• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Generic symbol-table support for the BFD library.
2    Copyright (C) 1990-2014 Free Software Foundation, Inc.
3    Written by Cygnus Support.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 /*
23 SECTION
24 	Symbols
25 
26 	BFD tries to maintain as much symbol information as it can when
27 	it moves information from file to file. BFD passes information
28 	to applications though the <<asymbol>> structure. When the
29 	application requests the symbol table, BFD reads the table in
30 	the native form and translates parts of it into the internal
31 	format. To maintain more than the information passed to
32 	applications, some targets keep some information ``behind the
33 	scenes'' in a structure only the particular back end knows
34 	about. For example, the coff back end keeps the original
35 	symbol table structure as well as the canonical structure when
36 	a BFD is read in. On output, the coff back end can reconstruct
37 	the output symbol table so that no information is lost, even
38 	information unique to coff which BFD doesn't know or
39 	understand. If a coff symbol table were read, but were written
40 	through an a.out back end, all the coff specific information
41 	would be lost. The symbol table of a BFD
42 	is not necessarily read in until a canonicalize request is
43 	made. Then the BFD back end fills in a table provided by the
44 	application with pointers to the canonical information.  To
45 	output symbols, the application provides BFD with a table of
46 	pointers to pointers to <<asymbol>>s. This allows applications
47 	like the linker to output a symbol as it was read, since the ``behind
48 	the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56 
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 	Reading symbols
61 
62 	There are two stages to reading a symbol table from a BFD:
63 	allocating storage, and the actual reading process. This is an
64 	excerpt from an application which reads the symbol table:
65 
66 |	  long storage_needed;
67 |	  asymbol **symbol_table;
68 |	  long number_of_symbols;
69 |	  long i;
70 |
71 |	  storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 |         if (storage_needed < 0)
74 |           FAIL
75 |
76 |	  if (storage_needed == 0)
77 |	    return;
78 |
79 |	  symbol_table = xmalloc (storage_needed);
80 |	    ...
81 |	  number_of_symbols =
82 |	     bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 |         if (number_of_symbols < 0)
85 |           FAIL
86 |
87 |	  for (i = 0; i < number_of_symbols; i++)
88 |	    process_symbol (symbol_table[i]);
89 
90 	All storage for the symbols themselves is in an objalloc
91 	connected to the BFD; it is freed when the BFD is closed.
92 
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 	Writing symbols
97 
98 	Writing of a symbol table is automatic when a BFD open for
99 	writing is closed. The application attaches a vector of
100 	pointers to pointers to symbols to the BFD being written, and
101 	fills in the symbol count. The close and cleanup code reads
102 	through the table provided and performs all the necessary
103 	operations. The BFD output code must always be provided with an
104 	``owned'' symbol: one which has come from another BFD, or one
105 	which has been created using <<bfd_make_empty_symbol>>.  Here is an
106 	example showing the creation of a symbol table with only one element:
107 
108 |	#include "sysdep.h"
109 |	#include "bfd.h"
110 |	int main (void)
111 |	{
112 |	  bfd *abfd;
113 |	  asymbol *ptrs[2];
114 |	  asymbol *new;
115 |
116 |	  abfd = bfd_openw ("foo","a.out-sunos-big");
117 |	  bfd_set_format (abfd, bfd_object);
118 |	  new = bfd_make_empty_symbol (abfd);
119 |	  new->name = "dummy_symbol";
120 |	  new->section = bfd_make_section_old_way (abfd, ".text");
121 |	  new->flags = BSF_GLOBAL;
122 |	  new->value = 0x12345;
123 |
124 |	  ptrs[0] = new;
125 |	  ptrs[1] = 0;
126 |
127 |	  bfd_set_symtab (abfd, ptrs, 1);
128 |	  bfd_close (abfd);
129 |	  return 0;
130 |	}
131 |
132 |	./makesym
133 |	nm foo
134 |	00012345 A dummy_symbol
135 
136 	Many formats cannot represent arbitrary symbol information; for
137  	instance, the <<a.out>> object format does not allow an
138 	arbitrary number of sections. A symbol pointing to a section
139 	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
140 	be described.
141 
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 	Mini Symbols
146 
147 	Mini symbols provide read-only access to the symbol table.
148 	They use less memory space, but require more time to access.
149 	They can be useful for tools like nm or objdump, which may
150 	have to handle symbol tables of extremely large executables.
151 
152 	The <<bfd_read_minisymbols>> function will read the symbols
153 	into memory in an internal form.  It will return a <<void *>>
154 	pointer to a block of memory, a symbol count, and the size of
155 	each symbol.  The pointer is allocated using <<malloc>>, and
156 	should be freed by the caller when it is no longer needed.
157 
158 	The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 	to a minisymbol, and a pointer to a structure returned by
160 	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 	The return value may or may not be the same as the value from
162 	<<bfd_make_empty_symbol>> which was passed in.
163 
164 */
165 
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170 
171 */
172 /*
173 SUBSECTION
174 	typedef asymbol
175 
176 	An <<asymbol>> has the form:
177 
178 */
179 
180 /*
181 CODE_FRAGMENT
182 
183 .
184 .typedef struct bfd_symbol
185 .{
186 .  {* A pointer to the BFD which owns the symbol. This information
187 .     is necessary so that a back end can work out what additional
188 .     information (invisible to the application writer) is carried
189 .     with the symbol.
190 .
191 .     This field is *almost* redundant, since you can use section->owner
192 .     instead, except that some symbols point to the global sections
193 .     bfd_{abs,com,und}_section.  This could be fixed by making
194 .     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
195 .  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
196 .
197 .  {* The text of the symbol. The name is left alone, and not copied; the
198 .     application may not alter it.  *}
199 .  const char *name;
200 .
