1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 //
12 // On AArch64, stack frames are structured as follows:
13 //
14 // The stack grows downward.
15 //
16 // All of the individual frame areas on the frame below are optional, i.e. it's
17 // possible to create a function so that the particular area isn't present
18 // in the frame.
19 //
20 // At function entry, the "frame" looks as follows:
21 //
22 // | | Higher address
23 // |-----------------------------------|
24 // | |
25 // | arguments passed on the stack |
26 // | |
27 // |-----------------------------------| <- sp
28 // | | Lower address
29 //
30 //
31 // After the prologue has run, the frame has the following general structure.
32 // Note that this doesn't depict the case where a red-zone is used. Also,
33 // technically the last frame area (VLAs) doesn't get created until in the
34 // main function body, after the prologue is run. However, it's depicted here
35 // for completeness.
36 //
37 // | | Higher address
38 // |-----------------------------------|
39 // | |
40 // | arguments passed on the stack |
41 // | |
42 // |-----------------------------------|
43 // | |
44 // | prev_fp, prev_lr |
45 // | (a.k.a. "frame record") |
46 // |-----------------------------------| <- fp(=x29)
47 // | |
48 // | other callee-saved registers |
49 // | |
50 // |-----------------------------------|
51 // |.empty.space.to.make.part.below....|
52 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
53 // |.the.standard.16-byte.alignment....| compile time; if present)
54 // |-----------------------------------|
55 // | |
56 // | local variables of fixed size |
57 // | including spill slots |
58 // |-----------------------------------| <- bp(not defined by ABI,
59 // |.variable-sized.local.variables....| LLVM chooses X19)
60 // |.(VLAs)............................| (size of this area is unknown at
61 // |...................................| compile time)
62 // |-----------------------------------| <- sp
63 // | | Lower address
64 //
65 //
66 // To access the data in a frame, at-compile time, a constant offset must be
67 // computable from one of the pointers (fp, bp, sp) to access it. The size
68 // of the areas with a dotted background cannot be computed at compile-time
69 // if they are present, making it required to have all three of fp, bp and
70 // sp to be set up to be able to access all contents in the frame areas,
71 // assuming all of the frame areas are non-empty.
72 //
73 // For most functions, some of the frame areas are empty. For those functions,
74 // it may not be necessary to set up fp or bp:
75 // * A base pointer is definitely needed when there are both VLAs and local
76 // variables with more-than-default alignment requirements.
77 // * A frame pointer is definitely needed when there are local variables with
78 // more-than-default alignment requirements.
79 //
80 // In some cases when a base pointer is not strictly needed, it is generated
81 // anyway when offsets from the frame pointer to access local variables become
82 // so large that the offset can't be encoded in the immediate fields of loads
83 // or stores.
84 //
85 // FIXME: also explain the redzone concept.
86 // FIXME: also explain the concept of reserved call frames.
87 //
88 //===----------------------------------------------------------------------===//
89
90 #include "AArch64FrameLowering.h"
91 #include "AArch64InstrInfo.h"
92 #include "AArch64MachineFunctionInfo.h"
93 #include "AArch64Subtarget.h"
94 #include "AArch64TargetMachine.h"
95 #include "llvm/ADT/Statistic.h"
96 #include "llvm/CodeGen/MachineFrameInfo.h"
97 #include "llvm/CodeGen/MachineFunction.h"
98 #include "llvm/CodeGen/MachineInstrBuilder.h"
99 #include "llvm/CodeGen/MachineModuleInfo.h"
100 #include "llvm/CodeGen/MachineRegisterInfo.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/Function.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/raw_ostream.h"
107
108 using namespace llvm;
109
110 #define DEBUG_TYPE "frame-info"
111
112 static cl::opt<bool> EnableRedZone("aarch64-redzone",
113 cl::desc("enable use of redzone on AArch64"),
114 cl::init(false), cl::Hidden);
115
116 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
117
canUseRedZone(const MachineFunction & MF) const118 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
119 if (!EnableRedZone)
120 return false;
121 // Don't use the red zone if the function explicitly asks us not to.
122 // This is typically used for kernel code.
123 if (MF.getFunction()->hasFnAttribute(Attribute::NoRedZone))
124 return false;
125
126 const MachineFrameInfo *MFI = MF.getFrameInfo();
127 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
128 unsigned NumBytes = AFI->getLocalStackSize();
129
130 // Note: currently hasFP() is always true for hasCalls(), but that's an
131 // implementation detail of the current code, not a strict requirement,
132 // so stay safe here and check both.
133 if (MFI->hasCalls() || hasFP(MF) || NumBytes > 128)
134 return false;
135 return true;
136 }
137
138 /// hasFP - Return true if the specified function should have a dedicated frame
139 /// pointer register.
hasFP(const MachineFunction & MF) const140 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
141 const MachineFrameInfo *MFI = MF.getFrameInfo();
142 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
143 return (MFI->hasCalls() || MFI->hasVarSizedObjects() ||
144 MFI->isFrameAddressTaken() || MFI->hasStackMap() ||
145 MFI->hasPatchPoint() || RegInfo->needsStackRealignment(MF));
146 }
147
148 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
149 /// not required, we reserve argument space for call sites in the function
150 /// immediately on entry to the current function. This eliminates the need for
151 /// add/sub sp brackets around call sites. Returns true if the call frame is
152 /// included as part of the stack frame.
