1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Platform-specific code for Win32.
6
7 // Secure API functions are not available using MinGW with msvcrt.dll
8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9 // disable definition of secure API functions in standard headers that
10 // would conflict with our own implementation.
11 #ifdef __MINGW32__
12 #include <_mingw.h>
13 #ifdef MINGW_HAS_SECURE_API
14 #undef MINGW_HAS_SECURE_API
15 #endif // MINGW_HAS_SECURE_API
16 #endif // __MINGW32__
17
18 #include <limits>
19
20 #include "src/base/win32-headers.h"
21
22 #include "src/base/bits.h"
23 #include "src/base/lazy-instance.h"
24 #include "src/base/macros.h"
25 #include "src/base/platform/platform.h"
26 #include "src/base/platform/time.h"
27 #include "src/base/utils/random-number-generator.h"
28
29
30 // Extra functions for MinGW. Most of these are the _s functions which are in
31 // the Microsoft Visual Studio C++ CRT.
32 #ifdef __MINGW32__
33
34
35 #ifndef __MINGW64_VERSION_MAJOR
36
37 #define _TRUNCATE 0
38 #define STRUNCATE 80
39
MemoryBarrier()40 inline void MemoryBarrier() {
41 int barrier = 0;
42 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
43 }
44
45 #endif // __MINGW64_VERSION_MAJOR
46
47
localtime_s(tm * out_tm,const time_t * time)48 int localtime_s(tm* out_tm, const time_t* time) {
49 tm* posix_local_time_struct = localtime(time); // NOLINT
50 if (posix_local_time_struct == NULL) return 1;
51 *out_tm = *posix_local_time_struct;
52 return 0;
53 }
54
55
fopen_s(FILE ** pFile,const char * filename,const char * mode)56 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
57 *pFile = fopen(filename, mode);
58 return *pFile != NULL ? 0 : 1;
59 }
60
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)61 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
62 const char* format, va_list argptr) {
63 DCHECK(count == _TRUNCATE);
64 return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
65 }
66
67
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)68 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
69 CHECK(source != NULL);
70 CHECK(dest != NULL);
71 CHECK_GT(dest_size, 0);
72
73 if (count == _TRUNCATE) {
74 while (dest_size > 0 && *source != 0) {
75 *(dest++) = *(source++);
76 --dest_size;
77 }
78 if (dest_size == 0) {
79 *(dest - 1) = 0;
80 return STRUNCATE;
81 }
82 } else {
83 while (dest_size > 0 && count > 0 && *source != 0) {
84 *(dest++) = *(source++);
85 --dest_size;
86 --count;
87 }
88 }
89 CHECK_GT(dest_size, 0);
90 *dest = 0;
91 return 0;
92 }
93
94 #endif // __MINGW32__
95
96 namespace v8 {
97 namespace base {
98
99 namespace {
100
101 bool g_hard_abort = false;
102
103 } // namespace
104
105 class TimezoneCache {
106 public:
TimezoneCache()107 TimezoneCache() : initialized_(false) { }
108
Clear()109 void Clear() {
110 initialized_ = false;
111 }
112
113 // Initialize timezone information. The timezone information is obtained from
114 // windows. If we cannot get the timezone information we fall back to CET.
InitializeIfNeeded()115 void InitializeIfNeeded() {
116 // Just return if timezone information has already been initialized.
117 if (initialized_) return;
118
119 // Initialize POSIX time zone data.
120 _tzset();
121 // Obtain timezone information from operating system.
122 memset(&tzinfo_, 0, sizeof(tzinfo_));
123 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
124 // If we cannot get timezone information we fall back to CET.
125 tzinfo_.Bias = -60;
126 tzinfo_.StandardDate.wMonth = 10;
127 tzinfo_.StandardDate.wDay = 5;
128 tzinfo_.StandardDate.wHour = 3;
129 tzinfo_.StandardBias = 0;
130 tzinfo_.DaylightDate.wMonth = 3;
131 tzinfo_.DaylightDate.wDay = 5;
132 tzinfo_.DaylightDate.wHour = 2;
133 tzinfo_.DaylightBias = -60;
134 }
135
136 // Make standard and DST timezone names.
137 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
138 std_tz_name_, kTzNameSize, NULL, NULL);
139 std_tz_name_[kTzNameSize - 1] = '\0';
140 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
141 dst_tz_name_, kTzNameSize, NULL, NULL);
142 dst_tz_name_[kTzNameSize - 1] = '\0';
143
144 // If OS returned empty string or resource id (like "@tzres.dll,-211")
145 // simply guess the name from the UTC bias of the timezone.
146 // To properly resolve the resource identifier requires a library load,
147 // which is not possible in a sandbox.
148 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
149 OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
150 "%s Standard Time",
151 GuessTimezoneNameFromBias(tzinfo_.Bias));
152 }
153 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
154 OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
155 "%s Daylight Time",
156 GuessTimezoneNameFromBias(tzinfo_.Bias));
157 }
158 // Timezone information initialized.
159 initialized_ = true;
160 }
161
162 // Guess the name of the timezone from the bias.