201 .  {* The value of the symbol.  This really should be a union of a
202 .     numeric value with a pointer, since some flags indicate that
203 .     a pointer to another symbol is stored here.  *}
204 .  symvalue value;
205 .
206 .  {* Attributes of a symbol.  *}
207 .#define BSF_NO_FLAGS    	0x00
208 .
209 .  {* The symbol has local scope; <<static>> in <<C>>. The value
210 .     is the offset into the section of the data.  *}
211 .#define BSF_LOCAL		(1 << 0)
212 .
213 .  {* The symbol has global scope; initialized data in <<C>>. The
214 .     value is the offset into the section of the data.  *}
215 .#define BSF_GLOBAL		(1 << 1)
216 .
217 .  {* The symbol has global scope and is exported. The value is
218 .     the offset into the section of the data.  *}
219 .#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
220 .
221 .  {* A normal C symbol would be one of:
222 .     <<BSF_LOCAL>>, <<BSF_COMMON>>,  <<BSF_UNDEFINED>> or
223 .     <<BSF_GLOBAL>>.  *}
224 .
225 .  {* The symbol is a debugging record. The value has an arbitrary
226 .     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
227 .#define BSF_DEBUGGING		(1 << 2)
228 .
229 .  {* The symbol denotes a function entry point.  Used in ELF,
230 .     perhaps others someday.  *}
231 .#define BSF_FUNCTION		(1 << 3)
232 .
233 .  {* Used by the linker.  *}
234 .#define BSF_KEEP		(1 << 5)
235 .#define BSF_KEEP_G		(1 << 6)
236 .
237 .  {* A weak global symbol, overridable without warnings by
238 .     a regular global symbol of the same name.  *}
239 .#define BSF_WEAK		(1 << 7)
240 .
241 .  {* This symbol was created to point to a section, e.g. ELF's
242 .     STT_SECTION symbols.  *}
243 .#define BSF_SECTION_SYM	(1 << 8)
244 .
245 .  {* The symbol used to be a common symbol, but now it is
246 .     allocated.  *}
247 .#define BSF_OLD_COMMON		(1 << 9)
248 .
249 .  {* In some files the type of a symbol sometimes alters its
250 .     location in an output file - ie in coff a <<ISFCN>> symbol
251 .     which is also <<C_EXT>> symbol appears where it was
252 .     declared and not at the end of a section.  This bit is set
253 .     by the target BFD part to convey this information.  *}
254 .#define BSF_NOT_AT_END		(1 << 10)
255 .
256 .  {* Signal that the symbol is the label of constructor section.  *}
257 .#define BSF_CONSTRUCTOR	(1 << 11)
258 .
259 .  {* Signal that the symbol is a warning symbol.  The name is a
260 .     warning.  The name of the next symbol is the one to warn about;
261 .     if a reference is made to a symbol with the same name as the next
262 .     symbol, a warning is issued by the linker.  *}
263 .#define BSF_WARNING		(1 << 12)
264 .
265 .  {* Signal that the symbol is indirect.  This symbol is an indirect
266 .     pointer to the symbol with the same name as the next symbol.  *}
267 .#define BSF_INDIRECT		(1 << 13)
268 .
269 .  {* BSF_FILE marks symbols that contain a file name.  This is used
270 .     for ELF STT_FILE symbols.  *}
271 .#define BSF_FILE		(1 << 14)
272 .
273 .  {* Symbol is from dynamic linking information.  *}
274 .#define BSF_DYNAMIC		(1 << 15)
275 .
276 .  {* The symbol denotes a data object.  Used in ELF, and perhaps
277 .     others someday.  *}
278 .#define BSF_OBJECT		(1 << 16)
279 .
280 .  {* This symbol is a debugging symbol.  The value is the offset
281 .     into the section of the data.  BSF_DEBUGGING should be set
282 .     as well.  *}
283 .#define BSF_DEBUGGING_RELOC	(1 << 17)
284 .
285 .  {* This symbol is thread local.  Used in ELF.  *}
286 .#define BSF_THREAD_LOCAL	(1 << 18)
287 .
288 .  {* This symbol represents a complex relocation expression,
289 .     with the expression tree serialized in the symbol name.  *}
290 .#define BSF_RELC		(1 << 19)
291 .
292 .  {* This symbol represents a signed complex relocation expression,
293 .     with the expression tree serialized in the symbol name.  *}
294 .#define BSF_SRELC		(1 << 20)
295 .
296 .  {* This symbol was created by bfd_get_synthetic_symtab.  *}
297 .#define BSF_SYNTHETIC		(1 << 21)
298 .
299 .  {* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
300 .     The dynamic linker will compute the value of this symbol by
301 .     calling the function that it points to.  BSF_FUNCTION must
302 .     also be also set.  *}
303 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
304 .  {* This symbol is a globally unique data object.  The dynamic linker
305 .     will make sure that in the entire process there is just one symbol
306 .     with this name and type in use.  BSF_OBJECT must also be set.  *}
307 .#define BSF_GNU_UNIQUE		(1 << 23)
308 .
309 .  flagword flags;
310 .
311 .  {* A pointer to the section to which this symbol is
312 .     relative.  This will always be non NULL, there are special
313 .     sections for undefined and absolute symbols.  *}
314 .  struct bfd_section *section;
315 .
316 .  {* Back end special data.  *}
317 .  union
318 .    {
319 .      void *p;
320 .      bfd_vma i;
321 .    }
322 .  udata;
323 .}
324 .asymbol;
325 .