153 bool
hasReservedCallFrame(const MachineFunction & MF) const154 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
155 return !MF.getFrameInfo()->hasVarSizedObjects();
156 }
157
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const158 void AArch64FrameLowering::eliminateCallFramePseudoInstr(
159 MachineFunction &MF, MachineBasicBlock &MBB,
160 MachineBasicBlock::iterator I) const {
161 const AArch64InstrInfo *TII =
162 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
163 DebugLoc DL = I->getDebugLoc();
164 unsigned Opc = I->getOpcode();
165 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
166 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
167
168 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
169 if (!TFI->hasReservedCallFrame(MF)) {
170 unsigned Align = getStackAlignment();
171
172 int64_t Amount = I->getOperand(0).getImm();
173 Amount = RoundUpToAlignment(Amount, Align);
174 if (!IsDestroy)
175 Amount = -Amount;
176
177 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
178 // doesn't have to pop anything), then the first operand will be zero too so
179 // this adjustment is a no-op.
180 if (CalleePopAmount == 0) {
181 // FIXME: in-function stack adjustment for calls is limited to 24-bits
182 // because there's no guaranteed temporary register available.
183 //
184 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
185 // 1) For offset <= 12-bit, we use LSL #0
186 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
187 // LSL #0, and the other uses LSL #12.
188 //
189 // Mostly call frames will be allocated at the start of a function so
190 // this is OK, but it is a limitation that needs dealing with.
191 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
192 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII);
193 }
194 } else if (CalleePopAmount != 0) {
195 // If the calling convention demands that the callee pops arguments from the
196 // stack, we want to add it back if we have a reserved call frame.
197 assert(CalleePopAmount < 0xffffff && "call frame too large");
198 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount,
199 TII);
200 }
201 MBB.erase(I);
202 }
203
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned FramePtr) const204 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
205 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
206 unsigned FramePtr) const {
207 MachineFunction &MF = *MBB.getParent();
208 MachineFrameInfo *MFI = MF.getFrameInfo();
209 MachineModuleInfo &MMI = MF.getMMI();
210 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
211 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
212 DebugLoc DL = MBB.findDebugLoc(MBBI);
213
214 // Add callee saved registers to move list.
215 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
216 if (CSI.empty())
217 return;
218
219 const DataLayout &TD = MF.getDataLayout();
220 bool HasFP = hasFP(MF);
221
222 // Calculate amount of bytes used for return address storing.
223 int stackGrowth = -TD.getPointerSize(0);
224
225 // Calculate offsets.
226 int64_t saveAreaOffset = (HasFP ? 2 : 1) * stackGrowth;
227 unsigned TotalSkipped = 0;
228 for (const auto &Info : CSI) {
229 unsigned Reg = Info.getReg();
230 int64_t Offset = MFI->getObjectOffset(Info.getFrameIdx()) -
231 getOffsetOfLocalArea() + saveAreaOffset;
232
233 // Don't output a new CFI directive if we're re-saving the frame pointer or
234 // link register. This happens when the PrologEpilogInserter has inserted an
235 // extra "STP" of the frame pointer and link register -- the "emitPrologue"
236 // method automatically generates the directives when frame pointers are
237 // used. If we generate CFI directives for the extra "STP"s, the linker will
238 // lose track of the correct values for the frame pointer and link register.
239 if (HasFP && (FramePtr == Reg || Reg == AArch64::LR)) {
240 TotalSkipped += stackGrowth;
241 continue;
242 }
243
244 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
245 unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
246 nullptr, DwarfReg, Offset - TotalSkipped));
247 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
248 .addCFIIndex(CFIIndex)
249 .setMIFlags(MachineInstr::FrameSetup);
250 }
251 }
252
253 /// Get FPOffset by analyzing the first instruction.
getFPOffsetInPrologue(MachineInstr * MBBI)254 static int getFPOffsetInPrologue(MachineInstr *MBBI) {
255 // First instruction must a) allocate the stack and b) have an immediate
256 // that is a multiple of -2.
257 assert(((MBBI->getOpcode() == AArch64::STPXpre ||
258 MBBI->getOpcode() == AArch64::STPDpre) &&
259 MBBI->getOperand(3).getReg() == AArch64::SP &&
260 MBBI->getOperand(4).getImm() < 0 &&
261 (MBBI->getOperand(4).getImm() & 1) == 0));
262
263 // Frame pointer is fp = sp - 16. Since the STPXpre subtracts the space
264 // required for the callee saved register area we get the frame pointer
265 // by addding that offset - 16 = -getImm()*8 - 2*8 = -(getImm() + 2) * 8.
