• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 /** \mainpage V8 API Reference Guide
6  *
7  * V8 is Google's open source JavaScript engine.
8  *
9  * This set of documents provides reference material generated from the
10  * V8 header file, include/v8.h.
11  *
12  * For other documentation see http://code.google.com/apis/v8/
13  */
14 
15 #ifndef INCLUDE_V8_H_
16 #define INCLUDE_V8_H_
17 
18 #include <stddef.h>
19 #include <stdint.h>
20 #include <stdio.h>
21 #include <utility>
22 #include <vector>
23 
24 #include "v8-version.h"  // NOLINT(build/include)
25 #include "v8config.h"    // NOLINT(build/include)
26 
27 // We reserve the V8_* prefix for macros defined in V8 public API and
28 // assume there are no name conflicts with the embedder's code.
29 
30 #ifdef V8_OS_WIN
31 
32 // Setup for Windows DLL export/import. When building the V8 DLL the
33 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
34 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
35 // static library or building a program which uses the V8 static library neither
36 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
37 #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
38 #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
39   build configuration to ensure that at most one of these is set
40 #endif
41 
42 #ifdef BUILDING_V8_SHARED
43 # define V8_EXPORT __declspec(dllexport)
44 #elif USING_V8_SHARED
45 # define V8_EXPORT __declspec(dllimport)
46 #else
47 # define V8_EXPORT
48 #endif  // BUILDING_V8_SHARED
49 
50 #else  // V8_OS_WIN
51 
52 // Setup for Linux shared library export.
53 #if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
54 # ifdef BUILDING_V8_SHARED
55 #  define V8_EXPORT __attribute__ ((visibility("default")))
56 # else
57 #  define V8_EXPORT
58 # endif
59 #else
60 # define V8_EXPORT
61 #endif
62 
63 #endif  // V8_OS_WIN
64 
65 /**
66  * The v8 JavaScript engine.
67  */
68 namespace v8 {
69 
70 class AccessorSignature;
71 class Array;
72 class Boolean;
73 class BooleanObject;
74 class Context;
75 class CpuProfiler;
76 class Data;
77 class Date;
78 class External;
79 class Function;
80 class FunctionTemplate;
81 class HeapProfiler;
82 class ImplementationUtilities;
83 class Int32;
84 class Integer;
85 class Isolate;
86 template <class T>
87 class Maybe;
88 class Name;
89 class Number;
90 class NumberObject;
91 class Object;
92 class ObjectOperationDescriptor;
93 class ObjectTemplate;
94 class Platform;
95 class Primitive;
96 class Promise;
97 class Proxy;
98 class RawOperationDescriptor;
99 class Script;
100 class SharedArrayBuffer;
101 class Signature;
102 class StartupData;
103 class StackFrame;
104 class StackTrace;
105 class String;
106 class StringObject;
107 class Symbol;
108 class SymbolObject;
109 class Private;
110 class Uint32;
111 class Utils;
112 class Value;
113 template <class T> class Local;
114 template <class T>
115 class MaybeLocal;
116 template <class T> class Eternal;
117 template<class T> class NonCopyablePersistentTraits;
118 template<class T> class PersistentBase;
119 template <class T, class M = NonCopyablePersistentTraits<T> >
120 class Persistent;
121 template <class T>
122 class Global;
123 template<class K, class V, class T> class PersistentValueMap;
124 template <class K, class V, class T>
125 class PersistentValueMapBase;
126 template <class K, class V, class T>
127 class GlobalValueMap;
128 template<class V, class T> class PersistentValueVector;
129 template<class T, class P> class WeakCallbackObject;
130 class FunctionTemplate;
131 class ObjectTemplate;
132 class Data;
133 template<typename T> class FunctionCallbackInfo;
134 template<typename T> class PropertyCallbackInfo;
135 class StackTrace;
136 class StackFrame;
137 class Isolate;
138 class CallHandlerHelper;
139 class EscapableHandleScope;
140 template<typename T> class ReturnValue;
141 
142 namespace experimental {
143 class FastAccessorBuilder;
144 }  // namespace experimental
145 
146 namespace internal {
147 class Arguments;
148 class Heap;
149 class HeapObject;
150 class Isolate;
151 class Object;
152 struct StreamedSource;
153 template<typename T> class CustomArguments;
154 class PropertyCallbackArguments;
155 class FunctionCallbackArguments;
156 class GlobalHandles;
157 }  // namespace internal
158 
159 
160 /**
161  * General purpose unique identifier.
162  */
163 class UniqueId {
164  public:
UniqueId(intptr_t data)165   explicit UniqueId(intptr_t data)
166       : data_(data) {}
167 
168   bool operator==(const UniqueId& other) const {
169     return data_ == other.data_;
170   }
171 
172   bool operator!=(const UniqueId& other) const {
173     return data_ != other.data_;
174   }
175 
176   bool operator<(const UniqueId& other) const {
177     return data_ < other.data_;
178   }
179 
180  private:
181   intptr_t data_;
182 };
183 
184 // --- Handles ---
185 
186 #define TYPE_CHECK(T, S)                                       \
187   while (false) {                                              \
188     *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
189   }
190 
191 
192 /**
193  * An object reference managed by the v8 garbage collector.
194  *
195  * All objects returned from v8 have to be tracked by the garbage
196  * collector so that it knows that the objects are still alive.  Also,
197  * because the garbage collector may move objects, it is unsafe to
198  * point directly to an object.  Instead, all objects are stored in
199  * handles which are known by the garbage collector and updated
200  * whenever an object moves.  Handles should always be passed by value
201  * (except in cases like out-parameters) and they should never be
202  * allocated on the heap.
203  *
204  * There are two types of handles: local and persistent handles.
205  * Local handles are light-weight and transient and typically used in
206  * local operations.  They are managed by HandleScopes.  Persistent
207  * handles can be used when storing objects across several independent
208  * operations and have to be explicitly deallocated when they're no
209  * longer used.
210  *
211  * It is safe to extract the object stored in the handle by
212  * dereferencing the handle (for instance, to extract the Object* from
213  * a Local<Object>); the value will still be governed by a handle
214  * behind the scenes and the same rules apply to these values as to
215  * their handles.
216  */
217 template <class T>
218 class Local {
219  public:
Local()220   V8_INLINE Local() : val_(0) {}
221   template <class S>
Local(Local<S> that)222   V8_INLINE Local(Local<S> that)
223       : val_(reinterpret_cast<T*>(*that)) {
224     /**
225      * This check fails when trying to convert between incompatible
226      * handles. For example, converting from a Local<String> to a
227      * Local<Number>.
228      */
229     TYPE_CHECK(T, S);
230   }
231 
232   /**
233    * Returns true if the handle is empty.
234    */
IsEmpty()235   V8_INLINE bool IsEmpty() const { return val_ == 0; }
236 
237   /**
238    * Sets the handle to be empty. IsEmpty() will then return true.
239    */
Clear()240   V8_INLINE void Clear() { val_ = 0; }
241 
242   V8_INLINE T* operator->() const { return val_; }
243 
244   V8_INLINE T* operator*() const { return val_; }
245 
246   /**
247    * Checks whether two handles are the same.
248    * Returns true if both are empty, or if the objects
249    * to which they refer are identical.
250    * The handles' references are not checked.
251    */
252   template <class S>
253   V8_INLINE bool operator==(const Local<S>& that) const {
254     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
255     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
256     if (a == 0) return b == 0;
257     if (b == 0) return false;
258     return *a == *b;
259   }
260 
261   template <class S> V8_INLINE bool operator==(
262       const PersistentBase<S>& that) const {
263     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
264     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
265     if (a == 0) return b == 0;
266     if (b == 0) return false;
267     return *a == *b;
268   }
269 
270   /**
271    * Checks whether two handles are different.
272    * Returns true if only one of the handles is empty, or if
273    * the objects to which they refer are different.
274    * The handles' references are not checked.
275    */
276   template <class S>
277   V8_INLINE bool operator!=(const Local<S>& that) const {
278     return !operator==(that);
279   }
280 
281   template <class S> V8_INLINE bool operator!=(
282       const Persistent<S>& that) const {
283     return !operator==(that);
284   }
285 
Cast(Local<S> that)286   template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
287 #ifdef V8_ENABLE_CHECKS
288     // If we're going to perform the type check then we have to check
289     // that the handle isn't empty before doing the checked cast.
290     if (that.IsEmpty()) return Local<T>();
291 #endif
292     return Local<T>(T::Cast(*that));
293   }
294 
295 
As()296   template <class S> V8_INLINE Local<S> As() {
297     return Local<S>::Cast(*this);
298   }
299 
300   /**
301    * Create a local handle for the content of another handle.
302    * The referee is kept alive by the local handle even when
303    * the original handle is destroyed/disposed.
304    */
305   V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
306   V8_INLINE static Local<T> New(Isolate* isolate,
307                                 const PersistentBase<T>& that);
308 
309  private:
310   friend class Utils;
311   template<class F> friend class Eternal;
312   template<class F> friend class PersistentBase;
313   template<class F, class M> friend class Persistent;
314   template<class F> friend class Local;
315   template <class F>
316   friend class MaybeLocal;
317   template<class F> friend class FunctionCallbackInfo;
318   template<class F> friend class PropertyCallbackInfo;
319   friend class String;
320   friend class Object;
321   friend class Context;
322   friend class Private;
323   template<class F> friend class internal::CustomArguments;
324   friend Local<Primitive> Undefined(Isolate* isolate);
325   friend Local<Primitive> Null(Isolate* isolate);
326   friend Local<Boolean> True(Isolate* isolate);
327   friend Local<Boolean> False(Isolate* isolate);
328   friend class HandleScope;
329   friend class EscapableHandleScope;
330   template <class F1, class F2, class F3>
331   friend class PersistentValueMapBase;
332   template<class F1, class F2> friend class PersistentValueVector;
333   template <class F>
334   friend class ReturnValue;
335 
Local(T * that)336   explicit V8_INLINE Local(T* that) : val_(that) {}
337   V8_INLINE static Local<T> New(Isolate* isolate, T* that);
338   T* val_;
339 };
340 
341 
342 #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
343 // Local is an alias for Local for historical reasons.
344 template <class T>
345 using Handle = Local<T>;
346 #endif
347 
348 
349 /**
350  * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
351  * the Local<> is empty before it can be used.
352  *
353  * If an API method returns a MaybeLocal<>, the API method can potentially fail
354  * either because an exception is thrown, or because an exception is pending,
355  * e.g. because a previous API call threw an exception that hasn't been caught
356  * yet, or because a TerminateExecution exception was thrown. In that case, an
357  * empty MaybeLocal is returned.
358  */
359 template <class T>
360 class MaybeLocal {
361  public:
MaybeLocal()362   V8_INLINE MaybeLocal() : val_(nullptr) {}
363   template <class S>
MaybeLocal(Local<S> that)364   V8_INLINE MaybeLocal(Local<S> that)
365       : val_(reinterpret_cast<T*>(*that)) {
366     TYPE_CHECK(T, S);
367   }
368 
IsEmpty()369   V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
370 
371   template <class S>
ToLocal(Local<S> * out)372   V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
373     out->val_ = IsEmpty() ? nullptr : this->val_;
374     return !IsEmpty();
375   }
376 
377   // Will crash if the MaybeLocal<> is empty.
378   V8_INLINE Local<T> ToLocalChecked();
379 
380   template <class S>
FromMaybe(Local<S> default_value)381   V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
382     return IsEmpty() ? default_value : Local<S>(val_);
383   }
384 
385  private:
386   T* val_;
387 };
388 
389 
390 // Eternal handles are set-once handles that live for the life of the isolate.
391 template <class T> class Eternal {
392  public:
Eternal()393   V8_INLINE Eternal() : index_(kInitialValue) { }
394   template<class S>
Eternal(Isolate * isolate,Local<S> handle)395   V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
396     Set(isolate, handle);
397   }
398   // Can only be safely called if already set.
399   V8_INLINE Local<T> Get(Isolate* isolate);
IsEmpty()400   V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
401   template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
402 
403  private:
404   static const int kInitialValue = -1;
405   int index_;
406 };
407 
408 
409 static const int kInternalFieldsInWeakCallback = 2;
410 
411 
412 template <typename T>
413 class WeakCallbackInfo {
414  public:
415   typedef void (*Callback)(const WeakCallbackInfo<T>& data);
416 
WeakCallbackInfo(Isolate * isolate,T * parameter,void * internal_fields[kInternalFieldsInWeakCallback],Callback * callback)417   WeakCallbackInfo(Isolate* isolate, T* parameter,
418                    void* internal_fields[kInternalFieldsInWeakCallback],
419                    Callback* callback)
420       : isolate_(isolate), parameter_(parameter), callback_(callback) {
421     for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) {
422       internal_fields_[i] = internal_fields[i];
423     }
424   }
425 
GetIsolate()426   V8_INLINE Isolate* GetIsolate() const { return isolate_; }
GetParameter()427   V8_INLINE T* GetParameter() const { return parameter_; }
428   V8_INLINE void* GetInternalField(int index) const;
429 
430   V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField1()431                           void* GetInternalField1() const) {
432     return internal_fields_[0];
433   }
434   V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField2()435                           void* GetInternalField2() const) {
436     return internal_fields_[1];
437   }
438 
439   V8_DEPRECATED("Not realiable once SetSecondPassCallback() was used.",
IsFirstPass()440                 bool IsFirstPass() const) {
441     return callback_ != nullptr;
442   }
443 
444   // When first called, the embedder MUST Reset() the Global which triggered the
445   // callback. The Global itself is unusable for anything else. No v8 other api
446   // calls may be called in the first callback. Should additional work be
447   // required, the embedder must set a second pass callback, which will be
448   // called after all the initial callbacks are processed.
449   // Calling SetSecondPassCallback on the second pass will immediately crash.
SetSecondPassCallback(Callback callback)450   void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
451 
452  private:
453   Isolate* isolate_;
454   T* parameter_;
455   Callback* callback_;
456   void* internal_fields_[kInternalFieldsInWeakCallback];
457 };
458 
459 
460 // kParameter will pass a void* parameter back to the callback, kInternalFields
461 // will pass the first two internal fields back to the callback, kFinalizer
462 // will pass a void* parameter back, but is invoked before the object is
463 // actually collected, so it can be resurrected. In the last case, it is not
464 // possible to request a second pass callback.
465 enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer };
466 
467 /**
468  * An object reference that is independent of any handle scope.  Where
469  * a Local handle only lives as long as the HandleScope in which it was
470  * allocated, a PersistentBase handle remains valid until it is explicitly
471  * disposed.
472  *
473  * A persistent handle contains a reference to a storage cell within
474  * the v8 engine which holds an object value and which is updated by
475  * the garbage collector whenever the object is moved.  A new storage
476  * cell can be created using the constructor or PersistentBase::Reset and
477  * existing handles can be disposed using PersistentBase::Reset.
478  *
479  */
480 template <class T> class PersistentBase {
481  public:
482   /**
483    * If non-empty, destroy the underlying storage cell
484    * IsEmpty() will return true after this call.
485    */
486   V8_INLINE void Reset();
487   /**
488    * If non-empty, destroy the underlying storage cell
489    * and create a new one with the contents of other if other is non empty
490    */
491   template <class S>
492   V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
493 
494   /**
495    * If non-empty, destroy the underlying storage cell
496    * and create a new one with the contents of other if other is non empty
497    */
498   template <class S>
499   V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
500 
IsEmpty()501   V8_INLINE bool IsEmpty() const { return val_ == NULL; }
Empty()502   V8_INLINE void Empty() { val_ = 0; }
503 
Get(Isolate * isolate)504   V8_INLINE Local<T> Get(Isolate* isolate) const {
505     return Local<T>::New(isolate, *this);
506   }
507 
508   template <class S>
509   V8_INLINE bool operator==(const PersistentBase<S>& that) const {
510     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
511     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
512     if (a == NULL) return b == NULL;
513     if (b == NULL) return false;
514     return *a == *b;
515   }
516 
517   template <class S>
518   V8_INLINE bool operator==(const Local<S>& that) const {
519     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
520     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
521     if (a == NULL) return b == NULL;
522     if (b == NULL) return false;
523     return *a == *b;
524   }
525 
526   template <class S>
527   V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
528     return !operator==(that);
529   }
530 
531   template <class S>
532   V8_INLINE bool operator!=(const Local<S>& that) const {
533     return !operator==(that);
534   }
535 
536   /**
537    *  Install a finalization callback on this object.
538    *  NOTE: There is no guarantee as to *when* or even *if* the callback is
539    *  invoked. The invocation is performed solely on a best effort basis.
540    *  As always, GC-based finalization should *not* be relied upon for any
541    *  critical form of resource management!
542    */
543   template <typename P>
544   V8_INLINE void SetWeak(P* parameter,
545                          typename WeakCallbackInfo<P>::Callback callback,
546                          WeakCallbackType type);
547 
548   /**
549    * Turns this handle into a weak phantom handle without finalization callback.
550    * The handle will be reset automatically when the garbage collector detects
551    * that the object is no longer reachable.
552    * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall
553    * returns how many phantom handles were reset by the garbage collector.
554    */
555   V8_INLINE void SetWeak();
556 
557   template<typename P>
558   V8_INLINE P* ClearWeak();
559 
560   // TODO(dcarney): remove this.
ClearWeak()561   V8_INLINE void ClearWeak() { ClearWeak<void>(); }
562 
563   /**
564    * Allows the embedder to tell the v8 garbage collector that a certain object
565    * is alive. Only allowed when the embedder is asked to trace its heap by
566    * EmbedderHeapTracer.
567    */
568   V8_INLINE void RegisterExternalReference(Isolate* isolate) const;
569 
570   /**
571    * Marks the reference to this object independent. Garbage collector is free
572    * to ignore any object groups containing this object. Weak callback for an
573    * independent handle should not assume that it will be preceded by a global
574    * GC prologue callback or followed by a global GC epilogue callback.
575    */
576   V8_INLINE void MarkIndependent();
577 
578   /**
579    * Marks the reference to this object partially dependent. Partially dependent
580    * handles only depend on other partially dependent handles and these
581    * dependencies are provided through object groups. It provides a way to build
582    * smaller object groups for young objects that represent only a subset of all
583    * external dependencies. This mark is automatically cleared after each
584    * garbage collection.
585    */
586   V8_INLINE V8_DEPRECATED(
587       "deprecated optimization, do not use partially dependent groups",
588       void MarkPartiallyDependent());
589 
590   /**
591    * Marks the reference to this object as active. The scavenge garbage
592    * collection should not reclaim the objects marked as active.
593    * This bit is cleared after the each garbage collection pass.
594    */
595   V8_INLINE void MarkActive();
596 
597   V8_INLINE bool IsIndependent() const;
598 
599   /** Checks if the handle holds the only reference to an object. */
600   V8_INLINE bool IsNearDeath() const;
601 
602   /** Returns true if the handle's reference is weak.  */
603   V8_INLINE bool IsWeak() const;
604 
605   /**
606    * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
607    * description in v8-profiler.h for details.
608    */
609   V8_INLINE void SetWrapperClassId(uint16_t class_id);
610 
611   /**
612    * Returns the class ID previously assigned to this handle or 0 if no class ID
613    * was previously assigned.
614    */
615   V8_INLINE uint16_t WrapperClassId() const;
616 
617  private:
618   friend class Isolate;
619   friend class Utils;
620   template<class F> friend class Local;
621   template<class F1, class F2> friend class Persistent;
622   template <class F>
623   friend class Global;
624   template<class F> friend class PersistentBase;
625   template<class F> friend class ReturnValue;
626   template <class F1, class F2, class F3>
627   friend class PersistentValueMapBase;
628   template<class F1, class F2> friend class PersistentValueVector;
629   friend class Object;
630 
PersistentBase(T * val)631   explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
632   PersistentBase(const PersistentBase& other) = delete;  // NOLINT
633   void operator=(const PersistentBase&) = delete;
634   V8_INLINE static T* New(Isolate* isolate, T* that);
635 
636   T* val_;
637 };
638 
639 
640 /**
641  * Default traits for Persistent. This class does not allow
642  * use of the copy constructor or assignment operator.
643  * At present kResetInDestructor is not set, but that will change in a future
644  * version.
645  */
646 template<class T>
647 class NonCopyablePersistentTraits {
648  public:
649   typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
650   static const bool kResetInDestructor = false;
651   template<class S, class M>
Copy(const Persistent<S,M> & source,NonCopyablePersistent * dest)652   V8_INLINE static void Copy(const Persistent<S, M>& source,
653                              NonCopyablePersistent* dest) {
654     Uncompilable<Object>();
655   }
656   // TODO(dcarney): come up with a good compile error here.
Uncompilable()657   template<class O> V8_INLINE static void Uncompilable() {
658     TYPE_CHECK(O, Primitive);
659   }
660 };
661 
662 
663 /**
664  * Helper class traits to allow copying and assignment of Persistent.
665  * This will clone the contents of storage cell, but not any of the flags, etc.
666  */
667 template<class T>
668 struct CopyablePersistentTraits {
669   typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
670   static const bool kResetInDestructor = true;
671   template<class S, class M>
CopyCopyablePersistentTraits672   static V8_INLINE void Copy(const Persistent<S, M>& source,
673                              CopyablePersistent* dest) {
674     // do nothing, just allow copy
675   }
676 };
677 
678 
679 /**
680  * A PersistentBase which allows copy and assignment.
681  *
682  * Copy, assignment and destructor bevavior is controlled by the traits
683  * class M.
684  *
685  * Note: Persistent class hierarchy is subject to future changes.
686  */
687 template <class T, class M> class Persistent : public PersistentBase<T> {
688  public:
689   /**
690    * A Persistent with no storage cell.
691    */
Persistent()692   V8_INLINE Persistent() : PersistentBase<T>(0) { }
693   /**
694    * Construct a Persistent from a Local.
695    * When the Local is non-empty, a new storage cell is created
696    * pointing to the same object, and no flags are set.
697    */
698   template <class S>
Persistent(Isolate * isolate,Local<S> that)699   V8_INLINE Persistent(Isolate* isolate, Local<S> that)
700       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
701     TYPE_CHECK(T, S);
702   }
703   /**
704    * Construct a Persistent from a Persistent.
705    * When the Persistent is non-empty, a new storage cell is created
706    * pointing to the same object, and no flags are set.
707    */
708   template <class S, class M2>
Persistent(Isolate * isolate,const Persistent<S,M2> & that)709   V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
710     : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
711     TYPE_CHECK(T, S);
712   }
713   /**
714    * The copy constructors and assignment operator create a Persistent
715    * exactly as the Persistent constructor, but the Copy function from the
716    * traits class is called, allowing the setting of flags based on the
717    * copied Persistent.
718    */
Persistent(const Persistent & that)719   V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
720     Copy(that);
721   }
722   template <class S, class M2>
Persistent(const Persistent<S,M2> & that)723   V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
724     Copy(that);
725   }
726   V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
727     Copy(that);
728     return *this;
729   }
730   template <class S, class M2>
731   V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
732     Copy(that);
733     return *this;
734   }
735   /**
736    * The destructor will dispose the Persistent based on the
737    * kResetInDestructor flags in the traits class.  Since not calling dispose
738    * can result in a memory leak, it is recommended to always set this flag.
739    */
~Persistent()740   V8_INLINE ~Persistent() {
741     if (M::kResetInDestructor) this->Reset();
742   }
743 
744   // TODO(dcarney): this is pretty useless, fix or remove
745   template <class S>
Cast(Persistent<S> & that)746   V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
747 #ifdef V8_ENABLE_CHECKS
748     // If we're going to perform the type check then we have to check
749     // that the handle isn't empty before doing the checked cast.
750     if (!that.IsEmpty()) T::Cast(*that);
751 #endif
752     return reinterpret_cast<Persistent<T>&>(that);
753   }
754 
755   // TODO(dcarney): this is pretty useless, fix or remove
As()756   template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
757     return Persistent<S>::Cast(*this);
758   }
759 
760  private:
761   friend class Isolate;
762   friend class Utils;
763   template<class F> friend class Local;
764   template<class F1, class F2> friend class Persistent;
765   template<class F> friend class ReturnValue;
766 
Persistent(T * that)767   explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {}
768   V8_INLINE T* operator*() const { return this->val_; }
769   template<class S, class M2>
770   V8_INLINE void Copy(const Persistent<S, M2>& that);
771 };
772 
773 
774 /**
775  * A PersistentBase which has move semantics.
776  *
777  * Note: Persistent class hierarchy is subject to future changes.
778  */
779 template <class T>
780 class Global : public PersistentBase<T> {
781  public:
782   /**
783    * A Global with no storage cell.
784    */
Global()785   V8_INLINE Global() : PersistentBase<T>(nullptr) {}
786   /**
787    * Construct a Global from a Local.
788    * When the Local is non-empty, a new storage cell is created
789    * pointing to the same object, and no flags are set.
790    */
791   template <class S>
Global(Isolate * isolate,Local<S> that)792   V8_INLINE Global(Isolate* isolate, Local<S> that)
793       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
794     TYPE_CHECK(T, S);
795   }
796   /**
797    * Construct a Global from a PersistentBase.
798    * When the Persistent is non-empty, a new storage cell is created
799    * pointing to the same object, and no flags are set.
800    */
801   template <class S>
Global(Isolate * isolate,const PersistentBase<S> & that)802   V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
803       : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
804     TYPE_CHECK(T, S);
805   }
806   /**
807    * Move constructor.
808    */
Global(Global && other)809   V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) {  // NOLINT
810     other.val_ = nullptr;
811   }
~Global()812   V8_INLINE ~Global() { this->Reset(); }
813   /**
814    * Move via assignment.
815    */
816   template <class S>
817   V8_INLINE Global& operator=(Global<S>&& rhs) {  // NOLINT
818     TYPE_CHECK(T, S);
819     if (this != &rhs) {
820       this->Reset();
821       this->val_ = rhs.val_;
822       rhs.val_ = nullptr;
823     }
824     return *this;
825   }
826   /**
827    * Pass allows returning uniques from functions, etc.
828    */
Pass()829   Global Pass() { return static_cast<Global&&>(*this); }  // NOLINT
830 
831   /*
832    * For compatibility with Chromium's base::Bind (base::Passed).
833    */
834   typedef void MoveOnlyTypeForCPP03;
835 
836  private:
837   template <class F>
838   friend class ReturnValue;
839   Global(const Global&) = delete;
840   void operator=(const Global&) = delete;
841   V8_INLINE T* operator*() const { return this->val_; }
842 };
843 
844 
845 // UniquePersistent is an alias for Global for historical reason.
846 template <class T>
847 using UniquePersistent = Global<T>;
848 
849 
850  /**
851  * A stack-allocated class that governs a number of local handles.
852  * After a handle scope has been created, all local handles will be
853  * allocated within that handle scope until either the handle scope is
854  * deleted or another handle scope is created.  If there is already a
855  * handle scope and a new one is created, all allocations will take
856  * place in the new handle scope until it is deleted.  After that,
857  * new handles will again be allocated in the original handle scope.
858  *
859  * After the handle scope of a local handle has been deleted the
860  * garbage collector will no longer track the object stored in the
861  * handle and may deallocate it.  The behavior of accessing a handle
862  * for which the handle scope has been deleted is undefined.
863  */
864 class V8_EXPORT HandleScope {
865  public:
866   explicit HandleScope(Isolate* isolate);
867 
868   ~HandleScope();
869 
870   /**
871    * Counts the number of allocated handles.
872    */
873   static int NumberOfHandles(Isolate* isolate);
874 
GetIsolate()875   V8_INLINE Isolate* GetIsolate() const {
876     return reinterpret_cast<Isolate*>(isolate_);
877   }
878 
879  protected:
HandleScope()880   V8_INLINE HandleScope() {}
881 
882   void Initialize(Isolate* isolate);
883 
884   static internal::Object** CreateHandle(internal::Isolate* isolate,
885                                          internal::Object* value);
886 
887  private:
888   // Uses heap_object to obtain the current Isolate.
889   static internal::Object** CreateHandle(internal::HeapObject* heap_object,
890                                          internal::Object* value);
891 
892   // Make it hard to create heap-allocated or illegal handle scopes by
893   // disallowing certain operations.
894   HandleScope(const HandleScope&);
895   void operator=(const HandleScope&);
896   void* operator new(size_t size);
897   void operator delete(void*, size_t);
898 
899   internal::Isolate* isolate_;
900   internal::Object** prev_next_;
901   internal::Object** prev_limit_;
902 
903   // Local::New uses CreateHandle with an Isolate* parameter.
904   template<class F> friend class Local;
905 
906   // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
907   // a HeapObject* in their shortcuts.
908   friend class Object;
909   friend class Context;
910 };
911 
912 
913 /**
914  * A HandleScope which first allocates a handle in the current scope
915  * which will be later filled with the escape value.
916  */
917 class V8_EXPORT EscapableHandleScope : public HandleScope {
918  public:
919   explicit EscapableHandleScope(Isolate* isolate);
~EscapableHandleScope()920   V8_INLINE ~EscapableHandleScope() {}
921 
922   /**
923    * Pushes the value into the previous scope and returns a handle to it.
924    * Cannot be called twice.
925    */
926   template <class T>
Escape(Local<T> value)927   V8_INLINE Local<T> Escape(Local<T> value) {
928     internal::Object** slot =
929         Escape(reinterpret_cast<internal::Object**>(*value));
930     return Local<T>(reinterpret_cast<T*>(slot));
931   }
932 
933  private:
934   internal::Object** Escape(internal::Object** escape_value);
935 
936   // Make it hard to create heap-allocated or illegal handle scopes by
937   // disallowing certain operations.
938   EscapableHandleScope(const EscapableHandleScope&);
939   void operator=(const EscapableHandleScope&);
940   void* operator new(size_t size);
941   void operator delete(void*, size_t);
942 
943   internal::Object** escape_slot_;
944 };
945 
946 class V8_EXPORT SealHandleScope {
947  public:
948   SealHandleScope(Isolate* isolate);
949   ~SealHandleScope();
950 
951  private:
952   // Make it hard to create heap-allocated or illegal handle scopes by
953   // disallowing certain operations.
954   SealHandleScope(const SealHandleScope&);
955   void operator=(const SealHandleScope&);
956   void* operator new(size_t size);
957   void operator delete(void*, size_t);
958 
959   internal::Isolate* isolate_;
960   internal::Object** prev_limit_;
961   int prev_sealed_level_;
962 };
963 
964 
965 // --- Special objects ---
966 
967 
968 /**
969  * The superclass of values and API object templates.
970  */
971 class V8_EXPORT Data {
972  private:
973   Data();
974 };
975 
976 
977 /**
978  * The optional attributes of ScriptOrigin.
979  */
980 class ScriptOriginOptions {
981  public:
982   V8_INLINE ScriptOriginOptions(bool is_embedder_debug_script = false,
983                                 bool is_shared_cross_origin = false,
984                                 bool is_opaque = false)
985       : flags_((is_embedder_debug_script ? kIsEmbedderDebugScript : 0) |
986                (is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
987                (is_opaque ? kIsOpaque : 0)) {}
ScriptOriginOptions(int flags)988   V8_INLINE ScriptOriginOptions(int flags)
989       : flags_(flags &
990                (kIsEmbedderDebugScript | kIsSharedCrossOrigin | kIsOpaque)) {}
IsEmbedderDebugScript()991   bool IsEmbedderDebugScript() const {
992     return (flags_ & kIsEmbedderDebugScript) != 0;
993   }
IsSharedCrossOrigin()994   bool IsSharedCrossOrigin() const {
995     return (flags_ & kIsSharedCrossOrigin) != 0;
996   }
IsOpaque()997   bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
Flags()998   int Flags() const { return flags_; }
999 
1000  private:
1001   enum {
1002     kIsEmbedderDebugScript = 1,
1003     kIsSharedCrossOrigin = 1 << 1,
1004     kIsOpaque = 1 << 2
1005   };
1006   const int flags_;
1007 };
1008 
1009 /**
1010  * The origin, within a file, of a script.
1011  */
1012 class ScriptOrigin {
1013  public:
1014   V8_INLINE ScriptOrigin(
1015       Local<Value> resource_name,
1016       Local<Integer> resource_line_offset = Local<Integer>(),
1017       Local<Integer> resource_column_offset = Local<Integer>(),
1018       Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
1019       Local<Integer> script_id = Local<Integer>(),
1020       Local<Boolean> resource_is_embedder_debug_script = Local<Boolean>(),
1021       Local<Value> source_map_url = Local<Value>(),
1022       Local<Boolean> resource_is_opaque = Local<Boolean>());
1023   V8_INLINE Local<Value> ResourceName() const;
1024   V8_INLINE Local<Integer> ResourceLineOffset() const;
1025   V8_INLINE Local<Integer> ResourceColumnOffset() const;
1026   /**
1027     * Returns true for embedder's debugger scripts
1028     */
1029   V8_INLINE Local<Integer> ScriptID() const;
1030   V8_INLINE Local<Value> SourceMapUrl() const;
Options()1031   V8_INLINE ScriptOriginOptions Options() const { return options_; }
1032 
1033  private:
1034   Local<Value> resource_name_;
1035   Local<Integer> resource_line_offset_;
1036   Local<Integer> resource_column_offset_;
1037   ScriptOriginOptions options_;
1038   Local<Integer> script_id_;
1039   Local<Value> source_map_url_;
1040 };
1041 
1042 
1043 /**
1044  * A compiled JavaScript script, not yet tied to a Context.
1045  */
1046 class V8_EXPORT UnboundScript {
1047  public:
1048   /**
1049    * Binds the script to the currently entered context.
1050    */
1051   Local<Script> BindToCurrentContext();
1052 
1053   int GetId();
1054   Local<Value> GetScriptName();
1055 
1056   /**
1057    * Data read from magic sourceURL comments.
1058    */
1059   Local<Value> GetSourceURL();
1060   /**
1061    * Data read from magic sourceMappingURL comments.
1062    */
1063   Local<Value> GetSourceMappingURL();
1064 
1065   /**
1066    * Returns zero based line number of the code_pos location in the script.
1067    * -1 will be returned if no information available.
1068    */
1069   int GetLineNumber(int code_pos);
1070 
1071   static const int kNoScriptId = 0;
1072 };
1073 
1074 
1075 /**
1076  * A compiled JavaScript script, tied to a Context which was active when the
1077  * script was compiled.
1078  */
1079 class V8_EXPORT Script {
1080  public:
1081   /**
1082    * A shorthand for ScriptCompiler::Compile().
1083    */
1084   static V8_DEPRECATE_SOON(
1085       "Use maybe version",
1086       Local<Script> Compile(Local<String> source,
1087                             ScriptOrigin* origin = nullptr));
1088   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1089       Local<Context> context, Local<String> source,
1090       ScriptOrigin* origin = nullptr);
1091 
1092   static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
1093                                          Compile(Local<String> source,
1094                                                  Local<String> file_name));
1095 
1096   /**
1097    * Runs the script returning the resulting value. It will be run in the
1098    * context in which it was created (ScriptCompiler::CompileBound or
1099    * UnboundScript::BindToCurrentContext()).
1100    */
1101   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
1102   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
1103 
1104   /**
1105    * Returns the corresponding context-unbound script.
1106    */
1107   Local<UnboundScript> GetUnboundScript();
1108 };
1109 
1110 
1111 /**
1112  * For compiling scripts.
1113  */
1114 class V8_EXPORT ScriptCompiler {
1115  public:
1116   /**
1117    * Compilation data that the embedder can cache and pass back to speed up
1118    * future compilations. The data is produced if the CompilerOptions passed to
1119    * the compilation functions in ScriptCompiler contains produce_data_to_cache
1120    * = true. The data to cache can then can be retrieved from
1121    * UnboundScript.
1122    */
1123   struct V8_EXPORT CachedData {
1124     enum BufferPolicy {
1125       BufferNotOwned,
1126       BufferOwned
1127     };
1128 
CachedDataCachedData1129     CachedData()
1130         : data(NULL),
1131           length(0),
1132           rejected(false),
1133           buffer_policy(BufferNotOwned) {}
1134 
1135     // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1136     // data and guarantees that it stays alive until the CachedData object is
1137     // destroyed. If the policy is BufferOwned, the given data will be deleted
1138     // (with delete[]) when the CachedData object is destroyed.
1139     CachedData(const uint8_t* data, int length,
1140                BufferPolicy buffer_policy = BufferNotOwned);
1141     ~CachedData();
1142     // TODO(marja): Async compilation; add constructors which take a callback
1143     // which will be called when V8 no longer needs the data.
1144     const uint8_t* data;
1145     int length;
1146     bool rejected;
1147     BufferPolicy buffer_policy;
1148 
1149    private:
1150     // Prevent copying. Not implemented.
1151     CachedData(const CachedData&);
1152     CachedData& operator=(const CachedData&);
1153   };
1154 
1155   /**
1156    * Source code which can be then compiled to a UnboundScript or Script.
1157    */
1158   class Source {
1159    public:
1160     // Source takes ownership of CachedData.
1161     V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1162            CachedData* cached_data = NULL);
1163     V8_INLINE Source(Local<String> source_string,
1164                      CachedData* cached_data = NULL);
1165     V8_INLINE ~Source();
1166 
1167     // Ownership of the CachedData or its buffers is *not* transferred to the
1168     // caller. The CachedData object is alive as long as the Source object is
1169     // alive.
1170     V8_INLINE const CachedData* GetCachedData() const;
1171 
1172    private:
1173     friend class ScriptCompiler;
1174     // Prevent copying. Not implemented.