163 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)164 const char* GuessTimezoneNameFromBias(int bias) {
165 static const int kHour = 60;
166 switch (-bias) {
167 case -9*kHour: return "Alaska";
168 case -8*kHour: return "Pacific";
169 case -7*kHour: return "Mountain";
170 case -6*kHour: return "Central";
171 case -5*kHour: return "Eastern";
172 case -4*kHour: return "Atlantic";
173 case 0*kHour: return "GMT";
174 case +1*kHour: return "Central Europe";
175 case +2*kHour: return "Eastern Europe";
176 case +3*kHour: return "Russia";
177 case +5*kHour + 30: return "India";
178 case +8*kHour: return "China";
179 case +9*kHour: return "Japan";
180 case +12*kHour: return "New Zealand";
181 default: return "Local";
182 }
183 }
184
185
186 private:
187 static const int kTzNameSize = 128;
188 bool initialized_;
189 char std_tz_name_[kTzNameSize];
190 char dst_tz_name_[kTzNameSize];
191 TIME_ZONE_INFORMATION tzinfo_;
192 friend class Win32Time;
193 };
194
195
196 // ----------------------------------------------------------------------------
197 // The Time class represents time on win32. A timestamp is represented as
198 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
199 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
200 // January 1, 1970.
201
202 class Win32Time {
203 public:
204 // Constructors.
205 Win32Time();
206 explicit Win32Time(double jstime);
207 Win32Time(int year, int mon, int day, int hour, int min, int sec);
208
209 // Convert timestamp to JavaScript representation.
210 double ToJSTime();
211
212 // Set timestamp to current time.
213 void SetToCurrentTime();
214
215 // Returns the local timezone offset in milliseconds east of UTC. This is
216 // the number of milliseconds you must add to UTC to get local time, i.e.
217 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
218 // routine also takes into account whether daylight saving is effect
219 // at the time.
220 int64_t LocalOffset(TimezoneCache* cache);
221
222 // Returns the daylight savings time offset for the time in milliseconds.
223 int64_t DaylightSavingsOffset(TimezoneCache* cache);
224
225 // Returns a string identifying the current timezone for the
226 // timestamp taking into account daylight saving.
227 char* LocalTimezone(TimezoneCache* cache);
228
229 private:
230 // Constants for time conversion.
231 static const int64_t kTimeEpoc = 116444736000000000LL;
232 static const int64_t kTimeScaler = 10000;
233 static const int64_t kMsPerMinute = 60000;
234
235 // Constants for timezone information.
236 static const bool kShortTzNames = false;
237
238 // Return whether or not daylight savings time is in effect at this time.
239 bool InDST(TimezoneCache* cache);
240
241 // Accessor for FILETIME representation.
ft()242 FILETIME& ft() { return time_.ft_; }
243
244 // Accessor for integer representation.
t()245 int64_t& t() { return time_.t_; }
246
247 // Although win32 uses 64-bit integers for representing timestamps,
248 // these are packed into a FILETIME structure. The FILETIME structure
249 // is just a struct representing a 64-bit integer. The TimeStamp union
250 // allows access to both a FILETIME and an integer representation of
251 // the timestamp.
252 union TimeStamp {
253 FILETIME ft_;
254 int64_t t_;
255 };
256
257 TimeStamp time_;
258 };
259
260
261 // Initialize timestamp to start of epoc.
Win32Time()262 Win32Time::Win32Time() {
263 t() = 0;
264 }
265
266
267 // Initialize timestamp from a JavaScript timestamp.
Win32Time(double jstime)268 Win32Time::Win32Time(double jstime) {
269 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
270 }
271
272
273 // Initialize timestamp from date/time components.
Win32Time(int year,int mon,int day,int hour,int min,int sec)274 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
275 SYSTEMTIME st;
276 st.wYear = year;
277 st.wMonth = mon;
278 st.wDay = day;
279 st.wHour = hour;
280 st.wMinute = min;
281 st.wSecond = sec;
282 st.wMilliseconds = 0;
283 SystemTimeToFileTime(&st, &ft());
284 }
285
286
287 // Convert timestamp to JavaScript timestamp.
ToJSTime()288 double Win32Time::ToJSTime() {
289 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
290 }
291
292
293 // Set timestamp to current time.
SetToCurrentTime()294 void Win32Time::SetToCurrentTime() {
295 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
296 // Because we're fast, we like fast timers which have at least a
297 // 1ms resolution.
298 //
299 // timeGetTime() provides 1ms granularity when combined with
300 // timeBeginPeriod(). If the host application for v8 wants fast
301 // timers, it can use timeBeginPeriod to increase the resolution.
302 //
303 // Using timeGetTime() has a drawback because it is a 32bit value
304 // and hence rolls-over every ~49days.
305 //
306 // To use the clock, we use GetSystemTimeAsFileTime as our base;
307 // and then use timeGetTime to extrapolate current time from the
308 // start time. To deal with rollovers, we resync the clock
309 // any time when more than kMaxClockElapsedTime has passed or
310 // whenever timeGetTime creates a rollover.
311
312 static bool initialized = false;
313 static TimeStamp init_time;
314 static DWORD init_ticks;
315 static const int64_t kHundredNanosecondsPerSecond = 10000000;
316 static const int64_t kMaxClockElapsedTime =
317 60*kHundredNanosecondsPerSecond; // 1 minute
318
319 // If we are uninitialized, we need to resync the clock.
320 bool needs_resync = !initialized;
321
322 // Get the current time.
323 TimeStamp time_now;
324 GetSystemTimeAsFileTime(&time_now.ft_);
325 DWORD ticks_now = timeGetTime();
326
327 // Check if we need to resync due to clock rollover.
328 needs_resync |= ticks_now < init_ticks;
329
330 // Check if we need to resync due to elapsed time.
331 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
332
333 // Check if we need to resync due to backwards time change.
334 needs_resync |= time_now.t_ < init_time.t_;
335
336 // Resync the clock if necessary.
