• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // This file contains the CodedInputStream and CodedOutputStream classes,
36 // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
37 // and allow you to read or write individual pieces of data in various
38 // formats.  In particular, these implement the varint encoding for
39 // integers, a simple variable-length encoding in which smaller numbers
40 // take fewer bytes.
41 //
42 // Typically these classes will only be used internally by the protocol
43 // buffer library in order to encode and decode protocol buffers.  Clients
44 // of the library only need to know about this class if they wish to write
45 // custom message parsing or serialization procedures.
46 //
47 // CodedOutputStream example:
48 //   // Write some data to "myfile".  First we write a 4-byte "magic number"
49 //   // to identify the file type, then write a length-delimited string.  The
50 //   // string is composed of a varint giving the length followed by the raw
51 //   // bytes.
52 //   int fd = open("myfile", O_WRONLY);
53 //   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
54 //   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
55 //
56 //   int magic_number = 1234;
57 //   char text[] = "Hello world!";
58 //   coded_output->WriteLittleEndian32(magic_number);
59 //   coded_output->WriteVarint32(strlen(text));
60 //   coded_output->WriteRaw(text, strlen(text));
61 //
62 //   delete coded_output;
63 //   delete raw_output;
64 //   close(fd);
65 //
66 // CodedInputStream example:
67 //   // Read a file created by the above code.
68 //   int fd = open("myfile", O_RDONLY);
69 //   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
70 //   CodedInputStream coded_input = new CodedInputStream(raw_input);
71 //
72 //   coded_input->ReadLittleEndian32(&magic_number);
73 //   if (magic_number != 1234) {
74 //     cerr << "File not in expected format." << endl;
75 //     return;
76 //   }
77 //
78 //   uint32 size;
79 //   coded_input->ReadVarint32(&size);
80 //
81 //   char* text = new char[size + 1];
82 //   coded_input->ReadRaw(buffer, size);
83 //   text[size] = '\0';
84 //
85 //   delete coded_input;
86 //   delete raw_input;
87 //   close(fd);
88 //
89 //   cout << "Text is: " << text << endl;
90 //   delete [] text;
91 //
92 // For those who are interested, varint encoding is defined as follows:
93 //
94 // The encoding operates on unsigned integers of up to 64 bits in length.
95 // Each byte of the encoded value has the format:
96 // * bits 0-6: Seven bits of the number being encoded.
97 // * bit 7: Zero if this is the last byte in the encoding (in which
98 //   case all remaining bits of the number are zero) or 1 if
99 //   more bytes follow.
100 // The first byte contains the least-significant 7 bits of the number, the
101 // second byte (if present) contains the next-least-significant 7 bits,
102 // and so on.  So, the binary number 1011000101011 would be encoded in two
103 // bytes as "10101011 00101100".
104 //
105 // In theory, varint could be used to encode integers of any length.
106 // However, for practicality we set a limit at 64 bits.  The maximum encoded
107 // length of a number is thus 10 bytes.
108 
109 #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
110 #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
111 
112 #include <string>
113 #ifdef _MSC_VER
114   #if defined(_M_IX86) && \
115       !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
116     #define PROTOBUF_LITTLE_ENDIAN 1
117   #endif
118   #if _MSC_VER >= 1300
119     // If MSVC has "/RTCc" set, it will complain about truncating casts at
120     // runtime.  This file contains some intentional truncating casts.
121     #pragma runtime_checks("c", off)
122   #endif
123 #else
124   #include <sys/param.h>   // __BYTE_ORDER
125   #if defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN && \
126       !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
127     #define PROTOBUF_LITTLE_ENDIAN 1
128   #endif
129 #endif
130 #include <google/protobuf/stubs/common.h>
131 
132 
133 namespace google {
134 namespace protobuf {
135 
136 class DescriptorPool;
137 class MessageFactory;
138 
139 namespace io {
140 
141 // Defined in this file.
142 class CodedInputStream;
143 class CodedOutputStream;
144 
145 // Defined in other files.
146 class ZeroCopyInputStream;           // zero_copy_stream.h
147 class ZeroCopyOutputStream;          // zero_copy_stream.h
148 
149 // Class which reads and decodes binary data which is composed of varint-
150 // encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
151 // Most users will not need to deal with CodedInputStream.
152 //
153 // Most methods of CodedInputStream that return a bool return false if an
154 // underlying I/O error occurs or if the data is malformed.  Once such a
155 // failure occurs, the CodedInputStream is broken and is no longer useful.
156 class LIBPROTOBUF_EXPORT CodedInputStream {
157  public:
158   // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
159   explicit CodedInputStream(ZeroCopyInputStream* input);
160 
161   // Create a CodedInputStream that reads from the given flat array.  This is
162   // faster than using an ArrayInputStream.  PushLimit(size) is implied by
163   // this constructor.
164   explicit CodedInputStream(const uint8* buffer, int size);
165 
166   // Destroy the CodedInputStream and position the underlying
167   // ZeroCopyInputStream at the first unread byte.  If an error occurred while
168   // reading (causing a method to return false), then the exact position of
169   // the input stream may be anywhere between the last value that was read
170   // successfully and the stream's byte limit.
171   ~CodedInputStream();
172 
173   // Return true if this CodedInputStream reads from a flat array instead of
174   // a ZeroCopyInputStream.
175   inline bool IsFlat() const;
176 
177   // Skips a number of bytes.  Returns false if an underlying read error
178   // occurs.
179   bool Skip(int count);
180 
181   // Sets *data to point directly at the unread part of the CodedInputStream's
182   // underlying buffer, and *size to the size of that buffer, but does not
183   // advance the stream's current position.  This will always either produce
184   // a non-empty buffer or return false.  If the caller consumes any of
185   // this data, it should then call Skip() to skip over the consumed bytes.
186   // This may be useful for implementing external fast parsing routines for
187   // types of data not covered by the CodedInputStream interface.