326 */
327 
328 #include "sysdep.h"
329 #include "bfd.h"
330 #include "libbfd.h"
331 #include "safe-ctype.h"
332 #include "bfdlink.h"
333 #include "aout/stab_gnu.h"
334 
335 /*
336 DOCDD
337 INODE
338 symbol handling functions,  , typedef asymbol, Symbols
339 SUBSECTION
340 	Symbol handling functions
341 */
342 
343 /*
344 FUNCTION
345 	bfd_get_symtab_upper_bound
346 
347 DESCRIPTION
348 	Return the number of bytes required to store a vector of pointers
349 	to <<asymbols>> for all the symbols in the BFD @var{abfd},
350 	including a terminal NULL pointer. If there are no symbols in
351 	the BFD, then return 0.  If an error occurs, return -1.
352 
353 .#define bfd_get_symtab_upper_bound(abfd) \
354 .     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
355 .
356 */
357 
358 /*
359 FUNCTION
360 	bfd_is_local_label
361 
362 SYNOPSIS
363         bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
364 
365 DESCRIPTION
366 	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
367 	a compiler generated local label, else return FALSE.
368 */
369 
370 bfd_boolean
bfd_is_local_label(bfd * abfd,asymbol * sym)371 bfd_is_local_label (bfd *abfd, asymbol *sym)
372 {
373   /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
374      starts with '.' is local.  This would accidentally catch section names
375      if we didn't reject them here.  */
376   if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
377     return FALSE;
378   if (sym->name == NULL)
379     return FALSE;
380   return bfd_is_local_label_name (abfd, sym->name);
381 }
382 
383 /*
384 FUNCTION
385 	bfd_is_local_label_name
386 
387 SYNOPSIS
388         bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
389 
390 DESCRIPTION
391 	Return TRUE if a symbol with the name @var{name} in the BFD
392 	@var{abfd} is a compiler generated local label, else return
393 	FALSE.  This just checks whether the name has the form of a
394 	local label.
395 
396 .#define bfd_is_local_label_name(abfd, name) \
397 .  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
398 .
399 */
400 
401 /*
402 FUNCTION
403 	bfd_is_target_special_symbol
404 
405 SYNOPSIS
406         bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
407 
408 DESCRIPTION
409 	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
410 	special to the particular target represented by the BFD.  Such symbols
411 	should normally not be mentioned to the user.
412 
413 .#define bfd_is_target_special_symbol(abfd, sym) \
414 .  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
415 .
416 */
417 
418 /*
419 FUNCTION
420 	bfd_canonicalize_symtab
421 
422 DESCRIPTION
423 	Read the symbols from the BFD @var{abfd}, and fills in
424 	the vector @var{location} with pointers to the symbols and
425 	a trailing NULL.
426 	Return the actual number of symbol pointers, not
427 	including the NULL.
428 
429 .#define bfd_canonicalize_symtab(abfd, location) \
430 .  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
431 .
432 */
433 
434 /*
435 FUNCTION
436 	bfd_set_symtab
437 
438 SYNOPSIS
439 	bfd_boolean bfd_set_symtab
440 	  (bfd *abfd, asymbol **location, unsigned int count);
441 
442 DESCRIPTION
443 	Arrange that when the output BFD @var{abfd} is closed,
444 	the table @var{location} of @var{count} pointers to symbols
445 	will be written.
446 */
447 
448 bfd_boolean
bfd_set_symtab(bfd * abfd,asymbol ** location,unsigned int symcount)449 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
450 {
451   if (abfd->format != bfd_object || bfd_read_p (abfd))
452     {
453       bfd_set_error (bfd_error_invalid_operation);
454       return FALSE;
455     }
456 
457   bfd_get_outsymbols (abfd) = location;
458   bfd_get_symcount (abfd) = symcount;
459   return TRUE;
460 }
461 
462 /*
463 FUNCTION
464 	bfd_print_symbol_vandf
465 
466 SYNOPSIS
467 	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
468 
469 DESCRIPTION
470 	Print the value and flags of the @var{symbol} supplied to the
471 	stream @var{file}.
472 */
473 void
bfd_print_symbol_vandf(bfd * abfd,void * arg,asymbol * symbol)474 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
475 {
476   FILE *file = (FILE *) arg;
477 
478   flagword type = symbol->flags;
479 
480   if (symbol->section != NULL)
481     bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
482   else
483     bfd_fprintf_vma (abfd, file, symbol->value);
484 
485   /* This presumes that a symbol can not be both BSF_DEBUGGING and
486      BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
487      BSF_OBJECT.  */
488   fprintf (file, " %c%c%c%c%c%c%c",
489 	   ((type & BSF_LOCAL)
490 	    ? (type & BSF_GLOBAL) ? '!' : 'l'
491 	    : (type & BSF_GLOBAL) ? 'g'
492 	    : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
493 	   (type & BSF_WEAK) ? 'w' : ' ',
494 	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
495 	   (type & BSF_WARNING) ? 'W' : ' ',
496 	   (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
497 	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
498 	   ((type & BSF_FUNCTION)
499 	    ? 'F'
500 	    : ((type & BSF_FILE)
501 	       ? 'f'
502 	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
503 }
504 
505 /*
506 FUNCTION
507 	bfd_make_empty_symbol
508 
509 DESCRIPTION
510 	Create a new <<asymbol>> structure for the BFD @var{abfd}
511 	and return a pointer to it.
512 
513 	This routine is necessary because each back end has private
514 	information surrounding the <<asymbol>>. Building your own
515 	<<asymbol>> and pointing to it will not create the private
516 	information, and will cause problems later on.
517 
518 .#define bfd_make_empty_symbol(abfd) \
519 .  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
520 .