337 if (needs_resync) {
338 GetSystemTimeAsFileTime(&init_time.ft_);
339 init_ticks = ticks_now = timeGetTime();
340 initialized = true;
341 }
342
343 // Finally, compute the actual time. Why is this so hard.
344 DWORD elapsed = ticks_now - init_ticks;
345 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
346 }
347
348
349 // Return the local timezone offset in milliseconds east of UTC. This
350 // takes into account whether daylight saving is in effect at the time.
351 // Only times in the 32-bit Unix range may be passed to this function.
352 // Also, adding the time-zone offset to the input must not overflow.
353 // The function EquivalentTime() in date.js guarantees this.
LocalOffset(TimezoneCache * cache)354 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
355 cache->InitializeIfNeeded();
356
357 Win32Time rounded_to_second(*this);
358 rounded_to_second.t() =
359 rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler;
360 // Convert to local time using POSIX localtime function.
361 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
362 // very slow. Other browsers use localtime().
363
364 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
365 // POSIX seconds past 1/1/1970 0:00:00.
366 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
367 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
368 return 0;
369 }
370 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
371 time_t posix_time = static_cast<time_t>(unchecked_posix_time);
372
373 // Convert to local time, as struct with fields for day, hour, year, etc.
374 tm posix_local_time_struct;
375 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
376
377 if (posix_local_time_struct.tm_isdst > 0) {
378 return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
379 } else if (posix_local_time_struct.tm_isdst == 0) {
380 return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
381 } else {
382 return cache->tzinfo_.Bias * -kMsPerMinute;
383 }
384 }
385
386
387 // Return whether or not daylight savings time is in effect at this time.
InDST(TimezoneCache * cache)388 bool Win32Time::InDST(TimezoneCache* cache) {
389 cache->InitializeIfNeeded();
390
391 // Determine if DST is in effect at the specified time.
392 bool in_dst = false;
393 if (cache->tzinfo_.StandardDate.wMonth != 0 ||
394 cache->tzinfo_.DaylightDate.wMonth != 0) {
395 // Get the local timezone offset for the timestamp in milliseconds.
396 int64_t offset = LocalOffset(cache);
397
398 // Compute the offset for DST. The bias parameters in the timezone info
399 // are specified in minutes. These must be converted to milliseconds.
400 int64_t dstofs =
401 -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
402
403 // If the local time offset equals the timezone bias plus the daylight
404 // bias then DST is in effect.
405 in_dst = offset == dstofs;
406 }
407
408 return in_dst;
409 }
410
411
412 // Return the daylight savings time offset for this time.
DaylightSavingsOffset(TimezoneCache * cache)413 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
414 return InDST(cache) ? 60 * kMsPerMinute : 0;
415 }
416
417
418 // Returns a string identifying the current timezone for the
419 // timestamp taking into account daylight saving.
LocalTimezone(TimezoneCache * cache)420 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
421 // Return the standard or DST time zone name based on whether daylight
422 // saving is in effect at the given time.
423 return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
424 }
425
426
427 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)428 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
429 FILETIME dummy;
430 uint64_t usertime;
431
432 // Get the amount of time that the thread has executed in user mode.
433 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
434 reinterpret_cast<FILETIME*>(&usertime))) return -1;
435
436 // Adjust the resolution to micro-seconds.
437 usertime /= 10;
438
439 // Convert to seconds and microseconds
440 *secs = static_cast<uint32_t>(usertime / 1000000);
441 *usecs = static_cast<uint32_t>(usertime % 1000000);
442 return 0;
443 }
444
445
446 // Returns current time as the number of milliseconds since
447 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()448 double OS::TimeCurrentMillis() {
449 return Time::Now().ToJsTime();
450 }
451
452
CreateTimezoneCache()453 TimezoneCache* OS::CreateTimezoneCache() {
454 return new TimezoneCache();
455 }
456
457
DisposeTimezoneCache(TimezoneCache * cache)458 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
459 delete cache;
460 }
461
462
ClearTimezoneCache(TimezoneCache * cache)463 void OS::ClearTimezoneCache(TimezoneCache* cache) {
464 cache->Clear();
465 }
466
467
468 // Returns a string identifying the current timezone taking into
469 // account daylight saving.
LocalTimezone(double time,TimezoneCache * cache)470 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
471 return Win32Time(time).LocalTimezone(cache);
472 }
473
474
475 // Returns the local time offset in milliseconds east of UTC without
476 // taking daylight savings time into account.
LocalTimeOffset(TimezoneCache * cache)477 double OS::LocalTimeOffset(TimezoneCache* cache) {
478 // Use current time, rounded to the millisecond.
479 Win32Time t(TimeCurrentMillis());
480 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
481 return static_cast<double>(t.LocalOffset(cache) -
482 t.DaylightSavingsOffset(cache));
483 }
484
485
486 // Returns the daylight savings offset in milliseconds for the given
487 // time.
DaylightSavingsOffset(double time,TimezoneCache * cache)488 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
489 int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
490 return static_cast<double>(offset);
491 }
492
493
GetLastError()494 int OS::GetLastError() {
495 return ::GetLastError();
496 }
497
498
GetCurrentProcessId()499 int OS::GetCurrentProcessId() {
500 return static_cast<int>(::GetCurrentProcessId());
501 }
502
503
GetCurrentThreadId()504 int OS::GetCurrentThreadId() {
505 return static_cast<int>(::GetCurrentThreadId());
506 }
507
508
509 // ----------------------------------------------------------------------------
510 // Win32 console output.
511 //
512 // If a Win32 application is linked as a console application it has a normal
513 // standard output and standard error. In this case normal printf works fine
514 // for output. However, if the application is linked as a GUI application,
515 // the process doesn't have a console, and therefore (debugging) output is lost.