266 int FPOffset = -(MBBI->getOperand(4).getImm() + 2) * 8;
267 assert(FPOffset >= 0 && "Bad Framepointer Offset");
268 return FPOffset;
269 }
270
isCSSave(MachineInstr * MBBI)271 static bool isCSSave(MachineInstr *MBBI) {
272 return MBBI->getOpcode() == AArch64::STPXi ||
273 MBBI->getOpcode() == AArch64::STPDi ||
274 MBBI->getOpcode() == AArch64::STPXpre ||
275 MBBI->getOpcode() == AArch64::STPDpre;
276 }
277
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const278 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
279 MachineBasicBlock &MBB) const {
280 MachineBasicBlock::iterator MBBI = MBB.begin();
281 const MachineFrameInfo *MFI = MF.getFrameInfo();
282 const Function *Fn = MF.getFunction();
283 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
284 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
285 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
286 MachineModuleInfo &MMI = MF.getMMI();
287 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
288 bool needsFrameMoves = MMI.hasDebugInfo() || Fn->needsUnwindTableEntry();
289 bool HasFP = hasFP(MF);
290
291 // Debug location must be unknown since the first debug location is used
292 // to determine the end of the prologue.
293 DebugLoc DL;
294
295 // All calls are tail calls in GHC calling conv, and functions have no
296 // prologue/epilogue.
297 if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
298 return;
299
300 int NumBytes = (int)MFI->getStackSize();
301 if (!AFI->hasStackFrame()) {
302 assert(!HasFP && "unexpected function without stack frame but with FP");
303
304 // All of the stack allocation is for locals.
305 AFI->setLocalStackSize(NumBytes);
306
307 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
308 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
309
310 // REDZONE: If the stack size is less than 128 bytes, we don't need
311 // to actually allocate.
312 if (NumBytes && !canUseRedZone(MF)) {
313 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
314 MachineInstr::FrameSetup);
315
316 // Encode the stack size of the leaf function.
317 unsigned CFIIndex = MMI.addFrameInst(
318 MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
319 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
320 .addCFIIndex(CFIIndex)
321 .setMIFlags(MachineInstr::FrameSetup);
322 } else if (NumBytes) {
323 ++NumRedZoneFunctions;
324 }
325
326 return;
327 }
328
329 // Only set up FP if we actually need to.
330 int FPOffset = 0;
331 if (HasFP)
332 FPOffset = getFPOffsetInPrologue(MBBI);
333
334 // Move past the saves of the callee-saved registers.
335 while (isCSSave(MBBI)) {
336 ++MBBI;
337 NumBytes -= 16;
338 }
339 assert(NumBytes >= 0 && "Negative stack allocation size!?");
340 if (HasFP) {
341 // Issue sub fp, sp, FPOffset or
342 // mov fp,sp when FPOffset is zero.
343 // Note: All stores of callee-saved registers are marked as "FrameSetup".
344 // This code marks the instruction(s) that set the FP also.
345 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII,
346 MachineInstr::FrameSetup);
347 }
348
349 // All of the remaining stack allocations are for locals.
350 AFI->setLocalStackSize(NumBytes);
351
352 // Allocate space for the rest of the frame.
353
354 const unsigned Alignment = MFI->getMaxAlignment();
355 const bool NeedsRealignment = RegInfo->needsStackRealignment(MF);
356 unsigned scratchSPReg = AArch64::SP;
357 if (NumBytes && NeedsRealignment) {
358 // Use the first callee-saved register as a scratch register.
359 scratchSPReg = AArch64::X9;
360 }
361
362 // If we're a leaf function, try using the red zone.
363 if (NumBytes && !canUseRedZone(MF))
364 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
365 // the correct value here, as NumBytes also includes padding bytes,
366 // which shouldn't be counted here.
367 emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, -NumBytes, TII,
368 MachineInstr::FrameSetup);
369
370 if (NumBytes && NeedsRealignment) {
371 const unsigned NrBitsToZero = countTrailingZeros(Alignment);
372 assert(NrBitsToZero > 1);
373 assert(scratchSPReg != AArch64::SP);
374
375 // SUB X9, SP, NumBytes
376 // -- X9 is temporary register, so shouldn't contain any live data here,
377 // -- free to use. This is already produced by emitFrameOffset above.
378 // AND SP, X9, 0b11111...0000
379 // The logical immediates have a non-trivial encoding. The following
380 // formula computes the encoded immediate with all ones but
381 // NrBitsToZero zero bits as least significant bits.
382 uint32_t andMaskEncoded =
383 (1 <<12) // = N
384 | ((64-NrBitsToZero) << 6) // immr
385 | ((64-NrBitsToZero-1) << 0) // imms
386 ;
387 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
388 .addReg(scratchSPReg, RegState::Kill)
389 .addImm(andMaskEncoded);
390 }
391
392 // If we need a base pointer, set it up here. It's whatever the value of the
393 // stack pointer is at this point. Any variable size objects will be allocated
394 // after this, so we can still use the base pointer to reference locals.
395 //
396 // FIXME: Clarify FrameSetup flags here.
397 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
398 // needed.
