1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #include "src/assembler.h"
36
37 #include <math.h>
38 #include <cmath>
39 #include "src/api.h"
40 #include "src/base/cpu.h"
41 #include "src/base/functional.h"
42 #include "src/base/ieee754.h"
43 #include "src/base/lazy-instance.h"
44 #include "src/base/platform/platform.h"
45 #include "src/base/utils/random-number-generator.h"
46 #include "src/builtins.h"
47 #include "src/codegen.h"
48 #include "src/counters.h"
49 #include "src/debug/debug.h"
50 #include "src/deoptimizer.h"
51 #include "src/disassembler.h"
52 #include "src/execution.h"
53 #include "src/ic/ic.h"
54 #include "src/ic/stub-cache.h"
55 #include "src/interpreter/interpreter.h"
56 #include "src/ostreams.h"
57 #include "src/regexp/jsregexp.h"
58 #include "src/regexp/regexp-macro-assembler.h"
59 #include "src/regexp/regexp-stack.h"
60 #include "src/register-configuration.h"
61 #include "src/runtime/runtime.h"
62 #include "src/simulator.h" // For flushing instruction cache.
63 #include "src/snapshot/serializer-common.h"
64 #include "src/wasm/wasm-external-refs.h"
65
66 #if V8_TARGET_ARCH_IA32
67 #include "src/ia32/assembler-ia32-inl.h" // NOLINT
68 #elif V8_TARGET_ARCH_X64
69 #include "src/x64/assembler-x64-inl.h" // NOLINT
70 #elif V8_TARGET_ARCH_ARM64
71 #include "src/arm64/assembler-arm64-inl.h" // NOLINT
72 #elif V8_TARGET_ARCH_ARM
73 #include "src/arm/assembler-arm-inl.h" // NOLINT
74 #elif V8_TARGET_ARCH_PPC
75 #include "src/ppc/assembler-ppc-inl.h" // NOLINT
76 #elif V8_TARGET_ARCH_MIPS
77 #include "src/mips/assembler-mips-inl.h" // NOLINT
78 #elif V8_TARGET_ARCH_MIPS64
79 #include "src/mips64/assembler-mips64-inl.h" // NOLINT
80 #elif V8_TARGET_ARCH_S390
81 #include "src/s390/assembler-s390-inl.h" // NOLINT
82 #elif V8_TARGET_ARCH_X87
83 #include "src/x87/assembler-x87-inl.h" // NOLINT
84 #else
85 #error "Unknown architecture."
86 #endif
87
88 // Include native regexp-macro-assembler.
89 #ifndef V8_INTERPRETED_REGEXP
90 #if V8_TARGET_ARCH_IA32
91 #include "src/regexp/ia32/regexp-macro-assembler-ia32.h" // NOLINT
92 #elif V8_TARGET_ARCH_X64
93 #include "src/regexp/x64/regexp-macro-assembler-x64.h" // NOLINT
94 #elif V8_TARGET_ARCH_ARM64
95 #include "src/regexp/arm64/regexp-macro-assembler-arm64.h" // NOLINT
96 #elif V8_TARGET_ARCH_ARM
97 #include "src/regexp/arm/regexp-macro-assembler-arm.h" // NOLINT
98 #elif V8_TARGET_ARCH_PPC
99 #include "src/regexp/ppc/regexp-macro-assembler-ppc.h" // NOLINT
100 #elif V8_TARGET_ARCH_MIPS
101 #include "src/regexp/mips/regexp-macro-assembler-mips.h" // NOLINT
102 #elif V8_TARGET_ARCH_MIPS64
103 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT
104 #elif V8_TARGET_ARCH_S390
105 #include "src/regexp/s390/regexp-macro-assembler-s390.h" // NOLINT
106 #elif V8_TARGET_ARCH_X87
107 #include "src/regexp/x87/regexp-macro-assembler-x87.h" // NOLINT
108 #else // Unknown architecture.
109 #error "Unknown architecture."
110 #endif // Target architecture.
111 #endif // V8_INTERPRETED_REGEXP
112
113 namespace v8 {
114 namespace internal {
115
116 // -----------------------------------------------------------------------------
117 // Common double constants.
118
119 struct DoubleConstant BASE_EMBEDDED {
120 double min_int;
121 double one_half;
122 double minus_one_half;
123 double negative_infinity;
124 double the_hole_nan;
125 double uint32_bias;
126 };
127
128 static DoubleConstant double_constants;
129
130 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
131
132 // -----------------------------------------------------------------------------
133 // Implementation of AssemblerBase
134
AssemblerBase(Isolate * isolate,void * buffer,int buffer_size)135 AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size)
136 : isolate_(isolate),
137 jit_cookie_(0),
138 enabled_cpu_features_(0),
139 emit_debug_code_(FLAG_debug_code),
140 predictable_code_size_(false),
141 // We may use the assembler without an isolate.
142 serializer_enabled_(isolate && isolate->serializer_enabled()),
143 constant_pool_available_(false) {
144 DCHECK_NOT_NULL(isolate);
145 if (FLAG_mask_constants_with_cookie) {
146 jit_cookie_ = isolate->random_number_generator()->NextInt();
147 }
148 own_buffer_ = buffer == NULL;
149 if (buffer_size == 0) buffer_size = kMinimalBufferSize;
150 DCHECK(buffer_size > 0);
151 if (own_buffer_) buffer = NewArray<byte>(buffer_size);
152 buffer_ = static_cast<byte*>(buffer);
153 buffer_size_ = buffer_size;
154
155 pc_ = buffer_;
156 }
157
158
~AssemblerBase()159 AssemblerBase::~AssemblerBase() {
160 if (own_buffer_) DeleteArray(buffer_);
161 }
162
163
FlushICache(Isolate * isolate,void * start,size_t size)164 void AssemblerBase::FlushICache(Isolate* isolate, void* start, size_t size) {
165 if (size == 0) return;
166
167 #if defined(USE_SIMULATOR)
168 Simulator::FlushICache(isolate->simulator_i_cache(), start, size);
169 #else
170 CpuFeatures::FlushICache(start, size);
171 #endif // USE_SIMULATOR
172 }
173
174
Print()175 void AssemblerBase::Print() {
176 OFStream os(stdout);
177 v8::internal::Disassembler::Decode(isolate(), &os, buffer_, pc_, nullptr);
178 }
179
180
181 // -----------------------------------------------------------------------------
182 // Implementation of PredictableCodeSizeScope
183
PredictableCodeSizeScope(AssemblerBase * assembler)184 PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler)
185 : PredictableCodeSizeScope(assembler, -1) {}
186
187
PredictableCodeSizeScope(AssemblerBase * assembler,int expected_size)188 PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler,
189 int expected_size)
190 : assembler_(assembler),
191 expected_size_(expected_size),
192 start_offset_(assembler->pc_offset()),
193 old_value_(assembler->predictable_code_size()) {
194 assembler_->set_predictable_code_size(true);
195 }
196
197
~PredictableCodeSizeScope()198 PredictableCodeSizeScope::~PredictableCodeSizeScope() {
199 // TODO(svenpanne) Remove the 'if' when everything works.
200 if (expected_size_ >= 0) {
201 CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_);
202 }
203 assembler_->set_predictable_code_size(old_value_);
204 }
205
206
207 // -----------------------------------------------------------------------------
208 // Implementation of CpuFeatureScope
209
210 #ifdef DEBUG
CpuFeatureScope(AssemblerBase * assembler,CpuFeature f)211 CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f)
212 : assembler_(assembler) {
213 DCHECK(CpuFeatures::IsSupported(f));
214 old_enabled_ = assembler_->enabled_cpu_features();
215 uint64_t mask = static_cast<uint64_t>(1) << f;
216 // TODO(svenpanne) This special case below doesn't belong here!
217 #if V8_TARGET_ARCH_ARM
218 // ARMv7 is implied by VFP3.
219 if (f == VFP3) {
220 mask |= static_cast<uint64_t>(1) << ARMv7;
221 }
222 #endif
223 assembler_->set_enabled_cpu_features(old_enabled_ | mask);
224 }
225
226
~CpuFeatureScope()227 CpuFeatureScope::~CpuFeatureScope() {
228 assembler_->set_enabled_cpu_features(old_enabled_);
229 }
230 #endif
231
232
233 bool CpuFeatures::initialized_ = false;
234 unsigned CpuFeatures::supported_ = 0;
235 unsigned CpuFeatures::icache_line_size_ = 0;
236 unsigned CpuFeatures::dcache_line_size_ = 0;
237
238 // -----------------------------------------------------------------------------
239 // Implementation of Label
240
pos() const241 int Label::pos() const {
242 if (pos_ < 0) return -pos_ - 1;
243 if (pos_ > 0) return pos_ - 1;
244 UNREACHABLE();
245 return 0;
246 }
247
248
249 // -----------------------------------------------------------------------------
250 // Implementation of RelocInfoWriter and RelocIterator
251 //
252 // Relocation information is written backwards in memory, from high addresses
253 // towards low addresses, byte by byte. Therefore, in the encodings listed
254 // below, the first byte listed it at the highest address, and successive
255 // bytes in the record are at progressively lower addresses.
256 //
257 // Encoding
258 //
259 // The most common modes are given single-byte encodings. Also, it is
260 // easy to identify the type of reloc info and skip unwanted modes in
261 // an iteration.
262 //
263 // The encoding relies on the fact that there are fewer than 14
264 // different relocation modes using standard non-compact encoding.
265 //
266 // The first byte of a relocation record has a tag in its low 2 bits:
267 // Here are the record schemes, depending on the low tag and optional higher
268 // tags.
269 //
270 // Low tag:
271 // 00: embedded_object: [6-bit pc delta] 00
272 //
273 // 01: code_target: [6-bit pc delta] 01
274 //
275 // 10: short_data_record: [6-bit pc delta] 10 followed by
276 // [6-bit data delta] [2-bit data type tag]
277 //
278 // 11: long_record [6 bit reloc mode] 11
279 // followed by pc delta
280 // followed by optional data depending on type.
281 //
282 // 2-bit data type tags, used in short_data_record and data_jump long_record:
283 // code_target_with_id: 00
284 // position: 01
285 // statement_position: 10
286 // deopt_reason: 11
287 //
288 // If a pc delta exceeds 6 bits, it is split into a remainder that fits into
289 // 6 bits and a part that does not. The latter is encoded as a long record
290 // with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
291 // the following record in the usual way. The long pc jump record has variable
292 // length:
293 // pc-jump: [PC_JUMP] 11
294 // [7 bits data] 0
295 // ...