516 // This is the case if we are embedded in a windows program (like a browser).
517 // In order to be able to get debug output in this case the the debugging
518 // facility using OutputDebugString. This output goes to the active debugger
519 // for the process (if any). Else the output can be monitored using DBMON.EXE.
520
521 enum OutputMode {
522 UNKNOWN, // Output method has not yet been determined.
523 CONSOLE, // Output is written to stdout.
524 ODS // Output is written to debug facility.
525 };
526
527 static OutputMode output_mode = UNKNOWN; // Current output mode.
528
529
530 // Determine if the process has a console for output.
HasConsole()531 static bool HasConsole() {
532 // Only check the first time. Eventual race conditions are not a problem,
533 // because all threads will eventually determine the same mode.
534 if (output_mode == UNKNOWN) {
535 // We cannot just check that the standard output is attached to a console
536 // because this would fail if output is redirected to a file. Therefore we
537 // say that a process does not have an output console if either the
538 // standard output handle is invalid or its file type is unknown.
539 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
540 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
541 output_mode = CONSOLE;
542 else
543 output_mode = ODS;
544 }
545 return output_mode == CONSOLE;
546 }
547
548
VPrintHelper(FILE * stream,const char * format,va_list args)549 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
550 if ((stream == stdout || stream == stderr) && !HasConsole()) {
551 // It is important to use safe print here in order to avoid
552 // overflowing the buffer. We might truncate the output, but this
553 // does not crash.
554 char buffer[4096];
555 OS::VSNPrintF(buffer, sizeof(buffer), format, args);
556 OutputDebugStringA(buffer);
557 } else {
558 vfprintf(stream, format, args);
559 }
560 }
561
562
FOpen(const char * path,const char * mode)563 FILE* OS::FOpen(const char* path, const char* mode) {
564 FILE* result;
565 if (fopen_s(&result, path, mode) == 0) {
566 return result;
567 } else {
568 return NULL;
569 }
570 }
571
572
Remove(const char * path)573 bool OS::Remove(const char* path) {
574 return (DeleteFileA(path) != 0);
575 }
576
DirectorySeparator()577 char OS::DirectorySeparator() { return '\\'; }
578
isDirectorySeparator(const char ch)579 bool OS::isDirectorySeparator(const char ch) {
580 return ch == '/' || ch == '\\';
581 }
582
583
OpenTemporaryFile()584 FILE* OS::OpenTemporaryFile() {
585 // tmpfile_s tries to use the root dir, don't use it.
586 char tempPathBuffer[MAX_PATH];
587 DWORD path_result = 0;
588 path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
589 if (path_result > MAX_PATH || path_result == 0) return NULL;
590 UINT name_result = 0;
591 char tempNameBuffer[MAX_PATH];
592 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
593 if (name_result == 0) return NULL;
594 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
595 if (result != NULL) {
596 Remove(tempNameBuffer); // Delete on close.
597 }
598 return result;
599 }
600
601
602 // Open log file in binary mode to avoid /n -> /r/n conversion.
603 const char* const OS::LogFileOpenMode = "wb";
604
605
606 // Print (debug) message to console.
Print(const char * format,...)607 void OS::Print(const char* format, ...) {
608 va_list args;
609 va_start(args, format);
610 VPrint(format, args);
611 va_end(args);
612 }
613
614
VPrint(const char * format,va_list args)615 void OS::VPrint(const char* format, va_list args) {
616 VPrintHelper(stdout, format, args);
617 }
618
619
FPrint(FILE * out,const char * format,...)620 void OS::FPrint(FILE* out, const char* format, ...) {
621 va_list args;
622 va_start(args, format);
623 VFPrint(out, format, args);
624 va_end(args);
625 }
626
627
VFPrint(FILE * out,const char * format,va_list args)628 void OS::VFPrint(FILE* out, const char* format, va_list args) {
629 VPrintHelper(out, format, args);
630 }
631
632
633 // Print error message to console.
PrintError(const char * format,...)634 void OS::PrintError(const char* format, ...) {
635 va_list args;
636 va_start(args, format);
637 VPrintError(format, args);
638 va_end(args);
639 }
640
641
VPrintError(const char * format,va_list args)642 void OS::VPrintError(const char* format, va_list args) {
643 VPrintHelper(stderr, format, args);
644 }
645
646
SNPrintF(char * str,int length,const char * format,...)647 int OS::SNPrintF(char* str, int length, const char* format, ...) {
648 va_list args;
649 va_start(args, format);
650 int result = VSNPrintF(str, length, format, args);
651 va_end(args);
652 return result;
653 }
654
655
VSNPrintF(char * str,int length,const char * format,va_list args)656 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
657 int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
658 // Make sure to zero-terminate the string if the output was
659 // truncated or if there was an error.
660 if (n < 0 || n >= length) {
661 if (length > 0)
662 str[length - 1] = '\0';
663 return -1;
664 } else {
665 return n;
666 }
667 }
668
669
StrChr(char * str,int c)670 char* OS::StrChr(char* str, int c) {
671 return const_cast<char*>(strchr(str, c));
672 }
673
674
StrNCpy(char * dest,int length,const char * src,size_t n)675 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
676 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
677 size_t buffer_size = static_cast<size_t>(length);
678 if (n + 1 > buffer_size) // count for trailing '\0'
679 n = _TRUNCATE;
680 int result = strncpy_s(dest, length, src, n);
681 USE(result);
682 DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
683 }
684
685
686 #undef _TRUNCATE
687 #undef STRUNCATE
688
689
690 // Get the system's page size used by VirtualAlloc() or the next power
691 // of two. The reason for always returning a power of two is that the
692 // rounding up in OS::Allocate expects that.