1175     Source(const Source&);
1176     Source& operator=(const Source&);
1177 
1178     Local<String> source_string;
1179 
1180     // Origin information
1181     Local<Value> resource_name;
1182     Local<Integer> resource_line_offset;
1183     Local<Integer> resource_column_offset;
1184     ScriptOriginOptions resource_options;
1185     Local<Value> source_map_url;
1186 
1187     // Cached data from previous compilation (if a kConsume*Cache flag is
1188     // set), or hold newly generated cache data (kProduce*Cache flags) are
1189     // set when calling a compile method.
1190     CachedData* cached_data;
1191   };
1192 
1193   /**
1194    * For streaming incomplete script data to V8. The embedder should implement a
1195    * subclass of this class.
1196    */
1197   class V8_EXPORT ExternalSourceStream {
1198    public:
~ExternalSourceStream()1199     virtual ~ExternalSourceStream() {}
1200 
1201     /**
1202      * V8 calls this to request the next chunk of data from the embedder. This
1203      * function will be called on a background thread, so it's OK to block and
1204      * wait for the data, if the embedder doesn't have data yet. Returns the
1205      * length of the data returned. When the data ends, GetMoreData should
1206      * return 0. Caller takes ownership of the data.
1207      *
1208      * When streaming UTF-8 data, V8 handles multi-byte characters split between
1209      * two data chunks, but doesn't handle multi-byte characters split between
1210      * more than two data chunks. The embedder can avoid this problem by always
1211      * returning at least 2 bytes of data.
1212      *
1213      * If the embedder wants to cancel the streaming, they should make the next
1214      * GetMoreData call return 0. V8 will interpret it as end of data (and most
1215      * probably, parsing will fail). The streaming task will return as soon as
1216      * V8 has parsed the data it received so far.
1217      */
1218     virtual size_t GetMoreData(const uint8_t** src) = 0;
1219 
1220     /**
1221      * V8 calls this method to set a 'bookmark' at the current position in
1222      * the source stream, for the purpose of (maybe) later calling
1223      * ResetToBookmark. If ResetToBookmark is called later, then subsequent
1224      * calls to GetMoreData should return the same data as they did when
1225      * SetBookmark was called earlier.
1226      *
1227      * The embedder may return 'false' to indicate it cannot provide this
1228      * functionality.
1229      */
1230     virtual bool SetBookmark();
1231 
1232     /**
1233      * V8 calls this to return to a previously set bookmark.
1234      */
1235     virtual void ResetToBookmark();
1236   };
1237 
1238 
1239   /**
1240    * Source code which can be streamed into V8 in pieces. It will be parsed
1241    * while streaming. It can be compiled after the streaming is complete.
1242    * StreamedSource must be kept alive while the streaming task is ran (see
1243    * ScriptStreamingTask below).
1244    */
1245   class V8_EXPORT StreamedSource {
1246    public:
1247     enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
1248 
1249     StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
1250     ~StreamedSource();
1251 
1252     // Ownership of the CachedData or its buffers is *not* transferred to the
1253     // caller. The CachedData object is alive as long as the StreamedSource
1254     // object is alive.
1255     const CachedData* GetCachedData() const;
1256 
impl()1257     internal::StreamedSource* impl() const { return impl_; }
1258 
1259    private:
1260     // Prevent copying. Not implemented.
1261     StreamedSource(const StreamedSource&);
1262     StreamedSource& operator=(const StreamedSource&);
1263 
1264     internal::StreamedSource* impl_;
1265   };
1266 
1267   /**
1268    * A streaming task which the embedder must run on a background thread to
1269    * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
1270    */
1271   class ScriptStreamingTask {
1272    public:
~ScriptStreamingTask()1273     virtual ~ScriptStreamingTask() {}
1274     virtual void Run() = 0;
1275   };
1276 
1277   enum CompileOptions {
1278     kNoCompileOptions = 0,
1279     kProduceParserCache,
1280     kConsumeParserCache,
1281     kProduceCodeCache,
1282     kConsumeCodeCache
1283   };
1284 
1285   /**
1286    * Compiles the specified script (context-independent).
1287    * Cached data as part of the source object can be optionally produced to be
1288    * consumed later to speed up compilation of identical source scripts.
1289    *
1290    * Note that when producing cached data, the source must point to NULL for
1291    * cached data. When consuming cached data, the cached data must have been
1292    * produced by the same version of V8.
1293    *
1294    * \param source Script source code.
1295    * \return Compiled script object (context independent; for running it must be
1296    *   bound to a context).
1297    */
1298   static V8_DEPRECATED("Use maybe version",
1299                        Local<UnboundScript> CompileUnbound(
1300                            Isolate* isolate, Source* source,
1301                            CompileOptions options = kNoCompileOptions));
1302   static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript(
1303       Isolate* isolate, Source* source,
1304       CompileOptions options = kNoCompileOptions);
1305 
1306   /**
1307    * Compiles the specified script (bound to current context).
1308    *
1309    * \param source Script source code.
1310    * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1311    *   using pre_data speeds compilation if it's done multiple times.
1312    *   Owned by caller, no references are kept when this function returns.
1313    * \return Compiled script object, bound to the context that was active
1314    *   when this function was called. When run it will always use this
1315    *   context.
1316    */
1317   static V8_DEPRECATED(
1318       "Use maybe version",
1319       Local<Script> Compile(Isolate* isolate, Source* source,
1320                             CompileOptions options = kNoCompileOptions));
1321   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1322       Local<Context> context, Source* source,
1323       CompileOptions options = kNoCompileOptions);
1324 
1325   /**
1326    * Returns a task which streams script data into V8, or NULL if the script
1327    * cannot be streamed. The user is responsible for running the task on a
1328    * background thread and deleting it. When ran, the task starts parsing the
1329    * script, and it will request data from the StreamedSource as needed. When
1330    * ScriptStreamingTask::Run exits, all data has been streamed and the script
1331    * can be compiled (see Compile below).
1332    *
1333    * This API allows to start the streaming with as little data as possible, and
1334    * the remaining data (for example, the ScriptOrigin) is passed to Compile.
1335    */
1336   static ScriptStreamingTask* StartStreamingScript(
1337       Isolate* isolate, StreamedSource* source,
1338       CompileOptions options = kNoCompileOptions);
1339 
1340   /**
1341    * Compiles a streamed script (bound to current context).
1342    *
1343    * This can only be called after the streaming has finished
1344    * (ScriptStreamingTask has been run). V8 doesn't construct the source string
1345    * during streaming, so the embedder needs to pass the full source here.
1346    */
1347   static V8_DEPRECATED("Use maybe version",
1348                        Local<Script> Compile(Isolate* isolate,
1349                                              StreamedSource* source,
1350                                              Local<String> full_source_string,
1351                                              const ScriptOrigin& origin));
1352   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1353       Local<Context> context, StreamedSource* source,
1354       Local<String> full_source_string, const ScriptOrigin& origin);
1355 
1356   /**
1357    * Return a version tag for CachedData for the current V8 version & flags.
1358    *
1359    * This value is meant only for determining whether a previously generated
1360    * CachedData instance is still valid; the tag has no other meaing.
1361    *
1362    * Background: The data carried by CachedData may depend on the exact
1363    *   V8 version number or currently compiler flags. This means when
1364    *   persisting CachedData, the embedder must take care to not pass in
1365    *   data from another V8 version, or the same version with different
1366    *   features enabled.
1367    *
1368    *   The easiest way to do so is to clear the embedder's cache on any
1369    *   such change.
1370    *
1371    *   Alternatively, this tag can be stored alongside the cached data and
1372    *   compared when it is being used.
1373    */
1374   static uint32_t CachedDataVersionTag();
1375 
1376   /**
1377    * Compile an ES6 module.
1378    *
1379    * This is an unfinished experimental feature, and is only exposed
1380    * here for internal testing purposes.
1381    * Only parsing works at the moment. Do not use.
1382    *
1383    * TODO(adamk): Script is likely the wrong return value for this;
1384    * should return some new Module type.
1385    */
1386   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> CompileModule(
1387       Local<Context> context, Source* source,
1388       CompileOptions options = kNoCompileOptions);
1389 
1390   /**
1391    * Compile a function for a given context. This is equivalent to running
1392    *
1393    * with (obj) {
1394    *   return function(args) { ... }
1395    * }
1396    *
1397    * It is possible to specify multiple context extensions (obj in the above
1398    * example).
1399    */
1400   static V8_DEPRECATE_SOON("Use maybe version",
1401                            Local<Function> CompileFunctionInContext(
1402                                Isolate* isolate, Source* source,
1403                                Local<Context> context, size_t arguments_count,
1404                                Local<String> arguments[],
1405                                size_t context_extension_count,
1406                                Local<Object> context_extensions[]));
1407   static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext(
1408       Local<Context> context, Source* source, size_t arguments_count,
1409       Local<String> arguments[], size_t context_extension_count,
1410       Local<Object> context_extensions[]);
1411 
1412  private:
1413   static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
1414       Isolate* isolate, Source* source, CompileOptions options, bool is_module);
1415 };
1416 
1417 
1418 /**
1419  * An error message.
1420  */
1421 class V8_EXPORT Message {
1422  public:
1423   Local<String> Get() const;
1424 
1425   V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
1426   V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine(
1427       Local<Context> context) const;
1428 
1429   /**
1430    * Returns the origin for the script from where the function causing the
1431    * error originates.
1432    */
1433   ScriptOrigin GetScriptOrigin() const;
1434 
1435   /**
1436    * Returns the resource name for the script from where the function causing
1437    * the error originates.
1438    */
1439   Local<Value> GetScriptResourceName() const;
1440 
1441   /**
1442    * Exception stack trace. By default stack traces are not captured for
1443    * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1444    * to change this option.
1445    */
1446   Local<StackTrace> GetStackTrace() const;
1447 
1448   /**
1449    * Returns the number, 1-based, of the line where the error occurred.
1450    */
1451   V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
1452   V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
1453 
1454   /**
1455    * Returns the index within the script of the first character where
1456    * the error occurred.
1457    */
1458   int GetStartPosition() const;
1459 
1460   /**
1461    * Returns the index within the script of the last character where
1462    * the error occurred.
1463    */
1464   int GetEndPosition() const;
1465 
1466   /**
1467    * Returns the index within the line of the first character where
1468    * the error occurred.
1469    */
1470   V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
1471   V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
1472 
1473   /**
1474    * Returns the index within the line of the last character where
1475    * the error occurred.
1476    */
1477   V8_DEPRECATED("Use maybe version", int GetEndColumn() const);
1478   V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
1479 
1480   /**
1481    * Passes on the value set by the embedder when it fed the script from which
1482    * this Message was generated to V8.
1483    */
1484   bool IsSharedCrossOrigin() const;
1485   bool IsOpaque() const;
1486 
1487   // TODO(1245381): Print to a string instead of on a FILE.
1488   static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1489 
1490   static const int kNoLineNumberInfo = 0;
1491   static const int kNoColumnInfo = 0;
1492   static const int kNoScriptIdInfo = 0;
1493 };
1494 
1495 
1496 /**
1497  * Representation of a JavaScript stack trace. The information collected is a
1498  * snapshot of the execution stack and the information remains valid after
1499  * execution continues.
1500  */
1501 class V8_EXPORT StackTrace {
1502  public:
1503   /**
1504    * Flags that determine what information is placed captured for each
1505    * StackFrame when grabbing the current stack trace.
1506    */
1507   enum StackTraceOptions {
1508     kLineNumber = 1,
1509     kColumnOffset = 1 << 1 | kLineNumber,
1510     kScriptName = 1 << 2,
1511     kFunctionName = 1 << 3,
1512     kIsEval = 1 << 4,
1513     kIsConstructor = 1 << 5,
1514     kScriptNameOrSourceURL = 1 << 6,
1515     kScriptId = 1 << 7,
1516     kExposeFramesAcrossSecurityOrigins = 1 << 8,
1517     kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1518     kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1519   };
1520 
1521   /**
1522    * Returns a StackFrame at a particular index.
1523    */
1524   Local<StackFrame> GetFrame(uint32_t index) const;
1525 
1526   /**
1527    * Returns the number of StackFrames.
1528    */
1529   int GetFrameCount() const;
1530 
1531   /**
1532    * Returns StackTrace as a v8::Array that contains StackFrame objects.
1533    */
1534   Local<Array> AsArray();
1535 
1536   /**
1537    * Grab a snapshot of the current JavaScript execution stack.
1538    *
1539    * \param frame_limit The maximum number of stack frames we want to capture.
1540    * \param options Enumerates the set of things we will capture for each
1541    *   StackFrame.
1542    */
1543   static Local<StackTrace> CurrentStackTrace(
1544       Isolate* isolate,
1545       int frame_limit,
1546       StackTraceOptions options = kOverview);
1547 };
1548 
1549 
1550 /**
1551  * A single JavaScript stack frame.
1552  */
1553 class V8_EXPORT StackFrame {
1554  public:
1555   /**
1556    * Returns the number, 1-based, of the line for the associate function call.
1557    * This method will return Message::kNoLineNumberInfo if it is unable to
1558    * retrieve the line number, or if kLineNumber was not passed as an option
1559    * when capturing the StackTrace.
1560    */
1561   int GetLineNumber() const;
1562 
1563   /**
1564    * Returns the 1-based column offset on the line for the associated function
1565    * call.
1566    * This method will return Message::kNoColumnInfo if it is unable to retrieve
1567    * the column number, or if kColumnOffset was not passed as an option when
1568    * capturing the StackTrace.
1569    */
1570   int GetColumn() const;
1571 
1572   /**
1573    * Returns the id of the script for the function for this StackFrame.
1574    * This method will return Message::kNoScriptIdInfo if it is unable to
1575    * retrieve the script id, or if kScriptId was not passed as an option when
1576    * capturing the StackTrace.
1577    */
1578   int GetScriptId() const;
1579 
1580   /**
1581    * Returns the name of the resource that contains the script for the
1582    * function for this StackFrame.
1583    */
1584   Local<String> GetScriptName() const;
1585 
1586   /**
1587    * Returns the name of the resource that contains the script for the
1588    * function for this StackFrame or sourceURL value if the script name
1589    * is undefined and its source ends with //# sourceURL=... string or
1590    * deprecated //@ sourceURL=... string.
1591    */
1592   Local<String> GetScriptNameOrSourceURL() const;
1593 
1594   /**
1595    * Returns the name of the function associated with this stack frame.
1596    */
1597   Local<String> GetFunctionName() const;
1598 
1599   /**
1600    * Returns whether or not the associated function is compiled via a call to
1601    * eval().
1602    */
1603   bool IsEval() const;
1604 
1605   /**
1606    * Returns whether or not the associated function is called as a
1607    * constructor via "new".
1608    */
1609   bool IsConstructor() const;
1610 };
1611 
1612 
1613 // A StateTag represents a possible state of the VM.
1614 enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
1615 
1616 // A RegisterState represents the current state of registers used
1617 // by the sampling profiler API.
1618 struct RegisterState {
RegisterStateRegisterState1619   RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {}
1620   void* pc;  // Instruction pointer.
1621   void* sp;  // Stack pointer.
1622   void* fp;  // Frame pointer.
1623 };
1624 
1625 // The output structure filled up by GetStackSample API function.
1626 struct SampleInfo {
1627   size_t frames_count;            // Number of frames collected.
1628   StateTag vm_state;              // Current VM state.
1629   void* external_callback_entry;  // External callback address if VM is
1630                                   // executing an external callback.
1631 };
1632 
1633 /**
1634  * A JSON Parser and Stringifier.
1635  */
1636 class V8_EXPORT JSON {
1637  public:
1638   /**
1639    * Tries to parse the string |json_string| and returns it as value if
1640    * successful.
1641    *
1642    * \param json_string The string to parse.
1643    * \return The corresponding value if successfully parsed.
1644    */
1645   static V8_DEPRECATED("Use the maybe version taking context",
1646                        Local<Value> Parse(Local<String> json_string));
1647   static V8_DEPRECATE_SOON("Use the maybe version taking context",
1648                            MaybeLocal<Value> Parse(Isolate* isolate,
1649                                                    Local<String> json_string));
1650   static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
1651       Local<Context> context, Local<String> json_string);
1652 
1653   /**
1654    * Tries to stringify the JSON-serializable object |json_object| and returns
1655    * it as string if successful.
1656    *
1657    * \param json_object The JSON-serializable object to stringify.
1658    * \return The corresponding string if successfully stringified.
1659    */
1660   static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify(
1661       Local<Context> context, Local<Object> json_object,
1662       Local<String> gap = Local<String>());
1663 };
1664 
1665 
1666 /**
1667  * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap
1668  * but can be created without entering a v8::Context and hence shouldn't
1669  * escape to JavaScript.
1670  */
1671 class V8_EXPORT NativeWeakMap : public Data {
1672  public:
1673   static Local<NativeWeakMap> New(Isolate* isolate);
1674   void Set(Local<Value> key, Local<Value> value);
1675   Local<Value> Get(Local<Value> key);
1676   bool Has(Local<Value> key);
1677   bool Delete(Local<Value> key);
1678 };
1679 
1680 
1681 // --- Value ---
1682 
1683 
1684 /**
1685  * The superclass of all JavaScript values and objects.
1686  */
1687 class V8_EXPORT Value : public Data {
1688  public:
1689   /**
1690    * Returns true if this value is the undefined value.  See ECMA-262
1691    * 4.3.10.
1692    */
1693   V8_INLINE bool IsUndefined() const;
1694 
1695   /**
1696    * Returns true if this value is the null value.  See ECMA-262
1697    * 4.3.11.
1698    */
1699   V8_INLINE bool IsNull() const;
1700 
1701    /**
1702    * Returns true if this value is true.
1703    */
1704   bool IsTrue() const;
1705 
1706   /**
1707    * Returns true if this value is false.
1708    */
1709   bool IsFalse() const;
1710 
1711   /**
1712    * Returns true if this value is a symbol or a string.
1713    * This is an experimental feature.
1714    */
1715   bool IsName() const;
1716 
1717   /**
1718    * Returns true if this value is an instance of the String type.
1719    * See ECMA-262 8.4.
1720    */
1721   V8_INLINE bool IsString() const;
1722 
1723   /**
1724    * Returns true if this value is a symbol.
1725    * This is an experimental feature.
1726    */
1727   bool IsSymbol() const;
1728 
1729   /**
1730    * Returns true if this value is a function.
1731    */
1732   bool IsFunction() const;
1733 
1734   /**
1735    * Returns true if this value is an array. Note that it will return false for
1736    * an Proxy for an array.
1737    */
1738   bool IsArray() const;
1739 
1740   /**
1741    * Returns true if this value is an object.
1742    */
1743   bool IsObject() const;
1744 
1745   /**
1746    * Returns true if this value is boolean.
1747    */
1748   bool IsBoolean() const;
1749 
1750   /**
1751    * Returns true if this value is a number.
1752    */
1753   bool IsNumber() const;
1754 
1755   /**
1756    * Returns true if this value is external.
1757    */
1758   bool IsExternal() const;
1759 
1760   /**
1761    * Returns true if this value is a 32-bit signed integer.
1762    */
1763   bool IsInt32() const;
1764 
1765   /**
1766    * Returns true if this value is a 32-bit unsigned integer.
1767    */
1768   bool IsUint32() const;
1769 
1770   /**
1771    * Returns true if this value is a Date.
1772    */
1773   bool IsDate() const;
1774 
1775   /**
1776    * Returns true if this value is an Arguments object.
1777    */
1778   bool IsArgumentsObject() const;
1779 
1780   /**
1781    * Returns true if this value is a Boolean object.
1782    */
1783   bool IsBooleanObject() const;
1784 
1785   /**
1786    * Returns true if this value is a Number object.
1787    */
1788   bool IsNumberObject() const;
1789 
1790   /**
1791    * Returns true if this value is a String object.
1792    */
1793   bool IsStringObject() const;
1794 
1795   /**
1796    * Returns true if this value is a Symbol object.
1797    * This is an experimental feature.
1798    */
1799   bool IsSymbolObject() const;
1800 
1801   /**
1802    * Returns true if this value is a NativeError.
1803    */
1804   bool IsNativeError() const;
1805 
1806   /**
1807    * Returns true if this value is a RegExp.
1808    */
1809   bool IsRegExp() const;
1810 
1811   /**
1812    * Returns true if this value is a Generator function.
1813    * This is an experimental feature.
1814    */
1815   bool IsGeneratorFunction() const;
1816 
1817   /**
1818    * Returns true if this value is a Generator object (iterator).
1819    * This is an experimental feature.
1820    */
1821   bool IsGeneratorObject() const;
1822 
1823   /**
1824    * Returns true if this value is a Promise.
1825    * This is an experimental feature.
1826    */
1827   bool IsPromise() const;
1828 
1829   /**
1830    * Returns true if this value is a Map.
1831    */
1832   bool IsMap() const;
1833 
1834   /**
1835    * Returns true if this value is a Set.
1836    */
1837   bool IsSet() const;
1838 
1839   /**
1840    * Returns true if this value is a Map Iterator.
1841    */
1842   bool IsMapIterator() const;
1843 
1844   /**
1845    * Returns true if this value is a Set Iterator.
1846    */
1847   bool IsSetIterator() const;
1848 
1849   /**
1850    * Returns true if this value is a WeakMap.
1851    */
1852   bool IsWeakMap() const;
1853 
1854   /**
1855    * Returns true if this value is a WeakSet.
1856    */
1857   bool IsWeakSet() const;
1858 
1859   /**
1860    * Returns true if this value is an ArrayBuffer.
1861    * This is an experimental feature.
1862    */
1863   bool IsArrayBuffer() const;
1864 
1865   /**
1866    * Returns true if this value is an ArrayBufferView.
1867    * This is an experimental feature.
1868    */
1869   bool IsArrayBufferView() const;
1870 
1871   /**
1872    * Returns true if this value is one of TypedArrays.
1873    * This is an experimental feature.
1874    */
1875   bool IsTypedArray() const;
1876 
1877   /**
1878    * Returns true if this value is an Uint8Array.
1879    * This is an experimental feature.
1880    */
1881   bool IsUint8Array() const;
1882 
1883   /**
1884    * Returns true if this value is an Uint8ClampedArray.
1885    * This is an experimental feature.
1886    */
1887   bool IsUint8ClampedArray() const;
1888 
1889   /**
1890    * Returns true if this value is an Int8Array.
1891    * This is an experimental feature.
1892    */
1893   bool IsInt8Array() const;
1894 
1895   /**
1896    * Returns true if this value is an Uint16Array.
1897    * This is an experimental feature.
1898    */
1899   bool IsUint16Array() const;
1900 
1901   /**
1902    * Returns true if this value is an Int16Array.
1903    * This is an experimental feature.
1904    */
1905   bool IsInt16Array() const;
1906 
1907   /**
1908    * Returns true if this value is an Uint32Array.
1909    * This is an experimental feature.
1910    */
1911   bool IsUint32Array() const;
1912 
1913   /**
1914    * Returns true if this value is an Int32Array.
1915    * This is an experimental feature.
1916    */
1917   bool IsInt32Array() const;
1918 
1919   /**
1920    * Returns true if this value is a Float32Array.
1921    * This is an experimental feature.
1922    */
1923   bool IsFloat32Array() const;
1924 
1925   /**
1926    * Returns true if this value is a Float64Array.
1927    * This is an experimental feature.
1928    */
1929   bool IsFloat64Array() const;
1930 
1931   /**
1932    * Returns true if this value is a SIMD Float32x4.
1933    * This is an experimental feature.
1934    */
1935   bool IsFloat32x4() const;
1936 
1937   /**
1938    * Returns true if this value is a DataView.
1939    * This is an experimental feature.
1940    */
1941   bool IsDataView() const;
1942 
1943   /**
1944    * Returns true if this value is a SharedArrayBuffer.
1945    * This is an experimental feature.
1946    */
1947   bool IsSharedArrayBuffer() const;
1948 
1949   /**
1950    * Returns true if this value is a JavaScript Proxy.
1951    */
1952   bool IsProxy() const;
1953 
1954 
1955   V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean(
1956       Local<Context> context) const;
1957   V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(
1958       Local<Context> context) const;
1959   V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString(
1960       Local<Context> context) const;
1961   V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString(
1962       Local<Context> context) const;
1963   V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject(
1964       Local<Context> context) const;
1965   V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger(
1966       Local<Context> context) const;
1967   V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32(
1968       Local<Context> context) const;
1969   V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
1970 
1971   V8_DEPRECATE_SOON("Use maybe version",
1972                     Local<Boolean> ToBoolean(Isolate* isolate) const);
1973   V8_DEPRECATE_SOON("Use maybe version",
1974                     Local<Number> ToNumber(Isolate* isolate) const);
1975   V8_DEPRECATE_SOON("Use maybe version",
1976                     Local<String> ToString(Isolate* isolate) const);
1977   V8_DEPRECATED("Use maybe version",
1978                 Local<String> ToDetailString(Isolate* isolate) const);
1979   V8_DEPRECATE_SOON("Use maybe version",
1980                     Local<Object> ToObject(Isolate* isolate) const);
1981   V8_DEPRECATE_SOON("Use maybe version",
1982                     Local<Integer> ToInteger(Isolate* isolate) const);
1983   V8_DEPRECATED("Use maybe version",
1984                 Local<Uint32> ToUint32(Isolate* isolate) const);
1985   V8_DEPRECATE_SOON("Use maybe version",
1986                     Local<Int32> ToInt32(Isolate* isolate) const);
1987 
1988   inline V8_DEPRECATE_SOON("Use maybe version",
1989                            Local<Boolean> ToBoolean() const);
1990   inline V8_DEPRECATED("Use maybe version", Local<Number> ToNumber() const);
1991   inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
1992   inline V8_DEPRECATED("Use maybe version",
1993                        Local<String> ToDetailString() const);
1994   inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
1995   inline V8_DEPRECATE_SOON("Use maybe version",
1996                            Local<Integer> ToInteger() const);
1997   inline V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32() const);
1998   inline V8_DEPRECATED("Use maybe version", Local<Int32> ToInt32() const);
1999 
2000   /**
2001    * Attempts to convert a string to an array index.
2002    * Returns an empty handle if the conversion fails.
2003    */
2004   V8_DEPRECATED("Use maybe version", Local<Uint32> ToArrayIndex() const);
2005   V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex(
2006       Local<Context> context) const;
2007 
2008   V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
2009   V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
2010   V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
2011       Local<Context> context) const;
2012   V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
2013       Local<Context> context) const;
2014   V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
2015 
2016   V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
2017   V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
2018   V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
2019   V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
2020   V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
2021 
2022   /** JS == */
2023   V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
2024   V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
2025                                            Local<Value> that) const;
2026   bool StrictEquals(Local<Value> that) const;
2027   bool SameValue(Local<Value> that) const;
2028 
2029   template <class T> V8_INLINE static Value* Cast(T* value);
2030 
2031   Local<String> TypeOf(v8::Isolate*);
2032 
2033  private:
2034   V8_INLINE bool QuickIsUndefined() const;
2035   V8_INLINE bool QuickIsNull() const;
2036   V8_INLINE bool QuickIsString() const;
2037   bool FullIsUndefined() const;
2038   bool FullIsNull() const;
2039   bool FullIsString() const;
2040 };
2041 
2042 
2043 /**
2044  * The superclass of primitive values.  See ECMA-262 4.3.2.
2045  */
2046 class V8_EXPORT Primitive : public Value { };
2047 
2048 
2049 /**
2050  * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
2051  * or false value.
2052  */
2053 class V8_EXPORT Boolean : public Primitive {
2054  public:
2055   bool Value() const;
2056   V8_INLINE static Boolean* Cast(v8::Value* obj);
2057   V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
2058 
2059  private:
2060   static void CheckCast(v8::Value* obj);
2061 };
2062 
2063 
2064 /**
2065  * A superclass for symbols and strings.
2066  */
2067 class V8_EXPORT Name : public Primitive {
2068  public:
2069   /**
2070    * Returns the identity hash for this object. The current implementation
2071    * uses an inline property on the object to store the identity hash.
2072    *
2073    * The return value will never be 0. Also, it is not guaranteed to be
2074    * unique.
2075    */
2076   int GetIdentityHash();
2077 
2078   V8_INLINE static Name* Cast(v8::Value* obj);
2079  private:
2080   static void CheckCast(v8::Value* obj);
2081 };
2082 
2083 
2084 enum class NewStringType { kNormal, kInternalized };
2085 
2086 
2087 /**
2088  * A JavaScript string value (ECMA-262, 4.3.17).
2089  */
2090 class V8_EXPORT String : public Name {
2091  public:
2092   static const int kMaxLength = (1 << 28) - 16;
2093 
2094   enum Encoding {
2095     UNKNOWN_ENCODING = 0x1,
2096     TWO_BYTE_ENCODING = 0x0,
2097     ONE_BYTE_ENCODING = 0x4
2098   };
2099   /**
2100    * Returns the number of characters in this string.
2101    */
2102   int Length() const;
2103 
2104   /**
2105    * Returns the number of bytes in the UTF-8 encoded
2106    * representation of this string.
2107    */
2108   int Utf8Length() const;
2109 
2110   /**
2111    * Returns whether this string is known to contain only one byte data.
2112    * Does not read the string.
2113    * False negatives are possible.
2114    */
2115   bool IsOneByte() const;
2116 
2117   /**
2118    * Returns whether this string contain only one byte data.
2119    * Will read the entire string in some cases.
2120    */
2121   bool ContainsOnlyOneByte() const;
2122 
2123   /**
2124    * Write the contents of the string to an external buffer.
2125    * If no arguments are given, expects the buffer to be large
2126    * enough to hold the entire string and NULL terminator. Copies
2127    * the contents of the string and the NULL terminator into the
2128    * buffer.
2129    *
2130    * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
2131    * before the end of the buffer.
2132    *
2133    * Copies up to length characters into the output buffer.
2134    * Only null-terminates if there is enough space in the buffer.
2135    *
2136    * \param buffer The buffer into which the string will be copied.
2137    * \param start The starting position within the string at which
2138    * copying begins.
2139    * \param length The number of characters to copy from the string.  For
2140    *    WriteUtf8 the number of bytes in the buffer.
2141    * \param nchars_ref The number of characters written, can be NULL.
2142    * \param options Various options that might affect performance of this or
2143    *    subsequent operations.
2144    * \return The number of characters copied to the buffer excluding the null
2145    *    terminator.  For WriteUtf8: The number of bytes copied to the buffer
2146    *    including the null terminator (if written).
2147    */
2148   enum WriteOptions {
2149     NO_OPTIONS = 0,
2150     HINT_MANY_WRITES_EXPECTED = 1,
2151     NO_NULL_TERMINATION = 2,
2152     PRESERVE_ONE_BYTE_NULL = 4,
2153     // Used by WriteUtf8 to replace orphan surrogate code units with the
2154     // unicode replacement character. Needs to be set to guarantee valid UTF-8
2155     // output.
2156     REPLACE_INVALID_UTF8 = 8
2157   };
2158 
2159   // 16-bit character codes.
2160   int Write(uint16_t* buffer,
2161             int start = 0,
2162             int length = -1,
2163             int options = NO_OPTIONS) const;
2164   // One byte characters.
2165   int WriteOneByte(uint8_t* buffer,
2166                    int start = 0,
2167                    int length = -1,
2168                    int options = NO_OPTIONS) const;
2169   // UTF-8 encoded characters.
2170   int WriteUtf8(char* buffer,
2171                 int length = -1,
2172                 int* nchars_ref = NULL,
2173                 int options = NO_OPTIONS) const;
2174 
2175   /**
2176    * A zero length string.
2177    */
2178   V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
2179 
2180   /**
2181    * Returns true if the string is external
2182    */
2183   bool IsExternal() const;
2184 
2185   /**
2186    * Returns true if the string is both external and one-byte.
2187    */
2188   bool IsExternalOneByte() const;
2189 
2190   class V8_EXPORT ExternalStringResourceBase {  // NOLINT
2191    public:
~ExternalStringResourceBase()2192     virtual ~ExternalStringResourceBase() {}
2193 
IsCompressible()2194     virtual bool IsCompressible() const { return false; }
2195 
2196    protected:
ExternalStringResourceBase()2197     ExternalStringResourceBase() {}
2198 
2199     /**
2200      * Internally V8 will call this Dispose method when the external string
2201      * resource is no longer needed. The default implementation will use the
2202      * delete operator. This method can be overridden in subclasses to
2203      * control how allocated external string resources are disposed.
2204      */
Dispose()2205     virtual void Dispose() { delete this; }
2206 
2207    private:
2208     // Disallow copying and assigning.
2209     ExternalStringResourceBase(const ExternalStringResourceBase&);
2210     void operator=(const ExternalStringResourceBase&);
2211 
2212     friend class v8::internal::Heap;
2213   };
2214 
2215   /**
2216    * An ExternalStringResource is a wrapper around a two-byte string
2217    * buffer that resides outside V8's heap. Implement an
2218    * ExternalStringResource to manage the life cycle of the underlying
2219    * buffer.  Note that the string data must be immutable.
2220    */
2221   class V8_EXPORT ExternalStringResource
2222       : public ExternalStringResourceBase {
2223    public:
2224     /**
2225      * Override the destructor to manage the life cycle of the underlying
2226      * buffer.
2227      */
~ExternalStringResource()2228     virtual ~ExternalStringResource() {}
2229 
2230     /**
2231      * The string data from the underlying buffer.
2232      */
2233     virtual const uint16_t* data() const = 0;
2234 
2235     /**
2236      * The length of the string. That is, the number of two-byte characters.
2237      */
2238     virtual size_t length() const = 0;
2239 
2240    protected:
ExternalStringResource()2241     ExternalStringResource() {}
2242   };
2243 
2244   /**
2245    * An ExternalOneByteStringResource is a wrapper around an one-byte
2246    * string buffer that resides outside V8's heap. Implement an
2247    * ExternalOneByteStringResource to manage the life cycle of the
2248    * underlying buffer.  Note that the string data must be immutable
2249    * and that the data must be Latin-1 and not UTF-8, which would require
2250    * special treatment internally in the engine and do not allow efficient
2251    * indexing.  Use String::New or convert to 16 bit data for non-Latin1.
2252    */
2253 
2254   class V8_EXPORT ExternalOneByteStringResource
2255       : public ExternalStringResourceBase {
2256    public:
2257     /**
2258      * Override the destructor to manage the life cycle of the underlying
2259      * buffer.
2260      */
~ExternalOneByteStringResource()2261     virtual ~ExternalOneByteStringResource() {}
2262     /** The string data from the underlying buffer.*/
2263     virtual const char* data() const = 0;
2264     /** The number of Latin-1 characters in the string.*/
2265     virtual size_t length() const = 0;
2266    protected:
ExternalOneByteStringResource()2267     ExternalOneByteStringResource() {}
2268   };
2269 
2270   /**
2271    * If the string is an external string, return the ExternalStringResourceBase
2272    * regardless of the encoding, otherwise return NULL.  The encoding of the
2273    * string is returned in encoding_out.
2274    */
2275   V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
2276       Encoding* encoding_out) const;
2277 
2278   /**
2279    * Get the ExternalStringResource for an external string.  Returns
2280    * NULL if IsExternal() doesn't return true.
2281    */
2282   V8_INLINE ExternalStringResource* GetExternalStringResource() const;
2283 
2284   /**
2285    * Get the ExternalOneByteStringResource for an external one-byte string.
2286    * Returns NULL if IsExternalOneByte() doesn't return true.
2287    */
2288   const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
2289 
2290   V8_INLINE static String* Cast(v8::Value* obj);
2291 
2292   // TODO(dcarney): remove with deprecation of New functions.
2293   enum NewStringType {
2294     kNormalString = static_cast<int>(v8::NewStringType::kNormal),
2295     kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized)
2296   };
2297 
2298   /** Allocates a new string from UTF-8 data.*/
2299   static V8_DEPRECATE_SOON(
2300       "Use maybe version",
2301       Local<String> NewFromUtf8(Isolate* isolate, const char* data,
2302                                 NewStringType type = kNormalString,
2303                                 int length = -1));
2304 
2305   /** Allocates a new string from UTF-8 data. Only returns an empty value when
2306    * length > kMaxLength. **/
2307   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
2308       Isolate* isolate, const char* data, v8::NewStringType type,
2309       int length = -1);
2310 
2311   /** Allocates a new string from Latin-1 data.*/
2312   static V8_DEPRECATED(
2313       "Use maybe version",
2314       Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data,
2315                                    NewStringType type = kNormalString,
2316                                    int length = -1));
2317 
2318   /** Allocates a new string from Latin-1 data.  Only returns an empty value
2319    * when length > kMaxLength. **/
2320   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
2321       Isolate* isolate, const uint8_t* data, v8::NewStringType type,
2322       int length = -1);
2323 
2324   /** Allocates a new string from UTF-16 data.*/
2325   static V8_DEPRECATE_SOON(
2326       "Use maybe version",
2327       Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
2328                                    NewStringType type = kNormalString,
2329                                    int length = -1));
2330 
2331   /** Allocates a new string from UTF-16 data. Only returns an empty value when
2332    * length > kMaxLength. **/
2333   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
2334       Isolate* isolate, const uint16_t* data, v8::NewStringType type,
2335       int length = -1);
2336 
2337   /**
2338    * Creates a new string by concatenating the left and the right strings
2339    * passed in as parameters.