296 // [7 bits data] 1
297 // (Bits 6..31 of pc delta, with leading zeroes
298 // dropped, and last non-zero chunk tagged with 1.)
299
300 const int kTagBits = 2;
301 const int kTagMask = (1 << kTagBits) - 1;
302 const int kLongTagBits = 6;
303 const int kShortDataTypeTagBits = 2;
304 const int kShortDataBits = kBitsPerByte - kShortDataTypeTagBits;
305
306 const int kEmbeddedObjectTag = 0;
307 const int kCodeTargetTag = 1;
308 const int kLocatableTag = 2;
309 const int kDefaultTag = 3;
310
311 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
312 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
313 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
314
315 const int kChunkBits = 7;
316 const int kChunkMask = (1 << kChunkBits) - 1;
317 const int kLastChunkTagBits = 1;
318 const int kLastChunkTagMask = 1;
319 const int kLastChunkTag = 1;
320
321 const int kCodeWithIdTag = 0;
322 const int kNonstatementPositionTag = 1;
323 const int kStatementPositionTag = 2;
324 const int kDeoptReasonTag = 3;
325
update_wasm_memory_reference(Address old_base,Address new_base,uint32_t old_size,uint32_t new_size,ICacheFlushMode icache_flush_mode)326 void RelocInfo::update_wasm_memory_reference(
327 Address old_base, Address new_base, uint32_t old_size, uint32_t new_size,
328 ICacheFlushMode icache_flush_mode) {
329 DCHECK(IsWasmMemoryReference(rmode_) || IsWasmMemorySizeReference(rmode_));
330 if (IsWasmMemoryReference(rmode_)) {
331 Address updated_reference;
332 DCHECK(old_size == 0 || Memory::IsAddressInRange(
333 old_base, wasm_memory_reference(), old_size));
334 updated_reference = new_base + (wasm_memory_reference() - old_base);
335 DCHECK(new_size == 0 ||
336 Memory::IsAddressInRange(new_base, updated_reference, new_size));
337 unchecked_update_wasm_memory_reference(updated_reference,
338 icache_flush_mode);
339 } else if (IsWasmMemorySizeReference(rmode_)) {
340 uint32_t updated_size_reference;
341 DCHECK(old_size == 0 || wasm_memory_size_reference() <= old_size);
342 updated_size_reference =
343 new_size + (wasm_memory_size_reference() - old_size);
344 DCHECK(updated_size_reference <= new_size);
345 unchecked_update_wasm_memory_size(updated_size_reference,
346 icache_flush_mode);
347 } else {
348 UNREACHABLE();
349 }
350 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
351 Assembler::FlushICache(isolate_, pc_, sizeof(int64_t));
352 }
353 }
354
update_wasm_global_reference(Address old_base,Address new_base,ICacheFlushMode icache_flush_mode)355 void RelocInfo::update_wasm_global_reference(
356 Address old_base, Address new_base, ICacheFlushMode icache_flush_mode) {
357 DCHECK(IsWasmGlobalReference(rmode_));
358 Address updated_reference;
359 DCHECK(reinterpret_cast<uintptr_t>(old_base) <=
360 reinterpret_cast<uintptr_t>(wasm_global_reference()));
361 updated_reference = new_base + (wasm_global_reference() - old_base);
362 DCHECK(reinterpret_cast<uintptr_t>(new_base) <=
363 reinterpret_cast<uintptr_t>(updated_reference));
364 unchecked_update_wasm_memory_reference(updated_reference, icache_flush_mode);
365 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
366 Assembler::FlushICache(isolate_, pc_, sizeof(int32_t));
367 }
368 }
369
WriteLongPCJump(uint32_t pc_delta)370 uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
371 // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
372 // Otherwise write a variable length PC jump for the bits that do
373 // not fit in the kSmallPCDeltaBits bits.
374 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
375 WriteMode(RelocInfo::PC_JUMP);
376 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
377 DCHECK(pc_jump > 0);
378 // Write kChunkBits size chunks of the pc_jump.
379 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
380 byte b = pc_jump & kChunkMask;
381 *--pos_ = b << kLastChunkTagBits;
382 }
383 // Tag the last chunk so it can be identified.
384 *pos_ = *pos_ | kLastChunkTag;
385 // Return the remaining kSmallPCDeltaBits of the pc_delta.
386 return pc_delta & kSmallPCDeltaMask;
387 }
388
389
WriteShortTaggedPC(uint32_t pc_delta,int tag)390 void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
391 // Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
392 pc_delta = WriteLongPCJump(pc_delta);
393 *--pos_ = pc_delta << kTagBits | tag;
394 }
395
396
WriteShortTaggedData(intptr_t data_delta,int tag)397 void RelocInfoWriter::WriteShortTaggedData(intptr_t data_delta, int tag) {
398 *--pos_ = static_cast<byte>(data_delta << kShortDataTypeTagBits | tag);
399 }
400
401
WriteMode(RelocInfo::Mode rmode)402 void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
403 STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
404 *--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
405 }
406
407
WriteModeAndPC(uint32_t pc_delta,RelocInfo::Mode rmode)408 void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
409 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
410 pc_delta = WriteLongPCJump(pc_delta);
411 WriteMode(rmode);
412 *--pos_ = pc_delta;
413 }
414
415
WriteIntData(int number)416 void RelocInfoWriter::WriteIntData(int number) {
417 for (int i = 0; i < kIntSize; i++) {
418 *--pos_ = static_cast<byte>(number);
419 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
420 number = number >> kBitsPerByte;
421 }
422 }
423
424
WriteData(intptr_t data_delta)425 void RelocInfoWriter::WriteData(intptr_t data_delta) {
426 for (int i = 0; i < kIntptrSize; i++) {
427 *--pos_ = static_cast<byte>(data_delta);
428 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
429 data_delta = data_delta >> kBitsPerByte;
430 }
431 }
432
433
WritePosition(int pc_delta,int pos_delta,RelocInfo::Mode rmode)434 void RelocInfoWriter::WritePosition(int pc_delta, int pos_delta,
435 RelocInfo::Mode rmode) {
436 int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag
437 : kStatementPositionTag;
438 // Check if delta is small enough to fit in a tagged byte.
439 if (is_intn(pos_delta, kShortDataBits)) {
440 WriteShortTaggedPC(pc_delta, kLocatableTag);
441 WriteShortTaggedData(pos_delta, pos_type_tag);
442 } else {
443 // Otherwise, use costly encoding.
444 WriteModeAndPC(pc_delta, rmode);
445 WriteIntData(pos_delta);
446 }
447 }
448
449
FlushPosition()450 void RelocInfoWriter::FlushPosition() {
451 if (!next_position_candidate_flushed_) {
452 WritePosition(next_position_candidate_pc_delta_,
453 next_position_candidate_pos_delta_, RelocInfo::POSITION);
454 next_position_candidate_pos_delta_ = 0;
455 next_position_candidate_pc_delta_ = 0;
456 next_position_candidate_flushed_ = true;
457 }
458 }
459
460
Write(const RelocInfo * rinfo)461 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
462 RelocInfo::Mode rmode = rinfo->rmode();
463 if (rmode != RelocInfo::POSITION) {
464 FlushPosition();
465 }
466 #ifdef DEBUG
467 byte* begin_pos = pos_;
468 #endif
469 DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
470 DCHECK(rinfo->pc() - last_pc_ >= 0);
471 // Use unsigned delta-encoding for pc.
472 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
473
474 // The two most common modes are given small tags, and usually fit in a byte.
475 if (rmode == RelocInfo::EMBEDDED_OBJECT) {
476 WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
477 } else if (rmode == RelocInfo::CODE_TARGET) {
478 WriteShortTaggedPC(pc_delta, kCodeTargetTag);
479 DCHECK(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
480 } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
481 // Use signed delta-encoding for id.
482 DCHECK_EQ(static_cast<int>(rinfo->data()), rinfo->data());
483 int id_delta = static_cast<int>(rinfo->data()) - last_id_;
484 // Check if delta is small enough to fit in a tagged byte.
485 if (is_intn(id_delta, kShortDataBits)) {
486 WriteShortTaggedPC(pc_delta, kLocatableTag);
487 WriteShortTaggedData(id_delta, kCodeWithIdTag);
488 } else {
489 // Otherwise, use costly encoding.
490 WriteModeAndPC(pc_delta, rmode);
491 WriteIntData(id_delta);
492 }
493 last_id_ = static_cast<int>(rinfo->data());
494 } else if (rmode == RelocInfo::DEOPT_REASON) {
495 DCHECK(rinfo->data() < (1 << kShortDataBits));
496 WriteShortTaggedPC(pc_delta, kLocatableTag);
497 WriteShortTaggedData(rinfo->data(), kDeoptReasonTag);
498 } else if (RelocInfo::IsPosition(rmode)) {
499 // Use signed delta-encoding for position.