GetPageSize()693 static size_t GetPageSize() {
694 static size_t page_size = 0;
695 if (page_size == 0) {
696 SYSTEM_INFO info;
697 GetSystemInfo(&info);
698 page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize);
699 }
700 return page_size;
701 }
702
703
704 // The allocation alignment is the guaranteed alignment for
705 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()706 size_t OS::AllocateAlignment() {
707 static size_t allocate_alignment = 0;
708 if (allocate_alignment == 0) {
709 SYSTEM_INFO info;
710 GetSystemInfo(&info);
711 allocate_alignment = info.dwAllocationGranularity;
712 }
713 return allocate_alignment;
714 }
715
716
717 static LazyInstance<RandomNumberGenerator>::type
718 platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
719
720
Initialize(int64_t random_seed,bool hard_abort,const char * const gc_fake_mmap)721 void OS::Initialize(int64_t random_seed, bool hard_abort,
722 const char* const gc_fake_mmap) {
723 if (random_seed) {
724 platform_random_number_generator.Pointer()->SetSeed(random_seed);
725 }
726 g_hard_abort = hard_abort;
727 }
728
729
GetRandomMmapAddr()730 void* OS::GetRandomMmapAddr() {
731 // The address range used to randomize RWX allocations in OS::Allocate
732 // Try not to map pages into the default range that windows loads DLLs
733 // Use a multiple of 64k to prevent committing unused memory.
734 // Note: This does not guarantee RWX regions will be within the
735 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
736 #ifdef V8_HOST_ARCH_64_BIT
737 static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000;
738 static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
739 #else
740 static const uintptr_t kAllocationRandomAddressMin = 0x04000000;
741 static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000;
742 #endif
743 uintptr_t address;
744 platform_random_number_generator.Pointer()->NextBytes(&address,
745 sizeof(address));
746 address <<= kPageSizeBits;
747 address += kAllocationRandomAddressMin;
748 address &= kAllocationRandomAddressMax;
749 return reinterpret_cast<void *>(address);
750 }
751
752
RandomizedVirtualAlloc(size_t size,int action,int protection)753 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
754 LPVOID base = NULL;
755 static BOOL use_aslr = -1;
756 #ifdef V8_HOST_ARCH_32_BIT
757 // Don't bother randomizing on 32-bit hosts, because they lack the room and
758 // don't have viable ASLR anyway.
759 if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr))
760 use_aslr = FALSE;
761 #else
762 use_aslr = TRUE;
763 #endif
764
765 if (use_aslr &&
766 (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS)) {
767 // For executable pages try and randomize the allocation address
768 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
769 base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
770 }
771 }
772
773 // After three attempts give up and let the OS find an address to use.
774 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
775
776 return base;
777 }
778
779
Allocate(const size_t requested,size_t * allocated,bool is_executable)780 void* OS::Allocate(const size_t requested,
781 size_t* allocated,
782 bool is_executable) {
783 // VirtualAlloc rounds allocated size to page size automatically.
784 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
785
786 // Windows XP SP2 allows Data Excution Prevention (DEP).
787 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
788
789 LPVOID mbase = RandomizedVirtualAlloc(msize,
790 MEM_COMMIT | MEM_RESERVE,
791 prot);
792
793 if (mbase == NULL) return NULL;
794
795 DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0);
796
797 *allocated = msize;
798 return mbase;
799 }
800
801
Free(void * address,const size_t size)802 void OS::Free(void* address, const size_t size) {
803 // TODO(1240712): VirtualFree has a return value which is ignored here.
804 VirtualFree(address, 0, MEM_RELEASE);
805 USE(size);
806 }
807
808
CommitPageSize()809 intptr_t OS::CommitPageSize() {
810 return 4096;
811 }
812
813
ProtectCode(void * address,const size_t size)814 void OS::ProtectCode(void* address, const size_t size) {
815 DWORD old_protect;
816 VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
817 }
818
819
Guard(void * address,const size_t size)820 void OS::Guard(void* address, const size_t size) {
821 DWORD oldprotect;
822 VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
823 }
824
825
Sleep(TimeDelta interval)826 void OS::Sleep(TimeDelta interval) {
827 ::Sleep(static_cast<DWORD>(interval.InMilliseconds()));
828 }
829
830
Abort()831 void OS::Abort() {
832 if (g_hard_abort) {
833 V8_IMMEDIATE_CRASH();
834 }
835 // Make the MSVCRT do a silent abort.
836 raise(SIGABRT);
837
838 // Make sure function doesn't return.
