1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <linux/futex.h>
27 #include <sys/stat.h>
28 #include <sys/syscall.h>
29 #include <cutils/properties.h>
30 #include <media/AudioParameter.h>
31 #include <media/AudioResamplerPublic.h>
32 #include <utils/Log.h>
33 #include <utils/Trace.h>
34
35 #include <private/media/AudioTrackShared.h>
36 #include <hardware/audio.h>
37 #include <audio_effects/effect_ns.h>
38 #include <audio_effects/effect_aec.h>
39 #include <audio_utils/conversion.h>
40 #include <audio_utils/primitives.h>
41 #include <audio_utils/format.h>
42 #include <audio_utils/minifloat.h>
43
44 // NBAIO implementations
45 #include <media/nbaio/AudioStreamInSource.h>
46 #include <media/nbaio/AudioStreamOutSink.h>
47 #include <media/nbaio/MonoPipe.h>
48 #include <media/nbaio/MonoPipeReader.h>
49 #include <media/nbaio/Pipe.h>
50 #include <media/nbaio/PipeReader.h>
51 #include <media/nbaio/SourceAudioBufferProvider.h>
52 #include <mediautils/BatteryNotifier.h>
53
54 #include <powermanager/PowerManager.h>
55
56 #include "AudioFlinger.h"
57 #include "AudioMixer.h"
58 #include "BufferProviders.h"
59 #include "FastMixer.h"
60 #include "FastCapture.h"
61 #include "ServiceUtilities.h"
62 #include "mediautils/SchedulingPolicyService.h"
63
64 #ifdef ADD_BATTERY_DATA
65 #include <media/IMediaPlayerService.h>
66 #include <media/IMediaDeathNotifier.h>
67 #endif
68
69 #ifdef DEBUG_CPU_USAGE
70 #include <cpustats/CentralTendencyStatistics.h>
71 #include <cpustats/ThreadCpuUsage.h>
72 #endif
73
74 #include "AutoPark.h"
75
76 // ----------------------------------------------------------------------------
77
78 // Note: the following macro is used for extremely verbose logging message. In
79 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
81 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
82 // turned on. Do not uncomment the #def below unless you really know what you
83 // are doing and want to see all of the extremely verbose messages.
84 //#define VERY_VERY_VERBOSE_LOGGING
85 #ifdef VERY_VERY_VERBOSE_LOGGING
86 #define ALOGVV ALOGV
87 #else
88 #define ALOGVV(a...) do { } while(0)
89 #endif
90
91 // TODO: Move these macro/inlines to a header file.
92 #define max(a, b) ((a) > (b) ? (a) : (b))
93 template <typename T>
min(const T & a,const T & b)94 static inline T min(const T& a, const T& b)
95 {
96 return a < b ? a : b;
97 }
98
99 #ifndef ARRAY_SIZE
100 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101 #endif
102
103 namespace android {
104
105 // retry counts for buffer fill timeout
106 // 50 * ~20msecs = 1 second
107 static const int8_t kMaxTrackRetries = 50;
108 static const int8_t kMaxTrackStartupRetries = 50;
109 // allow less retry attempts on direct output thread.
110 // direct outputs can be a scarce resource in audio hardware and should
111 // be released as quickly as possible.
112 static const int8_t kMaxTrackRetriesDirect = 2;
113
114
115
116 // don't warn about blocked writes or record buffer overflows more often than this
117 static const nsecs_t kWarningThrottleNs = seconds(5);
118
119 // RecordThread loop sleep time upon application overrun or audio HAL read error
120 static const int kRecordThreadSleepUs = 5000;
121
122 // maximum time to wait in sendConfigEvent_l() for a status to be received
123 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
124
125 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
126 static const uint32_t kMinThreadSleepTimeUs = 5000;
127 // maximum divider applied to the active sleep time in the mixer thread loop
128 static const uint32_t kMaxThreadSleepTimeShift = 2;
129
130 // minimum normal sink buffer size, expressed in milliseconds rather than frames
131 // FIXME This should be based on experimentally observed scheduling jitter
132 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
133 // maximum normal sink buffer size
134 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
135
136 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
137 // FIXME This should be based on experimentally observed scheduling jitter
138 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
139
140 // Offloaded output thread standby delay: allows track transition without going to standby
141 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
142
143 // Direct output thread minimum sleep time in idle or active(underrun) state
144 static const nsecs_t kDirectMinSleepTimeUs = 10000;
145
146
147 // Whether to use fast mixer
148 static const enum {
149 FastMixer_Never, // never initialize or use: for debugging only
150 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
151 // normal mixer multiplier is 1
152 FastMixer_Static, // initialize if needed, then use all the time if initialized,
153 // multiplier is calculated based on min & max normal mixer buffer size
154 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
155 // multiplier is calculated based on min & max normal mixer buffer size
156 // FIXME for FastMixer_Dynamic:
157 // Supporting this option will require fixing HALs that can't handle large writes.
158 // For example, one HAL implementation returns an error from a large write,
159 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
160 // We could either fix the HAL implementations, or provide a wrapper that breaks
161 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
162 } kUseFastMixer = FastMixer_Static;
163
164 // Whether to use fast capture
165 static const enum {
166 FastCapture_Never, // never initialize or use: for debugging only
167 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
168 FastCapture_Static, // initialize if needed, then use all the time if initialized
169 } kUseFastCapture = FastCapture_Static;
170
171 // Priorities for requestPriority
172 static const int kPriorityAudioApp = 2;
173 static const int kPriorityFastMixer = 3;
174 static const int kPriorityFastCapture = 3;
175
176 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
177 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
178 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
179
180 // This is the default value, if not specified by property.
181 static const int kFastTrackMultiplier = 2;
182
183 // The minimum and maximum allowed values
184 static const int kFastTrackMultiplierMin = 1;
185 static const int kFastTrackMultiplierMax = 2;
186
187 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
188 static int sFastTrackMultiplier = kFastTrackMultiplier;
189
190 // See Thread::readOnlyHeap().
191 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
192 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
193 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
194 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
195
196 // ----------------------------------------------------------------------------
197
198 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
199
sFastTrackMultiplierInit()200 static void sFastTrackMultiplierInit()
201 {
202 char value[PROPERTY_VALUE_MAX];
203 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
204 char *endptr;
205 unsigned long ul = strtoul(value, &endptr, 0);
206 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
207 sFastTrackMultiplier = (int) ul;
208 }
209 }
210 }
211
212 // ----------------------------------------------------------------------------
213
214 #ifdef ADD_BATTERY_DATA
215 // To collect the amplifier usage
addBatteryData(uint32_t params)216 static void addBatteryData(uint32_t params) {
217 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
218 if (service == NULL) {
219 // it already logged
220 return;
221 }
222
223 service->addBatteryData(params);
224 }
225 #endif
226
227 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
228 struct {
229 // call when you acquire a partial wakelock
acquireandroid::__anonb95ec00d0308230 void acquire(const sp<IBinder> &wakeLockToken) {
231 pthread_mutex_lock(&mLock);
232 if (wakeLockToken.get() == nullptr) {
233 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
234 } else {
235 if (mCount == 0) {
236 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
237 }
238 ++mCount;
239 }
240 pthread_mutex_unlock(&mLock);
241 }
242
243 // call when you release a partial wakelock.
releaseandroid::__anonb95ec00d0308244 void release(const sp<IBinder> &wakeLockToken) {
245 if (wakeLockToken.get() == nullptr) {
246 return;
247 }
248 pthread_mutex_lock(&mLock);
249 if (--mCount < 0) {
250 ALOGE("negative wakelock count");
251 mCount = 0;
252 }
253 pthread_mutex_unlock(&mLock);
254 }
255
256 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anonb95ec00d0308257 int64_t getBoottimeOffset() {
258 pthread_mutex_lock(&mLock);
259 int64_t boottimeOffset = mBoottimeOffset;
260 pthread_mutex_unlock(&mLock);
261 return boottimeOffset;
262 }
263
264 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
265 // and the selected timebase.
266 // Currently only TIMEBASE_BOOTTIME is allowed.
267 //
268 // This only needs to be called upon acquiring the first partial wakelock
269 // after all other partial wakelocks are released.
270 //
271 // We do an empirical measurement of the offset rather than parsing
272 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anonb95ec00d0308273 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
274 int clockbase;
275 switch (timebase) {
276 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
277 clockbase = SYSTEM_TIME_BOOTTIME;
278 break;
279 default:
280 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
281 break;
282 }
283 // try three times to get the clock offset, choose the one
284 // with the minimum gap in measurements.
285 const int tries = 3;
286 nsecs_t bestGap, measured;
287 for (int i = 0; i < tries; ++i) {
288 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
289 const nsecs_t tbase = systemTime(clockbase);
290 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
291 const nsecs_t gap = tmono2 - tmono;
292 if (i == 0 || gap < bestGap) {
293 bestGap = gap;
294 measured = tbase - ((tmono + tmono2) >> 1);
295 }
296 }
297
298 // to avoid micro-adjusting, we don't change the timebase
299 // unless it is significantly different.
300 //
301 // Assumption: It probably takes more than toleranceNs to
302 // suspend and resume the device.
303 static int64_t toleranceNs = 10000; // 10 us
304 if (llabs(*offset - measured) > toleranceNs) {
305 ALOGV("Adjusting timebase offset old: %lld new: %lld",
306 (long long)*offset, (long long)measured);
307 *offset = measured;
308 }
309 }
310
311 pthread_mutex_t mLock;
312 int32_t mCount;
313 int64_t mBoottimeOffset;
314 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
315
316 // ----------------------------------------------------------------------------
317 // CPU Stats
318 // ----------------------------------------------------------------------------
319
320 class CpuStats {
321 public:
322 CpuStats();
323 void sample(const String8 &title);
324 #ifdef DEBUG_CPU_USAGE
325 private:
326 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
327 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
328
329 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
330
331 int mCpuNum; // thread's current CPU number
332 int mCpukHz; // frequency of thread's current CPU in kHz
333 #endif
334 };
335
CpuStats()336 CpuStats::CpuStats()
337 #ifdef DEBUG_CPU_USAGE
338 : mCpuNum(-1), mCpukHz(-1)
339 #endif
340 {
341 }
342
sample(const String8 & title __unused)343 void CpuStats::sample(const String8 &title
344 #ifndef DEBUG_CPU_USAGE
345 __unused
346 #endif
347 ) {
348 #ifdef DEBUG_CPU_USAGE
349 // get current thread's delta CPU time in wall clock ns
350 double wcNs;
351 bool valid = mCpuUsage.sampleAndEnable(wcNs);
352
353 // record sample for wall clock statistics
354 if (valid) {
355 mWcStats.sample(wcNs);
356 }
357
358 // get the current CPU number
359 int cpuNum = sched_getcpu();
360
361 // get the current CPU frequency in kHz
362 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
363
364 // check if either CPU number or frequency changed
365 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
366 mCpuNum = cpuNum;
367 mCpukHz = cpukHz;
368 // ignore sample for purposes of cycles
369 valid = false;
370 }
371
372 // if no change in CPU number or frequency, then record sample for cycle statistics
373 if (valid && mCpukHz > 0) {
374 double cycles = wcNs * cpukHz * 0.000001;
375 mHzStats.sample(cycles);
376 }
377
378 unsigned n = mWcStats.n();
379 // mCpuUsage.elapsed() is expensive, so don't call it every loop
380 if ((n & 127) == 1) {
381 long long elapsed = mCpuUsage.elapsed();
382 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
383 double perLoop = elapsed / (double) n;
384 double perLoop100 = perLoop * 0.01;
385 double perLoop1k = perLoop * 0.001;
386 double mean = mWcStats.mean();
387 double stddev = mWcStats.stddev();
388 double minimum = mWcStats.minimum();
389 double maximum = mWcStats.maximum();
390 double meanCycles = mHzStats.mean();
391 double stddevCycles = mHzStats.stddev();
392 double minCycles = mHzStats.minimum();
393 double maxCycles = mHzStats.maximum();
394 mCpuUsage.resetElapsed();
395 mWcStats.reset();
396 mHzStats.reset();
397 ALOGD("CPU usage for %s over past %.1f secs\n"
398 " (%u mixer loops at %.1f mean ms per loop):\n"
399 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
400 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
401 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
402 title.string(),
403 elapsed * .000000001, n, perLoop * .000001,
404 mean * .001,
405 stddev * .001,
406 minimum * .001,
407 maximum * .001,
408 mean / perLoop100,
409 stddev / perLoop100,
410 minimum / perLoop100,
411 maximum / perLoop100,
412 meanCycles / perLoop1k,
413 stddevCycles / perLoop1k,
414 minCycles / perLoop1k,
415 maxCycles / perLoop1k);
416
417 }
418 }
419 #endif
420 };
421
422 // ----------------------------------------------------------------------------
423 // ThreadBase
424 // ----------------------------------------------------------------------------
425
426 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)427 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
428 {
429 switch (type) {
430 case MIXER:
431 return "MIXER";
432 case DIRECT:
433 return "DIRECT";
434 case DUPLICATING:
435 return "DUPLICATING";
436 case RECORD:
437 return "RECORD";
438 case OFFLOAD:
439 return "OFFLOAD";
440 default:
441 return "unknown";
442 }
443 }
444
devicesToString(audio_devices_t devices)445 String8 devicesToString(audio_devices_t devices)
446 {
447 static const struct mapping {
448 audio_devices_t mDevices;
449 const char * mString;
450 } mappingsOut[] = {
451 {AUDIO_DEVICE_OUT_EARPIECE, "EARPIECE"},
452 {AUDIO_DEVICE_OUT_SPEAKER, "SPEAKER"},
453 {AUDIO_DEVICE_OUT_WIRED_HEADSET, "WIRED_HEADSET"},
454 {AUDIO_DEVICE_OUT_WIRED_HEADPHONE, "WIRED_HEADPHONE"},
455 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO, "BLUETOOTH_SCO"},
456 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
457 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT, "BLUETOOTH_SCO_CARKIT"},
458 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP, "BLUETOOTH_A2DP"},
459 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
460 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER, "BLUETOOTH_A2DP_SPEAKER"},
461 {AUDIO_DEVICE_OUT_AUX_DIGITAL, "AUX_DIGITAL"},
462 {AUDIO_DEVICE_OUT_HDMI, "HDMI"},
463 {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
464 {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
465 {AUDIO_DEVICE_OUT_USB_ACCESSORY, "USB_ACCESSORY"},
466 {AUDIO_DEVICE_OUT_USB_DEVICE, "USB_DEVICE"},
467 {AUDIO_DEVICE_OUT_TELEPHONY_TX, "TELEPHONY_TX"},
468 {AUDIO_DEVICE_OUT_LINE, "LINE"},
469 {AUDIO_DEVICE_OUT_HDMI_ARC, "HDMI_ARC"},
470 {AUDIO_DEVICE_OUT_SPDIF, "SPDIF"},
471 {AUDIO_DEVICE_OUT_FM, "FM"},
472 {AUDIO_DEVICE_OUT_AUX_LINE, "AUX_LINE"},
473 {AUDIO_DEVICE_OUT_SPEAKER_SAFE, "SPEAKER_SAFE"},
474 {AUDIO_DEVICE_OUT_IP, "IP"},
475 {AUDIO_DEVICE_OUT_BUS, "BUS"},
476 {AUDIO_DEVICE_NONE, "NONE"}, // must be last
477 }, mappingsIn[] = {
478 {AUDIO_DEVICE_IN_COMMUNICATION, "COMMUNICATION"},
479 {AUDIO_DEVICE_IN_AMBIENT, "AMBIENT"},
480 {AUDIO_DEVICE_IN_BUILTIN_MIC, "BUILTIN_MIC"},
481 {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
482 {AUDIO_DEVICE_IN_WIRED_HEADSET, "WIRED_HEADSET"},
483 {AUDIO_DEVICE_IN_AUX_DIGITAL, "AUX_DIGITAL"},
484 {AUDIO_DEVICE_IN_VOICE_CALL, "VOICE_CALL"},
485 {AUDIO_DEVICE_IN_TELEPHONY_RX, "TELEPHONY_RX"},
486 {AUDIO_DEVICE_IN_BACK_MIC, "BACK_MIC"},
487 {AUDIO_DEVICE_IN_REMOTE_SUBMIX, "REMOTE_SUBMIX"},
488 {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
489 {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
490 {AUDIO_DEVICE_IN_USB_ACCESSORY, "USB_ACCESSORY"},
491 {AUDIO_DEVICE_IN_USB_DEVICE, "USB_DEVICE"},
492 {AUDIO_DEVICE_IN_FM_TUNER, "FM_TUNER"},
493 {AUDIO_DEVICE_IN_TV_TUNER, "TV_TUNER"},
494 {AUDIO_DEVICE_IN_LINE, "LINE"},
495 {AUDIO_DEVICE_IN_SPDIF, "SPDIF"},
496 {AUDIO_DEVICE_IN_BLUETOOTH_A2DP, "BLUETOOTH_A2DP"},
497 {AUDIO_DEVICE_IN_LOOPBACK, "LOOPBACK"},
498 {AUDIO_DEVICE_IN_IP, "IP"},
499 {AUDIO_DEVICE_IN_BUS, "BUS"},
500 {AUDIO_DEVICE_NONE, "NONE"}, // must be last
501 };
502 String8 result;
503 audio_devices_t allDevices = AUDIO_DEVICE_NONE;
504 const mapping *entry;
505 if (devices & AUDIO_DEVICE_BIT_IN) {
506 devices &= ~AUDIO_DEVICE_BIT_IN;
507 entry = mappingsIn;
508 } else {
509 entry = mappingsOut;
510 }
511 for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
512 allDevices = (audio_devices_t) (allDevices | entry->mDevices);
513 if (devices & entry->mDevices) {
514 if (!result.isEmpty()) {
515 result.append("|");
516 }
517 result.append(entry->mString);
518 }
519 }
520 if (devices & ~allDevices) {
521 if (!result.isEmpty()) {
522 result.append("|");
523 }
524 result.appendFormat("0x%X", devices & ~allDevices);
525 }
526 if (result.isEmpty()) {
527 result.append(entry->mString);
528 }
529 return result;
530 }
531
inputFlagsToString(audio_input_flags_t flags)532 String8 inputFlagsToString(audio_input_flags_t flags)
533 {
534 static const struct mapping {
535 audio_input_flags_t mFlag;
536 const char * mString;
537 } mappings[] = {
538 {AUDIO_INPUT_FLAG_FAST, "FAST"},
539 {AUDIO_INPUT_FLAG_HW_HOTWORD, "HW_HOTWORD"},
540 {AUDIO_INPUT_FLAG_RAW, "RAW"},
541 {AUDIO_INPUT_FLAG_SYNC, "SYNC"},
542 {AUDIO_INPUT_FLAG_NONE, "NONE"}, // must be last
543 };
544 String8 result;
545 audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
546 const mapping *entry;
547 for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
548 allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
549 if (flags & entry->mFlag) {
550 if (!result.isEmpty()) {
551 result.append("|");
552 }
553 result.append(entry->mString);
554 }
555 }
556 if (flags & ~allFlags) {
557 if (!result.isEmpty()) {
558 result.append("|");
559 }
560 result.appendFormat("0x%X", flags & ~allFlags);
561 }
562 if (result.isEmpty()) {
563 result.append(entry->mString);
564 }
565 return result;
566 }
567
outputFlagsToString(audio_output_flags_t flags)568 String8 outputFlagsToString(audio_output_flags_t flags)
569 {
570 static const struct mapping {
571 audio_output_flags_t mFlag;
572 const char * mString;
573 } mappings[] = {
574 {AUDIO_OUTPUT_FLAG_DIRECT, "DIRECT"},
575 {AUDIO_OUTPUT_FLAG_PRIMARY, "PRIMARY"},
576 {AUDIO_OUTPUT_FLAG_FAST, "FAST"},
577 {AUDIO_OUTPUT_FLAG_DEEP_BUFFER, "DEEP_BUFFER"},
578 {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
579 {AUDIO_OUTPUT_FLAG_NON_BLOCKING, "NON_BLOCKING"},
580 {AUDIO_OUTPUT_FLAG_HW_AV_SYNC, "HW_AV_SYNC"},
581 {AUDIO_OUTPUT_FLAG_RAW, "RAW"},
582 {AUDIO_OUTPUT_FLAG_SYNC, "SYNC"},
583 {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
584 {AUDIO_OUTPUT_FLAG_NONE, "NONE"}, // must be last
585 };
586 String8 result;
587 audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
588 const mapping *entry;
589 for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
590 allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
591 if (flags & entry->mFlag) {
592 if (!result.isEmpty()) {
593 result.append("|");
594 }
595 result.append(entry->mString);
596 }
597 }
598 if (flags & ~allFlags) {
599 if (!result.isEmpty()) {
600 result.append("|");
601 }
602 result.appendFormat("0x%X", flags & ~allFlags);
603 }
604 if (result.isEmpty()) {
605 result.append(entry->mString);
606 }
607 return result;
608 }
609
sourceToString(audio_source_t source)610 const char *sourceToString(audio_source_t source)
611 {
612 switch (source) {
613 case AUDIO_SOURCE_DEFAULT: return "default";
614 case AUDIO_SOURCE_MIC: return "mic";
615 case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink";
616 case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink";
617 case AUDIO_SOURCE_VOICE_CALL: return "voice call";
618 case AUDIO_SOURCE_CAMCORDER: return "camcorder";
619 case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition";
620 case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication";
621 case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix";
622 case AUDIO_SOURCE_UNPROCESSED: return "unprocessed";
623 case AUDIO_SOURCE_FM_TUNER: return "FM tuner";
624 case AUDIO_SOURCE_HOTWORD: return "hotword";
625 default: return "unknown";
626 }
627 }
628
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type,bool systemReady)629 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
630 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
631 : Thread(false /*canCallJava*/),
632 mType(type),
633 mAudioFlinger(audioFlinger),
634 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
635 // are set by PlaybackThread::readOutputParameters_l() or
636 // RecordThread::readInputParameters_l()
637 //FIXME: mStandby should be true here. Is this some kind of hack?