2340    */
2341   static Local<String> Concat(Local<String> left, Local<String> right);
2342 
2343   /**
2344    * Creates a new external string using the data defined in the given
2345    * resource. When the external string is no longer live on V8's heap the
2346    * resource will be disposed by calling its Dispose method. The caller of
2347    * this function should not otherwise delete or modify the resource. Neither
2348    * should the underlying buffer be deallocated or modified except through the
2349    * destructor of the external string resource.
2350    */
2351   static V8_DEPRECATED("Use maybe version",
2352                        Local<String> NewExternal(
2353                            Isolate* isolate, ExternalStringResource* resource));
2354   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
2355       Isolate* isolate, ExternalStringResource* resource);
2356 
2357   /**
2358    * Associate an external string resource with this string by transforming it
2359    * in place so that existing references to this string in the JavaScript heap
2360    * will use the external string resource. The external string resource's
2361    * character contents need to be equivalent to this string.
2362    * Returns true if the string has been changed to be an external string.
2363    * The string is not modified if the operation fails. See NewExternal for
2364    * information on the lifetime of the resource.
2365    */
2366   bool MakeExternal(ExternalStringResource* resource);
2367 
2368   /**
2369    * Creates a new external string using the one-byte data defined in the given
2370    * resource. When the external string is no longer live on V8's heap the
2371    * resource will be disposed by calling its Dispose method. The caller of
2372    * this function should not otherwise delete or modify the resource. Neither
2373    * should the underlying buffer be deallocated or modified except through the
2374    * destructor of the external string resource.
2375    */
2376   static V8_DEPRECATE_SOON(
2377       "Use maybe version",
2378       Local<String> NewExternal(Isolate* isolate,
2379                                 ExternalOneByteStringResource* resource));
2380   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
2381       Isolate* isolate, ExternalOneByteStringResource* resource);
2382 
2383   /**
2384    * Associate an external string resource with this string by transforming it
2385    * in place so that existing references to this string in the JavaScript heap
2386    * will use the external string resource. The external string resource's
2387    * character contents need to be equivalent to this string.
2388    * Returns true if the string has been changed to be an external string.
2389    * The string is not modified if the operation fails. See NewExternal for
2390    * information on the lifetime of the resource.
2391    */
2392   bool MakeExternal(ExternalOneByteStringResource* resource);
2393 
2394   /**
2395    * Returns true if this string can be made external.
2396    */
2397   bool CanMakeExternal();
2398 
2399   /**
2400    * Converts an object to a UTF-8-encoded character array.  Useful if
2401    * you want to print the object.  If conversion to a string fails
2402    * (e.g. due to an exception in the toString() method of the object)
2403    * then the length() method returns 0 and the * operator returns
2404    * NULL.
2405    */
2406   class V8_EXPORT Utf8Value {
2407    public:
2408     explicit Utf8Value(Local<v8::Value> obj);
2409     ~Utf8Value();
2410     char* operator*() { return str_; }
2411     const char* operator*() const { return str_; }
length()2412     int length() const { return length_; }
2413    private:
2414     char* str_;
2415     int length_;
2416 
2417     // Disallow copying and assigning.
2418     Utf8Value(const Utf8Value&);
2419     void operator=(const Utf8Value&);
2420   };
2421 
2422   /**
2423    * Converts an object to a two-byte string.
2424    * If conversion to a string fails (eg. due to an exception in the toString()
2425    * method of the object) then the length() method returns 0 and the * operator
2426    * returns NULL.
2427    */
2428   class V8_EXPORT Value {
2429    public:
2430     explicit Value(Local<v8::Value> obj);
2431     ~Value();
2432     uint16_t* operator*() { return str_; }
2433     const uint16_t* operator*() const { return str_; }
length()2434     int length() const { return length_; }
2435    private:
2436     uint16_t* str_;
2437     int length_;
2438 
2439     // Disallow copying and assigning.
2440     Value(const Value&);
2441     void operator=(const Value&);
2442   };
2443 
2444  private:
2445   void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2446                                         Encoding encoding) const;
2447   void VerifyExternalStringResource(ExternalStringResource* val) const;
2448   static void CheckCast(v8::Value* obj);
2449 };
2450 
2451 
2452 /**
2453  * A JavaScript symbol (ECMA-262 edition 6)
2454  *
2455  * This is an experimental feature. Use at your own risk.
2456  */
2457 class V8_EXPORT Symbol : public Name {
2458  public:
2459   // Returns the print name string of the symbol, or undefined if none.
2460   Local<Value> Name() const;
2461 
2462   // Create a symbol. If name is not empty, it will be used as the description.
2463   static Local<Symbol> New(Isolate* isolate,
2464                            Local<String> name = Local<String>());
2465 
2466   // Access global symbol registry.
2467   // Note that symbols created this way are never collected, so
2468   // they should only be used for statically fixed properties.
2469   // Also, there is only one global name space for the names used as keys.
2470   // To minimize the potential for clashes, use qualified names as keys.
2471   static Local<Symbol> For(Isolate *isolate, Local<String> name);
2472 
2473   // Retrieve a global symbol. Similar to |For|, but using a separate
2474   // registry that is not accessible by (and cannot clash with) JavaScript code.
2475   static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
2476 
2477   // Well-known symbols
2478   static Local<Symbol> GetIterator(Isolate* isolate);
2479   static Local<Symbol> GetUnscopables(Isolate* isolate);
2480   static Local<Symbol> GetToStringTag(Isolate* isolate);
2481   static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate);
2482 
2483   V8_INLINE static Symbol* Cast(v8::Value* obj);
2484 
2485  private:
2486   Symbol();
2487   static void CheckCast(v8::Value* obj);
2488 };
2489 
2490 
2491 /**
2492  * A private symbol
2493  *
2494  * This is an experimental feature. Use at your own risk.
2495  */
2496 class V8_EXPORT Private : public Data {
2497  public:
2498   // Returns the print name string of the private symbol, or undefined if none.
2499   Local<Value> Name() const;
2500 
2501   // Create a private symbol. If name is not empty, it will be the description.
2502   static Local<Private> New(Isolate* isolate,
2503                             Local<String> name = Local<String>());
2504 
2505   // Retrieve a global private symbol. If a symbol with this name has not
2506   // been retrieved in the same isolate before, it is created.
2507   // Note that private symbols created this way are never collected, so
2508   // they should only be used for statically fixed properties.
2509   // Also, there is only one global name space for the names used as keys.
2510   // To minimize the potential for clashes, use qualified names as keys,
2511   // e.g., "Class#property".
2512   static Local<Private> ForApi(Isolate* isolate, Local<String> name);
2513 
2514  private:
2515   Private();
2516 };
2517 
2518 
2519 /**
2520  * A JavaScript number value (ECMA-262, 4.3.20)
2521  */
2522 class V8_EXPORT Number : public Primitive {
2523  public:
2524   double Value() const;
2525   static Local<Number> New(Isolate* isolate, double value);
2526   V8_INLINE static Number* Cast(v8::Value* obj);
2527  private:
2528   Number();
2529   static void CheckCast(v8::Value* obj);
2530 };
2531 
2532 
2533 /**
2534  * A JavaScript value representing a signed integer.
2535  */
2536 class V8_EXPORT Integer : public Number {
2537  public:
2538   static Local<Integer> New(Isolate* isolate, int32_t value);
2539   static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2540   int64_t Value() const;
2541   V8_INLINE static Integer* Cast(v8::Value* obj);
2542  private:
2543   Integer();
2544   static void CheckCast(v8::Value* obj);
2545 };
2546 
2547 
2548 /**
2549  * A JavaScript value representing a 32-bit signed integer.
2550  */
2551 class V8_EXPORT Int32 : public Integer {
2552  public:
2553   int32_t Value() const;
2554   V8_INLINE static Int32* Cast(v8::Value* obj);
2555 
2556  private:
2557   Int32();
2558   static void CheckCast(v8::Value* obj);
2559 };
2560 
2561 
2562 /**
2563  * A JavaScript value representing a 32-bit unsigned integer.
2564  */
2565 class V8_EXPORT Uint32 : public Integer {
2566  public:
2567   uint32_t Value() const;
2568   V8_INLINE static Uint32* Cast(v8::Value* obj);
2569 
2570  private:
2571   Uint32();
2572   static void CheckCast(v8::Value* obj);
2573 };
2574 
2575 
2576 enum PropertyAttribute {
2577   None       = 0,
2578   ReadOnly   = 1 << 0,
2579   DontEnum   = 1 << 1,
2580   DontDelete = 1 << 2
2581 };
2582 
2583 /**
2584  * Accessor[Getter|Setter] are used as callback functions when
2585  * setting|getting a particular property. See Object and ObjectTemplate's
2586  * method SetAccessor.
2587  */
2588 typedef void (*AccessorGetterCallback)(
2589     Local<String> property,
2590     const PropertyCallbackInfo<Value>& info);
2591 typedef void (*AccessorNameGetterCallback)(
2592     Local<Name> property,
2593     const PropertyCallbackInfo<Value>& info);
2594 
2595 
2596 typedef void (*AccessorSetterCallback)(
2597     Local<String> property,
2598     Local<Value> value,
2599     const PropertyCallbackInfo<void>& info);
2600 typedef void (*AccessorNameSetterCallback)(
2601     Local<Name> property,
2602     Local<Value> value,
2603     const PropertyCallbackInfo<void>& info);
2604 
2605 
2606 /**
2607  * Access control specifications.
2608  *
2609  * Some accessors should be accessible across contexts.  These
2610  * accessors have an explicit access control parameter which specifies
2611  * the kind of cross-context access that should be allowed.
2612  *
2613  * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2614  */
2615 enum AccessControl {
2616   DEFAULT               = 0,
2617   ALL_CAN_READ          = 1,
2618   ALL_CAN_WRITE         = 1 << 1,
2619   PROHIBITS_OVERWRITING = 1 << 2
2620 };
2621 
2622 /**
2623  * Property filter bits. They can be or'ed to build a composite filter.
2624  */
2625 enum PropertyFilter {
2626   ALL_PROPERTIES = 0,
2627   ONLY_WRITABLE = 1,
2628   ONLY_ENUMERABLE = 2,
2629   ONLY_CONFIGURABLE = 4,
2630   SKIP_STRINGS = 8,
2631   SKIP_SYMBOLS = 16
2632 };
2633 
2634 /**
2635  * Keys/Properties filter enums:
2636  *
2637  * KeyCollectionMode limits the range of collected properties. kOwnOnly limits
2638  * the collected properties to the given Object only. kIncludesPrototypes will
2639  * include all keys of the objects's prototype chain as well.
2640  */
2641 enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes };
2642 
2643 /**
2644  * kIncludesIndices allows for integer indices to be collected, while
2645  * kSkipIndices will exclude integer indicies from being collected.
2646  */
2647 enum class IndexFilter { kIncludeIndices, kSkipIndices };
2648 
2649 /**
2650  * Integrity level for objects.
2651  */
2652 enum class IntegrityLevel { kFrozen, kSealed };
2653 
2654 /**
2655  * A JavaScript object (ECMA-262, 4.3.3)
2656  */
2657 class V8_EXPORT Object : public Value {
2658  public:
2659   V8_DEPRECATE_SOON("Use maybe version",
2660                     bool Set(Local<Value> key, Local<Value> value));
2661   V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
2662                                         Local<Value> key, Local<Value> value);
2663 
2664   V8_DEPRECATE_SOON("Use maybe version",
2665                     bool Set(uint32_t index, Local<Value> value));
2666   V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
2667                                         Local<Value> value);
2668 
2669   // Implements CreateDataProperty (ECMA-262, 7.3.4).
2670   //
2671   // Defines a configurable, writable, enumerable property with the given value
2672   // on the object unless the property already exists and is not configurable
2673   // or the object is not extensible.
2674   //
2675   // Returns true on success.
2676   V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2677                                                        Local<Name> key,
2678                                                        Local<Value> value);
2679   V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2680                                                        uint32_t index,
2681                                                        Local<Value> value);
2682 
2683   // Implements DefineOwnProperty.
2684   //
2685   // In general, CreateDataProperty will be faster, however, does not allow
2686   // for specifying attributes.
2687   //
2688   // Returns true on success.
2689   V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty(
2690       Local<Context> context, Local<Name> key, Local<Value> value,
2691       PropertyAttribute attributes = None);
2692 
2693   // Sets an own property on this object bypassing interceptors and
2694   // overriding accessors or read-only properties.
2695   //
2696   // Note that if the object has an interceptor the property will be set
2697   // locally, but since the interceptor takes precedence the local property
2698   // will only be returned if the interceptor doesn't return a value.
2699   //
2700   // Note also that this only works for named properties.
2701   V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
2702                 bool ForceSet(Local<Value> key, Local<Value> value,
2703                               PropertyAttribute attribs = None));
2704   V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty",
2705                     Maybe<bool> ForceSet(Local<Context> context,
2706                                          Local<Value> key, Local<Value> value,
2707                                          PropertyAttribute attribs = None));
2708 
2709   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
2710   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2711                                               Local<Value> key);
2712 
2713   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
2714   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2715                                               uint32_t index);
2716 
2717   /**
2718    * Gets the property attributes of a property which can be None or
2719    * any combination of ReadOnly, DontEnum and DontDelete. Returns
2720    * None when the property doesn't exist.
2721    */
2722   V8_DEPRECATED("Use maybe version",
2723                 PropertyAttribute GetPropertyAttributes(Local<Value> key));
2724   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes(
2725       Local<Context> context, Local<Value> key);
2726 
2727   /**
2728    * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
2729    */
2730   V8_DEPRECATED("Use maybe version",
2731                 Local<Value> GetOwnPropertyDescriptor(Local<String> key));
2732   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor(
2733       Local<Context> context, Local<String> key);
2734 
2735   V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
2736   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
2737                                         Local<Value> key);
2738 
2739   V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
2740   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2741   Maybe<bool> Delete(Local<Context> context, Local<Value> key);
2742 
2743   V8_DEPRECATED("Use maybe version", bool Has(uint32_t index));
2744   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index);
2745 
2746   V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index));
2747   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2748   Maybe<bool> Delete(Local<Context> context, uint32_t index);
2749 
2750   V8_DEPRECATED("Use maybe version",
2751                 bool SetAccessor(Local<String> name,
2752                                  AccessorGetterCallback getter,
2753                                  AccessorSetterCallback setter = 0,
2754                                  Local<Value> data = Local<Value>(),
2755                                  AccessControl settings = DEFAULT,
2756                                  PropertyAttribute attribute = None));
2757   V8_DEPRECATED("Use maybe version",
2758                 bool SetAccessor(Local<Name> name,
2759                                  AccessorNameGetterCallback getter,
2760                                  AccessorNameSetterCallback setter = 0,
2761                                  Local<Value> data = Local<Value>(),
2762                                  AccessControl settings = DEFAULT,
2763                                  PropertyAttribute attribute = None));
2764   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2765   Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name,
2766                           AccessorNameGetterCallback getter,
2767                           AccessorNameSetterCallback setter = 0,
2768                           MaybeLocal<Value> data = MaybeLocal<Value>(),
2769                           AccessControl settings = DEFAULT,
2770                           PropertyAttribute attribute = None);
2771 
2772   void SetAccessorProperty(Local<Name> name, Local<Function> getter,
2773                            Local<Function> setter = Local<Function>(),
2774                            PropertyAttribute attribute = None,
2775                            AccessControl settings = DEFAULT);
2776 
2777   /**
2778    * Functionality for private properties.
2779    * This is an experimental feature, use at your own risk.
2780    * Note: Private properties are not inherited. Do not rely on this, since it
2781    * may change.
2782    */
2783   Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key);
2784   Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key,
2785                          Local<Value> value);
2786   Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key);
2787   MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key);
2788 
2789   /**
2790    * Returns an array containing the names of the enumerable properties
2791    * of this object, including properties from prototype objects.  The
2792    * array returned by this method contains the same values as would
2793    * be enumerated by a for-in statement over this object.
2794    */
2795   V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
2796   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
2797       Local<Context> context);
2798   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
2799       Local<Context> context, KeyCollectionMode mode,
2800       PropertyFilter property_filter, IndexFilter index_filter);
2801 
2802   /**
2803    * This function has the same functionality as GetPropertyNames but
2804    * the returned array doesn't contain the names of properties from
2805    * prototype objects.
2806    */
2807   V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
2808   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
2809       Local<Context> context);
2810 
2811   /**
2812    * Returns an array containing the names of the filtered properties
2813    * of this object, including properties from prototype objects.  The
2814    * array returned by this method contains the same values as would
2815    * be enumerated by a for-in statement over this object.
2816    */
2817   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
2818       Local<Context> context, PropertyFilter filter);
2819 
2820   /**
2821    * Get the prototype object.  This does not skip objects marked to
2822    * be skipped by __proto__ and it does not consult the security
2823    * handler.
2824    */
2825   Local<Value> GetPrototype();
2826 
2827   /**
2828    * Set the prototype object.  This does not skip objects marked to
2829    * be skipped by __proto__ and it does not consult the security
2830    * handler.
2831    */
2832   V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype));
2833   V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
2834                                                  Local<Value> prototype);
2835 
2836   /**
2837    * Finds an instance of the given function template in the prototype
2838    * chain.
2839    */
2840   Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl);
2841 
2842   /**
2843    * Call builtin Object.prototype.toString on this object.
2844    * This is different from Value::ToString() that may call
2845    * user-defined toString function. This one does not.
2846    */
2847   V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString());
2848   V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString(
2849       Local<Context> context);
2850 
2851   /**
2852    * Returns the name of the function invoked as a constructor for this object.
2853    */
2854   Local<String> GetConstructorName();
2855 
2856   /**
2857    * Sets the integrity level of the object.
2858    */
2859   Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level);
2860 
2861   /** Gets the number of internal fields for this Object. */
2862   int InternalFieldCount();
2863 
2864   /** Same as above, but works for Persistents */
InternalFieldCount(const PersistentBase<Object> & object)2865   V8_INLINE static int InternalFieldCount(
2866       const PersistentBase<Object>& object) {
2867     return object.val_->InternalFieldCount();
2868   }
2869 
2870   /** Gets the value from an internal field. */
2871   V8_INLINE Local<Value> GetInternalField(int index);
2872 
2873   /** Sets the value in an internal field. */
2874   void SetInternalField(int index, Local<Value> value);
2875 
2876   /**
2877    * Gets a 2-byte-aligned native pointer from an internal field. This field
2878    * must have been set by SetAlignedPointerInInternalField, everything else
2879    * leads to undefined behavior.
2880    */
2881   V8_INLINE void* GetAlignedPointerFromInternalField(int index);
2882 
2883   /** Same as above, but works for Persistents */
GetAlignedPointerFromInternalField(const PersistentBase<Object> & object,int index)2884   V8_INLINE static void* GetAlignedPointerFromInternalField(
2885       const PersistentBase<Object>& object, int index) {
2886     return object.val_->GetAlignedPointerFromInternalField(index);
2887   }
2888 
2889   /**
2890    * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
2891    * a field, GetAlignedPointerFromInternalField must be used, everything else
2892    * leads to undefined behavior.
2893    */
2894   void SetAlignedPointerInInternalField(int index, void* value);
2895 
2896   // Testers for local properties.
2897   V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key));
2898   V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
2899                                                    Local<Name> key);
2900   V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
2901                                                    uint32_t index);
2902   V8_DEPRECATE_SOON("Use maybe version",
2903                     bool HasRealNamedProperty(Local<String> key));
2904   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
2905                                                          Local<Name> key);
2906   V8_DEPRECATE_SOON("Use maybe version",
2907                     bool HasRealIndexedProperty(uint32_t index));
2908   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty(
2909       Local<Context> context, uint32_t index);
2910   V8_DEPRECATE_SOON("Use maybe version",
2911                     bool HasRealNamedCallbackProperty(Local<String> key));
2912   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty(
2913       Local<Context> context, Local<Name> key);
2914 
2915   /**
2916    * If result.IsEmpty() no real property was located in the prototype chain.
2917    * This means interceptors in the prototype chain are not called.
2918    */
2919   V8_DEPRECATED(
2920       "Use maybe version",
2921       Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key));
2922   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain(
2923       Local<Context> context, Local<Name> key);
2924 
2925   /**
2926    * Gets the property attributes of a real property in the prototype chain,
2927    * which can be None or any combination of ReadOnly, DontEnum and DontDelete.
2928    * Interceptors in the prototype chain are not called.
2929    */
2930   V8_DEPRECATED(
2931       "Use maybe version",
2932       Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(
2933           Local<String> key));
2934   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute>
2935   GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context,
2936                                                  Local<Name> key);
2937 
2938   /**
2939    * If result.IsEmpty() no real property was located on the object or
2940    * in the prototype chain.
2941    * This means interceptors in the prototype chain are not called.
2942    */
2943   V8_DEPRECATED("Use maybe version",
2944                 Local<Value> GetRealNamedProperty(Local<String> key));
2945   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty(
2946       Local<Context> context, Local<Name> key);
2947 
2948   /**
2949    * Gets the property attributes of a real property which can be
2950    * None or any combination of ReadOnly, DontEnum and DontDelete.
2951    * Interceptors in the prototype chain are not called.
2952    */
2953   V8_DEPRECATED("Use maybe version",
2954                 Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
2955                     Local<String> key));
2956   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
2957       Local<Context> context, Local<Name> key);
2958 
2959   /** Tests for a named lookup interceptor.*/
2960   bool HasNamedLookupInterceptor();
2961 
2962   /** Tests for an index lookup interceptor.*/
2963   bool HasIndexedLookupInterceptor();
2964 
2965   /**
2966    * Returns the identity hash for this object. The current implementation
2967    * uses a hidden property on the object to store the identity hash.
2968    *
2969    * The return value will never be 0. Also, it is not guaranteed to be
2970    * unique.
2971    */
2972   int GetIdentityHash();
2973 
2974   /**
2975    * Clone this object with a fast but shallow copy.  Values will point
2976    * to the same values as the original object.
2977    */
2978   // TODO(dcarney): take an isolate and optionally bail out?
2979   Local<Object> Clone();
2980 
2981   /**
2982    * Returns the context in which the object was created.
2983    */
2984   Local<Context> CreationContext();
2985 
2986   /**
2987    * Checks whether a callback is set by the
2988    * ObjectTemplate::SetCallAsFunctionHandler method.
2989    * When an Object is callable this method returns true.
2990    */
2991   bool IsCallable();
2992 
2993   /**
2994    * True if this object is a constructor.
2995    */
2996   bool IsConstructor();
2997 
2998   /**
2999    * Call an Object as a function if a callback is set by the
3000    * ObjectTemplate::SetCallAsFunctionHandler method.
3001    */
3002   V8_DEPRECATED("Use maybe version",
3003                 Local<Value> CallAsFunction(Local<Value> recv, int argc,
3004                                             Local<Value> argv[]));
3005   V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
3006                                                          Local<Value> recv,
3007                                                          int argc,
3008                                                          Local<Value> argv[]);
3009 
3010   /**
3011    * Call an Object as a constructor if a callback is set by the
3012    * ObjectTemplate::SetCallAsFunctionHandler method.
3013    * Note: This method behaves like the Function::NewInstance method.
3014    */
3015   V8_DEPRECATED("Use maybe version",
3016                 Local<Value> CallAsConstructor(int argc, Local<Value> argv[]));
3017   V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor(
3018       Local<Context> context, int argc, Local<Value> argv[]);
3019 
3020   /**
3021    * Return the isolate to which the Object belongs to.
3022    */
3023   V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
3024 
3025   static Local<Object> New(Isolate* isolate);
3026 
3027   V8_INLINE static Object* Cast(Value* obj);
3028 
3029  private:
3030   Object();
3031   static void CheckCast(Value* obj);
3032   Local<Value> SlowGetInternalField(int index);
3033   void* SlowGetAlignedPointerFromInternalField(int index);
3034 };
3035 
3036 
3037 /**
3038  * An instance of the built-in array constructor (ECMA-262, 15.4.2).
3039  */
3040 class V8_EXPORT Array : public Object {
3041  public:
3042   uint32_t Length() const;
3043 
3044   /**
3045    * Clones an element at index |index|.  Returns an empty
3046    * handle if cloning fails (for any reason).
3047    */
3048   V8_DEPRECATED("Cloning is not supported.",
3049                 Local<Object> CloneElementAt(uint32_t index));
3050   V8_DEPRECATED("Cloning is not supported.",
3051                 MaybeLocal<Object> CloneElementAt(Local<Context> context,
3052                                                   uint32_t index));
3053 
3054   /**
3055    * Creates a JavaScript array with the given length. If the length
3056    * is negative the returned array will have length 0.
3057    */
3058   static Local<Array> New(Isolate* isolate, int length = 0);
3059 
3060   V8_INLINE static Array* Cast(Value* obj);
3061  private:
3062   Array();
3063   static void CheckCast(Value* obj);
3064 };
3065 
3066 
3067 /**
3068  * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
3069  */
3070 class V8_EXPORT Map : public Object {
3071  public:
3072   size_t Size() const;
3073   void Clear();
3074   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
3075                                               Local<Value> key);
3076   V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
3077                                             Local<Value> key,
3078                                             Local<Value> value);
3079   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3080                                         Local<Value> key);
3081   V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3082                                            Local<Value> key);
3083 
3084   /**
3085    * Returns an array of length Size() * 2, where index N is the Nth key and
3086    * index N + 1 is the Nth value.
3087    */
3088   Local<Array> AsArray() const;
3089 
3090   /**
3091    * Creates a new empty Map.
3092    */
3093   static Local<Map> New(Isolate* isolate);
3094 
3095   V8_INLINE static Map* Cast(Value* obj);
3096 
3097  private:
3098   Map();
3099   static void CheckCast(Value* obj);
3100 };
3101 
3102 
3103 /**
3104  * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
3105  */
3106 class V8_EXPORT Set : public Object {
3107  public:
3108   size_t Size() const;
3109   void Clear();
3110   V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
3111                                             Local<Value> key);
3112   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3113                                         Local<Value> key);
3114   V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3115                                            Local<Value> key);
3116 
3117   /**
3118    * Returns an array of the keys in this Set.
3119    */
3120   Local<Array> AsArray() const;
3121 
3122   /**
3123    * Creates a new empty Set.
3124    */
3125   static Local<Set> New(Isolate* isolate);
3126 
3127   V8_INLINE static Set* Cast(Value* obj);
3128 
3129  private:
3130   Set();
3131   static void CheckCast(Value* obj);
3132 };
3133 
3134 
3135 template<typename T>
3136 class ReturnValue {
3137  public:
ReturnValue(const ReturnValue<S> & that)3138   template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
3139       : value_(that.value_) {
3140     TYPE_CHECK(T, S);
3141   }
3142   // Local setters
3143   template <typename S>
3144   V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
3145                               void Set(const Persistent<S>& handle));
3146   template <typename S>
3147   V8_INLINE void Set(const Global<S>& handle);
3148   template <typename S>
3149   V8_INLINE void Set(const Local<S> handle);
3150   // Fast primitive setters
3151   V8_INLINE void Set(bool value);
3152   V8_INLINE void Set(double i);
3153   V8_INLINE void Set(int32_t i);
3154   V8_INLINE void Set(uint32_t i);
3155   // Fast JS primitive setters
3156   V8_INLINE void SetNull();
3157   V8_INLINE void SetUndefined();
3158   V8_INLINE void SetEmptyString();
3159   // Convenience getter for Isolate
3160   V8_INLINE Isolate* GetIsolate() const;
3161 
3162   // Pointer setter: Uncompilable to prevent inadvertent misuse.
3163   template <typename S>
3164   V8_INLINE void Set(S* whatever);
3165 
3166   // Getter. Creates a new Local<> so it comes with a certain performance
3167   // hit. If the ReturnValue was not yet set, this will return the undefined
3168   // value.
3169   V8_INLINE Local<Value> Get() const;
3170 
3171  private:
3172   template<class F> friend class ReturnValue;
3173   template<class F> friend class FunctionCallbackInfo;
3174   template<class F> friend class PropertyCallbackInfo;
3175   template <class F, class G, class H>
3176   friend class PersistentValueMapBase;
SetInternal(internal::Object * value)3177   V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
3178   V8_INLINE internal::Object* GetDefaultValue();
3179   V8_INLINE explicit ReturnValue(internal::Object** slot);
3180   internal::Object** value_;
3181 };
3182 
3183 
3184 /**
3185  * The argument information given to function call callbacks.  This
3186  * class provides access to information about the context of the call,
3187  * including the receiver, the number and values of arguments, and
3188  * the holder of the function.
3189  */
3190 template<typename T>
3191 class FunctionCallbackInfo {
3192  public:
3193   V8_INLINE int Length() const;
3194   V8_INLINE Local<Value> operator[](int i) const;
3195   V8_INLINE V8_DEPRECATED("Use Data() to explicitly pass Callee instead",
3196                           Local<Function> Callee() const);
3197   V8_INLINE Local<Object> This() const;
3198   V8_INLINE Local<Object> Holder() const;
3199   V8_INLINE Local<Value> NewTarget() const;
3200   V8_INLINE bool IsConstructCall() const;
3201   V8_INLINE Local<Value> Data() const;
3202   V8_INLINE Isolate* GetIsolate() const;
3203   V8_INLINE ReturnValue<T> GetReturnValue() const;
3204   // This shouldn't be public, but the arm compiler needs it.
3205   static const int kArgsLength = 8;
3206 
3207  protected:
3208   friend class internal::FunctionCallbackArguments;
3209   friend class internal::CustomArguments<FunctionCallbackInfo>;
3210   static const int kHolderIndex = 0;
3211   static const int kIsolateIndex = 1;
3212   static const int kReturnValueDefaultValueIndex = 2;
3213   static const int kReturnValueIndex = 3;
3214   static const int kDataIndex = 4;
3215   static const int kCalleeIndex = 5;
3216   static const int kContextSaveIndex = 6;
3217   static const int kNewTargetIndex = 7;
3218 
3219   V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
3220                                  internal::Object** values, int length);
3221   internal::Object** implicit_args_;
3222   internal::Object** values_;
3223   int length_;
3224 };
3225 
3226 
3227 /**
3228  * The information passed to a property callback about the context
3229  * of the property access.
3230  */
3231 template<typename T>
3232 class PropertyCallbackInfo {
3233  public:
3234   V8_INLINE Isolate* GetIsolate() const;
3235   V8_INLINE Local<Value> Data() const;
3236   V8_INLINE Local<Object> This() const;
3237   V8_INLINE Local<Object> Holder() const;
3238   V8_INLINE ReturnValue<T> GetReturnValue() const;
3239   V8_INLINE bool ShouldThrowOnError() const;
3240   // This shouldn't be public, but the arm compiler needs it.
3241   static const int kArgsLength = 7;
3242 
3243  protected:
3244   friend class MacroAssembler;
3245   friend class internal::PropertyCallbackArguments;
3246   friend class internal::CustomArguments<PropertyCallbackInfo>;
3247   static const int kShouldThrowOnErrorIndex = 0;
3248   static const int kHolderIndex = 1;
3249   static const int kIsolateIndex = 2;
3250   static const int kReturnValueDefaultValueIndex = 3;
3251   static const int kReturnValueIndex = 4;
3252   static const int kDataIndex = 5;
3253   static const int kThisIndex = 6;
3254 
PropertyCallbackInfo(internal::Object ** args)3255   V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
3256   internal::Object** args_;
3257 };
3258 
3259 
3260 typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
3261 
3262 enum class ConstructorBehavior { kThrow, kAllow };
3263 
3264 /**
3265  * A JavaScript function object (ECMA-262, 15.3).
3266  */
3267 class V8_EXPORT Function : public Object {
3268  public:
3269   /**
3270    * Create a function in the current execution context
3271    * for a given FunctionCallback.
3272    */
3273   static MaybeLocal<Function> New(
3274       Local<Context> context, FunctionCallback callback,
3275       Local<Value> data = Local<Value>(), int length = 0,
3276       ConstructorBehavior behavior = ConstructorBehavior::kAllow);
3277   static V8_DEPRECATE_SOON(
3278       "Use maybe version",
3279       Local<Function> New(Isolate* isolate, FunctionCallback callback,
3280                           Local<Value> data = Local<Value>(), int length = 0));
3281 
3282   V8_DEPRECATED("Use maybe version",
3283                 Local<Object> NewInstance(int argc, Local<Value> argv[]) const);
3284   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3285       Local<Context> context, int argc, Local<Value> argv[]) const;
3286 
3287   V8_DEPRECATED("Use maybe version", Local<Object> NewInstance() const);
NewInstance(Local<Context> context)3288   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3289       Local<Context> context) const {
3290     return NewInstance(context, 0, nullptr);
3291   }
3292 
3293   V8_DEPRECATE_SOON("Use maybe version",
3294                     Local<Value> Call(Local<Value> recv, int argc,
3295                                       Local<Value> argv[]));
3296   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
3297                                                Local<Value> recv, int argc,
3298                                                Local<Value> argv[]);
3299 
3300   void SetName(Local<String> name);
3301   Local<Value> GetName() const;
3302 
3303   /**
3304    * Name inferred from variable or property assignment of this function.
3305    * Used to facilitate debugging and profiling of JavaScript code written
3306    * in an OO style, where many functions are anonymous but are assigned
3307    * to object properties.
3308    */
3309   Local<Value> GetInferredName() const;
3310 
3311   /**
3312    * displayName if it is set, otherwise name if it is configured, otherwise
3313    * function name, otherwise inferred name.
3314    */
3315   Local<Value> GetDebugName() const;
3316 
3317   /**
3318    * User-defined name assigned to the "displayName" property of this function.
3319    * Used to facilitate debugging and profiling of JavaScript code.
3320    */
3321   Local<Value> GetDisplayName() const;
3322 
3323   /**
3324    * Returns zero based line number of function body and
3325    * kLineOffsetNotFound if no information available.
3326    */
3327   int GetScriptLineNumber() const;
3328   /**
3329    * Returns zero based column number of function body and
3330    * kLineOffsetNotFound if no information available.
3331    */
3332   int GetScriptColumnNumber() const;
3333 
3334   /**
3335    * Tells whether this function is builtin.
3336    */
3337   bool IsBuiltin() const;
3338 
3339   /**
3340    * Returns scriptId.
3341    */
3342   int ScriptId() const;
3343 
3344   /**
3345    * Returns the original function if this function is bound, else returns
3346    * v8::Undefined.
3347    */
3348   Local<Value> GetBoundFunction() const;
3349 
3350   ScriptOrigin GetScriptOrigin() const;
3351   V8_INLINE static Function* Cast(Value* obj);
3352   static const int kLineOffsetNotFound;
3353 
3354  private:
3355   Function();
3356   static void CheckCast(Value* obj);
3357 };
3358 
3359 
3360 /**
3361  * An instance of the built-in Promise constructor (ES6 draft).
3362  * This API is experimental. Only works with --harmony flag.
3363  */
3364 class V8_EXPORT Promise : public Object {
3365  public:
3366   class V8_EXPORT Resolver : public Object {
3367    public:
3368     /**
3369      * Create a new resolver, along with an associated promise in pending state.
3370      */
3371     static V8_DEPRECATE_SOON("Use maybe version",
3372                              Local<Resolver> New(Isolate* isolate));
3373     static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
3374         Local<Context> context);
3375 
3376     /**
3377      * Extract the associated promise.
3378      */
3379     Local<Promise> GetPromise();
3380 
3381     /**
3382      * Resolve/reject the associated promise with a given value.
3383      * Ignored if the promise is no longer pending.
3384      */
3385     V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value));
3386     // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3387     Maybe<bool> Resolve(Local<Context> context, Local<Value> value);
3388 
3389     V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value));
3390     // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3391     Maybe<bool> Reject(Local<Context> context, Local<Value> value);
3392 
3393     V8_INLINE static Resolver* Cast(Value* obj);
3394 
3395    private:
3396     Resolver();
3397     static void CheckCast(Value* obj);
3398   };
3399 
3400   /**
3401    * Register a resolution/rejection handler with a promise.
3402    * The handler is given the respective resolution/rejection value as
3403    * an argument. If the promise is already resolved/rejected, the handler is
3404    * invoked at the end of turn.
3405    */
3406   V8_DEPRECATED("Use maybe version of Then",
3407                 Local<Promise> Chain(Local<Function> handler));
3408   V8_DEPRECATED("Use Then",
3409                 V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Chain(
3410                     Local<Context> context, Local<Function> handler));
3411 
3412   V8_DEPRECATED("Use maybe version",
3413                 Local<Promise> Catch(Local<Function> handler));
3414   V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
3415                                                   Local<Function> handler);
3416 
3417   V8_DEPRECATED("Use maybe version",
3418                 Local<Promise> Then(Local<Function> handler));
3419   V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
3420                                                  Local<Function> handler);
3421 
3422   /**
3423    * Returns true if the promise has at least one derived promise, and
3424    * therefore resolve/reject handlers (including default handler).
3425    */
3426   bool HasHandler();
3427 
3428   V8_INLINE static Promise* Cast(Value* obj);
3429 
3430  private:
3431   Promise();
3432   static void CheckCast(Value* obj);
3433 };
3434 
3435 
3436 /**
3437  * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition,
3438  * 26.2.1).
3439  */
3440 class V8_EXPORT Proxy : public Object {
3441  public:
3442   Local<Object> GetTarget();
3443   Local<Value> GetHandler();
3444   bool IsRevoked();
3445   void Revoke();
3446 
3447   /**
3448    * Creates a new empty Map.
3449    */
3450   static MaybeLocal<Proxy> New(Local<Context> context,
3451                                Local<Object> local_target,
3452                                Local<Object> local_handler);
3453 
3454   V8_INLINE static Proxy* Cast(Value* obj);
3455 
3456  private:
3457   Proxy();
3458   static void CheckCast(Value* obj);
3459 };
3460 
3461 
3462 #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
3463 // The number of required internal fields can be defined by embedder.