839 abort();
840 }
841
842
DebugBreak()843 void OS::DebugBreak() {
844 #if V8_CC_MSVC
845 // To avoid Visual Studio runtime support the following code can be used
846 // instead
847 // __asm { int 3 }
848 __debugbreak();
849 #else
850 ::DebugBreak();
851 #endif
852 }
853
854
855 class Win32MemoryMappedFile final : public OS::MemoryMappedFile {
856 public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,size_t size)857 Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory,
858 size_t size)
859 : file_(file),
860 file_mapping_(file_mapping),
861 memory_(memory),
862 size_(size) {}
863 ~Win32MemoryMappedFile() final;
memory() const864 void* memory() const final { return memory_; }
size() const865 size_t size() const final { return size_; }
866
867 private:
868 HANDLE const file_;
869 HANDLE const file_mapping_;
870 void* const memory_;
871 size_t const size_;
872 };
873
874
875 // static
open(const char * name)876 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
877 // Open a physical file
878 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
879 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
880 if (file == INVALID_HANDLE_VALUE) return NULL;
881
882 DWORD size = GetFileSize(file, NULL);
883
884 // Create a file mapping for the physical file
885 HANDLE file_mapping =
886 CreateFileMapping(file, NULL, PAGE_READWRITE, 0, size, NULL);
887 if (file_mapping == NULL) return NULL;
888
889 // Map a view of the file into memory
890 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
891 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
892 }
893
894
895 // static
create(const char * name,size_t size,void * initial)896 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name,
897 size_t size, void* initial) {
898 // Open a physical file
899 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
900 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
901 OPEN_ALWAYS, 0, NULL);
902 if (file == NULL) return NULL;
903 // Create a file mapping for the physical file
904 HANDLE file_mapping = CreateFileMapping(file, NULL, PAGE_READWRITE, 0,
905 static_cast<DWORD>(size), NULL);
906 if (file_mapping == NULL) return NULL;
907 // Map a view of the file into memory
908 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
909 if (memory) memmove(memory, initial, size);
910 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
911 }
912
913
~Win32MemoryMappedFile()914 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
915 if (memory_) UnmapViewOfFile(memory_);
916 CloseHandle(file_mapping_);
917 CloseHandle(file_);
918 }
919
920
921 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
922 // dynamically. This is to avoid being depending on dbghelp.dll and
923 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
924 // kernel32.dll at some point so loading functions defines in TlHelp32.h
925 // dynamically might not be necessary any more - for some versions of Windows?).
926
927 // Function pointers to functions dynamically loaded from dbghelp.dll.
928 #define DBGHELP_FUNCTION_LIST(V) \
929 V(SymInitialize) \
930 V(SymGetOptions) \
931 V(SymSetOptions) \
932 V(SymGetSearchPath) \
933 V(SymLoadModule64) \
934 V(StackWalk64) \
935 V(SymGetSymFromAddr64) \
936 V(SymGetLineFromAddr64) \
937 V(SymFunctionTableAccess64) \
938 V(SymGetModuleBase64)
939
940 // Function pointers to functions dynamically loaded from dbghelp.dll.
941 #define TLHELP32_FUNCTION_LIST(V) \
942 V(CreateToolhelp32Snapshot) \
943 V(Module32FirstW) \
944 V(Module32NextW)
945
946 // Define the decoration to use for the type and variable name used for
947 // dynamically loaded DLL function..
948 #define DLL_FUNC_TYPE(name) _##name##_
949 #define DLL_FUNC_VAR(name) _##name
950
951 // Define the type for each dynamically loaded DLL function. The function
952 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
953 // from the Windows include files are redefined here to have the function
954 // definitions to be as close to the ones in the original .h files as possible.
955 #ifndef IN
956 #define IN
957 #endif
958 #ifndef VOID
959 #define VOID void
960 #endif
961
962 // DbgHelp isn't supported on MinGW yet
963 #ifndef __MINGW32__
964 // DbgHelp.h functions.
965 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
966 IN PSTR UserSearchPath,
967 IN BOOL fInvadeProcess);
968 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
969 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
970 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
971 IN HANDLE hProcess,
972 OUT PSTR SearchPath,
973 IN DWORD SearchPathLength);
974 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
975 IN HANDLE hProcess,
976 IN HANDLE hFile,
977 IN PSTR ImageName,
978 IN PSTR ModuleName,
979 IN DWORD64 BaseOfDll,
980 IN DWORD SizeOfDll);
981 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
982 DWORD MachineType,
983 HANDLE hProcess,
984 HANDLE hThread,
985 LPSTACKFRAME64 StackFrame,
986 PVOID ContextRecord,
987 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
988 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
989 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
990 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
991 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
992 IN HANDLE hProcess,
993 IN DWORD64 qwAddr,
994 OUT PDWORD64 pdwDisplacement,
995 OUT PIMAGEHLP_SYMBOL64 Symbol);
996 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
997 IN HANDLE hProcess,
998 IN DWORD64 qwAddr,
999 OUT PDWORD pdwDisplacement,
1000 OUT PIMAGEHLP_LINE64 Line64);
1001 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1002 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1003 HANDLE hProcess,
1004 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1005 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1006 HANDLE hProcess,
1007 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1008
1009 // TlHelp32.h functions.
1010 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1011 DWORD dwFlags,
1012 DWORD th32ProcessID);
1013 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1014 LPMODULEENTRY32W lpme);
1015 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1016 LPMODULEENTRY32W lpme);
1017
1018 #undef IN
1019 #undef VOID
1020
1021 // Declare a variable for each dynamically loaded DLL function.
1022 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1023 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1024 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1025 #undef DEF_DLL_FUNCTION
1026
1027 // Load the functions. This function has a lot of "ugly" macros in order to
1028 // keep down code duplication.
1029
1030 static bool LoadDbgHelpAndTlHelp32() {
1031 static bool dbghelp_loaded = false;
1032
1033 if (dbghelp_loaded) return true;
1034
1035 HMODULE module;
1036
1037 // Load functions from the dbghelp.dll module.
1038 module = LoadLibrary(TEXT("dbghelp.dll"));
1039 if (module == NULL) {
1040 return false;
1041 }
1042
1043 #define LOAD_DLL_FUNC(name) \
1044 DLL_FUNC_VAR(name) = \
1045 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1046
1047 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1048
1049 #undef LOAD_DLL_FUNC
1050
1051 // Load functions from the kernel32.dll module (the TlHelp32.h function used
1052 // to be in tlhelp32.dll but are now moved to kernel32.dll).