500 DCHECK_EQ(static_cast<int>(rinfo->data()), rinfo->data());
501 int pos_delta = static_cast<int>(rinfo->data()) - last_position_;
502 if (rmode == RelocInfo::STATEMENT_POSITION) {
503 WritePosition(pc_delta, pos_delta, rmode);
504 } else {
505 DCHECK_EQ(rmode, RelocInfo::POSITION);
506 if (pc_delta != 0 || last_mode_ != RelocInfo::POSITION) {
507 FlushPosition();
508 next_position_candidate_pc_delta_ = pc_delta;
509 next_position_candidate_pos_delta_ = pos_delta;
510 } else {
511 next_position_candidate_pos_delta_ += pos_delta;
512 }
513 next_position_candidate_flushed_ = false;
514 }
515 last_position_ = static_cast<int>(rinfo->data());
516 } else {
517 WriteModeAndPC(pc_delta, rmode);
518 if (RelocInfo::IsComment(rmode)) {
519 WriteData(rinfo->data());
520 } else if (RelocInfo::IsConstPool(rmode) ||
521 RelocInfo::IsVeneerPool(rmode) ||
522 RelocInfo::IsDeoptId(rmode)) {
523 WriteIntData(static_cast<int>(rinfo->data()));
524 }
525 }
526 last_pc_ = rinfo->pc();
527 last_mode_ = rmode;
528 #ifdef DEBUG
529 DCHECK(begin_pos - pos_ <= kMaxSize);
530 #endif
531 }
532
533
AdvanceGetTag()534 inline int RelocIterator::AdvanceGetTag() {
535 return *--pos_ & kTagMask;
536 }
537
538
GetMode()539 inline RelocInfo::Mode RelocIterator::GetMode() {
540 return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
541 ((1 << kLongTagBits) - 1));
542 }
543
544
ReadShortTaggedPC()545 inline void RelocIterator::ReadShortTaggedPC() {
546 rinfo_.pc_ += *pos_ >> kTagBits;
547 }
548
549
AdvanceReadPC()550 inline void RelocIterator::AdvanceReadPC() {
551 rinfo_.pc_ += *--pos_;
552 }
553
554
AdvanceReadId()555 void RelocIterator::AdvanceReadId() {
556 int x = 0;
557 for (int i = 0; i < kIntSize; i++) {
558 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
559 }
560 last_id_ += x;
561 rinfo_.data_ = last_id_;
562 }
563
564
AdvanceReadInt()565 void RelocIterator::AdvanceReadInt() {
566 int x = 0;
567 for (int i = 0; i < kIntSize; i++) {
568 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
569 }
570 rinfo_.data_ = x;
571 }
572
573
AdvanceReadPosition()574 void RelocIterator::AdvanceReadPosition() {
575 int x = 0;
576 for (int i = 0; i < kIntSize; i++) {
577 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
578 }
579 last_position_ += x;
580 rinfo_.data_ = last_position_;
581 }
582
583
AdvanceReadData()584 void RelocIterator::AdvanceReadData() {
585 intptr_t x = 0;
586 for (int i = 0; i < kIntptrSize; i++) {
587 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
588 }
589 rinfo_.data_ = x;
590 }
591
592
AdvanceReadLongPCJump()593 void RelocIterator::AdvanceReadLongPCJump() {
594 // Read the 32-kSmallPCDeltaBits most significant bits of the
595 // pc jump in kChunkBits bit chunks and shift them into place.
596 // Stop when the last chunk is encountered.
597 uint32_t pc_jump = 0;
598 for (int i = 0; i < kIntSize; i++) {
599 byte pc_jump_part = *--pos_;
600 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
601 if ((pc_jump_part & kLastChunkTagMask) == 1) break;
602 }
603 // The least significant kSmallPCDeltaBits bits will be added
604 // later.
605 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
606 }
607
608
GetShortDataTypeTag()609 inline int RelocIterator::GetShortDataTypeTag() {
610 return *pos_ & ((1 << kShortDataTypeTagBits) - 1);
611 }
612
613
ReadShortTaggedId()614 inline void RelocIterator::ReadShortTaggedId() {
615 int8_t signed_b = *pos_;
616 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
617 last_id_ += signed_b >> kShortDataTypeTagBits;
618 rinfo_.data_ = last_id_;
619 }
620
621
ReadShortTaggedPosition()622 inline void RelocIterator::ReadShortTaggedPosition() {
623 int8_t signed_b = *pos_;
624 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
625 last_position_ += signed_b >> kShortDataTypeTagBits;
626 rinfo_.data_ = last_position_;
627 }
628
629
ReadShortTaggedData()630 inline void RelocIterator::ReadShortTaggedData() {
631 uint8_t unsigned_b = *pos_;
632 rinfo_.data_ = unsigned_b >> kTagBits;
633 }
634
635
GetPositionModeFromTag(int tag)636 static inline RelocInfo::Mode GetPositionModeFromTag(int tag) {
637 DCHECK(tag == kNonstatementPositionTag ||
638 tag == kStatementPositionTag);
639 return (tag == kNonstatementPositionTag) ?
640 RelocInfo::POSITION :
641 RelocInfo::STATEMENT_POSITION;
642 }
643
644
next()645 void RelocIterator::next() {
646 DCHECK(!done());
647 // Basically, do the opposite of RelocInfoWriter::Write.
648 // Reading of data is as far as possible avoided for unwanted modes,
649 // but we must always update the pc.
650 //
651 // We exit this loop by returning when we find a mode we want.
652 while (pos_ > end_) {
653 int tag = AdvanceGetTag();
654 if (tag == kEmbeddedObjectTag) {
655 ReadShortTaggedPC();
656 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
657 } else if (tag == kCodeTargetTag) {
658 ReadShortTaggedPC();
659 if (SetMode(RelocInfo::CODE_TARGET)) return;
660 } else if (tag == kLocatableTag) {
661 ReadShortTaggedPC();
662 Advance();
663 int data_type_tag = GetShortDataTypeTag();
664 if (data_type_tag == kCodeWithIdTag) {
665 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
666 ReadShortTaggedId();
667 return;
668 }
669 } else if (data_type_tag == kDeoptReasonTag) {
670 if (SetMode(RelocInfo::DEOPT_REASON)) {
671 ReadShortTaggedData();
672 return;
673 }
674 } else {
675 DCHECK(data_type_tag == kNonstatementPositionTag ||
676 data_type_tag == kStatementPositionTag);
677 if (mode_mask_ & RelocInfo::kPositionMask) {
678 // Always update the position if we are interested in either
679 // statement positions or non-statement positions.
680 ReadShortTaggedPosition();
681 if (SetMode(GetPositionModeFromTag(data_type_tag))) return;
682 }
683 }
684 } else {
685 DCHECK(tag == kDefaultTag);
686 RelocInfo::Mode rmode = GetMode();
687 if (rmode == RelocInfo::PC_JUMP) {
688 AdvanceReadLongPCJump();
689 } else {
690 AdvanceReadPC();
691 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
692 if (SetMode(rmode)) {
693 AdvanceReadId();
694 return;
695 }
696 Advance(kIntSize);
697 } else if (RelocInfo::IsComment(rmode)) {
698 if (SetMode(rmode)) {
699 AdvanceReadData();
700 return;
701 }
702 Advance(kIntptrSize);
703 } else if (RelocInfo::IsPosition(rmode)) {
704 if (mode_mask_ & RelocInfo::kPositionMask) {
705 // Always update the position if we are interested in either
706 // statement positions or non-statement positions.
707 AdvanceReadPosition();
708 if (SetMode(rmode)) return;
709 } else {
710 Advance(kIntSize);
711 }
712 } else if (RelocInfo::IsConstPool(rmode) ||
713 RelocInfo::IsVeneerPool(rmode) ||
714 RelocInfo::IsDeoptId(rmode)) {
715 if (SetMode(rmode)) {
716 AdvanceReadInt();
717 return;
718 }
719 Advance(kIntSize);
720 } else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
721 return;
722 }
723 }
724 }
725 }
726 if (code_age_sequence_ != NULL) {
727 byte* old_code_age_sequence = code_age_sequence_;
728 code_age_sequence_ = NULL;
729 if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) {
730 rinfo_.data_ = 0;
731 rinfo_.pc_ = old_code_age_sequence;
732 return;
733 }
734 }
735 done_ = true;
736 }
737
738
RelocIterator(Code * code,int mode_mask)739 RelocIterator::RelocIterator(Code* code, int mode_mask)
740 : rinfo_(code->map()->GetIsolate()) {
741 rinfo_.host_ = code;
742 rinfo_.pc_ = code->instruction_start();
743 rinfo_.data_ = 0;
744 // Relocation info is read backwards.
745 pos_ = code->relocation_start() + code->relocation_size();
746 end_ = code->relocation_start();
747 done_ = false;
748 mode_mask_ = mode_mask;
749 last_id_ = 0;
750 last_position_ = 0;
751 byte* sequence = code->FindCodeAgeSequence();
752 // We get the isolate from the map, because at serialization time
753 // the code pointer has been cloned and isn't really in heap space.
754 Isolate* isolate = code->map()->GetIsolate();
755 if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) {
756 code_age_sequence_ = sequence;
757 } else {
758 code_age_sequence_ = NULL;
759 }
760 if (mode_mask_ == 0) pos_ = end_;
761 next();
762 }
763
764
RelocIterator(const CodeDesc & desc,int mode_mask)765 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask)
766 : rinfo_(desc.origin->isolate()) {
767 rinfo_.pc_ = desc.buffer;
768 rinfo_.data_ = 0;
769 // Relocation info is read backwards.
770 pos_ = desc.buffer + desc.buffer_size;
771 end_ = pos_ - desc.reloc_size;
772 done_ = false;
773 mode_mask_ = mode_mask;
774 last_id_ = 0;
775 last_position_ = 0;
776 code_age_sequence_ = NULL;
777 if (mode_mask_ == 0) pos_ = end_;
778 next();
779 }
780
781
782 // -----------------------------------------------------------------------------
783 // Implementation of RelocInfo
784
IsPatchedDebugBreakSlotSequence()785 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
786 return DebugCodegen::DebugBreakSlotIsPatched(pc_);
787 }
788
789 #ifdef DEBUG
RequiresRelocation(const CodeDesc & desc)790 bool RelocInfo::RequiresRelocation(const CodeDesc& desc) {
791 // Ensure there are no code targets or embedded objects present in the
792 // deoptimization entries, they would require relocation after code
793 // generation.