399 if (RegInfo->hasBasePointer(MF)) {
400 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
401 false);
402 }
403
404 if (needsFrameMoves) {
405 const DataLayout &TD = MF.getDataLayout();
406 const int StackGrowth = -TD.getPointerSize(0);
407 unsigned FramePtr = RegInfo->getFrameRegister(MF);
408 // An example of the prologue:
409 //
410 // .globl __foo
411 // .align 2
412 // __foo:
413 // Ltmp0:
414 // .cfi_startproc
415 // .cfi_personality 155, ___gxx_personality_v0
416 // Leh_func_begin:
417 // .cfi_lsda 16, Lexception33
418 //
419 // stp xa,bx, [sp, -#offset]!
420 // ...
421 // stp x28, x27, [sp, #offset-32]
422 // stp fp, lr, [sp, #offset-16]
423 // add fp, sp, #offset - 16
424 // sub sp, sp, #1360
425 //
426 // The Stack:
427 // +-------------------------------------------+
428 // 10000 | ........ | ........ | ........ | ........ |
429 // 10004 | ........ | ........ | ........ | ........ |
430 // +-------------------------------------------+
431 // 10008 | ........ | ........ | ........ | ........ |
432 // 1000c | ........ | ........ | ........ | ........ |
433 // +===========================================+
434 // 10010 | X28 Register |
435 // 10014 | X28 Register |
436 // +-------------------------------------------+
437 // 10018 | X27 Register |
438 // 1001c | X27 Register |
439 // +===========================================+
440 // 10020 | Frame Pointer |
441 // 10024 | Frame Pointer |
442 // +-------------------------------------------+
443 // 10028 | Link Register |
444 // 1002c | Link Register |
445 // +===========================================+
446 // 10030 | ........ | ........ | ........ | ........ |
447 // 10034 | ........ | ........ | ........ | ........ |
448 // +-------------------------------------------+
449 // 10038 | ........ | ........ | ........ | ........ |
450 // 1003c | ........ | ........ | ........ | ........ |
451 // +-------------------------------------------+
452 //
453 // [sp] = 10030 :: >>initial value<<
454 // sp = 10020 :: stp fp, lr, [sp, #-16]!
455 // fp = sp == 10020 :: mov fp, sp
456 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
457 // sp == 10010 :: >>final value<<
458 //
459 // The frame pointer (w29) points to address 10020. If we use an offset of
460 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
461 // for w27, and -32 for w28:
462 //
463 // Ltmp1:
464 // .cfi_def_cfa w29, 16
465 // Ltmp2:
466 // .cfi_offset w30, -8
467 // Ltmp3:
468 // .cfi_offset w29, -16
469 // Ltmp4:
470 // .cfi_offset w27, -24
471 // Ltmp5:
472 // .cfi_offset w28, -32
473
474 if (HasFP) {
475 // Define the current CFA rule to use the provided FP.
476 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
477 unsigned CFIIndex = MMI.addFrameInst(
478 MCCFIInstruction::createDefCfa(nullptr, Reg, 2 * StackGrowth));
479 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
480 .addCFIIndex(CFIIndex)
481 .setMIFlags(MachineInstr::FrameSetup);
482
483 // Record the location of the stored LR
484 unsigned LR = RegInfo->getDwarfRegNum(AArch64::LR, true);
485 CFIIndex = MMI.addFrameInst(
486 MCCFIInstruction::createOffset(nullptr, LR, StackGrowth));
487 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
488 .addCFIIndex(CFIIndex)
489 .setMIFlags(MachineInstr::FrameSetup);
490
491 // Record the location of the stored FP
492 CFIIndex = MMI.addFrameInst(
493 MCCFIInstruction::createOffset(nullptr, Reg, 2 * StackGrowth));
494 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
495 .addCFIIndex(CFIIndex)
496 .setMIFlags(MachineInstr::FrameSetup);
497 } else {
498 // Encode the stack size of the leaf function.
499 unsigned CFIIndex = MMI.addFrameInst(
500 MCCFIInstruction::createDefCfaOffset(nullptr, -MFI->getStackSize()));
501 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
502 .addCFIIndex(CFIIndex)
503 .setMIFlags(MachineInstr::FrameSetup);
504 }
505
506 // Now emit the moves for whatever callee saved regs we have.
507 emitCalleeSavedFrameMoves(MBB, MBBI, FramePtr);
508 }
509 }
510
isCalleeSavedRegister(unsigned Reg,const MCPhysReg * CSRegs)511 static bool isCalleeSavedRegister(unsigned Reg, const MCPhysReg *CSRegs) {
512 for (unsigned i = 0; CSRegs[i]; ++i)
513 if (Reg == CSRegs[i])
514 return true;
515 return false;
516 }
517
518 /// Checks whether the given instruction restores callee save registers
519 /// and if so returns how many.