188   bool GetDirectBufferPointer(const void** data, int* size);
189 
190   // Like GetDirectBufferPointer, but this method is inlined, and does not
191   // attempt to Refresh() if the buffer is currently empty.
192   inline void GetDirectBufferPointerInline(const void** data,
193                                            int* size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
194 
195   // Read raw bytes, copying them into the given buffer.
196   bool ReadRaw(void* buffer, int size);
197 
198   // Like ReadRaw, but reads into a string.
199   //
200   // Implementation Note:  ReadString() grows the string gradually as it
201   // reads in the data, rather than allocating the entire requested size
202   // upfront.  This prevents denial-of-service attacks in which a client
203   // could claim that a string is going to be MAX_INT bytes long in order to
204   // crash the server because it can't allocate this much space at once.
205   bool ReadString(string* buffer, int size);
206   // Like the above, with inlined optimizations. This should only be used
207   // by the protobuf implementation.
208   inline bool InternalReadStringInline(string* buffer,
209                                        int size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
210 
211 
212   // Read a 32-bit little-endian integer.
213   bool ReadLittleEndian32(uint32* value);
214   // Read a 64-bit little-endian integer.
215   bool ReadLittleEndian64(uint64* value);
216 
217   // These methods read from an externally provided buffer. The caller is
218   // responsible for ensuring that the buffer has sufficient space.
219   // Read a 32-bit little-endian integer.
220   static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
221                                                    uint32* value);
222   // Read a 64-bit little-endian integer.
223   static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
224                                                    uint64* value);
225 
226   // Read an unsigned integer with Varint encoding, truncating to 32 bits.
227   // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
228   // it to uint32, but may be more efficient.
229   bool ReadVarint32(uint32* value);
230   // Read an unsigned integer with Varint encoding.
231   bool ReadVarint64(uint64* value);
232 
233   // Read a tag.  This calls ReadVarint32() and returns the result, or returns
234   // zero (which is not a valid tag) if ReadVarint32() fails.  Also, it updates
235   // the last tag value, which can be checked with LastTagWas().
236   // Always inline because this is only called in one place per parse loop
237   // but it is called for every iteration of said loop, so it should be fast.
238   // GCC doesn't want to inline this by default.
239   uint32 ReadTag() GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
240 
241   // This usually a faster alternative to ReadTag() when cutoff is a manifest
242   // constant.  It does particularly well for cutoff >= 127.  The first part
243   // of the return value is the tag that was read, though it can also be 0 in
244   // the cases where ReadTag() would return 0.  If the second part is true
245   // then the tag is known to be in [0, cutoff].  If not, the tag either is
246   // above cutoff or is 0.  (There's intentional wiggle room when tag is 0,
247   // because that can arise in several ways, and for best performance we want
248   // to avoid an extra "is tag == 0?" check here.)
249   inline std::pair<uint32, bool> ReadTagWithCutoff(uint32 cutoff)
250       GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
251 
252   // Usually returns true if calling ReadVarint32() now would produce the given
253   // value.  Will always return false if ReadVarint32() would not return the
254   // given value.  If ExpectTag() returns true, it also advances past
255   // the varint.  For best performance, use a compile-time constant as the
256   // parameter.
257   // Always inline because this collapses to a small number of instructions
258   // when given a constant parameter, but GCC doesn't want to inline by default.
259   bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
260 
261   // Like above, except this reads from the specified buffer. The caller is
262   // responsible for ensuring that the buffer is large enough to read a varint
263   // of the expected size. For best performance, use a compile-time constant as
264   // the expected tag parameter.
265   //
266   // Returns a pointer beyond the expected tag if it was found, or NULL if it
267   // was not.
268   static const uint8* ExpectTagFromArray(
269       const uint8* buffer,
270       uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
271 
272   // Usually returns true if no more bytes can be read.  Always returns false
273   // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
274   // call to LastTagWas() will act as if ReadTag() had been called and returned
275   // zero, and ConsumedEntireMessage() will return true.
276   bool ExpectAtEnd();
277 
278   // If the last call to ReadTag() or ReadTagWithCutoff() returned the
279   // given value, returns true.  Otherwise, returns false;
280   //
281   // This is needed because parsers for some types of embedded messages
282   // (with field type TYPE_GROUP) don't actually know that they've reached the
283   // end of a message until they see an ENDGROUP tag, which was actually part
284   // of the enclosing message.  The enclosing message would like to check that
285   // tag to make sure it had the right number, so it calls LastTagWas() on
286   // return from the embedded parser to check.
287   bool LastTagWas(uint32 expected);
288 
289   // When parsing message (but NOT a group), this method must be called
290   // immediately after MergeFromCodedStream() returns (if it returns true)
291   // to further verify that the message ended in a legitimate way.  For
292   // example, this verifies that parsing did not end on an end-group tag.
293   // It also checks for some cases where, due to optimizations,
294   // MergeFromCodedStream() can incorrectly return true.
295   bool ConsumedEntireMessage();
296 
297   // Limits ----------------------------------------------------------
298   // Limits are used when parsing length-delimited embedded messages.
299   // After the message's length is read, PushLimit() is used to prevent
300   // the CodedInputStream from reading beyond that length.  Once the
301   // embedded message has been parsed, PopLimit() is called to undo the
302   // limit.
303 
304   // Opaque type used with PushLimit() and PopLimit().  Do not modify
305   // values of this type yourself.  The only reason that this isn't a
306   // struct with private internals is for efficiency.
307   typedef int Limit;
308 
309   // Places a limit on the number of bytes that the stream may read,
310   // starting from the current position.  Once the stream hits this limit,
311   // it will act like the end of the input has been reached until PopLimit()
312   // is called.
313   //
314   // As the names imply, the stream conceptually has a stack of limits.  The
315   // shortest limit on the stack is always enforced, even if it is not the
316   // top limit.
317   //
318   // The value returned by PushLimit() is opaque to the caller, and must
319   // be passed unchanged to the corresponding call to PopLimit().