521 */
522 
523 /*
524 FUNCTION
525 	_bfd_generic_make_empty_symbol
526 
527 SYNOPSIS
528 	asymbol *_bfd_generic_make_empty_symbol (bfd *);
529 
530 DESCRIPTION
531 	Create a new <<asymbol>> structure for the BFD @var{abfd}
532 	and return a pointer to it.  Used by core file routines,
533 	binary back-end and anywhere else where no private info
534 	is needed.
535 */
536 
537 asymbol *
_bfd_generic_make_empty_symbol(bfd * abfd)538 _bfd_generic_make_empty_symbol (bfd *abfd)
539 {
540   bfd_size_type amt = sizeof (asymbol);
541   asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
542   if (new_symbol)
543     new_symbol->the_bfd = abfd;
544   return new_symbol;
545 }
546 
547 /*
548 FUNCTION
549 	bfd_make_debug_symbol
550 
551 DESCRIPTION
552 	Create a new <<asymbol>> structure for the BFD @var{abfd},
553 	to be used as a debugging symbol.  Further details of its use have
554 	yet to be worked out.
555 
556 .#define bfd_make_debug_symbol(abfd,ptr,size) \
557 .  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
558 .
559 */
560 
561 struct section_to_type
562 {
563   const char *section;
564   char type;
565 };
566 
567 /* Map section names to POSIX/BSD single-character symbol types.
568    This table is probably incomplete.  It is sorted for convenience of
569    adding entries.  Since it is so short, a linear search is used.  */
570 static const struct section_to_type stt[] =
571 {
572   {".bss", 'b'},
573   {"code", 't'},		/* MRI .text */
574   {".data", 'd'},
575   {"*DEBUG*", 'N'},
576   {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
577   {".drectve", 'i'},            /* MSVC's .drective section */
578   {".edata", 'e'},              /* MSVC's .edata (export) section */
579   {".fini", 't'},		/* ELF fini section */
580   {".idata", 'i'},              /* MSVC's .idata (import) section */
581   {".init", 't'},		/* ELF init section */
582   {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
583   {".rdata", 'r'},		/* Read only data.  */
584   {".rodata", 'r'},		/* Read only data.  */
585   {".sbss", 's'},		/* Small BSS (uninitialized data).  */
586   {".scommon", 'c'},		/* Small common.  */
587   {".sdata", 'g'},		/* Small initialized data.  */
588   {".text", 't'},
589   {"vars", 'd'},		/* MRI .data */
590   {"zerovars", 'b'},		/* MRI .bss */
591   {0, 0}
592 };
593 
594 /* Return the single-character symbol type corresponding to
595    section S, or '?' for an unknown COFF section.
596 
597    Check for any leading string which matches, so .text5 returns
598    't' as well as .text */
599 
600 static char
coff_section_type(const char * s)601 coff_section_type (const char *s)
602 {
603   const struct section_to_type *t;
604 
605   for (t = &stt[0]; t->section; t++)
606     if (!strncmp (s, t->section, strlen (t->section)))
607       return t->type;
608 
609   return '?';
610 }
611 
612 /* Return the single-character symbol type corresponding to section
613    SECTION, or '?' for an unknown section.  This uses section flags to
614    identify sections.
615 
616    FIXME These types are unhandled: c, i, e, p.  If we handled these also,
617    we could perhaps obsolete coff_section_type.  */
618 
619 static char
decode_section_type(const struct bfd_section * section)620 decode_section_type (const struct bfd_section *section)
621 {
622   if (section->flags & SEC_CODE)
623     return 't';
624   if (section->flags & SEC_DATA)
625     {
626       if (section->flags & SEC_READONLY)
627 	return 'r';
628       else if (section->flags & SEC_SMALL_DATA)
629 	return 'g';
630       else
631 	return 'd';
632     }
633   if ((section->flags & SEC_HAS_CONTENTS) == 0)
634     {
635       if (section->flags & SEC_SMALL_DATA)
636 	return 's';
637       else
638 	return 'b';
639     }
640   if (section->flags & SEC_DEBUGGING)
641     return 'N';
642   if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
643     return 'n';
644 
645   return '?';
646 }
647 
648 /*
649 FUNCTION
650 	bfd_decode_symclass
651 
652 DESCRIPTION
653 	Return a character corresponding to the symbol
654 	class of @var{symbol}, or '?' for an unknown class.
655 
656 SYNOPSIS
657 	int bfd_decode_symclass (asymbol *symbol);
658 */
659 int
bfd_decode_symclass(asymbol * symbol)660 bfd_decode_symclass (asymbol *symbol)
661 {
662   char c;
663 
664   if (symbol->section && bfd_is_com_section (symbol->section))
665     return 'C';
666   if (bfd_is_und_section (symbol->section))
667     {
668       if (symbol->flags & BSF_WEAK)
669 	{
670 	  /* If weak, determine if it's specifically an object
671 	     or non-object weak.  */
672 	  if (symbol->flags & BSF_OBJECT)
673 	    return 'v';
674 	  else
675 	    return 'w';
676 	}
677       else
678 	return 'U';
679     }
680   if (bfd_is_ind_section (symbol->section))
681     return 'I';
682   if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
683     return 'i';
684   if (symbol->flags & BSF_WEAK)
685     {
686       /* If weak, determine if it's specifically an object
687 	 or non-object weak.  */
688       if (symbol->flags & BSF_OBJECT)
689 	return 'V';
690       else
691 	return 'W';
692     }
693   if (symbol->flags & BSF_GNU_UNIQUE)
694     return 'u';
695   if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
696     return '?';
697 
698   if (bfd_is_abs_section (symbol->section))
699     c = 'a';
700   else if (symbol->section)
701     {
702       c = coff_section_type (symbol->section->name);
703       if (c == '?')
