GetCurrentProcess();
1169   return LoadSymbols(process_handle);
1170 }
1171 
1172 
SignalCodeMovingGC()1173 void OS::SignalCodeMovingGC() {
1174 }
1175 
1176 
1177 #else  // __MINGW32__
GetSharedLibraryAddresses()1178 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1179   return std::vector<OS::SharedLibraryAddress>();
1180 }
1181 
1182 
SignalCodeMovingGC()1183 void OS::SignalCodeMovingGC() { }
1184 #endif  // __MINGW32__
1185 
1186 
ActivationFrameAlignment()1187 int OS::ActivationFrameAlignment() {
1188 #ifdef _WIN64
1189   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1190 #elif defined(__MINGW32__)
1191   // With gcc 4.4 the tree vectorization optimizer can generate code
1192   // that requires 16 byte alignment such as movdqa on x86.
1193   return 16;
1194 #else
1195   return 8;  // Floating-point math runs faster with 8-byte alignment.
1196 #endif
1197 }
1198 
1199 
VirtualMemory()1200 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1201 
1202 
VirtualMemory(size_t size)1203 VirtualMemory::VirtualMemory(size_t size)
1204     : address_(ReserveRegion(size)), size_(size) { }
1205 
1206 
VirtualMemory(size_t size,size_t alignment)1207 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1208     : address_(NULL), size_(0) {
1209   DCHECK((alignment % OS::AllocateAlignment()) == 0);
1210   size_t request_size = RoundUp(size + alignment,
1211                                 static_cast<intptr_t>(OS::AllocateAlignment()));
1212   void* address = ReserveRegion(request_size);
1213   if (address == NULL) return;
1214   uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
1215   // Try reducing the size by freeing and then reallocating a specific area.
1216   bool result = ReleaseRegion(address, request_size);
1217   USE(result);
1218   DCHECK(result);
1219   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1220   if (address != NULL) {
1221     request_size = size;
1222     DCHECK(base == static_cast<uint8_t*>(address));
1223   } else {
1224     // Resizing failed, just go with a bigger area.
1225     address = ReserveRegion(request_size);
1226     if (address == NULL) return;
1227   }
1228   address_ = address;
1229   size_ = request_size;
1230 }
1231 
1232 
~VirtualMemory()1233 VirtualMemory::~VirtualMemory() {
1234   if (IsReserved()) {
1235     bool result = ReleaseRegion(address(), size());
1236     DCHECK(result);
1237     USE(result);
1238   }
1239 }
1240 
1241 
IsReserved()1242 bool VirtualMemory::IsReserved() {
1243   return address_ != NULL;
1244 }
1245 
1246 
Reset()1247 void VirtualMemory::Reset() {
1248   address_ = NULL;
1249   size_ = 0;
1250 }
1251 
1252 
Commit(void * address,size_t size,bool is_executable)1253 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1254   return CommitRegion(address, size, is_executable);
1255 }
1256 
1257 
Uncommit(void * address,size_t size)1258 bool VirtualMemory::Uncommit(void* address, size_t size) {
1259   DCHECK(IsReserved());
1260   return UncommitRegion(address, size);
1261 }
1262 
1263 
Guard(void * address)1264 bool VirtualMemory::Guard(void* address) {
1265   if (NULL == VirtualAlloc(address,
1266                            OS::CommitPageSize(),
1267                            MEM_COMMIT,
1268                            PAGE_NOACCESS)) {
1269     return false;
1270   }
1271   return true;
1272 }
1273 
1274 
ReserveRegion(size_t size)1275 void* VirtualMemory::ReserveRegion(size_t size) {
1276   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1277 }
1278 
1279 
CommitRegion(void * base,size_t size,bool is_executable)1280 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1281   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1282   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1283     return false;
1284   }
1285   return true;
1286 }
1287 
1288 
UncommitRegion(void * base,size_t size)1289 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1290   return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1291 }
1292 
1293 
ReleaseRegion(void * base,size_t size)1294 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1295   return VirtualFree(base, 0, MEM_RELEASE) != 0;
1296 }
1297 
1298 
HasLazyCommits()1299 bool VirtualMemory::HasLazyCommits() {
1300   // TODO(alph): implement for the platform.
1301   return false;
1302 }
1303 
1304 
1305 // ----------------------------------------------------------------------------
1306 // Win32 thread support.
1307 
1308 // Definition of invalid thread handle and id.
1309 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1310 
1311 // Entry point for threads. The supplied argument is a pointer to the thread
1312 // object. The entry function dispatches to the run method in the thread
1313 // object. It is important that this function has __stdcall calling
1314 // convention.
ThreadEntry(void * arg)1315 static unsigned int __stdcall ThreadEntry(void* arg) {
1316   Thread* thread = reinterpret_cast<Thread*>(arg);
1317   thread->NotifyStartedAndRun();
1318   return 0;
1319 }
1320 
1321 
1322 class Thread::PlatformData {
1323  public:
PlatformData(HANDLE thread)1324   explicit PlatformData(HANDLE thread) : thread_(thread) {}
1325   HANDLE thread_;
1326   unsigned thread_id_;
1327 };
1328 
1329 
1330 // Initialize a Win32 thread object. The thread has an invalid thread
1331 // handle until it is started.
1332 
Thread(const Options & options)1333 Thread::Thread(const Options& options)
1334     : stack_size_(options.stack_size()),
1335       start_semaphore_(NULL) {
1336   data_ = new PlatformData(kNoThread);
1337   set_name(options.name());
1338 }
1339 
1340 
set_name(const char * name)1341 void Thread::set_name(const char* name) {
1342   OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1343   name_[sizeof(name_) - 1] = '\0';
1344 }
1345 
1346 
1347 // Close our own handle for the thread.
~Thread()1348 Thread::~Thread() {
1349   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1350   delete data_;
1351 }
1352 
1353 
1354 // Create a new thread. It is important to use _beginthreadex() instead of
1355 // the Win32 function CreateThread(), because the CreateThread() does not
1356 // initialize thread specific structures in the C runtime library.
Start()1357 void Thread::Start() {
1358   data_->thread_ = reinterpret_cast<HANDLE>(
1359       _beginthreadex(NULL,
1360                      static_cast<unsigned>(stack_size_),
1361                      ThreadEntry,
1362                      this,
1363                      0,
1364                      &data_->thread_id_));
1365 }
1366 
1367 
1368 // Wait for thread to terminate.
Join()1369 void Thread::Join() {
1370   if (data_->thread_id_ != GetCurrentThreadId()) {
1371     WaitForSingleObject(data_->thread_, INFINITE);
1372   }
1373 }
1374 
1375 
CreateThreadLocalKey()1376 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1377   DWORD result = TlsAlloc();
1378   DCHECK(result != TLS_OUT_OF_INDEXES);
1379   return static_cast<LocalStorageKey>(result);
1380 }
1381 
1382 
DeleteThreadLocalKey(LocalStorageKey key)1383 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1384   BOOL result = TlsFree(static_cast<DWORD>(key));
1385   USE(result);
1386   DCHECK(result);
1387 }
1388 
1389 
GetThreadLocal(LocalStorageKey key)1390 void* Thread::GetThreadLocal(LocalStorageKey key) {
1391   return TlsGetValue(static_cast<DWORD>(key));
1392 }
1393 
1394 
SetThreadLocal(LocalStorageKey key,void * value)1395 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1396   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1397   USE(result);
1398   DCHECK(result);
1399 }
1400 
1401 }  // namespace base
1402 }  // namespace v8
1403