794 int mode_mask = RelocInfo::kCodeTargetMask |
795 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
796 RelocInfo::ModeMask(RelocInfo::CELL) |
797 RelocInfo::kApplyMask;
798 RelocIterator it(desc, mode_mask);
799 return !it.done();
800 }
801 #endif
802
803
804 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)805 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
806 switch (rmode) {
807 case NONE32:
808 return "no reloc 32";
809 case NONE64:
810 return "no reloc 64";
811 case EMBEDDED_OBJECT:
812 return "embedded object";
813 case DEBUGGER_STATEMENT:
814 return "debugger statement";
815 case CODE_TARGET:
816 return "code target";
817 case CODE_TARGET_WITH_ID:
818 return "code target with id";
819 case CELL:
820 return "property cell";
821 case RUNTIME_ENTRY:
822 return "runtime entry";
823 case COMMENT:
824 return "comment";
825 case POSITION:
826 return "position";
827 case STATEMENT_POSITION:
828 return "statement position";
829 case EXTERNAL_REFERENCE:
830 return "external reference";
831 case INTERNAL_REFERENCE:
832 return "internal reference";
833 case INTERNAL_REFERENCE_ENCODED:
834 return "encoded internal reference";
835 case DEOPT_REASON:
836 return "deopt reason";
837 case DEOPT_ID:
838 return "deopt index";
839 case CONST_POOL:
840 return "constant pool";
841 case VENEER_POOL:
842 return "veneer pool";
843 case DEBUG_BREAK_SLOT_AT_POSITION:
844 return "debug break slot at position";
845 case DEBUG_BREAK_SLOT_AT_RETURN:
846 return "debug break slot at return";
847 case DEBUG_BREAK_SLOT_AT_CALL:
848 return "debug break slot at call";
849 case DEBUG_BREAK_SLOT_AT_TAIL_CALL:
850 return "debug break slot at tail call";
851 case CODE_AGE_SEQUENCE:
852 return "code age sequence";
853 case GENERATOR_CONTINUATION:
854 return "generator continuation";
855 case WASM_MEMORY_REFERENCE:
856 return "wasm memory reference";
857 case WASM_MEMORY_SIZE_REFERENCE:
858 return "wasm memory size reference";
859 case WASM_GLOBAL_REFERENCE:
860 return "wasm global value reference";
861 case NUMBER_OF_MODES:
862 case PC_JUMP:
863 UNREACHABLE();
864 return "number_of_modes";
865 }
866 return "unknown relocation type";
867 }
868
869
Print(Isolate * isolate,std::ostream & os)870 void RelocInfo::Print(Isolate* isolate, std::ostream& os) { // NOLINT
871 os << static_cast<const void*>(pc_) << " " << RelocModeName(rmode_);
872 if (IsComment(rmode_)) {
873 os << " (" << reinterpret_cast<char*>(data_) << ")";
874 } else if (rmode_ == DEOPT_REASON) {
875 os << " (" << Deoptimizer::GetDeoptReason(
876 static_cast<Deoptimizer::DeoptReason>(data_)) << ")";
877 } else if (rmode_ == EMBEDDED_OBJECT) {
878 os << " (" << Brief(target_object()) << ")";
879 } else if (rmode_ == EXTERNAL_REFERENCE) {
880 ExternalReferenceEncoder ref_encoder(isolate);
881 os << " ("
882 << ref_encoder.NameOfAddress(isolate, target_external_reference())
883 << ") (" << static_cast<const void*>(target_external_reference())
884 << ")";
885 } else if (IsCodeTarget(rmode_)) {
886 Code* code = Code::GetCodeFromTargetAddress(target_address());
887 os << " (" << Code::Kind2String(code->kind()) << ") ("
888 << static_cast<const void*>(target_address()) << ")";
889 if (rmode_ == CODE_TARGET_WITH_ID) {
890 os << " (id=" << static_cast<int>(data_) << ")";
891 }
892 } else if (IsPosition(rmode_)) {
893 os << " (" << data() << ")";
894 } else if (IsRuntimeEntry(rmode_) &&
895 isolate->deoptimizer_data() != NULL) {
896 // Depotimization bailouts are stored as runtime entries.
897 int id = Deoptimizer::GetDeoptimizationId(
898 isolate, target_address(), Deoptimizer::EAGER);
899 if (id != Deoptimizer::kNotDeoptimizationEntry) {
900 os << " (deoptimization bailout " << id << ")";
901 }
902 } else if (IsConstPool(rmode_)) {
903 os << " (size " << static_cast<int>(data_) << ")";
904 }
905
906 os << "\n";
907 }
908 #endif // ENABLE_DISASSEMBLER
909
910
911 #ifdef VERIFY_HEAP
Verify(Isolate * isolate)912 void RelocInfo::Verify(Isolate* isolate) {
913 switch (rmode_) {
914 case EMBEDDED_OBJECT:
915 Object::VerifyPointer(target_object());
916 break;
917 case CELL:
918 Object::VerifyPointer(target_cell());
919 break;
920 case DEBUGGER_STATEMENT:
921 case CODE_TARGET_WITH_ID:
922 case CODE_TARGET: {
923 // convert inline target address to code object
924 Address addr = target_address();
925 CHECK(addr != NULL);
926 // Check that we can find the right code object.
927 Code* code = Code::GetCodeFromTargetAddress(addr);
928 Object* found = isolate->FindCodeObject(addr);
929 CHECK(found->IsCode());
930 CHECK(code->address() == HeapObject::cast(found)->address());
931 break;
932 }
933 case INTERNAL_REFERENCE:
934 case INTERNAL_REFERENCE_ENCODED: {
935 Address target = target_internal_reference();
936 Address pc = target_internal_reference_address();
937 Code* code = Code::cast(isolate->FindCodeObject(pc));
938 CHECK(target >= code->instruction_start());
939 CHECK(target <= code->instruction_end());
940 break;
941 }
942 case RUNTIME_ENTRY:
943 case COMMENT:
944 case POSITION:
945 case STATEMENT_POSITION:
946 case EXTERNAL_REFERENCE:
947 case DEOPT_REASON:
948 case DEOPT_ID:
949 case CONST_POOL:
950 case VENEER_POOL:
951 case DEBUG_BREAK_SLOT_AT_POSITION:
952 case DEBUG_BREAK_SLOT_AT_RETURN:
953 case DEBUG_BREAK_SLOT_AT_CALL:
954 case DEBUG_BREAK_SLOT_AT_TAIL_CALL:
955 case GENERATOR_CONTINUATION:
956 case WASM_MEMORY_REFERENCE:
957 case WASM_MEMORY_SIZE_REFERENCE:
958 case WASM_GLOBAL_REFERENCE:
959 case NONE32:
960 case NONE64:
961 break;
962 case NUMBER_OF_MODES:
963 case PC_JUMP:
964 UNREACHABLE();
965 break;
966 case CODE_AGE_SEQUENCE:
967 DCHECK(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode());
968 break;
969 }
970 }
971 #endif // VERIFY_HEAP
972
973
974 // Implementation of ExternalReference
975
BuiltinCallTypeForResultSize(int result_size)976 static ExternalReference::Type BuiltinCallTypeForResultSize(int result_size) {
977 switch (result_size) {
978 case 1:
979 return ExternalReference::BUILTIN_CALL;
980 case 2:
981 return ExternalReference::BUILTIN_CALL_PAIR;
982 case 3:
983 return ExternalReference::BUILTIN_CALL_TRIPLE;
984 }
985 UNREACHABLE();
986 return ExternalReference::BUILTIN_CALL;
987 }
988
989
SetUp()990 void ExternalReference::SetUp() {
991 double_constants.min_int = kMinInt;
992 double_constants.one_half = 0.5;
993 double_constants.minus_one_half = -0.5;
994 double_constants.the_hole_nan = bit_cast<double>(kHoleNanInt64);
995 double_constants.negative_infinity = -V8_INFINITY;
996 double_constants.uint32_bias =
997 static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1;
998 }
999
1000
ExternalReference(Builtins::CFunctionId id,Isolate * isolate)1001 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
1002 : address_(Redirect(isolate, Builtins::c_function_address(id))) {}
1003
1004
ExternalReference(ApiFunction * fun,Type type=ExternalReference::BUILTIN_CALL,Isolate * isolate=NULL)1005 ExternalReference::ExternalReference(
1006 ApiFunction* fun,
1007 Type type = ExternalReference::BUILTIN_CALL,
1008 Isolate* isolate = NULL)
1009 : address_(Redirect(isolate, fun->address(), type)) {}
1010
1011
ExternalReference(Builtins::Name name,Isolate * isolate)1012 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
1013 : address_(isolate->builtins()->builtin_address(name)) {}
1014
1015
ExternalReference(Runtime::FunctionId id,Isolate * isolate)1016 ExternalReference::ExternalReference(Runtime::FunctionId id, Isolate* isolate)
1017 : ExternalReference(Runtime::FunctionForId(id), isolate) {}
1018
1019
ExternalReference(const Runtime::Function * f,Isolate * isolate)1020 ExternalReference::ExternalReference(const Runtime::Function* f,
1021 Isolate* isolate)
1022 : address_(Redirect(isolate, f->entry,
1023 BuiltinCallTypeForResultSize(f->result_size))) {}
1024
1025
isolate_address(Isolate * isolate)1026 ExternalReference ExternalReference::isolate_address(Isolate* isolate) {
1027 return ExternalReference(isolate);
1028 }
1029
interpreter_dispatch_table_address(Isolate * isolate)1030 ExternalReference ExternalReference::interpreter_dispatch_table_address(
1031 Isolate* isolate) {
1032 return ExternalReference(isolate->interpreter()->dispatch_table_address());
1033 }
1034
interpreter_dispatch_counters(Isolate * isolate)1035 ExternalReference ExternalReference::interpreter_dispatch_counters(
1036 Isolate* isolate) {
1037 return ExternalReference(
1038 isolate->interpreter()->bytecode_dispatch_counters_table());
1039 }
1040
ExternalReference(StatsCounter * counter)1041 ExternalReference::ExternalReference(StatsCounter* counter)
1042 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
1043
1044
ExternalReference(Isolate::AddressId id,Isolate * isolate)1045 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
1046 : address_(isolate->get_address_from_id(id)) {}
1047
1048
ExternalReference(const SCTableReference & table_ref)1049 ExternalReference::ExternalReference(const SCTableReference& table_ref)
1050 : address_(table_ref.address()) {}
1051
1052
1053 ExternalReference ExternalReference::
incremental_marking_record_write_function(Isolate * isolate)1054 incremental_marking_record_write_function(Isolate* isolate) {
1055 return ExternalReference(Redirect(
1056 isolate,
1057 FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
1058 }
1059
1060 ExternalReference
incremental_marking_record_write_code_entry_function(Isolate * isolate)1061 ExternalReference::incremental_marking_record_write_code_entry_function(
1062 Isolate* isolate) {
1063 return ExternalReference(Redirect(
1064 isolate,
1065 FUNCTION_ADDR(IncrementalMarking::RecordWriteOfCodeEntryFromCode)));
1066 }
1067
store_buffer_overflow_function(Isolate * isolate)1068 ExternalReference ExternalReference::store_buffer_overflow_function(