getNumCSRestores(MachineInstr & MI,const MCPhysReg * CSRegs)520 static unsigned getNumCSRestores(MachineInstr &MI, const MCPhysReg *CSRegs) {
521 unsigned RtIdx = 0;
522 switch (MI.getOpcode()) {
523 case AArch64::LDPXpost:
524 case AArch64::LDPDpost:
525 RtIdx = 1;
526 // FALLTHROUGH
527 case AArch64::LDPXi:
528 case AArch64::LDPDi:
529 if (!isCalleeSavedRegister(MI.getOperand(RtIdx).getReg(), CSRegs) ||
530 !isCalleeSavedRegister(MI.getOperand(RtIdx + 1).getReg(), CSRegs) ||
531 MI.getOperand(RtIdx + 2).getReg() != AArch64::SP)
532 return 0;
533 return 2;
534 }
535 return 0;
536 }
537
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const538 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
539 MachineBasicBlock &MBB) const {
540 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
541 MachineFrameInfo *MFI = MF.getFrameInfo();
542 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
543 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
544 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
545 DebugLoc DL;
546 bool IsTailCallReturn = false;
547 if (MBB.end() != MBBI) {
548 DL = MBBI->getDebugLoc();
549 unsigned RetOpcode = MBBI->getOpcode();
550 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
551 RetOpcode == AArch64::TCRETURNri;
552 }
553 int NumBytes = MFI->getStackSize();
554 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
555
556 // All calls are tail calls in GHC calling conv, and functions have no
557 // prologue/epilogue.
558 if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
559 return;
560
561 // Initial and residual are named for consistency with the prologue. Note that
562 // in the epilogue, the residual adjustment is executed first.
563 uint64_t ArgumentPopSize = 0;
564 if (IsTailCallReturn) {
565 MachineOperand &StackAdjust = MBBI->getOperand(1);
566
567 // For a tail-call in a callee-pops-arguments environment, some or all of
568 // the stack may actually be in use for the call's arguments, this is
569 // calculated during LowerCall and consumed here...
570 ArgumentPopSize = StackAdjust.getImm();
571 } else {
572 // ... otherwise the amount to pop is *all* of the argument space,
573 // conveniently stored in the MachineFunctionInfo by
574 // LowerFormalArguments. This will, of course, be zero for the C calling
575 // convention.
576 ArgumentPopSize = AFI->getArgumentStackToRestore();
577 }
578
579 // The stack frame should be like below,
580 //
581 // ---------------------- ---
582 // | | |
583 // | BytesInStackArgArea| CalleeArgStackSize
584 // | (NumReusableBytes) | (of tail call)
585 // | | ---
586 // | | |
587 // ---------------------| --- |
588 // | | | |
589 // | CalleeSavedReg | | |
590 // | (NumRestores * 8) | | |
591 // | | | |
592 // ---------------------| | NumBytes
593 // | | StackSize (StackAdjustUp)
594 // | LocalStackSize | | |
595 // | (covering callee | | |
596 // | args) | | |
597 // | | | |
598 // ---------------------- --- ---
599 //
600 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
601 // = StackSize + ArgumentPopSize
602 //
603 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
604 // it as the 2nd argument of AArch64ISD::TC_RETURN.
605 NumBytes += ArgumentPopSize;
606
607 unsigned NumRestores = 0;
608 // Move past the restores of the callee-saved registers.
609 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
610 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
611 MachineBasicBlock::iterator Begin = MBB.begin();
612 while (LastPopI != Begin) {
613 --LastPopI;
614 unsigned Restores = getNumCSRestores(*LastPopI, CSRegs);
615 NumRestores += Restores;
616 if (Restores == 0) {
617 ++LastPopI;
618 break;
619 }
620 }
621 NumBytes -= NumRestores * 8;
622 assert(NumBytes >= 0 && "Negative stack allocation size!?");
623
624 if (!hasFP(MF)) {
625 // If this was a redzone leaf function, we don't need to restore the
626 // stack pointer.
627 if (!canUseRedZone(MF))
628 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes,
629 TII);
630 return;
631 }
632
633 // Restore the original stack pointer.
634 // FIXME: Rather than doing the math here, we should instead just use
635 // non-post-indexed loads for the restores if we aren't actually going to
636 // be able to save any instructions.
637 if (NumBytes || MFI->hasVarSizedObjects())
638 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
639 -(NumRestores - 2) * 8, TII, MachineInstr::NoFlags);
640 }
641
642 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
643 /// debug info. It's the same as what we use for resolving the code-gen
644 /// references for now. FIXME: This can go wrong when references are
645 /// SP-relative and simple call frames aren't used.
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const646 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
647 int FI,
648 unsigned &FrameReg) const {
649 return resolveFrameIndexReference(MF, FI, FrameReg);
650 }
651
resolveFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg,bool PreferFP) const652 int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
653 int FI, unsigned &FrameReg,
654 bool PreferFP) const {
655 const MachineFrameInfo *MFI = MF.getFrameInfo();
656 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
657 MF.getSubtarget().getRegisterInfo());
658 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
659 int FPOffset = MFI->getObjectOffset(FI) + 16;
660 int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
661 bool isFixed = MFI->isFixedObjectIndex(FI);
662
663 // Use frame pointer to reference fixed objects. Use it for locals if
664 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
665 // reliable as a base). Make sure useFPForScavengingIndex() does the
666 // right thing for the emergency spill slot.
667 bool UseFP = false;
668 if (AFI->hasStackFrame()) {
669 // Note: Keeping the following as multiple 'if' statements rather than
670 // merging to a single expression for readability.
671 //
672 // Argument access should always use the FP.