320   Limit PushLimit(int byte_limit);
321 
322   // Pops the last limit pushed by PushLimit().  The input must be the value
323   // returned by that call to PushLimit().
324   void PopLimit(Limit limit);
325 
326   // Returns the number of bytes left until the nearest limit on the
327   // stack is hit, or -1 if no limits are in place.
328   int BytesUntilLimit() const;
329 
330   // Returns current position relative to the beginning of the input stream.
331   int CurrentPosition() const;
332 
333   // Total Bytes Limit -----------------------------------------------
334   // To prevent malicious users from sending excessively large messages
335   // and causing integer overflows or memory exhaustion, CodedInputStream
336   // imposes a hard limit on the total number of bytes it will read.
337 
338   // Sets the maximum number of bytes that this CodedInputStream will read
339   // before refusing to continue.  To prevent integer overflows in the
340   // protocol buffers implementation, as well as to prevent servers from
341   // allocating enormous amounts of memory to hold parsed messages, the
342   // maximum message length should be limited to the shortest length that
343   // will not harm usability.  The theoretical shortest message that could
344   // cause integer overflows is 512MB.  The default limit is 64MB.  Apps
345   // should set shorter limits if possible.  If warning_threshold is not -1,
346   // a warning will be printed to stderr after warning_threshold bytes are
347   // read.  For backwards compatibility all negative values get squashed to -1,
348   // as other negative values might have special internal meanings.
349   // An error will always be printed to stderr if the limit is reached.
350   //
351   // This is unrelated to PushLimit()/PopLimit().
352   //
353   // Hint:  If you are reading this because your program is printing a
354   //   warning about dangerously large protocol messages, you may be
355   //   confused about what to do next.  The best option is to change your
356   //   design such that excessively large messages are not necessary.
357   //   For example, try to design file formats to consist of many small
358   //   messages rather than a single large one.  If this is infeasible,
359   //   you will need to increase the limit.  Chances are, though, that
360   //   your code never constructs a CodedInputStream on which the limit
361   //   can be set.  You probably parse messages by calling things like
362   //   Message::ParseFromString().  In this case, you will need to change
363   //   your code to instead construct some sort of ZeroCopyInputStream
364   //   (e.g. an ArrayInputStream), construct a CodedInputStream around
365   //   that, then call Message::ParseFromCodedStream() instead.  Then
366   //   you can adjust the limit.  Yes, it's more work, but you're doing
367   //   something unusual.
368   void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
369 
370   // The Total Bytes Limit minus the Current Position, or -1 if there
371   // is no Total Bytes Limit.
372   int BytesUntilTotalBytesLimit() const;
373 
374   // Recursion Limit -------------------------------------------------
375   // To prevent corrupt or malicious messages from causing stack overflows,
376   // we must keep track of the depth of recursion when parsing embedded
377   // messages and groups.  CodedInputStream keeps track of this because it
378   // is the only object that is passed down the stack during parsing.
379 
380   // Sets the maximum recursion depth.  The default is 100.
381   void SetRecursionLimit(int limit);
382 
383 
384   // Increments the current recursion depth.  Returns true if the depth is
385   // under the limit, false if it has gone over.
386   bool IncrementRecursionDepth();
387 
388   // Decrements the recursion depth.
389   void DecrementRecursionDepth();
390 
391   // Extension Registry ----------------------------------------------
392   // ADVANCED USAGE:  99.9% of people can ignore this section.
393   //
394   // By default, when parsing extensions, the parser looks for extension
395   // definitions in the pool which owns the outer message's Descriptor.
396   // However, you may call SetExtensionRegistry() to provide an alternative
397   // pool instead.  This makes it possible, for example, to parse a message
398   // using a generated class, but represent some extensions using
399   // DynamicMessage.
400 
401   // Set the pool used to look up extensions.  Most users do not need to call
402   // this as the correct pool will be chosen automatically.
403   //
404   // WARNING:  It is very easy to misuse this.  Carefully read the requirements
405   //   below.  Do not use this unless you are sure you need it.  Almost no one
406   //   does.
407   //
408   // Let's say you are parsing a message into message object m, and you want
409   // to take advantage of SetExtensionRegistry().  You must follow these
410   // requirements:
411   //
412   // The given DescriptorPool must contain m->GetDescriptor().  It is not
413   // sufficient for it to simply contain a descriptor that has the same name
414   // and content -- it must be the *exact object*.  In other words:
415   //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
416   //          m->GetDescriptor());
417   // There are two ways to satisfy this requirement:
418   // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
419   //    because this is the pool that would be used anyway if you didn't call
420   //    SetExtensionRegistry() at all.
421   // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
422   //    "underlay".  Read the documentation for DescriptorPool for more
423   //    information about underlays.
424   //
425   // You must also provide a MessageFactory.  This factory will be used to
426   // construct Message objects representing extensions.  The factory's
427   // GetPrototype() MUST return non-NULL for any Descriptor which can be found
428   // through the provided pool.
429   //
430   // If the provided factory might return instances of protocol-compiler-
431   // generated (i.e. compiled-in) types, or if the outer message object m is
432   // a generated type, then the given factory MUST have this property:  If
433   // GetPrototype() is given a Descriptor which resides in
434   // DescriptorPool::generated_pool(), the factory MUST return the same
435   // prototype which MessageFactory::generated_factory() would return.  That
436   // is, given a descriptor for a generated type, the factory must return an
437   // instance of the generated class (NOT DynamicMessage).  However, when
438   // given a descriptor for a type that is NOT in generated_pool, the factory
439   // is free to return any implementation.
440   //
441   // The reason for this requirement is that generated sub-objects may be
442   // accessed via the standard (non-reflection) extension accessor methods,
443   // and these methods will down-cast the object to the generated class type.
444   // If the object is not actually of that type, the results would be undefined.
445   // On the other hand, if an extension is not compiled in, then there is no
446   // way the code could end up accessing it via the standard accessors -- the
447   // only way to access the extension is via reflection.  When using reflection,
448   // DynamicMessage and generated messages are indistinguishable, so it's fine
449   // if these objects are represented using DynamicMessage.