1069 Isolate* isolate) {
1070 return ExternalReference(Redirect(
1071 isolate,
1072 FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
1073 }
1074
1075
delete_handle_scope_extensions(Isolate * isolate)1076 ExternalReference ExternalReference::delete_handle_scope_extensions(
1077 Isolate* isolate) {
1078 return ExternalReference(Redirect(
1079 isolate,
1080 FUNCTION_ADDR(HandleScope::DeleteExtensions)));
1081 }
1082
1083
get_date_field_function(Isolate * isolate)1084 ExternalReference ExternalReference::get_date_field_function(
1085 Isolate* isolate) {
1086 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
1087 }
1088
1089
get_make_code_young_function(Isolate * isolate)1090 ExternalReference ExternalReference::get_make_code_young_function(
1091 Isolate* isolate) {
1092 return ExternalReference(Redirect(
1093 isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung)));
1094 }
1095
1096
get_mark_code_as_executed_function(Isolate * isolate)1097 ExternalReference ExternalReference::get_mark_code_as_executed_function(
1098 Isolate* isolate) {
1099 return ExternalReference(Redirect(
1100 isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted)));
1101 }
1102
1103
date_cache_stamp(Isolate * isolate)1104 ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
1105 return ExternalReference(isolate->date_cache()->stamp_address());
1106 }
1107
1108
stress_deopt_count(Isolate * isolate)1109 ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) {
1110 return ExternalReference(isolate->stress_deopt_count_address());
1111 }
1112
1113
new_deoptimizer_function(Isolate * isolate)1114 ExternalReference ExternalReference::new_deoptimizer_function(
1115 Isolate* isolate) {
1116 return ExternalReference(
1117 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
1118 }
1119
1120
compute_output_frames_function(Isolate * isolate)1121 ExternalReference ExternalReference::compute_output_frames_function(
1122 Isolate* isolate) {
1123 return ExternalReference(
1124 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
1125 }
1126
wasm_f32_trunc(Isolate * isolate)1127 ExternalReference ExternalReference::wasm_f32_trunc(Isolate* isolate) {
1128 return ExternalReference(
1129 Redirect(isolate, FUNCTION_ADDR(wasm::f32_trunc_wrapper)));
1130 }
wasm_f32_floor(Isolate * isolate)1131 ExternalReference ExternalReference::wasm_f32_floor(Isolate* isolate) {
1132 return ExternalReference(
1133 Redirect(isolate, FUNCTION_ADDR(wasm::f32_floor_wrapper)));
1134 }
wasm_f32_ceil(Isolate * isolate)1135 ExternalReference ExternalReference::wasm_f32_ceil(Isolate* isolate) {
1136 return ExternalReference(
1137 Redirect(isolate, FUNCTION_ADDR(wasm::f32_ceil_wrapper)));
1138 }
wasm_f32_nearest_int(Isolate * isolate)1139 ExternalReference ExternalReference::wasm_f32_nearest_int(Isolate* isolate) {
1140 return ExternalReference(
1141 Redirect(isolate, FUNCTION_ADDR(wasm::f32_nearest_int_wrapper)));
1142 }
1143
wasm_f64_trunc(Isolate * isolate)1144 ExternalReference ExternalReference::wasm_f64_trunc(Isolate* isolate) {
1145 return ExternalReference(
1146 Redirect(isolate, FUNCTION_ADDR(wasm::f64_trunc_wrapper)));
1147 }
1148
wasm_f64_floor(Isolate * isolate)1149 ExternalReference ExternalReference::wasm_f64_floor(Isolate* isolate) {
1150 return ExternalReference(
1151 Redirect(isolate, FUNCTION_ADDR(wasm::f64_floor_wrapper)));
1152 }
1153
wasm_f64_ceil(Isolate * isolate)1154 ExternalReference ExternalReference::wasm_f64_ceil(Isolate* isolate) {
1155 return ExternalReference(
1156 Redirect(isolate, FUNCTION_ADDR(wasm::f64_ceil_wrapper)));
1157 }
1158
wasm_f64_nearest_int(Isolate * isolate)1159 ExternalReference ExternalReference::wasm_f64_nearest_int(Isolate* isolate) {
1160 return ExternalReference(
1161 Redirect(isolate, FUNCTION_ADDR(wasm::f64_nearest_int_wrapper)));
1162 }
1163
wasm_int64_to_float32(Isolate * isolate)1164 ExternalReference ExternalReference::wasm_int64_to_float32(Isolate* isolate) {
1165 return ExternalReference(
1166 Redirect(isolate, FUNCTION_ADDR(wasm::int64_to_float32_wrapper)));
1167 }
1168
wasm_uint64_to_float32(Isolate * isolate)1169 ExternalReference ExternalReference::wasm_uint64_to_float32(Isolate* isolate) {
1170 return ExternalReference(
1171 Redirect(isolate, FUNCTION_ADDR(wasm::uint64_to_float32_wrapper)));
1172 }
1173
wasm_int64_to_float64(Isolate * isolate)1174 ExternalReference ExternalReference::wasm_int64_to_float64(Isolate* isolate) {
1175 return ExternalReference(
1176 Redirect(isolate, FUNCTION_ADDR(wasm::int64_to_float64_wrapper)));
1177 }
1178
wasm_uint64_to_float64(Isolate * isolate)1179 ExternalReference ExternalReference::wasm_uint64_to_float64(Isolate* isolate) {
1180 return ExternalReference(
1181 Redirect(isolate, FUNCTION_ADDR(wasm::uint64_to_float64_wrapper)));
1182 }
1183
wasm_float32_to_int64(Isolate * isolate)1184 ExternalReference ExternalReference::wasm_float32_to_int64(Isolate* isolate) {
1185 return ExternalReference(
1186 Redirect(isolate, FUNCTION_ADDR(wasm::float32_to_int64_wrapper)));
1187 }
1188
wasm_float32_to_uint64(Isolate * isolate)1189 ExternalReference ExternalReference::wasm_float32_to_uint64(Isolate* isolate) {
1190 return ExternalReference(
1191 Redirect(isolate, FUNCTION_ADDR(wasm::float32_to_uint64_wrapper)));
1192 }
1193
wasm_float64_to_int64(Isolate * isolate)1194 ExternalReference ExternalReference::wasm_float64_to_int64(Isolate* isolate) {
1195 return ExternalReference(
1196 Redirect(isolate, FUNCTION_ADDR(wasm::float64_to_int64_wrapper)));
1197 }
1198
wasm_float64_to_uint64(Isolate * isolate)1199 ExternalReference ExternalReference::wasm_float64_to_uint64(Isolate* isolate) {
1200 return ExternalReference(
1201 Redirect(isolate, FUNCTION_ADDR(wasm::float64_to_uint64_wrapper)));
1202 }
1203
wasm_int64_div(Isolate * isolate)1204 ExternalReference ExternalReference::wasm_int64_div(Isolate* isolate) {
1205 return ExternalReference(
1206 Redirect(isolate, FUNCTION_ADDR(wasm::int64_div_wrapper)));
1207 }
1208
wasm_int64_mod(Isolate * isolate)1209 ExternalReference ExternalReference::wasm_int64_mod(Isolate* isolate) {
1210 return ExternalReference(
1211 Redirect(isolate, FUNCTION_ADDR(wasm::int64_mod_wrapper)));
1212 }
1213
wasm_uint64_div(Isolate * isolate)1214 ExternalReference ExternalReference::wasm_uint64_div(Isolate* isolate) {
1215 return ExternalReference(
1216 Redirect(isolate, FUNCTION_ADDR(wasm::uint64_div_wrapper)));
1217 }
1218
wasm_uint64_mod(Isolate * isolate)1219 ExternalReference ExternalReference::wasm_uint64_mod(Isolate* isolate) {
1220 return ExternalReference(
1221 Redirect(isolate, FUNCTION_ADDR(wasm::uint64_mod_wrapper)));
1222 }
1223
wasm_word32_ctz(Isolate * isolate)1224 ExternalReference ExternalReference::wasm_word32_ctz(Isolate* isolate) {
1225 return ExternalReference(
1226 Redirect(isolate, FUNCTION_ADDR(wasm::word32_ctz_wrapper)));
1227 }
1228
wasm_word64_ctz(Isolate * isolate)1229 ExternalReference ExternalReference::wasm_word64_ctz(Isolate* isolate) {
1230 return ExternalReference(
1231 Redirect(isolate, FUNCTION_ADDR(wasm::word64_ctz_wrapper)));
1232 }
1233
wasm_word32_popcnt(Isolate * isolate)1234 ExternalReference ExternalReference::wasm_word32_popcnt(Isolate* isolate) {
1235 return ExternalReference(
1236 Redirect(isolate, FUNCTION_ADDR(wasm::word32_popcnt_wrapper)));
1237 }
1238
wasm_word64_popcnt(Isolate * isolate)1239 ExternalReference ExternalReference::wasm_word64_popcnt(Isolate* isolate) {
1240 return ExternalReference(
1241 Redirect(isolate, FUNCTION_ADDR(wasm::word64_popcnt_wrapper)));
1242 }
1243
f64_acos_wrapper(double * param)1244 static void f64_acos_wrapper(double* param) {
1245 WriteDoubleValue(param, std::acos(ReadDoubleValue(param)));
1246 }
1247
f64_acos_wrapper_function(Isolate * isolate)1248 ExternalReference ExternalReference::f64_acos_wrapper_function(
1249 Isolate* isolate) {
1250 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_acos_wrapper)));
1251 }
1252
f64_asin_wrapper(double * param)1253 static void f64_asin_wrapper(double* param) {
1254 WriteDoubleValue(param, std::asin(ReadDoubleValue(param)));
1255 }
1256
f64_asin_wrapper_function(Isolate * isolate)1257 ExternalReference ExternalReference::f64_asin_wrapper_function(
1258 Isolate* isolate) {
1259 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_asin_wrapper)));
1260 }
1261
f64_pow_wrapper(double * param0,double * param1)1262 static void f64_pow_wrapper(double* param0, double* param1) {
1263 WriteDoubleValue(param0, power_double_double(ReadDoubleValue(param0),
1264 ReadDoubleValue(param1)));
1265 }
1266
f64_pow_wrapper_function(Isolate * isolate)1267 ExternalReference ExternalReference::f64_pow_wrapper_function(
1268 Isolate* isolate) {
1269 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_pow_wrapper)));
1270 }
1271
f64_mod_wrapper(double * param0,double * param1)1272 static void f64_mod_wrapper(double* param0, double* param1) {
1273 WriteDoubleValue(param0,
1274 modulo(ReadDoubleValue(param0), ReadDoubleValue(param1)));
1275 }
1276
f64_mod_wrapper_function(Isolate * isolate)1277 ExternalReference ExternalReference::f64_mod_wrapper_function(
1278 Isolate* isolate) {
1279 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_mod_wrapper)));
1280 }
1281
log_enter_external_function(Isolate * isolate)1282 ExternalReference ExternalReference::log_enter_external_function(
1283 Isolate* isolate) {
1284 return ExternalReference(
1285 Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal)));
1286 }
1287
1288
log_leave_external_function(Isolate * isolate)1289 ExternalReference ExternalReference::log_leave_external_function(
1290 Isolate* isolate) {
1291 return ExternalReference(