3464 #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
3465 #endif
3466 
3467 
3468 enum class ArrayBufferCreationMode { kInternalized, kExternalized };
3469 
3470 
3471 /**
3472  * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
3473  * This API is experimental and may change significantly.
3474  */
3475 class V8_EXPORT ArrayBuffer : public Object {
3476  public:
3477   /**
3478    * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory.
3479    * The allocator is a global V8 setting. It has to be set via
3480    * Isolate::CreateParams.
3481    *
3482    * Memory allocated through this allocator by V8 is accounted for as external
3483    * memory by V8. Note that V8 keeps track of the memory for all internalized
3484    * |ArrayBuffer|s. Responsibility for tracking external memory (using
3485    * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the
3486    * embedder upon externalization and taken over upon internalization (creating
3487    * an internalized buffer from an existing buffer).
3488    *
3489    * Note that it is unsafe to call back into V8 from any of the allocator
3490    * functions.
3491    *
3492    * This API is experimental and may change significantly.
3493    */
3494   class V8_EXPORT Allocator { // NOLINT
3495    public:
~Allocator()3496     virtual ~Allocator() {}
3497 
3498     /**
3499      * Allocate |length| bytes. Return NULL if allocation is not successful.
3500      * Memory should be initialized to zeroes.
3501      */
3502     virtual void* Allocate(size_t length) = 0;
3503 
3504     /**
3505      * Allocate |length| bytes. Return NULL if allocation is not successful.
3506      * Memory does not have to be initialized.
3507      */
3508     virtual void* AllocateUninitialized(size_t length) = 0;
3509     /**
3510      * Free the memory block of size |length|, pointed to by |data|.
3511      * That memory is guaranteed to be previously allocated by |Allocate|.
3512      */
3513     virtual void Free(void* data, size_t length) = 0;
3514   };
3515 
3516   /**
3517    * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
3518    * returns an instance of this class, populated, with a pointer to data
3519    * and byte length.
3520    *
3521    * The Data pointer of ArrayBuffer::Contents is always allocated with
3522    * Allocator::Allocate that is set via Isolate::CreateParams.
3523    *
3524    * This API is experimental and may change significantly.
3525    */
3526   class V8_EXPORT Contents { // NOLINT
3527    public:
Contents()3528     Contents() : data_(NULL), byte_length_(0) {}
3529 
Data()3530     void* Data() const { return data_; }
ByteLength()3531     size_t ByteLength() const { return byte_length_; }
3532 
3533    private:
3534     void* data_;
3535     size_t byte_length_;
3536 
3537     friend class ArrayBuffer;
3538   };
3539 
3540 
3541   /**
3542    * Data length in bytes.
3543    */
3544   size_t ByteLength() const;
3545 
3546   /**
3547    * Create a new ArrayBuffer. Allocate |byte_length| bytes.
3548    * Allocated memory will be owned by a created ArrayBuffer and
3549    * will be deallocated when it is garbage-collected,
3550    * unless the object is externalized.
3551    */
3552   static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
3553 
3554   /**
3555    * Create a new ArrayBuffer over an existing memory block.
3556    * The created array buffer is by default immediately in externalized state.
3557    * The memory block will not be reclaimed when a created ArrayBuffer
3558    * is garbage-collected.
3559    */
3560   static Local<ArrayBuffer> New(
3561       Isolate* isolate, void* data, size_t byte_length,
3562       ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
3563 
3564   /**
3565    * Returns true if ArrayBuffer is externalized, that is, does not
3566    * own its memory block.
3567    */
3568   bool IsExternal() const;
3569 
3570   /**
3571    * Returns true if this ArrayBuffer may be neutered.
3572    */
3573   bool IsNeuterable() const;
3574 
3575   /**
3576    * Neuters this ArrayBuffer and all its views (typed arrays).
3577    * Neutering sets the byte length of the buffer and all typed arrays to zero,
3578    * preventing JavaScript from ever accessing underlying backing store.
3579    * ArrayBuffer should have been externalized and must be neuterable.
3580    */
3581   void Neuter();
3582 
3583   /**
3584    * Make this ArrayBuffer external. The pointer to underlying memory block
3585    * and byte length are returned as |Contents| structure. After ArrayBuffer
3586    * had been etxrenalized, it does no longer owns the memory block. The caller
3587    * should take steps to free memory when it is no longer needed.
3588    *
3589    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3590    * that has been set via Isolate::CreateParams.
3591    */
3592   Contents Externalize();
3593 
3594   /**
3595    * Get a pointer to the ArrayBuffer's underlying memory block without
3596    * externalizing it. If the ArrayBuffer is not externalized, this pointer
3597    * will become invalid as soon as the ArrayBuffer became garbage collected.
3598    *
3599    * The embedder should make sure to hold a strong reference to the
3600    * ArrayBuffer while accessing this pointer.
3601    *
3602    * The memory block is guaranteed to be allocated with |Allocator::Allocate|.
3603    */
3604   Contents GetContents();
3605 
3606   V8_INLINE static ArrayBuffer* Cast(Value* obj);
3607 
3608   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
3609 
3610  private:
3611   ArrayBuffer();
3612   static void CheckCast(Value* obj);
3613 };
3614 
3615 
3616 #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
3617 // The number of required internal fields can be defined by embedder.
3618 #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
3619 #endif
3620 
3621 
3622 /**
3623  * A base class for an instance of one of "views" over ArrayBuffer,
3624  * including TypedArrays and DataView (ES6 draft 15.13).
3625  *
3626  * This API is experimental and may change significantly.
3627  */
3628 class V8_EXPORT ArrayBufferView : public Object {
3629  public:
3630   /**
3631    * Returns underlying ArrayBuffer.
3632    */
3633   Local<ArrayBuffer> Buffer();
3634   /**
3635    * Byte offset in |Buffer|.
3636    */
3637   size_t ByteOffset();
3638   /**
3639    * Size of a view in bytes.
3640    */
3641   size_t ByteLength();
3642 
3643   /**
3644    * Copy the contents of the ArrayBufferView's buffer to an embedder defined
3645    * memory without additional overhead that calling ArrayBufferView::Buffer
3646    * might incur.
3647    *
3648    * Will write at most min(|byte_length|, ByteLength) bytes starting at
3649    * ByteOffset of the underling buffer to the memory starting at |dest|.
3650    * Returns the number of bytes actually written.
3651    */
3652   size_t CopyContents(void* dest, size_t byte_length);
3653 
3654   /**
3655    * Returns true if ArrayBufferView's backing ArrayBuffer has already been
3656    * allocated.
3657    */
3658   bool HasBuffer() const;
3659 
3660   V8_INLINE static ArrayBufferView* Cast(Value* obj);
3661 
3662   static const int kInternalFieldCount =
3663       V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
3664 
3665  private:
3666   ArrayBufferView();
3667   static void CheckCast(Value* obj);
3668 };
3669 
3670 
3671 /**
3672  * A base class for an instance of TypedArray series of constructors
3673  * (ES6 draft 15.13.6).
3674  * This API is experimental and may change significantly.
3675  */
3676 class V8_EXPORT TypedArray : public ArrayBufferView {
3677  public:
3678   /**
3679    * Number of elements in this typed array
3680    * (e.g. for Int16Array, |ByteLength|/2).
3681    */
3682   size_t Length();
3683 
3684   V8_INLINE static TypedArray* Cast(Value* obj);
3685 
3686  private:
3687   TypedArray();
3688   static void CheckCast(Value* obj);
3689 };
3690 
3691 
3692 /**
3693  * An instance of Uint8Array constructor (ES6 draft 15.13.6).
3694  * This API is experimental and may change significantly.
3695  */
3696 class V8_EXPORT Uint8Array : public TypedArray {
3697  public:
3698   static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
3699                                size_t byte_offset, size_t length);
3700   static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3701                                size_t byte_offset, size_t length);
3702   V8_INLINE static Uint8Array* Cast(Value* obj);
3703 
3704  private:
3705   Uint8Array();
3706   static void CheckCast(Value* obj);
3707 };
3708 
3709 
3710 /**
3711  * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
3712  * This API is experimental and may change significantly.
3713  */
3714 class V8_EXPORT Uint8ClampedArray : public TypedArray {
3715  public:
3716   static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
3717                                       size_t byte_offset, size_t length);
3718   static Local<Uint8ClampedArray> New(
3719       Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
3720       size_t length);
3721   V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
3722 
3723  private:
3724   Uint8ClampedArray();
3725   static void CheckCast(Value* obj);
3726 };
3727 
3728 /**
3729  * An instance of Int8Array constructor (ES6 draft 15.13.6).
3730  * This API is experimental and may change significantly.
3731  */
3732 class V8_EXPORT Int8Array : public TypedArray {
3733  public:
3734   static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
3735                               size_t byte_offset, size_t length);
3736   static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3737                               size_t byte_offset, size_t length);
3738   V8_INLINE static Int8Array* Cast(Value* obj);
3739 
3740  private:
3741   Int8Array();
3742   static void CheckCast(Value* obj);
3743 };
3744 
3745 
3746 /**
3747  * An instance of Uint16Array constructor (ES6 draft 15.13.6).
3748  * This API is experimental and may change significantly.
3749  */
3750 class V8_EXPORT Uint16Array : public TypedArray {
3751  public:
3752   static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
3753                                 size_t byte_offset, size_t length);
3754   static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3755                                 size_t byte_offset, size_t length);
3756   V8_INLINE static Uint16Array* Cast(Value* obj);
3757 
3758  private:
3759   Uint16Array();
3760   static void CheckCast(Value* obj);
3761 };
3762 
3763 
3764 /**
3765  * An instance of Int16Array constructor (ES6 draft 15.13.6).
3766  * This API is experimental and may change significantly.
3767  */
3768 class V8_EXPORT Int16Array : public TypedArray {
3769  public:
3770   static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
3771                                size_t byte_offset, size_t length);
3772   static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3773                                size_t byte_offset, size_t length);
3774   V8_INLINE static Int16Array* Cast(Value* obj);
3775 
3776  private:
3777   Int16Array();
3778   static void CheckCast(Value* obj);
3779 };
3780 
3781 
3782 /**
3783  * An instance of Uint32Array constructor (ES6 draft 15.13.6).
3784  * This API is experimental and may change significantly.
3785  */
3786 class V8_EXPORT Uint32Array : public TypedArray {
3787  public:
3788   static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
3789                                 size_t byte_offset, size_t length);
3790   static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3791                                 size_t byte_offset, size_t length);
3792   V8_INLINE static Uint32Array* Cast(Value* obj);
3793 
3794  private:
3795   Uint32Array();
3796   static void CheckCast(Value* obj);
3797 };
3798 
3799 
3800 /**
3801  * An instance of Int32Array constructor (ES6 draft 15.13.6).
3802  * This API is experimental and may change significantly.
3803  */
3804 class V8_EXPORT Int32Array : public TypedArray {
3805  public:
3806   static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
3807                                size_t byte_offset, size_t length);
3808   static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3809                                size_t byte_offset, size_t length);
3810   V8_INLINE static Int32Array* Cast(Value* obj);
3811 
3812  private:
3813   Int32Array();
3814   static void CheckCast(Value* obj);
3815 };
3816 
3817 
3818 /**
3819  * An instance of Float32Array constructor (ES6 draft 15.13.6).
3820  * This API is experimental and may change significantly.
3821  */
3822 class V8_EXPORT Float32Array : public TypedArray {
3823  public:
3824   static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
3825                                  size_t byte_offset, size_t length);
3826   static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3827                                  size_t byte_offset, size_t length);
3828   V8_INLINE static Float32Array* Cast(Value* obj);
3829 
3830  private:
3831   Float32Array();
3832   static void CheckCast(Value* obj);
3833 };
3834 
3835 
3836 /**
3837  * An instance of Float64Array constructor (ES6 draft 15.13.6).
3838  * This API is experimental and may change significantly.
3839  */
3840 class V8_EXPORT Float64Array : public TypedArray {
3841  public:
3842   static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
3843                                  size_t byte_offset, size_t length);
3844   static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3845                                  size_t byte_offset, size_t length);
3846   V8_INLINE static Float64Array* Cast(Value* obj);
3847 
3848  private:
3849   Float64Array();
3850   static void CheckCast(Value* obj);
3851 };
3852 
3853 
3854 /**
3855  * An instance of DataView constructor (ES6 draft 15.13.7).
3856  * This API is experimental and may change significantly.
3857  */
3858 class V8_EXPORT DataView : public ArrayBufferView {
3859  public:
3860   static Local<DataView> New(Local<ArrayBuffer> array_buffer,
3861                              size_t byte_offset, size_t length);
3862   static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
3863                              size_t byte_offset, size_t length);
3864   V8_INLINE static DataView* Cast(Value* obj);
3865 
3866  private:
3867   DataView();
3868   static void CheckCast(Value* obj);
3869 };
3870 
3871 
3872 /**
3873  * An instance of the built-in SharedArrayBuffer constructor.
3874  * This API is experimental and may change significantly.
3875  */
3876 class V8_EXPORT SharedArrayBuffer : public Object {
3877  public:
3878   /**
3879    * The contents of an |SharedArrayBuffer|. Externalization of
3880    * |SharedArrayBuffer| returns an instance of this class, populated, with a
3881    * pointer to data and byte length.
3882    *
3883    * The Data pointer of SharedArrayBuffer::Contents is always allocated with
3884    * |ArrayBuffer::Allocator::Allocate| by the allocator specified in
3885    * v8::Isolate::CreateParams::array_buffer_allocator.
3886    *
3887    * This API is experimental and may change significantly.
3888    */
3889   class V8_EXPORT Contents {  // NOLINT
3890    public:
Contents()3891     Contents() : data_(NULL), byte_length_(0) {}
3892 
Data()3893     void* Data() const { return data_; }
ByteLength()3894     size_t ByteLength() const { return byte_length_; }
3895 
3896    private:
3897     void* data_;
3898     size_t byte_length_;
3899 
3900     friend class SharedArrayBuffer;
3901   };
3902 
3903 
3904   /**
3905    * Data length in bytes.
3906    */
3907   size_t ByteLength() const;
3908 
3909   /**
3910    * Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
3911    * Allocated memory will be owned by a created SharedArrayBuffer and
3912    * will be deallocated when it is garbage-collected,
3913    * unless the object is externalized.
3914    */
3915   static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
3916 
3917   /**
3918    * Create a new SharedArrayBuffer over an existing memory block.  The created
3919    * array buffer is immediately in externalized state unless otherwise
3920    * specified. The memory block will not be reclaimed when a created
3921    * SharedArrayBuffer is garbage-collected.
3922    */
3923   static Local<SharedArrayBuffer> New(
3924       Isolate* isolate, void* data, size_t byte_length,
3925       ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
3926 
3927   /**
3928    * Returns true if SharedArrayBuffer is externalized, that is, does not
3929    * own its memory block.
3930    */
3931   bool IsExternal() const;
3932 
3933   /**
3934    * Make this SharedArrayBuffer external. The pointer to underlying memory
3935    * block and byte length are returned as |Contents| structure. After
3936    * SharedArrayBuffer had been etxrenalized, it does no longer owns the memory
3937    * block. The caller should take steps to free memory when it is no longer
3938    * needed.
3939    *
3940    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3941    * by the allocator specified in
3942    * v8::Isolate::CreateParams::array_buffer_allocator.
3943    *
3944    */
3945   Contents Externalize();
3946 
3947   /**
3948    * Get a pointer to the ArrayBuffer's underlying memory block without
3949    * externalizing it. If the ArrayBuffer is not externalized, this pointer
3950    * will become invalid as soon as the ArrayBuffer became garbage collected.
3951    *
3952    * The embedder should make sure to hold a strong reference to the
3953    * ArrayBuffer while accessing this pointer.
3954    *
3955    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3956    * by the allocator specified in
3957    * v8::Isolate::CreateParams::array_buffer_allocator.
3958    */
3959   Contents GetContents();
3960 
3961   V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
3962 
3963   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
3964 
3965  private:
3966   SharedArrayBuffer();
3967   static void CheckCast(Value* obj);
3968 };
3969 
3970 
3971 /**
3972  * An instance of the built-in Date constructor (ECMA-262, 15.9).
3973  */
3974 class V8_EXPORT Date : public Object {
3975  public:
3976   static V8_DEPRECATE_SOON("Use maybe version.",
3977                            Local<Value> New(Isolate* isolate, double time));
3978   static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
3979                                                      double time);
3980 
3981   /**
3982    * A specialization of Value::NumberValue that is more efficient
3983    * because we know the structure of this object.
3984    */
3985   double ValueOf() const;
3986 
3987   V8_INLINE static Date* Cast(v8::Value* obj);
3988 
3989   /**
3990    * Notification that the embedder has changed the time zone,
3991    * daylight savings time, or other date / time configuration
3992    * parameters.  V8 keeps a cache of various values used for
3993    * date / time computation.  This notification will reset
3994    * those cached values for the current context so that date /
3995    * time configuration changes would be reflected in the Date
3996    * object.
3997    *
3998    * This API should not be called more than needed as it will
3999    * negatively impact the performance of date operations.
4000    */
4001   static void DateTimeConfigurationChangeNotification(Isolate* isolate);
4002 
4003  private:
4004   static void CheckCast(v8::Value* obj);
4005 };
4006 
4007 
4008 /**
4009  * A Number object (ECMA-262, 4.3.21).
4010  */
4011 class V8_EXPORT NumberObject : public Object {
4012  public:
4013   static Local<Value> New(Isolate* isolate, double value);
4014 
4015   double ValueOf() const;
4016 
4017   V8_INLINE static NumberObject* Cast(v8::Value* obj);
4018 
4019  private:
4020   static void CheckCast(v8::Value* obj);
4021 };
4022 
4023 
4024 /**
4025  * A Boolean object (ECMA-262, 4.3.15).
4026  */
4027 class V8_EXPORT BooleanObject : public Object {
4028  public:
4029   static Local<Value> New(Isolate* isolate, bool value);
4030   V8_DEPRECATED("Pass an isolate", static Local<Value> New(bool value));
4031 
4032   bool ValueOf() const;
4033 
4034   V8_INLINE static BooleanObject* Cast(v8::Value* obj);
4035 
4036  private:
4037   static void CheckCast(v8::Value* obj);
4038 };
4039 
4040 
4041 /**
4042  * A String object (ECMA-262, 4.3.18).
4043  */
4044 class V8_EXPORT StringObject : public Object {
4045  public:
4046   static Local<Value> New(Local<String> value);
4047 
4048   Local<String> ValueOf() const;
4049 
4050   V8_INLINE static StringObject* Cast(v8::Value* obj);
4051 
4052  private:
4053   static void CheckCast(v8::Value* obj);
4054 };
4055 
4056 
4057 /**
4058  * A Symbol object (ECMA-262 edition 6).
4059  *
4060  * This is an experimental feature. Use at your own risk.
4061  */
4062 class V8_EXPORT SymbolObject : public Object {
4063  public:
4064   static Local<Value> New(Isolate* isolate, Local<Symbol> value);
4065 
4066   Local<Symbol> ValueOf() const;
4067 
4068   V8_INLINE static SymbolObject* Cast(v8::Value* obj);
4069 
4070  private:
4071   static void CheckCast(v8::Value* obj);
4072 };
4073 
4074 
4075 /**
4076  * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
4077  */
4078 class V8_EXPORT RegExp : public Object {
4079  public:
4080   /**
4081    * Regular expression flag bits. They can be or'ed to enable a set
4082    * of flags.
4083    */
4084   enum Flags {
4085     kNone = 0,
4086     kGlobal = 1,
4087     kIgnoreCase = 2,
4088     kMultiline = 4,
4089     kSticky = 8,
4090     kUnicode = 16
4091   };
4092 
4093   /**
4094    * Creates a regular expression from the given pattern string and
4095    * the flags bit field. May throw a JavaScript exception as
4096    * described in ECMA-262, 15.10.4.1.
4097    *
4098    * For example,
4099    *   RegExp::New(v8::String::New("foo"),
4100    *               static_cast<RegExp::Flags>(kGlobal | kMultiline))
4101    * is equivalent to evaluating "/foo/gm".
4102    */
4103   static V8_DEPRECATE_SOON("Use maybe version",
4104                            Local<RegExp> New(Local<String> pattern,
4105                                              Flags flags));
4106   static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
4107                                                       Local<String> pattern,
4108                                                       Flags flags);
4109 
4110   /**
4111    * Returns the value of the source property: a string representing
4112    * the regular expression.
4113    */
4114   Local<String> GetSource() const;
4115 
4116   /**
4117    * Returns the flags bit field.
4118    */
4119   Flags GetFlags() const;
4120 
4121   V8_INLINE static RegExp* Cast(v8::Value* obj);
4122 
4123  private:
4124   static void CheckCast(v8::Value* obj);
4125 };
4126 
4127 
4128 /**
4129  * A JavaScript value that wraps a C++ void*. This type of value is mainly used
4130  * to associate C++ data structures with JavaScript objects.
4131  */
4132 class V8_EXPORT External : public Value {
4133  public:
4134   static Local<External> New(Isolate* isolate, void* value);
4135   V8_INLINE static External* Cast(Value* obj);
4136   void* Value() const;
4137  private:
4138   static void CheckCast(v8::Value* obj);
4139 };
4140 
4141 
4142 #define V8_INTRINSICS_LIST(F) F(ArrayProto_values, array_values_iterator)
4143 
4144 enum Intrinsic {
4145 #define V8_DECL_INTRINSIC(name, iname) k##name,
4146   V8_INTRINSICS_LIST(V8_DECL_INTRINSIC)
4147 #undef V8_DECL_INTRINSIC
4148 };
4149 
4150 
4151 // --- Templates ---
4152 
4153 
4154 /**
4155  * The superclass of object and function templates.
4156  */
4157 class V8_EXPORT Template : public Data {
4158  public:
4159   /**
4160    * Adds a property to each instance created by this template.
4161    *
4162    * The property must be defined either as a primitive value, or a template.
4163    */
4164   void Set(Local<Name> name, Local<Data> value,
4165            PropertyAttribute attributes = None);
4166   V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
4167 
4168   void SetAccessorProperty(
4169      Local<Name> name,
4170      Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
4171      Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
4172      PropertyAttribute attribute = None,
4173      AccessControl settings = DEFAULT);
4174 
4175   /**
4176    * Whenever the property with the given name is accessed on objects
4177    * created from this Template the getter and setter callbacks
4178    * are called instead of getting and setting the property directly
4179    * on the JavaScript object.
4180    *
4181    * \param name The name of the property for which an accessor is added.
4182    * \param getter The callback to invoke when getting the property.
4183    * \param setter The callback to invoke when setting the property.
4184    * \param data A piece of data that will be passed to the getter and setter
4185    *   callbacks whenever they are invoked.
4186    * \param settings Access control settings for the accessor. This is a bit
4187    *   field consisting of one of more of
4188    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4189    *   The default is to not allow cross-context access.
4190    *   ALL_CAN_READ means that all cross-context reads are allowed.
4191    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
4192    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4193    *   cross-context access.
4194    * \param attribute The attributes of the property for which an accessor
4195    *   is added.
4196    * \param signature The signature describes valid receivers for the accessor
4197    *   and is used to perform implicit instance checks against them. If the
4198    *   receiver is incompatible (i.e. is not an instance of the constructor as
4199    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4200    *   thrown and no callback is invoked.
4201    */
4202   void SetNativeDataProperty(
4203       Local<String> name, AccessorGetterCallback getter,
4204       AccessorSetterCallback setter = 0,
4205       // TODO(dcarney): gcc can't handle Local below
4206       Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4207       Local<AccessorSignature> signature = Local<AccessorSignature>(),
4208       AccessControl settings = DEFAULT);
4209   void SetNativeDataProperty(
4210       Local<Name> name, AccessorNameGetterCallback getter,
4211       AccessorNameSetterCallback setter = 0,
4212       // TODO(dcarney): gcc can't handle Local below
4213       Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4214       Local<AccessorSignature> signature = Local<AccessorSignature>(),
4215       AccessControl settings = DEFAULT);
4216 
4217   /**
4218    * During template instantiation, sets the value with the intrinsic property
4219    * from the correct context.
4220    */
4221   void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
4222                                 PropertyAttribute attribute = None);
4223 
4224  private:
4225   Template();
4226 
4227   friend class ObjectTemplate;
4228   friend class FunctionTemplate;
4229 };
4230 
4231 
4232 /**
4233  * NamedProperty[Getter|Setter] are used as interceptors on object.
4234  * See ObjectTemplate::SetNamedPropertyHandler.
4235  */
4236 typedef void (*NamedPropertyGetterCallback)(
4237     Local<String> property,
4238     const PropertyCallbackInfo<Value>& info);
4239 
4240 
4241 /**
4242  * Returns the value if the setter intercepts the request.
4243  * Otherwise, returns an empty handle.
4244  */
4245 typedef void (*NamedPropertySetterCallback)(
4246     Local<String> property,
4247     Local<Value> value,
4248     const PropertyCallbackInfo<Value>& info);
4249 
4250 
4251 /**
4252  * Returns a non-empty handle if the interceptor intercepts the request.
4253  * The result is an integer encoding property attributes (like v8::None,
4254  * v8::DontEnum, etc.)
4255  */
4256 typedef void (*NamedPropertyQueryCallback)(
4257     Local<String> property,
4258     const PropertyCallbackInfo<Integer>& info);
4259 
4260 
4261 /**
4262  * Returns a non-empty handle if the deleter intercepts the request.
4263  * The return value is true if the property could be deleted and false
4264  * otherwise.
4265  */
4266 typedef void (*NamedPropertyDeleterCallback)(
4267     Local<String> property,
4268     const PropertyCallbackInfo<Boolean>& info);
4269 
4270 
4271 /**
4272  * Returns an array containing the names of the properties the named
4273  * property getter intercepts.
4274  */
4275 typedef void (*NamedPropertyEnumeratorCallback)(
4276     const PropertyCallbackInfo<Array>& info);
4277 
4278 
4279 // TODO(dcarney): Deprecate and remove previous typedefs, and replace
4280 // GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
4281 /**
4282  * GenericNamedProperty[Getter|Setter] are used as interceptors on object.
4283  * See ObjectTemplate::SetNamedPropertyHandler.
4284  */
4285 typedef void (*GenericNamedPropertyGetterCallback)(
4286     Local<Name> property, const PropertyCallbackInfo<Value>& info);
4287 
4288 
4289 /**
4290  * Returns the value if the setter intercepts the request.
4291  * Otherwise, returns an empty handle.
4292  */
4293 typedef void (*GenericNamedPropertySetterCallback)(
4294     Local<Name> property, Local<Value> value,
4295     const PropertyCallbackInfo<Value>& info);
4296 
4297 
4298 /**
4299  * Returns a non-empty handle if the interceptor intercepts the request.
4300  * The result is an integer encoding property attributes (like v8::None,
4301  * v8::DontEnum, etc.)
4302  */
4303 typedef void (*GenericNamedPropertyQueryCallback)(
4304     Local<Name> property, const PropertyCallbackInfo<Integer>& info);
4305 
4306 
4307 /**
4308  * Returns a non-empty handle if the deleter intercepts the request.
4309  * The return value is true if the property could be deleted and false
4310  * otherwise.
4311  */
4312 typedef void (*GenericNamedPropertyDeleterCallback)(
4313     Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
4314 
4315 
4316 /**
4317  * Returns an array containing the names of the properties the named
4318  * property getter intercepts.
4319  */
4320 typedef void (*GenericNamedPropertyEnumeratorCallback)(
4321     const PropertyCallbackInfo<Array>& info);
4322 
4323 
4324 /**
4325  * Returns the value of the property if the getter intercepts the
4326  * request.  Otherwise, returns an empty handle.
4327  */
4328 typedef void (*IndexedPropertyGetterCallback)(
4329     uint32_t index,
4330     const PropertyCallbackInfo<Value>& info);
4331 
4332 
4333 /**
4334  * Returns the value if the setter intercepts the request.
4335  * Otherwise, returns an empty handle.
4336  */
4337 typedef void (*IndexedPropertySetterCallback)(
4338     uint32_t index,
4339     Local<Value> value,
4340     const PropertyCallbackInfo<Value>& info);
4341 
4342 
4343 /**
4344  * Returns a non-empty handle if the interceptor intercepts the request.
4345  * The result is an integer encoding property attributes.
4346  */
4347 typedef void (*IndexedPropertyQueryCallback)(
4348     uint32_t index,
4349     const PropertyCallbackInfo<Integer>& info);
4350 
4351 
4352 /**
4353  * Returns a non-empty handle if the deleter intercepts the request.
4354  * The return value is true if the property could be deleted and false
4355  * otherwise.
4356  */
4357 typedef void (*IndexedPropertyDeleterCallback)(
4358     uint32_t index,
4359     const PropertyCallbackInfo<Boolean>& info);
4360 
4361 
4362 /**
4363  * Returns an array containing the indices of the properties the
4364  * indexed property getter intercepts.
4365  */
4366 typedef void (*IndexedPropertyEnumeratorCallback)(
4367     const PropertyCallbackInfo<Array>& info);
4368 
4369 
4370 /**
4371  * Access type specification.
4372  */
4373 enum AccessType {
4374   ACCESS_GET,
4375   ACCESS_SET,
4376   ACCESS_HAS,
4377   ACCESS_DELETE,
4378   ACCESS_KEYS
4379 };
4380 
4381 
4382 /**
4383  * Returns true if the given context should be allowed to access the given
4384  * object.
4385  */
4386 typedef bool (*AccessCheckCallback)(Local<Context> accessing_context,
4387                                     Local<Object> accessed_object,
4388                                     Local<Value> data);
4389 
4390 /**
4391  * A FunctionTemplate is used to create functions at runtime. There
4392  * can only be one function created from a FunctionTemplate in a
4393  * context.  The lifetime of the created function is equal to the
4394  * lifetime of the context.  So in case the embedder needs to create
4395  * temporary functions that can be collected using Scripts is
4396  * preferred.
4397  *
4398  * Any modification of a FunctionTemplate after first instantiation will trigger
4399  *a crash.
4400  *
4401  * A FunctionTemplate can have properties, these properties are added to the
4402  * function object when it is created.
4403  *
4404  * A FunctionTemplate has a corresponding instance template which is
4405  * used to create object instances when the function is used as a
4406  * constructor. Properties added to the instance template are added to
4407  * each object instance.
4408  *
4409  * A FunctionTemplate can have a prototype template. The prototype template
4410  * is used to create the prototype object of the function.
4411  *
4412  * The following example shows how to use a FunctionTemplate:
4413  *
4414  * \code
4415  *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
4416  *    t->Set("func_property", v8::Number::New(1));
4417  *
4418  *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
4419  *    proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
4420  *    proto_t->Set("proto_const", v8::Number::New(2));
4421  *
4422  *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
4423  *    instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
4424  *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
4425  *    instance_t->Set("instance_property", Number::New(3));
4426  *
4427  *    v8::Local<v8::Function> function = t->GetFunction();
4428  *    v8::Local<v8::Object> instance = function->NewInstance();
4429  * \endcode
4430  *
4431  * Let's use "function" as the JS variable name of the function object
4432  * and "instance" for the instance object created above.  The function
4433  * and the instance will have the following properties:
4434  *
4435  * \code
4436  *   func_property in function == true;
4437  *   function.func_property == 1;
4438  *
4439  *   function.prototype.proto_method() invokes 'InvokeCallback'
4440  *   function.prototype.proto_const == 2;
4441  *
4442  *   instance instanceof function == true;
4443  *   instance.instance_accessor calls 'InstanceAccessorCallback'
4444  *   instance.instance_property == 3;
4445  * \endcode
4446  *
4447  * A FunctionTemplate can inherit from another one by calling the
4448  * FunctionTemplate::Inherit method.  The following graph illustrates
4449  * the semantics of inheritance:
4450  *
4451  * \code
4452  *   FunctionTemplate Parent  -> Parent() . prototype -> { }
4453  *     ^                                                  ^
4454  *     | Inherit(Parent)                                  | .__proto__
4455  *     |                                                  |
4456  *   FunctionTemplate Child   -> Child()  . prototype -> { }
4457  * \endcode
4458  *
4459  * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
4460  * object of the Child() function has __proto__ pointing to the
4461  * Parent() function's prototype object. An instance of the Child
4462  * function has all properties on Parent's instance templates.
4463  *
4464  * Let Parent be the FunctionTemplate initialized in the previous
4465  * section and create a Child FunctionTemplate by:
4466  *
4467  * \code
4468  *   Local<FunctionTemplate> parent = t;
4469  *   Local<FunctionTemplate> child = FunctionTemplate::New();
4470  *   child->Inherit(parent);
4471  *
4472  *   Local<Function> child_function = child->GetFunction();
4473  *   Local<Object> child_instance = child_function->NewInstance();
4474  * \endcode
4475  *
4476  * The Child function and Child instance will have the following
4477  * properties:
4478  *
4479  * \code
4480  *   child_func.prototype.__proto__ == function.prototype;
4481  *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
4482  *   child_instance.instance_property == 3;
4483  * \endcode
4484  */
4485 class V8_EXPORT FunctionTemplate : public Template {
4486  public:
4487   /** Creates a function template.*/
4488   static Local<FunctionTemplate> New(
4489       Isolate* isolate, FunctionCallback callback = 0,
4490       Local<Value> data = Local<Value>(),
4491       Local<Signature> signature = Local<Signature>(), int length = 0,
4492       ConstructorBehavior behavior = ConstructorBehavior::kAllow);
4493 
4494   /** Get a template included in the snapshot by index. */
4495   static Local<FunctionTemplate> FromSnapshot(Isolate* isolate, size_t index);
4496 
4497   /**
4498    * Creates a function template with a fast handler. If a fast handler is set,
4499    * the callback cannot be null.
4500    */
4501   static Local<FunctionTemplate> NewWithFastHandler(
4502       Isolate* isolate, FunctionCallback callback,
4503       experimental::FastAccessorBuilder* fast_handler = nullptr,
4504       Local<Value> data = Local<Value>(),
4505       Local<Signature> signature = Local<Signature>(), int length = 0);
4506 
4507   /** Returns the unique function instance in the current execution context.*/
4508   V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
4509   V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction(
4510       Local<Context> context);
4511 
4512   /**
4513    * Set the call-handler callback for a FunctionTemplate.  This
4514    * callback is called whenever the function created from this
4515    * FunctionTemplate is called.
4516    */
4517   void SetCallHandler(
4518       FunctionCallback callback, Local<Value> data = Local<Value>(),
4519       experimental::FastAccessorBuilder* fast_handler = nullptr);
4520 
4521   /** Set the predefined length property for the FunctionTemplate. */
4522   void SetLength(int length);
4523 
4524   /** Get the InstanceTemplate. */
4525   Local<ObjectTemplate> InstanceTemplate();
4526 
4527   /** Causes the function template to inherit from a parent function template.*/
4528   void Inherit(Local<FunctionTemplate> parent);
4529 
4530   /**
4531    * A PrototypeTemplate is the template used to create the prototype object
4532    * of the function created by this template.
4533    */
4534   Local<ObjectTemplate> PrototypeTemplate();
4535 
4536   /**
4537    * Set the class name of the FunctionTemplate.  This is used for
4538    * printing objects created with the function created from the
4539    * FunctionTemplate as its constructor.
4540    */
4541   void SetClassName(Local<String> name);
4542 
4543 
4544   /**
4545    * When set to true, no access check will be performed on the receiver of a
4546    * function call.  Currently defaults to true, but this is subject to change.
4547    */
4548   void SetAcceptAnyReceiver(bool value);
4549 
4550   /**
4551    * Determines whether the __proto__ accessor ignores instances of
4552    * the function template.  If instances of the function template are
4553    * ignored, __proto__ skips all instances and instead returns the
4554    * next object in the prototype chain.
4555    *
4556    * Call with a value of true to make the __proto__ accessor ignore
4557    * instances of the function template.  Call with a value of false
4558    * to make the __proto__ accessor not ignore instances of the
4559    * function template.  By default, instances of a function template
4560    * are not ignored.
4561    */
4562   void SetHiddenPrototype(bool value);
4563 
4564   /**
4565    * Sets the ReadOnly flag in the attributes of the 'prototype' property
4566    * of functions created from this FunctionTemplate to true.
4567    */
4568   void ReadOnlyPrototype();
4569 
4570   /**
4571    * Removes the prototype property from functions created from this
4572    * FunctionTemplate.
4573    */
4574   void RemovePrototype();
4575 
4576   /**
4577    * Returns true if the given object is an instance of this function
4578    * template.
4579    */
4580   bool HasInstance(Local<Value> object);
4581 
4582  private:
4583   FunctionTemplate();
4584   friend class Context;
4585   friend class ObjectTemplate;
4586 };
4587 
4588 
4589 enum class PropertyHandlerFlags {
4590   kNone = 0,
4591   // See ALL_CAN_READ above.
4592   kAllCanRead = 1,
4593   // Will not call into interceptor for properties on the receiver or prototype
4594   // chain.  Currently only valid for named interceptors.
4595   kNonMasking = 1 << 1,
4596   // Will not call into interceptor for symbol lookup.  Only meaningful for
4597   // named interceptors.