638 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
639 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
640 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
641 // mName will be set by concrete (non-virtual) subclass
642 mDeathRecipient(new PMDeathRecipient(this)),
643 mSystemReady(systemReady),
644 mNotifiedBatteryStart(false)
645 {
646 memset(&mPatch, 0, sizeof(struct audio_patch));
647 }
648
~ThreadBase()649 AudioFlinger::ThreadBase::~ThreadBase()
650 {
651 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
652 mConfigEvents.clear();
653
654 // do not lock the mutex in destructor
655 releaseWakeLock_l();
656 if (mPowerManager != 0) {
657 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
658 binder->unlinkToDeath(mDeathRecipient);
659 }
660 }
661
readyToRun()662 status_t AudioFlinger::ThreadBase::readyToRun()
663 {
664 status_t status = initCheck();
665 if (status == NO_ERROR) {
666 ALOGI("AudioFlinger's thread %p ready to run", this);
667 } else {
668 ALOGE("No working audio driver found.");
669 }
670 return status;
671 }
672
exit()673 void AudioFlinger::ThreadBase::exit()
674 {
675 ALOGV("ThreadBase::exit");
676 // do any cleanup required for exit to succeed
677 preExit();
678 {
679 // This lock prevents the following race in thread (uniprocessor for illustration):
680 // if (!exitPending()) {
681 // // context switch from here to exit()
682 // // exit() calls requestExit(), what exitPending() observes
683 // // exit() calls signal(), which is dropped since no waiters
684 // // context switch back from exit() to here
685 // mWaitWorkCV.wait(...);
686 // // now thread is hung
687 // }
688 AutoMutex lock(mLock);
689 requestExit();
690 mWaitWorkCV.broadcast();
691 }
692 // When Thread::requestExitAndWait is made virtual and this method is renamed to
693 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
694 requestExitAndWait();
695 }
696
setParameters(const String8 & keyValuePairs)697 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
698 {
699 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
700 Mutex::Autolock _l(mLock);
701
702 return sendSetParameterConfigEvent_l(keyValuePairs);
703 }
704
705 // sendConfigEvent_l() must be called with ThreadBase::mLock held
706 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)707 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
708 {
709 status_t status = NO_ERROR;
710
711 if (event->mRequiresSystemReady && !mSystemReady) {
712 event->mWaitStatus = false;
713 mPendingConfigEvents.add(event);
714 return status;
715 }
716 mConfigEvents.add(event);
717 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
718 mWaitWorkCV.signal();
719 mLock.unlock();
720 {
721 Mutex::Autolock _l(event->mLock);
722 while (event->mWaitStatus) {
723 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
724 event->mStatus = TIMED_OUT;
725 event->mWaitStatus = false;
726 }
727 }
728 status = event->mStatus;
729 }
730 mLock.lock();
731 return status;
732 }
733
sendIoConfigEvent(audio_io_config_event event,pid_t pid)734 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
735 {
736 Mutex::Autolock _l(mLock);
737 sendIoConfigEvent_l(event, pid);
738 }
739
740 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid)741 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
742 {
743 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
744 sendConfigEvent_l(configEvent);
745 }
746
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio)747 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
748 {
749 Mutex::Autolock _l(mLock);
750 sendPrioConfigEvent_l(pid, tid, prio);
751 }
752
753 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio)754 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
755 {
756 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
757 sendConfigEvent_l(configEvent);
758 }
759
760 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)761 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
762 {
763 sp<ConfigEvent> configEvent;
764 AudioParameter param(keyValuePair);
765 int value;
766 if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
767 setMasterMono_l(value != 0);
768 if (param.size() == 1) {
769 return NO_ERROR; // should be a solo parameter - we don't pass down
770 }
771 param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
772 configEvent = new SetParameterConfigEvent(param.toString());
773 } else {
774 configEvent = new SetParameterConfigEvent(keyValuePair);
775 }
776 return sendConfigEvent_l(configEvent);
777 }
778
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)779 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
780 const struct audio_patch *patch,
781 audio_patch_handle_t *handle)
782 {
783 Mutex::Autolock _l(mLock);
784 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
785 status_t status = sendConfigEvent_l(configEvent);
786 if (status == NO_ERROR) {
787 CreateAudioPatchConfigEventData *data =
788 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
789 *handle = data->mHandle;
790 }
791 return status;
792 }
793
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)794 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
795 const audio_patch_handle_t handle)
796 {
797 Mutex::Autolock _l(mLock);
798 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
799 return sendConfigEvent_l(configEvent);
800 }
801
802
803 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()804 void AudioFlinger::ThreadBase::processConfigEvents_l()
805 {
806 bool configChanged = false;
807
808 while (!mConfigEvents.isEmpty()) {
809 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
810 sp<ConfigEvent> event = mConfigEvents[0];
811 mConfigEvents.removeAt(0);
812 switch (event->mType) {
813 case CFG_EVENT_PRIO: {
814 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
815 // FIXME Need to understand why this has to be done asynchronously
816 int err = requestPriority(data->mPid, data->mTid, data->mPrio,
817 true /*asynchronous*/);
818 if (err != 0) {
819 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
820 data->mPrio, data->mPid, data->mTid, err);
821 }
822 } break;
823 case CFG_EVENT_IO: {
824 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
825 ioConfigChanged(data->mEvent, data->mPid);
826 } break;
827 case CFG_EVENT_SET_PARAMETER: {
828 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
829 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
830 configChanged = true;
831 }
832 } break;
833 case CFG_EVENT_CREATE_AUDIO_PATCH: {
834 CreateAudioPatchConfigEventData *data =
835 (CreateAudioPatchConfigEventData *)event->mData.get();
836 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
837 } break;
838 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
839 ReleaseAudioPatchConfigEventData *data =
840 (ReleaseAudioPatchConfigEventData *)event->mData.get();
841 event->mStatus = releaseAudioPatch_l(data->mHandle);
842 } break;
843 default:
844 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
845 break;
846 }
847 {
848 Mutex::Autolock _l(event->mLock);
849 if (event->mWaitStatus) {
850 event->mWaitStatus = false;
851 event->mCond.signal();
852 }
853 }
854 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
855 }
856
857 if (configChanged) {
858 cacheParameters_l();
859 }
860 }
861
channelMaskToString(audio_channel_mask_t mask,bool output)862 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
863 String8 s;
864 const audio_channel_representation_t representation =
865 audio_channel_mask_get_representation(mask);
866
867 switch (representation) {
868 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
869 if (output) {
870 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
871 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
872 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
873 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
874 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
875 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
876 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
877 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
878 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
879 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
880 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
881 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
882 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
883 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
884 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
885 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
886 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
887 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
888 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
889 } else {
890 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
891 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
892 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
893 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
894 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
895 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
896 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
897 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
898 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
899 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
900 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
901 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
902 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
903 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
904 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
905 }
906 const int len = s.length();
907 if (len > 2) {
908 (void) s.lockBuffer(len); // needed?
909 s.unlockBuffer(len - 2); // remove trailing ", "
910 }
911 return s;
912 }
913 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
914 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
915 return s;
916 default:
917 s.appendFormat("unknown mask, representation:%d bits:%#x",
918 representation, audio_channel_mask_get_bits(mask));
919 return s;
920 }
921 }
922
dumpBase(int fd,const Vector<String16> & args __unused)923 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
924 {
925 const size_t SIZE = 256;
926 char buffer[SIZE];
927 String8 result;
928
929 bool locked = AudioFlinger::dumpTryLock(mLock);
930 if (!locked) {
931 dprintf(fd, "thread %p may be deadlocked\n", this);
932 }
933
934 dprintf(fd, " Thread name: %s\n", mThreadName);
935 dprintf(fd, " I/O handle: %d\n", mId);
936 dprintf(fd, " TID: %d\n", getTid());
937 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
938 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
939 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
940 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
941 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
942 dprintf(fd, " Channel count: %u\n", mChannelCount);
943 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
944 channelMaskToString(mChannelMask, mType != RECORD).string());
945 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
946 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
947 dprintf(fd, " Pending config events:");
948 size_t numConfig = mConfigEvents.size();
949 if (numConfig) {
950 for (size_t i = 0; i < numConfig; i++) {
951 mConfigEvents[i]->dump(buffer, SIZE);
952 dprintf(fd, "\n %s", buffer);
953 }
954 dprintf(fd, "\n");
955 } else {
956 dprintf(fd, " none\n");
957 }
958 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
959 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
960 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
961
962 if (locked) {
963 mLock.unlock();
964 }
965 }
966
dumpEffectChains(int fd,const Vector<String16> & args)967 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
968 {
969 const size_t SIZE = 256;
970 char buffer[SIZE];
971 String8 result;
972
973 size_t numEffectChains = mEffectChains.size();
974 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
975 write(fd, buffer, strlen(buffer));
976
977 for (size_t i = 0; i < numEffectChains; ++i) {
978 sp<EffectChain> chain = mEffectChains[i];
979 if (chain != 0) {
980 chain->dump(fd, args);
981 }
982 }
983 }
984
acquireWakeLock(int uid)985 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
986 {
987 Mutex::Autolock _l(mLock);
988 acquireWakeLock_l(uid);
989 }
990
getWakeLockTag()991 String16 AudioFlinger::ThreadBase::getWakeLockTag()
992 {
993 switch (mType) {
994 case MIXER:
995 return String16("AudioMix");
996 case DIRECT:
997 return String16("AudioDirectOut");
998 case DUPLICATING:
999 return String16("AudioDup");
1000 case RECORD:
1001 return String16("AudioIn");
1002 case OFFLOAD:
1003 return String16("AudioOffload");
1004 default:
1005 ALOG_ASSERT(false);
1006 return String16("AudioUnknown");
1007 }
1008 }
1009
acquireWakeLock_l(int uid)1010 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1011 {
1012 getPowerManager_l();
1013 if (mPowerManager != 0) {
1014 sp<IBinder> binder = new BBinder();
1015 status_t status;
1016 if (uid >= 0) {
1017 status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1018 binder,
1019 getWakeLockTag(),
1020 String16("audioserver"),
1021 uid,
1022 true /* FIXME force oneway contrary to .aidl */);
1023 } else {
1024 status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1025 binder,
1026 getWakeLockTag(),
1027 String16("audioserver"),
1028 true /* FIXME force oneway contrary to .aidl */);
1029 }
1030 if (status == NO_ERROR) {
1031 mWakeLockToken = binder;
1032 }
1033 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1034 }
1035
1036 if (!mNotifiedBatteryStart) {
1037 BatteryNotifier::getInstance().noteStartAudio();
1038 mNotifiedBatteryStart = true;
1039 }
1040 gBoottime.acquire(mWakeLockToken);
1041 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1042 gBoottime.getBoottimeOffset();
1043 }
1044
releaseWakeLock()1045 void AudioFlinger::ThreadBase::releaseWakeLock()
1046 {
1047 Mutex::Autolock _l(mLock);
1048 releaseWakeLock_l();
1049 }
1050
releaseWakeLock_l()1051 void AudioFlinger::ThreadBase::releaseWakeLock_l()
1052 {
1053 gBoottime.release(mWakeLockToken);
1054 if (mWakeLockToken != 0) {
1055 ALOGV("releaseWakeLock_l() %s", mThreadName);
1056 if (mPowerManager != 0) {
1057 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1058 true /* FIXME force oneway contrary to .aidl */);
1059 }
1060 mWakeLockToken.clear();
1061 }
1062
1063 if (mNotifiedBatteryStart) {
1064 BatteryNotifier::getInstance().noteStopAudio();
1065 mNotifiedBatteryStart = false;
1066 }
1067 }
1068
updateWakeLockUids(const SortedVector<int> & uids)1069 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1070 Mutex::Autolock _l(mLock);
1071 updateWakeLockUids_l(uids);
1072 }
1073
getPowerManager_l()1074 void AudioFlinger::ThreadBase::getPowerManager_l() {
1075 if (mSystemReady && mPowerManager == 0) {
1076 // use checkService() to avoid blocking if power service is not up yet
1077 sp<IBinder> binder =
1078 defaultServiceManager()->checkService(String16("power"));
1079 if (binder == 0) {
1080 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1081 } else {
1082 mPowerManager = interface_cast<IPowerManager>(binder);
1083 binder->linkToDeath(mDeathRecipient);
1084 }
1085 }
1086 }
1087
updateWakeLockUids_l(const SortedVector<int> & uids)1088 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1089 getPowerManager_l();
1090 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1091 if (mSystemReady) {
1092 ALOGE("no wake lock to update, but system ready!");
1093 } else {
1094 ALOGW("no wake lock to update, system not ready yet");
1095 }
1096 return;
1097 }
1098 if (mPowerManager != 0) {
1099 sp<IBinder> binder = new BBinder();
1100 status_t status;
1101 status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1102 true /* FIXME force oneway contrary to .aidl */);
1103 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1104 }
1105 }
1106
clearPowerManager()1107 void AudioFlinger::ThreadBase::clearPowerManager()
1108 {
1109 Mutex::Autolock _l(mLock);
1110 releaseWakeLock_l();
1111 mPowerManager.clear();
1112 }
1113
binderDied(const wp<IBinder> & who __unused)1114 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1115 {
1116 sp<ThreadBase> thread = mThread.promote();
1117 if (thread != 0) {
1118 thread->clearPowerManager();
1119 }
1120 ALOGW("power manager service died !!!");
1121 }
1122
setEffectSuspended(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1123 void AudioFlinger::ThreadBase::setEffectSuspended(
1124 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1125 {
1126 Mutex::Autolock _l(mLock);
1127 setEffectSuspended_l(type, suspend, sessionId);
1128 }
1129
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1130 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1131 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1132 {
1133 sp<EffectChain> chain = getEffectChain_l(sessionId);
1134 if (chain != 0) {
1135 if (type != NULL) {
1136 chain->setEffectSuspended_l(type, suspend);
1137 } else {
1138 chain->setEffectSuspendedAll_l(suspend);
1139 }
1140 }
1141
1142 updateSuspendedSessions_l(type, suspend, sessionId);
1143 }
1144
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1145 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1146 {
1147 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1148 if (index < 0) {
1149 return;
1150 }
1151
1152 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1153 mSuspendedSessions.valueAt(index);
1154
1155 for (size_t i = 0; i < sessionEffects.size(); i++) {
1156 sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1157 for (int j = 0; j < desc->mRefCount; j++) {
1158 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1159 chain->setEffectSuspendedAll_l(true);
1160 } else {
1161 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1162 desc->mType.timeLow);
1163 chain->setEffectSuspended_l(&desc->mType, true);
1164 }
1165 }
1166 }
1167 }
1168
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1169 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1170 bool suspend,
1171 audio_session_t sessionId)
1172 {
1173 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1174
1175 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1176
1177 if (suspend) {
1178 if (index >= 0) {
1179 sessionEffects = mSuspendedSessions.valueAt(index);
1180 } else {
1181 mSuspendedSessions.add(sessionId, sessionEffects);
1182 }
1183 } else {
1184 if (index < 0) {
1185 return;
1186 }
1187 sessionEffects = mSuspendedSessions.valueAt(index);
1188 }
1189
1190
1191 int key = EffectChain::kKeyForSuspendAll;
1192 if (type != NULL) {
1193 key = type->timeLow;
1194 }
1195 index = sessionEffects.indexOfKey(key);
1196
1197 sp<SuspendedSessionDesc> desc;
1198 if (suspend) {
1199 if (index >= 0) {
1200 desc = sessionEffects.valueAt(index);
1201 } else {
1202 desc = new SuspendedSessionDesc();
1203 if (type != NULL) {
1204 desc->mType = *type;
1205 }
1206 sessionEffects.add(key, desc);
1207 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1208 }
1209 desc->mRefCount++;
1210 } else {
1211 if (index < 0) {
1212 return;
1213 }
1214 desc = sessionEffects.valueAt(index);
1215 if (--desc->mRefCount == 0) {
1216 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1217 sessionEffects.removeItemsAt(index);
1218 if (sessionEffects.isEmpty()) {
1219 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1220 sessionId);
1221 mSuspendedSessions.removeItem(sessionId);
1222 }
1223 }
1224 }
1225 if (!sessionEffects.isEmpty()) {
1226 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1227 }
1228 }
1229
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1230 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1231 bool enabled,
1232 audio_session_t sessionId)
1233 {
1234 Mutex::Autolock _l(mLock);
1235 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1236 }
1237
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1238 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1239 bool enabled,
1240 audio_session_t sessionId)
1241 {
1242 if (mType != RECORD) {
1243 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1244 // another session. This gives the priority to well behaved effect control panels
1245 // and applications not using global effects.
1246 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1247 // global effects
1248 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1249 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1250 }
1251 }
1252
1253 sp<EffectChain> chain = getEffectChain_l(sessionId);
1254 if (chain != 0) {
1255 chain->checkSuspendOnEffectEnabled(effect, enabled);
1256 }
1257 }
1258
1259 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1260 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1261 const effect_descriptor_t *desc, audio_session_t sessionId)
1262 {
1263 // No global effect sessions on record threads
1264 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1265 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1266 desc->name, mThreadName);
1267 return BAD_VALUE;
1268 }
1269 // only pre processing effects on record thread
1270 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1271 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1272 desc->name, mThreadName);
1273 return BAD_VALUE;
1274 }
1275
1276 // always allow effects without processing load or latency
1277 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1278 return NO_ERROR;
1279 }
1280
1281 audio_input_flags_t flags = mInput->flags;
1282 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1283 if (flags & AUDIO_INPUT_FLAG_RAW) {
1284 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1285 desc->name, mThreadName);
1286 return BAD_VALUE;
1287 }
1288 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1289 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1290 desc->name, mThreadName);
1291 return BAD_VALUE;
1292 }
1293 }
1294 return NO_ERROR;
1295 }
1296
1297 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1298 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1299 const effect_descriptor_t *desc, audio_session_t sessionId)
1300 {
1301 // no preprocessing on playback threads
1302 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1303 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1304 " thread %s", desc->name, mThreadName);
1305 return BAD_VALUE;
1306 }
1307
1308 switch (mType) {
1309 case MIXER: {
1310 // Reject any effect on mixer multichannel sinks.
1311 // TODO: fix both format and multichannel issues with effects.
1312 if (mChannelCount != FCC_2) {
1313 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1314 " thread %s", desc->name, mChannelCount, mThreadName);
1315 return BAD_VALUE;
1316 }
1317 audio_output_flags_t flags = mOutput->flags;
1318 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1319 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1320 // global effects are applied only to non fast tracks if they are SW
1321 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1322 break;
1323 }
1324 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1325 // only post processing on output stage session
1326 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1327 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1328 " on output stage session", desc->name);
1329 return BAD_VALUE;
1330 }
1331 } else {
1332 // no restriction on effects applied on non fast tracks
1333 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1334 break;
1335 }
1336 }
1337
1338 // always allow effects without processing load or latency
1339 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1340 break;
1341 }
1342 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1343 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1344 desc->name);
1345 return BAD_VALUE;
1346 }
1347 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1348 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1349 " in fast mode", desc->name);
1350 return BAD_VALUE;
1351 }
1352 }
1353 } break;
1354 case OFFLOAD:
1355 // nothing actionable on offload threads, if the effect:
1356 // - is offloadable: the effect can be created
1357 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1358 // will take care of invalidating the tracks of the thread
1359 break;
1360 case DIRECT:
1361 // Reject any effect on Direct output threads for now, since the format of
1362 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1363 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1364 desc->name, mThreadName);
1365 return BAD_VALUE;
1366 case DUPLICATING:
1367 // Reject any effect on mixer multichannel sinks.
1368 // TODO: fix both format and multichannel issues with effects.
1369 if (mChannelCount != FCC_2) {
1370 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1371 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1372 return BAD_VALUE;
1373 }
1374 if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1375 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1376 " thread %s", desc->name, mThreadName);
1377 return BAD_VALUE;
1378 }
1379 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1380 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1381 " DUPLICATING thread %s", desc->name, mThreadName);
1382 return BAD_VALUE;
1383 }
1384 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1385 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1386 " DUPLICATING thread %s", desc->name, mThreadName);
1387 return BAD_VALUE;
1388 }
1389 break;
1390 default:
1391 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1392 }
1393
1394 return NO_ERROR;
1395 }
1396
1397 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned)1398 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1399 const sp<AudioFlinger::Client>& client,
1400 const sp<IEffectClient>& effectClient,
1401 int32_t priority,
1402 audio_session_t sessionId,
1403 effect_descriptor_t *desc,
1404 int *enabled,
1405 status_t *status,
1406 bool pinned)
1407 {
1408 sp<EffectModule> effect;
1409 sp<EffectHandle> handle;
1410 status_t lStatus;
1411 sp<EffectChain> chain;
1412 bool chainCreated = false;
1413 bool effectCreated = false;
1414 bool effectRegistered = false;
1415
1416 lStatus = initCheck();
1417 if (lStatus != NO_ERROR) {
1418 ALOGW("createEffect_l() Audio driver not initialized.");
1419 goto Exit;
1420 }
1421
1422 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1423
1424 { // scope for mLock
1425 Mutex::Autolock _l(mLock);
1426
1427 lStatus = checkEffectCompatibility_l(desc, sessionId);
1428 if (lStatus != NO_ERROR) {
1429 goto Exit;
1430 }
1431
1432 // check for existing effect chain with the requested audio session
1433 chain = getEffectChain_l(sessionId);
1434 if (chain == 0) {
1435 // create a new chain for this session
1436 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1437 chain = new EffectChain(this, sessionId);
1438 addEffectChain_l(chain);
1439 chain->setStrategy(getStrategyForSession_l(sessionId));
1440 chainCreated = true;
1441 } else {
1442 effect = chain->getEffectFromDesc_l(desc);
1443 }
1444
1445 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1446
1447 if (effect == 0) {
1448 audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1449 // Check CPU and memory usage
1450 lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1451 if (lStatus != NO_ERROR) {
1452 goto Exit;
1453 }
1454 effectRegistered = true;
1455 // create a new effect module if none present in the chain
1456 lStatus = chain->createEffect_l(effect, this, desc, id, sessionId, pinned);
1457 if (lStatus != NO_ERROR) {
1458 goto Exit;
1459 }
1460 effectCreated = true;
1461
1462 effect->setDevice(mOutDevice);
1463 effect->setDevice(mInDevice);
1464 effect->setMode(mAudioFlinger->getMode());
1465 effect->setAudioSource(mAudioSource);
1466 }
1467 // create effect handle and connect it to effect module
1468 handle = new EffectHandle(effect, client, effectClient, priority);
1469 lStatus = handle->initCheck();
1470 if (lStatus == OK) {
1471 lStatus = effect->addHandle(handle.get());
1472 }
1473 if (enabled != NULL) {
1474 *enabled = (int)effect->isEnabled();
1475 }
1476 }
1477
1478 Exit:
1479 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1480 Mutex::Autolock _l(mLock);
1481 if (effectCreated) {
1482 chain->removeEffect_l(effect);
1483 }
1484 if (effectRegistered) {
1485 AudioSystem::unregisterEffect(effect->id());
1486 }
1487 if (chainCreated) {
1488 removeEffectChain_l(chain);
1489 }
1490 handle.clear();
1491 }
1492
1493 *status = lStatus;
1494 return handle;
1495 }
1496
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1497 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1498 bool unpinIfLast)
1499 {
1500 bool remove = false;
1501 sp<EffectModule> effect;
1502 {
1503 Mutex::Autolock _l(mLock);
1504
1505 effect = handle->effect().promote();
1506 if (effect == 0) {
1507 return;
1508 }
1509 // restore suspended effects if the disconnected handle was enabled and the last one.