673 if (isFixed) {
674 UseFP = hasFP(MF);
675 } else if (hasFP(MF) && !RegInfo->hasBasePointer(MF) &&
676 !RegInfo->needsStackRealignment(MF)) {
677 // Use SP or FP, whichever gives us the best chance of the offset
678 // being in range for direct access. If the FPOffset is positive,
679 // that'll always be best, as the SP will be even further away.
680 // If the FPOffset is negative, we have to keep in mind that the
681 // available offset range for negative offsets is smaller than for
682 // positive ones. If we have variable sized objects, we're stuck with
683 // using the FP regardless, though, as the SP offset is unknown
684 // and we don't have a base pointer available. If an offset is
685 // available via the FP and the SP, use whichever is closest.
686 if (PreferFP || MFI->hasVarSizedObjects() || FPOffset >= 0 ||
687 (FPOffset >= -256 && Offset > -FPOffset))
688 UseFP = true;
689 }
690 }
691
692 assert((isFixed || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
693 "In the presence of dynamic stack pointer realignment, "
694 "non-argument objects cannot be accessed through the frame pointer");
695
696 if (UseFP) {
697 FrameReg = RegInfo->getFrameRegister(MF);
698 return FPOffset;
699 }
700
701 // Use the base pointer if we have one.
702 if (RegInfo->hasBasePointer(MF))
703 FrameReg = RegInfo->getBaseRegister();
704 else {
705 FrameReg = AArch64::SP;
706 // If we're using the red zone for this function, the SP won't actually
707 // be adjusted, so the offsets will be negative. They're also all
708 // within range of the signed 9-bit immediate instructions.
709 if (canUseRedZone(MF))
710 Offset -= AFI->getLocalStackSize();
711 }
712
713 return Offset;
714 }
715
getPrologueDeath(MachineFunction & MF,unsigned Reg)716 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
717 if (Reg != AArch64::LR)
718 return getKillRegState(true);
719
720 // LR maybe referred to later by an @llvm.returnaddress intrinsic.
721 bool LRLiveIn = MF.getRegInfo().isLiveIn(AArch64::LR);
722 bool LRKill = !(LRLiveIn && MF.getFrameInfo()->isReturnAddressTaken());
723 return getKillRegState(LRKill);
724 }
725
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const726 bool AArch64FrameLowering::spillCalleeSavedRegisters(
727 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
728 const std::vector<CalleeSavedInfo> &CSI,
729 const TargetRegisterInfo *TRI) const {
730 MachineFunction &MF = *MBB.getParent();
731 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
732 unsigned Count = CSI.size();
733 DebugLoc DL;
734 assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
735
736 for (unsigned i = 0; i < Count; i += 2) {
737 unsigned idx = Count - i - 2;
738 unsigned Reg1 = CSI[idx].getReg();
739 unsigned Reg2 = CSI[idx + 1].getReg();
740 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
741 // list to come in sorted by frame index so that we can issue the store
742 // pair instructions directly. Assert if we see anything otherwise.
743 //
744 // The order of the registers in the list is controlled by
745 // getCalleeSavedRegs(), so they will always be in-order, as well.
746 assert(CSI[idx].getFrameIdx() + 1 == CSI[idx + 1].getFrameIdx() &&
747 "Out of order callee saved regs!");
748 unsigned StrOpc;
749 assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
750 assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
751 // Issue sequence of non-sp increment and pi sp spills for cs regs. The
752 // first spill is a pre-increment that allocates the stack.
753 // For example:
754 // stp x22, x21, [sp, #-48]! // addImm(-6)
755 // stp x20, x19, [sp, #16] // addImm(+2)
756 // stp fp, lr, [sp, #32] // addImm(+4)
757 // Rationale: This sequence saves uop updates compared to a sequence of
758 // pre-increment spills like stp xi,xj,[sp,#-16]!
759 // Note: Similar rational and sequence for restores in epilog.
760 if (AArch64::GPR64RegClass.contains(Reg1)) {
761 assert(AArch64::GPR64RegClass.contains(Reg2) &&
762 "Expected GPR64 callee-saved register pair!");
763 // For first spill use pre-increment store.
764 if (i == 0)
765 StrOpc = AArch64::STPXpre;
766 else
767 StrOpc = AArch64::STPXi;
768 } else if (AArch64::FPR64RegClass.contains(Reg1)) {
769 assert(AArch64::FPR64RegClass.contains(Reg2) &&
770 "Expected FPR64 callee-saved register pair!");
771 // For first spill use pre-increment store.
772 if (i == 0)
773 StrOpc = AArch64::STPDpre;
774 else
775 StrOpc = AArch64::STPDi;
776 } else
777 llvm_unreachable("Unexpected callee saved register!");
778 DEBUG(dbgs() << "CSR spill: (" << TRI->getName(Reg1) << ", "
779 << TRI->getName(Reg2) << ") -> fi#(" << CSI[idx].getFrameIdx()
780 << ", " << CSI[idx + 1].getFrameIdx() << ")\n");
781 // Compute offset: i = 0 => offset = -Count;
782 // i = 2 => offset = -(Count - 2) + Count = 2 = i; etc.