4598   kOnlyInterceptStrings = 1 << 2,
4599 };
4600 
4601 
4602 struct NamedPropertyHandlerConfiguration {
4603   NamedPropertyHandlerConfiguration(
4604       /** Note: getter is required **/
4605       GenericNamedPropertyGetterCallback getter = 0,
4606       GenericNamedPropertySetterCallback setter = 0,
4607       GenericNamedPropertyQueryCallback query = 0,
4608       GenericNamedPropertyDeleterCallback deleter = 0,
4609       GenericNamedPropertyEnumeratorCallback enumerator = 0,
4610       Local<Value> data = Local<Value>(),
4611       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration4612       : getter(getter),
4613         setter(setter),
4614         query(query),
4615         deleter(deleter),
4616         enumerator(enumerator),
4617         data(data),
4618         flags(flags) {}
4619 
4620   GenericNamedPropertyGetterCallback getter;
4621   GenericNamedPropertySetterCallback setter;
4622   GenericNamedPropertyQueryCallback query;
4623   GenericNamedPropertyDeleterCallback deleter;
4624   GenericNamedPropertyEnumeratorCallback enumerator;
4625   Local<Value> data;
4626   PropertyHandlerFlags flags;
4627 };
4628 
4629 
4630 struct IndexedPropertyHandlerConfiguration {
4631   IndexedPropertyHandlerConfiguration(
4632       /** Note: getter is required **/
4633       IndexedPropertyGetterCallback getter = 0,
4634       IndexedPropertySetterCallback setter = 0,
4635       IndexedPropertyQueryCallback query = 0,
4636       IndexedPropertyDeleterCallback deleter = 0,
4637       IndexedPropertyEnumeratorCallback enumerator = 0,
4638       Local<Value> data = Local<Value>(),
4639       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration4640       : getter(getter),
4641         setter(setter),
4642         query(query),
4643         deleter(deleter),
4644         enumerator(enumerator),
4645         data(data),
4646         flags(flags) {}
4647 
4648   IndexedPropertyGetterCallback getter;
4649   IndexedPropertySetterCallback setter;
4650   IndexedPropertyQueryCallback query;
4651   IndexedPropertyDeleterCallback deleter;
4652   IndexedPropertyEnumeratorCallback enumerator;
4653   Local<Value> data;
4654   PropertyHandlerFlags flags;
4655 };
4656 
4657 
4658 /**
4659  * An ObjectTemplate is used to create objects at runtime.
4660  *
4661  * Properties added to an ObjectTemplate are added to each object
4662  * created from the ObjectTemplate.
4663  */
4664 class V8_EXPORT ObjectTemplate : public Template {
4665  public:
4666   /** Creates an ObjectTemplate. */
4667   static Local<ObjectTemplate> New(
4668       Isolate* isolate,
4669       Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
4670   static V8_DEPRECATED("Use isolate version", Local<ObjectTemplate> New());
4671 
4672   /** Get a template included in the snapshot by index. */
4673   static Local<ObjectTemplate> FromSnapshot(Isolate* isolate, size_t index);
4674 
4675   /** Creates a new instance of this template.*/
4676   V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
4677   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
4678 
4679   /**
4680    * Sets an accessor on the object template.
4681    *
4682    * Whenever the property with the given name is accessed on objects
4683    * created from this ObjectTemplate the getter and setter callbacks
4684    * are called instead of getting and setting the property directly
4685    * on the JavaScript object.
4686    *
4687    * \param name The name of the property for which an accessor is added.
4688    * \param getter The callback to invoke when getting the property.
4689    * \param setter The callback to invoke when setting the property.
4690    * \param data A piece of data that will be passed to the getter and setter
4691    *   callbacks whenever they are invoked.
4692    * \param settings Access control settings for the accessor. This is a bit
4693    *   field consisting of one of more of
4694    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4695    *   The default is to not allow cross-context access.
4696    *   ALL_CAN_READ means that all cross-context reads are allowed.
4697    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
4698    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4699    *   cross-context access.
4700    * \param attribute The attributes of the property for which an accessor
4701    *   is added.
4702    * \param signature The signature describes valid receivers for the accessor
4703    *   and is used to perform implicit instance checks against them. If the
4704    *   receiver is incompatible (i.e. is not an instance of the constructor as
4705    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4706    *   thrown and no callback is invoked.
4707    */
4708   void SetAccessor(
4709       Local<String> name, AccessorGetterCallback getter,
4710       AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
4711       AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
4712       Local<AccessorSignature> signature = Local<AccessorSignature>());
4713   void SetAccessor(
4714       Local<Name> name, AccessorNameGetterCallback getter,
4715       AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
4716       AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
4717       Local<AccessorSignature> signature = Local<AccessorSignature>());
4718 
4719   /**
4720    * Sets a named property handler on the object template.
4721    *
4722    * Whenever a property whose name is a string is accessed on objects created
4723    * from this object template, the provided callback is invoked instead of
4724    * accessing the property directly on the JavaScript object.
4725    *
4726    * Note that new code should use the second version that can intercept
4727    * symbol-named properties as well as string-named properties.
4728    *
4729    * \param getter The callback to invoke when getting a property.
4730    * \param setter The callback to invoke when setting a property.
4731    * \param query The callback to invoke to check if a property is present,
4732    *   and if present, get its attributes.
4733    * \param deleter The callback to invoke when deleting a property.
4734    * \param enumerator The callback to invoke to enumerate all the named
4735    *   properties of an object.
4736    * \param data A piece of data that will be passed to the callbacks
4737    *   whenever they are invoked.
4738    */
4739   // TODO(dcarney): deprecate
4740   void SetNamedPropertyHandler(NamedPropertyGetterCallback getter,
4741                                NamedPropertySetterCallback setter = 0,
4742                                NamedPropertyQueryCallback query = 0,
4743                                NamedPropertyDeleterCallback deleter = 0,
4744                                NamedPropertyEnumeratorCallback enumerator = 0,
4745                                Local<Value> data = Local<Value>());
4746   void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
4747 
4748   /**
4749    * Sets an indexed property handler on the object template.
4750    *
4751    * Whenever an indexed property is accessed on objects created from
4752    * this object template, the provided callback is invoked instead of
4753    * accessing the property directly on the JavaScript object.
4754    *
4755    * \param getter The callback to invoke when getting a property.
4756    * \param setter The callback to invoke when setting a property.
4757    * \param query The callback to invoke to check if an object has a property.
4758    * \param deleter The callback to invoke when deleting a property.
4759    * \param enumerator The callback to invoke to enumerate all the indexed
4760    *   properties of an object.
4761    * \param data A piece of data that will be passed to the callbacks
4762    *   whenever they are invoked.
4763    */
4764   void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
4765   // TODO(dcarney): deprecate
4766   void SetIndexedPropertyHandler(
4767       IndexedPropertyGetterCallback getter,
4768       IndexedPropertySetterCallback setter = 0,
4769       IndexedPropertyQueryCallback query = 0,
4770       IndexedPropertyDeleterCallback deleter = 0,
4771       IndexedPropertyEnumeratorCallback enumerator = 0,
4772       Local<Value> data = Local<Value>()) {
4773     SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query,
4774                                                    deleter, enumerator, data));
4775   }
4776   /**
4777    * Sets the callback to be used when calling instances created from
4778    * this template as a function.  If no callback is set, instances
4779    * behave like normal JavaScript objects that cannot be called as a
4780    * function.
4781    */
4782   void SetCallAsFunctionHandler(FunctionCallback callback,
4783                                 Local<Value> data = Local<Value>());
4784 
4785   /**
4786    * Mark object instances of the template as undetectable.
4787    *
4788    * In many ways, undetectable objects behave as though they are not
4789    * there.  They behave like 'undefined' in conditionals and when
4790    * printed.  However, properties can be accessed and called as on
4791    * normal objects.
4792    */
4793   void MarkAsUndetectable();
4794 
4795   /**
4796    * Sets access check callback on the object template and enables access
4797    * checks.
4798    *
4799    * When accessing properties on instances of this object template,
4800    * the access check callback will be called to determine whether or
4801    * not to allow cross-context access to the properties.
4802    */
4803   void SetAccessCheckCallback(AccessCheckCallback callback,
4804                               Local<Value> data = Local<Value>());
4805 
4806   /**
4807    * Like SetAccessCheckCallback but invokes an interceptor on failed access
4808    * checks instead of looking up all-can-read properties. You can only use
4809    * either this method or SetAccessCheckCallback, but not both at the same
4810    * time.
4811    */
4812   void SetAccessCheckCallbackAndHandler(
4813       AccessCheckCallback callback,
4814       const NamedPropertyHandlerConfiguration& named_handler,
4815       const IndexedPropertyHandlerConfiguration& indexed_handler,
4816       Local<Value> data = Local<Value>());
4817 
4818   /**
4819    * Gets the number of internal fields for objects generated from
4820    * this template.
4821    */
4822   int InternalFieldCount();
4823 
4824   /**
4825    * Sets the number of internal fields for objects generated from
4826    * this template.
4827    */
4828   void SetInternalFieldCount(int value);
4829 
4830  private:
4831   ObjectTemplate();
4832   static Local<ObjectTemplate> New(internal::Isolate* isolate,
4833                                    Local<FunctionTemplate> constructor);
4834   friend class FunctionTemplate;
4835 };
4836 
4837 
4838 /**
4839  * A Signature specifies which receiver is valid for a function.
4840  */
4841 class V8_EXPORT Signature : public Data {
4842  public:
4843   static Local<Signature> New(
4844       Isolate* isolate,
4845       Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
4846 
4847  private:
4848   Signature();
4849 };
4850 
4851 
4852 /**
4853  * An AccessorSignature specifies which receivers are valid parameters
4854  * to an accessor callback.
4855  */
4856 class V8_EXPORT AccessorSignature : public Data {
4857  public:
4858   static Local<AccessorSignature> New(
4859       Isolate* isolate,
4860       Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
4861 
4862  private:
4863   AccessorSignature();
4864 };
4865 
4866 
4867 // --- Extensions ---
4868 
4869 class V8_EXPORT ExternalOneByteStringResourceImpl
4870     : public String::ExternalOneByteStringResource {
4871  public:
ExternalOneByteStringResourceImpl()4872   ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
ExternalOneByteStringResourceImpl(const char * data,size_t length)4873   ExternalOneByteStringResourceImpl(const char* data, size_t length)
4874       : data_(data), length_(length) {}
data()4875   const char* data() const { return data_; }
length()4876   size_t length() const { return length_; }
4877 
4878  private:
4879   const char* data_;
4880   size_t length_;
4881 };
4882 
4883 /**
4884  * Ignore
4885  */
4886 class V8_EXPORT Extension {  // NOLINT
4887  public:
4888   // Note that the strings passed into this constructor must live as long
4889   // as the Extension itself.
4890   Extension(const char* name,
4891             const char* source = 0,
4892             int dep_count = 0,
4893             const char** deps = 0,
4894             int source_length = -1);
~Extension()4895   virtual ~Extension() { }
GetNativeFunctionTemplate(v8::Isolate * isolate,v8::Local<v8::String> name)4896   virtual v8::Local<v8::FunctionTemplate> GetNativeFunctionTemplate(
4897       v8::Isolate* isolate, v8::Local<v8::String> name) {
4898     return v8::Local<v8::FunctionTemplate>();
4899   }
4900 
name()4901   const char* name() const { return name_; }
source_length()4902   size_t source_length() const { return source_length_; }
source()4903   const String::ExternalOneByteStringResource* source() const {
4904     return &source_; }
dependency_count()4905   int dependency_count() { return dep_count_; }
dependencies()4906   const char** dependencies() { return deps_; }
set_auto_enable(bool value)4907   void set_auto_enable(bool value) { auto_enable_ = value; }
auto_enable()4908   bool auto_enable() { return auto_enable_; }
4909 
4910  private:
4911   const char* name_;
4912   size_t source_length_;  // expected to initialize before source_
4913   ExternalOneByteStringResourceImpl source_;
4914   int dep_count_;
4915   const char** deps_;
4916   bool auto_enable_;
4917 
4918   // Disallow copying and assigning.
4919   Extension(const Extension&);
4920   void operator=(const Extension&);
4921 };
4922 
4923 
4924 void V8_EXPORT RegisterExtension(Extension* extension);
4925 
4926 
4927 // --- Statics ---
4928 
4929 V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
4930 V8_INLINE Local<Primitive> Null(Isolate* isolate);
4931 V8_INLINE Local<Boolean> True(Isolate* isolate);
4932 V8_INLINE Local<Boolean> False(Isolate* isolate);
4933 
4934 /**
4935  * A set of constraints that specifies the limits of the runtime's memory use.
4936  * You must set the heap size before initializing the VM - the size cannot be
4937  * adjusted after the VM is initialized.
4938  *
4939  * If you are using threads then you should hold the V8::Locker lock while
4940  * setting the stack limit and you must set a non-default stack limit separately
4941  * for each thread.
4942  *
4943  * The arguments for set_max_semi_space_size, set_max_old_space_size,
4944  * set_max_executable_size, set_code_range_size specify limits in MB.
4945  */
4946 class V8_EXPORT ResourceConstraints {
4947  public:
4948   ResourceConstraints();
4949 
4950   /**
4951    * Configures the constraints with reasonable default values based on the
4952    * capabilities of the current device the VM is running on.
4953    *
4954    * \param physical_memory The total amount of physical memory on the current
4955    *   device, in bytes.
4956    * \param virtual_memory_limit The amount of virtual memory on the current
4957    *   device, in bytes, or zero, if there is no limit.
4958    */
4959   void ConfigureDefaults(uint64_t physical_memory,
4960                          uint64_t virtual_memory_limit);
4961 
max_semi_space_size()4962   int max_semi_space_size() const { return max_semi_space_size_; }
set_max_semi_space_size(int limit_in_mb)4963   void set_max_semi_space_size(int limit_in_mb) {
4964     max_semi_space_size_ = limit_in_mb;
4965   }
max_old_space_size()4966   int max_old_space_size() const { return max_old_space_size_; }
set_max_old_space_size(int limit_in_mb)4967   void set_max_old_space_size(int limit_in_mb) {
4968     max_old_space_size_ = limit_in_mb;
4969   }
max_executable_size()4970   int max_executable_size() const { return max_executable_size_; }
set_max_executable_size(int limit_in_mb)4971   void set_max_executable_size(int limit_in_mb) {
4972     max_executable_size_ = limit_in_mb;
4973   }
stack_limit()4974   uint32_t* stack_limit() const { return stack_limit_; }
4975   // Sets an address beyond which the VM's stack may not grow.
set_stack_limit(uint32_t * value)4976   void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
code_range_size()4977   size_t code_range_size() const { return code_range_size_; }
set_code_range_size(size_t limit_in_mb)4978   void set_code_range_size(size_t limit_in_mb) {
4979     code_range_size_ = limit_in_mb;
4980   }
4981 
4982  private:
4983   int max_semi_space_size_;
4984   int max_old_space_size_;
4985   int max_executable_size_;
4986   uint32_t* stack_limit_;
4987   size_t code_range_size_;
4988 };
4989 
4990 
4991 // --- Exceptions ---
4992 
4993 
4994 typedef void (*FatalErrorCallback)(const char* location, const char* message);
4995 
4996 
4997 typedef void (*MessageCallback)(Local<Message> message, Local<Value> error);
4998 
4999 // --- Tracing ---
5000 
5001 typedef void (*LogEventCallback)(const char* name, int event);
5002 
5003 /**
5004  * Create new error objects by calling the corresponding error object
5005  * constructor with the message.
5006  */
5007 class V8_EXPORT Exception {
5008  public:
5009   static Local<Value> RangeError(Local<String> message);
5010   static Local<Value> ReferenceError(Local<String> message);
5011   static Local<Value> SyntaxError(Local<String> message);
5012   static Local<Value> TypeError(Local<String> message);
5013   static Local<Value> Error(Local<String> message);
5014 
5015   /**
5016    * Creates an error message for the given exception.
5017    * Will try to reconstruct the original stack trace from the exception value,
5018    * or capture the current stack trace if not available.
5019    */
5020   static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception);
5021   V8_DEPRECATED("Use version with an Isolate*",
5022                 static Local<Message> CreateMessage(Local<Value> exception));
5023 
5024   /**
5025    * Returns the original stack trace that was captured at the creation time
5026    * of a given exception, or an empty handle if not available.
5027    */
5028   static Local<StackTrace> GetStackTrace(Local<Value> exception);
5029 };
5030 
5031 
5032 // --- Counters Callbacks ---
5033 
5034 typedef int* (*CounterLookupCallback)(const char* name);
5035 
5036 typedef void* (*CreateHistogramCallback)(const char* name,
5037                                          int min,
5038                                          int max,
5039                                          size_t buckets);
5040 
5041 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
5042 
5043 // --- Memory Allocation Callback ---
5044 enum ObjectSpace {
5045   kObjectSpaceNewSpace = 1 << 0,
5046   kObjectSpaceOldSpace = 1 << 1,
5047   kObjectSpaceCodeSpace = 1 << 2,
5048   kObjectSpaceMapSpace = 1 << 3,
5049   kObjectSpaceLoSpace = 1 << 4,
5050   kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace |
5051                     kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
5052                     kObjectSpaceLoSpace
5053 };
5054 
5055   enum AllocationAction {
5056     kAllocationActionAllocate = 1 << 0,
5057     kAllocationActionFree = 1 << 1,
5058     kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
5059   };
5060 
5061 // --- Enter/Leave Script Callback ---
5062 typedef void (*BeforeCallEnteredCallback)(Isolate*);
5063 typedef void (*CallCompletedCallback)(Isolate*);
5064 typedef void (*DeprecatedCallCompletedCallback)();
5065 
5066 // --- Promise Reject Callback ---
5067 enum PromiseRejectEvent {
5068   kPromiseRejectWithNoHandler = 0,
5069   kPromiseHandlerAddedAfterReject = 1
5070 };
5071 
5072 class PromiseRejectMessage {
5073  public:
PromiseRejectMessage(Local<Promise> promise,PromiseRejectEvent event,Local<Value> value,Local<StackTrace> stack_trace)5074   PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event,
5075                        Local<Value> value, Local<StackTrace> stack_trace)
5076       : promise_(promise),
5077         event_(event),
5078         value_(value),
5079         stack_trace_(stack_trace) {}
5080 
GetPromise()5081   V8_INLINE Local<Promise> GetPromise() const { return promise_; }
GetEvent()5082   V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
GetValue()5083   V8_INLINE Local<Value> GetValue() const { return value_; }
5084 
5085   V8_DEPRECATED("Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()",
5086                 V8_INLINE Local<StackTrace> GetStackTrace() const) {
5087     return stack_trace_;
5088   }
5089 
5090  private:
5091   Local<Promise> promise_;
5092   PromiseRejectEvent event_;
5093   Local<Value> value_;
5094   Local<StackTrace> stack_trace_;
5095 };
5096 
5097 typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
5098 
5099 // --- Microtasks Callbacks ---
5100 typedef void (*MicrotasksCompletedCallback)(Isolate*);
5101 typedef void (*MicrotaskCallback)(void* data);
5102 
5103 
5104 /**
5105  * Policy for running microtasks:
5106  *   - explicit: microtasks are invoked with Isolate::RunMicrotasks() method;
5107  *   - scoped: microtasks invocation is controlled by MicrotasksScope objects;
5108  *   - auto: microtasks are invoked when the script call depth decrements
5109  *           to zero.
5110  */
5111 enum class MicrotasksPolicy { kExplicit, kScoped, kAuto };
5112 
5113 
5114 /**
5115  * This scope is used to control microtasks when kScopeMicrotasksInvocation
5116  * is used on Isolate. In this mode every non-primitive call to V8 should be
5117  * done inside some MicrotasksScope.
5118  * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks
5119  * exits.
5120  * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger
5121  * microtasks.
5122  */
5123 class V8_EXPORT MicrotasksScope {
5124  public:
5125   enum Type { kRunMicrotasks, kDoNotRunMicrotasks };
5126 
5127   MicrotasksScope(Isolate* isolate, Type type);
5128   ~MicrotasksScope();
5129 
5130   /**
5131    * Runs microtasks if no kRunMicrotasks scope is currently active.
5132    */
5133   static void PerformCheckpoint(Isolate* isolate);
5134 
5135   /**
5136    * Returns current depth of nested kRunMicrotasks scopes.
5137    */
5138   static int GetCurrentDepth(Isolate* isolate);
5139 
5140   /**
5141    * Returns true while microtasks are being executed.
5142    */
5143   static bool IsRunningMicrotasks(Isolate* isolate);
5144 
5145  private:
5146   internal::Isolate* const isolate_;
5147   bool run_;
5148 
5149   // Prevent copying.
5150   MicrotasksScope(const MicrotasksScope&);
5151   MicrotasksScope& operator=(const MicrotasksScope&);
5152 };
5153 
5154 
5155 // --- Failed Access Check Callback ---
5156 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
5157                                           AccessType type,
5158                                           Local<Value> data);
5159 
5160 // --- AllowCodeGenerationFromStrings callbacks ---
5161 
5162 /**
5163  * Callback to check if code generation from strings is allowed. See
5164  * Context::AllowCodeGenerationFromStrings.
5165  */
5166 typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
5167 
5168 // --- Garbage Collection Callbacks ---
5169 
5170 /**
5171  * Applications can register callback functions which will be called before and
5172  * after certain garbage collection operations.  Allocations are not allowed in
5173  * the callback functions, you therefore cannot manipulate objects (set or
5174  * delete properties for example) since it is possible such operations will
5175  * result in the allocation of objects.
5176  */
5177 enum GCType {
5178   kGCTypeScavenge = 1 << 0,
5179   kGCTypeMarkSweepCompact = 1 << 1,
5180   kGCTypeIncrementalMarking = 1 << 2,
5181   kGCTypeProcessWeakCallbacks = 1 << 3,
5182   kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
5183                kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks
5184 };
5185 
5186 /**
5187  * GCCallbackFlags is used to notify additional information about the GC
5188  * callback.
5189  *   - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for
5190  *     constructing retained object infos.
5191  *   - kGCCallbackFlagForced: The GC callback is for a forced GC for testing.
5192  *   - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback
5193  *     is called synchronously without getting posted to an idle task.
5194  *   - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called
5195  *     in a phase where V8 is trying to collect all available garbage
5196  *     (e.g., handling a low memory notification).
5197  */
5198 enum GCCallbackFlags {
5199   kNoGCCallbackFlags = 0,
5200   kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
5201   kGCCallbackFlagForced = 1 << 2,
5202   kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3,
5203   kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4,
5204 };
5205 
5206 typedef void (*GCCallback)(GCType type, GCCallbackFlags flags);
5207 
5208 typedef void (*InterruptCallback)(Isolate* isolate, void* data);
5209 
5210 
5211 /**
5212  * Collection of V8 heap information.
5213  *
5214  * Instances of this class can be passed to v8::V8::HeapStatistics to
5215  * get heap statistics from V8.
5216  */
5217 class V8_EXPORT HeapStatistics {
5218  public:
5219   HeapStatistics();
total_heap_size()5220   size_t total_heap_size() { return total_heap_size_; }
total_heap_size_executable()5221   size_t total_heap_size_executable() { return total_heap_size_executable_; }
total_physical_size()5222   size_t total_physical_size() { return total_physical_size_; }
total_available_size()5223   size_t total_available_size() { return total_available_size_; }
used_heap_size()5224   size_t used_heap_size() { return used_heap_size_; }
heap_size_limit()5225   size_t heap_size_limit() { return heap_size_limit_; }
malloced_memory()5226   size_t malloced_memory() { return malloced_memory_; }
does_zap_garbage()5227   size_t does_zap_garbage() { return does_zap_garbage_; }
5228 
5229  private:
5230   size_t total_heap_size_;
5231   size_t total_heap_size_executable_;
5232   size_t total_physical_size_;
5233   size_t total_available_size_;
5234   size_t used_heap_size_;
5235   size_t heap_size_limit_;
5236   size_t malloced_memory_;
5237   bool does_zap_garbage_;
5238 
5239   friend class V8;
5240   friend class Isolate;
5241 };
5242 
5243 
5244 class V8_EXPORT HeapSpaceStatistics {
5245  public:
5246   HeapSpaceStatistics();
space_name()5247   const char* space_name() { return space_name_; }
space_size()5248   size_t space_size() { return space_size_; }
space_used_size()5249   size_t space_used_size() { return space_used_size_; }
space_available_size()5250   size_t space_available_size() { return space_available_size_; }
physical_space_size()5251   size_t physical_space_size() { return physical_space_size_; }
5252 
5253  private:
5254   const char* space_name_;
5255   size_t space_size_;
5256   size_t space_used_size_;
5257   size_t space_available_size_;
5258   size_t physical_space_size_;
5259 
5260   friend class Isolate;
5261 };
5262 
5263 
5264 class V8_EXPORT HeapObjectStatistics {
5265  public:
5266   HeapObjectStatistics();
object_type()5267   const char* object_type() { return object_type_; }
object_sub_type()5268   const char* object_sub_type() { return object_sub_type_; }
object_count()5269   size_t object_count() { return object_count_; }
object_size()5270   size_t object_size() { return object_size_; }
5271 
5272  private:
5273   const char* object_type_;
5274   const char* object_sub_type_;
5275   size_t object_count_;
5276   size_t object_size_;
5277 
5278   friend class Isolate;
5279 };
5280 
5281 class V8_EXPORT HeapCodeStatistics {
5282  public:
5283   HeapCodeStatistics();
code_and_metadata_size()5284   size_t code_and_metadata_size() { return code_and_metadata_size_; }
bytecode_and_metadata_size()5285   size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; }
5286 
5287  private:
5288   size_t code_and_metadata_size_;
5289   size_t bytecode_and_metadata_size_;
5290 
5291   friend class Isolate;
5292 };
5293 
5294 class RetainedObjectInfo;
5295 
5296 
5297 /**
5298  * FunctionEntryHook is the type of the profile entry hook called at entry to
5299  * any generated function when function-level profiling is enabled.
5300  *
5301  * \param function the address of the function that's being entered.
5302  * \param return_addr_location points to a location on stack where the machine
5303  *    return address resides. This can be used to identify the caller of
5304  *    \p function, and/or modified to divert execution when \p function exits.
5305  *
5306  * \note the entry hook must not cause garbage collection.
5307  */
5308 typedef void (*FunctionEntryHook)(uintptr_t function,
5309                                   uintptr_t return_addr_location);
5310 
5311 /**
5312  * A JIT code event is issued each time code is added, moved or removed.
5313  *
5314  * \note removal events are not currently issued.
5315  */
5316 struct JitCodeEvent {
5317   enum EventType {
5318     CODE_ADDED,
5319     CODE_MOVED,
5320     CODE_REMOVED,
5321     CODE_ADD_LINE_POS_INFO,
5322     CODE_START_LINE_INFO_RECORDING,
5323     CODE_END_LINE_INFO_RECORDING
5324   };
5325   // Definition of the code position type. The "POSITION" type means the place
5326   // in the source code which are of interest when making stack traces to
5327   // pin-point the source location of a stack frame as close as possible.
5328   // The "STATEMENT_POSITION" means the place at the beginning of each
5329   // statement, and is used to indicate possible break locations.
5330   enum PositionType { POSITION, STATEMENT_POSITION };
5331 
5332   // Type of event.
5333   EventType type;
5334   // Start of the instructions.
5335   void* code_start;
5336   // Size of the instructions.
5337   size_t code_len;
5338   // Script info for CODE_ADDED event.
5339   Local<UnboundScript> script;
5340   // User-defined data for *_LINE_INFO_* event. It's used to hold the source
5341   // code line information which is returned from the
5342   // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
5343   // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
5344   void* user_data;
5345 
5346   struct name_t {
5347     // Name of the object associated with the code, note that the string is not
5348     // zero-terminated.
5349     const char* str;
5350     // Number of chars in str.
5351     size_t len;
5352   };
5353 
5354   struct line_info_t {
5355     // PC offset
5356     size_t offset;
5357     // Code postion
5358     size_t pos;
5359     // The position type.
5360     PositionType position_type;
5361   };
5362 
5363   union {
5364     // Only valid for CODE_ADDED.
5365     struct name_t name;
5366 
5367     // Only valid for CODE_ADD_LINE_POS_INFO
5368     struct line_info_t line_info;
5369 
5370     // New location of instructions. Only valid for CODE_MOVED.
5371     void* new_code_start;
5372   };
5373 };
5374 
5375 /**
5376  * Option flags passed to the SetRAILMode function.
5377  * See documentation https://developers.google.com/web/tools/chrome-devtools/
5378  * profile/evaluate-performance/rail
5379  */
5380 enum RAILMode {
5381   // Default performance mode: V8 will optimize for both latency and
5382   // throughput in this mode.
5383   PERFORMANCE_DEFAULT,
5384   // Response performance mode: In this mode very low virtual machine latency
5385   // is provided. V8 will try to avoid JavaScript execution interruptions.
5386   // Throughput may be throttled.
5387   PERFORMANCE_RESPONSE,
5388   // Animation performance mode: In this mode low virtual machine latency is
5389   // provided. V8 will try to avoid as many JavaScript execution interruptions
5390   // as possible. Throughput may be throttled
5391   PERFORMANCE_ANIMATION,
5392   // Idle performance mode: The embedder is idle. V8 can complete deferred work
5393   // in this mode.
5394   PERFORMANCE_IDLE,
5395   // Load performance mode: In this mode high throughput is provided. V8 may
5396   // turn off latency optimizations.
5397   PERFORMANCE_LOAD
5398 };
5399 
5400 /**
5401  * Option flags passed to the SetJitCodeEventHandler function.
5402  */
5403 enum JitCodeEventOptions {
5404   kJitCodeEventDefault = 0,
5405   // Generate callbacks for already existent code.
5406   kJitCodeEventEnumExisting = 1
5407 };
5408 
5409 
5410 /**
5411  * Callback function passed to SetJitCodeEventHandler.
5412  *
5413  * \param event code add, move or removal event.
5414  */
5415 typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
5416 
5417 
5418 /**
5419  * Interface for iterating through all external resources in the heap.
5420  */
5421 class V8_EXPORT ExternalResourceVisitor {  // NOLINT
5422  public:
~ExternalResourceVisitor()5423   virtual ~ExternalResourceVisitor() {}
VisitExternalString(Local<String> string)5424   virtual void VisitExternalString(Local<String> string) {}
5425 };
5426 
5427 
5428 /**
5429  * Interface for iterating through all the persistent handles in the heap.
5430  */
5431 class V8_EXPORT PersistentHandleVisitor {  // NOLINT
5432  public:
~PersistentHandleVisitor()5433   virtual ~PersistentHandleVisitor() {}
VisitPersistentHandle(Persistent<Value> * value,uint16_t class_id)5434   virtual void VisitPersistentHandle(Persistent<Value>* value,
5435                                      uint16_t class_id) {}
5436 };
5437 
5438 /**
5439  * Memory pressure level for the MemoryPressureNotification.
5440  * kNone hints V8 that there is no memory pressure.
5441  * kModerate hints V8 to speed up incremental garbage collection at the cost of
5442  * of higher latency due to garbage collection pauses.
5443  * kCritical hints V8 to free memory as soon as possible. Garbage collection
5444  * pauses at this level will be large.
5445  */
5446 enum class MemoryPressureLevel { kNone, kModerate, kCritical };
5447 
5448 /**
5449  * Interface for tracing through the embedder heap. During the v8 garbage
5450  * collection, v8 collects hidden fields of all potential wrappers, and at the
5451  * end of its marking phase iterates the collection and asks the embedder to
5452  * trace through its heap and call PersistentBase::RegisterExternalReference on
5453  * each js object reachable from any of the given wrappers.
5454  *
5455  * Before the first call to the TraceWrappersFrom function TracePrologue will be
5456  * called. When the garbage collection cycle is finished, TraceEpilogue will be
5457  * called.
5458  */
5459 class V8_EXPORT EmbedderHeapTracer {
5460  public:
5461   enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION };
5462   struct AdvanceTracingActions {
AdvanceTracingActionsAdvanceTracingActions5463     explicit AdvanceTracingActions(ForceCompletionAction force_completion_)
5464         : force_completion(force_completion_) {}
5465 
5466     ForceCompletionAction force_completion;
5467   };
5468   /**
5469    * V8 will call this method with internal fields of found wrappers.
5470    * Embedder is expected to store them in it's marking deque and trace
5471    * reachable wrappers from them when asked by AdvanceTracing method.
5472    */
5473   virtual void RegisterV8References(
5474       const std::vector<std::pair<void*, void*> >& internal_fields) = 0;
5475   /**
5476    * V8 will call this method at the beginning of the gc cycle.
5477    */
5478   virtual void TracePrologue() = 0;
5479   /**
5480    * Embedder is expected to trace its heap starting from wrappers reported by
5481    * RegisterV8References method, and call
5482    * PersistentBase::RegisterExternalReference() on all reachable wrappers.
5483    * Embedder is expected to stop tracing by the given deadline.
5484    *
5485    * Returns true if there is still work to do.
5486    */
5487   virtual bool AdvanceTracing(double deadline_in_ms,
5488                               AdvanceTracingActions actions) = 0;
5489   /**
5490    * V8 will call this method at the end of the gc cycle. Allocation is *not*
5491    * allowed in the TraceEpilogue.
5492    */
5493   virtual void TraceEpilogue() = 0;
5494 
5495   /**
5496    * Let embedder know v8 entered final marking pause (no more incremental steps
5497    * will follow).
5498    */
EnterFinalPause()5499   virtual void EnterFinalPause() {}
5500 
5501   /**
5502    * Throw away all intermediate data and reset to the initial state.
5503    */
AbortTracing()5504   virtual void AbortTracing() {}
5505 
5506  protected:
5507   virtual ~EmbedderHeapTracer() = default;
5508 };
5509 
5510 /**
5511  * Isolate represents an isolated instance of the V8 engine.  V8 isolates have
5512  * completely separate states.  Objects from one isolate must not be used in
5513  * other isolates.  The embedder can create multiple isolates and use them in
5514  * parallel in multiple threads.  An isolate can be entered by at most one
5515  * thread at any given time.  The Locker/Unlocker API must be used to
5516  * synchronize.
5517  */
5518 class V8_EXPORT Isolate {
5519  public:
5520   /**
5521    * Initial configuration parameters for a new Isolate.
5522    */
5523   struct CreateParams {
CreateParamsCreateParams5524     CreateParams()
5525         : entry_hook(nullptr),
5526           code_event_handler(nullptr),
5527           snapshot_blob(nullptr),
5528           counter_lookup_callback(nullptr),
5529           create_histogram_callback(nullptr),
5530           add_histogram_sample_callback(nullptr),
5531           array_buffer_allocator(nullptr),
5532           external_references(nullptr) {}
5533 
5534     /**
5535      * The optional entry_hook allows the host application to provide the
5536      * address of a function that's invoked on entry to every V8-generated
5537      * function.  Note that entry_hook is invoked at the very start of each
5538      * generated function. Furthermore, if an entry_hook is given, V8 will
5539      * not use a snapshot, including custom snapshots.
5540      */
5541     FunctionEntryHook entry_hook;
5542 
5543     /**
5544      * Allows the host application to provide the address of a function that is
5545      * notified each time code is added, moved or removed.
5546      */
5547     JitCodeEventHandler code_event_handler;
5548 
5549     /**
5550      * ResourceConstraints to use for the new Isolate.
5551      */
5552     ResourceConstraints constraints;
5553 
5554     /**
5555      * Explicitly specify a startup snapshot blob. The embedder owns the blob.
5556      */
5557     StartupData* snapshot_blob;
5558 
5559 
5560     /**
5561      * Enables the host application to provide a mechanism for recording
5562      * statistics counters.
5563      */
5564     CounterLookupCallback counter_lookup_callback;
5565 
5566     /**
5567      * Enables the host application to provide a mechanism for recording
5568      * histograms. The CreateHistogram function returns a
5569      * histogram which will later be passed to the AddHistogramSample
5570      * function.
5571      */
5572     CreateHistogramCallback create_histogram_callback;
5573     AddHistogramSampleCallback add_histogram_sample_callback;
5574 
5575     /**
5576      * The ArrayBuffer::Allocator to use for allocating and freeing the backing
5577      * store of ArrayBuffers.
5578      */
5579     ArrayBuffer::Allocator* array_buffer_allocator;
5580 
5581     /**
5582      * Specifies an optional nullptr-terminated array of raw addresses in the
5583      * embedder that V8 can match against during serialization and use for
5584      * deserialization. This array and its content must stay valid for the
5585      * entire lifetime of the isolate.
5586      */
5587     intptr_t* external_references;
5588   };
5589 
5590 
5591   /**
5592    * Stack-allocated class which sets the isolate for all operations
5593    * executed within a local scope.
5594    */
5595   class V8_EXPORT Scope {
5596    public:
Scope(Isolate * isolate)5597     explicit Scope(Isolate* isolate) : isolate_(isolate) {
5598       isolate->Enter();
5599     }
5600 
~Scope()5601     ~Scope() { isolate_->Exit(); }
5602 
5603    private:
5604     Isolate* const isolate_;
5605 
5606     // Prevent copying of Scope objects.
5607     Scope(const Scope&);
5608     Scope& operator=(const Scope&);
5609   };
5610 
5611 
5612   /**
5613    * Assert that no Javascript code is invoked.
5614    */
5615   class V8_EXPORT DisallowJavascriptExecutionScope {
5616    public:
5617     enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
5618 
5619     DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
5620     ~DisallowJavascriptExecutionScope();
5621 
5622    private:
5623     bool on_failure_;
5624     void* internal_;
5625 
5626     // Prevent copying of Scope objects.