704 	c = decode_section_type (symbol->section);
705     }
706   else
707     return '?';
708   if (symbol->flags & BSF_GLOBAL)
709     c = TOUPPER (c);
710   return c;
711 
712   /* We don't have to handle these cases just yet, but we will soon:
713      N_SETV: 'v';
714      N_SETA: 'l';
715      N_SETT: 'x';
716      N_SETD: 'z';
717      N_SETB: 's';
718      N_INDR: 'i';
719      */
720 }
721 
722 /*
723 FUNCTION
724 	bfd_is_undefined_symclass
725 
726 DESCRIPTION
727 	Returns non-zero if the class symbol returned by
728 	bfd_decode_symclass represents an undefined symbol.
729 	Returns zero otherwise.
730 
731 SYNOPSIS
732 	bfd_boolean bfd_is_undefined_symclass (int symclass);
733 */
734 
735 bfd_boolean
bfd_is_undefined_symclass(int symclass)736 bfd_is_undefined_symclass (int symclass)
737 {
738   return symclass == 'U' || symclass == 'w' || symclass == 'v';
739 }
740 
741 /*
742 FUNCTION
743 	bfd_symbol_info
744 
745 DESCRIPTION
746 	Fill in the basic info about symbol that nm needs.
747 	Additional info may be added by the back-ends after
748 	calling this function.
749 
750 SYNOPSIS
751 	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
752 */
753 
754 void
bfd_symbol_info(asymbol * symbol,symbol_info * ret)755 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
756 {
757   ret->type = bfd_decode_symclass (symbol);
758 
759   if (bfd_is_undefined_symclass (ret->type))
760     ret->value = 0;
761   else
762     ret->value = symbol->value + symbol->section->vma;
763 
764   ret->name = symbol->name;
765 }
766 
767 /*
768 FUNCTION
769 	bfd_copy_private_symbol_data
770 
771 SYNOPSIS
772 	bfd_boolean bfd_copy_private_symbol_data
773 	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
774 
775 DESCRIPTION
776 	Copy private symbol information from @var{isym} in the BFD
777 	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
778 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
779 	returns are:
780 
781 	o <<bfd_error_no_memory>> -
782 	Not enough memory exists to create private data for @var{osec}.
783 
784 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
785 .  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
786 .            (ibfd, isymbol, obfd, osymbol))
787 .
788 */
789 
790 /* The generic version of the function which returns mini symbols.
791    This is used when the backend does not provide a more efficient
792    version.  It just uses BFD asymbol structures as mini symbols.  */
793 
794 long
_bfd_generic_read_minisymbols(bfd * abfd,bfd_boolean dynamic,void ** minisymsp,unsigned int * sizep)795 _bfd_generic_read_minisymbols (bfd *abfd,
796 			       bfd_boolean dynamic,
797 			       void **minisymsp,
798 			       unsigned int *sizep)
799 {
800   long storage;
801   asymbol **syms = NULL;
802   long symcount;
803 
804   if (dynamic)
805     storage = bfd_get_dynamic_symtab_upper_bound (abfd);
806   else
807     storage = bfd_get_symtab_upper_bound (abfd);
808   if (storage < 0)
809     goto error_return;
810   if (storage == 0)
811     return 0;
812 
813   syms = (asymbol **) bfd_malloc (storage);
814   if (syms == NULL)
815     goto error_return;
816 
817   if (dynamic)
818     symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
819   else
820     symcount = bfd_canonicalize_symtab (abfd, syms);
821   if (symcount < 0)
822     goto error_return;
823 
824   *minisymsp = syms;
825   *sizep = sizeof (asymbol *);
826   return symcount;
827 
828  error_return:
829   bfd_set_error (bfd_error_no_symbols);
830   if (syms != NULL)
831     free (syms);
832   return -1;
833 }
834 
835 /* The generic version of the function which converts a minisymbol to
836    an asymbol.  We don't worry about the sym argument we are passed;
837    we just return the asymbol the minisymbol points to.  */
838 
839 asymbol *
_bfd_generic_minisymbol_to_symbol(bfd * abfd ATTRIBUTE_UNUSED,bfd_boolean dynamic ATTRIBUTE_UNUSED,const void * minisym,asymbol * sym ATTRIBUTE_UNUSED)840 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
841 				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
842 				   const void *minisym,
843 				   asymbol *sym ATTRIBUTE_UNUSED)
844 {
845   return *(asymbol **) minisym;
846 }
847 
848 /* Look through stabs debugging information in .stab and .stabstr
849    sections to find the source file and line closest to a desired
850    location.  This is used by COFF and ELF targets.  It sets *pfound
851    to TRUE if it finds some information.  The *pinfo field is used to
852    pass cached information in and out of this routine; this first time
853    the routine is called for a BFD, *pinfo should be NULL.  The value
854    placed in *pinfo should be saved with the BFD, and passed back each
855    time this function is called.  */
856 
857 /* We use a cache by default.  */
858 
859 #define ENABLE_CACHING
860 
861 /* We keep an array of indexentry structures to record where in the
862    stabs section we should look to find line number information for a
863    particular address.  */
864 
865 struct indexentry
866 {
867   bfd_vma val;
868   bfd_byte *stab;
869   bfd_byte *str;
870   char *directory_name;
871   char *file_name;
872   char *function_name;
873 };
874 
875 /* Compare two indexentry structures.  This is called via qsort.  */
876 
877 static int
cmpindexentry(const void * a,const void * b)878 cmpindexentry (const void *a, const void *b)
879 {
880   const struct indexentry *contestantA = (const struct indexentry *) a;
881   const struct indexentry *contestantB = (const struct indexentry *) b;
882 
883   if (contestantA->val < contestantB->val)
884     return -1;