1292 Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal)));
1293 }
1294
1295
keyed_lookup_cache_keys(Isolate * isolate)1296 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
1297 return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
1298 }
1299
1300
keyed_lookup_cache_field_offsets(Isolate * isolate)1301 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
1302 Isolate* isolate) {
1303 return ExternalReference(
1304 isolate->keyed_lookup_cache()->field_offsets_address());
1305 }
1306
1307
roots_array_start(Isolate * isolate)1308 ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
1309 return ExternalReference(isolate->heap()->roots_array_start());
1310 }
1311
1312
allocation_sites_list_address(Isolate * isolate)1313 ExternalReference ExternalReference::allocation_sites_list_address(
1314 Isolate* isolate) {
1315 return ExternalReference(isolate->heap()->allocation_sites_list_address());
1316 }
1317
1318
address_of_stack_limit(Isolate * isolate)1319 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
1320 return ExternalReference(isolate->stack_guard()->address_of_jslimit());
1321 }
1322
1323
address_of_real_stack_limit(Isolate * isolate)1324 ExternalReference ExternalReference::address_of_real_stack_limit(
1325 Isolate* isolate) {
1326 return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
1327 }
1328
1329
address_of_regexp_stack_limit(Isolate * isolate)1330 ExternalReference ExternalReference::address_of_regexp_stack_limit(
1331 Isolate* isolate) {
1332 return ExternalReference(isolate->regexp_stack()->limit_address());
1333 }
1334
store_buffer_top(Isolate * isolate)1335 ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
1336 return ExternalReference(isolate->heap()->store_buffer_top_address());
1337 }
1338
1339
new_space_allocation_top_address(Isolate * isolate)1340 ExternalReference ExternalReference::new_space_allocation_top_address(
1341 Isolate* isolate) {
1342 return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
1343 }
1344
1345
new_space_allocation_limit_address(Isolate * isolate)1346 ExternalReference ExternalReference::new_space_allocation_limit_address(
1347 Isolate* isolate) {
1348 return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
1349 }
1350
1351
old_space_allocation_top_address(Isolate * isolate)1352 ExternalReference ExternalReference::old_space_allocation_top_address(
1353 Isolate* isolate) {
1354 return ExternalReference(isolate->heap()->OldSpaceAllocationTopAddress());
1355 }
1356
1357
old_space_allocation_limit_address(Isolate * isolate)1358 ExternalReference ExternalReference::old_space_allocation_limit_address(
1359 Isolate* isolate) {
1360 return ExternalReference(isolate->heap()->OldSpaceAllocationLimitAddress());
1361 }
1362
1363
handle_scope_level_address(Isolate * isolate)1364 ExternalReference ExternalReference::handle_scope_level_address(
1365 Isolate* isolate) {
1366 return ExternalReference(HandleScope::current_level_address(isolate));
1367 }
1368
1369
handle_scope_next_address(Isolate * isolate)1370 ExternalReference ExternalReference::handle_scope_next_address(
1371 Isolate* isolate) {
1372 return ExternalReference(HandleScope::current_next_address(isolate));
1373 }
1374
1375
handle_scope_limit_address(Isolate * isolate)1376 ExternalReference ExternalReference::handle_scope_limit_address(
1377 Isolate* isolate) {
1378 return ExternalReference(HandleScope::current_limit_address(isolate));
1379 }
1380
1381
scheduled_exception_address(Isolate * isolate)1382 ExternalReference ExternalReference::scheduled_exception_address(
1383 Isolate* isolate) {
1384 return ExternalReference(isolate->scheduled_exception_address());
1385 }
1386
1387
address_of_pending_message_obj(Isolate * isolate)1388 ExternalReference ExternalReference::address_of_pending_message_obj(
1389 Isolate* isolate) {
1390 return ExternalReference(isolate->pending_message_obj_address());
1391 }
1392
1393
address_of_min_int()1394 ExternalReference ExternalReference::address_of_min_int() {
1395 return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int));
1396 }
1397
1398
address_of_one_half()1399 ExternalReference ExternalReference::address_of_one_half() {
1400 return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half));
1401 }
1402
1403
address_of_minus_one_half()1404 ExternalReference ExternalReference::address_of_minus_one_half() {
1405 return ExternalReference(
1406 reinterpret_cast<void*>(&double_constants.minus_one_half));
1407 }
1408
1409
address_of_negative_infinity()1410 ExternalReference ExternalReference::address_of_negative_infinity() {
1411 return ExternalReference(
1412 reinterpret_cast<void*>(&double_constants.negative_infinity));
1413 }
1414
1415
address_of_the_hole_nan()1416 ExternalReference ExternalReference::address_of_the_hole_nan() {
1417 return ExternalReference(
1418 reinterpret_cast<void*>(&double_constants.the_hole_nan));
1419 }
1420
1421
address_of_uint32_bias()1422 ExternalReference ExternalReference::address_of_uint32_bias() {
1423 return ExternalReference(
1424 reinterpret_cast<void*>(&double_constants.uint32_bias));
1425 }
1426
1427
is_profiling_address(Isolate * isolate)1428 ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) {
1429 return ExternalReference(isolate->is_profiling_address());
1430 }
1431
1432
invoke_function_callback(Isolate * isolate)1433 ExternalReference ExternalReference::invoke_function_callback(
1434 Isolate* isolate) {
1435 Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
1436 ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL;
1437 ApiFunction thunk_fun(thunk_address);
1438 return ExternalReference(&thunk_fun, thunk_type, isolate);
1439 }
1440
1441
invoke_accessor_getter_callback(Isolate * isolate)1442 ExternalReference ExternalReference::invoke_accessor_getter_callback(
1443 Isolate* isolate) {
1444 Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
1445 ExternalReference::Type thunk_type =
1446 ExternalReference::PROFILING_GETTER_CALL;
1447 ApiFunction thunk_fun(thunk_address);
1448 return ExternalReference(&thunk_fun, thunk_type, isolate);
1449 }
1450
1451
1452 #ifndef V8_INTERPRETED_REGEXP
1453
re_check_stack_guard_state(Isolate * isolate)1454 ExternalReference ExternalReference::re_check_stack_guard_state(
1455 Isolate* isolate) {
1456 Address function;
1457 #if V8_TARGET_ARCH_X64
1458 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
1459 #elif V8_TARGET_ARCH_IA32
1460 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
1461 #elif V8_TARGET_ARCH_ARM64
1462 function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState);
1463 #elif V8_TARGET_ARCH_ARM
1464 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
1465 #elif V8_TARGET_ARCH_PPC
1466 function = FUNCTION_ADDR(RegExpMacroAssemblerPPC::CheckStackGuardState);
1467 #elif V8_TARGET_ARCH_MIPS
1468 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
1469 #elif V8_TARGET_ARCH_MIPS64
1470 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
1471 #elif V8_TARGET_ARCH_S390
1472 function = FUNCTION_ADDR(RegExpMacroAssemblerS390::CheckStackGuardState);
1473 #elif V8_TARGET_ARCH_X87
1474 function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState);
1475 #else
1476 UNREACHABLE();
1477 #endif
1478 return ExternalReference(Redirect(isolate, function));
1479 }
1480
1481
re_grow_stack(Isolate * isolate)1482 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
1483 return ExternalReference(
1484 Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
1485 }
1486
re_case_insensitive_compare_uc16(Isolate * isolate)1487 ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
1488 Isolate* isolate) {
1489 return ExternalReference(Redirect(
1490 isolate,
1491 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
1492 }
1493
1494
re_word_character_map()1495 ExternalReference ExternalReference::re_word_character_map() {
1496 return ExternalReference(
1497 NativeRegExpMacroAssembler::word_character_map_address());
1498 }
1499
address_of_static_offsets_vector(Isolate * isolate)1500 ExternalReference ExternalReference::address_of_static_offsets_vector(
1501 Isolate* isolate) {
1502 return ExternalReference(
1503 reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()));
1504 }
1505
address_of_regexp_stack_memory_address(Isolate * isolate)1506 ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
1507 Isolate* isolate) {
1508 return ExternalReference(
1509 isolate->regexp_stack()->memory_address());
1510 }
1511
address_of_regexp_stack_memory_size(Isolate * isolate)1512 ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
1513 Isolate* isolate) {
1514 return ExternalReference(isolate->regexp_stack()->memory_size_address());
1515 }
1516
1517 #endif // V8_INTERPRETED_REGEXP
1518
ieee754_atan_function(Isolate * isolate)1519 ExternalReference ExternalReference::ieee754_atan_function(Isolate* isolate) {
1520 return ExternalReference(
1521 Redirect(isolate, FUNCTION_ADDR(base::ieee754::atan), BUILTIN_FP_CALL));
1522 }
1523
ieee754_atan2_function(Isolate * isolate)1524 ExternalReference ExternalReference::ieee754_atan2_function(Isolate* isolate) {
1525 return ExternalReference(Redirect(
1526 isolate, FUNCTION_ADDR(base::ieee754::atan2), BUILTIN_FP_FP_CALL));
1527 }
1528
ieee754_atanh_function(Isolate * isolate)1529 ExternalReference ExternalReference::ieee754_atanh_function(Isolate* isolate) {
1530 return ExternalReference(Redirect(
1531 isolate, FUNCTION_ADDR(base::ieee754::atanh), BUILTIN_FP_FP_CALL));
1532 }
1533
ieee754_cbrt_function(Isolate * isolate)1534 ExternalReference ExternalReference::ieee754_cbrt_function(Isolate* isolate) {
1535 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(base::ieee754::cbrt),
1536 BUILTIN_FP_FP_CALL));
1537 }
1538