450   //
451   // Using DynamicMessageFactory on which you have called
452   // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
453   // above requirement.
454   //
455   // If either pool or factory is NULL, both must be NULL.
456   //
457   // Note that this feature is ignored when parsing "lite" messages as they do
458   // not have descriptors.
459   void SetExtensionRegistry(const DescriptorPool* pool,
460                             MessageFactory* factory);
461 
462   // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
463   // has been provided.
464   const DescriptorPool* GetExtensionPool();
465 
466   // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
467   // factory has been provided.
468   MessageFactory* GetExtensionFactory();
469 
470  private:
471   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
472 
473   ZeroCopyInputStream* input_;
474   const uint8* buffer_;
475   const uint8* buffer_end_;     // pointer to the end of the buffer.
476   int total_bytes_read_;  // total bytes read from input_, including
477                           // the current buffer
478 
479   // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
480   // so that we can BackUp() on destruction.
481   int overflow_bytes_;
482 
483   // LastTagWas() stuff.
484   uint32 last_tag_;         // result of last ReadTag() or ReadTagWithCutoff().
485 
486   // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
487   // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
488   // reach the end of a message and attempt to read another tag.
489   bool legitimate_message_end_;
490 
491   // See EnableAliasing().
492   bool aliasing_enabled_;
493 
494   // Limits
495   Limit current_limit_;   // if position = -1, no limit is applied
496 
497   // For simplicity, if the current buffer crosses a limit (either a normal
498   // limit created by PushLimit() or the total bytes limit), buffer_size_
499   // only tracks the number of bytes before that limit.  This field
500   // contains the number of bytes after it.  Note that this implies that if
501   // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
502   // hit a limit.  However, if both are zero, it doesn't necessarily mean
503   // we aren't at a limit -- the buffer may have ended exactly at the limit.
504   int buffer_size_after_limit_;
505 
506   // Maximum number of bytes to read, period.  This is unrelated to
507   // current_limit_.  Set using SetTotalBytesLimit().
508   int total_bytes_limit_;
509 
510   // If positive/0: Limit for bytes read after which a warning due to size
511   // should be logged.
512   // If -1: Printing of warning disabled. Can be set by client.
513   // If -2: Internal: Limit has been reached, print full size when destructing.
514   int total_bytes_warning_threshold_;
515 
516   // Current recursion depth, controlled by IncrementRecursionDepth() and
517   // DecrementRecursionDepth().
518   int recursion_depth_;
519   // Recursion depth limit, set by SetRecursionLimit().
520   int recursion_limit_;
521 
522   // See SetExtensionRegistry().
523   const DescriptorPool* extension_pool_;
524   MessageFactory* extension_factory_;
525 
526   // Private member functions.
527 
528   // Advance the buffer by a given number of bytes.
529   void Advance(int amount);
530 
531   // Back up input_ to the current buffer position.
532   void BackUpInputToCurrentPosition();
533 
534   // Recomputes the value of buffer_size_after_limit_.  Must be called after
535   // current_limit_ or total_bytes_limit_ changes.
536   void RecomputeBufferLimits();
537 
538   // Writes an error message saying that we hit total_bytes_limit_.
539   void PrintTotalBytesLimitError();
540 
541   // Called when the buffer runs out to request more data.  Implies an
542   // Advance(BufferSize()).
543   bool Refresh();
544 
545   // When parsing varints, we optimize for the common case of small values, and
546   // then optimize for the case when the varint fits within the current buffer
547   // piece. The Fallback method is used when we can't use the one-byte
548   // optimization. The Slow method is yet another fallback when the buffer is
549   // not large enough. Making the slow path out-of-line speeds up the common
550   // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
551   // message crosses multiple buffers.
552   bool ReadVarint32Fallback(uint32* value);
553   bool ReadVarint64Fallback(uint64* value);
554   bool ReadVarint32Slow(uint32* value);
555   bool ReadVarint64Slow(uint64* value);
556   bool ReadLittleEndian32Fallback(uint32* value);
557   bool ReadLittleEndian64Fallback(uint64* value);
558   // Fallback/slow methods for reading tags. These do not update last_tag_,
559   // but will set legitimate_message_end_ if we are at the end of the input
560   // stream.
561   uint32 ReadTagFallback();
562   uint32 ReadTagSlow();
563   bool ReadStringFallback(string* buffer, int size);
564 
565   // Return the size of the buffer.
566   int BufferSize() const;
567 
568   static const int kDefaultTotalBytesLimit = 64 << 20;  // 64MB
569 
570   static const int kDefaultTotalBytesWarningThreshold = 32 << 20;  // 32MB
571 
572   static int default_recursion_limit_;  // 100 by default.
573 };
574 
575 // Class which encodes and writes binary data which is composed of varint-
576 // encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
577 // Most users will not need to deal with CodedOutputStream.
578 //
579 // Most methods of CodedOutputStream which return a bool return false if an
580 // underlying I/O error occurs.  Once such a failure occurs, the
581 // CodedOutputStream is broken and is no longer useful. The Write* methods do
582 // not return the stream status, but will invalidate the stream if an error
583 // occurs. The client can probe HadError() to determine the status.
584 //
585 // Note that every method of CodedOutputStream which writes some data has
586 // a corresponding static "ToArray" version. These versions write directly
587 // to the provided buffer, returning a pointer past the last written byte.
588 // They require that the buffer has sufficient capacity for the encoded data.
589 // This allows an optimization where we check if an output stream has enough
590 // space for an entire message before we start writing and, if there is, we
591 // call only the ToArray methods to avoid doing bound checks for each
592 // individual value.