885   else if (contestantA->val > contestantB->val)
886     return 1;
887   else
888     return 0;
889 }
890 
891 /* A pointer to this structure is stored in *pinfo.  */
892 
893 struct stab_find_info
894 {
895   /* The .stab section.  */
896   asection *stabsec;
897   /* The .stabstr section.  */
898   asection *strsec;
899   /* The contents of the .stab section.  */
900   bfd_byte *stabs;
901   /* The contents of the .stabstr section.  */
902   bfd_byte *strs;
903 
904   /* A table that indexes stabs by memory address.  */
905   struct indexentry *indextable;
906   /* The number of entries in indextable.  */
907   int indextablesize;
908 
909 #ifdef ENABLE_CACHING
910   /* Cached values to restart quickly.  */
911   struct indexentry *cached_indexentry;
912   bfd_vma cached_offset;
913   bfd_byte *cached_stab;
914   char *cached_file_name;
915 #endif
916 
917   /* Saved ptr to malloc'ed filename.  */
918   char *filename;
919 };
920 
921 bfd_boolean
_bfd_stab_section_find_nearest_line(bfd * abfd,asymbol ** symbols,asection * section,bfd_vma offset,bfd_boolean * pfound,const char ** pfilename,const char ** pfnname,unsigned int * pline,void ** pinfo)922 _bfd_stab_section_find_nearest_line (bfd *abfd,
923 				     asymbol **symbols,
924 				     asection *section,
925 				     bfd_vma offset,
926 				     bfd_boolean *pfound,
927 				     const char **pfilename,
928 				     const char **pfnname,
929 				     unsigned int *pline,
930 				     void **pinfo)
931 {
932   struct stab_find_info *info;
933   bfd_size_type stabsize, strsize;
934   bfd_byte *stab, *str;
935   bfd_byte *nul_fun, *nul_str;
936   bfd_size_type stroff;
937   struct indexentry *indexentry;
938   char *file_name;
939   char *directory_name;
940   bfd_boolean saw_line, saw_func;
941 
942   *pfound = FALSE;
943   *pfilename = bfd_get_filename (abfd);
944   *pfnname = NULL;
945   *pline = 0;
946 
947   /* Stabs entries use a 12 byte format:
948        4 byte string table index
949        1 byte stab type
950        1 byte stab other field
951        2 byte stab desc field
952        4 byte stab value
953      FIXME: This will have to change for a 64 bit object format.
954 
955      The stabs symbols are divided into compilation units.  For the
956      first entry in each unit, the type of 0, the value is the length
957      of the string table for this unit, and the desc field is the
958      number of stabs symbols for this unit.  */
959 
960 #define STRDXOFF (0)
961 #define TYPEOFF (4)
962 #define OTHEROFF (5)
963 #define DESCOFF (6)
964 #define VALOFF (8)
965 #define STABSIZE (12)
966 
967   info = (struct stab_find_info *) *pinfo;
968   if (info != NULL)
969     {
970       if (info->stabsec == NULL || info->strsec == NULL)
971 	{
972 	  /* No stabs debugging information.  */
973 	  return TRUE;
974 	}
975 
976       stabsize = (info->stabsec->rawsize
977 		  ? info->stabsec->rawsize
978 		  : info->stabsec->size);
979       strsize = (info->strsec->rawsize
980 		 ? info->strsec->rawsize
981 		 : info->strsec->size);
982     }
983   else
984     {
985       long reloc_size, reloc_count;
986       arelent **reloc_vector;
987       int i;
988       char *function_name;
989       bfd_size_type amt = sizeof *info;
990 
991       info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
992       if (info == NULL)
993 	return FALSE;
994 
995       /* FIXME: When using the linker --split-by-file or
996 	 --split-by-reloc options, it is possible for the .stab and
997 	 .stabstr sections to be split.  We should handle that.  */
998 
999       info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1000       info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1001 
1002       if (info->stabsec == NULL || info->strsec == NULL)
1003 	{
1004 	  /* Try SOM section names.  */
1005 	  info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1006 	  info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1007 
1008 	  if (info->stabsec == NULL || info->strsec == NULL)
1009 	    {
1010 	      /* No stabs debugging information.  Set *pinfo so that we
1011 		 can return quickly in the info != NULL case above.  */
1012 	      *pinfo = info;
1013 	      return TRUE;
1014 	    }
1015 	}
1016 
1017       stabsize = (info->stabsec->rawsize
1018 		  ? info->stabsec->rawsize
1019 		  : info->stabsec->size);
1020       stabsize = (stabsize / STABSIZE) * STABSIZE;
1021       strsize = (info->strsec->rawsize
1022 		 ? info->strsec->rawsize
1023 		 : info->strsec->size);
1024 
1025       info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1026       info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1027       if (info->stabs == NULL || info->strs == NULL)
1028 	return FALSE;
1029 
1030       if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1031 				      0, stabsize)
1032 	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1033 					 0, strsize))
1034 	return FALSE;
1035 
1036       /* If this is a relocatable object file, we have to relocate
1037 	 the entries in .stab.  This should always be simple 32 bit
1038 	 relocations against symbols defined in this object file, so
1039 	 this should be no big deal.  */
1040       reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1041       if (reloc_size < 0)
1042 	return FALSE;
1043       reloc_vector = (arelent **) bfd_malloc (reloc_size);
1044       if (reloc_vector == NULL && reloc_size != 0)
1045 	return FALSE;
1046       reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1047 					    symbols);
1048       if (reloc_count < 0)
1049 	{
1050 	  if (reloc_vector != NULL)
1051 	    free (reloc_vector);
1052 	  return FALSE;
1053 	}