ieee754_cos_function(Isolate * isolate)1539 ExternalReference ExternalReference::ieee754_cos_function(Isolate* isolate) {
1540 return ExternalReference(
1541 Redirect(isolate, FUNCTION_ADDR(base::ieee754::cos), BUILTIN_FP_CALL));
1542 }
1543
ieee754_exp_function(Isolate * isolate)1544 ExternalReference ExternalReference::ieee754_exp_function(Isolate* isolate) {
1545 return ExternalReference(
1546 Redirect(isolate, FUNCTION_ADDR(base::ieee754::exp), BUILTIN_FP_CALL));
1547 }
1548
ieee754_expm1_function(Isolate * isolate)1549 ExternalReference ExternalReference::ieee754_expm1_function(Isolate* isolate) {
1550 return ExternalReference(Redirect(
1551 isolate, FUNCTION_ADDR(base::ieee754::expm1), BUILTIN_FP_FP_CALL));
1552 }
1553
ieee754_log_function(Isolate * isolate)1554 ExternalReference ExternalReference::ieee754_log_function(Isolate* isolate) {
1555 return ExternalReference(
1556 Redirect(isolate, FUNCTION_ADDR(base::ieee754::log), BUILTIN_FP_CALL));
1557 }
1558
ieee754_log1p_function(Isolate * isolate)1559 ExternalReference ExternalReference::ieee754_log1p_function(Isolate* isolate) {
1560 return ExternalReference(
1561 Redirect(isolate, FUNCTION_ADDR(base::ieee754::log1p), BUILTIN_FP_CALL));
1562 }
1563
ieee754_log10_function(Isolate * isolate)1564 ExternalReference ExternalReference::ieee754_log10_function(Isolate* isolate) {
1565 return ExternalReference(
1566 Redirect(isolate, FUNCTION_ADDR(base::ieee754::log10), BUILTIN_FP_CALL));
1567 }
1568
ieee754_log2_function(Isolate * isolate)1569 ExternalReference ExternalReference::ieee754_log2_function(Isolate* isolate) {
1570 return ExternalReference(
1571 Redirect(isolate, FUNCTION_ADDR(base::ieee754::log2), BUILTIN_FP_CALL));
1572 }
1573
ieee754_sin_function(Isolate * isolate)1574 ExternalReference ExternalReference::ieee754_sin_function(Isolate* isolate) {
1575 return ExternalReference(
1576 Redirect(isolate, FUNCTION_ADDR(base::ieee754::sin), BUILTIN_FP_CALL));
1577 }
1578
ieee754_tan_function(Isolate * isolate)1579 ExternalReference ExternalReference::ieee754_tan_function(Isolate* isolate) {
1580 return ExternalReference(
1581 Redirect(isolate, FUNCTION_ADDR(base::ieee754::tan), BUILTIN_FP_CALL));
1582 }
1583
page_flags(Page * page)1584 ExternalReference ExternalReference::page_flags(Page* page) {
1585 return ExternalReference(reinterpret_cast<Address>(page) +
1586 MemoryChunk::kFlagsOffset);
1587 }
1588
1589
ForDeoptEntry(Address entry)1590 ExternalReference ExternalReference::ForDeoptEntry(Address entry) {
1591 return ExternalReference(entry);
1592 }
1593
1594
cpu_features()1595 ExternalReference ExternalReference::cpu_features() {
1596 DCHECK(CpuFeatures::initialized_);
1597 return ExternalReference(&CpuFeatures::supported_);
1598 }
1599
is_tail_call_elimination_enabled_address(Isolate * isolate)1600 ExternalReference ExternalReference::is_tail_call_elimination_enabled_address(
1601 Isolate* isolate) {
1602 return ExternalReference(isolate->is_tail_call_elimination_enabled_address());
1603 }
1604
debug_is_active_address(Isolate * isolate)1605 ExternalReference ExternalReference::debug_is_active_address(
1606 Isolate* isolate) {
1607 return ExternalReference(isolate->debug()->is_active_address());
1608 }
1609
1610
debug_after_break_target_address(Isolate * isolate)1611 ExternalReference ExternalReference::debug_after_break_target_address(
1612 Isolate* isolate) {
1613 return ExternalReference(isolate->debug()->after_break_target_address());
1614 }
1615
1616
virtual_handler_register(Isolate * isolate)1617 ExternalReference ExternalReference::virtual_handler_register(
1618 Isolate* isolate) {
1619 return ExternalReference(isolate->virtual_handler_register_address());
1620 }
1621
1622
virtual_slot_register(Isolate * isolate)1623 ExternalReference ExternalReference::virtual_slot_register(Isolate* isolate) {
1624 return ExternalReference(isolate->virtual_slot_register_address());
1625 }
1626
1627
runtime_function_table_address(Isolate * isolate)1628 ExternalReference ExternalReference::runtime_function_table_address(
1629 Isolate* isolate) {
1630 return ExternalReference(
1631 const_cast<Runtime::Function*>(Runtime::RuntimeFunctionTable(isolate)));
1632 }
1633
1634
power_helper(Isolate * isolate,double x,double y)1635 double power_helper(Isolate* isolate, double x, double y) {
1636 int y_int = static_cast<int>(y);
1637 if (y == y_int) {
1638 return power_double_int(x, y_int); // Returns 1 if exponent is 0.
1639 }
1640 if (y == 0.5) {
1641 lazily_initialize_fast_sqrt(isolate);
1642 return (std::isinf(x)) ? V8_INFINITY
1643 : fast_sqrt(x + 0.0, isolate); // Convert -0 to +0.
1644 }
1645 if (y == -0.5) {
1646 lazily_initialize_fast_sqrt(isolate);
1647 return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0,
1648 isolate); // Convert -0 to +0.
1649 }
1650 return power_double_double(x, y);
1651 }
1652
1653
1654 // Helper function to compute x^y, where y is known to be an
1655 // integer. Uses binary decomposition to limit the number of
1656 // multiplications; see the discussion in "Hacker's Delight" by Henry
1657 // S. Warren, Jr., figure 11-6, page 213.
power_double_int(double x,int y)1658 double power_double_int(double x, int y) {
1659 double m = (y < 0) ? 1 / x : x;
1660 unsigned n = (y < 0) ? -y : y;
1661 double p = 1;
1662 while (n != 0) {
1663 if ((n & 1) != 0) p *= m;
1664 m *= m;
1665 if ((n & 2) != 0) p *= m;
1666 m *= m;
1667 n >>= 2;
1668 }
1669 return p;
1670 }
1671
1672
power_double_double(double x,double y)1673 double power_double_double(double x, double y) {
1674 // The checks for special cases can be dropped in ia32 because it has already
1675 // been done in generated code before bailing out here.
1676 if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
1677 return std::numeric_limits<double>::quiet_NaN();
1678 }
1679 return Pow(x, y);
1680 }
1681
1682
power_double_double_function(Isolate * isolate)1683 ExternalReference ExternalReference::power_double_double_function(
1684 Isolate* isolate) {
1685 return ExternalReference(Redirect(isolate,
1686 FUNCTION_ADDR(power_double_double),
1687 BUILTIN_FP_FP_CALL));
1688 }
1689
1690
power_double_int_function(Isolate * isolate)1691 ExternalReference ExternalReference::power_double_int_function(
1692 Isolate* isolate) {
1693 return ExternalReference(Redirect(isolate,
1694 FUNCTION_ADDR(power_double_int),
1695 BUILTIN_FP_INT_CALL));
1696 }
1697
1698
mod_two_doubles_operation(Isolate * isolate)1699 ExternalReference ExternalReference::mod_two_doubles_operation(
1700 Isolate* isolate) {
1701 return ExternalReference(Redirect(isolate,
1702 FUNCTION_ADDR(modulo),
1703 BUILTIN_FP_FP_CALL));
1704 }
1705
debug_last_step_action_address(Isolate * isolate)1706 ExternalReference ExternalReference::debug_last_step_action_address(
1707 Isolate* isolate) {
1708 return ExternalReference(isolate->debug()->last_step_action_address());
1709 }
1710
debug_suspended_generator_address(Isolate * isolate)1711 ExternalReference ExternalReference::debug_suspended_generator_address(
1712 Isolate* isolate) {
1713 return ExternalReference(isolate->debug()->suspended_generator_address());
1714 }
1715
fixed_typed_array_base_data_offset()1716 ExternalReference ExternalReference::fixed_typed_array_base_data_offset() {
1717 return ExternalReference(reinterpret_cast<void*>(
1718 FixedTypedArrayBase::kDataOffset - kHeapObjectTag));
1719 }
1720
1721
operator ==(ExternalReference lhs,ExternalReference rhs)1722 bool operator==(ExternalReference lhs, ExternalReference rhs) {
1723 return lhs.address() == rhs.address();
1724 }
1725
1726
operator !=(ExternalReference lhs,ExternalReference rhs)1727 bool operator!=(ExternalReference lhs, ExternalReference rhs) {
1728 return !(lhs == rhs);
1729 }
1730
1731
hash_value(ExternalReference reference)1732 size_t hash_value(ExternalReference reference) {
1733 return base::hash<Address>()(reference.address());
1734 }
1735
1736
operator <<(std::ostream & os,ExternalReference reference)1737 std::ostream& operator<<(std::ostream& os, ExternalReference reference) {
1738 os << static_cast<const void*>(reference.address());
1739 const Runtime::Function* fn = Runtime::FunctionForEntry(reference.address());
1740 if (fn) os << "<" << fn->name << ".entry>";
1741 return os;
1742 }
1743
RecordPosition(int pos)1744 void AssemblerPositionsRecorder::RecordPosition(int pos) {
1745 DCHECK(pos != RelocInfo::kNoPosition);
1746 DCHECK(pos >= 0);
1747 current_position_ = pos;
1748 LOG_CODE_EVENT(assembler_->isolate(),
1749 CodeLinePosInfoAddPositionEvent(jit_handler_data_,
1750 assembler_->pc_offset(),
1751 pos));
1752 WriteRecordedPositions();
1753 }
1754
RecordStatementPosition(int pos)1755 void AssemblerPositionsRecorder::RecordStatementPosition(int pos) {
1756 DCHECK(pos != RelocInfo::kNoPosition);
1757 DCHECK(pos >= 0);
1758 current_statement_position_ = pos;
1759 LOG_CODE_EVENT(assembler_->isolate(),
1760 CodeLinePosInfoAddStatementPositionEvent(
1761 jit_handler_data_,
1762 assembler_->pc_offset(),
1763 pos));
1764 RecordPosition(pos);
1765 }
1766
WriteRecordedPositions()1767 void AssemblerPositionsRecorder::WriteRecordedPositions() {
1768 // Write the statement position if it is different from what was written last
1769 // time.
1770 if (current_statement_position_ != written_statement_position_) {
1771 EnsureSpace ensure_space(assembler_);
1772 assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
1773 current_statement_position_);
1774 written_position_ = current_statement_position_;
1775 written_statement_position_ = current_statement_position_;
1776 }
1777
1778 // Write the position if it is different from what was written last time and
1779 // also different from the statement position that was just written.