1510 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1511 if (remove) {
1512 removeEffect_l(effect, true);
1513 }
1514 }
1515 if (remove) {
1516 mAudioFlinger->updateOrphanEffectChains(effect);
1517 AudioSystem::unregisterEffect(effect->id());
1518 if (handle->enabled()) {
1519 checkSuspendOnEffectEnabled(effect, false, effect->sessionId());
1520 }
1521 }
1522 }
1523
getEffect(audio_session_t sessionId,int effectId)1524 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1525 int effectId)
1526 {
1527 Mutex::Autolock _l(mLock);
1528 return getEffect_l(sessionId, effectId);
1529 }
1530
getEffect_l(audio_session_t sessionId,int effectId)1531 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1532 int effectId)
1533 {
1534 sp<EffectChain> chain = getEffectChain_l(sessionId);
1535 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1536 }
1537
1538 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1539 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1540 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1541 {
1542 // check for existing effect chain with the requested audio session
1543 audio_session_t sessionId = effect->sessionId();
1544 sp<EffectChain> chain = getEffectChain_l(sessionId);
1545 bool chainCreated = false;
1546
1547 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1548 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1549 this, effect->desc().name, effect->desc().flags);
1550
1551 if (chain == 0) {
1552 // create a new chain for this session
1553 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1554 chain = new EffectChain(this, sessionId);
1555 addEffectChain_l(chain);
1556 chain->setStrategy(getStrategyForSession_l(sessionId));
1557 chainCreated = true;
1558 }
1559 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1560
1561 if (chain->getEffectFromId_l(effect->id()) != 0) {
1562 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1563 this, effect->desc().name, chain.get());
1564 return BAD_VALUE;
1565 }
1566
1567 effect->setOffloaded(mType == OFFLOAD, mId);
1568
1569 status_t status = chain->addEffect_l(effect);
1570 if (status != NO_ERROR) {
1571 if (chainCreated) {
1572 removeEffectChain_l(chain);
1573 }
1574 return status;
1575 }
1576
1577 effect->setDevice(mOutDevice);
1578 effect->setDevice(mInDevice);
1579 effect->setMode(mAudioFlinger->getMode());
1580 effect->setAudioSource(mAudioSource);
1581 return NO_ERROR;
1582 }
1583
removeEffect_l(const sp<EffectModule> & effect,bool release)1584 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1585
1586 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1587 effect_descriptor_t desc = effect->desc();
1588 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1589 detachAuxEffect_l(effect->id());
1590 }
1591
1592 sp<EffectChain> chain = effect->chain().promote();
1593 if (chain != 0) {
1594 // remove effect chain if removing last effect
1595 if (chain->removeEffect_l(effect, release) == 0) {
1596 removeEffectChain_l(chain);
1597 }
1598 } else {
1599 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1600 }
1601 }
1602
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1603 void AudioFlinger::ThreadBase::lockEffectChains_l(
1604 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1605 {
1606 effectChains = mEffectChains;
1607 for (size_t i = 0; i < mEffectChains.size(); i++) {
1608 mEffectChains[i]->lock();
1609 }
1610 }
1611
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1612 void AudioFlinger::ThreadBase::unlockEffectChains(
1613 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1614 {
1615 for (size_t i = 0; i < effectChains.size(); i++) {
1616 effectChains[i]->unlock();
1617 }
1618 }
1619
getEffectChain(audio_session_t sessionId)1620 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1621 {
1622 Mutex::Autolock _l(mLock);
1623 return getEffectChain_l(sessionId);
1624 }
1625
getEffectChain_l(audio_session_t sessionId) const1626 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1627 const
1628 {
1629 size_t size = mEffectChains.size();
1630 for (size_t i = 0; i < size; i++) {
1631 if (mEffectChains[i]->sessionId() == sessionId) {
1632 return mEffectChains[i];
1633 }
1634 }
1635 return 0;
1636 }
1637
setMode(audio_mode_t mode)1638 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1639 {
1640 Mutex::Autolock _l(mLock);
1641 size_t size = mEffectChains.size();
1642 for (size_t i = 0; i < size; i++) {
1643 mEffectChains[i]->setMode_l(mode);
1644 }
1645 }
1646
getAudioPortConfig(struct audio_port_config * config)1647 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1648 {
1649 config->type = AUDIO_PORT_TYPE_MIX;
1650 config->ext.mix.handle = mId;
1651 config->sample_rate = mSampleRate;
1652 config->format = mFormat;
1653 config->channel_mask = mChannelMask;
1654 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1655 AUDIO_PORT_CONFIG_FORMAT;
1656 }
1657
systemReady()1658 void AudioFlinger::ThreadBase::systemReady()
1659 {
1660 Mutex::Autolock _l(mLock);
1661 if (mSystemReady) {
1662 return;
1663 }
1664 mSystemReady = true;
1665
1666 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1667 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1668 }
1669 mPendingConfigEvents.clear();
1670 }
1671
1672
1673 // ----------------------------------------------------------------------------
1674 // Playback
1675 // ----------------------------------------------------------------------------
1676
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type,bool systemReady)1677 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1678 AudioStreamOut* output,
1679 audio_io_handle_t id,
1680 audio_devices_t device,
1681 type_t type,
1682 bool systemReady)
1683 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1684 mNormalFrameCount(0), mSinkBuffer(NULL),
1685 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1686 mMixerBuffer(NULL),
1687 mMixerBufferSize(0),
1688 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1689 mMixerBufferValid(false),
1690 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1691 mEffectBuffer(NULL),
1692 mEffectBufferSize(0),
1693 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1694 mEffectBufferValid(false),
1695 mSuspended(0), mBytesWritten(0),
1696 mFramesWritten(0),
1697 mSuspendedFrames(0),
1698 mActiveTracksGeneration(0),
1699 // mStreamTypes[] initialized in constructor body
1700 mOutput(output),
1701 mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1702 mMixerStatus(MIXER_IDLE),
1703 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1704 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1705 mBytesRemaining(0),
1706 mCurrentWriteLength(0),
1707 mUseAsyncWrite(false),
1708 mWriteAckSequence(0),
1709 mDrainSequence(0),
1710 mSignalPending(false),
1711 mScreenState(AudioFlinger::mScreenState),
1712 // index 0 is reserved for normal mixer's submix
1713 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1714 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1715 {
1716 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1717 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1718
1719 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1720 // it would be safer to explicitly pass initial masterVolume/masterMute as
1721 // parameter.
1722 //
1723 // If the HAL we are using has support for master volume or master mute,
1724 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1725 // and the mute set to false).
1726 mMasterVolume = audioFlinger->masterVolume_l();
1727 mMasterMute = audioFlinger->masterMute_l();
1728 if (mOutput && mOutput->audioHwDev) {
1729 if (mOutput->audioHwDev->canSetMasterVolume()) {
1730 mMasterVolume = 1.0;
1731 }
1732
1733 if (mOutput->audioHwDev->canSetMasterMute()) {
1734 mMasterMute = false;
1735 }
1736 }
1737
1738 readOutputParameters_l();
1739
1740 // ++ operator does not compile
1741 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1742 stream = (audio_stream_type_t) (stream + 1)) {
1743 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1744 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1745 }
1746 }
1747
~PlaybackThread()1748 AudioFlinger::PlaybackThread::~PlaybackThread()
1749 {
1750 mAudioFlinger->unregisterWriter(mNBLogWriter);
1751 free(mSinkBuffer);
1752 free(mMixerBuffer);
1753 free(mEffectBuffer);
1754 }
1755
dump(int fd,const Vector<String16> & args)1756 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1757 {
1758 dumpInternals(fd, args);
1759 dumpTracks(fd, args);
1760 dumpEffectChains(fd, args);
1761 }
1762
dumpTracks(int fd,const Vector<String16> & args __unused)1763 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1764 {
1765 const size_t SIZE = 256;
1766 char buffer[SIZE];
1767 String8 result;
1768
1769 result.appendFormat(" Stream volumes in dB: ");
1770 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1771 const stream_type_t *st = &mStreamTypes[i];
1772 if (i > 0) {
1773 result.appendFormat(", ");
1774 }
1775 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1776 if (st->mute) {
1777 result.append("M");
1778 }
1779 }
1780 result.append("\n");
1781 write(fd, result.string(), result.length());
1782 result.clear();
1783
1784 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1785 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1786 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1787 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1788
1789 size_t numtracks = mTracks.size();
1790 size_t numactive = mActiveTracks.size();
1791 dprintf(fd, " %zu Tracks", numtracks);
1792 size_t numactiveseen = 0;
1793 if (numtracks) {
1794 dprintf(fd, " of which %zu are active\n", numactive);
1795 Track::appendDumpHeader(result);
1796 for (size_t i = 0; i < numtracks; ++i) {
1797 sp<Track> track = mTracks[i];
1798 if (track != 0) {
1799 bool active = mActiveTracks.indexOf(track) >= 0;
1800 if (active) {
1801 numactiveseen++;
1802 }
1803 track->dump(buffer, SIZE, active);
1804 result.append(buffer);
1805 }
1806 }
1807 } else {
1808 result.append("\n");
1809 }
1810 if (numactiveseen != numactive) {
1811 // some tracks in the active list were not in the tracks list
1812 snprintf(buffer, SIZE, " The following tracks are in the active list but"
1813 " not in the track list\n");
1814 result.append(buffer);
1815 Track::appendDumpHeader(result);
1816 for (size_t i = 0; i < numactive; ++i) {
1817 sp<Track> track = mActiveTracks[i].promote();
1818 if (track != 0 && mTracks.indexOf(track) < 0) {
1819 track->dump(buffer, SIZE, true);
1820 result.append(buffer);
1821 }
1822 }
1823 }
1824
1825 write(fd, result.string(), result.size());
1826 }
1827
dumpInternals(int fd,const Vector<String16> & args)1828 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1829 {
1830 dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1831
1832 dumpBase(fd, args);
1833
1834 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1835 dprintf(fd, " Last write occurred (msecs): %llu\n",
1836 (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1837 dprintf(fd, " Total writes: %d\n", mNumWrites);
1838 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1839 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1840 dprintf(fd, " Suspend count: %d\n", mSuspended);
1841 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1842 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1843 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1844 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1845 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1846 AudioStreamOut *output = mOutput;
1847 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1848 String8 flagsAsString = outputFlagsToString(flags);
1849 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1850 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
1851 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
1852 if (mPipeSink.get() != nullptr) {
1853 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
1854 }
1855 if (output != nullptr) {
1856 dprintf(fd, " Hal stream dump:\n");
1857 (void)output->stream->common.dump(&output->stream->common, fd);
1858 }
1859 }
1860
1861 // Thread virtuals
1862
onFirstRef()1863 void AudioFlinger::PlaybackThread::onFirstRef()
1864 {
1865 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1866 }
1867
1868 // ThreadBase virtuals
preExit()1869 void AudioFlinger::PlaybackThread::preExit()
1870 {
1871 ALOGV(" preExit()");
1872 // FIXME this is using hard-coded strings but in the future, this functionality will be
1873 // converted to use audio HAL extensions required to support tunneling
1874 mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1875 }
1876
1877 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t tid,int uid,status_t * status)1878 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1879 const sp<AudioFlinger::Client>& client,
1880 audio_stream_type_t streamType,
1881 uint32_t sampleRate,
1882 audio_format_t format,
1883 audio_channel_mask_t channelMask,
1884 size_t *pFrameCount,
1885 const sp<IMemory>& sharedBuffer,
1886 audio_session_t sessionId,
1887 audio_output_flags_t *flags,
1888 pid_t tid,
1889 int uid,
1890 status_t *status)
1891 {
1892 size_t frameCount = *pFrameCount;
1893 sp<Track> track;
1894 status_t lStatus;
1895 audio_output_flags_t outputFlags = mOutput->flags;
1896
1897 // special case for FAST flag considered OK if fast mixer is present
1898 if (hasFastMixer()) {
1899 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1900 }
1901
1902 // Check if requested flags are compatible with output stream flags
1903 if ((*flags & outputFlags) != *flags) {
1904 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1905 *flags, outputFlags);
1906 *flags = (audio_output_flags_t)(*flags & outputFlags);
1907 }
1908
1909 // client expresses a preference for FAST, but we get the final say
1910 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1911 if (
1912 // PCM data
1913 audio_is_linear_pcm(format) &&
1914 // TODO: extract as a data library function that checks that a computationally
1915 // expensive downmixer is not required: isFastOutputChannelConversion()
1916 (channelMask == mChannelMask ||
1917 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1918 (channelMask == AUDIO_CHANNEL_OUT_MONO
1919 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1920 // hardware sample rate
1921 (sampleRate == mSampleRate) &&
1922 // normal mixer has an associated fast mixer
1923 hasFastMixer() &&
1924 // there are sufficient fast track slots available
1925 (mFastTrackAvailMask != 0)
1926 // FIXME test that MixerThread for this fast track has a capable output HAL
1927 // FIXME add a permission test also?
1928 ) {
1929 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1930 if (sharedBuffer == 0) {
1931 // read the fast track multiplier property the first time it is needed
1932 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1933 if (ok != 0) {
1934 ALOGE("%s pthread_once failed: %d", __func__, ok);
1935 }
1936 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1937 }
1938
1939 // check compatibility with audio effects.
1940 { // scope for mLock
1941 Mutex::Autolock _l(mLock);
1942 for (audio_session_t session : {
1943 AUDIO_SESSION_OUTPUT_STAGE,
1944 AUDIO_SESSION_OUTPUT_MIX,
1945 sessionId,
1946 }) {
1947 sp<EffectChain> chain = getEffectChain_l(session);
1948 if (chain.get() != nullptr) {
1949 audio_output_flags_t old = *flags;
1950 chain->checkOutputFlagCompatibility(flags);
1951 if (old != *flags) {
1952 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
1953 (int)session, (int)old, (int)*flags);
1954 }
1955 }
1956 }
1957 }
1958 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1959 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1960 frameCount, mFrameCount);
1961 } else {
1962 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1963 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1964 "sampleRate=%u mSampleRate=%u "
1965 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1966 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1967 audio_is_linear_pcm(format),
1968 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1969 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1970 }
1971 }
1972 // For normal PCM streaming tracks, update minimum frame count.
1973 // For compatibility with AudioTrack calculation, buffer depth is forced
1974 // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1975 // This is probably too conservative, but legacy application code may depend on it.
1976 // If you change this calculation, also review the start threshold which is related.
1977 if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
1978 && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1979 // this must match AudioTrack.cpp calculateMinFrameCount().
1980 // TODO: Move to a common library
1981 uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1982 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1983 if (minBufCount < 2) {
1984 minBufCount = 2;
1985 }
1986 // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1987 // or the client should compute and pass in a larger buffer request.
1988 size_t minFrameCount =
1989 minBufCount * sourceFramesNeededWithTimestretch(
1990 sampleRate, mNormalFrameCount,
1991 mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1992 if (frameCount < minFrameCount) { // including frameCount == 0
1993 frameCount = minFrameCount;
1994 }
1995 }
1996 *pFrameCount = frameCount;
1997
1998 switch (mType) {
1999
2000 case DIRECT:
2001 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2002 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2003 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2004 "for output %p with format %#x",
2005 sampleRate, format, channelMask, mOutput, mFormat);
2006 lStatus = BAD_VALUE;
2007 goto Exit;
2008 }
2009 }
2010 break;
2011
2012 case OFFLOAD:
2013 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2014 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2015 "for output %p with format %#x",
2016 sampleRate, format, channelMask, mOutput, mFormat);
2017 lStatus = BAD_VALUE;
2018 goto Exit;
2019 }
2020 break;
2021
2022 default:
2023 if (!audio_is_linear_pcm(format)) {
2024 ALOGE("createTrack_l() Bad parameter: format %#x \""
2025 "for output %p with format %#x",
2026 format, mOutput, mFormat);
2027 lStatus = BAD_VALUE;
2028 goto Exit;
2029 }
2030 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2031 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2032 lStatus = BAD_VALUE;
2033 goto Exit;
2034 }
2035 break;
2036
2037 }
2038
2039 lStatus = initCheck();
2040 if (lStatus != NO_ERROR) {
2041 ALOGE("createTrack_l() audio driver not initialized");
2042 goto Exit;
2043 }
2044
2045 { // scope for mLock
2046 Mutex::Autolock _l(mLock);
2047
2048 // all tracks in same audio session must share the same routing strategy otherwise
2049 // conflicts will happen when tracks are moved from one output to another by audio policy
2050 // manager
2051 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2052 for (size_t i = 0; i < mTracks.size(); ++i) {
2053 sp<Track> t = mTracks[i];
2054 if (t != 0 && t->isExternalTrack()) {
2055 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2056 if (sessionId == t->sessionId() && strategy != actual) {
2057 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2058 strategy, actual);
2059 lStatus = BAD_VALUE;
2060 goto Exit;
2061 }
2062 }
2063 }
2064
2065 track = new Track(this, client, streamType, sampleRate, format,
2066 channelMask, frameCount, NULL, sharedBuffer,
2067 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
2068
2069 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2070 if (lStatus != NO_ERROR) {
2071 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2072 // track must be cleared from the caller as the caller has the AF lock
2073 goto Exit;
2074 }
2075 mTracks.add(track);
2076
2077 sp<EffectChain> chain = getEffectChain_l(sessionId);
2078 if (chain != 0) {
2079 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2080 track->setMainBuffer(chain->inBuffer());
2081 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2082 chain->incTrackCnt();
2083 }
2084
2085 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2086 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2087 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2088 // so ask activity manager to do this on our behalf
2089 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
2090 }
2091 }
2092
2093 lStatus = NO_ERROR;
2094
2095 Exit:
2096 *status = lStatus;
2097 return track;
2098 }
2099
correctLatency_l(uint32_t latency) const2100 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2101 {
2102 return latency;
2103 }
2104
latency() const2105 uint32_t AudioFlinger::PlaybackThread::latency() const
2106 {
2107 Mutex::Autolock _l(mLock);
2108 return latency_l();
2109 }
latency_l() const2110 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2111 {
2112 if (initCheck() == NO_ERROR) {
2113 return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
2114 } else {
2115 return 0;
2116 }
2117 }
2118
setMasterVolume(float value)2119 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2120 {
2121 Mutex::Autolock _l(mLock);
2122 // Don't apply master volume in SW if our HAL can do it for us.
2123 if (mOutput && mOutput->audioHwDev &&
2124 mOutput->audioHwDev->canSetMasterVolume()) {
2125 mMasterVolume = 1.0;
2126 } else {
2127 mMasterVolume = value;
2128 }
2129 }
2130
setMasterMute(bool muted)2131 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2132 {
2133 Mutex::Autolock _l(mLock);
2134 // Don't apply master mute in SW if our HAL can do it for us.
2135 if (mOutput && mOutput->audioHwDev &&
2136 mOutput->audioHwDev->canSetMasterMute()) {
2137 mMasterMute = false;
2138 } else {
2139 mMasterMute = muted;
2140 }
2141 }
2142
setStreamVolume(audio_stream_type_t stream,float value)2143 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2144 {
2145 Mutex::Autolock _l(mLock);
2146 mStreamTypes[stream].volume = value;
2147 broadcast_l();
2148 }
2149
setStreamMute(audio_stream_type_t stream,bool muted)2150 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2151 {
2152 Mutex::Autolock _l(mLock);
2153 mStreamTypes[stream].mute = muted;
2154 broadcast_l();
2155 }
2156
streamVolume(audio_stream_type_t stream) const2157 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2158 {
2159 Mutex::Autolock _l(mLock);
2160 return mStreamTypes[stream].volume;
2161 }
2162
2163 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2164 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2165 {
2166 status_t status = ALREADY_EXISTS;
2167
2168 if (mActiveTracks.indexOf(track) < 0) {
2169 // the track is newly added, make sure it fills up all its
2170 // buffers before playing. This is to ensure the client will
2171 // effectively get the latency it requested.