1054       if (reloc_count > 0)
1055 	{
1056 	  arelent **pr;
1057 
1058 	  for (pr = reloc_vector; *pr != NULL; pr++)
1059 	    {
1060 	      arelent *r;
1061 	      unsigned long val;
1062 	      asymbol *sym;
1063 
1064 	      r = *pr;
1065 	      /* Ignore R_*_NONE relocs.  */
1066 	      if (r->howto->dst_mask == 0)
1067 		continue;
1068 
1069 	      if (r->howto->rightshift != 0
1070 		  || r->howto->size != 2
1071 		  || r->howto->bitsize != 32
1072 		  || r->howto->pc_relative
1073 		  || r->howto->bitpos != 0
1074 		  || r->howto->dst_mask != 0xffffffff)
1075 		{
1076 		  (*_bfd_error_handler)
1077 		    (_("Unsupported .stab relocation"));
1078 		  bfd_set_error (bfd_error_invalid_operation);
1079 		  if (reloc_vector != NULL)
1080 		    free (reloc_vector);
1081 		  return FALSE;
1082 		}
1083 
1084 	      val = bfd_get_32 (abfd, info->stabs + r->address);
1085 	      val &= r->howto->src_mask;
1086 	      sym = *r->sym_ptr_ptr;
1087 	      val += sym->value + sym->section->vma + r->addend;
1088 	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1089 	    }
1090 	}
1091 
1092       if (reloc_vector != NULL)
1093 	free (reloc_vector);
1094 
1095       /* First time through this function, build a table matching
1096 	 function VM addresses to stabs, then sort based on starting
1097 	 VM address.  Do this in two passes: once to count how many
1098 	 table entries we'll need, and a second to actually build the
1099 	 table.  */
1100 
1101       info->indextablesize = 0;
1102       nul_fun = NULL;
1103       for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1104 	{
1105 	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1106 	    {
1107 	      /* if we did not see a function def, leave space for one.  */
1108 	      if (nul_fun != NULL)
1109 		++info->indextablesize;
1110 
1111 	      /* N_SO with null name indicates EOF */
1112 	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1113 		nul_fun = NULL;
1114 	      else
1115 		{
1116 		  nul_fun = stab;
1117 
1118 		  /* two N_SO's in a row is a filename and directory. Skip */
1119 		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1120 		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1121 		    stab += STABSIZE;
1122 		}
1123 	    }
1124 	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1125 		   && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1126 	    {
1127 	      nul_fun = NULL;
1128 	      ++info->indextablesize;
1129 	    }
1130 	}
1131 
1132       if (nul_fun != NULL)
1133 	++info->indextablesize;
1134 
1135       if (info->indextablesize == 0)
1136 	return TRUE;
1137       ++info->indextablesize;
1138 
1139       amt = info->indextablesize;
1140       amt *= sizeof (struct indexentry);
1141       info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1142       if (info->indextable == NULL)
1143 	return FALSE;
1144 
1145       file_name = NULL;
1146       directory_name = NULL;
1147       nul_fun = NULL;
1148       stroff = 0;
1149 
1150       for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1151 	   i < info->indextablesize && stab < info->stabs + stabsize;
1152 	   stab += STABSIZE)
1153 	{
1154 	  switch (stab[TYPEOFF])
1155 	    {
1156 	    case 0:
1157 	      /* This is the first entry in a compilation unit.  */
1158 	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1159 		break;
1160 	      str += stroff;
1161 	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1162 	      break;
1163 
1164 	    case N_SO:
1165 	      /* The main file name.  */
1166 
1167 	      /* The following code creates a new indextable entry with
1168 	         a NULL function name if there were no N_FUNs in a file.
1169 	         Note that a N_SO without a file name is an EOF and
1170 	         there could be 2 N_SO following it with the new filename
1171 	         and directory.  */
1172 	      if (nul_fun != NULL)
1173 		{
1174 		  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1175 		  info->indextable[i].stab = nul_fun;
1176 		  info->indextable[i].str = nul_str;
1177 		  info->indextable[i].directory_name = directory_name;
1178 		  info->indextable[i].file_name = file_name;
1179 		  info->indextable[i].function_name = NULL;
1180 		  ++i;
1181 		}
1182 
1183 	      directory_name = NULL;
1184 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1185 	      if (file_name == (char *) str)
1186 		{
1187 		  file_name = NULL;
1188 		  nul_fun = NULL;
1189 		}
1190 	      else
1191 		{
1192 		  nul_fun = stab;
1193 		  nul_str = str;
1194 		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1195 		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1196 		    {
1197 		      /* Two consecutive N_SOs are a directory and a
1198 			 file name.  */
1199 		      stab += STABSIZE;
1200 		      directory_name = file_name;
1201 		      file_name = ((char *) str
1202 				   + bfd_get_32 (abfd, stab + STRDXOFF));
1203 		    }
1204 		}
1205 	      break;
1206 
1207 	    case N_SOL:
1208 	      /* The name of an include file.  */
1209 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1210 	      break;
1211 
1212 	    case N_FUN:
1213 	      /* A function name.  */
1214 	      function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1215 	      if (function_name == (char *) str)
1216 		continue;
1217 
1218 	      nul_fun = NULL;
1219 	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1220 	      info->indextable[i].stab = stab;
1221 	      info->indextable[i].str = str;
1222 	      info->indextable[i].directory_name = directory_name;
1223 	      info->indextable[i].file_name = file_name;
1224 	      info->indextable[i].function_name = function_name;