1053 module = LoadLibrary(TEXT("kernel32.dll"));
1054 if (module == NULL) {
1055 return false;
1056 }
1057
1058 #define LOAD_DLL_FUNC(name) \
1059 DLL_FUNC_VAR(name) = \
1060 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1061
1062 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1063
1064 #undef LOAD_DLL_FUNC
1065
1066 // Check that all functions where loaded.
1067 bool result =
1068 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1069
1070 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1071 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1072
1073 #undef DLL_FUNC_LOADED
1074 true;
1075
1076 dbghelp_loaded = result;
1077 return result;
1078 // NOTE: The modules are never unloaded and will stay around until the
1079 // application is closed.
1080 }
1081
1082 #undef DBGHELP_FUNCTION_LIST
1083 #undef TLHELP32_FUNCTION_LIST
1084 #undef DLL_FUNC_VAR
1085 #undef DLL_FUNC_TYPE
1086
1087
1088 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1089 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1090 HANDLE process_handle) {
1091 static std::vector<OS::SharedLibraryAddress> result;
1092
1093 static bool symbols_loaded = false;
1094
1095 if (symbols_loaded) return result;
1096
1097 BOOL ok;
1098
1099 // Initialize the symbol engine.
1100 ok = _SymInitialize(process_handle, // hProcess
1101 NULL, // UserSearchPath
1102 false); // fInvadeProcess
1103 if (!ok) return result;
1104
1105 DWORD options = _SymGetOptions();
1106 options |= SYMOPT_LOAD_LINES;
1107 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1108 options = _SymSetOptions(options);
1109
1110 char buf[OS::kStackWalkMaxNameLen] = {0};
1111 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1112 if (!ok) {
1113 int err = GetLastError();
1114 OS::Print("%d\n", err);
1115 return result;
1116 }
1117
1118 HANDLE snapshot = _CreateToolhelp32Snapshot(
1119 TH32CS_SNAPMODULE, // dwFlags
1120 GetCurrentProcessId()); // th32ProcessId
1121 if (snapshot == INVALID_HANDLE_VALUE) return result;
1122 MODULEENTRY32W module_entry;
1123 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1124 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1125 while (cont) {
1126 DWORD64 base;
1127 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1128 // both unicode and ASCII strings even though the parameter is PSTR.
1129 base = _SymLoadModule64(
1130 process_handle, // hProcess
1131 0, // hFile
1132 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1133 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1134 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1135 module_entry.modBaseSize); // SizeOfDll
1136 if (base == 0) {
1137 int err = GetLastError();
1138 if (err != ERROR_MOD_NOT_FOUND &&
1139 err != ERROR_INVALID_HANDLE) {
1140 result.clear();
1141 return result;
1142 }
1143 }
1144 int lib_name_length = WideCharToMultiByte(
1145 CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
1146 std::string lib_name(lib_name_length, 0);
1147 WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1148 lib_name_length, NULL, NULL);
1149 result.push_back(OS::SharedLibraryAddress(
1150 lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr),
1151 reinterpret_cast<uintptr_t>(module_entry.modBaseAddr +
1152 module_entry.modBaseSize)));
1153 cont = _Module32NextW(snapshot, &module_entry);
1154 }
1155 CloseHandle(snapshot);
1156
1157 symbols_loaded = true;
1158 return result;
1159 }
1160
1161
GetSharedLibraryAddresses()1162 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1163 // SharedLibraryEvents are logged when loading symbol information.
1164 // Only the shared libraries loaded at the time of the call to
1165 // GetSharedLibraryAddresses are logged. DLLs loaded after
1166 // initialization are not accounted for.
1167 if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1168 HANDLE process_handle = GetCurrentProcess();
1169 return LoadSymbols(process_handle);
1170 }
1171
1172
SignalCodeMovingGC()1173 void OS::SignalCodeMovingGC() {
1174 }
1175
1176
1177 #else // __MINGW32__
GetSharedLibraryAddresses()1178 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1179 return std::vector<OS::SharedLibraryAddress>();
1180 }
1181
1182
SignalCodeMovingGC()1183 void OS::SignalCodeMovingGC() { }
1184 #endif // __MINGW32__
1185
1186
ActivationFrameAlignment()1187 int OS::ActivationFrameAlignment() {
1188 #ifdef _WIN64
1189 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1190 #elif defined(__MINGW32__)
1191 // With gcc 4.4 the tree vectorization optimizer can generate code
1192 // that requires 16 byte alignment such as movdqa on x86.
1193 return 16;
1194 #else
1195 return 8; // Floating-point math runs faster with 8-byte alignment.
1196 #endif
1197 }
1198
1199
VirtualMemory()1200 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1201
1202
VirtualMemory(size_t size)1203 VirtualMemory::VirtualMemory(size_t size)
1204 : address_(ReserveRegion(size)), size_(size) { }
1205
1206
VirtualMemory(size_t size,size_t alignment)1207 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1208 : address_(NULL), size_(0) {
1209 DCHECK((alignment % OS::AllocateAlignment()) == 0);
1210 size_t request_size = RoundUp(size + alignment,
1211 static_cast<intptr_t>(OS::AllocateAlignment()));
1212 void* address = ReserveRegion(request_size);
1213 if (address == NULL) return;
1214 uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
1215 // Try reducing the size by freeing and then reallocating a specific area.