2172 if (track->isExternalTrack()) {
2173 TrackBase::track_state state = track->mState;
2174 mLock.unlock();
2175 status = AudioSystem::startOutput(mId, track->streamType(),
2176 track->sessionId());
2177 mLock.lock();
2178 // abort track was stopped/paused while we released the lock
2179 if (state != track->mState) {
2180 if (status == NO_ERROR) {
2181 mLock.unlock();
2182 AudioSystem::stopOutput(mId, track->streamType(),
2183 track->sessionId());
2184 mLock.lock();
2185 }
2186 return INVALID_OPERATION;
2187 }
2188 // abort if start is rejected by audio policy manager
2189 if (status != NO_ERROR) {
2190 return PERMISSION_DENIED;
2191 }
2192 #ifdef ADD_BATTERY_DATA
2193 // to track the speaker usage
2194 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2195 #endif
2196 }
2197
2198 // set retry count for buffer fill
2199 if (track->isOffloaded()) {
2200 if (track->isStopping_1()) {
2201 track->mRetryCount = kMaxTrackStopRetriesOffload;
2202 } else {
2203 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2204 }
2205 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2206 } else {
2207 track->mRetryCount = kMaxTrackStartupRetries;
2208 track->mFillingUpStatus =
2209 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2210 }
2211
2212 track->mResetDone = false;
2213 track->mPresentationCompleteFrames = 0;
2214 mActiveTracks.add(track);
2215 mWakeLockUids.add(track->uid());
2216 mActiveTracksGeneration++;
2217 mLatestActiveTrack = track;
2218 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2219 if (chain != 0) {
2220 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2221 track->sessionId());
2222 chain->incActiveTrackCnt();
2223 }
2224
2225 status = NO_ERROR;
2226 }
2227
2228 onAddNewTrack_l();
2229 return status;
2230 }
2231
destroyTrack_l(const sp<Track> & track)2232 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2233 {
2234 track->terminate();
2235 // active tracks are removed by threadLoop()
2236 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2237 track->mState = TrackBase::STOPPED;
2238 if (!trackActive) {
2239 removeTrack_l(track);
2240 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2241 track->mState = TrackBase::STOPPING_1;
2242 }
2243
2244 return trackActive;
2245 }
2246
removeTrack_l(const sp<Track> & track)2247 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2248 {
2249 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2250 mTracks.remove(track);
2251 deleteTrackName_l(track->name());
2252 // redundant as track is about to be destroyed, for dumpsys only
2253 track->mName = -1;
2254 if (track->isFastTrack()) {
2255 int index = track->mFastIndex;
2256 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2257 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2258 mFastTrackAvailMask |= 1 << index;
2259 // redundant as track is about to be destroyed, for dumpsys only
2260 track->mFastIndex = -1;
2261 }
2262 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2263 if (chain != 0) {
2264 chain->decTrackCnt();
2265 }
2266 }
2267
broadcast_l()2268 void AudioFlinger::PlaybackThread::broadcast_l()
2269 {
2270 // Thread could be blocked waiting for async
2271 // so signal it to handle state changes immediately
2272 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2273 // be lost so we also flag to prevent it blocking on mWaitWorkCV
2274 mSignalPending = true;
2275 mWaitWorkCV.broadcast();
2276 }
2277
getParameters(const String8 & keys)2278 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2279 {
2280 Mutex::Autolock _l(mLock);
2281 if (initCheck() != NO_ERROR) {
2282 return String8();
2283 }
2284
2285 char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2286 const String8 out_s8(s);
2287 free(s);
2288 return out_s8;
2289 }
2290
ioConfigChanged(audio_io_config_event event,pid_t pid)2291 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2292 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2293 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2294
2295 desc->mIoHandle = mId;
2296
2297 switch (event) {
2298 case AUDIO_OUTPUT_OPENED:
2299 case AUDIO_OUTPUT_CONFIG_CHANGED:
2300 desc->mPatch = mPatch;
2301 desc->mChannelMask = mChannelMask;
2302 desc->mSamplingRate = mSampleRate;
2303 desc->mFormat = mFormat;
2304 desc->mFrameCount = mNormalFrameCount; // FIXME see
2305 // AudioFlinger::frameCount(audio_io_handle_t)
2306 desc->mFrameCountHAL = mFrameCount;
2307 desc->mLatency = latency_l();
2308 break;
2309
2310 case AUDIO_OUTPUT_CLOSED:
2311 default:
2312 break;
2313 }
2314 mAudioFlinger->ioConfigChanged(event, desc, pid);
2315 }
2316
writeCallback()2317 void AudioFlinger::PlaybackThread::writeCallback()
2318 {
2319 ALOG_ASSERT(mCallbackThread != 0);
2320 mCallbackThread->resetWriteBlocked();
2321 }
2322
drainCallback()2323 void AudioFlinger::PlaybackThread::drainCallback()
2324 {
2325 ALOG_ASSERT(mCallbackThread != 0);
2326 mCallbackThread->resetDraining();
2327 }
2328
errorCallback()2329 void AudioFlinger::PlaybackThread::errorCallback()
2330 {
2331 ALOG_ASSERT(mCallbackThread != 0);
2332 mCallbackThread->setAsyncError();
2333 }
2334
resetWriteBlocked(uint32_t sequence)2335 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2336 {
2337 Mutex::Autolock _l(mLock);
2338 // reject out of sequence requests
2339 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2340 mWriteAckSequence &= ~1;
2341 mWaitWorkCV.signal();
2342 }
2343 }
2344
resetDraining(uint32_t sequence)2345 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2346 {
2347 Mutex::Autolock _l(mLock);
2348 // reject out of sequence requests
2349 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2350 mDrainSequence &= ~1;
2351 mWaitWorkCV.signal();
2352 }
2353 }
2354
2355 // static
asyncCallback(stream_callback_event_t event,void * param __unused,void * cookie)2356 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2357 void *param __unused,
2358 void *cookie)
2359 {
2360 AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2361 ALOGV("asyncCallback() event %d", event);
2362 switch (event) {
2363 case STREAM_CBK_EVENT_WRITE_READY:
2364 me->writeCallback();
2365 break;
2366 case STREAM_CBK_EVENT_DRAIN_READY:
2367 me->drainCallback();
2368 break;
2369 case STREAM_CBK_EVENT_ERROR:
2370 me->errorCallback();
2371 break;
2372 default:
2373 ALOGW("asyncCallback() unknown event %d", event);
2374 break;
2375 }
2376 return 0;
2377 }
2378
readOutputParameters_l()2379 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2380 {
2381 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2382 mSampleRate = mOutput->getSampleRate();
2383 mChannelMask = mOutput->getChannelMask();
2384 if (!audio_is_output_channel(mChannelMask)) {
2385 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2386 }
2387 if ((mType == MIXER || mType == DUPLICATING)
2388 && !isValidPcmSinkChannelMask(mChannelMask)) {
2389 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2390 mChannelMask);
2391 }
2392 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2393
2394 // Get actual HAL format.
2395 mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2396 // Get format from the shim, which will be different than the HAL format
2397 // if playing compressed audio over HDMI passthrough.
2398 mFormat = mOutput->getFormat();
2399 if (!audio_is_valid_format(mFormat)) {
2400 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2401 }
2402 if ((mType == MIXER || mType == DUPLICATING)
2403 && !isValidPcmSinkFormat(mFormat)) {
2404 LOG_FATAL("HAL format %#x not supported for mixed output",
2405 mFormat);
2406 }
2407 mFrameSize = mOutput->getFrameSize();
2408 mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2409 mFrameCount = mBufferSize / mFrameSize;
2410 if (mFrameCount & 15) {
2411 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2412 mFrameCount);
2413 }
2414
2415 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2416 (mOutput->stream->set_callback != NULL)) {
2417 if (mOutput->stream->set_callback(mOutput->stream,
2418 AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2419 mUseAsyncWrite = true;
2420 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2421 }
2422 }
2423
2424 mHwSupportsPause = false;
2425 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2426 if (mOutput->stream->pause != NULL) {
2427 if (mOutput->stream->resume != NULL) {
2428 mHwSupportsPause = true;
2429 } else {
2430 ALOGW("direct output implements pause but not resume");
2431 }
2432 } else if (mOutput->stream->resume != NULL) {
2433 ALOGW("direct output implements resume but not pause");
2434 }
2435 }
2436 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2437 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2438 }
2439
2440 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2441 // For best precision, we use float instead of the associated output
2442 // device format (typically PCM 16 bit).
2443
2444 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2445 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2446 mBufferSize = mFrameSize * mFrameCount;
2447
2448 // TODO: We currently use the associated output device channel mask and sample rate.
2449 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2450 // (if a valid mask) to avoid premature downmix.
2451 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2452 // instead of the output device sample rate to avoid loss of high frequency information.
2453 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2454 }
2455
2456 // Calculate size of normal sink buffer relative to the HAL output buffer size
2457 double multiplier = 1.0;
2458 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2459 kUseFastMixer == FastMixer_Dynamic)) {
2460 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2461 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2462
2463 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2464 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2465 maxNormalFrameCount = maxNormalFrameCount & ~15;
2466 if (maxNormalFrameCount < minNormalFrameCount) {
2467 maxNormalFrameCount = minNormalFrameCount;
2468 }
2469 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2470 if (multiplier <= 1.0) {
2471 multiplier = 1.0;
2472 } else if (multiplier <= 2.0) {
2473 if (2 * mFrameCount <= maxNormalFrameCount) {
2474 multiplier = 2.0;
2475 } else {
2476 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2477 }
2478 } else {
2479 multiplier = floor(multiplier);
2480 }
2481 }
2482 mNormalFrameCount = multiplier * mFrameCount;
2483 // round up to nearest 16 frames to satisfy AudioMixer
2484 if (mType == MIXER || mType == DUPLICATING) {
2485 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2486 }
2487 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2488 mNormalFrameCount);
2489
2490 // Check if we want to throttle the processing to no more than 2x normal rate
2491 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2492 mThreadThrottleTimeMs = 0;
2493 mThreadThrottleEndMs = 0;
2494 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2495
2496 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2497 // Originally this was int16_t[] array, need to remove legacy implications.
2498 free(mSinkBuffer);
2499 mSinkBuffer = NULL;
2500 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2501 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2502 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2503 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2504
2505 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2506 // drives the output.
2507 free(mMixerBuffer);
2508 mMixerBuffer = NULL;
2509 if (mMixerBufferEnabled) {
2510 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2511 mMixerBufferSize = mNormalFrameCount * mChannelCount
2512 * audio_bytes_per_sample(mMixerBufferFormat);
2513 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2514 }
2515 free(mEffectBuffer);
2516 mEffectBuffer = NULL;
2517 if (mEffectBufferEnabled) {
2518 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2519 mEffectBufferSize = mNormalFrameCount * mChannelCount
2520 * audio_bytes_per_sample(mEffectBufferFormat);
2521 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2522 }
2523
2524 // force reconfiguration of effect chains and engines to take new buffer size and audio
2525 // parameters into account
2526 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2527 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2528 // matter.
2529 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2530 Vector< sp<EffectChain> > effectChains = mEffectChains;
2531 for (size_t i = 0; i < effectChains.size(); i ++) {
2532 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2533 }
2534 }
2535
2536
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2537 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2538 {
2539 if (halFrames == NULL || dspFrames == NULL) {
2540 return BAD_VALUE;
2541 }
2542 Mutex::Autolock _l(mLock);
2543 if (initCheck() != NO_ERROR) {
2544 return INVALID_OPERATION;
2545 }
2546 int64_t framesWritten = mBytesWritten / mFrameSize;
2547 *halFrames = framesWritten;
2548
2549 if (isSuspended()) {
2550 // return an estimation of rendered frames when the output is suspended
2551 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2552 *dspFrames = (uint32_t)
2553 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2554 return NO_ERROR;
2555 } else {
2556 status_t status;
2557 uint32_t frames;
2558 status = mOutput->getRenderPosition(&frames);
2559 *dspFrames = (size_t)frames;
2560 return status;
2561 }
2562 }
2563
2564 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const2565 uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2566 {
2567 uint32_t result = 0;
2568 if (getEffectChain_l(sessionId) != 0) {
2569 result = EFFECT_SESSION;
2570 }
2571
2572 for (size_t i = 0; i < mTracks.size(); ++i) {
2573 sp<Track> track = mTracks[i];
2574 if (sessionId == track->sessionId() && !track->isInvalid()) {
2575 result |= TRACK_SESSION;
2576 if (track->isFastTrack()) {
2577 result |= FAST_SESSION;
2578 }
2579 break;
2580 }
2581 }
2582
2583 return result;
2584 }
2585
getStrategyForSession_l(audio_session_t sessionId)2586 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2587 {
2588 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2589 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2590 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2591 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2592 }
2593 for (size_t i = 0; i < mTracks.size(); i++) {
2594 sp<Track> track = mTracks[i];
2595 if (sessionId == track->sessionId() && !track->isInvalid()) {
2596 return AudioSystem::getStrategyForStream(track->streamType());
2597 }
2598 }
2599 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2600 }
2601
2602
getOutput() const2603 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2604 {
2605 Mutex::Autolock _l(mLock);
2606 return mOutput;
2607 }
2608
clearOutput()2609 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2610 {
2611 Mutex::Autolock _l(mLock);
2612 AudioStreamOut *output = mOutput;
2613 mOutput = NULL;
2614 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2615 // must push a NULL and wait for ack
2616 mOutputSink.clear();
2617 mPipeSink.clear();
2618 mNormalSink.clear();
2619 return output;
2620 }
2621
2622 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2623 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2624 {
2625 if (mOutput == NULL) {
2626 return NULL;
2627 }
2628 return &mOutput->stream->common;
2629 }
2630
activeSleepTimeUs() const2631 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2632 {
2633 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2634 }
2635
setSyncEvent(const sp<SyncEvent> & event)2636 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2637 {
2638 if (!isValidSyncEvent(event)) {
2639 return BAD_VALUE;
2640 }
2641
2642 Mutex::Autolock _l(mLock);
2643
2644 for (size_t i = 0; i < mTracks.size(); ++i) {
2645 sp<Track> track = mTracks[i];
2646 if (event->triggerSession() == track->sessionId()) {
2647 (void) track->setSyncEvent(event);
2648 return NO_ERROR;
2649 }
2650 }
2651
2652 return NAME_NOT_FOUND;
2653 }
2654
isValidSyncEvent(const sp<SyncEvent> & event) const2655 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2656 {
2657 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2658 }
2659
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2660 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2661 const Vector< sp<Track> >& tracksToRemove)
2662 {
2663 size_t count = tracksToRemove.size();
2664 if (count > 0) {
2665 for (size_t i = 0 ; i < count ; i++) {
2666 const sp<Track>& track = tracksToRemove.itemAt(i);
2667 if (track->isExternalTrack()) {
2668 AudioSystem::stopOutput(mId, track->streamType(),
2669 track->sessionId());
2670 #ifdef ADD_BATTERY_DATA
2671 // to track the speaker usage
2672 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2673 #endif
2674 if (track->isTerminated()) {
2675 AudioSystem::releaseOutput(mId, track->streamType(),
2676 track->sessionId());
2677 }
2678 }
2679 }
2680 }
2681 }
2682
checkSilentMode_l()2683 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2684 {
2685 if (!mMasterMute) {
2686 char value[PROPERTY_VALUE_MAX];
2687 if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2688 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2689 return;
2690 }
2691 if (property_get("ro.audio.silent", value, "0") > 0) {
2692 char *endptr;
2693 unsigned long ul = strtoul(value, &endptr, 0);
2694 if (*endptr == '\0' && ul != 0) {
2695 ALOGD("Silence is golden");
2696 // The setprop command will not allow a property to be changed after
2697 // the first time it is set, so we don't have to worry about un-muting.
2698 setMasterMute_l(true);
2699 }
2700 }
2701 }
2702 }
2703
2704 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2705 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2706 {
2707 mInWrite = true;
2708 ssize_t bytesWritten;
2709 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2710
2711 // If an NBAIO sink is present, use it to write the normal mixer's submix
2712 if (mNormalSink != 0) {
2713
2714 const size_t count = mBytesRemaining / mFrameSize;
2715
2716 ATRACE_BEGIN("write");
2717 // update the setpoint when AudioFlinger::mScreenState changes
2718 uint32_t screenState = AudioFlinger::mScreenState;
2719 if (screenState != mScreenState) {
2720 mScreenState = screenState;
2721 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2722 if (pipe != NULL) {
2723 pipe->setAvgFrames((mScreenState & 1) ?
2724 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2725 }
2726 }
2727 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2728 ATRACE_END();
2729 if (framesWritten > 0) {
2730 bytesWritten = framesWritten * mFrameSize;
2731 } else {
2732 bytesWritten = framesWritten;
2733 }
2734 // otherwise use the HAL / AudioStreamOut directly
2735 } else {
2736 // Direct output and offload threads
2737
2738 if (mUseAsyncWrite) {
2739 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2740 mWriteAckSequence += 2;
2741 mWriteAckSequence |= 1;
2742 ALOG_ASSERT(mCallbackThread != 0);
2743 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2744 }
2745 // FIXME We should have an implementation of timestamps for direct output threads.
2746 // They are used e.g for multichannel PCM playback over HDMI.
2747 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2748
2749 if (mUseAsyncWrite &&
2750 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2751 // do not wait for async callback in case of error of full write
2752 mWriteAckSequence &= ~1;
2753 ALOG_ASSERT(mCallbackThread != 0);
2754 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2755 }
2756 }
2757
2758 mNumWrites++;
2759 mInWrite = false;
2760 mStandby = false;
2761 return bytesWritten;
2762 }
2763
threadLoop_drain()2764 void AudioFlinger::PlaybackThread::threadLoop_drain()
2765 {
2766 if (mOutput->stream->drain) {
2767 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2768 if (mUseAsyncWrite) {
2769 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2770 mDrainSequence |= 1;
2771 ALOG_ASSERT(mCallbackThread != 0);
2772 mCallbackThread->setDraining(mDrainSequence);
2773 }
2774 mOutput->stream->drain(mOutput->stream,
2775 (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2776 : AUDIO_DRAIN_ALL);
2777 }
2778 }
2779
threadLoop_exit()2780 void AudioFlinger::PlaybackThread::threadLoop_exit()
2781 {
2782 {
2783 Mutex::Autolock _l(mLock);
2784 for (size_t i = 0; i < mTracks.size(); i++) {
2785 sp<Track> track = mTracks[i];
2786 track->invalidate();
2787 }
2788 }
2789 }
2790
2791 /*
2792 The derived values that are cached:
2793 - mSinkBufferSize from frame count * frame size
2794 - mActiveSleepTimeUs from activeSleepTimeUs()
2795 - mIdleSleepTimeUs from idleSleepTimeUs()
2796 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2797 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2798 - maxPeriod from frame count and sample rate (MIXER only)
2799
2800 The parameters that affect these derived values are:
2801 - frame count
2802 - frame size
2803 - sample rate
2804 - device type: A2DP or not
2805 - device latency
2806 - format: PCM or not
2807 - active sleep time
2808 - idle sleep time
2809 */
2810
cacheParameters_l()2811 void AudioFlinger::PlaybackThread::cacheParameters_l()
2812 {
2813 mSinkBufferSize = mNormalFrameCount * mFrameSize;
2814 mActiveSleepTimeUs = activeSleepTimeUs();
2815 mIdleSleepTimeUs = idleSleepTimeUs();
2816
2817 // make sure standby delay is not too short when connected to an A2DP sink to avoid
2818 // truncating audio when going to standby.
2819 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2820 if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2821 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2822 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2823 }
2824 }
2825 }
2826
invalidateTracks_l(audio_stream_type_t streamType)2827 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2828 {
2829 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2830 this, streamType, mTracks.size());
2831 bool trackMatch = false;
2832 size_t size = mTracks.size();
2833 for (size_t i = 0; i < size; i++) {
2834 sp<Track> t = mTracks[i];
2835 if (t->streamType() == streamType && t->isExternalTrack()) {
2836 t->invalidate();
2837 trackMatch = true;
2838 }
2839 }
2840 return trackMatch;
2841 }
2842
invalidateTracks(audio_stream_type_t streamType)2843 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2844 {
2845 Mutex::Autolock _l(mLock);
2846 invalidateTracks_l(streamType);
2847 }
2848
addEffectChain_l(const sp<EffectChain> & chain)2849 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2850 {
2851 audio_session_t session = chain->sessionId();
2852 int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2853 ? mEffectBuffer : mSinkBuffer);
2854 bool ownsBuffer = false;
2855
2856 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2857 if (session > AUDIO_SESSION_OUTPUT_MIX) {
2858 // Only one effect chain can be present in direct output thread and it uses
2859 // the sink buffer as input
2860 if (mType != DIRECT) {
2861 size_t numSamples = mNormalFrameCount * mChannelCount;
2862 buffer = new int16_t[numSamples];
2863 memset(buffer, 0, numSamples * sizeof(int16_t));
2864 ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2865 ownsBuffer = true;
2866 }
2867
2868 // Attach all tracks with same session ID to this chain.
2869 for (size_t i = 0; i < mTracks.size(); ++i) {
2870 sp<Track> track = mTracks[i];
2871 if (session == track->sessionId()) {
2872 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2873 buffer);
2874 track->setMainBuffer(buffer);
2875 chain->incTrackCnt();
2876 }
2877 }
2878
2879 // indicate all active tracks in the chain
2880 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2881 sp<Track> track = mActiveTracks[i].promote();
2882 if (track == 0) {
2883 continue;
2884 }
2885 if (session == track->sessionId()) {
2886 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2887 chain->incActiveTrackCnt();
2888 }
2889 }
2890 }
2891 chain->setThread(this);
2892 chain->setInBuffer(buffer, ownsBuffer);
2893 chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2894 ? mEffectBuffer : mSinkBuffer));
2895 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2896 // chains list in order to be processed last as it contains output stage effects.
2897 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2898 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2899 // after track specific effects and before output stage.
2900 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2901 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2902 // Effect chain for other sessions are inserted at beginning of effect
2903 // chains list to be processed before output mix effects. Relative order between other
2904 // sessions is not important.
2905 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2906 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2907 "audio_session_t constants misdefined");
2908 size_t size = mEffectChains.size();
2909 size_t i = 0;
2910 for (i = 0; i < size; i++) {
2911 if (mEffectChains[i]->sessionId() < session) {
2912 break;
2913 }
2914 }
2915 mEffectChains.insertAt(chain, i);
2916 checkSuspendOnAddEffectChain_l(chain);
2917
2918 return NO_ERROR;
2919 }
2920
removeEffectChain_l(const sp<EffectChain> & chain)2921 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2922 {
2923 audio_session_t session = chain->sessionId();
2924
2925 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2926
2927 for (size_t i = 0; i < mEffectChains.size(); i++) {
2928 if (chain == mEffectChains[i]) {
2929 mEffectChains.removeAt(i);
2930 // detach all active tracks from the chain
2931 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2932 sp<Track> track = mActiveTracks[i].promote();
2933 if (track == 0) {
2934 continue;
2935 }
2936 if (session == track->sessionId()) {
2937 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2938 chain.get(), session);
2939 chain->decActiveTrackCnt();
2940 }
2941 }
2942
2943 // detach all tracks with same session ID from this chain
2944 for (size_t i = 0; i < mTracks.size(); ++i) {
2945 sp<Track> track = mTracks[i];
2946 if (session == track->sessionId()) {
2947 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2948 chain->decTrackCnt();
2949 }
2950 }
2951 break;
2952 }
2953 }
2954 return mEffectChains.size();
2955 }
2956
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2957 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2958 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2959 {
2960 Mutex::Autolock _l(mLock);
2961 return attachAuxEffect_l(track, EffectId);
2962 }
2963
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2964 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2965 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2966 {
2967 status_t status = NO_ERROR;
2968
2969 if (EffectId == 0) {
2970 track->setAuxBuffer(0, NULL);
2971 } else {
2972 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2973 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2974 if (effect != 0) {
2975 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2976 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2977 } else {
2978 status = INVALID_OPERATION;
2979 }
2980 } else {
2981 status = BAD_VALUE;
2982 }
2983 }
2984 return status;
2985 }
2986
detachAuxEffect_l(int effectId)2987 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2988 {
2989 for (size_t i = 0; i < mTracks.size(); ++i) {
2990 sp<Track> track = mTracks[i];
2991 if (track->auxEffectId() == effectId) {
2992 attachAuxEffect_l(track, 0);
2993 }
2994 }
2995 }
2996
threadLoop()2997 bool AudioFlinger::PlaybackThread::threadLoop()
2998 {
2999 Vector< sp<Track> > tracksToRemove;
3000
3001 mStandbyTimeNs = systemTime();
3002 nsecs_t lastWriteFinished = -1; // time last server write completed
3003 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
3004
3005 // MIXER
3006 nsecs_t lastWarning = 0;
3007
3008 // DUPLICATING
3009 // FIXME could this be made local to while loop?