593 // i.e., in the example above:
594 //
595 //   CodedOutputStream coded_output = new CodedOutputStream(raw_output);
596 //   int magic_number = 1234;
597 //   char text[] = "Hello world!";
598 //
599 //   int coded_size = sizeof(magic_number) +
600 //                    CodedOutputStream::VarintSize32(strlen(text)) +
601 //                    strlen(text);
602 //
603 //   uint8* buffer =
604 //       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
605 //   if (buffer != NULL) {
606 //     // The output stream has enough space in the buffer: write directly to
607 //     // the array.
608 //     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
609 //                                                            buffer);
610 //     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
611 //     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
612 //   } else {
613 //     // Make bound-checked writes, which will ask the underlying stream for
614 //     // more space as needed.
615 //     coded_output->WriteLittleEndian32(magic_number);
616 //     coded_output->WriteVarint32(strlen(text));
617 //     coded_output->WriteRaw(text, strlen(text));
618 //   }
619 //
620 //   delete coded_output;
621 class LIBPROTOBUF_EXPORT CodedOutputStream {
622  public:
623   // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
624   explicit CodedOutputStream(ZeroCopyOutputStream* output);
625 
626   // Destroy the CodedOutputStream and position the underlying
627   // ZeroCopyOutputStream immediately after the last byte written.
628   ~CodedOutputStream();
629 
630   // Skips a number of bytes, leaving the bytes unmodified in the underlying
631   // buffer.  Returns false if an underlying write error occurs.  This is
632   // mainly useful with GetDirectBufferPointer().
633   bool Skip(int count);
634 
635   // Sets *data to point directly at the unwritten part of the
636   // CodedOutputStream's underlying buffer, and *size to the size of that
637   // buffer, but does not advance the stream's current position.  This will
638   // always either produce a non-empty buffer or return false.  If the caller
639   // writes any data to this buffer, it should then call Skip() to skip over
640   // the consumed bytes.  This may be useful for implementing external fast
641   // serialization routines for types of data not covered by the
642   // CodedOutputStream interface.
643   bool GetDirectBufferPointer(void** data, int* size);
644 
645   // If there are at least "size" bytes available in the current buffer,
646   // returns a pointer directly into the buffer and advances over these bytes.
647   // The caller may then write directly into this buffer (e.g. using the
648   // *ToArray static methods) rather than go through CodedOutputStream.  If
649   // there are not enough bytes available, returns NULL.  The return pointer is
650   // invalidated as soon as any other non-const method of CodedOutputStream
651   // is called.
652   inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
653 
654   // Write raw bytes, copying them from the given buffer.
655   void WriteRaw(const void* buffer, int size);
656   // Like WriteRaw()  but will try to write aliased data if aliasing is
657   // turned on.
658   void WriteRawMaybeAliased(const void* data, int size);
659   // Like WriteRaw()  but writing directly to the target array.
660   // This is _not_ inlined, as the compiler often optimizes memcpy into inline
661   // copy loops. Since this gets called by every field with string or bytes
662   // type, inlining may lead to a significant amount of code bloat, with only a
663   // minor performance gain.
664   static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
665 
666   // Equivalent to WriteRaw(str.data(), str.size()).
667   void WriteString(const string& str);
668   // Like WriteString()  but writing directly to the target array.
669   static uint8* WriteStringToArray(const string& str, uint8* target);
670   // Write the varint-encoded size of str followed by str.
671   static uint8* WriteStringWithSizeToArray(const string& str, uint8* target);
672 
673 
674   // Instructs the CodedOutputStream to allow the underlying
675   // ZeroCopyOutputStream to hold pointers to the original structure instead of
676   // copying, if it supports it (i.e. output->AllowsAliasing() is true).  If the
677   // underlying stream does not support aliasing, then enabling it has no
678   // affect.  For now, this only affects the behavior of
679   // WriteRawMaybeAliased().
680   //
681   // NOTE: It is caller's responsibility to ensure that the chunk of memory
682   // remains live until all of the data has been consumed from the stream.
683   void EnableAliasing(bool enabled);
684 
685   // Write a 32-bit little-endian integer.
686   void WriteLittleEndian32(uint32 value);
687   // Like WriteLittleEndian32()  but writing directly to the target array.
688   static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
689   // Write a 64-bit little-endian integer.
690   void WriteLittleEndian64(uint64 value);
691   // Like WriteLittleEndian64()  but writing directly to the target array.
692   static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
693 
694   // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
695   // is equivalent to casting it to uint64 and writing it as a 64-bit value,
696   // but may be more efficient.
697   void WriteVarint32(uint32 value);
698   // Like WriteVarint32()  but writing directly to the target array.
699   static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
700   // Write an unsigned integer with Varint encoding.
701   void WriteVarint64(uint64 value);
702   // Like WriteVarint64()  but writing directly to the target array.
703   static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
704 
705   // Equivalent to WriteVarint32() except when the value is negative,
706   // in which case it must be sign-extended to a full 10 bytes.
707   void WriteVarint32SignExtended(int32 value);
708   // Like WriteVarint32SignExtended()  but writing directly to the target array.
709   static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
710 
711   // This is identical to WriteVarint32(), but optimized for writing tags.
712   // In particular, if the input is a compile-time constant, this method
713   // compiles down to a couple instructions.
714   // Always inline because otherwise the aformentioned optimization can't work,
715   // but GCC by default doesn't want to inline this.
716   void WriteTag(uint32 value);
717   // Like WriteTag()  but writing directly to the target array.
718   static uint8* WriteTagToArray(
719       uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
720 
721   // Returns the number of bytes needed to encode the given value as a varint.
722   static int VarintSize32(uint32 value);
723   // Returns the number of bytes needed to encode the given value as a varint.
724   static int VarintSize64(uint64 value);
725 
726   // If negative, 10 bytes.  Otheriwse, same as VarintSize32().
727   static int VarintSize32SignExtended(int32 value);
728 
729   // Compile-time equivalent of VarintSize32().