5627     DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&);
5628     DisallowJavascriptExecutionScope& operator=(
5629         const DisallowJavascriptExecutionScope&);
5630   };
5631 
5632 
5633   /**
5634    * Introduce exception to DisallowJavascriptExecutionScope.
5635    */
5636   class V8_EXPORT AllowJavascriptExecutionScope {
5637    public:
5638     explicit AllowJavascriptExecutionScope(Isolate* isolate);
5639     ~AllowJavascriptExecutionScope();
5640 
5641    private:
5642     void* internal_throws_;
5643     void* internal_assert_;
5644 
5645     // Prevent copying of Scope objects.
5646     AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&);
5647     AllowJavascriptExecutionScope& operator=(
5648         const AllowJavascriptExecutionScope&);
5649   };
5650 
5651   /**
5652    * Do not run microtasks while this scope is active, even if microtasks are
5653    * automatically executed otherwise.
5654    */
5655   class V8_EXPORT SuppressMicrotaskExecutionScope {
5656    public:
5657     explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
5658     ~SuppressMicrotaskExecutionScope();
5659 
5660    private:
5661     internal::Isolate* isolate_;
5662 
5663     // Prevent copying of Scope objects.
5664     SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&);
5665     SuppressMicrotaskExecutionScope& operator=(
5666         const SuppressMicrotaskExecutionScope&);
5667   };
5668 
5669   /**
5670    * Types of garbage collections that can be requested via
5671    * RequestGarbageCollectionForTesting.
5672    */
5673   enum GarbageCollectionType {
5674     kFullGarbageCollection,
5675     kMinorGarbageCollection
5676   };
5677 
5678   /**
5679    * Features reported via the SetUseCounterCallback callback. Do not change
5680    * assigned numbers of existing items; add new features to the end of this
5681    * list.
5682    */
5683   enum UseCounterFeature {
5684     kUseAsm = 0,
5685     kBreakIterator = 1,
5686     kLegacyConst = 2,
5687     kMarkDequeOverflow = 3,
5688     kStoreBufferOverflow = 4,
5689     kSlotsBufferOverflow = 5,
5690     kObjectObserve = 6,
5691     kForcedGC = 7,
5692     kSloppyMode = 8,
5693     kStrictMode = 9,
5694     kStrongMode = 10,
5695     kRegExpPrototypeStickyGetter = 11,
5696     kRegExpPrototypeToString = 12,
5697     kRegExpPrototypeUnicodeGetter = 13,
5698     kIntlV8Parse = 14,
5699     kIntlPattern = 15,
5700     kIntlResolved = 16,
5701     kPromiseChain = 17,
5702     kPromiseAccept = 18,
5703     kPromiseDefer = 19,
5704     kHtmlCommentInExternalScript = 20,
5705     kHtmlComment = 21,
5706     kSloppyModeBlockScopedFunctionRedefinition = 22,
5707     kForInInitializer = 23,
5708     kArrayProtectorDirtied = 24,
5709     kArraySpeciesModified = 25,
5710     kArrayPrototypeConstructorModified = 26,
5711     kArrayInstanceProtoModified = 27,
5712     kArrayInstanceConstructorModified = 28,
5713     kLegacyFunctionDeclaration = 29,
5714     kRegExpPrototypeSourceGetter = 30,
5715     kRegExpPrototypeOldFlagGetter = 31,
5716     kDecimalWithLeadingZeroInStrictMode = 32,
5717     kLegacyDateParser = 33,
5718     kDefineGetterOrSetterWouldThrow = 34,
5719 
5720     // If you add new values here, you'll also need to update Chromium's:
5721     // UseCounter.h, V8PerIsolateData.cpp, histograms.xml
5722     kUseCounterFeatureCount  // This enum value must be last.
5723   };
5724 
5725   typedef void (*UseCounterCallback)(Isolate* isolate,
5726                                      UseCounterFeature feature);
5727 
5728 
5729   /**
5730    * Creates a new isolate.  Does not change the currently entered
5731    * isolate.
5732    *
5733    * When an isolate is no longer used its resources should be freed
5734    * by calling Dispose().  Using the delete operator is not allowed.
5735    *
5736    * V8::Initialize() must have run prior to this.
5737    */
5738   static Isolate* New(const CreateParams& params);
5739 
5740   /**
5741    * Returns the entered isolate for the current thread or NULL in
5742    * case there is no current isolate.
5743    *
5744    * This method must not be invoked before V8::Initialize() was invoked.
5745    */
5746   static Isolate* GetCurrent();
5747 
5748   /**
5749    * Custom callback used by embedders to help V8 determine if it should abort
5750    * when it throws and no internal handler is predicted to catch the
5751    * exception. If --abort-on-uncaught-exception is used on the command line,
5752    * then V8 will abort if either:
5753    * - no custom callback is set.
5754    * - the custom callback set returns true.
5755    * Otherwise, the custom callback will not be called and V8 will not abort.
5756    */
5757   typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*);
5758   void SetAbortOnUncaughtExceptionCallback(
5759       AbortOnUncaughtExceptionCallback callback);
5760 
5761   /**
5762    * Optional notification that the system is running low on memory.
5763    * V8 uses these notifications to guide heuristics.
5764    * It is allowed to call this function from another thread while
5765    * the isolate is executing long running JavaScript code.
5766    */
5767   void MemoryPressureNotification(MemoryPressureLevel level);
5768 
5769   /**
5770    * Methods below this point require holding a lock (using Locker) in
5771    * a multi-threaded environment.
5772    */
5773 
5774   /**
5775    * Sets this isolate as the entered one for the current thread.
5776    * Saves the previously entered one (if any), so that it can be
5777    * restored when exiting.  Re-entering an isolate is allowed.
5778    */
5779   void Enter();
5780 
5781   /**
5782    * Exits this isolate by restoring the previously entered one in the
5783    * current thread.  The isolate may still stay the same, if it was
5784    * entered more than once.
5785    *
5786    * Requires: this == Isolate::GetCurrent().
5787    */
5788   void Exit();
5789 
5790   /**
5791    * Disposes the isolate.  The isolate must not be entered by any
5792    * thread to be disposable.
5793    */
5794   void Dispose();
5795 
5796   /**
5797    * Discards all V8 thread-specific data for the Isolate. Should be used
5798    * if a thread is terminating and it has used an Isolate that will outlive
5799    * the thread -- all thread-specific data for an Isolate is discarded when
5800    * an Isolate is disposed so this call is pointless if an Isolate is about
5801    * to be Disposed.
5802    */
5803   void DiscardThreadSpecificMetadata();
5804 
5805   /**
5806    * Associate embedder-specific data with the isolate. |slot| has to be
5807    * between 0 and GetNumberOfDataSlots() - 1.
5808    */
5809   V8_INLINE void SetData(uint32_t slot, void* data);
5810 
5811   /**
5812    * Retrieve embedder-specific data from the isolate.
5813    * Returns NULL if SetData has never been called for the given |slot|.
5814    */
5815   V8_INLINE void* GetData(uint32_t slot);
5816 
5817   /**
5818    * Returns the maximum number of available embedder data slots. Valid slots
5819    * are in the range of 0 - GetNumberOfDataSlots() - 1.
5820    */
5821   V8_INLINE static uint32_t GetNumberOfDataSlots();
5822 
5823   /**
5824    * Get statistics about the heap memory usage.
5825    */
5826   void GetHeapStatistics(HeapStatistics* heap_statistics);
5827 
5828   /**
5829    * Returns the number of spaces in the heap.
5830    */
5831   size_t NumberOfHeapSpaces();
5832 
5833   /**
5834    * Get the memory usage of a space in the heap.
5835    *
5836    * \param space_statistics The HeapSpaceStatistics object to fill in
5837    *   statistics.
5838    * \param index The index of the space to get statistics from, which ranges
5839    *   from 0 to NumberOfHeapSpaces() - 1.
5840    * \returns true on success.
5841    */
5842   bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
5843                               size_t index);
5844 
5845   /**
5846    * Returns the number of types of objects tracked in the heap at GC.
5847    */
5848   size_t NumberOfTrackedHeapObjectTypes();
5849 
5850   /**
5851    * Get statistics about objects in the heap.
5852    *
5853    * \param object_statistics The HeapObjectStatistics object to fill in
5854    *   statistics of objects of given type, which were live in the previous GC.
5855    * \param type_index The index of the type of object to fill details about,
5856    *   which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1.
5857    * \returns true on success.
5858    */
5859   bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics,
5860                                        size_t type_index);
5861 
5862   /**
5863    * Get statistics about code and its metadata in the heap.
5864    *
5865    * \param object_statistics The HeapCodeStatistics object to fill in
5866    *   statistics of code, bytecode and their metadata.
5867    * \returns true on success.
5868    */
5869   bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics);
5870 
5871   /**
5872    * Get a call stack sample from the isolate.
5873    * \param state Execution state.
5874    * \param frames Caller allocated buffer to store stack frames.
5875    * \param frames_limit Maximum number of frames to capture. The buffer must
5876    *                     be large enough to hold the number of frames.
5877    * \param sample_info The sample info is filled up by the function
5878    *                    provides number of actual captured stack frames and
5879    *                    the current VM state.
5880    * \note GetStackSample should only be called when the JS thread is paused or
5881    *       interrupted. Otherwise the behavior is undefined.
5882    */
5883   void GetStackSample(const RegisterState& state, void** frames,
5884                       size_t frames_limit, SampleInfo* sample_info);
5885 
5886   /**
5887    * Adjusts the amount of registered external memory. Used to give V8 an
5888    * indication of the amount of externally allocated memory that is kept alive
5889    * by JavaScript objects. V8 uses this to decide when to perform global
5890    * garbage collections. Registering externally allocated memory will trigger
5891    * global garbage collections more often than it would otherwise in an attempt
5892    * to garbage collect the JavaScript objects that keep the externally
5893    * allocated memory alive.
5894    *
5895    * \param change_in_bytes the change in externally allocated memory that is
5896    *   kept alive by JavaScript objects.
5897    * \returns the adjusted value.
5898    */
5899   V8_INLINE int64_t
5900       AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
5901 
5902   /**
5903    * Returns the number of phantom handles without callbacks that were reset
5904    * by the garbage collector since the last call to this function.
5905    */
5906   size_t NumberOfPhantomHandleResetsSinceLastCall();
5907 
5908   /**
5909    * Returns heap profiler for this isolate. Will return NULL until the isolate
5910    * is initialized.
5911    */
5912   HeapProfiler* GetHeapProfiler();
5913 
5914   /**
5915    * Returns CPU profiler for this isolate. Will return NULL unless the isolate
5916    * is initialized. It is the embedder's responsibility to stop all CPU
5917    * profiling activities if it has started any.
5918    */
5919   CpuProfiler* GetCpuProfiler();
5920 
5921   /** Returns true if this isolate has a current context. */
5922   bool InContext();
5923 
5924   /**
5925    * Returns the context of the currently running JavaScript, or the context
5926    * on the top of the stack if no JavaScript is running.
5927    */
5928   Local<Context> GetCurrentContext();
5929 
5930   /**
5931    * Returns the context of the calling JavaScript code.  That is the
5932    * context of the top-most JavaScript frame.  If there are no
5933    * JavaScript frames an empty handle is returned.
5934    */
5935   V8_DEPRECATE_SOON(
5936       "Calling context concept is not compatible with tail calls, and will be "
5937       "removed.",
5938       Local<Context> GetCallingContext());
5939 
5940   /** Returns the last context entered through V8's C++ API. */
5941   Local<Context> GetEnteredContext();
5942 
5943   /**
5944    * Schedules an exception to be thrown when returning to JavaScript.  When an
5945    * exception has been scheduled it is illegal to invoke any JavaScript
5946    * operation; the caller must return immediately and only after the exception
5947    * has been handled does it become legal to invoke JavaScript operations.
5948    */
5949   Local<Value> ThrowException(Local<Value> exception);
5950 
5951   /**
5952    * Allows the host application to group objects together. If one
5953    * object in the group is alive, all objects in the group are alive.
5954    * After each garbage collection, object groups are removed. It is
5955    * intended to be used in the before-garbage-collection callback
5956    * function, for instance to simulate DOM tree connections among JS
5957    * wrapper objects. Object groups for all dependent handles need to
5958    * be provided for kGCTypeMarkSweepCompact collections, for all other
5959    * garbage collection types it is sufficient to provide object groups
5960    * for partially dependent handles only.
5961    */
5962   template<typename T> void SetObjectGroupId(const Persistent<T>& object,
5963                                              UniqueId id);
5964 
5965   /**
5966    * Allows the host application to declare implicit references from an object
5967    * group to an object. If the objects of the object group are alive, the child
5968    * object is alive too. After each garbage collection, all implicit references
5969    * are removed. It is intended to be used in the before-garbage-collection
5970    * callback function.
5971    */
5972   template<typename T> void SetReferenceFromGroup(UniqueId id,
5973                                                   const Persistent<T>& child);
5974 
5975   /**
5976    * Allows the host application to declare implicit references from an object
5977    * to another object. If the parent object is alive, the child object is alive
5978    * too. After each garbage collection, all implicit references are removed. It
5979    * is intended to be used in the before-garbage-collection callback function.
5980    */
5981   template<typename T, typename S>
5982   void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
5983 
5984   typedef void (*GCCallback)(Isolate* isolate, GCType type,
5985                              GCCallbackFlags flags);
5986 
5987   /**
5988    * Enables the host application to receive a notification before a
5989    * garbage collection. Allocations are allowed in the callback function,
5990    * but the callback is not re-entrant: if the allocation inside it will
5991    * trigger the garbage collection, the callback won't be called again.
5992    * It is possible to specify the GCType filter for your callback. But it is
5993    * not possible to register the same callback function two times with
5994    * different GCType filters.
5995    */
5996   void AddGCPrologueCallback(GCCallback callback,
5997                              GCType gc_type_filter = kGCTypeAll);
5998 
5999   /**
6000    * This function removes callback which was installed by
6001    * AddGCPrologueCallback function.
6002    */
6003   void RemoveGCPrologueCallback(GCCallback callback);
6004 
6005   /**
6006    * Sets the embedder heap tracer for the isolate.
6007    */
6008   void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
6009 
6010   /**
6011    * Enables the host application to receive a notification after a
6012    * garbage collection. Allocations are allowed in the callback function,
6013    * but the callback is not re-entrant: if the allocation inside it will
6014    * trigger the garbage collection, the callback won't be called again.
6015    * It is possible to specify the GCType filter for your callback. But it is
6016    * not possible to register the same callback function two times with
6017    * different GCType filters.
6018    */
6019   void AddGCEpilogueCallback(GCCallback callback,
6020                              GCType gc_type_filter = kGCTypeAll);
6021 
6022   /**
6023    * This function removes callback which was installed by
6024    * AddGCEpilogueCallback function.
6025    */
6026   void RemoveGCEpilogueCallback(GCCallback callback);
6027 
6028   /**
6029    * Forcefully terminate the current thread of JavaScript execution
6030    * in the given isolate.
6031    *
6032    * This method can be used by any thread even if that thread has not
6033    * acquired the V8 lock with a Locker object.
6034    */
6035   void TerminateExecution();
6036 
6037   /**
6038    * Is V8 terminating JavaScript execution.
6039    *
6040    * Returns true if JavaScript execution is currently terminating
6041    * because of a call to TerminateExecution.  In that case there are
6042    * still JavaScript frames on the stack and the termination
6043    * exception is still active.
6044    */
6045   bool IsExecutionTerminating();
6046 
6047   /**
6048    * Resume execution capability in the given isolate, whose execution
6049    * was previously forcefully terminated using TerminateExecution().
6050    *
6051    * When execution is forcefully terminated using TerminateExecution(),
6052    * the isolate can not resume execution until all JavaScript frames
6053    * have propagated the uncatchable exception which is generated.  This
6054    * method allows the program embedding the engine to handle the
6055    * termination event and resume execution capability, even if
6056    * JavaScript frames remain on the stack.
6057    *
6058    * This method can be used by any thread even if that thread has not
6059    * acquired the V8 lock with a Locker object.
6060    */
6061   void CancelTerminateExecution();
6062 
6063   /**
6064    * Request V8 to interrupt long running JavaScript code and invoke
6065    * the given |callback| passing the given |data| to it. After |callback|
6066    * returns control will be returned to the JavaScript code.
6067    * There may be a number of interrupt requests in flight.
6068    * Can be called from another thread without acquiring a |Locker|.
6069    * Registered |callback| must not reenter interrupted Isolate.
6070    */
6071   void RequestInterrupt(InterruptCallback callback, void* data);
6072 
6073   /**
6074    * Request garbage collection in this Isolate. It is only valid to call this
6075    * function if --expose_gc was specified.
6076    *
6077    * This should only be used for testing purposes and not to enforce a garbage
6078    * collection schedule. It has strong negative impact on the garbage
6079    * collection performance. Use IdleNotificationDeadline() or
6080    * LowMemoryNotification() instead to influence the garbage collection
6081    * schedule.
6082    */
6083   void RequestGarbageCollectionForTesting(GarbageCollectionType type);
6084 
6085   /**
6086    * Set the callback to invoke for logging event.
6087    */
6088   void SetEventLogger(LogEventCallback that);
6089 
6090   /**
6091    * Adds a callback to notify the host application right before a script
6092    * is about to run. If a script re-enters the runtime during executing, the
6093    * BeforeCallEnteredCallback is invoked for each re-entrance.
6094    * Executing scripts inside the callback will re-trigger the callback.
6095    */
6096   void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6097 
6098   /**
6099    * Removes callback that was installed by AddBeforeCallEnteredCallback.
6100    */
6101   void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6102 
6103   /**
6104    * Adds a callback to notify the host application when a script finished
6105    * running.  If a script re-enters the runtime during executing, the
6106    * CallCompletedCallback is only invoked when the outer-most script
6107    * execution ends.  Executing scripts inside the callback do not trigger
6108    * further callbacks.
6109    */
6110   void AddCallCompletedCallback(CallCompletedCallback callback);
6111   V8_DEPRECATE_SOON(
6112       "Use callback with parameter",
6113       void AddCallCompletedCallback(DeprecatedCallCompletedCallback callback));
6114 
6115   /**
6116    * Removes callback that was installed by AddCallCompletedCallback.
6117    */
6118   void RemoveCallCompletedCallback(CallCompletedCallback callback);
6119   V8_DEPRECATE_SOON(
6120       "Use callback with parameter",
6121       void RemoveCallCompletedCallback(
6122           DeprecatedCallCompletedCallback callback));
6123 
6124   /**
6125    * Set callback to notify about promise reject with no handler, or
6126    * revocation of such a previous notification once the handler is added.
6127    */
6128   void SetPromiseRejectCallback(PromiseRejectCallback callback);
6129 
6130   /**
6131    * Experimental: Runs the Microtask Work Queue until empty
6132    * Any exceptions thrown by microtask callbacks are swallowed.
6133    */
6134   void RunMicrotasks();
6135 
6136   /**
6137    * Experimental: Enqueues the callback to the Microtask Work Queue
6138    */
6139   void EnqueueMicrotask(Local<Function> microtask);
6140 
6141   /**
6142    * Experimental: Enqueues the callback to the Microtask Work Queue
6143    */
6144   void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
6145 
6146   /**
6147    * Experimental: Controls how Microtasks are invoked. See MicrotasksPolicy
6148    * for details.
6149    */
6150   void SetMicrotasksPolicy(MicrotasksPolicy policy);
6151   V8_DEPRECATE_SOON("Use SetMicrotasksPolicy",
6152                     void SetAutorunMicrotasks(bool autorun));
6153 
6154   /**
6155    * Experimental: Returns the policy controlling how Microtasks are invoked.
6156    */
6157   MicrotasksPolicy GetMicrotasksPolicy() const;
6158   V8_DEPRECATE_SOON("Use GetMicrotasksPolicy",
6159                     bool WillAutorunMicrotasks() const);
6160 
6161   /**
6162    * Experimental: adds a callback to notify the host application after
6163    * microtasks were run. The callback is triggered by explicit RunMicrotasks
6164    * call or automatic microtasks execution (see SetAutorunMicrotasks).
6165    *
6166    * Callback will trigger even if microtasks were attempted to run,
6167    * but the microtasks queue was empty and no single microtask was actually
6168    * executed.
6169    *
6170    * Executing scriptsinside the callback will not re-trigger microtasks and
6171    * the callback.
6172    */
6173   void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
6174 
6175   /**
6176    * Removes callback that was installed by AddMicrotasksCompletedCallback.
6177    */
6178   void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
6179 
6180   /**
6181    * Sets a callback for counting the number of times a feature of V8 is used.
6182    */
6183   void SetUseCounterCallback(UseCounterCallback callback);
6184 
6185   /**
6186    * Enables the host application to provide a mechanism for recording
6187    * statistics counters.
6188    */
6189   void SetCounterFunction(CounterLookupCallback);
6190 
6191   /**
6192    * Enables the host application to provide a mechanism for recording
6193    * histograms. The CreateHistogram function returns a
6194    * histogram which will later be passed to the AddHistogramSample
6195    * function.
6196    */
6197   void SetCreateHistogramFunction(CreateHistogramCallback);
6198   void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
6199 
6200   /**
6201    * Optional notification that the embedder is idle.
6202    * V8 uses the notification to perform garbage collection.
6203    * This call can be used repeatedly if the embedder remains idle.
6204    * Returns true if the embedder should stop calling IdleNotificationDeadline
6205    * until real work has been done.  This indicates that V8 has done
6206    * as much cleanup as it will be able to do.
6207    *
6208    * The deadline_in_seconds argument specifies the deadline V8 has to finish
6209    * garbage collection work. deadline_in_seconds is compared with
6210    * MonotonicallyIncreasingTime() and should be based on the same timebase as
6211    * that function. There is no guarantee that the actual work will be done
6212    * within the time limit.
6213    */
6214   bool IdleNotificationDeadline(double deadline_in_seconds);
6215 
6216   V8_DEPRECATED("use IdleNotificationDeadline()",
6217                 bool IdleNotification(int idle_time_in_ms));
6218 
6219   /**
6220    * Optional notification that the system is running low on memory.
6221    * V8 uses these notifications to attempt to free memory.
6222    */
6223   void LowMemoryNotification();
6224 
6225   /**
6226    * Optional notification that a context has been disposed. V8 uses
6227    * these notifications to guide the GC heuristic. Returns the number
6228    * of context disposals - including this one - since the last time
6229    * V8 had a chance to clean up.
6230    *
6231    * The optional parameter |dependant_context| specifies whether the disposed
6232    * context was depending on state from other contexts or not.
6233    */
6234   int ContextDisposedNotification(bool dependant_context = true);
6235 
6236   /**
6237    * Optional notification that the isolate switched to the foreground.
6238    * V8 uses these notifications to guide heuristics.
6239    */
6240   void IsolateInForegroundNotification();
6241 
6242   /**
6243    * Optional notification that the isolate switched to the background.
6244    * V8 uses these notifications to guide heuristics.
6245    */
6246   void IsolateInBackgroundNotification();
6247 
6248   /**
6249    * Optional notification to tell V8 the current performance requirements
6250    * of the embedder based on RAIL.
6251    * V8 uses these notifications to guide heuristics.
6252    * This is an unfinished experimental feature. Semantics and implementation
6253    * may change frequently.
6254    */
6255   void SetRAILMode(RAILMode rail_mode);
6256 
6257   /**
6258    * Allows the host application to provide the address of a function that is
6259    * notified each time code is added, moved or removed.
6260    *
6261    * \param options options for the JIT code event handler.
6262    * \param event_handler the JIT code event handler, which will be invoked
6263    *     each time code is added, moved or removed.
6264    * \note \p event_handler won't get notified of existent code.
6265    * \note since code removal notifications are not currently issued, the
6266    *     \p event_handler may get notifications of code that overlaps earlier
6267    *     code notifications. This happens when code areas are reused, and the
6268    *     earlier overlapping code areas should therefore be discarded.
6269    * \note the events passed to \p event_handler and the strings they point to
6270    *     are not guaranteed to live past each call. The \p event_handler must
6271    *     copy strings and other parameters it needs to keep around.
6272    * \note the set of events declared in JitCodeEvent::EventType is expected to
6273    *     grow over time, and the JitCodeEvent structure is expected to accrue
6274    *     new members. The \p event_handler function must ignore event codes
6275    *     it does not recognize to maintain future compatibility.
6276    * \note Use Isolate::CreateParams to get events for code executed during
6277    *     Isolate setup.
6278    */
6279   void SetJitCodeEventHandler(JitCodeEventOptions options,
6280                               JitCodeEventHandler event_handler);
6281 
6282   /**
6283    * Modifies the stack limit for this Isolate.
6284    *
6285    * \param stack_limit An address beyond which the Vm's stack may not grow.
6286    *
6287    * \note  If you are using threads then you should hold the V8::Locker lock
6288    *     while setting the stack limit and you must set a non-default stack
6289    *     limit separately for each thread.
6290    */
6291   void SetStackLimit(uintptr_t stack_limit);
6292 
6293   /**
6294    * Returns a memory range that can potentially contain jitted code.
6295    *
6296    * On Win64, embedders are advised to install function table callbacks for
6297    * these ranges, as default SEH won't be able to unwind through jitted code.
6298    *
6299    * The first page of the code range is reserved for the embedder and is
6300    * committed, writable, and executable.
6301    *
6302    * Might be empty on other platforms.
6303    *
6304    * https://code.google.com/p/v8/issues/detail?id=3598
6305    */
6306   void GetCodeRange(void** start, size_t* length_in_bytes);
6307 
6308   /** Set the callback to invoke in case of fatal errors. */
6309   void SetFatalErrorHandler(FatalErrorCallback that);
6310 
6311   /**
6312    * Set the callback to invoke to check if code generation from
6313    * strings should be allowed.
6314    */
6315   void SetAllowCodeGenerationFromStringsCallback(
6316       AllowCodeGenerationFromStringsCallback callback);
6317 
6318   /**
6319   * Check if V8 is dead and therefore unusable.  This is the case after
6320   * fatal errors such as out-of-memory situations.
6321   */
6322   bool IsDead();
6323 
6324   /**
6325    * Adds a message listener.
6326    *
6327    * The same message listener can be added more than once and in that
6328    * case it will be called more than once for each message.
6329    *
6330    * If data is specified, it will be passed to the callback when it is called.
6331    * Otherwise, the exception object will be passed to the callback instead.
6332    */
6333   bool AddMessageListener(MessageCallback that,
6334                           Local<Value> data = Local<Value>());
6335 
6336   /**
6337    * Remove all message listeners from the specified callback function.
6338    */
6339   void RemoveMessageListeners(MessageCallback that);
6340 
6341   /** Callback function for reporting failed access checks.*/
6342   void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
6343 
6344   /**
6345    * Tells V8 to capture current stack trace when uncaught exception occurs
6346    * and report it to the message listeners. The option is off by default.
6347    */
6348   void SetCaptureStackTraceForUncaughtExceptions(
6349       bool capture, int frame_limit = 10,
6350       StackTrace::StackTraceOptions options = StackTrace::kOverview);
6351 
6352   /**
6353    * Iterates through all external resources referenced from current isolate
6354    * heap.  GC is not invoked prior to iterating, therefore there is no
6355    * guarantee that visited objects are still alive.
6356    */
6357   void VisitExternalResources(ExternalResourceVisitor* visitor);
6358 
6359   /**
6360    * Iterates through all the persistent handles in the current isolate's heap
6361    * that have class_ids.
6362    */
6363   void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
6364 
6365   /**
6366    * Iterates through all the persistent handles in the current isolate's heap
6367    * that have class_ids and are candidates to be marked as partially dependent
6368    * handles. This will visit handles to young objects created since the last
6369    * garbage collection but is free to visit an arbitrary superset of these
6370    * objects.
6371    */
6372   void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor);
6373 
6374   /**
6375    * Iterates through all the persistent handles in the current isolate's heap
6376    * that have class_ids and are weak to be marked as inactive if there is no
6377    * pending activity for the handle.
6378    */
6379   void VisitWeakHandles(PersistentHandleVisitor* visitor);
6380 
6381   /**
6382    * Check if this isolate is in use.
6383    * True if at least one thread Enter'ed this isolate.
6384    */
6385   bool IsInUse();
6386 
6387  private:
6388   template <class K, class V, class Traits>
6389   friend class PersistentValueMapBase;
6390 
6391   Isolate();
6392   Isolate(const Isolate&);
6393   ~Isolate();
6394   Isolate& operator=(const Isolate&);
6395   void* operator new(size_t size);
6396   void operator delete(void*, size_t);
6397 
6398   void SetObjectGroupId(internal::Object** object, UniqueId id);
6399   void SetReferenceFromGroup(UniqueId id, internal::Object** object);
6400   void SetReference(internal::Object** parent, internal::Object** child);
6401   void ReportExternalAllocationLimitReached();
6402 };
6403 
6404 class V8_EXPORT StartupData {
6405  public:
6406   const char* data;
6407   int raw_size;
6408 };
6409 
6410 
6411 /**
6412  * EntropySource is used as a callback function when v8 needs a source
6413  * of entropy.
6414  */
6415 typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
6416 
6417 
6418 /**
6419  * ReturnAddressLocationResolver is used as a callback function when v8 is
6420  * resolving the location of a return address on the stack. Profilers that
6421  * change the return address on the stack can use this to resolve the stack
6422  * location to whereever the profiler stashed the original return address.
6423  *
6424  * \param return_addr_location points to a location on stack where a machine
6425  *    return address resides.
6426  * \returns either return_addr_location, or else a pointer to the profiler's
6427  *    copy of the original return address.
6428  *
6429  * \note the resolver function must not cause garbage collection.
6430  */
6431 typedef uintptr_t (*ReturnAddressLocationResolver)(
6432     uintptr_t return_addr_location);
6433 
6434 
6435 /**
6436  * Container class for static utility functions.
6437  */
6438 class V8_EXPORT V8 {
6439  public:
6440   /** Set the callback to invoke in case of fatal errors. */
6441   V8_INLINE static V8_DEPRECATED(
6442       "Use isolate version",
6443       void SetFatalErrorHandler(FatalErrorCallback that));
6444 
6445   /**
6446    * Set the callback to invoke to check if code generation from
6447    * strings should be allowed.
6448    */
6449   V8_INLINE static V8_DEPRECATED(
6450       "Use isolate version", void SetAllowCodeGenerationFromStringsCallback(
6451                                  AllowCodeGenerationFromStringsCallback that));
6452 
6453   /**
6454   * Check if V8 is dead and therefore unusable.  This is the case after
6455   * fatal errors such as out-of-memory situations.
6456   */
6457   V8_INLINE static V8_DEPRECATED("Use isolate version", bool IsDead());
6458 
6459   /**
6460    * Hand startup data to V8, in case the embedder has chosen to build
6461    * V8 with external startup data.
6462    *
6463    * Note:
6464    * - By default the startup data is linked into the V8 library, in which
6465    *   case this function is not meaningful.
6466    * - If this needs to be called, it needs to be called before V8
6467    *   tries to make use of its built-ins.
6468    * - To avoid unnecessary copies of data, V8 will point directly into the
6469    *   given data blob, so pretty please keep it around until V8 exit.
6470    * - Compression of the startup blob might be useful, but needs to
6471    *   handled entirely on the embedders' side.
6472    * - The call will abort if the data is invalid.
6473    */
6474   static void SetNativesDataBlob(StartupData* startup_blob);
6475   static void SetSnapshotDataBlob(StartupData* startup_blob);
6476 
6477   /**
6478    * Bootstrap an isolate and a context from scratch to create a startup
6479    * snapshot. Include the side-effects of running the optional script.
6480    * Returns { NULL, 0 } on failure.
6481    * The caller acquires ownership of the data array in the return value.
6482    */
6483   static StartupData CreateSnapshotDataBlob(const char* embedded_source = NULL);
6484 
6485   /**
6486    * Bootstrap an isolate and a context from the cold startup blob, run the
6487    * warm-up script to trigger code compilation. The side effects are then
6488    * discarded. The resulting startup snapshot will include compiled code.
6489    * Returns { NULL, 0 } on failure.
6490    * The caller acquires ownership of the data array in the return value.
6491    * The argument startup blob is untouched.
6492    */
6493   static StartupData WarmUpSnapshotDataBlob(StartupData cold_startup_blob,
6494                                             const char* warmup_source);
6495 
6496   /**
6497    * Adds a message listener.
6498    *
6499    * The same message listener can be added more than once and in that
6500    * case it will be called more than once for each message.
6501    *
6502    * If data is specified, it will be passed to the callback when it is called.
6503    * Otherwise, the exception object will be passed to the callback instead.
6504    */
6505   V8_INLINE static V8_DEPRECATED(
6506       "Use isolate version",
6507       bool AddMessageListener(MessageCallback that,
6508                               Local<Value> data = Local<Value>()));
6509 
6510   /**
6511    * Remove all message listeners from the specified callback function.
6512    */
6513   V8_INLINE static V8_DEPRECATED(
6514       "Use isolate version", void RemoveMessageListeners(MessageCallback that));
6515 
6516   /**
6517    * Tells V8 to capture current stack trace when uncaught exception occurs
6518    * and report it to the message listeners. The option is off by default.
6519    */
6520   V8_INLINE static V8_DEPRECATED(
6521       "Use isolate version",
6522       void SetCaptureStackTraceForUncaughtExceptions(
6523           bool capture, int frame_limit = 10,
6524           StackTrace::StackTraceOptions options = StackTrace::kOverview));
6525 
6526   /**
6527    * Sets V8 flags from a string.
6528    */
6529   static void SetFlagsFromString(const char* str, int length);
6530 
6531   /**
6532    * Sets V8 flags from the command line.
6533    */
6534   static void SetFlagsFromCommandLine(int* argc,
6535                                       char** argv,
6536                                       bool remove_flags);
6537 
6538   /** Get the version string. */
6539   static const char* GetVersion();
6540 
6541   /** Callback function for reporting failed access checks.*/
6542   V8_INLINE static V8_DEPRECATED(
6543       "Use isolate version",
6544       void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback));
6545 
6546   /**
6547    * Enables the host application to receive a notification before a
6548    * garbage collection.  Allocations are not allowed in the
6549    * callback function, you therefore cannot manipulate objects (set
6550    * or delete properties for example) since it is possible such
6551    * operations will result in the allocation of objects. It is possible
6552    * to specify the GCType filter for your callback. But it is not possible to
6553    * register the same callback function two times with different
6554    * GCType filters.
6555    */
6556   static V8_DEPRECATED(
6557       "Use isolate version",
6558       void AddGCPrologueCallback(GCCallback callback,
6559                                  GCType gc_type_filter = kGCTypeAll));
6560 
6561   /**
6562    * This function removes callback which was installed by
6563    * AddGCPrologueCallback function.
6564    */
6565   V8_INLINE static V8_DEPRECATED(
6566       "Use isolate version",
6567       void RemoveGCPrologueCallback(GCCallback callback));
6568 
6569   /**
6570    * Enables the host application to receive a notification after a
6571    * garbage collection.  Allocations are not allowed in the
6572    * callback function, you therefore cannot manipulate objects (set
6573    * or delete properties for example) since it is possible such
6574    * operations will result in the allocation of objects. It is possible
6575    * to specify the GCType filter for your callback. But it is not possible to
6576    * register the same callback function two times with different
6577    * GCType filters.
6578    */
6579   static V8_DEPRECATED(
6580       "Use isolate version",
6581       void AddGCEpilogueCallback(GCCallback callback,
6582                                  GCType gc_type_filter = kGCTypeAll));
6583 
6584   /**
6585    * This function removes callback which was installed by
6586    * AddGCEpilogueCallback function.
6587    */
6588   V8_INLINE static V8_DEPRECATED(
6589       "Use isolate version",
6590       void RemoveGCEpilogueCallback(GCCallback callback));
6591 
6592   /**
6593    * Initializes V8. This function needs to be called before the first Isolate
6594    * is created. It always returns true.
6595    */
6596   static bool Initialize();
6597 
6598   /**
6599    * Allows the host application to provide a callback which can be used
6600    * as a source of entropy for random number generators.
6601    */
6602   static void SetEntropySource(EntropySource source);
6603 
6604   /**
6605    * Allows the host application to provide a callback that allows v8 to
6606    * cooperate with a profiler that rewrites return addresses on stack.
6607    */
6608   static void SetReturnAddressLocationResolver(
6609       ReturnAddressLocationResolver return_address_resolver);
6610 
6611   /**
6612    * Forcefully terminate the current thread of JavaScript execution
6613    * in the given isolate.
6614    *
6615    * This method can be used by any thread even if that thread has not
6616    * acquired the V8 lock with a Locker object.
6617    *
6618    * \param isolate The isolate in which to terminate the current JS execution.
6619    */
6620   V8_INLINE static V8_DEPRECATED("Use isolate version",
6621                                  void TerminateExecution(Isolate* isolate));
6622 
6623   /**
6624    * Is V8 terminating JavaScript execution.
6625    *
6626    * Returns true if JavaScript execution is currently terminating
6627    * because of a call to TerminateExecution.  In that case there are
6628    * still JavaScript frames on the stack and the termination
6629    * exception is still active.
6630    *
6631    * \param isolate The isolate in which to check.
6632    */
6633   V8_INLINE static V8_DEPRECATED(
6634       "Use isolate version",
6635       bool IsExecutionTerminating(Isolate* isolate = NULL));
6636 
6637   /**
6638    * Resume execution capability in the given isolate, whose execution
6639    * was previously forcefully terminated using TerminateExecution().