3010 writeFrames = 0;
3011
3012 int lastGeneration = 0;
3013
3014 cacheParameters_l();
3015 mSleepTimeUs = mIdleSleepTimeUs;
3016
3017 if (mType == MIXER) {
3018 sleepTimeShift = 0;
3019 }
3020
3021 CpuStats cpuStats;
3022 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
3023
3024 acquireWakeLock();
3025
3026 // mNBLogWriter->log can only be called while thread mutex mLock is held.
3027 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3028 // and then that string will be logged at the next convenient opportunity.
3029 const char *logString = NULL;
3030
3031 checkSilentMode_l();
3032
3033 while (!exitPending())
3034 {
3035 cpuStats.sample(myName);
3036
3037 Vector< sp<EffectChain> > effectChains;
3038
3039 { // scope for mLock
3040
3041 Mutex::Autolock _l(mLock);
3042
3043 processConfigEvents_l();
3044
3045 if (logString != NULL) {
3046 mNBLogWriter->logTimestamp();
3047 mNBLogWriter->log(logString);
3048 logString = NULL;
3049 }
3050
3051 // Gather the framesReleased counters for all active tracks,
3052 // and associate with the sink frames written out. We need
3053 // this to convert the sink timestamp to the track timestamp.
3054 bool kernelLocationUpdate = false;
3055 if (mNormalSink != 0) {
3056 // Note: The DuplicatingThread may not have a mNormalSink.
3057 // We always fetch the timestamp here because often the downstream
3058 // sink will block while writing.
3059 ExtendedTimestamp timestamp; // use private copy to fetch
3060 (void) mNormalSink->getTimestamp(timestamp);
3061
3062 // We keep track of the last valid kernel position in case we are in underrun
3063 // and the normal mixer period is the same as the fast mixer period, or there
3064 // is some error from the HAL.
3065 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3066 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3067 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3068 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3069 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3070
3071 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3072 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3073 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3074 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3075 }
3076
3077 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3078 kernelLocationUpdate = true;
3079 } else {
3080 ALOGVV("getTimestamp error - no valid kernel position");
3081 }
3082
3083 // copy over kernel info
3084 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3085 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3086 + mSuspendedFrames; // add frames discarded when suspended
3087 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3088 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3089 }
3090 // mFramesWritten for non-offloaded tracks are contiguous
3091 // even after standby() is called. This is useful for the track frame
3092 // to sink frame mapping.
3093 bool serverLocationUpdate = false;
3094 if (mFramesWritten != lastFramesWritten) {
3095 serverLocationUpdate = true;
3096 lastFramesWritten = mFramesWritten;
3097 }
3098 // Only update timestamps if there is a meaningful change.
3099 // Either the kernel timestamp must be valid or we have written something.
3100 if (kernelLocationUpdate || serverLocationUpdate) {
3101 if (serverLocationUpdate) {
3102 // use the time before we called the HAL write - it is a bit more accurate
3103 // to when the server last read data than the current time here.
3104 //
3105 // If we haven't written anything, mLastWriteTime will be -1
3106 // and we use systemTime().
3107 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3108 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3109 ? systemTime() : mLastWriteTime;
3110 }
3111 const size_t size = mActiveTracks.size();
3112 for (size_t i = 0; i < size; ++i) {
3113 sp<Track> t = mActiveTracks[i].promote();
3114 if (t != 0 && !t->isFastTrack()) {
3115 t->updateTrackFrameInfo(
3116 t->mAudioTrackServerProxy->framesReleased(),
3117 mFramesWritten,
3118 mTimestamp);
3119 }
3120 }
3121 }
3122
3123 saveOutputTracks();
3124 if (mSignalPending) {
3125 // A signal was raised while we were unlocked
3126 mSignalPending = false;
3127 } else if (waitingAsyncCallback_l()) {
3128 if (exitPending()) {
3129 break;
3130 }
3131 bool released = false;
3132 if (!keepWakeLock()) {
3133 releaseWakeLock_l();
3134 released = true;
3135 mWakeLockUids.clear();
3136 mActiveTracksGeneration++;
3137 }
3138 ALOGV("wait async completion");
3139 mWaitWorkCV.wait(mLock);
3140 ALOGV("async completion/wake");
3141 if (released) {
3142 acquireWakeLock_l();
3143 }
3144 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3145 mSleepTimeUs = 0;
3146
3147 continue;
3148 }
3149 if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3150 isSuspended()) {
3151 // put audio hardware into standby after short delay
3152 if (shouldStandby_l()) {
3153
3154 threadLoop_standby();
3155
3156 mStandby = true;
3157 }
3158
3159 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3160 // we're about to wait, flush the binder command buffer
3161 IPCThreadState::self()->flushCommands();
3162
3163 clearOutputTracks();
3164
3165 if (exitPending()) {
3166 break;
3167 }
3168
3169 releaseWakeLock_l();
3170 mWakeLockUids.clear();
3171 mActiveTracksGeneration++;
3172 // wait until we have something to do...
3173 ALOGV("%s going to sleep", myName.string());
3174 mWaitWorkCV.wait(mLock);
3175 ALOGV("%s waking up", myName.string());
3176 acquireWakeLock_l();
3177
3178 mMixerStatus = MIXER_IDLE;
3179 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3180 mBytesWritten = 0;
3181 mBytesRemaining = 0;
3182 checkSilentMode_l();
3183
3184 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3185 mSleepTimeUs = mIdleSleepTimeUs;
3186 if (mType == MIXER) {
3187 sleepTimeShift = 0;
3188 }
3189
3190 continue;
3191 }
3192 }
3193 // mMixerStatusIgnoringFastTracks is also updated internally
3194 mMixerStatus = prepareTracks_l(&tracksToRemove);
3195
3196 // compare with previously applied list
3197 if (lastGeneration != mActiveTracksGeneration) {
3198 // update wakelock
3199 updateWakeLockUids_l(mWakeLockUids);
3200 lastGeneration = mActiveTracksGeneration;
3201 }
3202
3203 // prevent any changes in effect chain list and in each effect chain
3204 // during mixing and effect process as the audio buffers could be deleted
3205 // or modified if an effect is created or deleted
3206 lockEffectChains_l(effectChains);
3207 } // mLock scope ends
3208
3209 if (mBytesRemaining == 0) {
3210 mCurrentWriteLength = 0;
3211 if (mMixerStatus == MIXER_TRACKS_READY) {
3212 // threadLoop_mix() sets mCurrentWriteLength
3213 threadLoop_mix();
3214 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3215 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3216 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3217 // must be written to HAL
3218 threadLoop_sleepTime();
3219 if (mSleepTimeUs == 0) {
3220 mCurrentWriteLength = mSinkBufferSize;
3221 }
3222 }
3223 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3224 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3225 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3226 // or mSinkBuffer (if there are no effects).
3227 //
3228 // This is done pre-effects computation; if effects change to
3229 // support higher precision, this needs to move.
3230 //
3231 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3232 // TODO use mSleepTimeUs == 0 as an additional condition.
3233 if (mMixerBufferValid) {
3234 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3235 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3236
3237 // mono blend occurs for mixer threads only (not direct or offloaded)
3238 // and is handled here if we're going directly to the sink.
3239 if (requireMonoBlend() && !mEffectBufferValid) {
3240 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3241 true /*limit*/);
3242 }
3243
3244 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3245 mNormalFrameCount * mChannelCount);
3246 }
3247
3248 mBytesRemaining = mCurrentWriteLength;
3249 if (isSuspended()) {
3250 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3251 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3252 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3253 mBytesWritten += mBytesRemaining;
3254 mFramesWritten += framesRemaining;
3255 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3256 mBytesRemaining = 0;
3257 }
3258
3259 // only process effects if we're going to write
3260 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3261 for (size_t i = 0; i < effectChains.size(); i ++) {
3262 effectChains[i]->process_l();
3263 }
3264 }
3265 }
3266 // Process effect chains for offloaded thread even if no audio
3267 // was read from audio track: process only updates effect state
3268 // and thus does have to be synchronized with audio writes but may have
3269 // to be called while waiting for async write callback
3270 if (mType == OFFLOAD) {
3271 for (size_t i = 0; i < effectChains.size(); i ++) {
3272 effectChains[i]->process_l();
3273 }
3274 }
3275
3276 // Only if the Effects buffer is enabled and there is data in the
3277 // Effects buffer (buffer valid), we need to
3278 // copy into the sink buffer.
3279 // TODO use mSleepTimeUs == 0 as an additional condition.
3280 if (mEffectBufferValid) {
3281 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3282
3283 if (requireMonoBlend()) {
3284 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3285 true /*limit*/);
3286 }
3287
3288 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3289 mNormalFrameCount * mChannelCount);
3290 }
3291
3292 // enable changes in effect chain
3293 unlockEffectChains(effectChains);
3294
3295 if (!waitingAsyncCallback()) {
3296 // mSleepTimeUs == 0 means we must write to audio hardware
3297 if (mSleepTimeUs == 0) {
3298 ssize_t ret = 0;
3299 // We save lastWriteFinished here, as previousLastWriteFinished,
3300 // for throttling. On thread start, previousLastWriteFinished will be
3301 // set to -1, which properly results in no throttling after the first write.
3302 nsecs_t previousLastWriteFinished = lastWriteFinished;
3303 nsecs_t delta = 0;
3304 if (mBytesRemaining) {
3305 // FIXME rewrite to reduce number of system calls
3306 mLastWriteTime = systemTime(); // also used for dumpsys
3307 ret = threadLoop_write();
3308 lastWriteFinished = systemTime();
3309 delta = lastWriteFinished - mLastWriteTime;
3310 if (ret < 0) {
3311 mBytesRemaining = 0;
3312 } else {
3313 mBytesWritten += ret;
3314 mBytesRemaining -= ret;
3315 mFramesWritten += ret / mFrameSize;
3316 }
3317 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3318 (mMixerStatus == MIXER_DRAIN_ALL)) {
3319 threadLoop_drain();
3320 }
3321 if (mType == MIXER && !mStandby) {
3322 // write blocked detection
3323 if (delta > maxPeriod) {
3324 mNumDelayedWrites++;
3325 if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3326 ATRACE_NAME("underrun");
3327 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3328 (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3329 lastWarning = lastWriteFinished;
3330 }
3331 }
3332
3333 if (mThreadThrottle
3334 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3335 && ret > 0) { // we wrote something
3336 // Limit MixerThread data processing to no more than twice the
3337 // expected processing rate.
3338 //
3339 // This helps prevent underruns with NuPlayer and other applications
3340 // which may set up buffers that are close to the minimum size, or use
3341 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3342 //
3343 // The throttle smooths out sudden large data drains from the device,
3344 // e.g. when it comes out of standby, which often causes problems with
3345 // (1) mixer threads without a fast mixer (which has its own warm-up)
3346 // (2) minimum buffer sized tracks (even if the track is full,
3347 // the app won't fill fast enough to handle the sudden draw).
3348 //
3349 // Total time spent in last processing cycle equals time spent in
3350 // 1. threadLoop_write, as well as time spent in
3351 // 2. threadLoop_mix (significant for heavy mixing, especially
3352 // on low tier processors)
3353
3354 // it's OK if deltaMs is an overestimate.
3355 const int32_t deltaMs =
3356 (lastWriteFinished - previousLastWriteFinished) / 1000000;
3357 const int32_t throttleMs = mHalfBufferMs - deltaMs;
3358 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3359 usleep(throttleMs * 1000);
3360 // notify of throttle start on verbose log
3361 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3362 "mixer(%p) throttle begin:"
3363 " ret(%zd) deltaMs(%d) requires sleep %d ms",
3364 this, ret, deltaMs, throttleMs);
3365 mThreadThrottleTimeMs += throttleMs;
3366 // Throttle must be attributed to the previous mixer loop's write time
3367 // to allow back-to-back throttling.
3368 lastWriteFinished += throttleMs * 1000000;
3369 } else {
3370 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3371 if (diff > 0) {
3372 // notify of throttle end on debug log
3373 // but prevent spamming for bluetooth
3374 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3375 "mixer(%p) throttle end: throttle time(%u)", this, diff);
3376 mThreadThrottleEndMs = mThreadThrottleTimeMs;
3377 }
3378 }
3379 }
3380 }
3381
3382 } else {
3383 ATRACE_BEGIN("sleep");
3384 Mutex::Autolock _l(mLock);
3385 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3386 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3387 }
3388 ATRACE_END();
3389 }
3390 }
3391
3392 // Finally let go of removed track(s), without the lock held
3393 // since we can't guarantee the destructors won't acquire that
3394 // same lock. This will also mutate and push a new fast mixer state.
3395 threadLoop_removeTracks(tracksToRemove);
3396 tracksToRemove.clear();
3397
3398 // FIXME I don't understand the need for this here;
3399 // it was in the original code but maybe the
3400 // assignment in saveOutputTracks() makes this unnecessary?
3401 clearOutputTracks();
3402
3403 // Effect chains will be actually deleted here if they were removed from
3404 // mEffectChains list during mixing or effects processing
3405 effectChains.clear();
3406
3407 // FIXME Note that the above .clear() is no longer necessary since effectChains
3408 // is now local to this block, but will keep it for now (at least until merge done).
3409 }
3410
3411 threadLoop_exit();
3412
3413 if (!mStandby) {
3414 threadLoop_standby();
3415 mStandby = true;
3416 }
3417
3418 releaseWakeLock();
3419 mWakeLockUids.clear();
3420 mActiveTracksGeneration++;
3421
3422 ALOGV("Thread %p type %d exiting", this, mType);
3423 return false;
3424 }
3425
3426 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3427 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3428 {
3429 size_t count = tracksToRemove.size();
3430 if (count > 0) {
3431 for (size_t i=0 ; i<count ; i++) {
3432 const sp<Track>& track = tracksToRemove.itemAt(i);
3433 mActiveTracks.remove(track);
3434 mWakeLockUids.remove(track->uid());
3435 mActiveTracksGeneration++;
3436 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3437 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3438 if (chain != 0) {
3439 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3440 track->sessionId());
3441 chain->decActiveTrackCnt();
3442 }
3443 if (track->isTerminated()) {
3444 removeTrack_l(track);
3445 }
3446 }
3447 }
3448
3449 }
3450
getTimestamp_l(AudioTimestamp & timestamp)3451 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3452 {
3453 if (mNormalSink != 0) {
3454 ExtendedTimestamp ets;
3455 status_t status = mNormalSink->getTimestamp(ets);
3456 if (status == NO_ERROR) {
3457 status = ets.getBestTimestamp(×tamp);
3458 }
3459 return status;
3460 }
3461 if ((mType == OFFLOAD || mType == DIRECT)
3462 && mOutput != NULL && mOutput->stream->get_presentation_position) {
3463 uint64_t position64;
3464 int ret = mOutput->getPresentationPosition(&position64, ×tamp.mTime);
3465 if (ret == 0) {
3466 timestamp.mPosition = (uint32_t)position64;
3467 return NO_ERROR;
3468 }
3469 }
3470 return INVALID_OPERATION;
3471 }
3472
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3473 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3474 audio_patch_handle_t *handle)
3475 {
3476 status_t status;
3477 if (property_get_bool("af.patch_park", false /* default_value */)) {
3478 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3479 // or if HAL does not properly lock against access.
3480 AutoPark<FastMixer> park(mFastMixer);
3481 status = PlaybackThread::createAudioPatch_l(patch, handle);
3482 } else {
3483 status = PlaybackThread::createAudioPatch_l(patch, handle);
3484 }
3485 return status;
3486 }
3487
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3488 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3489 audio_patch_handle_t *handle)
3490 {
3491 status_t status = NO_ERROR;
3492
3493 // store new device and send to effects
3494 audio_devices_t type = AUDIO_DEVICE_NONE;
3495 for (unsigned int i = 0; i < patch->num_sinks; i++) {
3496 type |= patch->sinks[i].ext.device.type;
3497 }
3498
3499 #ifdef ADD_BATTERY_DATA
3500 // when changing the audio output device, call addBatteryData to notify
3501 // the change
3502 if (mOutDevice != type) {
3503 uint32_t params = 0;
3504 // check whether speaker is on
3505 if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3506 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3507 }
3508
3509 audio_devices_t deviceWithoutSpeaker
3510 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3511 // check if any other device (except speaker) is on
3512 if (type & deviceWithoutSpeaker) {
3513 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3514 }
3515
3516 if (params != 0) {
3517 addBatteryData(params);
3518 }
3519 }
3520 #endif
3521
3522 for (size_t i = 0; i < mEffectChains.size(); i++) {
3523 mEffectChains[i]->setDevice_l(type);
3524 }
3525
3526 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3527 // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3528 bool configChanged = mPrevOutDevice != type;
3529 mOutDevice = type;
3530 mPatch = *patch;
3531
3532 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3533 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3534 status = hwDevice->create_audio_patch(hwDevice,
3535 patch->num_sources,
3536 patch->sources,
3537 patch->num_sinks,
3538 patch->sinks,
3539 handle);
3540 } else {
3541 char *address;
3542 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3543 //FIXME: we only support address on first sink with HAL version < 3.0
3544 address = audio_device_address_to_parameter(
3545 patch->sinks[0].ext.device.type,
3546 patch->sinks[0].ext.device.address);
3547 } else {
3548 address = (char *)calloc(1, 1);
3549 }
3550 AudioParameter param = AudioParameter(String8(address));
3551 free(address);
3552 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3553 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3554 param.toString().string());
3555 *handle = AUDIO_PATCH_HANDLE_NONE;
3556 }
3557 if (configChanged) {
3558 mPrevOutDevice = type;
3559 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3560 }
3561 return status;
3562 }
3563
releaseAudioPatch_l(const audio_patch_handle_t handle)3564 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3565 {
3566 status_t status;
3567 if (property_get_bool("af.patch_park", false /* default_value */)) {
3568 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3569 // or if HAL does not properly lock against access.
3570 AutoPark<FastMixer> park(mFastMixer);
3571 status = PlaybackThread::releaseAudioPatch_l(handle);
3572 } else {
3573 status = PlaybackThread::releaseAudioPatch_l(handle);
3574 }
3575 return status;
3576 }
3577
releaseAudioPatch_l(const audio_patch_handle_t handle)3578 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3579 {
3580 status_t status = NO_ERROR;
3581
3582 mOutDevice = AUDIO_DEVICE_NONE;
3583
3584 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3585 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3586 status = hwDevice->release_audio_patch(hwDevice, handle);
3587 } else {
3588 AudioParameter param;
3589 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3590 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3591 param.toString().string());
3592 }
3593 return status;
3594 }
3595
addPatchTrack(const sp<PatchTrack> & track)3596 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3597 {
3598 Mutex::Autolock _l(mLock);
3599 mTracks.add(track);
3600 }
3601
deletePatchTrack(const sp<PatchTrack> & track)3602 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3603 {
3604 Mutex::Autolock _l(mLock);
3605 destroyTrack_l(track);
3606 }
3607
getAudioPortConfig(struct audio_port_config * config)3608 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3609 {
3610 ThreadBase::getAudioPortConfig(config);
3611 config->role = AUDIO_PORT_ROLE_SOURCE;
3612 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3613 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3614 }
3615
3616 // ----------------------------------------------------------------------------
3617
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady,type_t type)3618 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3619 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3620 : PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3621 // mAudioMixer below
3622 // mFastMixer below
3623 mFastMixerFutex(0),
3624 mMasterMono(false)
3625 // mOutputSink below
3626 // mPipeSink below
3627 // mNormalSink below
3628 {
3629 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3630 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3631 "mFrameCount=%zu, mNormalFrameCount=%zu",
3632 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3633 mNormalFrameCount);
3634 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3635
3636 if (type == DUPLICATING) {
3637 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3638 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3639 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3640 return;
3641 }
3642 // create an NBAIO sink for the HAL output stream, and negotiate
3643 mOutputSink = new AudioStreamOutSink(output->stream);
3644 size_t numCounterOffers = 0;
3645 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3646 #if !LOG_NDEBUG
3647 ssize_t index =
3648 #else
3649 (void)
3650 #endif
3651 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3652 ALOG_ASSERT(index == 0);
3653
3654 // initialize fast mixer depending on configuration
3655 bool initFastMixer;
3656 switch (kUseFastMixer) {
3657 case FastMixer_Never:
3658 initFastMixer = false;
3659 break;
3660 case FastMixer_Always:
3661 initFastMixer = true;
3662 break;
3663 case FastMixer_Static:
3664 case FastMixer_Dynamic:
3665 initFastMixer = mFrameCount < mNormalFrameCount;
3666 break;
3667 }
3668 if (initFastMixer) {
3669 audio_format_t fastMixerFormat;
3670 if (mMixerBufferEnabled && mEffectBufferEnabled) {
3671 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3672 } else {
3673 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3674 }
3675 if (mFormat != fastMixerFormat) {
3676 // change our Sink format to accept our intermediate precision
3677 mFormat = fastMixerFormat;
3678 free(mSinkBuffer);
3679 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3680 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3681 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3682 }
3683
3684 // create a MonoPipe to connect our submix to FastMixer
3685 NBAIO_Format format = mOutputSink->format();
3686 #ifdef TEE_SINK
3687 NBAIO_Format origformat = format;
3688 #endif
3689 // adjust format to match that of the Fast Mixer
3690 ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3691 format.mFormat = fastMixerFormat;
3692 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3693
3694 // This pipe depth compensates for scheduling latency of the normal mixer thread.
3695 // When it wakes up after a maximum latency, it runs a few cycles quickly before
3696 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
3697 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3698 const NBAIO_Format offers[1] = {format};
3699 size_t numCounterOffers = 0;
3700 #if !LOG_NDEBUG || defined(TEE_SINK)
3701 ssize_t index =
3702 #else
3703 (void)
3704 #endif
3705 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3706 ALOG_ASSERT(index == 0);
3707 monoPipe->setAvgFrames((mScreenState & 1) ?