1225 	      ++i;
1226 	      break;
1227 	    }
1228 	}
1229 
1230       if (nul_fun != NULL)
1231 	{
1232 	  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1233 	  info->indextable[i].stab = nul_fun;
1234 	  info->indextable[i].str = nul_str;
1235 	  info->indextable[i].directory_name = directory_name;
1236 	  info->indextable[i].file_name = file_name;
1237 	  info->indextable[i].function_name = NULL;
1238 	  ++i;
1239 	}
1240 
1241       info->indextable[i].val = (bfd_vma) -1;
1242       info->indextable[i].stab = info->stabs + stabsize;
1243       info->indextable[i].str = str;
1244       info->indextable[i].directory_name = NULL;
1245       info->indextable[i].file_name = NULL;
1246       info->indextable[i].function_name = NULL;
1247       ++i;
1248 
1249       info->indextablesize = i;
1250       qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1251 	     cmpindexentry);
1252 
1253       *pinfo = info;
1254     }
1255 
1256   /* We are passed a section relative offset.  The offsets in the
1257      stabs information are absolute.  */
1258   offset += bfd_get_section_vma (abfd, section);
1259 
1260 #ifdef ENABLE_CACHING
1261   if (info->cached_indexentry != NULL
1262       && offset >= info->cached_offset
1263       && offset < (info->cached_indexentry + 1)->val)
1264     {
1265       stab = info->cached_stab;
1266       indexentry = info->cached_indexentry;
1267       file_name = info->cached_file_name;
1268     }
1269   else
1270 #endif
1271     {
1272       long low, high;
1273       long mid = -1;
1274 
1275       /* Cache non-existent or invalid.  Do binary search on
1276          indextable.  */
1277       indexentry = NULL;
1278 
1279       low = 0;
1280       high = info->indextablesize - 1;
1281       while (low != high)
1282 	{
1283 	  mid = (high + low) / 2;
1284 	  if (offset >= info->indextable[mid].val
1285 	      && offset < info->indextable[mid + 1].val)
1286 	    {
1287 	      indexentry = &info->indextable[mid];
1288 	      break;
1289 	    }
1290 
1291 	  if (info->indextable[mid].val > offset)
1292 	    high = mid;
1293 	  else
1294 	    low = mid + 1;
1295 	}
1296 
1297       if (indexentry == NULL)
1298 	return TRUE;
1299 
1300       stab = indexentry->stab + STABSIZE;
1301       file_name = indexentry->file_name;
1302     }
1303 
1304   directory_name = indexentry->directory_name;
1305   str = indexentry->str;
1306 
1307   saw_line = FALSE;
1308   saw_func = FALSE;
1309   for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1310     {
1311       bfd_boolean done;
1312       bfd_vma val;
1313 
1314       done = FALSE;
1315 
1316       switch (stab[TYPEOFF])
1317 	{
1318 	case N_SOL:
1319 	  /* The name of an include file.  */
1320 	  val = bfd_get_32 (abfd, stab + VALOFF);
1321 	  if (val <= offset)
1322 	    {
1323 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1324 	      *pline = 0;
1325 	    }
1326 	  break;
1327 
1328 	case N_SLINE:
1329 	case N_DSLINE:
1330 	case N_BSLINE:
1331 	  /* A line number.  If the function was specified, then the value
1332 	     is relative to the start of the function.  Otherwise, the
1333 	     value is an absolute address.  */
1334 	  val = ((indexentry->function_name ? indexentry->val : 0)
1335 		 + bfd_get_32 (abfd, stab + VALOFF));
1336 	  /* If this line starts before our desired offset, or if it's
1337 	     the first line we've been able to find, use it.  The
1338 	     !saw_line check works around a bug in GCC 2.95.3, which emits
1339 	     the first N_SLINE late.  */
1340 	  if (!saw_line || val <= offset)
1341 	    {
1342 	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1343 
1344 #ifdef ENABLE_CACHING
1345 	      info->cached_stab = stab;
1346 	      info->cached_offset = val;
1347 	      info->cached_file_name = file_name;
1348 	      info->cached_indexentry = indexentry;
1349 #endif
1350 	    }
1351 	  if (val > offset)
1352 	    done = TRUE;
1353 	  saw_line = TRUE;
1354 	  break;
1355 
1356 	case N_FUN:
1357 	case N_SO:
1358 	  if (saw_func || saw_line)
1359 	    done = TRUE;
1360 	  saw_func = TRUE;
1361 	  break;
1362 	}
1363 
1364       if (done)
1365 	break;
1366     }
1367 
1368   *pfound = TRUE;
1369 
1370   if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1371       || directory_name == NULL)
1372     *pfilename = file_name;
1373   else
1374     {
1375       size_t dirlen;
1376 
1377       dirlen = strlen (directory_name);
1378       if (info->filename == NULL
1379 	  || filename_ncmp (info->filename, directory_name, dirlen) != 0
1380 	  || filename_cmp (info->filename + dirlen, file_name) != 0)
1381 	{
1382 	  size_t len;
1383 
1384 	  /* Don't free info->filename here.  objdump and other
1385 	     apps keep a copy of a previously returned file name
1386 	     pointer.  */
1387 	  len = strlen (file_name) + 1;
1388 	  info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1389 	  if (info->filename == NULL)
1390 	    return FALSE;
1391 	  memcpy (info->filename, directory_name, dirlen);
1392 	  memcpy (info->filename + dirlen, file_name, len);
1393 	}
1394 
1395       *pfilename = info->filename;
1396     }
1397 
1398   if (indexentry->function_name != NULL)
1399     {
1400       char *s;
1401 
1402       /* This will typically be something like main:F(0,1), so we want
1403          to clobber the colon.  It's OK to change the name, since the
1404          string is in our own local storage anyhow.  */
1405       s = strchr (indexentry->function_name, ':');
1406       if (s != NULL)
1407 	*s = '\0';
1408 
1409       *pfnname = indexentry->function_name;
1410     }
1411 
1412   return TRUE;
1413 }
1414