6640    *
6641    * When execution is forcefully terminated using TerminateExecution(),
6642    * the isolate can not resume execution until all JavaScript frames
6643    * have propagated the uncatchable exception which is generated.  This
6644    * method allows the program embedding the engine to handle the
6645    * termination event and resume execution capability, even if
6646    * JavaScript frames remain on the stack.
6647    *
6648    * This method can be used by any thread even if that thread has not
6649    * acquired the V8 lock with a Locker object.
6650    *
6651    * \param isolate The isolate in which to resume execution capability.
6652    */
6653   V8_INLINE static V8_DEPRECATED(
6654       "Use isolate version", void CancelTerminateExecution(Isolate* isolate));
6655 
6656   /**
6657    * Releases any resources used by v8 and stops any utility threads
6658    * that may be running.  Note that disposing v8 is permanent, it
6659    * cannot be reinitialized.
6660    *
6661    * It should generally not be necessary to dispose v8 before exiting
6662    * a process, this should happen automatically.  It is only necessary
6663    * to use if the process needs the resources taken up by v8.
6664    */
6665   static bool Dispose();
6666 
6667   /**
6668    * Iterates through all external resources referenced from current isolate
6669    * heap.  GC is not invoked prior to iterating, therefore there is no
6670    * guarantee that visited objects are still alive.
6671    */
6672   V8_INLINE static V8_DEPRECATED(
6673       "Use isolate version",
6674       void VisitExternalResources(ExternalResourceVisitor* visitor));
6675 
6676   /**
6677    * Iterates through all the persistent handles in the current isolate's heap
6678    * that have class_ids.
6679    */
6680   V8_INLINE static V8_DEPRECATED(
6681       "Use isolate version",
6682       void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor));
6683 
6684   /**
6685    * Iterates through all the persistent handles in isolate's heap that have
6686    * class_ids.
6687    */
6688   V8_INLINE static V8_DEPRECATED(
6689       "Use isolate version",
6690       void VisitHandlesWithClassIds(Isolate* isolate,
6691                                     PersistentHandleVisitor* visitor));
6692 
6693   /**
6694    * Iterates through all the persistent handles in the current isolate's heap
6695    * that have class_ids and are candidates to be marked as partially dependent
6696    * handles. This will visit handles to young objects created since the last
6697    * garbage collection but is free to visit an arbitrary superset of these
6698    * objects.
6699    */
6700   V8_INLINE static V8_DEPRECATED(
6701       "Use isolate version",
6702       void VisitHandlesForPartialDependence(Isolate* isolate,
6703                                             PersistentHandleVisitor* visitor));
6704 
6705   /**
6706    * Initialize the ICU library bundled with V8. The embedder should only
6707    * invoke this method when using the bundled ICU. Returns true on success.
6708    *
6709    * If V8 was compiled with the ICU data in an external file, the location
6710    * of the data file has to be provided.
6711    */
6712   V8_DEPRECATE_SOON(
6713       "Use version with default location.",
6714       static bool InitializeICU(const char* icu_data_file = nullptr));
6715 
6716   /**
6717    * Initialize the ICU library bundled with V8. The embedder should only
6718    * invoke this method when using the bundled ICU. If V8 was compiled with
6719    * the ICU data in an external file and when the default location of that
6720    * file should be used, a path to the executable must be provided.
6721    * Returns true on success.
6722    *
6723    * The default is a file called icudtl.dat side-by-side with the executable.
6724    *
6725    * Optionally, the location of the data file can be provided to override the
6726    * default.
6727    */
6728   static bool InitializeICUDefaultLocation(const char* exec_path,
6729                                            const char* icu_data_file = nullptr);
6730 
6731   /**
6732    * Initialize the external startup data. The embedder only needs to
6733    * invoke this method when external startup data was enabled in a build.
6734    *
6735    * If V8 was compiled with the startup data in an external file, then
6736    * V8 needs to be given those external files during startup. There are
6737    * three ways to do this:
6738    * - InitializeExternalStartupData(const char*)
6739    *   This will look in the given directory for files "natives_blob.bin"
6740    *   and "snapshot_blob.bin" - which is what the default build calls them.
6741    * - InitializeExternalStartupData(const char*, const char*)
6742    *   As above, but will directly use the two given file names.
6743    * - Call SetNativesDataBlob, SetNativesDataBlob.
6744    *   This will read the blobs from the given data structures and will
6745    *   not perform any file IO.
6746    */
6747   static void InitializeExternalStartupData(const char* directory_path);
6748   static void InitializeExternalStartupData(const char* natives_blob,
6749                                             const char* snapshot_blob);
6750   /**
6751    * Sets the v8::Platform to use. This should be invoked before V8 is
6752    * initialized.
6753    */
6754   static void InitializePlatform(Platform* platform);
6755 
6756   /**
6757    * Clears all references to the v8::Platform. This should be invoked after
6758    * V8 was disposed.
6759    */
6760   static void ShutdownPlatform();
6761 
6762  private:
6763   V8();
6764 
6765   static internal::Object** GlobalizeReference(internal::Isolate* isolate,
6766                                                internal::Object** handle);
6767   static internal::Object** CopyPersistent(internal::Object** handle);
6768   static void DisposeGlobal(internal::Object** global_handle);
6769   static void MakeWeak(internal::Object** location, void* data,
6770                        WeakCallbackInfo<void>::Callback weak_callback,
6771                        WeakCallbackType type);
6772   static void MakeWeak(internal::Object** location, void* data,
6773                        // Must be 0 or -1.
6774                        int internal_field_index1,
6775                        // Must be 1 or -1.
6776                        int internal_field_index2,
6777                        WeakCallbackInfo<void>::Callback weak_callback);
6778   static void MakeWeak(internal::Object*** location_addr);
6779   static void* ClearWeak(internal::Object** location);
6780   static void Eternalize(Isolate* isolate,
6781                          Value* handle,
6782                          int* index);
6783   static Local<Value> GetEternal(Isolate* isolate, int index);
6784 
6785   static void RegisterExternallyReferencedObject(internal::Object** object,
6786                                                  internal::Isolate* isolate);
6787   template <class K, class V, class T>
6788   friend class PersistentValueMapBase;
6789 
6790   static void FromJustIsNothing();
6791   static void ToLocalEmpty();
6792   static void InternalFieldOutOfBounds(int index);
6793   template <class T> friend class Local;
6794   template <class T>
6795   friend class MaybeLocal;
6796   template <class T>
6797   friend class Maybe;
6798   template <class T>
6799   friend class WeakCallbackInfo;
6800   template <class T> friend class Eternal;
6801   template <class T> friend class PersistentBase;
6802   template <class T, class M> friend class Persistent;
6803   friend class Context;
6804 };
6805 
6806 /**
6807  * Helper class to create a snapshot data blob.
6808  */
6809 class SnapshotCreator {
6810  public:
6811   enum class FunctionCodeHandling { kClear, kKeep };
6812 
6813   /**
6814    * Create and enter an isolate, and set it up for serialization.
6815    * The isolate is either created from scratch or from an existing snapshot.
6816    * The caller keeps ownership of the argument snapshot.
6817    * \param existing_blob existing snapshot from which to create this one.
6818    * \param external_references a null-terminated array of external references
6819    *        that must be equivalent to CreateParams::external_references.
6820    */
6821   SnapshotCreator(intptr_t* external_references = nullptr,
6822                   StartupData* existing_blob = nullptr);
6823 
6824   ~SnapshotCreator();
6825 
6826   /**
6827    * \returns the isolate prepared by the snapshot creator.
6828    */
6829   Isolate* GetIsolate();
6830 
6831   /**
6832    * Add a context to be included in the snapshot blob.
6833    * \returns the index of the context in the snapshot blob.
6834    */
6835   size_t AddContext(Local<Context> context);
6836 
6837   /**
6838    * Add a template to be included in the snapshot blob.
6839    * \returns the index of the template in the snapshot blob.
6840    */
6841   size_t AddTemplate(Local<Template> template_obj);
6842 
6843   /**
6844    * Created a snapshot data blob.
6845    * This must not be called from within a handle scope.
6846    * \param function_code_handling whether to include compiled function code
6847    *        in the snapshot.
6848    * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The
6849    *        caller acquires ownership of the data array in the return value.
6850    */
6851   StartupData CreateBlob(FunctionCodeHandling function_code_handling);
6852 
6853  private:
6854   void* data_;
6855 
6856   // Disallow copying and assigning.
6857   SnapshotCreator(const SnapshotCreator&);
6858   void operator=(const SnapshotCreator&);
6859 };
6860 
6861 /**
6862  * A simple Maybe type, representing an object which may or may not have a
6863  * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.
6864  *
6865  * If an API method returns a Maybe<>, the API method can potentially fail
6866  * either because an exception is thrown, or because an exception is pending,
6867  * e.g. because a previous API call threw an exception that hasn't been caught
6868  * yet, or because a TerminateExecution exception was thrown. In that case, a
6869  * "Nothing" value is returned.
6870  */
6871 template <class T>
6872 class Maybe {
6873  public:
IsNothing()6874   V8_INLINE bool IsNothing() const { return !has_value; }
IsJust()6875   V8_INLINE bool IsJust() const { return has_value; }
6876 
6877   // Will crash if the Maybe<> is nothing.
FromJust()6878   V8_INLINE T FromJust() const {
6879     if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing();
6880     return value;
6881   }
6882 
FromMaybe(const T & default_value)6883   V8_INLINE T FromMaybe(const T& default_value) const {
6884     return has_value ? value : default_value;
6885   }
6886 
6887   V8_INLINE bool operator==(const Maybe& other) const {
6888     return (IsJust() == other.IsJust()) &&
6889            (!IsJust() || FromJust() == other.FromJust());
6890   }
6891 
6892   V8_INLINE bool operator!=(const Maybe& other) const {
6893     return !operator==(other);
6894   }
6895 
6896  private:
Maybe()6897   Maybe() : has_value(false) {}
Maybe(const T & t)6898   explicit Maybe(const T& t) : has_value(true), value(t) {}
6899 
6900   bool has_value;
6901   T value;
6902 
6903   template <class U>
6904   friend Maybe<U> Nothing();
6905   template <class U>
6906   friend Maybe<U> Just(const U& u);
6907 };
6908 
6909 
6910 template <class T>
Nothing()6911 inline Maybe<T> Nothing() {
6912   return Maybe<T>();
6913 }
6914 
6915 
6916 template <class T>
Just(const T & t)6917 inline Maybe<T> Just(const T& t) {
6918   return Maybe<T>(t);
6919 }
6920 
6921 
6922 /**
6923  * An external exception handler.
6924  */
6925 class V8_EXPORT TryCatch {
6926  public:
6927   /**
6928    * Creates a new try/catch block and registers it with v8.  Note that
6929    * all TryCatch blocks should be stack allocated because the memory
6930    * location itself is compared against JavaScript try/catch blocks.
6931    */
6932   V8_DEPRECATED("Use isolate version", TryCatch());
6933 
6934   /**
6935    * Creates a new try/catch block and registers it with v8.  Note that
6936    * all TryCatch blocks should be stack allocated because the memory
6937    * location itself is compared against JavaScript try/catch blocks.
6938    */
6939   TryCatch(Isolate* isolate);
6940 
6941   /**
6942    * Unregisters and deletes this try/catch block.
6943    */
6944   ~TryCatch();
6945 
6946   /**
6947    * Returns true if an exception has been caught by this try/catch block.
6948    */
6949   bool HasCaught() const;
6950 
6951   /**
6952    * For certain types of exceptions, it makes no sense to continue execution.
6953    *
6954    * If CanContinue returns false, the correct action is to perform any C++
6955    * cleanup needed and then return.  If CanContinue returns false and
6956    * HasTerminated returns true, it is possible to call
6957    * CancelTerminateExecution in order to continue calling into the engine.
6958    */
6959   bool CanContinue() const;
6960 
6961   /**
6962    * Returns true if an exception has been caught due to script execution
6963    * being terminated.
6964    *
6965    * There is no JavaScript representation of an execution termination
6966    * exception.  Such exceptions are thrown when the TerminateExecution
6967    * methods are called to terminate a long-running script.
6968    *
6969    * If such an exception has been thrown, HasTerminated will return true,
6970    * indicating that it is possible to call CancelTerminateExecution in order
6971    * to continue calling into the engine.
6972    */
6973   bool HasTerminated() const;
6974 
6975   /**
6976    * Throws the exception caught by this TryCatch in a way that avoids
6977    * it being caught again by this same TryCatch.  As with ThrowException
6978    * it is illegal to execute any JavaScript operations after calling
6979    * ReThrow; the caller must return immediately to where the exception
6980    * is caught.
6981    */
6982   Local<Value> ReThrow();
6983 
6984   /**
6985    * Returns the exception caught by this try/catch block.  If no exception has
6986    * been caught an empty handle is returned.
6987    *
6988    * The returned handle is valid until this TryCatch block has been destroyed.
6989    */
6990   Local<Value> Exception() const;
6991 
6992   /**
6993    * Returns the .stack property of the thrown object.  If no .stack
6994    * property is present an empty handle is returned.
6995    */
6996   V8_DEPRECATE_SOON("Use maybe version.", Local<Value> StackTrace() const);
6997   V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace(
6998       Local<Context> context) const;
6999 
7000   /**
7001    * Returns the message associated with this exception.  If there is
7002    * no message associated an empty handle is returned.
7003    *
7004    * The returned handle is valid until this TryCatch block has been
7005    * destroyed.
7006    */
7007   Local<v8::Message> Message() const;
7008 
7009   /**
7010    * Clears any exceptions that may have been caught by this try/catch block.
7011    * After this method has been called, HasCaught() will return false. Cancels
7012    * the scheduled exception if it is caught and ReThrow() is not called before.
7013    *
7014    * It is not necessary to clear a try/catch block before using it again; if
7015    * another exception is thrown the previously caught exception will just be
7016    * overwritten.  However, it is often a good idea since it makes it easier
7017    * to determine which operation threw a given exception.
7018    */
7019   void Reset();
7020 
7021   /**
7022    * Set verbosity of the external exception handler.
7023    *
7024    * By default, exceptions that are caught by an external exception
7025    * handler are not reported.  Call SetVerbose with true on an
7026    * external exception handler to have exceptions caught by the
7027    * handler reported as if they were not caught.
7028    */
7029   void SetVerbose(bool value);
7030 
7031   /**
7032    * Set whether or not this TryCatch should capture a Message object
7033    * which holds source information about where the exception
7034    * occurred.  True by default.
7035    */
7036   void SetCaptureMessage(bool value);
7037 
7038   /**
7039    * There are cases when the raw address of C++ TryCatch object cannot be
7040    * used for comparisons with addresses into the JS stack. The cases are:
7041    * 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
7042    * 2) Address sanitizer allocates local C++ object in the heap when
7043    *    UseAfterReturn mode is enabled.
7044    * This method returns address that can be used for comparisons with
7045    * addresses into the JS stack. When neither simulator nor ASAN's
7046    * UseAfterReturn is enabled, then the address returned will be the address
7047    * of the C++ try catch handler itself.
7048    */
JSStackComparableAddress(v8::TryCatch * handler)7049   static void* JSStackComparableAddress(v8::TryCatch* handler) {
7050     if (handler == NULL) return NULL;
7051     return handler->js_stack_comparable_address_;
7052   }
7053 
7054  private:
7055   void ResetInternal();
7056 
7057   // Make it hard to create heap-allocated TryCatch blocks.
7058   TryCatch(const TryCatch&);
7059   void operator=(const TryCatch&);
7060   void* operator new(size_t size);
7061   void operator delete(void*, size_t);
7062 
7063   v8::internal::Isolate* isolate_;
7064   v8::TryCatch* next_;
7065   void* exception_;
7066   void* message_obj_;
7067   void* js_stack_comparable_address_;
7068   bool is_verbose_ : 1;
7069   bool can_continue_ : 1;
7070   bool capture_message_ : 1;
7071   bool rethrow_ : 1;
7072   bool has_terminated_ : 1;
7073 
7074   friend class v8::internal::Isolate;
7075 };
7076 
7077 
7078 // --- Context ---
7079 
7080 
7081 /**
7082  * A container for extension names.
7083  */
7084 class V8_EXPORT ExtensionConfiguration {
7085  public:
ExtensionConfiguration()7086   ExtensionConfiguration() : name_count_(0), names_(NULL) { }
ExtensionConfiguration(int name_count,const char * names[])7087   ExtensionConfiguration(int name_count, const char* names[])
7088       : name_count_(name_count), names_(names) { }
7089 
begin()7090   const char** begin() const { return &names_[0]; }
end()7091   const char** end()  const { return &names_[name_count_]; }
7092 
7093  private:
7094   const int name_count_;
7095   const char** names_;
7096 };
7097 
7098 
7099 /**
7100  * A sandboxed execution context with its own set of built-in objects
7101  * and functions.
7102  */
7103 class V8_EXPORT Context {
7104  public:
7105   /**
7106    * Returns the global proxy object.
7107    *
7108    * Global proxy object is a thin wrapper whose prototype points to actual
7109    * context's global object with the properties like Object, etc. This is done
7110    * that way for security reasons (for more details see
7111    * https://wiki.mozilla.org/Gecko:SplitWindow).
7112    *
7113    * Please note that changes to global proxy object prototype most probably
7114    * would break VM---v8 expects only global object as a prototype of global
7115    * proxy object.
7116    */
7117   Local<Object> Global();
7118 
7119   /**
7120    * Detaches the global object from its context before
7121    * the global object can be reused to create a new context.
7122    */
7123   void DetachGlobal();
7124 
7125   /**
7126    * Creates a new context and returns a handle to the newly allocated
7127    * context.
7128    *
7129    * \param isolate The isolate in which to create the context.
7130    *
7131    * \param extensions An optional extension configuration containing
7132    * the extensions to be installed in the newly created context.
7133    *
7134    * \param global_template An optional object template from which the
7135    * global object for the newly created context will be created.
7136    *
7137    * \param global_object An optional global object to be reused for
7138    * the newly created context. This global object must have been
7139    * created by a previous call to Context::New with the same global
7140    * template. The state of the global object will be completely reset
7141    * and only object identify will remain.
7142    */
7143   static Local<Context> New(
7144       Isolate* isolate, ExtensionConfiguration* extensions = NULL,
7145       Local<ObjectTemplate> global_template = Local<ObjectTemplate>(),
7146       Local<Value> global_object = Local<Value>(),
7147       size_t context_snapshot_index = 0);
7148 
7149   /**
7150    * Sets the security token for the context.  To access an object in
7151    * another context, the security tokens must match.
7152    */
7153   void SetSecurityToken(Local<Value> token);
7154 
7155   /** Restores the security token to the default value. */
7156   void UseDefaultSecurityToken();
7157 
7158   /** Returns the security token of this context.*/
7159   Local<Value> GetSecurityToken();
7160 
7161   /**
7162    * Enter this context.  After entering a context, all code compiled
7163    * and run is compiled and run in this context.  If another context
7164    * is already entered, this old context is saved so it can be
7165    * restored when the new context is exited.
7166    */
7167   void Enter();
7168 
7169   /**
7170    * Exit this context.  Exiting the current context restores the
7171    * context that was in place when entering the current context.
7172    */
7173   void Exit();
7174 
7175   /** Returns an isolate associated with a current context. */
7176   v8::Isolate* GetIsolate();
7177 
7178   /**
7179    * The field at kDebugIdIndex is reserved for V8 debugger implementation.
7180    * The value is propagated to the scripts compiled in given Context and
7181    * can be used for filtering scripts.
7182    */
7183   enum EmbedderDataFields { kDebugIdIndex = 0 };
7184 
7185   /**
7186    * Gets the embedder data with the given index, which must have been set by a
7187    * previous call to SetEmbedderData with the same index. Note that index 0
7188    * currently has a special meaning for Chrome's debugger.
7189    */
7190   V8_INLINE Local<Value> GetEmbedderData(int index);
7191 
7192   /**
7193    * Gets the binding object used by V8 extras. Extra natives get a reference
7194    * to this object and can use it to "export" functionality by adding
7195    * properties. Extra natives can also "import" functionality by accessing
7196    * properties added by the embedder using the V8 API.
7197    */
7198   Local<Object> GetExtrasBindingObject();
7199 
7200   /**
7201    * Sets the embedder data with the given index, growing the data as
7202    * needed. Note that index 0 currently has a special meaning for Chrome's
7203    * debugger.
7204    */
7205   void SetEmbedderData(int index, Local<Value> value);
7206 
7207   /**
7208    * Gets a 2-byte-aligned native pointer from the embedder data with the given
7209    * index, which must have bees set by a previous call to
7210    * SetAlignedPointerInEmbedderData with the same index. Note that index 0
7211    * currently has a special meaning for Chrome's debugger.
7212    */
7213   V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
7214 
7215   /**
7216    * Sets a 2-byte-aligned native pointer in the embedder data with the given
7217    * index, growing the data as needed. Note that index 0 currently has a
7218    * special meaning for Chrome's debugger.
7219    */
7220   void SetAlignedPointerInEmbedderData(int index, void* value);
7221 
7222   /**
7223    * Control whether code generation from strings is allowed. Calling
7224    * this method with false will disable 'eval' and the 'Function'
7225    * constructor for code running in this context. If 'eval' or the
7226    * 'Function' constructor are used an exception will be thrown.
7227    *
7228    * If code generation from strings is not allowed the
7229    * V8::AllowCodeGenerationFromStrings callback will be invoked if
7230    * set before blocking the call to 'eval' or the 'Function'
7231    * constructor. If that callback returns true, the call will be
7232    * allowed, otherwise an exception will be thrown. If no callback is
7233    * set an exception will be thrown.
7234    */
7235   void AllowCodeGenerationFromStrings(bool allow);
7236 
7237   /**
7238    * Returns true if code generation from strings is allowed for the context.
7239    * For more details see AllowCodeGenerationFromStrings(bool) documentation.
7240    */
7241   bool IsCodeGenerationFromStringsAllowed();
7242 
7243   /**
7244    * Sets the error description for the exception that is thrown when
7245    * code generation from strings is not allowed and 'eval' or the 'Function'
7246    * constructor are called.
7247    */
7248   void SetErrorMessageForCodeGenerationFromStrings(Local<String> message);
7249 
7250   /**
7251    * Estimate the memory in bytes retained by this context.
7252    */
7253   size_t EstimatedSize();
7254 
7255   /**
7256    * Stack-allocated class which sets the execution context for all
7257    * operations executed within a local scope.
7258    */
7259   class Scope {
7260    public:
Scope(Local<Context> context)7261     explicit V8_INLINE Scope(Local<Context> context) : context_(context) {
7262       context_->Enter();
7263     }
~Scope()7264     V8_INLINE ~Scope() { context_->Exit(); }
7265 
7266    private:
7267     Local<Context> context_;
7268   };
7269 
7270  private:
7271   friend class Value;
7272   friend class Script;
7273   friend class Object;
7274   friend class Function;
7275 
7276   Local<Value> SlowGetEmbedderData(int index);
7277   void* SlowGetAlignedPointerFromEmbedderData(int index);
7278 };
7279 
7280 
7281 /**
7282  * Multiple threads in V8 are allowed, but only one thread at a time is allowed
7283  * to use any given V8 isolate, see the comments in the Isolate class. The
7284  * definition of 'using a V8 isolate' includes accessing handles or holding onto
7285  * object pointers obtained from V8 handles while in the particular V8 isolate.
7286  * It is up to the user of V8 to ensure, perhaps with locking, that this
7287  * constraint is not violated. In addition to any other synchronization
7288  * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
7289  * used to signal thead switches to V8.
7290  *
7291  * v8::Locker is a scoped lock object. While it's active, i.e. between its
7292  * construction and destruction, the current thread is allowed to use the locked
7293  * isolate. V8 guarantees that an isolate can be locked by at most one thread at
7294  * any time. In other words, the scope of a v8::Locker is a critical section.
7295  *
7296  * Sample usage:
7297 * \code
7298  * ...
7299  * {
7300  *   v8::Locker locker(isolate);
7301  *   v8::Isolate::Scope isolate_scope(isolate);
7302  *   ...
7303  *   // Code using V8 and isolate goes here.
7304  *   ...
7305  * } // Destructor called here
7306  * \endcode
7307  *
7308  * If you wish to stop using V8 in a thread A you can do this either by
7309  * destroying the v8::Locker object as above or by constructing a v8::Unlocker
7310  * object:
7311  *
7312  * \code
7313  * {
7314  *   isolate->Exit();
7315  *   v8::Unlocker unlocker(isolate);
7316  *   ...
7317  *   // Code not using V8 goes here while V8 can run in another thread.
7318  *   ...
7319  * } // Destructor called here.
7320  * isolate->Enter();
7321  * \endcode
7322  *
7323  * The Unlocker object is intended for use in a long-running callback from V8,
7324  * where you want to release the V8 lock for other threads to use.
7325  *
7326  * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
7327  * given thread. This can be useful if you have code that can be called either
7328  * from code that holds the lock or from code that does not. The Unlocker is
7329  * not recursive so you can not have several Unlockers on the stack at once, and
7330  * you can not use an Unlocker in a thread that is not inside a Locker's scope.
7331  *
7332  * An unlocker will unlock several lockers if it has to and reinstate the
7333  * correct depth of locking on its destruction, e.g.:
7334  *
7335  * \code
7336  * // V8 not locked.
7337  * {
7338  *   v8::Locker locker(isolate);
7339  *   Isolate::Scope isolate_scope(isolate);
7340  *   // V8 locked.
7341  *   {
7342  *     v8::Locker another_locker(isolate);
7343  *     // V8 still locked (2 levels).
7344  *     {
7345  *       isolate->Exit();
7346  *       v8::Unlocker unlocker(isolate);
7347  *       // V8 not locked.
7348  *     }
7349  *     isolate->Enter();
7350  *     // V8 locked again (2 levels).
7351  *   }
7352  *   // V8 still locked (1 level).
7353  * }
7354  * // V8 Now no longer locked.
7355  * \endcode
7356  */
7357 class V8_EXPORT Unlocker {
7358  public:
7359   /**
7360    * Initialize Unlocker for a given Isolate.
7361    */
Unlocker(Isolate * isolate)7362   V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
7363 
7364   ~Unlocker();
7365  private:
7366   void Initialize(Isolate* isolate);
7367 
7368   internal::Isolate* isolate_;
7369 };
7370 
7371 
7372 class V8_EXPORT Locker {
7373  public:
7374   /**
7375    * Initialize Locker for a given Isolate.
7376    */
Locker(Isolate * isolate)7377   V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
7378 
7379   ~Locker();
7380 
7381   /**
7382    * Returns whether or not the locker for a given isolate, is locked by the
7383    * current thread.
7384    */
7385   static bool IsLocked(Isolate* isolate);
7386 
7387   /**
7388    * Returns whether v8::Locker is being used by this V8 instance.
7389    */
7390   static bool IsActive();
7391 
7392  private:
7393   void Initialize(Isolate* isolate);
7394 
7395   bool has_lock_;
7396   bool top_level_;
7397   internal::Isolate* isolate_;
7398 
7399   // Disallow copying and assigning.
7400   Locker(const Locker&);
7401   void operator=(const Locker&);
7402 };
7403 
7404 
7405 // --- Implementation ---
7406 
7407 
7408 namespace internal {
7409 
7410 const int kApiPointerSize = sizeof(void*);  // NOLINT
7411 const int kApiIntSize = sizeof(int);  // NOLINT
7412 const int kApiInt64Size = sizeof(int64_t);  // NOLINT
7413 
7414 // Tag information for HeapObject.
7415 const int kHeapObjectTag = 1;
7416 const int kHeapObjectTagSize = 2;
7417 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
7418 
7419 // Tag information for Smi.
7420 const int kSmiTag = 0;
7421 const int kSmiTagSize = 1;
7422 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
7423 
7424 template <size_t ptr_size> struct SmiTagging;
7425 
7426 template<int kSmiShiftSize>
IntToSmi(int value)7427 V8_INLINE internal::Object* IntToSmi(int value) {
7428   int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
7429   uintptr_t tagged_value =
7430       (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
7431   return reinterpret_cast<internal::Object*>(tagged_value);
7432 }
7433 
7434 // Smi constants for 32-bit systems.
7435 template <> struct SmiTagging<4> {
7436   enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
7437   static int SmiShiftSize() { return kSmiShiftSize; }
7438   static int SmiValueSize() { return kSmiValueSize; }
7439   V8_INLINE static int SmiToInt(const internal::Object* value) {
7440     int shift_bits = kSmiTagSize + kSmiShiftSize;
7441     // Throw away top 32 bits and shift down (requires >> to be sign extending).
7442     return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
7443   }
7444   V8_INLINE static internal::Object* IntToSmi(int value) {
7445     return internal::IntToSmi<kSmiShiftSize>(value);
7446   }
7447   V8_INLINE static bool IsValidSmi(intptr_t value) {
7448     // To be representable as an tagged small integer, the two
7449     // most-significant bits of 'value' must be either 00 or 11 due to
7450     // sign-extension. To check this we add 01 to the two
7451     // most-significant bits, and check if the most-significant bit is 0
7452     //
7453     // CAUTION: The original code below:
7454     // bool result = ((value + 0x40000000) & 0x80000000) == 0;
7455     // may lead to incorrect results according to the C language spec, and
7456     // in fact doesn't work correctly with gcc4.1.1 in some cases: The
7457     // compiler may produce undefined results in case of signed integer
7458     // overflow. The computation must be done w/ unsigned ints.
7459     return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
7460   }
7461 };
7462 
7463 // Smi constants for 64-bit systems.
7464 template <> struct SmiTagging<8> {
7465   enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
7466   static int SmiShiftSize() { return kSmiShiftSize; }
7467   static int SmiValueSize() { return kSmiValueSize; }
7468   V8_INLINE static int SmiToInt(const internal::Object* value) {
7469     int shift_bits = kSmiTagSize + kSmiShiftSize;
7470     // Shift down and throw away top 32 bits.
7471     return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
7472   }
7473   V8_INLINE static internal::Object* IntToSmi(int value) {
7474     return internal::IntToSmi<kSmiShiftSize>(value);
7475   }
7476   V8_INLINE static bool IsValidSmi(intptr_t value) {
7477     // To be representable as a long smi, the value must be a 32-bit integer.
7478     return (value == static_cast<int32_t>(value));
7479   }
7480 };
7481 
7482 typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
7483 const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
7484 const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
7485 V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
7486 V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
7487 
7488 /**
7489  * This class exports constants and functionality from within v8 that
7490  * is necessary to implement inline functions in the v8 api.  Don't
7491  * depend on functions and constants defined here.
7492  */
7493 class Internals {
7494  public:
7495   // These values match non-compiler-dependent values defined within
7496   // the implementation of v8.
7497   static const int kHeapObjectMapOffset = 0;
7498   static const int kMapInstanceTypeAndBitFieldOffset =
7499       1 * kApiPointerSize + kApiIntSize;
7500   static const int kStringResourceOffset = 3 * kApiPointerSize;
7501 
7502   static const int kOddballKindOffset = 5 * kApiPointerSize + sizeof(double);
7503   static const int kForeignAddressOffset = kApiPointerSize;
7504   static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
7505   static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
7506   static const int kContextHeaderSize = 2 * kApiPointerSize;
7507   static const int kContextEmbedderDataIndex = 5;
7508   static const int kFullStringRepresentationMask = 0x07;
7509   static const int kStringEncodingMask = 0x4;
7510   static const int kExternalTwoByteRepresentationTag = 0x02;
7511   static const int kExternalOneByteRepresentationTag = 0x06;
7512 
7513   static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
7514   static const int kExternalMemoryOffset = 4 * kApiPointerSize;
7515   static const int kExternalMemoryLimitOffset =
7516       kExternalMemoryOffset + kApiInt64Size;
7517   static const int kIsolateRootsOffset = kExternalMemoryLimitOffset +
7518                                          kApiInt64Size + kApiInt64Size +
7519                                          kApiPointerSize + kApiPointerSize;
7520   static const int kUndefinedValueRootIndex = 4;
7521   static const int kTheHoleValueRootIndex = 5;
7522   static const int kNullValueRootIndex = 6;
7523   static const int kTrueValueRootIndex = 7;
7524   static const int kFalseValueRootIndex = 8;
7525   static const int kEmptyStringRootIndex = 9;
7526 
7527   static const int kNodeClassIdOffset = 1 * kApiPointerSize;
7528   static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
7529   static const int kNodeStateMask = 0x7;
7530   static const int kNodeStateIsWeakValue = 2;
7531   static const int kNodeStateIsPendingValue = 3;
7532   static const int kNodeStateIsNearDeathValue = 4;
7533   static const int kNodeIsIndependentShift = 3;
7534   static const int kNodeIsPartiallyDependentShift = 4;
7535   static const int kNodeIsActiveShift = 4;
7536 
7537   static const int kJSObjectType = 0xb7;
7538   static const int kJSApiObjectType = 0xb6;
7539   static const int kFirstNonstringType = 0x80;
7540   static const int kOddballType = 0x83;
7541   static const int kForeignType = 0x87;
7542 
7543   static const int kUndefinedOddballKind = 5;
7544   static const int kNullOddballKind = 3;
7545 
7546   static const uint32_t kNumIsolateDataSlots = 4;
7547 
7548   V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
7549   V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
7550 #ifdef V8_ENABLE_CHECKS
7551     CheckInitializedImpl(isolate);
7552 #endif
7553   }
7554 
7555   V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
7556     return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
7557             kHeapObjectTag);
7558   }
7559 
7560   V8_INLINE static int SmiValue(const internal::Object* value) {
7561     return PlatformSmiTagging::SmiToInt(value);
7562   }
7563 
7564   V8_INLINE static internal::Object* IntToSmi(int value) {
7565     return PlatformSmiTagging::IntToSmi(value);
7566   }
7567 
7568   V8_INLINE static bool IsValidSmi(intptr_t value) {
7569     return PlatformSmiTagging::IsValidSmi(value);
7570   }
7571 
7572   V8_INLINE static int GetInstanceType(const internal::Object* obj) {
7573     typedef internal::Object O;
7574     O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
7575     // Map::InstanceType is defined so that it will always be loaded into
7576     // the LS 8 bits of one 16-bit word, regardless of endianess.