3708 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3709 mPipeSink = monoPipe;
3710
3711 #ifdef TEE_SINK
3712 if (mTeeSinkOutputEnabled) {
3713 // create a Pipe to archive a copy of FastMixer's output for dumpsys
3714 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3715 const NBAIO_Format offers2[1] = {origformat};
3716 numCounterOffers = 0;
3717 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3718 ALOG_ASSERT(index == 0);
3719 mTeeSink = teeSink;
3720 PipeReader *teeSource = new PipeReader(*teeSink);
3721 numCounterOffers = 0;
3722 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3723 ALOG_ASSERT(index == 0);
3724 mTeeSource = teeSource;
3725 }
3726 #endif
3727
3728 // create fast mixer and configure it initially with just one fast track for our submix
3729 mFastMixer = new FastMixer();
3730 FastMixerStateQueue *sq = mFastMixer->sq();
3731 #ifdef STATE_QUEUE_DUMP
3732 sq->setObserverDump(&mStateQueueObserverDump);
3733 sq->setMutatorDump(&mStateQueueMutatorDump);
3734 #endif
3735 FastMixerState *state = sq->begin();
3736 FastTrack *fastTrack = &state->mFastTracks[0];
3737 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3738 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3739 fastTrack->mVolumeProvider = NULL;
3740 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3741 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3742 fastTrack->mGeneration++;
3743 state->mFastTracksGen++;
3744 state->mTrackMask = 1;
3745 // fast mixer will use the HAL output sink
3746 state->mOutputSink = mOutputSink.get();
3747 state->mOutputSinkGen++;
3748 state->mFrameCount = mFrameCount;
3749 state->mCommand = FastMixerState::COLD_IDLE;
3750 // already done in constructor initialization list
3751 //mFastMixerFutex = 0;
3752 state->mColdFutexAddr = &mFastMixerFutex;
3753 state->mColdGen++;
3754 state->mDumpState = &mFastMixerDumpState;
3755 #ifdef TEE_SINK
3756 state->mTeeSink = mTeeSink.get();
3757 #endif
3758 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3759 state->mNBLogWriter = mFastMixerNBLogWriter.get();
3760 sq->end();
3761 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3762
3763 // start the fast mixer
3764 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3765 pid_t tid = mFastMixer->getTid();
3766 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3767
3768 #ifdef AUDIO_WATCHDOG
3769 // create and start the watchdog
3770 mAudioWatchdog = new AudioWatchdog();
3771 mAudioWatchdog->setDump(&mAudioWatchdogDump);
3772 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3773 tid = mAudioWatchdog->getTid();
3774 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3775 #endif
3776
3777 }
3778
3779 switch (kUseFastMixer) {
3780 case FastMixer_Never:
3781 case FastMixer_Dynamic:
3782 mNormalSink = mOutputSink;
3783 break;
3784 case FastMixer_Always:
3785 mNormalSink = mPipeSink;
3786 break;
3787 case FastMixer_Static:
3788 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3789 break;
3790 }
3791 }
3792
~MixerThread()3793 AudioFlinger::MixerThread::~MixerThread()
3794 {
3795 if (mFastMixer != 0) {
3796 FastMixerStateQueue *sq = mFastMixer->sq();
3797 FastMixerState *state = sq->begin();
3798 if (state->mCommand == FastMixerState::COLD_IDLE) {
3799 int32_t old = android_atomic_inc(&mFastMixerFutex);
3800 if (old == -1) {
3801 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3802 }
3803 }
3804 state->mCommand = FastMixerState::EXIT;
3805 sq->end();
3806 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3807 mFastMixer->join();
3808 // Though the fast mixer thread has exited, it's state queue is still valid.
3809 // We'll use that extract the final state which contains one remaining fast track
3810 // corresponding to our sub-mix.
3811 state = sq->begin();
3812 ALOG_ASSERT(state->mTrackMask == 1);
3813 FastTrack *fastTrack = &state->mFastTracks[0];
3814 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3815 delete fastTrack->mBufferProvider;
3816 sq->end(false /*didModify*/);
3817 mFastMixer.clear();
3818 #ifdef AUDIO_WATCHDOG
3819 if (mAudioWatchdog != 0) {
3820 mAudioWatchdog->requestExit();
3821 mAudioWatchdog->requestExitAndWait();
3822 mAudioWatchdog.clear();
3823 }
3824 #endif
3825 }
3826 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3827 delete mAudioMixer;
3828 }
3829
3830
correctLatency_l(uint32_t latency) const3831 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3832 {
3833 if (mFastMixer != 0) {
3834 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3835 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3836 }
3837 return latency;
3838 }
3839
3840
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3841 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3842 {
3843 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3844 }
3845
threadLoop_write()3846 ssize_t AudioFlinger::MixerThread::threadLoop_write()
3847 {
3848 // FIXME we should only do one push per cycle; confirm this is true
3849 // Start the fast mixer if it's not already running
3850 if (mFastMixer != 0) {
3851 FastMixerStateQueue *sq = mFastMixer->sq();
3852 FastMixerState *state = sq->begin();
3853 if (state->mCommand != FastMixerState::MIX_WRITE &&
3854 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3855 if (state->mCommand == FastMixerState::COLD_IDLE) {
3856
3857 // FIXME workaround for first HAL write being CPU bound on some devices
3858 ATRACE_BEGIN("write");
3859 mOutput->write((char *)mSinkBuffer, 0);
3860 ATRACE_END();
3861
3862 int32_t old = android_atomic_inc(&mFastMixerFutex);
3863 if (old == -1) {
3864 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3865 }
3866 #ifdef AUDIO_WATCHDOG
3867 if (mAudioWatchdog != 0) {
3868 mAudioWatchdog->resume();
3869 }
3870 #endif
3871 }
3872 state->mCommand = FastMixerState::MIX_WRITE;
3873 #ifdef FAST_THREAD_STATISTICS
3874 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3875 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3876 #endif
3877 sq->end();
3878 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3879 if (kUseFastMixer == FastMixer_Dynamic) {
3880 mNormalSink = mPipeSink;
3881 }
3882 } else {
3883 sq->end(false /*didModify*/);
3884 }
3885 }
3886 return PlaybackThread::threadLoop_write();
3887 }
3888
threadLoop_standby()3889 void AudioFlinger::MixerThread::threadLoop_standby()
3890 {
3891 // Idle the fast mixer if it's currently running
3892 if (mFastMixer != 0) {
3893 FastMixerStateQueue *sq = mFastMixer->sq();
3894 FastMixerState *state = sq->begin();
3895 if (!(state->mCommand & FastMixerState::IDLE)) {
3896 state->mCommand = FastMixerState::COLD_IDLE;
3897 state->mColdFutexAddr = &mFastMixerFutex;
3898 state->mColdGen++;
3899 mFastMixerFutex = 0;
3900 sq->end();
3901 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3902 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3903 if (kUseFastMixer == FastMixer_Dynamic) {
3904 mNormalSink = mOutputSink;
3905 }
3906 #ifdef AUDIO_WATCHDOG
3907 if (mAudioWatchdog != 0) {
3908 mAudioWatchdog->pause();
3909 }
3910 #endif
3911 } else {
3912 sq->end(false /*didModify*/);
3913 }
3914 }
3915 PlaybackThread::threadLoop_standby();
3916 }
3917
waitingAsyncCallback_l()3918 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3919 {
3920 return false;
3921 }
3922
shouldStandby_l()3923 bool AudioFlinger::PlaybackThread::shouldStandby_l()
3924 {
3925 return !mStandby;
3926 }
3927
waitingAsyncCallback()3928 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3929 {
3930 Mutex::Autolock _l(mLock);
3931 return waitingAsyncCallback_l();
3932 }
3933
3934 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()3935 void AudioFlinger::PlaybackThread::threadLoop_standby()
3936 {
3937 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3938 mOutput->standby();
3939 if (mUseAsyncWrite != 0) {
3940 // discard any pending drain or write ack by incrementing sequence
3941 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3942 mDrainSequence = (mDrainSequence + 2) & ~1;
3943 ALOG_ASSERT(mCallbackThread != 0);
3944 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3945 mCallbackThread->setDraining(mDrainSequence);
3946 }
3947 mHwPaused = false;
3948 }
3949
onAddNewTrack_l()3950 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3951 {
3952 ALOGV("signal playback thread");
3953 broadcast_l();
3954 }
3955
onAsyncError()3956 void AudioFlinger::PlaybackThread::onAsyncError()
3957 {
3958 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
3959 invalidateTracks((audio_stream_type_t)i);
3960 }
3961 }
3962
threadLoop_mix()3963 void AudioFlinger::MixerThread::threadLoop_mix()
3964 {
3965 // mix buffers...
3966 mAudioMixer->process();
3967 mCurrentWriteLength = mSinkBufferSize;
3968 // increase sleep time progressively when application underrun condition clears.
3969 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3970 // that a steady state of alternating ready/not ready conditions keeps the sleep time
3971 // such that we would underrun the audio HAL.
3972 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3973 sleepTimeShift--;
3974 }
3975 mSleepTimeUs = 0;
3976 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3977 //TODO: delay standby when effects have a tail
3978
3979 }
3980
threadLoop_sleepTime()3981 void AudioFlinger::MixerThread::threadLoop_sleepTime()
3982 {
3983 // If no tracks are ready, sleep once for the duration of an output
3984 // buffer size, then write 0s to the output
3985 if (mSleepTimeUs == 0) {
3986 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3987 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3988 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3989 mSleepTimeUs = kMinThreadSleepTimeUs;
3990 }
3991 // reduce sleep time in case of consecutive application underruns to avoid
3992 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3993 // duration we would end up writing less data than needed by the audio HAL if
3994 // the condition persists.
3995 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3996 sleepTimeShift++;
3997 }
3998 } else {
3999 mSleepTimeUs = mIdleSleepTimeUs;
4000 }
4001 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
4002 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
4003 // before effects processing or output.
4004 if (mMixerBufferValid) {
4005 memset(mMixerBuffer, 0, mMixerBufferSize);
4006 } else {
4007 memset(mSinkBuffer, 0, mSinkBufferSize);
4008 }
4009 mSleepTimeUs = 0;
4010 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
4011 "anticipated start");
4012 }
4013 // TODO add standby time extension fct of effect tail
4014 }
4015
4016 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4017 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4018 Vector< sp<Track> > *tracksToRemove)
4019 {
4020
4021 mixer_state mixerStatus = MIXER_IDLE;
4022 // find out which tracks need to be processed
4023 size_t count = mActiveTracks.size();
4024 size_t mixedTracks = 0;
4025 size_t tracksWithEffect = 0;
4026 // counts only _active_ fast tracks
4027 size_t fastTracks = 0;
4028 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4029
4030 float masterVolume = mMasterVolume;
4031 bool masterMute = mMasterMute;
4032
4033 if (masterMute) {
4034 masterVolume = 0;
4035 }
4036 // Delegate master volume control to effect in output mix effect chain if needed
4037 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4038 if (chain != 0) {
4039 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4040 chain->setVolume_l(&v, &v);
4041 masterVolume = (float)((v + (1 << 23)) >> 24);
4042 chain.clear();
4043 }
4044
4045 // prepare a new state to push
4046 FastMixerStateQueue *sq = NULL;
4047 FastMixerState *state = NULL;
4048 bool didModify = false;
4049 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4050 if (mFastMixer != 0) {
4051 sq = mFastMixer->sq();
4052 state = sq->begin();
4053 }
4054
4055 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4056 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4057
4058 for (size_t i=0 ; i<count ; i++) {
4059 const sp<Track> t = mActiveTracks[i].promote();
4060 if (t == 0) {
4061 continue;
4062 }
4063
4064 // this const just means the local variable doesn't change
4065 Track* const track = t.get();
4066
4067 // process fast tracks
4068 if (track->isFastTrack()) {
4069
4070 // It's theoretically possible (though unlikely) for a fast track to be created
4071 // and then removed within the same normal mix cycle. This is not a problem, as
4072 // the track never becomes active so it's fast mixer slot is never touched.
4073 // The converse, of removing an (active) track and then creating a new track
4074 // at the identical fast mixer slot within the same normal mix cycle,
4075 // is impossible because the slot isn't marked available until the end of each cycle.
4076 int j = track->mFastIndex;
4077 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4078 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4079 FastTrack *fastTrack = &state->mFastTracks[j];
4080
4081 // Determine whether the track is currently in underrun condition,
4082 // and whether it had a recent underrun.
4083 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4084 FastTrackUnderruns underruns = ftDump->mUnderruns;
4085 uint32_t recentFull = (underruns.mBitFields.mFull -
4086 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4087 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4088 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4089 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4090 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4091 uint32_t recentUnderruns = recentPartial + recentEmpty;
4092 track->mObservedUnderruns = underruns;
4093 // don't count underruns that occur while stopping or pausing
4094 // or stopped which can occur when flush() is called while active
4095 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4096 recentUnderruns > 0) {
4097 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4098 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4099 } else {
4100 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4101 }
4102
4103 // This is similar to the state machine for normal tracks,
4104 // with a few modifications for fast tracks.
4105 bool isActive = true;
4106 switch (track->mState) {
4107 case TrackBase::STOPPING_1:
4108 // track stays active in STOPPING_1 state until first underrun
4109 if (recentUnderruns > 0 || track->isTerminated()) {
4110 track->mState = TrackBase::STOPPING_2;
4111 }
4112 break;
4113 case TrackBase::PAUSING:
4114 // ramp down is not yet implemented
4115 track->setPaused();
4116 break;
4117 case TrackBase::RESUMING:
4118 // ramp up is not yet implemented
4119 track->mState = TrackBase::ACTIVE;
4120 break;
4121 case TrackBase::ACTIVE:
4122 if (recentFull > 0 || recentPartial > 0) {
4123 // track has provided at least some frames recently: reset retry count
4124 track->mRetryCount = kMaxTrackRetries;
4125 }
4126 if (recentUnderruns == 0) {
4127 // no recent underruns: stay active
4128 break;
4129 }
4130 // there has recently been an underrun of some kind
4131 if (track->sharedBuffer() == 0) {
4132 // were any of the recent underruns "empty" (no frames available)?
4133 if (recentEmpty == 0) {
4134 // no, then ignore the partial underruns as they are allowed indefinitely
4135 break;
4136 }
4137 // there has recently been an "empty" underrun: decrement the retry counter
4138 if (--(track->mRetryCount) > 0) {
4139 break;
4140 }
4141 // indicate to client process that the track was disabled because of underrun;
4142 // it will then automatically call start() when data is available
4143 track->disable();
4144 // remove from active list, but state remains ACTIVE [confusing but true]
4145 isActive = false;
4146 break;
4147 }
4148 // fall through
4149 case TrackBase::STOPPING_2:
4150 case TrackBase::PAUSED:
4151 case TrackBase::STOPPED:
4152 case TrackBase::FLUSHED: // flush() while active
4153 // Check for presentation complete if track is inactive
4154 // We have consumed all the buffers of this track.
4155 // This would be incomplete if we auto-paused on underrun
4156 {
4157 size_t audioHALFrames =
4158 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4159 int64_t framesWritten = mBytesWritten / mFrameSize;
4160 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4161 // track stays in active list until presentation is complete
4162 break;
4163 }
4164 }
4165 if (track->isStopping_2()) {
4166 track->mState = TrackBase::STOPPED;
4167 }
4168 if (track->isStopped()) {
4169 // Can't reset directly, as fast mixer is still polling this track
4170 // track->reset();
4171 // So instead mark this track as needing to be reset after push with ack
4172 resetMask |= 1 << i;
4173 }
4174 isActive = false;
4175 break;
4176 case TrackBase::IDLE:
4177 default:
4178 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4179 }
4180
4181 if (isActive) {
4182 // was it previously inactive?
4183 if (!(state->mTrackMask & (1 << j))) {
4184 ExtendedAudioBufferProvider *eabp = track;
4185 VolumeProvider *vp = track;
4186 fastTrack->mBufferProvider = eabp;
4187 fastTrack->mVolumeProvider = vp;
4188 fastTrack->mChannelMask = track->mChannelMask;
4189 fastTrack->mFormat = track->mFormat;
4190 fastTrack->mGeneration++;
4191 state->mTrackMask |= 1 << j;
4192 didModify = true;
4193 // no acknowledgement required for newly active tracks
4194 }
4195 // cache the combined master volume and stream type volume for fast mixer; this
4196 // lacks any synchronization or barrier so VolumeProvider may read a stale value
4197 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
4198 ++fastTracks;
4199 } else {
4200 // was it previously active?
4201 if (state->mTrackMask & (1 << j)) {
4202 fastTrack->mBufferProvider = NULL;
4203 fastTrack->mGeneration++;
4204 state->mTrackMask &= ~(1 << j);
4205 didModify = true;
4206 // If any fast tracks were removed, we must wait for acknowledgement
4207 // because we're about to decrement the last sp<> on those tracks.
4208 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4209 } else {
4210 LOG_ALWAYS_FATAL("fast track %d should have been active; "
4211 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4212 j, track->mState, state->mTrackMask, recentUnderruns,
4213 track->sharedBuffer() != 0);
4214 }
4215 tracksToRemove->add(track);
4216 // Avoids a misleading display in dumpsys
4217 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4218 }
4219 continue;
4220 }
4221
4222 { // local variable scope to avoid goto warning
4223
4224 audio_track_cblk_t* cblk = track->cblk();
4225
4226 // The first time a track is added we wait
4227 // for all its buffers to be filled before processing it
4228 int name = track->name();
4229 // make sure that we have enough frames to mix one full buffer.
4230 // enforce this condition only once to enable draining the buffer in case the client
4231 // app does not call stop() and relies on underrun to stop:
4232 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4233 // during last round
4234 size_t desiredFrames;
4235 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4236 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4237
4238 desiredFrames = sourceFramesNeededWithTimestretch(
4239 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4240 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4241 // add frames already consumed but not yet released by the resampler
4242 // because mAudioTrackServerProxy->framesReady() will include these frames
4243 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4244
4245 uint32_t minFrames = 1;
4246 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4247 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4248 minFrames = desiredFrames;
4249 }
4250
4251 size_t framesReady = track->framesReady();
4252 if (ATRACE_ENABLED()) {
4253 // I wish we had formatted trace names
4254 char traceName[16];
4255 strcpy(traceName, "nRdy");
4256 int name = track->name();
4257 if (AudioMixer::TRACK0 <= name &&
4258 name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4259 name -= AudioMixer::TRACK0;
4260 traceName[4] = (name / 10) + '0';
4261 traceName[5] = (name % 10) + '0';
4262 } else {
4263 traceName[4] = '?';
4264 traceName[5] = '?';
4265 }
4266 traceName[6] = '\0';
4267 ATRACE_INT(traceName, framesReady);
4268 }
4269 if ((framesReady >= minFrames) && track->isReady() &&
4270 !track->isPaused() && !track->isTerminated())
4271 {
4272 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4273
4274 mixedTracks++;
4275
4276 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4277 // there is an effect chain connected to the track
4278 chain.clear();
4279 if (track->mainBuffer() != mSinkBuffer &&
4280 track->mainBuffer() != mMixerBuffer) {
4281 if (mEffectBufferEnabled) {
4282 mEffectBufferValid = true; // Later can set directly.
4283 }
4284 chain = getEffectChain_l(track->sessionId());
4285 // Delegate volume control to effect in track effect chain if needed
4286 if (chain != 0) {
4287 tracksWithEffect++;
4288 } else {
4289 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4290 "session %d",
4291 name, track->sessionId());
4292 }
4293 }
4294
4295
4296 int param = AudioMixer::VOLUME;
4297 if (track->mFillingUpStatus == Track::FS_FILLED) {
4298 // no ramp for the first volume setting
4299 track->mFillingUpStatus = Track::FS_ACTIVE;
4300 if (track->mState == TrackBase::RESUMING) {
4301 track->mState = TrackBase::ACTIVE;
4302 param = AudioMixer::RAMP_VOLUME;
4303 }
4304 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4305 // FIXME should not make a decision based on mServer
4306 } else if (cblk->mServer != 0) {
4307 // If the track is stopped before the first frame was mixed,
4308 // do not apply ramp
4309 param = AudioMixer::RAMP_VOLUME;
4310 }
4311
4312 // compute volume for this track
4313 uint32_t vl, vr; // in U8.24 integer format
4314 float vlf, vrf, vaf; // in [0.0, 1.0] float format
4315 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4316 vl = vr = 0;
4317 vlf = vrf = vaf = 0.;
4318 if (track->isPausing()) {
4319 track->setPaused();
4320 }
4321 } else {
4322
4323 // read original volumes with volume control
4324 float typeVolume = mStreamTypes[track->streamType()].volume;
4325 float v = masterVolume * typeVolume;
4326 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4327 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4328 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4329 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4330 // track volumes come from shared memory, so can't be trusted and must be clamped
4331 if (vlf > GAIN_FLOAT_UNITY) {
4332 ALOGV("Track left volume out of range: %.3g", vlf);
4333 vlf = GAIN_FLOAT_UNITY;
4334 }
4335 if (vrf > GAIN_FLOAT_UNITY) {
4336 ALOGV("Track right volume out of range: %.3g", vrf);
4337 vrf = GAIN_FLOAT_UNITY;
4338 }
4339 // now apply the master volume and stream type volume
4340 vlf *= v;
4341 vrf *= v;
4342 // assuming master volume and stream type volume each go up to 1.0,
4343 // then derive vl and vr as U8.24 versions for the effect chain
4344 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4345 vl = (uint32_t) (scaleto8_24 * vlf);
4346 vr = (uint32_t) (scaleto8_24 * vrf);
4347 // vl and vr are now in U8.24 format
4348 uint16_t sendLevel = proxy->getSendLevel_U4_12();
4349 // send level comes from shared memory and so may be corrupt
4350 if (sendLevel > MAX_GAIN_INT) {
4351 ALOGV("Track send level out of range: %04X", sendLevel);
4352 sendLevel = MAX_GAIN_INT;
4353 }
4354 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4355 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4356 }
4357
4358 // Delegate volume control to effect in track effect chain if needed
4359 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4360 // Do not ramp volume if volume is controlled by effect
4361 param = AudioMixer::VOLUME;
4362 // Update remaining floating point volume levels
4363 vlf = (float)vl / (1 << 24);
4364 vrf = (float)vr / (1 << 24);
4365 track->mHasVolumeController = true;
4366 } else {
4367 // force no volume ramp when volume controller was just disabled or removed
4368 // from effect chain to avoid volume spike
4369 if (track->mHasVolumeController) {
4370 param = AudioMixer::VOLUME;
4371 }
4372 track->mHasVolumeController = false;
4373 }
4374
4375 // XXX: these things DON'T need to be done each time
4376 mAudioMixer->setBufferProvider(name, track);
4377 mAudioMixer->enable(name);
4378
4379 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4380 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4381 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4382 mAudioMixer->setParameter(
4383 name,
4384 AudioMixer::TRACK,
4385 AudioMixer::FORMAT, (void *)track->format());
4386 mAudioMixer->setParameter(
4387 name,
4388 AudioMixer::TRACK,
4389 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4390 mAudioMixer->setParameter(
4391 name,
4392 AudioMixer::TRACK,
4393 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4394 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4395 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4396 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4397 if (reqSampleRate == 0) {
4398 reqSampleRate = mSampleRate;
4399 } else if (reqSampleRate > maxSampleRate) {
4400 reqSampleRate = maxSampleRate;
4401 }
4402 mAudioMixer->setParameter(
4403 name,
4404 AudioMixer::RESAMPLE,
4405 AudioMixer::SAMPLE_RATE,
4406 (void *)(uintptr_t)reqSampleRate);
4407
4408 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4409 mAudioMixer->setParameter(
4410 name,
4411 AudioMixer::TIMESTRETCH,
4412 AudioMixer::PLAYBACK_RATE,
4413 &playbackRate);
4414
4415 /*
4416 * Select the appropriate output buffer for the track.