783 const int Offset = (i == 0) ? -Count : i;
784 assert((Offset >= -64 && Offset <= 63) &&
785 "Offset out of bounds for STP immediate");
786 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
787 if (StrOpc == AArch64::STPDpre || StrOpc == AArch64::STPXpre)
788 MIB.addReg(AArch64::SP, RegState::Define);
789
790 MBB.addLiveIn(Reg1);
791 MBB.addLiveIn(Reg2);
792 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2))
793 .addReg(Reg1, getPrologueDeath(MF, Reg1))
794 .addReg(AArch64::SP)
795 .addImm(Offset) // [sp, #offset * 8], where factor * 8 is implicit
796 .setMIFlag(MachineInstr::FrameSetup);
797 }
798 return true;
799 }
800
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const801 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
802 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
803 const std::vector<CalleeSavedInfo> &CSI,
804 const TargetRegisterInfo *TRI) const {
805 MachineFunction &MF = *MBB.getParent();
806 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
807 unsigned Count = CSI.size();
808 DebugLoc DL;
809 assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
810
811 if (MI != MBB.end())
812 DL = MI->getDebugLoc();
813
814 for (unsigned i = 0; i < Count; i += 2) {
815 unsigned Reg1 = CSI[i].getReg();
816 unsigned Reg2 = CSI[i + 1].getReg();
817 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
818 // list to come in sorted by frame index so that we can issue the store
819 // pair instructions directly. Assert if we see anything otherwise.
820 assert(CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx() &&
821 "Out of order callee saved regs!");
822 // Issue sequence of non-sp increment and sp-pi restores for cs regs. Only
823 // the last load is sp-pi post-increment and de-allocates the stack:
824 // For example:
825 // ldp fp, lr, [sp, #32] // addImm(+4)
826 // ldp x20, x19, [sp, #16] // addImm(+2)
827 // ldp x22, x21, [sp], #48 // addImm(+6)
828 // Note: see comment in spillCalleeSavedRegisters()
829 unsigned LdrOpc;
830
831 assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
832 assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
833 if (AArch64::GPR64RegClass.contains(Reg1)) {
834 assert(AArch64::GPR64RegClass.contains(Reg2) &&
835 "Expected GPR64 callee-saved register pair!");
836 if (i == Count - 2)
837 LdrOpc = AArch64::LDPXpost;
838 else
839 LdrOpc = AArch64::LDPXi;
840 } else if (AArch64::FPR64RegClass.contains(Reg1)) {
841 assert(AArch64::FPR64RegClass.contains(Reg2) &&
842 "Expected FPR64 callee-saved register pair!");
843 if (i == Count - 2)
844 LdrOpc = AArch64::LDPDpost;
845 else
846 LdrOpc = AArch64::LDPDi;
847 } else
848 llvm_unreachable("Unexpected callee saved register!");
849 DEBUG(dbgs() << "CSR restore: (" << TRI->getName(Reg1) << ", "
850 << TRI->getName(Reg2) << ") -> fi#(" << CSI[i].getFrameIdx()
851 << ", " << CSI[i + 1].getFrameIdx() << ")\n");
852
853 // Compute offset: i = 0 => offset = Count - 2; i = 2 => offset = Count - 4;
854 // etc.
855 const int Offset = (i == Count - 2) ? Count : Count - i - 2;
856 assert((Offset >= -64 && Offset <= 63) &&
857 "Offset out of bounds for LDP immediate");
858 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
859 if (LdrOpc == AArch64::LDPXpost || LdrOpc == AArch64::LDPDpost)
860 MIB.addReg(AArch64::SP, RegState::Define);
861
862 MIB.addReg(Reg2, getDefRegState(true))
863 .addReg(Reg1, getDefRegState(true))
864 .addReg(AArch64::SP)
865 .addImm(Offset); // [sp], #offset * 8 or [sp, #offset * 8]
866 // where the factor * 8 is implicit
867 }
868 return true;
869 }
870
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const871 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
872 BitVector &SavedRegs,
873 RegScavenger *RS) const {
874 // All calls are tail calls in GHC calling conv, and functions have no
875 // prologue/epilogue.
876 if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
877 return;
878
879 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
880 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
881 MF.getSubtarget().getRegisterInfo());
882 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
883 SmallVector<unsigned, 4> UnspilledCSGPRs;
884 SmallVector<unsigned, 4> UnspilledCSFPRs;
885
886 // The frame record needs to be created by saving the appropriate registers
887 if (hasFP(MF)) {
888 SavedRegs.set(AArch64::FP);
889 SavedRegs.set(AArch64::LR);
890 }
891
892 // Spill the BasePtr if it's used. Do this first thing so that the
893 // getCalleeSavedRegs() below will get the right answer.
894 if (RegInfo->hasBasePointer(MF))
895 SavedRegs.set(RegInfo->getBaseRegister());
896
897 if (RegInfo->needsStackRealignment(MF) && !RegInfo->hasBasePointer(MF))
898 SavedRegs.set(AArch64::X9);
899
900 // If any callee-saved registers are used, the frame cannot be eliminated.