1780 if (current_position_ != written_position_) {
1781 EnsureSpace ensure_space(assembler_);
1782 assembler_->RecordRelocInfo(RelocInfo::POSITION, current_position_);
1783 written_position_ = current_position_;
1784 }
1785 }
1786
1787
ConstantPoolBuilder(int ptr_reach_bits,int double_reach_bits)1788 ConstantPoolBuilder::ConstantPoolBuilder(int ptr_reach_bits,
1789 int double_reach_bits) {
1790 info_[ConstantPoolEntry::INTPTR].entries.reserve(64);
1791 info_[ConstantPoolEntry::INTPTR].regular_reach_bits = ptr_reach_bits;
1792 info_[ConstantPoolEntry::DOUBLE].regular_reach_bits = double_reach_bits;
1793 }
1794
1795
NextAccess(ConstantPoolEntry::Type type) const1796 ConstantPoolEntry::Access ConstantPoolBuilder::NextAccess(
1797 ConstantPoolEntry::Type type) const {
1798 const PerTypeEntryInfo& info = info_[type];
1799
1800 if (info.overflow()) return ConstantPoolEntry::OVERFLOWED;
1801
1802 int dbl_count = info_[ConstantPoolEntry::DOUBLE].regular_count;
1803 int dbl_offset = dbl_count * kDoubleSize;
1804 int ptr_count = info_[ConstantPoolEntry::INTPTR].regular_count;
1805 int ptr_offset = ptr_count * kPointerSize + dbl_offset;
1806
1807 if (type == ConstantPoolEntry::DOUBLE) {
1808 // Double overflow detection must take into account the reach for both types
1809 int ptr_reach_bits = info_[ConstantPoolEntry::INTPTR].regular_reach_bits;
1810 if (!is_uintn(dbl_offset, info.regular_reach_bits) ||
1811 (ptr_count > 0 &&
1812 !is_uintn(ptr_offset + kDoubleSize - kPointerSize, ptr_reach_bits))) {
1813 return ConstantPoolEntry::OVERFLOWED;
1814 }
1815 } else {
1816 DCHECK(type == ConstantPoolEntry::INTPTR);
1817 if (!is_uintn(ptr_offset, info.regular_reach_bits)) {
1818 return ConstantPoolEntry::OVERFLOWED;
1819 }
1820 }
1821
1822 return ConstantPoolEntry::REGULAR;
1823 }
1824
1825
AddEntry(ConstantPoolEntry & entry,ConstantPoolEntry::Type type)1826 ConstantPoolEntry::Access ConstantPoolBuilder::AddEntry(
1827 ConstantPoolEntry& entry, ConstantPoolEntry::Type type) {
1828 DCHECK(!emitted_label_.is_bound());
1829 PerTypeEntryInfo& info = info_[type];
1830 const int entry_size = ConstantPoolEntry::size(type);
1831 bool merged = false;
1832
1833 if (entry.sharing_ok()) {
1834 // Try to merge entries
1835 std::vector<ConstantPoolEntry>::iterator it = info.shared_entries.begin();
1836 int end = static_cast<int>(info.shared_entries.size());
1837 for (int i = 0; i < end; i++, it++) {
1838 if ((entry_size == kPointerSize) ? entry.value() == it->value()
1839 : entry.value64() == it->value64()) {
1840 // Merge with found entry.
1841 entry.set_merged_index(i);
1842 merged = true;
1843 break;
1844 }
1845 }
1846 }
1847
1848 // By definition, merged entries have regular access.
1849 DCHECK(!merged || entry.merged_index() < info.regular_count);
1850 ConstantPoolEntry::Access access =
1851 (merged ? ConstantPoolEntry::REGULAR : NextAccess(type));
1852
1853 // Enforce an upper bound on search time by limiting the search to
1854 // unique sharable entries which fit in the regular section.
1855 if (entry.sharing_ok() && !merged && access == ConstantPoolEntry::REGULAR) {
1856 info.shared_entries.push_back(entry);
1857 } else {
1858 info.entries.push_back(entry);
1859 }
1860
1861 // We're done if we found a match or have already triggered the
1862 // overflow state.
1863 if (merged || info.overflow()) return access;
1864
1865 if (access == ConstantPoolEntry::REGULAR) {
1866 info.regular_count++;
1867 } else {
1868 info.overflow_start = static_cast<int>(info.entries.size()) - 1;
1869 }
1870
1871 return access;
1872 }
1873
1874
EmitSharedEntries(Assembler * assm,ConstantPoolEntry::Type type)1875 void ConstantPoolBuilder::EmitSharedEntries(Assembler* assm,
1876 ConstantPoolEntry::Type type) {
1877 PerTypeEntryInfo& info = info_[type];
1878 std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
1879 const int entry_size = ConstantPoolEntry::size(type);
1880 int base = emitted_label_.pos();
1881 DCHECK(base > 0);
1882 int shared_end = static_cast<int>(shared_entries.size());
1883 std::vector<ConstantPoolEntry>::iterator shared_it = shared_entries.begin();
1884 for (int i = 0; i < shared_end; i++, shared_it++) {
1885 int offset = assm->pc_offset() - base;
1886 shared_it->set_offset(offset); // Save offset for merged entries.
1887 if (entry_size == kPointerSize) {
1888 assm->dp(shared_it->value());
1889 } else {
1890 assm->dq(shared_it->value64());
1891 }
1892 DCHECK(is_uintn(offset, info.regular_reach_bits));
1893
1894 // Patch load sequence with correct offset.
1895 assm->PatchConstantPoolAccessInstruction(shared_it->position(), offset,
1896 ConstantPoolEntry::REGULAR, type);
1897 }
1898 }
1899
1900
EmitGroup(Assembler * assm,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1901 void ConstantPoolBuilder::EmitGroup(Assembler* assm,
1902 ConstantPoolEntry::Access access,
1903 ConstantPoolEntry::Type type) {
1904 PerTypeEntryInfo& info = info_[type];
1905 const bool overflow = info.overflow();
1906 std::vector<ConstantPoolEntry>& entries = info.entries;
1907 std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
1908 const int entry_size = ConstantPoolEntry::size(type);
1909 int base = emitted_label_.pos();
1910 DCHECK(base > 0);
1911 int begin;
1912 int end;
1913
1914 if (access == ConstantPoolEntry::REGULAR) {
1915 // Emit any shared entries first
1916 EmitSharedEntries(assm, type);
1917 }
1918
1919 if (access == ConstantPoolEntry::REGULAR) {
1920 begin = 0;
1921 end = overflow ? info.overflow_start : static_cast<int>(entries.size());
1922 } else {
1923 DCHECK(access == ConstantPoolEntry::OVERFLOWED);
1924 if (!overflow) return;
1925 begin = info.overflow_start;
1926 end = static_cast<int>(entries.size());
1927 }
1928
1929 std::vector<ConstantPoolEntry>::iterator it = entries.begin();
1930 if (begin > 0) std::advance(it, begin);
1931 for (int i = begin; i < end; i++, it++) {
1932 // Update constant pool if necessary and get the entry's offset.
1933 int offset;
1934 ConstantPoolEntry::Access entry_access;
1935 if (!it->is_merged()) {
1936 // Emit new entry
1937 offset = assm->pc_offset() - base;
1938 entry_access = access;
1939 if (entry_size == kPointerSize) {
1940 assm->dp(it->value());
1941 } else {
1942 assm->dq(it->value64());
1943 }
1944 } else {
1945 // Retrieve offset from shared entry.
1946 offset = shared_entries[it->merged_index()].offset();
1947 entry_access = ConstantPoolEntry::REGULAR;
1948 }
1949
1950 DCHECK(entry_access == ConstantPoolEntry::OVERFLOWED ||
1951 is_uintn(offset, info.regular_reach_bits));
1952
1953 // Patch load sequence with correct offset.
1954 assm->PatchConstantPoolAccessInstruction(it->position(), offset,
1955 entry_access, type);
1956 }
1957 }
1958
1959
1960 // Emit and return position of pool. Zero implies no constant pool.
Emit(Assembler * assm)1961 int ConstantPoolBuilder::Emit(Assembler* assm) {
1962 bool emitted = emitted_label_.is_bound();
1963 bool empty = IsEmpty();
1964
1965 if (!emitted) {
1966 // Mark start of constant pool. Align if necessary.
1967 if (!empty) assm->DataAlign(kDoubleSize);
1968 assm->bind(&emitted_label_);
1969 if (!empty) {
1970 // Emit in groups based on access and type.
1971 // Emit doubles first for alignment purposes.
1972 EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::DOUBLE);
1973 EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::INTPTR);
1974 if (info_[ConstantPoolEntry::DOUBLE].overflow()) {
1975 assm->DataAlign(kDoubleSize);
1976 EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
1977 ConstantPoolEntry::DOUBLE);
1978 }
1979 if (info_[ConstantPoolEntry::INTPTR].overflow()) {
1980 EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
1981 ConstantPoolEntry::INTPTR);
1982 }
1983 }
1984 }
1985
1986 return !empty ? emitted_label_.pos() : 0;
1987 }
1988
1989
1990 // Platform specific but identical code for all the platforms.
1991
RecordDeoptReason(const int reason,int raw_position,int id)1992 void Assembler::RecordDeoptReason(const int reason, int raw_position, int id) {
1993 if (FLAG_trace_deopt || isolate()->is_profiling()) {
1994 EnsureSpace ensure_space(this);
1995 RecordRelocInfo(RelocInfo::POSITION, raw_position);
1996 RecordRelocInfo(RelocInfo::DEOPT_REASON, reason);
1997 RecordRelocInfo(RelocInfo::DEOPT_ID, id);
1998 }
1999 }
2000
2001
RecordComment(const char * msg)2002 void Assembler::RecordComment(const char* msg) {
2003 if (FLAG_code_comments) {
2004 EnsureSpace ensure_space(this);
2005 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
2006 }
2007 }
2008
2009
RecordGeneratorContinuation()2010 void Assembler::RecordGeneratorContinuation() {
2011 EnsureSpace ensure_space(this);
2012 RecordRelocInfo(RelocInfo::GENERATOR_CONTINUATION);
2013 }
2014
2015
RecordDebugBreakSlot(RelocInfo::Mode mode)2016 void Assembler::RecordDebugBreakSlot(RelocInfo::Mode mode) {
2017 EnsureSpace ensure_space(this);
2018 DCHECK(RelocInfo::IsDebugBreakSlot(mode));
2019 RecordRelocInfo(mode);
2020 }
2021
2022
DataAlign(int m)2023 void Assembler::DataAlign(int m) {
2024 DCHECK(m >= 2 && base::bits::IsPowerOfTwo32(m));
2025 while ((pc_offset() & (m - 1)) != 0) {
2026 db(0);
2027 }
2028 }
2029 } // namespace internal
2030 } // namespace v8
2031