4417 *
4418 * Tracks with effects go into their own effects chain buffer
4419 * and from there into either mEffectBuffer or mSinkBuffer.
4420 *
4421 * Other tracks can use mMixerBuffer for higher precision
4422 * channel accumulation. If this buffer is enabled
4423 * (mMixerBufferEnabled true), then selected tracks will accumulate
4424 * into it.
4425 *
4426 */
4427 if (mMixerBufferEnabled
4428 && (track->mainBuffer() == mSinkBuffer
4429 || track->mainBuffer() == mMixerBuffer)) {
4430 mAudioMixer->setParameter(
4431 name,
4432 AudioMixer::TRACK,
4433 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4434 mAudioMixer->setParameter(
4435 name,
4436 AudioMixer::TRACK,
4437 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4438 // TODO: override track->mainBuffer()?
4439 mMixerBufferValid = true;
4440 } else {
4441 mAudioMixer->setParameter(
4442 name,
4443 AudioMixer::TRACK,
4444 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4445 mAudioMixer->setParameter(
4446 name,
4447 AudioMixer::TRACK,
4448 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4449 }
4450 mAudioMixer->setParameter(
4451 name,
4452 AudioMixer::TRACK,
4453 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4454
4455 // reset retry count
4456 track->mRetryCount = kMaxTrackRetries;
4457
4458 // If one track is ready, set the mixer ready if:
4459 // - the mixer was not ready during previous round OR
4460 // - no other track is not ready
4461 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4462 mixerStatus != MIXER_TRACKS_ENABLED) {
4463 mixerStatus = MIXER_TRACKS_READY;
4464 }
4465 } else {
4466 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4467 ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)",
4468 track, framesReady, desiredFrames);
4469 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4470 } else {
4471 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4472 }
4473
4474 // clear effect chain input buffer if an active track underruns to avoid sending
4475 // previous audio buffer again to effects
4476 chain = getEffectChain_l(track->sessionId());
4477 if (chain != 0) {
4478 chain->clearInputBuffer();
4479 }
4480
4481 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4482 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4483 track->isStopped() || track->isPaused()) {
4484 // We have consumed all the buffers of this track.
4485 // Remove it from the list of active tracks.
4486 // TODO: use actual buffer filling status instead of latency when available from
4487 // audio HAL
4488 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4489 int64_t framesWritten = mBytesWritten / mFrameSize;
4490 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4491 if (track->isStopped()) {
4492 track->reset();
4493 }
4494 tracksToRemove->add(track);
4495 }
4496 } else {
4497 // No buffers for this track. Give it a few chances to
4498 // fill a buffer, then remove it from active list.
4499 if (--(track->mRetryCount) <= 0) {
4500 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4501 tracksToRemove->add(track);
4502 // indicate to client process that the track was disabled because of underrun;
4503 // it will then automatically call start() when data is available
4504 track->disable();
4505 // If one track is not ready, mark the mixer also not ready if:
4506 // - the mixer was ready during previous round OR
4507 // - no other track is ready
4508 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4509 mixerStatus != MIXER_TRACKS_READY) {
4510 mixerStatus = MIXER_TRACKS_ENABLED;
4511 }
4512 }
4513 mAudioMixer->disable(name);
4514 }
4515
4516 } // local variable scope to avoid goto warning
4517
4518 }
4519
4520 // Push the new FastMixer state if necessary
4521 bool pauseAudioWatchdog = false;
4522 if (didModify) {
4523 state->mFastTracksGen++;
4524 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4525 if (kUseFastMixer == FastMixer_Dynamic &&
4526 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4527 state->mCommand = FastMixerState::COLD_IDLE;
4528 state->mColdFutexAddr = &mFastMixerFutex;
4529 state->mColdGen++;
4530 mFastMixerFutex = 0;
4531 if (kUseFastMixer == FastMixer_Dynamic) {
4532 mNormalSink = mOutputSink;
4533 }
4534 // If we go into cold idle, need to wait for acknowledgement
4535 // so that fast mixer stops doing I/O.
4536 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4537 pauseAudioWatchdog = true;
4538 }
4539 }
4540 if (sq != NULL) {
4541 sq->end(didModify);
4542 sq->push(block);
4543 }
4544 #ifdef AUDIO_WATCHDOG
4545 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4546 mAudioWatchdog->pause();
4547 }
4548 #endif
4549
4550 // Now perform the deferred reset on fast tracks that have stopped
4551 while (resetMask != 0) {
4552 size_t i = __builtin_ctz(resetMask);
4553 ALOG_ASSERT(i < count);
4554 resetMask &= ~(1 << i);
4555 sp<Track> t = mActiveTracks[i].promote();
4556 if (t == 0) {
4557 continue;
4558 }
4559 Track* track = t.get();
4560 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4561 track->reset();
4562 }
4563
4564 // remove all the tracks that need to be...
4565 removeTracks_l(*tracksToRemove);
4566
4567 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4568 mEffectBufferValid = true;
4569 }
4570
4571 if (mEffectBufferValid) {
4572 // as long as there are effects we should clear the effects buffer, to avoid
4573 // passing a non-clean buffer to the effect chain
4574 memset(mEffectBuffer, 0, mEffectBufferSize);
4575 }
4576 // sink or mix buffer must be cleared if all tracks are connected to an
4577 // effect chain as in this case the mixer will not write to the sink or mix buffer
4578 // and track effects will accumulate into it
4579 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4580 (mixedTracks == 0 && fastTracks > 0))) {
4581 // FIXME as a performance optimization, should remember previous zero status
4582 if (mMixerBufferValid) {
4583 memset(mMixerBuffer, 0, mMixerBufferSize);
4584 // TODO: In testing, mSinkBuffer below need not be cleared because
4585 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4586 // after mixing.
4587 //
4588 // To enforce this guarantee:
4589 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4590 // (mixedTracks == 0 && fastTracks > 0))
4591 // must imply MIXER_TRACKS_READY.
4592 // Later, we may clear buffers regardless, and skip much of this logic.
4593 }
4594 // FIXME as a performance optimization, should remember previous zero status
4595 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4596 }
4597
4598 // if any fast tracks, then status is ready
4599 mMixerStatusIgnoringFastTracks = mixerStatus;
4600 if (fastTracks > 0) {
4601 mixerStatus = MIXER_TRACKS_READY;
4602 }
4603 return mixerStatus;
4604 }
4605
4606 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid)4607 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid)
4608 {
4609 uint32_t trackCount = 0;
4610 for (size_t i = 0; i < mTracks.size() ; i++) {
4611 if (mTracks[i]->uid() == (int)uid) {
4612 trackCount++;
4613 }
4614 }
4615 return trackCount;
4616 }
4617
4618 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid)4619 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4620 audio_format_t format, audio_session_t sessionId, uid_t uid)
4621 {
4622 if (trackCountForUid_l(uid) > (PlaybackThread::kMaxTracksPerUid - 1)) {
4623 return -1;
4624 }
4625 return mAudioMixer->getTrackName(channelMask, format, sessionId);
4626 }
4627
4628 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)4629 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4630 {
4631 ALOGV("remove track (%d) and delete from mixer", name);
4632 mAudioMixer->deleteTrackName(name);
4633 }
4634
4635 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4636 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4637 status_t& status)
4638 {
4639 bool reconfig = false;
4640 bool a2dpDeviceChanged = false;
4641
4642 status = NO_ERROR;
4643
4644 AutoPark<FastMixer> park(mFastMixer);
4645
4646 AudioParameter param = AudioParameter(keyValuePair);
4647 int value;
4648 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4649 reconfig = true;
4650 }
4651 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4652 if (!isValidPcmSinkFormat((audio_format_t) value)) {
4653 status = BAD_VALUE;
4654 } else {
4655 // no need to save value, since it's constant
4656 reconfig = true;
4657 }
4658 }
4659 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4660 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4661 status = BAD_VALUE;
4662 } else {
4663 // no need to save value, since it's constant
4664 reconfig = true;
4665 }
4666 }
4667 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4668 // do not accept frame count changes if tracks are open as the track buffer
4669 // size depends on frame count and correct behavior would not be guaranteed
4670 // if frame count is changed after track creation
4671 if (!mTracks.isEmpty()) {
4672 status = INVALID_OPERATION;
4673 } else {
4674 reconfig = true;
4675 }
4676 }
4677 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4678 #ifdef ADD_BATTERY_DATA
4679 // when changing the audio output device, call addBatteryData to notify
4680 // the change
4681 if (mOutDevice != value) {
4682 uint32_t params = 0;
4683 // check whether speaker is on
4684 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4685 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4686 }
4687
4688 audio_devices_t deviceWithoutSpeaker
4689 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4690 // check if any other device (except speaker) is on
4691 if (value & deviceWithoutSpeaker) {
4692 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4693 }
4694
4695 if (params != 0) {
4696 addBatteryData(params);
4697 }
4698 }
4699 #endif
4700
4701 // forward device change to effects that have requested to be
4702 // aware of attached audio device.
4703 if (value != AUDIO_DEVICE_NONE) {
4704 a2dpDeviceChanged =
4705 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4706 mOutDevice = value;
4707 for (size_t i = 0; i < mEffectChains.size(); i++) {
4708 mEffectChains[i]->setDevice_l(mOutDevice);
4709 }
4710 }
4711 }
4712
4713 if (status == NO_ERROR) {
4714 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4715 keyValuePair.string());
4716 if (!mStandby && status == INVALID_OPERATION) {
4717 mOutput->standby();
4718 mStandby = true;
4719 mBytesWritten = 0;
4720 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4721 keyValuePair.string());
4722 }
4723 if (status == NO_ERROR && reconfig) {
4724 readOutputParameters_l();
4725 delete mAudioMixer;
4726 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4727 for (size_t i = 0; i < mTracks.size() ; i++) {
4728 int name = getTrackName_l(mTracks[i]->mChannelMask,
4729 mTracks[i]->mFormat, mTracks[i]->mSessionId, mTracks[i]->uid());
4730 if (name < 0) {
4731 break;
4732 }
4733 mTracks[i]->mName = name;
4734 }
4735 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4736 }
4737 }
4738
4739 return reconfig || a2dpDeviceChanged;
4740 }
4741
4742
dumpInternals(int fd,const Vector<String16> & args)4743 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4744 {
4745 PlaybackThread::dumpInternals(fd, args);
4746 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4747 dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4748 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
4749
4750 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4751 // while we are dumping it. It may be inconsistent, but it won't mutate!
4752 // This is a large object so we place it on the heap.
4753 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4754 const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4755 copy->dump(fd);
4756 delete copy;
4757
4758 #ifdef STATE_QUEUE_DUMP
4759 // Similar for state queue
4760 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4761 observerCopy.dump(fd);
4762 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4763 mutatorCopy.dump(fd);
4764 #endif
4765
4766 #ifdef TEE_SINK
4767 // Write the tee output to a .wav file
4768 dumpTee(fd, mTeeSource, mId);
4769 #endif
4770
4771 #ifdef AUDIO_WATCHDOG
4772 if (mAudioWatchdog != 0) {
4773 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4774 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4775 wdCopy.dump(fd);
4776 }
4777 #endif
4778 }
4779
idleSleepTimeUs() const4780 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4781 {
4782 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4783 }
4784
suspendSleepTimeUs() const4785 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4786 {
4787 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4788 }
4789
cacheParameters_l()4790 void AudioFlinger::MixerThread::cacheParameters_l()
4791 {
4792 PlaybackThread::cacheParameters_l();
4793
4794 // FIXME: Relaxed timing because of a certain device that can't meet latency
4795 // Should be reduced to 2x after the vendor fixes the driver issue
4796 // increase threshold again due to low power audio mode. The way this warning
4797 // threshold is calculated and its usefulness should be reconsidered anyway.
4798 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4799 }
4800
4801 // ----------------------------------------------------------------------------
4802
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady)4803 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4804 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4805 : PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4806 // mLeftVolFloat, mRightVolFloat
4807 {
4808 }
4809
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type,bool systemReady)4810 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4811 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4812 ThreadBase::type_t type, bool systemReady)
4813 : PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4814 // mLeftVolFloat, mRightVolFloat
4815 {
4816 }
4817
~DirectOutputThread()4818 AudioFlinger::DirectOutputThread::~DirectOutputThread()
4819 {
4820 }
4821
processVolume_l(Track * track,bool lastTrack)4822 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4823 {
4824 float left, right;
4825
4826 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4827 left = right = 0;
4828 } else {
4829 float typeVolume = mStreamTypes[track->streamType()].volume;
4830 float v = mMasterVolume * typeVolume;
4831 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4832 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4833 left = float_from_gain(gain_minifloat_unpack_left(vlr));
4834 if (left > GAIN_FLOAT_UNITY) {
4835 left = GAIN_FLOAT_UNITY;
4836 }
4837 left *= v;
4838 right = float_from_gain(gain_minifloat_unpack_right(vlr));
4839 if (right > GAIN_FLOAT_UNITY) {
4840 right = GAIN_FLOAT_UNITY;
4841 }
4842 right *= v;
4843 }
4844
4845 if (lastTrack) {
4846 if (left != mLeftVolFloat || right != mRightVolFloat) {
4847 mLeftVolFloat = left;
4848 mRightVolFloat = right;
4849
4850 // Convert volumes from float to 8.24
4851 uint32_t vl = (uint32_t)(left * (1 << 24));
4852 uint32_t vr = (uint32_t)(right * (1 << 24));
4853
4854 // Delegate volume control to effect in track effect chain if needed
4855 // only one effect chain can be present on DirectOutputThread, so if
4856 // there is one, the track is connected to it
4857 if (!mEffectChains.isEmpty()) {
4858 mEffectChains[0]->setVolume_l(&vl, &vr);
4859 left = (float)vl / (1 << 24);
4860 right = (float)vr / (1 << 24);
4861 }
4862 if (mOutput->stream->set_volume) {
4863 mOutput->stream->set_volume(mOutput->stream, left, right);
4864 }
4865 }
4866 }
4867 }
4868
onAddNewTrack_l()4869 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4870 {
4871 sp<Track> previousTrack = mPreviousTrack.promote();
4872 sp<Track> latestTrack = mLatestActiveTrack.promote();
4873
4874 if (previousTrack != 0 && latestTrack != 0) {
4875 if (mType == DIRECT) {
4876 if (previousTrack.get() != latestTrack.get()) {
4877 mFlushPending = true;
4878 }
4879 } else /* mType == OFFLOAD */ {
4880 if (previousTrack->sessionId() != latestTrack->sessionId()) {
4881 mFlushPending = true;
4882 }
4883 }
4884 }
4885 PlaybackThread::onAddNewTrack_l();
4886 }
4887
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4888 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4889 Vector< sp<Track> > *tracksToRemove
4890 )
4891 {
4892 size_t count = mActiveTracks.size();
4893 mixer_state mixerStatus = MIXER_IDLE;
4894 bool doHwPause = false;
4895 bool doHwResume = false;
4896
4897 // find out which tracks need to be processed
4898 for (size_t i = 0; i < count; i++) {
4899 sp<Track> t = mActiveTracks[i].promote();
4900 // The track died recently
4901 if (t == 0) {
4902 continue;
4903 }
4904
4905 if (t->isInvalid()) {
4906 ALOGW("An invalidated track shouldn't be in active list");
4907 tracksToRemove->add(t);
4908 continue;
4909 }
4910
4911 Track* const track = t.get();
4912 #ifdef VERY_VERY_VERBOSE_LOGGING
4913 audio_track_cblk_t* cblk = track->cblk();
4914 #endif
4915 // Only consider last track started for volume and mixer state control.
4916 // In theory an older track could underrun and restart after the new one starts
4917 // but as we only care about the transition phase between two tracks on a
4918 // direct output, it is not a problem to ignore the underrun case.
4919 sp<Track> l = mLatestActiveTrack.promote();
4920 bool last = l.get() == track;
4921
4922 if (track->isPausing()) {
4923 track->setPaused();
4924 if (mHwSupportsPause && last && !mHwPaused) {
4925 doHwPause = true;
4926 mHwPaused = true;
4927 }
4928 tracksToRemove->add(track);
4929 } else if (track->isFlushPending()) {
4930 track->flushAck();
4931 if (last) {
4932 mFlushPending = true;
4933 }
4934 } else if (track->isResumePending()) {
4935 track->resumeAck();
4936 if (last) {
4937 mLeftVolFloat = mRightVolFloat = -1.0;
4938 if (mHwPaused) {
4939 doHwResume = true;
4940 mHwPaused = false;
4941 }
4942 }
4943 }
4944
4945 // The first time a track is added we wait
4946 // for all its buffers to be filled before processing it.
4947 // Allow draining the buffer in case the client
4948 // app does not call stop() and relies on underrun to stop:
4949 // hence the test on (track->mRetryCount > 1).
4950 // If retryCount<=1 then track is about to underrun and be removed.
4951 // Do not use a high threshold for compressed audio.
4952 uint32_t minFrames;
4953 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4954 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4955 minFrames = mNormalFrameCount;
4956 } else {
4957 minFrames = 1;
4958 }
4959
4960 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4961 !track->isStopping_2() && !track->isStopped())
4962 {
4963 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4964
4965 if (track->mFillingUpStatus == Track::FS_FILLED) {
4966 track->mFillingUpStatus = Track::FS_ACTIVE;
4967 if (last) {
4968 // make sure processVolume_l() will apply new volume even if 0
4969 mLeftVolFloat = mRightVolFloat = -1.0;
4970 }
4971 if (!mHwSupportsPause) {
4972 track->resumeAck();
4973 }
4974 }
4975
4976 // compute volume for this track
4977 processVolume_l(track, last);
4978 if (last) {
4979 sp<Track> previousTrack = mPreviousTrack.promote();
4980 if (previousTrack != 0) {
4981 if (track != previousTrack.get()) {
4982 // Flush any data still being written from last track
4983 mBytesRemaining = 0;
4984 // Invalidate previous track to force a seek when resuming.
4985 previousTrack->invalidate();
4986 }
4987 }
4988 mPreviousTrack = track;
4989
4990 // reset retry count
4991 track->mRetryCount = kMaxTrackRetriesDirect;
4992 mActiveTrack = t;
4993 mixerStatus = MIXER_TRACKS_READY;
4994 if (mHwPaused) {
4995 doHwResume = true;
4996 mHwPaused = false;
4997 }
4998 }
4999 } else {
5000 // clear effect chain input buffer if the last active track started underruns
5001 // to avoid sending previous audio buffer again to effects
5002 if (!mEffectChains.isEmpty() && last) {
5003 mEffectChains[0]->clearInputBuffer();
5004 }
5005 if (track->isStopping_1()) {
5006 track->mState = TrackBase::STOPPING_2;
5007 if (last && mHwPaused) {
5008 doHwResume = true;
5009 mHwPaused = false;
5010 }
5011 }
5012 if ((track->sharedBuffer() != 0) || track->isStopped() ||
5013 track->isStopping_2() || track->isPaused()) {
5014 // We have consumed all the buffers of this track.
5015 // Remove it from the list of active tracks.
5016 size_t audioHALFrames;
5017 if (audio_has_proportional_frames(mFormat)) {
5018 audioHALFrames = (latency_l() * mSampleRate) / 1000;
5019 } else {
5020 audioHALFrames = 0;
5021 }
5022
5023 int64_t framesWritten = mBytesWritten / mFrameSize;
5024 if (mStandby || !last ||
5025 track->presentationComplete(framesWritten, audioHALFrames)) {
5026 if (track->isStopping_2()) {
5027 track->mState = TrackBase::STOPPED;
5028 }
5029 if (track->isStopped()) {
5030 track->reset();
5031 }
5032 tracksToRemove->add(track);
5033 }
5034 } else {
5035 // No buffers for this track. Give it a few chances to
5036 // fill a buffer, then remove it from active list.
5037 // Only consider last track started for mixer state control
5038 if (--(track->mRetryCount) <= 0) {
5039 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
5040 tracksToRemove->add(track);
5041 // indicate to client process that the track was disabled because of underrun;
5042 // it will then automatically call start() when data is available
5043 track->disable();
5044 } else if (last) {
5045 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5046 "minFrames = %u, mFormat = %#x",
5047 track->framesReady(), minFrames, mFormat);
5048 mixerStatus = MIXER_TRACKS_ENABLED;
5049 if (mHwSupportsPause && !mHwPaused && !mStandby) {
5050 doHwPause = true;
5051 mHwPaused = true;
5052 }
5053 }
5054 }
5055 }
5056 }
5057
5058 // if an active track did not command a flush, check for pending flush on stopped tracks
5059 if (!mFlushPending) {
5060 for (size_t i = 0; i < mTracks.size(); i++) {
5061 if (mTracks[i]->isFlushPending()) {
5062 mTracks[i]->flushAck();
5063 mFlushPending = true;
5064 }
5065 }
5066 }
5067
5068 // make sure the pause/flush/resume sequence is executed in the right order.
5069 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5070 // before flush and then resume HW. This can happen in case of pause/flush/resume
5071 // if resume is received before pause is executed.
5072 if (mHwSupportsPause && !mStandby &&
5073 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5074 mOutput->stream->pause(mOutput->stream);
5075 }
5076 if (mFlushPending) {
5077 flushHw_l();
5078 }
5079 if (mHwSupportsPause && !mStandby && doHwResume) {
5080 mOutput->stream->resume(mOutput->stream);
5081 }
5082 // remove all the tracks that need to be...