7577     return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff;
7578   }
7579 
7580   V8_INLINE static int GetOddballKind(const internal::Object* obj) {
7581     typedef internal::Object O;
7582     return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
7583   }
7584 
7585   V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
7586     int representation = (instance_type & kFullStringRepresentationMask);
7587     return representation == kExternalTwoByteRepresentationTag;
7588   }
7589 
7590   V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
7591       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7592       return *addr & static_cast<uint8_t>(1U << shift);
7593   }
7594 
7595   V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
7596                                        bool value, int shift) {
7597       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7598       uint8_t mask = static_cast<uint8_t>(1U << shift);
7599       *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
7600   }
7601 
7602   V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
7603     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7604     return *addr & kNodeStateMask;
7605   }
7606 
7607   V8_INLINE static void UpdateNodeState(internal::Object** obj,
7608                                         uint8_t value) {
7609     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
7610     *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
7611   }
7612 
7613   V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
7614                                         uint32_t slot,
7615                                         void* data) {
7616     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
7617                     kIsolateEmbedderDataOffset + slot * kApiPointerSize;
7618     *reinterpret_cast<void**>(addr) = data;
7619   }
7620 
7621   V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
7622                                          uint32_t slot) {
7623     const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
7624         kIsolateEmbedderDataOffset + slot * kApiPointerSize;
7625     return *reinterpret_cast<void* const*>(addr);
7626   }
7627 
7628   V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
7629                                               int index) {
7630     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
7631     return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
7632   }
7633 
7634   template <typename T>
7635   V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
7636     const uint8_t* addr =
7637         reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
7638     return *reinterpret_cast<const T*>(addr);
7639   }
7640 
7641   template <typename T>
7642   V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
7643     typedef internal::Object O;
7644     typedef internal::Internals I;
7645     O* ctx = *reinterpret_cast<O* const*>(context);
7646     int embedder_data_offset = I::kContextHeaderSize +
7647         (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
7648     O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
7649     int value_offset =
7650         I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
7651     return I::ReadField<T>(embedder_data, value_offset);
7652   }
7653 };
7654 
7655 }  // namespace internal
7656 
7657 
7658 template <class T>
7659 Local<T> Local<T>::New(Isolate* isolate, Local<T> that) {
7660   return New(isolate, that.val_);
7661 }
7662 
7663 template <class T>
7664 Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
7665   return New(isolate, that.val_);
7666 }
7667 
7668 
7669 template <class T>
7670 Local<T> Local<T>::New(Isolate* isolate, T* that) {
7671   if (that == NULL) return Local<T>();
7672   T* that_ptr = that;
7673   internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
7674   return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
7675       reinterpret_cast<internal::Isolate*>(isolate), *p)));
7676 }
7677 
7678 
7679 template<class T>
7680 template<class S>
7681 void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
7682   TYPE_CHECK(T, S);
7683   V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
7684 }
7685 
7686 
7687 template<class T>
7688 Local<T> Eternal<T>::Get(Isolate* isolate) {
7689   return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
7690 }
7691 
7692 
7693 template <class T>
7694 Local<T> MaybeLocal<T>::ToLocalChecked() {
7695   if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty();
7696   return Local<T>(val_);
7697 }
7698 
7699 
7700 template <class T>
7701 void* WeakCallbackInfo<T>::GetInternalField(int index) const {
7702 #ifdef V8_ENABLE_CHECKS
7703   if (index < 0 || index >= kInternalFieldsInWeakCallback) {
7704     V8::InternalFieldOutOfBounds(index);
7705   }
7706 #endif
7707   return internal_fields_[index];
7708 }
7709 
7710 
7711 template <class T>
7712 T* PersistentBase<T>::New(Isolate* isolate, T* that) {
7713   if (that == NULL) return NULL;
7714   internal::Object** p = reinterpret_cast<internal::Object**>(that);
7715   return reinterpret_cast<T*>(
7716       V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
7717                              p));
7718 }
7719 
7720 
7721 template <class T, class M>
7722 template <class S, class M2>
7723 void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
7724   TYPE_CHECK(T, S);
7725   this->Reset();
7726   if (that.IsEmpty()) return;
7727   internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
7728   this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
7729   M::Copy(that, this);
7730 }
7731 
7732 
7733 template <class T>
7734 bool PersistentBase<T>::IsIndependent() const {
7735   typedef internal::Internals I;
7736   if (this->IsEmpty()) return false;
7737   return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7738                         I::kNodeIsIndependentShift);
7739 }
7740 
7741 
7742 template <class T>
7743 bool PersistentBase<T>::IsNearDeath() const {
7744   typedef internal::Internals I;
7745   if (this->IsEmpty()) return false;
7746   uint8_t node_state =
7747       I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
7748   return node_state == I::kNodeStateIsNearDeathValue ||
7749       node_state == I::kNodeStateIsPendingValue;
7750 }
7751 
7752 
7753 template <class T>
7754 bool PersistentBase<T>::IsWeak() const {
7755   typedef internal::Internals I;
7756   if (this->IsEmpty()) return false;
7757   return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
7758       I::kNodeStateIsWeakValue;
7759 }
7760 
7761 
7762 template <class T>
7763 void PersistentBase<T>::Reset() {
7764   if (this->IsEmpty()) return;
7765   V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
7766   val_ = 0;
7767 }
7768 
7769 
7770 template <class T>
7771 template <class S>
7772 void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) {
7773   TYPE_CHECK(T, S);
7774   Reset();
7775   if (other.IsEmpty()) return;
7776   this->val_ = New(isolate, other.val_);
7777 }
7778 
7779 
7780 template <class T>
7781 template <class S>
7782 void PersistentBase<T>::Reset(Isolate* isolate,
7783                               const PersistentBase<S>& other) {
7784   TYPE_CHECK(T, S);
7785   Reset();
7786   if (other.IsEmpty()) return;
7787   this->val_ = New(isolate, other.val_);
7788 }
7789 
7790 
7791 template <class T>
7792 template <typename P>
7793 V8_INLINE void PersistentBase<T>::SetWeak(
7794     P* parameter, typename WeakCallbackInfo<P>::Callback callback,
7795     WeakCallbackType type) {
7796   typedef typename WeakCallbackInfo<void>::Callback Callback;
7797   V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
7798                reinterpret_cast<Callback>(callback), type);
7799 }
7800 
7801 template <class T>
7802 void PersistentBase<T>::SetWeak() {
7803   V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_));
7804 }
7805 
7806 template <class T>
7807 template <typename P>
7808 P* PersistentBase<T>::ClearWeak() {
7809   return reinterpret_cast<P*>(
7810     V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
7811 }
7812 
7813 template <class T>
7814 void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const {
7815   if (IsEmpty()) return;
7816   V8::RegisterExternallyReferencedObject(
7817       reinterpret_cast<internal::Object**>(this->val_),
7818       reinterpret_cast<internal::Isolate*>(isolate));
7819 }
7820 
7821 template <class T>
7822 void PersistentBase<T>::MarkIndependent() {
7823   typedef internal::Internals I;
7824   if (this->IsEmpty()) return;
7825   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7826                     true,
7827                     I::kNodeIsIndependentShift);
7828 }
7829 
7830 
7831 template <class T>
7832 void PersistentBase<T>::MarkPartiallyDependent() {
7833   typedef internal::Internals I;
7834   if (this->IsEmpty()) return;
7835   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
7836                     true,
7837                     I::kNodeIsPartiallyDependentShift);
7838 }
7839 
7840 
7841 template <class T>
7842 void PersistentBase<T>::MarkActive() {
7843   typedef internal::Internals I;
7844   if (this->IsEmpty()) return;
7845   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true,
7846                     I::kNodeIsActiveShift);
7847 }
7848 
7849 
7850 template <class T>
7851 void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
7852   typedef internal::Internals I;
7853   if (this->IsEmpty()) return;
7854   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
7855   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
7856   *reinterpret_cast<uint16_t*>(addr) = class_id;
7857 }
7858 
7859 
7860 template <class T>
7861 uint16_t PersistentBase<T>::WrapperClassId() const {
7862   typedef internal::Internals I;
7863   if (this->IsEmpty()) return 0;
7864   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
7865   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
7866   return *reinterpret_cast<uint16_t*>(addr);
7867 }
7868 
7869 
7870 template<typename T>
7871 ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
7872 
7873 template<typename T>
7874 template<typename S>
7875 void ReturnValue<T>::Set(const Persistent<S>& handle) {
7876   TYPE_CHECK(T, S);
7877   if (V8_UNLIKELY(handle.IsEmpty())) {
7878     *value_ = GetDefaultValue();
7879   } else {
7880     *value_ = *reinterpret_cast<internal::Object**>(*handle);
7881   }
7882 }
7883 
7884 template <typename T>
7885 template <typename S>
7886 void ReturnValue<T>::Set(const Global<S>& handle) {
7887   TYPE_CHECK(T, S);
7888   if (V8_UNLIKELY(handle.IsEmpty())) {
7889     *value_ = GetDefaultValue();
7890   } else {
7891     *value_ = *reinterpret_cast<internal::Object**>(*handle);
7892   }
7893 }
7894 
7895 template <typename T>
7896 template <typename S>
7897 void ReturnValue<T>::Set(const Local<S> handle) {
7898   TYPE_CHECK(T, S);
7899   if (V8_UNLIKELY(handle.IsEmpty())) {
7900     *value_ = GetDefaultValue();
7901   } else {
7902     *value_ = *reinterpret_cast<internal::Object**>(*handle);
7903   }
7904 }
7905 
7906 template<typename T>
7907 void ReturnValue<T>::Set(double i) {
7908   TYPE_CHECK(T, Number);
7909   Set(Number::New(GetIsolate(), i));
7910 }
7911 
7912 template<typename T>
7913 void ReturnValue<T>::Set(int32_t i) {
7914   TYPE_CHECK(T, Integer);
7915   typedef internal::Internals I;
7916   if (V8_LIKELY(I::IsValidSmi(i))) {
7917     *value_ = I::IntToSmi(i);
7918     return;
7919   }
7920   Set(Integer::New(GetIsolate(), i));
7921 }
7922 
7923 template<typename T>
7924 void ReturnValue<T>::Set(uint32_t i) {
7925   TYPE_CHECK(T, Integer);
7926   // Can't simply use INT32_MAX here for whatever reason.
7927   bool fits_into_int32_t = (i & (1U << 31)) == 0;
7928   if (V8_LIKELY(fits_into_int32_t)) {
7929     Set(static_cast<int32_t>(i));
7930     return;
7931   }
7932   Set(Integer::NewFromUnsigned(GetIsolate(), i));
7933 }
7934 
7935 template<typename T>
7936 void ReturnValue<T>::Set(bool value) {
7937   TYPE_CHECK(T, Boolean);
7938   typedef internal::Internals I;
7939   int root_index;
7940   if (value) {
7941     root_index = I::kTrueValueRootIndex;
7942   } else {
7943     root_index = I::kFalseValueRootIndex;
7944   }
7945   *value_ = *I::GetRoot(GetIsolate(), root_index);
7946 }
7947 
7948 template<typename T>
7949 void ReturnValue<T>::SetNull() {
7950   TYPE_CHECK(T, Primitive);
7951   typedef internal::Internals I;
7952   *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
7953 }
7954 
7955 template<typename T>
7956 void ReturnValue<T>::SetUndefined() {
7957   TYPE_CHECK(T, Primitive);
7958   typedef internal::Internals I;
7959   *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
7960 }
7961 
7962 template<typename T>
7963 void ReturnValue<T>::SetEmptyString() {
7964   TYPE_CHECK(T, String);
7965   typedef internal::Internals I;
7966   *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
7967 }
7968 
7969 template <typename T>
7970 Isolate* ReturnValue<T>::GetIsolate() const {
7971   // Isolate is always the pointer below the default value on the stack.
7972   return *reinterpret_cast<Isolate**>(&value_[-2]);
7973 }
7974 
7975 template <typename T>
7976 Local<Value> ReturnValue<T>::Get() const {
7977   typedef internal::Internals I;
7978   if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex))
7979     return Local<Value>(*Undefined(GetIsolate()));
7980   return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_));
7981 }
7982 
7983 template <typename T>
7984 template <typename S>
7985 void ReturnValue<T>::Set(S* whatever) {
7986   // Uncompilable to prevent inadvertent misuse.
7987   TYPE_CHECK(S*, Primitive);
7988 }
7989 
7990 template<typename T>
7991 internal::Object* ReturnValue<T>::GetDefaultValue() {
7992   // Default value is always the pointer below value_ on the stack.
7993   return value_[-1];
7994 }
7995 
7996 template <typename T>
7997 FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
7998                                               internal::Object** values,
7999                                               int length)
8000     : implicit_args_(implicit_args), values_(values), length_(length) {}
8001 
8002 template<typename T>
8003 Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
8004   if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
8005   return Local<Value>(reinterpret_cast<Value*>(values_ - i));
8006 }
8007 
8008 
8009 template<typename T>
8010 Local<Function> FunctionCallbackInfo<T>::Callee() const {
8011   return Local<Function>(reinterpret_cast<Function*>(
8012       &implicit_args_[kCalleeIndex]));
8013 }
8014 
8015 
8016 template<typename T>
8017 Local<Object> FunctionCallbackInfo<T>::This() const {
8018   return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
8019 }
8020 
8021 
8022 template<typename T>
8023 Local<Object> FunctionCallbackInfo<T>::Holder() const {
8024   return Local<Object>(reinterpret_cast<Object*>(
8025       &implicit_args_[kHolderIndex]));
8026 }
8027 
8028 template <typename T>
8029 Local<Value> FunctionCallbackInfo<T>::NewTarget() const {
8030   return Local<Value>(
8031       reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex]));
8032 }
8033 
8034 template <typename T>
8035 Local<Value> FunctionCallbackInfo<T>::Data() const {
8036   return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
8037 }
8038 
8039 
8040 template<typename T>
8041 Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
8042   return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
8043 }
8044 
8045 
8046 template<typename T>
8047 ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
8048   return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
8049 }
8050 
8051 
8052 template<typename T>
8053 bool FunctionCallbackInfo<T>::IsConstructCall() const {
8054   return !NewTarget()->IsUndefined();
8055 }
8056 
8057 
8058 template<typename T>
8059 int FunctionCallbackInfo<T>::Length() const {
8060   return length_;
8061 }
8062 
8063 ScriptOrigin::ScriptOrigin(Local<Value> resource_name,
8064                            Local<Integer> resource_line_offset,
8065                            Local<Integer> resource_column_offset,
8066                            Local<Boolean> resource_is_shared_cross_origin,
8067                            Local<Integer> script_id,
8068                            Local<Boolean> resource_is_embedder_debug_script,
8069                            Local<Value> source_map_url,
8070                            Local<Boolean> resource_is_opaque)
8071     : resource_name_(resource_name),
8072       resource_line_offset_(resource_line_offset),
8073       resource_column_offset_(resource_column_offset),
8074       options_(!resource_is_embedder_debug_script.IsEmpty() &&
8075                    resource_is_embedder_debug_script->IsTrue(),
8076                !resource_is_shared_cross_origin.IsEmpty() &&
8077                    resource_is_shared_cross_origin->IsTrue(),
8078                !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue()),
8079       script_id_(script_id),
8080       source_map_url_(source_map_url) {}
8081 
8082 Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
8083 
8084 
8085 Local<Integer> ScriptOrigin::ResourceLineOffset() const {
8086   return resource_line_offset_;
8087 }
8088 
8089 
8090 Local<Integer> ScriptOrigin::ResourceColumnOffset() const {
8091   return resource_column_offset_;
8092 }
8093 
8094 
8095 Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
8096 
8097 
8098 Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; }
8099 
8100 
8101 ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
8102                                CachedData* data)
8103     : source_string(string),
8104       resource_name(origin.ResourceName()),
8105       resource_line_offset(origin.ResourceLineOffset()),
8106       resource_column_offset(origin.ResourceColumnOffset()),
8107       resource_options(origin.Options()),
8108       source_map_url(origin.SourceMapUrl()),
8109       cached_data(data) {}
8110 
8111 
8112 ScriptCompiler::Source::Source(Local<String> string,
8113                                CachedData* data)
8114     : source_string(string), cached_data(data) {}
8115 
8116 
8117 ScriptCompiler::Source::~Source() {
8118   delete cached_data;
8119 }
8120 
8121 
8122 const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
8123     const {
8124   return cached_data;
8125 }
8126 
8127 
8128 Local<Boolean> Boolean::New(Isolate* isolate, bool value) {
8129   return value ? True(isolate) : False(isolate);
8130 }
8131 
8132 
8133 void Template::Set(Isolate* isolate, const char* name, v8::Local<Data> value) {
8134   Set(v8::String::NewFromUtf8(isolate, name, NewStringType::kNormal)
8135           .ToLocalChecked(),
8136       value);
8137 }
8138 
8139 
8140 Local<Value> Object::GetInternalField(int index) {
8141 #ifndef V8_ENABLE_CHECKS
8142   typedef internal::Object O;
8143   typedef internal::HeapObject HO;
8144   typedef internal::Internals I;
8145   O* obj = *reinterpret_cast<O**>(this);
8146   // Fast path: If the object is a plain JSObject, which is the common case, we
8147   // know where to find the internal fields and can return the value directly.
8148   auto instance_type = I::GetInstanceType(obj);
8149   if (instance_type == I::kJSObjectType ||
8150       instance_type == I::kJSApiObjectType) {
8151     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
8152     O* value = I::ReadField<O*>(obj, offset);
8153     O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
8154     return Local<Value>(reinterpret_cast<Value*>(result));
8155   }
8156 #endif
8157   return SlowGetInternalField(index);
8158 }
8159 
8160 
8161 void* Object::GetAlignedPointerFromInternalField(int index) {
8162 #ifndef V8_ENABLE_CHECKS
8163   typedef internal::Object O;
8164   typedef internal::Internals I;
8165   O* obj = *reinterpret_cast<O**>(this);
8166   // Fast path: If the object is a plain JSObject, which is the common case, we
8167   // know where to find the internal fields and can return the value directly.
8168   auto instance_type = I::GetInstanceType(obj);
8169   if (V8_LIKELY(instance_type == I::kJSObjectType ||
8170                 instance_type == I::kJSApiObjectType)) {
8171     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
8172     return I::ReadField<void*>(obj, offset);
8173   }
8174 #endif
8175   return SlowGetAlignedPointerFromInternalField(index);
8176 }
8177 
8178 
8179 String* String::Cast(v8::Value* value) {
8180 #ifdef V8_ENABLE_CHECKS
8181   CheckCast(value);
8182 #endif
8183   return static_cast<String*>(value);
8184 }
8185 
8186 
8187 Local<String> String::Empty(Isolate* isolate) {
8188   typedef internal::Object* S;
8189   typedef internal::Internals I;
8190   I::CheckInitialized(isolate);
8191   S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
8192   return Local<String>(reinterpret_cast<String*>(slot));
8193 }
8194 
8195 
8196 String::ExternalStringResource* String::GetExternalStringResource() const {
8197   typedef internal::Object O;
8198   typedef internal::Internals I;
8199   O* obj = *reinterpret_cast<O* const*>(this);
8200   String::ExternalStringResource* result;
8201   if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
8202     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
8203     result = reinterpret_cast<String::ExternalStringResource*>(value);
8204   } else {
8205     result = NULL;
8206   }
8207 #ifdef V8_ENABLE_CHECKS
8208   VerifyExternalStringResource(result);
8209 #endif
8210   return result;
8211 }
8212 
8213 
8214 String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
8215     String::Encoding* encoding_out) const {
8216   typedef internal::Object O;
8217   typedef internal::Internals I;
8218   O* obj = *reinterpret_cast<O* const*>(this);
8219   int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
8220   *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
8221   ExternalStringResourceBase* resource = NULL;
8222   if (type == I::kExternalOneByteRepresentationTag ||
8223       type == I::kExternalTwoByteRepresentationTag) {
8224     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
8225     resource = static_cast<ExternalStringResourceBase*>(value);
8226   }
8227 #ifdef V8_ENABLE_CHECKS
8228     VerifyExternalStringResourceBase(resource, *encoding_out);
8229 #endif
8230   return resource;
8231 }
8232 
8233 
8234 bool Value::IsUndefined() const {
8235 #ifdef V8_ENABLE_CHECKS
8236   return FullIsUndefined();
8237 #else
8238   return QuickIsUndefined();
8239 #endif
8240 }
8241 
8242 bool Value::QuickIsUndefined() const {
8243   typedef internal::Object O;
8244   typedef internal::Internals I;
8245   O* obj = *reinterpret_cast<O* const*>(this);
8246   if (!I::HasHeapObjectTag(obj)) return false;
8247   if (I::GetInstanceType(obj) != I::kOddballType) return false;
8248   return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
8249 }
8250 
8251 
8252 bool Value::IsNull() const {
8253 #ifdef V8_ENABLE_CHECKS
8254   return FullIsNull();
8255 #else
8256   return QuickIsNull();
8257 #endif
8258 }
8259 
8260 bool Value::QuickIsNull() const {
8261   typedef internal::Object O;
8262   typedef internal::Internals I;
8263   O* obj = *reinterpret_cast<O* const*>(this);
8264   if (!I::HasHeapObjectTag(obj)) return false;
8265   if (I::GetInstanceType(obj) != I::kOddballType) return false;
8266   return (I::GetOddballKind(obj) == I::kNullOddballKind);
8267 }
8268 
8269 
8270 bool Value::IsString() const {
8271 #ifdef V8_ENABLE_CHECKS
8272   return FullIsString();
8273 #else
8274   return QuickIsString();
8275 #endif
8276 }
8277 
8278 bool Value::QuickIsString() const {
8279   typedef internal::Object O;
8280   typedef internal::Internals I;
8281   O* obj = *reinterpret_cast<O* const*>(this);
8282   if (!I::HasHeapObjectTag(obj)) return false;
8283   return (I::GetInstanceType(obj) < I::kFirstNonstringType);
8284 }
8285 
8286 
8287 template <class T> Value* Value::Cast(T* value) {
8288   return static_cast<Value*>(value);
8289 }
8290 
8291 
8292 Local<Boolean> Value::ToBoolean() const {
8293   return ToBoolean(Isolate::GetCurrent()->GetCurrentContext())
8294       .FromMaybe(Local<Boolean>());
8295 }
8296 
8297 
8298 Local<Number> Value::ToNumber() const {
8299   return ToNumber(Isolate::GetCurrent()->GetCurrentContext())
8300       .FromMaybe(Local<Number>());
8301 }
8302 
8303 
8304 Local<String> Value::ToString() const {
8305   return ToString(Isolate::GetCurrent()->GetCurrentContext())
8306       .FromMaybe(Local<String>());
8307 }
8308 
8309 
8310 Local<String> Value::ToDetailString() const {
8311   return ToDetailString(Isolate::GetCurrent()->GetCurrentContext())
8312       .FromMaybe(Local<String>());
8313 }
8314 
8315 
8316 Local<Object> Value::ToObject() const {
8317   return ToObject(Isolate::GetCurrent()->GetCurrentContext())
8318       .FromMaybe(Local<Object>());
8319 }
8320 
8321 
8322 Local<Integer> Value::ToInteger() const {
8323   return ToInteger(Isolate::GetCurrent()->GetCurrentContext())
8324       .FromMaybe(Local<Integer>());
8325 }
8326 
8327 
8328 Local<Uint32> Value::ToUint32() const {
8329   return ToUint32(Isolate::GetCurrent()->GetCurrentContext())
8330       .FromMaybe(Local<Uint32>());
8331 }
8332 
8333 
8334 Local<Int32> Value::ToInt32() const {
8335   return ToInt32(Isolate::GetCurrent()->GetCurrentContext())
8336       .FromMaybe(Local<Int32>());
8337 }
8338 
8339 
8340 Boolean* Boolean::Cast(v8::Value* value) {
8341 #ifdef V8_ENABLE_CHECKS
8342   CheckCast(value);
8343 #endif
8344   return static_cast<Boolean*>(value);
8345 }
8346 
8347 
8348 Name* Name::Cast(v8::Value* value) {
8349 #ifdef V8_ENABLE_CHECKS
8350   CheckCast(value);
8351 #endif
8352   return static_cast<Name*>(value);
8353 }
8354 
8355 
8356 Symbol* Symbol::Cast(v8::Value* value) {
8357 #ifdef V8_ENABLE_CHECKS
8358   CheckCast(value);
8359 #endif
8360   return static_cast<Symbol*>(value);
8361 }
8362 
8363 
8364 Number* Number::Cast(v8::Value* value) {
8365 #ifdef V8_ENABLE_CHECKS
8366   CheckCast(value);
8367 #endif
8368   return static_cast<Number*>(value);
8369 }
8370 
8371 
8372 Integer* Integer::Cast(v8::Value* value) {
8373 #ifdef V8_ENABLE_CHECKS
8374   CheckCast(value);
8375 #endif
8376   return static_cast<Integer*>(value);
8377 }
8378 
8379 
8380 Int32* Int32::Cast(v8::Value* value) {
8381 #ifdef V8_ENABLE_CHECKS
8382   CheckCast(value);
8383 #endif
8384   return static_cast<Int32*>(value);
8385 }
8386 
8387 
8388 Uint32* Uint32::Cast(v8::Value* value) {
8389 #ifdef V8_ENABLE_CHECKS
8390   CheckCast(value);
8391 #endif
8392   return static_cast<Uint32*>(value);
8393 }
8394 
8395 
8396 Date* Date::Cast(v8::Value* value) {
8397 #ifdef V8_ENABLE_CHECKS
8398   CheckCast(value);
8399 #endif
8400   return static_cast<Date*>(value);
8401 }
8402 
8403 
8404 StringObject* StringObject::Cast(v8::Value* value) {
8405 #ifdef V8_ENABLE_CHECKS
8406   CheckCast(value);
8407 #endif
8408   return static_cast<StringObject*>(value);
8409 }
8410 
8411 
8412 SymbolObject* SymbolObject::Cast(v8::Value* value) {
8413 #ifdef V8_ENABLE_CHECKS
8414   CheckCast(value);
8415 #endif
8416   return static_cast<SymbolObject*>(value);
8417 }
8418 
8419 
8420 NumberObject* NumberObject::Cast(v8::Value* value) {
8421 #ifdef V8_ENABLE_CHECKS
8422   CheckCast(value);
8423 #endif
8424   return static_cast<NumberObject*>(value);
8425 }
8426 
8427 
8428 BooleanObject* BooleanObject::Cast(v8::Value* value) {
8429 #ifdef V8_ENABLE_CHECKS
8430   CheckCast(value);
8431 #endif
8432   return static_cast<BooleanObject*>(value);
8433 }
8434 
8435 
8436 RegExp* RegExp::Cast(v8::Value* value) {
8437 #ifdef V8_ENABLE_CHECKS
8438   CheckCast(value);
8439 #endif
8440   return static_cast<RegExp*>(value);
8441 }
8442 
8443 
8444 Object* Object::Cast(v8::Value* value) {
8445 #ifdef V8_ENABLE_CHECKS
8446   CheckCast(value);
8447 #endif
8448   return static_cast<Object*>(value);
8449 }
8450 
8451 
8452 Array* Array::Cast(v8::Value* value) {
8453 #ifdef V8_ENABLE_CHECKS
8454   CheckCast(value);
8455 #endif
8456   return static_cast<Array*>(value);
8457 }
8458 
8459 
8460 Map* Map::Cast(v8::Value* value) {
8461 #ifdef V8_ENABLE_CHECKS
8462   CheckCast(value);
8463 #endif
8464   return static_cast<Map*>(value);
8465 }
8466 
8467 
8468 Set* Set::Cast(v8::Value* value) {
8469 #ifdef V8_ENABLE_CHECKS
8470   CheckCast(value);
8471 #endif
8472   return static_cast<Set*>(value);
8473 }
8474 
8475 
8476 Promise* Promise::Cast(v8::Value* value) {
8477 #ifdef V8_ENABLE_CHECKS
8478   CheckCast(value);
8479 #endif
8480   return static_cast<Promise*>(value);
8481 }
8482 
8483 
8484 Proxy* Proxy::Cast(v8::Value* value) {
8485 #ifdef V8_ENABLE_CHECKS
8486   CheckCast(value);
8487 #endif
8488   return static_cast<Proxy*>(value);
8489 }
8490 
8491 
8492 Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
8493 #ifdef V8_ENABLE_CHECKS
8494   CheckCast(value);
8495 #endif
8496   return static_cast<Promise::Resolver*>(value);
8497 }
8498 
8499 
8500 ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
8501 #ifdef V8_ENABLE_CHECKS
8502   CheckCast(value);
8503 #endif
8504   return static_cast<ArrayBuffer*>(value);
8505 }
8506 
8507 
8508 ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
8509 #ifdef V8_ENABLE_CHECKS
8510   CheckCast(value);
8511 #endif
8512   return static_cast<ArrayBufferView*>(value);
8513 }
8514 
8515 
8516 TypedArray* TypedArray::Cast(v8::Value* value) {
8517 #ifdef V8_ENABLE_CHECKS
8518   CheckCast(value);
8519 #endif
8520   return static_cast<TypedArray*>(value);
8521 }
8522 
8523 
8524 Uint8Array* Uint8Array::Cast(v8::Value* value) {
8525 #ifdef V8_ENABLE_CHECKS
8526   CheckCast(value);
8527 #endif
8528   return static_cast<Uint8Array*>(value);
8529 }
8530 
8531 
8532 Int8Array* Int8Array::Cast(v8::Value* value) {
8533 #ifdef V8_ENABLE_CHECKS
8534   CheckCast(value);
8535 #endif
8536   return static_cast<Int8Array*>(value);
8537 }
8538 
8539 
8540 Uint16Array* Uint16Array::Cast(v8::Value* value) {
8541 #ifdef V8_ENABLE_CHECKS
8542   CheckCast(value);
8543 #endif
8544   return static_cast<Uint16Array*>(value);
8545 }
8546 
8547 
8548 Int16Array* Int16Array::Cast(v8::Value* value) {
8549 #ifdef V8_ENABLE_CHECKS
8550   CheckCast(value);
8551 #endif
8552   return static_cast<Int16Array*>(value);
8553 }
8554 
8555 
8556 Uint32Array* Uint32Array::Cast(v8::Value* value) {
8557 #ifdef V8_ENABLE_CHECKS
8558   CheckCast(value);
8559 #endif
8560   return static_cast<Uint32Array*>(value);
8561 }
8562 
8563 
8564 Int32Array* Int32Array::Cast(v8::Value* value) {
8565 #ifdef V8_ENABLE_CHECKS
8566   CheckCast(value);
8567 #endif
8568   return static_cast<Int32Array*>(value);
8569 }
8570 
8571 
8572 Float32Array* Float32Array::Cast(v8::Value* value) {
8573 #ifdef V8_ENABLE_CHECKS
8574   CheckCast(value);
8575 #endif
8576   return static_cast<Float32Array*>(value);
8577 }
8578 
8579 
8580 Float64Array* Float64Array::Cast(v8::Value* value) {
8581 #ifdef V8_ENABLE_CHECKS
8582   CheckCast(value);
8583 #endif
8584   return static_cast<Float64Array*>(value);
8585 }
8586 
8587 
8588 Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
8589 #ifdef V8_ENABLE_CHECKS
8590   CheckCast(value);
8591 #endif
8592   return static_cast<Uint8ClampedArray*>(value);
8593 }
8594 
8595 
8596 DataView* DataView::Cast(v8::Value* value) {
8597 #ifdef V8_ENABLE_CHECKS
8598   CheckCast(value);
8599 #endif
8600   return static_cast<DataView*>(value);
8601 }
8602 
8603 
8604 SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) {
8605 #ifdef V8_ENABLE_CHECKS
8606   CheckCast(value);
8607 #endif
8608   return static_cast<SharedArrayBuffer*>(value);
8609 }
8610 
8611 
8612 Function* Function::Cast(v8::Value* value) {
8613 #ifdef V8_ENABLE_CHECKS
8614   CheckCast(value);
8615 #endif
8616   return static_cast<Function*>(value);
8617 }
8618 
8619 
8620 External* External::Cast(v8::Value* value) {
8621 #ifdef V8_ENABLE_CHECKS
8622   CheckCast(value);
8623 #endif
8624   return static_cast<External*>(value);
8625 }
8626 
8627 
8628 template<typename T>
8629 Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
8630   return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
8631 }
8632 
8633 
8634 template<typename T>
8635 Local<Value> PropertyCallbackInfo<T>::Data() const {
8636   return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
8637 }
8638 
8639 
8640 template<typename T>
8641 Local<Object> PropertyCallbackInfo<T>::This() const {
8642   return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
8643 }
8644 
8645 
8646 template<typename T>
8647 Local<Object> PropertyCallbackInfo<T>::Holder() const {
8648   return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
8649 }
8650 
8651 
8652 template<typename T>
8653 ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
8654   return ReturnValue<T>(&args_[kReturnValueIndex]);
8655 }
8656 
8657 template <typename T>
8658 bool PropertyCallbackInfo<T>::ShouldThrowOnError() const {
8659   typedef internal::Internals I;
8660   return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0);
8661 }
8662 
8663 
8664 Local<Primitive> Undefined(Isolate* isolate) {
8665   typedef internal::Object* S;
8666   typedef internal::Internals I;
8667   I::CheckInitialized(isolate);
8668   S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
8669   return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
8670 }
8671 
8672 
8673 Local<Primitive> Null(Isolate* isolate) {
8674   typedef internal::Object* S;
8675   typedef internal::Internals I;
8676   I::CheckInitialized(isolate);
8677   S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
8678   return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
8679 }
8680 
8681 
8682 Local<Boolean> True(Isolate* isolate) {
8683   typedef internal::Object* S;
8684   typedef internal::Internals I;
8685   I::CheckInitialized(isolate);
8686   S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
8687   return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
8688 }
8689 
8690 
8691 Local<Boolean> False(Isolate* isolate) {
8692   typedef internal::Object* S;
8693   typedef internal::Internals I;
8694   I::CheckInitialized(isolate);
8695   S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
8696   return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
8697 }
8698 
8699 
8700 void Isolate::SetData(uint32_t slot, void* data) {
8701   typedef internal::Internals I;
8702   I::SetEmbedderData(this, slot, data);
8703 }
8704 
8705 
8706 void* Isolate::GetData(uint32_t slot) {
8707   typedef internal::Internals I;
8708   return I::GetEmbedderData(this, slot);
8709 }
8710 
8711 
8712 uint32_t Isolate::GetNumberOfDataSlots() {
8713   typedef internal::Internals I;
8714   return I::kNumIsolateDataSlots;
8715 }
8716 
8717 
8718 int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
8719     int64_t change_in_bytes) {
8720   typedef internal::Internals I;
8721   int64_t* external_memory = reinterpret_cast<int64_t*>(
8722       reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset);
8723   const int64_t external_memory_limit = *reinterpret_cast<int64_t*>(
8724       reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset);
8725   const int64_t amount = *external_memory + change_in_bytes;
8726   *external_memory = amount;
8727   if (change_in_bytes > 0 && amount > external_memory_limit) {
8728     ReportExternalAllocationLimitReached();
8729   }
8730   return *external_memory;
8731 }
8732 
8733 
8734 template<typename T>
8735 void Isolate::SetObjectGroupId(const Persistent<T>& object,
8736                                UniqueId id) {
8737   TYPE_CHECK(Value, T);
8738   SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
8739 }
8740 
8741 
8742 template<typename T>
8743 void Isolate::SetReferenceFromGroup(UniqueId id,
8744                                     const Persistent<T>& object) {
8745   TYPE_CHECK(Value, T);
8746   SetReferenceFromGroup(id,
8747                         reinterpret_cast<v8::internal::Object**>(object.val_));
8748 }
8749 
8750 
8751 template<typename T, typename S>
8752 void Isolate::SetReference(const Persistent<T>& parent,
8753                            const Persistent<S>& child) {
8754   TYPE_CHECK(Object, T);
8755   TYPE_CHECK(Value, S);
8756   SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
8757                reinterpret_cast<v8::internal::Object**>(child.val_));
8758 }
8759 
8760 
8761 Local<Value> Context::GetEmbedderData(int index) {
8762 #ifndef V8_ENABLE_CHECKS
8763   typedef internal::Object O;
8764   typedef internal::HeapObject HO;
8765   typedef internal::Internals I;
8766   HO* context = *reinterpret_cast<HO**>(this);
8767   O** result =
8768       HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
8769   return Local<Value>(reinterpret_cast<Value*>(result));
8770 #else
8771   return SlowGetEmbedderData(index);
8772 #endif
8773 }
8774 
8775 
8776 void* Context::GetAlignedPointerFromEmbedderData(int index) {
8777 #ifndef V8_ENABLE_CHECKS
8778   typedef internal::Internals I;
8779   return I::ReadEmbedderData<void*>(this, index);
8780 #else
8781   return SlowGetAlignedPointerFromEmbedderData(index);
8782 #endif
8783 }
8784 
8785 
8786 void V8::SetAllowCodeGenerationFromStringsCallback(
8787     AllowCodeGenerationFromStringsCallback callback) {
8788   Isolate* isolate = Isolate::GetCurrent();
8789   isolate->SetAllowCodeGenerationFromStringsCallback(callback);
8790 }
8791 
8792 
8793 bool V8::IsDead() {
8794   Isolate* isolate = Isolate::GetCurrent();
8795   return isolate->IsDead();
8796 }
8797 
8798 
8799 bool V8::AddMessageListener(MessageCallback that, Local<Value> data) {
8800   Isolate* isolate = Isolate::GetCurrent();
8801   return isolate->AddMessageListener(that, data);
8802 }
8803 
8804 
8805 void V8::RemoveMessageListeners(MessageCallback that) {
8806   Isolate* isolate = Isolate::GetCurrent();
8807   isolate->RemoveMessageListeners(that);
8808 }
8809 
8810 
8811 void V8::SetFailedAccessCheckCallbackFunction(
8812     FailedAccessCheckCallback callback) {
8813   Isolate* isolate = Isolate::GetCurrent();
8814   isolate->SetFailedAccessCheckCallbackFunction(callback);
8815 }
8816 
8817 
8818 void V8::SetCaptureStackTraceForUncaughtExceptions(
8819     bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
8820   Isolate* isolate = Isolate::GetCurrent();
8821   isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
8822                                                      options);
8823 }
8824 
8825 
8826 void V8::SetFatalErrorHandler(FatalErrorCallback callback) {
8827   Isolate* isolate = Isolate::GetCurrent();
8828   isolate->SetFatalErrorHandler(callback);
8829 }
8830 
8831 
8832 void V8::RemoveGCPrologueCallback(GCCallback callback) {
8833   Isolate* isolate = Isolate::GetCurrent();
8834   isolate->RemoveGCPrologueCallback(
8835       reinterpret_cast<v8::Isolate::GCCallback>(callback));
8836 }
8837 
8838 
8839 void V8::RemoveGCEpilogueCallback(GCCallback callback) {
8840   Isolate* isolate = Isolate::GetCurrent();
8841   isolate->RemoveGCEpilogueCallback(
8842       reinterpret_cast<v8::Isolate::GCCallback>(callback));
8843 }
8844 
8845 void V8::TerminateExecution(Isolate* isolate) { isolate->TerminateExecution(); }
8846 
8847 
8848 bool V8::IsExecutionTerminating(Isolate* isolate) {
8849   if (isolate == NULL) {
8850     isolate = Isolate::GetCurrent();
8851   }
8852   return isolate->IsExecutionTerminating();
8853 }
8854 
8855 
8856 void V8::CancelTerminateExecution(Isolate* isolate) {
8857   isolate->CancelTerminateExecution();
8858 }
8859 
8860 
8861 void V8::VisitExternalResources(ExternalResourceVisitor* visitor) {
8862   Isolate* isolate = Isolate::GetCurrent();
8863   isolate->VisitExternalResources(visitor);
8864 }
8865 
8866 
8867 void V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
8868   Isolate* isolate = Isolate::GetCurrent();
8869   isolate->VisitHandlesWithClassIds(visitor);
8870 }
8871 
8872 
8873 void V8::VisitHandlesWithClassIds(Isolate* isolate,
8874                                   PersistentHandleVisitor* visitor) {
8875   isolate->VisitHandlesWithClassIds(visitor);
8876 }
8877 
8878 
8879 void V8::VisitHandlesForPartialDependence(Isolate* isolate,
8880                                           PersistentHandleVisitor* visitor) {
8881   isolate->VisitHandlesForPartialDependence(visitor);
8882 }
8883 
8884 /**
8885  * \example shell.cc
8886  * A simple shell that takes a list of expressions on the
8887  * command-line and executes them.
8888  */
8889 
8890 
8891 /**
8892  * \example process.cc
8893  */
8894 
8895 
8896 }  // namespace v8
8897 
8898 
8899 #undef TYPE_CHECK
8900 
8901 
8902 #endif  // INCLUDE_V8_H_
8903