901 unsigned NumGPRSpilled = 0;
902 unsigned NumFPRSpilled = 0;
903 bool ExtraCSSpill = false;
904 bool CanEliminateFrame = true;
905 DEBUG(dbgs() << "*** determineCalleeSaves\nUsed CSRs:");
906 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
907
908 // Check pairs of consecutive callee-saved registers.
909 for (unsigned i = 0; CSRegs[i]; i += 2) {
910 assert(CSRegs[i + 1] && "Odd number of callee-saved registers!");
911
912 const unsigned OddReg = CSRegs[i];
913 const unsigned EvenReg = CSRegs[i + 1];
914 assert((AArch64::GPR64RegClass.contains(OddReg) &&
915 AArch64::GPR64RegClass.contains(EvenReg)) ^
916 (AArch64::FPR64RegClass.contains(OddReg) &&
917 AArch64::FPR64RegClass.contains(EvenReg)) &&
918 "Register class mismatch!");
919
920 const bool OddRegUsed = SavedRegs.test(OddReg);
921 const bool EvenRegUsed = SavedRegs.test(EvenReg);
922
923 // Early exit if none of the registers in the register pair is actually
924 // used.
925 if (!OddRegUsed && !EvenRegUsed) {
926 if (AArch64::GPR64RegClass.contains(OddReg)) {
927 UnspilledCSGPRs.push_back(OddReg);
928 UnspilledCSGPRs.push_back(EvenReg);
929 } else {
930 UnspilledCSFPRs.push_back(OddReg);
931 UnspilledCSFPRs.push_back(EvenReg);
932 }
933 continue;
934 }
935
936 unsigned Reg = AArch64::NoRegister;
937 // If only one of the registers of the register pair is used, make sure to
938 // mark the other one as used as well.
939 if (OddRegUsed ^ EvenRegUsed) {
940 // Find out which register is the additional spill.
941 Reg = OddRegUsed ? EvenReg : OddReg;
942 SavedRegs.set(Reg);
943 }
944
945 DEBUG(dbgs() << ' ' << PrintReg(OddReg, RegInfo));
946 DEBUG(dbgs() << ' ' << PrintReg(EvenReg, RegInfo));
947
948 assert(((OddReg == AArch64::LR && EvenReg == AArch64::FP) ||
949 (RegInfo->getEncodingValue(OddReg) + 1 ==
950 RegInfo->getEncodingValue(EvenReg))) &&
951 "Register pair of non-adjacent registers!");
952 if (AArch64::GPR64RegClass.contains(OddReg)) {
953 NumGPRSpilled += 2;
954 // If it's not a reserved register, we can use it in lieu of an
955 // emergency spill slot for the register scavenger.
956 // FIXME: It would be better to instead keep looking and choose another
957 // unspilled register that isn't reserved, if there is one.
958 if (Reg != AArch64::NoRegister && !RegInfo->isReservedReg(MF, Reg))
959 ExtraCSSpill = true;
960 } else
961 NumFPRSpilled += 2;
962
963 CanEliminateFrame = false;
964 }
965
966 // FIXME: Set BigStack if any stack slot references may be out of range.
967 // For now, just conservatively guestimate based on unscaled indexing
968 // range. We'll end up allocating an unnecessary spill slot a lot, but
969 // realistically that's not a big deal at this stage of the game.
970 // The CSR spill slots have not been allocated yet, so estimateStackSize
971 // won't include them.
972 MachineFrameInfo *MFI = MF.getFrameInfo();
973 unsigned CFSize =
974 MFI->estimateStackSize(MF) + 8 * (NumGPRSpilled + NumFPRSpilled);
975 DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n");
976 bool BigStack = (CFSize >= 256);
977 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
978 AFI->setHasStackFrame(true);
979
980 // Estimate if we might need to scavenge a register at some point in order
981 // to materialize a stack offset. If so, either spill one additional
982 // callee-saved register or reserve a special spill slot to facilitate
983 // register scavenging. If we already spilled an extra callee-saved register
984 // above to keep the number of spills even, we don't need to do anything else
985 // here.
986 if (BigStack && !ExtraCSSpill) {
987
988 // If we're adding a register to spill here, we have to add two of them
989 // to keep the number of regs to spill even.
990 assert(((UnspilledCSGPRs.size() & 1) == 0) && "Odd number of registers!");
991 unsigned Count = 0;
992 while (!UnspilledCSGPRs.empty() && Count < 2) {
993 unsigned Reg = UnspilledCSGPRs.back();
994 UnspilledCSGPRs.pop_back();
995 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, RegInfo)
996 << " to get a scratch register.\n");
997 SavedRegs.set(Reg);
998 ExtraCSSpill = true;
999 ++Count;
1000 }
1001
1002 // If we didn't find an extra callee-saved register to spill, create
1003 // an emergency spill slot.
1004 if (!ExtraCSSpill) {
1005 const TargetRegisterClass *RC = &AArch64::GPR64RegClass;
1006 int FI = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), false);
1007 RS->addScavengingFrameIndex(FI);
1008 DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
1009 << " as the emergency spill slot.\n");
1010 }
1011 }
1012 }
1013