730   template <uint32 Value>
731   struct StaticVarintSize32 {
732     static const int value =
733         (Value < (1 << 7))
734             ? 1
735             : (Value < (1 << 14))
736                 ? 2
737                 : (Value < (1 << 21))
738                     ? 3
739                     : (Value < (1 << 28))
740                         ? 4
741                         : 5;
742   };
743 
744   // Returns the total number of bytes written since this object was created.
745   inline int ByteCount() const;
746 
747   // Returns true if there was an underlying I/O error since this object was
748   // created.
HadError()749   bool HadError() const { return had_error_; }
750 
751  private:
752   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
753 
754   ZeroCopyOutputStream* output_;
755   uint8* buffer_;
756   int buffer_size_;
757   int total_bytes_;  // Sum of sizes of all buffers seen so far.
758   bool had_error_;   // Whether an error occurred during output.
759   bool aliasing_enabled_;  // See EnableAliasing().
760 
761   // Advance the buffer by a given number of bytes.
762   void Advance(int amount);
763 
764   // Called when the buffer runs out to request more data.  Implies an
765   // Advance(buffer_size_).
766   bool Refresh();
767 
768   // Like WriteRaw() but may avoid copying if the underlying
769   // ZeroCopyOutputStream supports it.
770   void WriteAliasedRaw(const void* buffer, int size);
771 
772   static uint8* WriteVarint32FallbackToArray(uint32 value, uint8* target);
773 
774   // Always-inlined versions of WriteVarint* functions so that code can be
775   // reused, while still controlling size. For instance, WriteVarint32ToArray()
776   // should not directly call this: since it is inlined itself, doing so
777   // would greatly increase the size of generated code. Instead, it should call
778   // WriteVarint32FallbackToArray.  Meanwhile, WriteVarint32() is already
779   // out-of-line, so it should just invoke this directly to avoid any extra
780   // function call overhead.
781   static uint8* WriteVarint32FallbackToArrayInline(
782       uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
783   static uint8* WriteVarint64ToArrayInline(
784       uint64 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
785 
786   static int VarintSize32Fallback(uint32 value);
787 };
788 
789 // inline methods ====================================================
790 // The vast majority of varints are only one byte.  These inline
791 // methods optimize for that case.
792 
ReadVarint32(uint32 * value)793 inline bool CodedInputStream::ReadVarint32(uint32* value) {
794   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
795     *value = *buffer_;
796     Advance(1);
797     return true;
798   } else {
799     return ReadVarint32Fallback(value);
800   }
801 }
802 
ReadVarint64(uint64 * value)803 inline bool CodedInputStream::ReadVarint64(uint64* value) {
804   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
805     *value = *buffer_;
806     Advance(1);
807     return true;
808   } else {
809     return ReadVarint64Fallback(value);
810   }
811 }
812 
813 // static
ReadLittleEndian32FromArray(const uint8 * buffer,uint32 * value)814 inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
815     const uint8* buffer,
816     uint32* value) {
817 #if defined(PROTOBUF_LITTLE_ENDIAN)
818   memcpy(value, buffer, sizeof(*value));
819   return buffer + sizeof(*value);
820 #else
821   *value = (static_cast<uint32>(buffer[0])      ) |
822            (static_cast<uint32>(buffer[1]) <<  8) |
823            (static_cast<uint32>(buffer[2]) << 16) |
824            (static_cast<uint32>(buffer[3]) << 24);
825   return buffer + sizeof(*value);
826 #endif
827 }
828 // static
ReadLittleEndian64FromArray(const uint8 * buffer,uint64 * value)829 inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
830     const uint8* buffer,
831     uint64* value) {
832 #if defined(PROTOBUF_LITTLE_ENDIAN)
833   memcpy(value, buffer, sizeof(*value));
834   return buffer + sizeof(*value);
835 #else
836   uint32 part0 = (static_cast<uint32>(buffer[0])      ) |
837                  (static_cast<uint32>(buffer[1]) <<  8) |
838                  (static_cast<uint32>(buffer[2]) << 16) |
839                  (static_cast<uint32>(buffer[3]) << 24);
840   uint32 part1 = (static_cast<uint32>(buffer[4])      ) |
841                  (static_cast<uint32>(buffer[5]) <<  8) |
842                  (static_cast<uint32>(buffer[6]) << 16) |
843                  (static_cast<uint32>(buffer[7]) << 24);
844   *value = static_cast<uint64>(part0) |
845           (static_cast<uint64>(part1) << 32);
846   return buffer + sizeof(*value);
847 #endif
848 }
849 
ReadLittleEndian32(uint32 * value)850 inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
851 #if defined(PROTOBUF_LITTLE_ENDIAN)
852   if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
853     memcpy(value, buffer_, sizeof(*value));
854     Advance(sizeof(*value));
855     return true;
856   } else {
857     return ReadLittleEndian32Fallback(value);
858   }
859 #else
860   return ReadLittleEndian32Fallback(value);
861 #endif
862 }
863 
ReadLittleEndian64(uint64 * value)864 inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
865 #if defined(PROTOBUF_LITTLE_ENDIAN)
866   if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
867     memcpy(value, buffer_, sizeof(*value));
868     Advance(sizeof(*value));
869     return true;
870   } else {
871     return ReadLittleEndian64Fallback(value);
872   }
873 #else
874   return ReadLittleEndian64Fallback(value);
875 #endif
876 }
877 
ReadTag()878 inline uint32 CodedInputStream::ReadTag() {
879   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] < 0x80) {
880     last_tag_ = buffer_[0];
881     Advance(1);
882     return last_tag_;
883   } else {
884     last_tag_ = ReadTagFallback();
885     return last_tag_;
886   }
887 }
888 
ReadTagWithCutoff(uint32 cutoff)889 inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff(
890     uint32 cutoff) {
891   // In performance-sensitive code we can expect cutoff to be a compile-time
892   // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
893   // compile time.
894   if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
895     // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
896     // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
897     // is large enough then is it better to check for the two-byte case first?