1216 bool result = ReleaseRegion(address, request_size);
1217 USE(result);
1218 DCHECK(result);
1219 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1220 if (address != NULL) {
1221 request_size = size;
1222 DCHECK(base == static_cast<uint8_t*>(address));
1223 } else {
1224 // Resizing failed, just go with a bigger area.
1225 address = ReserveRegion(request_size);
1226 if (address == NULL) return;
1227 }
1228 address_ = address;
1229 size_ = request_size;
1230 }
1231
1232
~VirtualMemory()1233 VirtualMemory::~VirtualMemory() {
1234 if (IsReserved()) {
1235 bool result = ReleaseRegion(address(), size());
1236 DCHECK(result);
1237 USE(result);
1238 }
1239 }
1240
1241
IsReserved()1242 bool VirtualMemory::IsReserved() {
1243 return address_ != NULL;
1244 }
1245
1246
Reset()1247 void VirtualMemory::Reset() {
1248 address_ = NULL;
1249 size_ = 0;
1250 }
1251
1252
Commit(void * address,size_t size,bool is_executable)1253 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1254 return CommitRegion(address, size, is_executable);
1255 }
1256
1257
Uncommit(void * address,size_t size)1258 bool VirtualMemory::Uncommit(void* address, size_t size) {
1259 DCHECK(IsReserved());
1260 return UncommitRegion(address, size);
1261 }
1262
1263
Guard(void * address)1264 bool VirtualMemory::Guard(void* address) {
1265 if (NULL == VirtualAlloc(address,
1266 OS::CommitPageSize(),
1267 MEM_COMMIT,
1268 PAGE_NOACCESS)) {
1269 return false;
1270 }
1271 return true;
1272 }
1273
1274
ReserveRegion(size_t size)1275 void* VirtualMemory::ReserveRegion(size_t size) {
1276 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1277 }
1278
1279
CommitRegion(void * base,size_t size,bool is_executable)1280 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1281 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1282 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1283 return false;
1284 }
1285 return true;
1286 }
1287
1288
UncommitRegion(void * base,size_t size)1289 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1290 return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1291 }
1292
1293
ReleaseRegion(void * base,size_t size)1294 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1295 return VirtualFree(base, 0, MEM_RELEASE) != 0;
1296 }
1297
1298
HasLazyCommits()1299 bool VirtualMemory::HasLazyCommits() {
1300 // TODO(alph): implement for the platform.
1301 return false;
1302 }
1303
1304
1305 // ----------------------------------------------------------------------------
1306 // Win32 thread support.
1307
1308 // Definition of invalid thread handle and id.
1309 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1310
1311 // Entry point for threads. The supplied argument is a pointer to the thread
1312 // object. The entry function dispatches to the run method in the thread
1313 // object. It is important that this function has __stdcall calling
1314 // convention.
ThreadEntry(void * arg)1315 static unsigned int __stdcall ThreadEntry(void* arg) {
1316 Thread* thread = reinterpret_cast<Thread*>(arg);
1317 thread->NotifyStartedAndRun();
1318 return 0;
1319 }
1320
1321
1322 class Thread::PlatformData {
1323 public:
PlatformData(HANDLE thread)1324 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1325 HANDLE thread_;
1326 unsigned thread_id_;
1327 };
1328
1329
1330 // Initialize a Win32 thread object. The thread has an invalid thread
1331 // handle until it is started.
1332
Thread(const Options & options)1333 Thread::Thread(const Options& options)
1334 : stack_size_(options.stack_size()),
1335 start_semaphore_(NULL) {
1336 data_ = new PlatformData(kNoThread);
1337 set_name(options.name());
1338 }
1339
1340
set_name(const char * name)1341 void Thread::set_name(const char* name) {
1342 OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1343 name_[sizeof(name_) - 1] = '\0';
1344 }
1345
1346
1347 // Close our own handle for the thread.
~Thread()1348 Thread::~Thread() {
1349 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1350 delete data_;
1351 }
1352
1353
1354 // Create a new thread. It is important to use _beginthreadex() instead of
1355 // the Win32 function CreateThread(), because the CreateThread() does not
1356 // initialize thread specific structures in the C runtime library.
Start()1357 void Thread::Start() {
1358 data_->thread_ = reinterpret_cast<HANDLE>(
1359 _beginthreadex(NULL,
1360 static_cast<unsigned>(stack_size_),
1361 ThreadEntry,
1362 this,
1363 0,
1364 &data_->thread_id_));
1365 }
1366
1367
1368 // Wait for thread to terminate.
Join()1369 void Thread::Join() {
1370 if (data_->thread_id_ != GetCurrentThreadId()) {
1371 WaitForSingleObject(data_->thread_, INFINITE);
1372 }
1373 }
1374
1375
CreateThreadLocalKey()1376 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1377 DWORD result = TlsAlloc();
1378 DCHECK(result != TLS_OUT_OF_INDEXES);
1379 return static_cast<LocalStorageKey>(result);
1380 }
1381
1382
DeleteThreadLocalKey(LocalStorageKey key)1383 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1384 BOOL result = TlsFree(static_cast<DWORD>(key));
1385 USE(result);
1386 DCHECK(result);
1387 }
1388
1389
GetThreadLocal(LocalStorageKey key)1390 void* Thread::GetThreadLocal(LocalStorageKey key) {
1391 return TlsGetValue(static_cast<DWORD>(key));
1392 }
1393
1394
SetThreadLocal(LocalStorageKey key,void * value)1395 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1396 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1397 USE(result);
1398 DCHECK(result);
1399 }
1400
1401 } // namespace base
1402 } // namespace v8
1403