898     if (static_cast<int8>(buffer_[0]) > 0) {
899       const uint32 kMax1ByteVarint = 0x7f;
900       uint32 tag = last_tag_ = buffer_[0];
901       Advance(1);
902       return make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
903     }
904     // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
905     // and tag is two bytes.  The latter is tested by bitwise-and-not of the
906     // first byte and the second byte.
907     if (cutoff >= 0x80 &&
908         GOOGLE_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
909         GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
910       const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f;
911       uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
912       Advance(2);
913       // It might make sense to test for tag == 0 now, but it is so rare that
914       // that we don't bother.  A varint-encoded 0 should be one byte unless
915       // the encoder lost its mind.  The second part of the return value of
916       // this function is allowed to be either true or false if the tag is 0,
917       // so we don't have to check for tag == 0.  We may need to check whether
918       // it exceeds cutoff.
919       bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
920       return make_pair(tag, at_or_below_cutoff);
921     }
922   }
923   // Slow path
924   last_tag_ = ReadTagFallback();
925   return make_pair(last_tag_, static_cast<uint32>(last_tag_ - 1) < cutoff);
926 }
927 
LastTagWas(uint32 expected)928 inline bool CodedInputStream::LastTagWas(uint32 expected) {
929   return last_tag_ == expected;
930 }
931 
ConsumedEntireMessage()932 inline bool CodedInputStream::ConsumedEntireMessage() {
933   return legitimate_message_end_;
934 }
935 
ExpectTag(uint32 expected)936 inline bool CodedInputStream::ExpectTag(uint32 expected) {
937   if (expected < (1 << 7)) {
938     if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
939       Advance(1);
940       return true;
941     } else {
942       return false;
943     }
944   } else if (expected < (1 << 14)) {
945     if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
946         buffer_[0] == static_cast<uint8>(expected | 0x80) &&
947         buffer_[1] == static_cast<uint8>(expected >> 7)) {
948       Advance(2);
949       return true;
950     } else {
951       return false;
952     }
953   } else {
954     // Don't bother optimizing for larger values.
955     return false;
956   }
957 }
958 
ExpectTagFromArray(const uint8 * buffer,uint32 expected)959 inline const uint8* CodedInputStream::ExpectTagFromArray(
960     const uint8* buffer, uint32 expected) {
961   if (expected < (1 << 7)) {
962     if (buffer[0] == expected) {
963       return buffer + 1;
964     }
965   } else if (expected < (1 << 14)) {
966     if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
967         buffer[1] == static_cast<uint8>(expected >> 7)) {
968       return buffer + 2;
969     }
970   }
971   return NULL;
972 }
973 
GetDirectBufferPointerInline(const void ** data,int * size)974 inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
975                                                            int* size) {
976   *data = buffer_;
977   *size = buffer_end_ - buffer_;
978 }
979 
ExpectAtEnd()980 inline bool CodedInputStream::ExpectAtEnd() {
981   // If we are at a limit we know no more bytes can be read.  Otherwise, it's
982   // hard to say without calling Refresh(), and we'd rather not do that.
983 
984   if (buffer_ == buffer_end_ &&
985       ((buffer_size_after_limit_ != 0) ||
986        (total_bytes_read_ == current_limit_))) {
987     last_tag_ = 0;                   // Pretend we called ReadTag()...
988     legitimate_message_end_ = true;  // ... and it hit EOF.
989     return true;
990   } else {
991     return false;
992   }
993 }
994 
CurrentPosition()995 inline int CodedInputStream::CurrentPosition() const {
996   return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
997 }
998 
GetDirectBufferForNBytesAndAdvance(int size)999 inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
1000   if (buffer_size_ < size) {
1001     return NULL;
1002   } else {
1003     uint8* result = buffer_;
1004     Advance(size);
1005     return result;
1006   }
1007 }
1008 
WriteVarint32ToArray(uint32 value,uint8 * target)1009 inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
1010                                                         uint8* target) {
1011   if (value < 0x80) {
1012     *target = value;
1013     return target + 1;
1014   } else {
1015     return WriteVarint32FallbackToArray(value, target);
1016   }
1017 }
1018 
WriteVarint32SignExtended(int32 value)1019 inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
1020   if (value < 0) {
1021     WriteVarint64(static_cast<uint64>(value));
1022   } else {
1023     WriteVarint32(static_cast<uint32>(value));
1024   }
1025 }
1026 
WriteVarint32SignExtendedToArray(int32 value,uint8 * target)1027 inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
1028     int32 value, uint8* target) {
1029   if (value < 0) {
1030     return WriteVarint64ToArray(static_cast<uint64>(value), target);
1031   } else {
1032     return WriteVarint32ToArray(static_cast<uint32>(value), target);
1033   }
1034 }
1035 
WriteLittleEndian32ToArray(uint32 value,uint8 * target)1036 inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
1037                                                             uint8* target) {
1038 #if defined(PROTOBUF_LITTLE_ENDIAN)
1039   memcpy(target, &value, sizeof(value));
1040 #else
1041   target[0] = static_cast<uint8>(value);
1042   target[1] = static_cast<uint8>(value >>  8);
1043   target[2] = static_cast<uint8>(value >> 16);
1044   target[3] = static_cast<uint8>(value >> 24);
1045 #endif
1046   return target + sizeof(value);
1047 }
1048 
WriteLittleEndian64ToArray(uint64 value,uint8 * target)1049 inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
1050                                                             uint8* target) {
1051 #if defined(PROTOBUF_LITTLE_ENDIAN)
1052   memcpy(target, &value, sizeof(value));
1053 #else
1054   uint32 part0 = static_cast<uint32>(value);
1055   uint32 part1 = static_cast<uint32>(value >> 32);
1056 
1057   target[0] = static_cast<uint8>(part0);
1058   target[1] = static_cast<uint8>(part0 >>  8);
1059   target[2] = static_cast<uint8>(part0 >> 16);
1060   target[3] = static_cast<uint8>(part0 >> 24);
1061   target[4] = static_cast<uint8>(part1);
1062   target[5] = static_cast<uint8>(part1 >>  8);
1063   target[6] = static_cast<uint8>(part1 >> 16);
1064   target[7] = static_cast<uint8>(part1 >> 24);
1065 #endif
1066   return target + sizeof(value);
1067 }
1068 
WriteTag(uint32 value)1069 inline void CodedOutputStream::WriteTag(uint32 value) {
1070   WriteVarint32(value);
1071 }
1072 
WriteTagToArray(uint32 value,uint8 * target)1073 inline uint8* CodedOutputStream::WriteTagToArray(
1074     uint32 value, uint8* target) {
1075   if (value < (1 << 7)) {
1076     target[0] = value;
1077     return target + 1;
1078   } else if (value < (1 << 14)) {
1079     target[0] = static_cast<uint8>(value | 0x80);
1080     target[1] = static_cast<uint8>(value >> 7);
1081     return target + 2;
1082   } else {
1083     return WriteVarint32FallbackToArray(value, target);
1084   }
1085 }
1086 
VarintSize32(uint32 value)1087 inline int CodedOutputStream::VarintSize32(uint32 value) {
1088   if (value < (1 << 7)) {
1089     return 1;
1090   } else  {
1091     return VarintSize32Fallback(value);
1092   }
1093 }
1094 
VarintSize32SignExtended(int32 value)1095 inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
1096   if (value < 0) {
1097     return 10;     // TODO(kenton):  Make this a symbolic constant.
1098   } else {
1099     return VarintSize32(static_cast<uint32>(value));
1100   }
1101 }
1102 
WriteString(const string & str)1103 inline void CodedOutputStream::WriteString(const string& str) {
1104   WriteRaw(str.data(), static_cast<int>(str.size()));
1105 }
1106 
WriteRawMaybeAliased(const void * data,int size)1107 inline void CodedOutputStream::WriteRawMaybeAliased(
1108     const void* data, int size) {
1109   if (aliasing_enabled_) {
1110     WriteAliasedRaw(data, size);
1111   } else {
1112     WriteRaw(data, size);
1113   }
1114 }
1115 
WriteStringToArray(const string & str,uint8 * target)1116 inline uint8* CodedOutputStream::WriteStringToArray(
1117     const string& str, uint8* target) {
1118   return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
1119 }
1120 
ByteCount()1121 inline int CodedOutputStream::ByteCount() const {
1122   return total_bytes_ - buffer_size_;
1123 }
1124 
Advance(int amount)1125 inline void CodedInputStream::Advance(int amount) {
1126   buffer_ += amount;
1127 }
1128 
Advance(int amount)1129 inline void CodedOutputStream::Advance(int amount) {
1130   buffer_ += amount;
1131   buffer_size_ -= amount;
1132 }
1133 
SetRecursionLimit(int limit)1134 inline void CodedInputStream::SetRecursionLimit(int limit) {
1135   recursion_limit_ = limit;
1136 }
1137 
IncrementRecursionDepth()1138 inline bool CodedInputStream::IncrementRecursionDepth() {
1139   ++recursion_depth_;
1140   return recursion_depth_ <= recursion_limit_;
1141 }
1142 
DecrementRecursionDepth()1143 inline void CodedInputStream::DecrementRecursionDepth() {
1144   if (recursion_depth_ > 0) --recursion_depth_;
1145 }
1146 
SetExtensionRegistry(const DescriptorPool * pool,MessageFactory * factory)1147 inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
1148                                                    MessageFactory* factory) {
1149   extension_pool_ = pool;
1150   extension_factory_ = factory;
1151 }
1152 
GetExtensionPool()1153 inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
1154   return extension_pool_;
1155 }
1156 
GetExtensionFactory()1157 inline MessageFactory* CodedInputStream::GetExtensionFactory() {
1158   return extension_factory_;
1159 }
1160 
BufferSize()1161 inline int CodedInputStream::BufferSize() const {
1162   return buffer_end_ - buffer_;
1163 }
1164 
CodedInputStream(ZeroCopyInputStream * input)1165 inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
1166   : input_(input),
1167     buffer_(NULL),
1168     buffer_end_(NULL),
1169     total_bytes_read_(0),
1170     overflow_bytes_(0),
1171     last_tag_(0),
1172     legitimate_message_end_(false),
1173     aliasing_enabled_(false),
1174     current_limit_(kint32max),
1175     buffer_size_after_limit_(0),
1176     total_bytes_limit_(kDefaultTotalBytesLimit),
1177     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
1178     recursion_depth_(0),
1179     recursion_limit_(default_recursion_limit_),
1180     extension_pool_(NULL),
1181     extension_factory_(NULL) {
1182   // Eagerly Refresh() so buffer space is immediately available.
1183   Refresh();
1184 }
1185 
CodedInputStream(const uint8 * buffer,int size)1186 inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
1187   : input_(NULL),
1188     buffer_(buffer),
1189     buffer_end_(buffer + size),
1190     total_bytes_read_(size),
1191     overflow_bytes_(0),
1192     last_tag_(0),
1193     legitimate_message_end_(false),
1194     aliasing_enabled_(false),
1195     current_limit_(size),
1196     buffer_size_after_limit_(0),
1197     total_bytes_limit_(kDefaultTotalBytesLimit),
1198     total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
1199     recursion_depth_(0),
1200     recursion_limit_(default_recursion_limit_),
1201     extension_pool_(NULL),
1202     extension_factory_(NULL) {
1203   // Note that setting current_limit_ == size is important to prevent some
1204   // code paths from trying to access input_ and segfaulting.
1205 }
1206 
IsFlat()1207 inline bool CodedInputStream::IsFlat() const {
1208   return input_ == NULL;
1209 }
1210 
1211 }  // namespace io
1212 }  // namespace protobuf
1213 
1214 
1215 #if defined(_MSC_VER) && _MSC_VER >= 1300
1216   #pragma runtime_checks("c", restore)
1217 #endif  // _MSC_VER
1218 
1219 }  // namespace google
1220 #endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
1221