5083 removeTracks_l(*tracksToRemove);
5084
5085 return mixerStatus;
5086 }
5087
threadLoop_mix()5088 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5089 {
5090 size_t frameCount = mFrameCount;
5091 int8_t *curBuf = (int8_t *)mSinkBuffer;
5092 // output audio to hardware
5093 while (frameCount) {
5094 AudioBufferProvider::Buffer buffer;
5095 buffer.frameCount = frameCount;
5096 status_t status = mActiveTrack->getNextBuffer(&buffer);
5097 if (status != NO_ERROR || buffer.raw == NULL) {
5098 // no need to pad with 0 for compressed audio
5099 if (audio_has_proportional_frames(mFormat)) {
5100 memset(curBuf, 0, frameCount * mFrameSize);
5101 }
5102 break;
5103 }
5104 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5105 frameCount -= buffer.frameCount;
5106 curBuf += buffer.frameCount * mFrameSize;
5107 mActiveTrack->releaseBuffer(&buffer);
5108 }
5109 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5110 mSleepTimeUs = 0;
5111 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5112 mActiveTrack.clear();
5113 }
5114
threadLoop_sleepTime()5115 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5116 {
5117 // do not write to HAL when paused
5118 if (mHwPaused || (usesHwAvSync() && mStandby)) {
5119 mSleepTimeUs = mIdleSleepTimeUs;
5120 return;
5121 }
5122 if (mSleepTimeUs == 0) {
5123 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5124 mSleepTimeUs = mActiveSleepTimeUs;
5125 } else {
5126 mSleepTimeUs = mIdleSleepTimeUs;
5127 }
5128 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5129 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5130 mSleepTimeUs = 0;
5131 }
5132 }
5133
threadLoop_exit()5134 void AudioFlinger::DirectOutputThread::threadLoop_exit()
5135 {
5136 {
5137 Mutex::Autolock _l(mLock);
5138 for (size_t i = 0; i < mTracks.size(); i++) {
5139 if (mTracks[i]->isFlushPending()) {
5140 mTracks[i]->flushAck();
5141 mFlushPending = true;
5142 }
5143 }
5144 if (mFlushPending) {
5145 flushHw_l();
5146 }
5147 }
5148 PlaybackThread::threadLoop_exit();
5149 }
5150
5151 // must be called with thread mutex locked
shouldStandby_l()5152 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5153 {
5154 bool trackPaused = false;
5155 bool trackStopped = false;
5156
5157 if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5158 return !mStandby;
5159 }
5160
5161 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5162 // after a timeout and we will enter standby then.
5163 if (mTracks.size() > 0) {
5164 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5165 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5166 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5167 }
5168
5169 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5170 }
5171
5172 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask __unused,audio_format_t format __unused,audio_session_t sessionId __unused,uid_t uid)5173 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5174 audio_format_t format __unused, audio_session_t sessionId __unused, uid_t uid)
5175 {
5176 if (trackCountForUid_l(uid) > (PlaybackThread::kMaxTracksPerUid - 1)) {
5177 return -1;
5178 }
5179 return 0;
5180 }
5181
5182 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name __unused)5183 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5184 {
5185 }
5186
5187 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5188 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5189 status_t& status)
5190 {
5191 bool reconfig = false;
5192 bool a2dpDeviceChanged = false;
5193
5194 status = NO_ERROR;
5195
5196 AudioParameter param = AudioParameter(keyValuePair);
5197 int value;
5198 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5199 // forward device change to effects that have requested to be
5200 // aware of attached audio device.
5201 if (value != AUDIO_DEVICE_NONE) {
5202 a2dpDeviceChanged =
5203 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5204 mOutDevice = value;
5205 for (size_t i = 0; i < mEffectChains.size(); i++) {
5206 mEffectChains[i]->setDevice_l(mOutDevice);
5207 }
5208 }
5209 }
5210 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5211 // do not accept frame count changes if tracks are open as the track buffer
5212 // size depends on frame count and correct behavior would not be garantied
5213 // if frame count is changed after track creation
5214 if (!mTracks.isEmpty()) {
5215 status = INVALID_OPERATION;
5216 } else {
5217 reconfig = true;
5218 }
5219 }
5220 if (status == NO_ERROR) {
5221 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5222 keyValuePair.string());
5223 if (!mStandby && status == INVALID_OPERATION) {
5224 mOutput->standby();
5225 mStandby = true;
5226 mBytesWritten = 0;
5227 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5228 keyValuePair.string());
5229 }
5230 if (status == NO_ERROR && reconfig) {
5231 readOutputParameters_l();
5232 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5233 }
5234 }
5235
5236 return reconfig || a2dpDeviceChanged;
5237 }
5238
activeSleepTimeUs() const5239 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5240 {
5241 uint32_t time;
5242 if (audio_has_proportional_frames(mFormat)) {
5243 time = PlaybackThread::activeSleepTimeUs();
5244 } else {
5245 time = kDirectMinSleepTimeUs;
5246 }
5247 return time;
5248 }
5249
idleSleepTimeUs() const5250 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5251 {
5252 uint32_t time;
5253 if (audio_has_proportional_frames(mFormat)) {
5254 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5255 } else {
5256 time = kDirectMinSleepTimeUs;
5257 }
5258 return time;
5259 }
5260
suspendSleepTimeUs() const5261 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5262 {
5263 uint32_t time;
5264 if (audio_has_proportional_frames(mFormat)) {
5265 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5266 } else {
5267 time = kDirectMinSleepTimeUs;
5268 }
5269 return time;
5270 }
5271
cacheParameters_l()5272 void AudioFlinger::DirectOutputThread::cacheParameters_l()
5273 {
5274 PlaybackThread::cacheParameters_l();
5275
5276 // use shorter standby delay as on normal output to release
5277 // hardware resources as soon as possible
5278 // no delay on outputs with HW A/V sync
5279 if (usesHwAvSync()) {
5280 mStandbyDelayNs = 0;
5281 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5282 mStandbyDelayNs = kOffloadStandbyDelayNs;
5283 } else {
5284 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5285 }
5286 }
5287
flushHw_l()5288 void AudioFlinger::DirectOutputThread::flushHw_l()
5289 {
5290 mOutput->flush();
5291 mHwPaused = false;
5292 mFlushPending = false;
5293 }
5294
5295 // ----------------------------------------------------------------------------
5296
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)5297 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5298 const wp<AudioFlinger::PlaybackThread>& playbackThread)
5299 : Thread(false /*canCallJava*/),
5300 mPlaybackThread(playbackThread),
5301 mWriteAckSequence(0),
5302 mDrainSequence(0),
5303 mAsyncError(false)
5304 {
5305 }
5306
~AsyncCallbackThread()5307 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5308 {
5309 }
5310
onFirstRef()5311 void AudioFlinger::AsyncCallbackThread::onFirstRef()
5312 {
5313 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5314 }
5315
threadLoop()5316 bool AudioFlinger::AsyncCallbackThread::threadLoop()
5317 {
5318 while (!exitPending()) {
5319 uint32_t writeAckSequence;
5320 uint32_t drainSequence;
5321 bool asyncError;
5322
5323 {
5324 Mutex::Autolock _l(mLock);
5325 while (!((mWriteAckSequence & 1) ||
5326 (mDrainSequence & 1) ||
5327 mAsyncError ||
5328 exitPending())) {
5329 mWaitWorkCV.wait(mLock);
5330 }
5331
5332 if (exitPending()) {
5333 break;
5334 }
5335 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5336 mWriteAckSequence, mDrainSequence);
5337 writeAckSequence = mWriteAckSequence;
5338 mWriteAckSequence &= ~1;
5339 drainSequence = mDrainSequence;
5340 mDrainSequence &= ~1;
5341 asyncError = mAsyncError;
5342 mAsyncError = false;
5343 }
5344 {
5345 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5346 if (playbackThread != 0) {
5347 if (writeAckSequence & 1) {
5348 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5349 }
5350 if (drainSequence & 1) {
5351 playbackThread->resetDraining(drainSequence >> 1);
5352 }
5353 if (asyncError) {
5354 playbackThread->onAsyncError();
5355 }
5356 }
5357 }
5358 }
5359 return false;
5360 }
5361
exit()5362 void AudioFlinger::AsyncCallbackThread::exit()
5363 {
5364 ALOGV("AsyncCallbackThread::exit");
5365 Mutex::Autolock _l(mLock);
5366 requestExit();
5367 mWaitWorkCV.broadcast();
5368 }
5369
setWriteBlocked(uint32_t sequence)5370 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5371 {
5372 Mutex::Autolock _l(mLock);
5373 // bit 0 is cleared
5374 mWriteAckSequence = sequence << 1;
5375 }
5376
resetWriteBlocked()5377 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5378 {
5379 Mutex::Autolock _l(mLock);
5380 // ignore unexpected callbacks
5381 if (mWriteAckSequence & 2) {
5382 mWriteAckSequence |= 1;
5383 mWaitWorkCV.signal();
5384 }
5385 }
5386
setDraining(uint32_t sequence)5387 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5388 {
5389 Mutex::Autolock _l(mLock);
5390 // bit 0 is cleared
5391 mDrainSequence = sequence << 1;
5392 }
5393
resetDraining()5394 void AudioFlinger::AsyncCallbackThread::resetDraining()
5395 {
5396 Mutex::Autolock _l(mLock);
5397 // ignore unexpected callbacks
5398 if (mDrainSequence & 2) {
5399 mDrainSequence |= 1;
5400 mWaitWorkCV.signal();
5401 }
5402 }
5403
setAsyncError()5404 void AudioFlinger::AsyncCallbackThread::setAsyncError()
5405 {
5406 Mutex::Autolock _l(mLock);
5407 mAsyncError = true;
5408 mWaitWorkCV.signal();
5409 }
5410
5411
5412 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,bool systemReady)5413 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5414 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5415 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5416 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
5417 mOffloadUnderrunPosition(~0LL)
5418 {
5419 //FIXME: mStandby should be set to true by ThreadBase constructor
5420 mStandby = true;
5421 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5422 }
5423
threadLoop_exit()5424 void AudioFlinger::OffloadThread::threadLoop_exit()
5425 {
5426 if (mFlushPending || mHwPaused) {
5427 // If a flush is pending or track was paused, just discard buffered data
5428 flushHw_l();
5429 } else {
5430 mMixerStatus = MIXER_DRAIN_ALL;
5431 threadLoop_drain();
5432 }
5433 if (mUseAsyncWrite) {
5434 ALOG_ASSERT(mCallbackThread != 0);
5435 mCallbackThread->exit();
5436 }
5437 PlaybackThread::threadLoop_exit();
5438 }
5439
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5440 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5441 Vector< sp<Track> > *tracksToRemove
5442 )
5443 {
5444 size_t count = mActiveTracks.size();
5445
5446 mixer_state mixerStatus = MIXER_IDLE;
5447 bool doHwPause = false;
5448 bool doHwResume = false;
5449
5450 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5451
5452 // find out which tracks need to be processed
5453 for (size_t i = 0; i < count; i++) {
5454 sp<Track> t = mActiveTracks[i].promote();
5455 // The track died recently
5456 if (t == 0) {
5457 continue;
5458 }
5459 Track* const track = t.get();
5460 #ifdef VERY_VERY_VERBOSE_LOGGING
5461 audio_track_cblk_t* cblk = track->cblk();
5462 #endif
5463 // Only consider last track started for volume and mixer state control.
5464 // In theory an older track could underrun and restart after the new one starts
5465 // but as we only care about the transition phase between two tracks on a
5466 // direct output, it is not a problem to ignore the underrun case.
5467 sp<Track> l = mLatestActiveTrack.promote();
5468 bool last = l.get() == track;
5469
5470 if (track->isInvalid()) {
5471 ALOGW("An invalidated track shouldn't be in active list");
5472 tracksToRemove->add(track);
5473 continue;
5474 }
5475
5476 if (track->mState == TrackBase::IDLE) {
5477 ALOGW("An idle track shouldn't be in active list");
5478 continue;
5479 }
5480
5481 if (track->isPausing()) {
5482 track->setPaused();
5483 if (last) {
5484 if (mHwSupportsPause && !mHwPaused) {
5485 doHwPause = true;
5486 mHwPaused = true;
5487 }
5488 // If we were part way through writing the mixbuffer to
5489 // the HAL we must save this until we resume
5490 // BUG - this will be wrong if a different track is made active,
5491 // in that case we want to discard the pending data in the
5492 // mixbuffer and tell the client to present it again when the
5493 // track is resumed
5494 mPausedWriteLength = mCurrentWriteLength;
5495 mPausedBytesRemaining = mBytesRemaining;
5496 mBytesRemaining = 0; // stop writing
5497 }
5498 tracksToRemove->add(track);
5499 } else if (track->isFlushPending()) {
5500 if (track->isStopping_1()) {
5501 track->mRetryCount = kMaxTrackStopRetriesOffload;
5502 } else {
5503 track->mRetryCount = kMaxTrackRetriesOffload;
5504 }
5505 track->flushAck();
5506 if (last) {
5507 mFlushPending = true;
5508 }
5509 } else if (track->isResumePending()){
5510 track->resumeAck();
5511 if (last) {
5512 if (mPausedBytesRemaining) {
5513 // Need to continue write that was interrupted
5514 mCurrentWriteLength = mPausedWriteLength;
5515 mBytesRemaining = mPausedBytesRemaining;
5516 mPausedBytesRemaining = 0;
5517 }
5518 if (mHwPaused) {
5519 doHwResume = true;
5520 mHwPaused = false;
5521 // threadLoop_mix() will handle the case that we need to
5522 // resume an interrupted write
5523 }
5524 // enable write to audio HAL
5525 mSleepTimeUs = 0;
5526
5527 mLeftVolFloat = mRightVolFloat = -1.0;
5528
5529 // Do not handle new data in this iteration even if track->framesReady()
5530 mixerStatus = MIXER_TRACKS_ENABLED;
5531 }
5532 } else if (track->framesReady() && track->isReady() &&
5533 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5534 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5535 if (track->mFillingUpStatus == Track::FS_FILLED) {
5536 track->mFillingUpStatus = Track::FS_ACTIVE;
5537 if (last) {
5538 // make sure processVolume_l() will apply new volume even if 0
5539 mLeftVolFloat = mRightVolFloat = -1.0;
5540 }
5541 }
5542
5543 if (last) {
5544 sp<Track> previousTrack = mPreviousTrack.promote();
5545 if (previousTrack != 0) {
5546 if (track != previousTrack.get()) {
5547 // Flush any data still being written from last track
5548 mBytesRemaining = 0;
5549 if (mPausedBytesRemaining) {
5550 // Last track was paused so we also need to flush saved
5551 // mixbuffer state and invalidate track so that it will
5552 // re-submit that unwritten data when it is next resumed
5553 mPausedBytesRemaining = 0;
5554 // Invalidate is a bit drastic - would be more efficient
5555 // to have a flag to tell client that some of the
5556 // previously written data was lost
5557 previousTrack->invalidate();
5558 }
5559 // flush data already sent to the DSP if changing audio session as audio
5560 // comes from a different source. Also invalidate previous track to force a
5561 // seek when resuming.
5562 if (previousTrack->sessionId() != track->sessionId()) {
5563 previousTrack->invalidate();
5564 }
5565 }
5566 }
5567 mPreviousTrack = track;
5568 // reset retry count
5569 if (track->isStopping_1()) {
5570 track->mRetryCount = kMaxTrackStopRetriesOffload;
5571 } else {
5572 track->mRetryCount = kMaxTrackRetriesOffload;
5573 }
5574 mActiveTrack = t;
5575 mixerStatus = MIXER_TRACKS_READY;
5576 }
5577 } else {
5578 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5579 if (track->isStopping_1()) {
5580 if (--(track->mRetryCount) <= 0) {
5581 // Hardware buffer can hold a large amount of audio so we must
5582 // wait for all current track's data to drain before we say
5583 // that the track is stopped.
5584 if (mBytesRemaining == 0) {
5585 // Only start draining when all data in mixbuffer
5586 // has been written
5587 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5588 track->mState = TrackBase::STOPPING_2; // so presentation completes after
5589 // drain do not drain if no data was ever sent to HAL (mStandby == true)
5590 if (last && !mStandby) {
5591 // do not modify drain sequence if we are already draining. This happens
5592 // when resuming from pause after drain.
5593 if ((mDrainSequence & 1) == 0) {
5594 mSleepTimeUs = 0;
5595 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5596 mixerStatus = MIXER_DRAIN_TRACK;
5597 mDrainSequence += 2;
5598 }
5599 if (mHwPaused) {
5600 // It is possible to move from PAUSED to STOPPING_1 without
5601 // a resume so we must ensure hardware is running
5602 doHwResume = true;
5603 mHwPaused = false;
5604 }
5605 }
5606 }
5607 } else if (last) {
5608 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5609 mixerStatus = MIXER_TRACKS_ENABLED;
5610 }
5611 } else if (track->isStopping_2()) {
5612 // Drain has completed or we are in standby, signal presentation complete
5613 if (!(mDrainSequence & 1) || !last || mStandby) {
5614 track->mState = TrackBase::STOPPED;
5615 size_t audioHALFrames =
5616 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5617 int64_t framesWritten =
5618 mBytesWritten / mOutput->getFrameSize();
5619 track->presentationComplete(framesWritten, audioHALFrames);
5620 track->reset();
5621 tracksToRemove->add(track);
5622 }
5623 } else {
5624 // No buffers for this track. Give it a few chances to
5625 // fill a buffer, then remove it from active list.
5626 if (--(track->mRetryCount) <= 0) {
5627 bool running = false;
5628 if (mOutput->stream->get_presentation_position != nullptr) {
5629 uint64_t position = 0;
5630 struct timespec unused;
5631 // The running check restarts the retry counter at least once.
5632 int ret = mOutput->stream->get_presentation_position(
5633 mOutput->stream, &position, &unused);
5634 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
5635 running = true;
5636 mOffloadUnderrunPosition = position;
5637 }
5638 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
5639 (long long)position, (long long)mOffloadUnderrunPosition);
5640 }
5641 if (running) { // still running, give us more time.
5642 track->mRetryCount = kMaxTrackRetriesOffload;
5643 } else {
5644 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5645 track->name());
5646 tracksToRemove->add(track);
5647 // indicate to client process that the track was disabled because of underrun;
5648 // it will then automatically call start() when data is available
5649 track->disable();
5650 }
5651 } else if (last){
5652 mixerStatus = MIXER_TRACKS_ENABLED;
5653 }
5654 }
5655 }
5656 // compute volume for this track
5657 processVolume_l(track, last);
5658 }
5659
5660 // make sure the pause/flush/resume sequence is executed in the right order.
5661 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5662 // before flush and then resume HW. This can happen in case of pause/flush/resume
5663 // if resume is received before pause is executed.
5664 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5665 mOutput->stream->pause(mOutput->stream);
5666 }
5667 if (mFlushPending) {
5668 flushHw_l();
5669 }
5670 if (!mStandby && doHwResume) {
5671 mOutput->stream->resume(mOutput->stream);
5672 }
5673
5674 // remove all the tracks that need to be...
5675 removeTracks_l(*tracksToRemove);
5676
5677 return mixerStatus;
5678 }
5679
5680 // must be called with thread mutex locked
waitingAsyncCallback_l()5681 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5682 {
5683 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5684 mWriteAckSequence, mDrainSequence);
5685 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5686 return true;
5687 }
5688 return false;
5689 }
5690
waitingAsyncCallback()5691 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5692 {
5693 Mutex::Autolock _l(mLock);
5694 return waitingAsyncCallback_l();
5695 }
5696
flushHw_l()5697 void AudioFlinger::OffloadThread::flushHw_l()
5698 {
5699 DirectOutputThread::flushHw_l();
5700 // Flush anything still waiting in the mixbuffer
5701 mCurrentWriteLength = 0;
5702 mBytesRemaining = 0;
5703 mPausedWriteLength = 0;
5704 mPausedBytesRemaining = 0;
5705 // reset bytes written count to reflect that DSP buffers are empty after flush.
5706 mBytesWritten = 0;
5707 mOffloadUnderrunPosition = ~0LL;
5708
5709 if (mUseAsyncWrite) {
5710 // discard any pending drain or write ack by incrementing sequence
5711 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5712 mDrainSequence = (mDrainSequence + 2) & ~1;
5713 ALOG_ASSERT(mCallbackThread != 0);
5714 mCallbackThread->setWriteBlocked(mWriteAckSequence);
5715 mCallbackThread->setDraining(mDrainSequence);
5716 }
5717 }
5718
invalidateTracks(audio_stream_type_t streamType)5719 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5720 {
5721 Mutex::Autolock _l(mLock);
5722 if (PlaybackThread::invalidateTracks_l(streamType)) {
5723 mFlushPending = true;
5724 }
5725 }
5726
5727 // ----------------------------------------------------------------------------
5728
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)5729 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5730 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5731 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5732 systemReady, DUPLICATING),
5733 mWaitTimeMs(UINT_MAX)
5734 {
5735 addOutputTrack(mainThread);
5736 }
5737
~DuplicatingThread()5738 AudioFlinger::DuplicatingThread::~DuplicatingThread()
5739 {
5740 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5741 mOutputTracks[i]->destroy();
5742 }
5743 }
5744
threadLoop_mix()5745 void AudioFlinger::DuplicatingThread::threadLoop_mix()
5746 {
5747 // mix buffers...
5748 if (outputsReady(outputTracks)) {
5749 mAudioMixer->process();
5750 } else {
5751 if (mMixerBufferValid) {
5752 memset(mMixerBuffer, 0, mMixerBufferSize);
5753 } else {
5754 memset(mSinkBuffer, 0, mSinkBufferSize);
5755 }
5756 }
5757 mSleepTimeUs = 0;
5758 writeFrames = mNormalFrameCount;
5759 mCurrentWriteLength = mSinkBufferSize;
5760 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5761 }
5762
threadLoop_sleepTime()5763 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5764 {
5765 if (mSleepTimeUs == 0) {
5766 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5767 mSleepTimeUs = mActiveSleepTimeUs;
5768 } else {
5769 mSleepTimeUs = mIdleSleepTimeUs;
5770 }
5771 } else if (mBytesWritten != 0) {
5772 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5773 writeFrames = mNormalFrameCount;
5774 memset(mSinkBuffer, 0, mSinkBufferSize);
5775 } else {
5776 // flush remaining overflow buffers in output tracks
5777 writeFrames = 0;
5778 }
5779 mSleepTimeUs = 0;
5780 }
5781 }
5782
threadLoop_write()5783 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5784 {
5785 for (size_t i = 0; i < outputTracks.size(); i++) {
5786 outputTracks[i]->write(mSinkBuffer, writeFrames);
5787 }
5788 mStandby = false;
5789 return (ssize_t)mSinkBufferSize;
5790 }
5791
threadLoop_standby()5792 void AudioFlinger::DuplicatingThread::threadLoop_standby()
5793 {
5794 // DuplicatingThread implements standby by stopping all tracks
5795 for (size_t i = 0; i < outputTracks.size(); i++) {
5796 outputTracks[i]->stop();
5797 }
5798 }
5799
saveOutputTracks()5800 void AudioFlinger::DuplicatingThread::saveOutputTracks()
5801 {
5802 outputTracks = mOutputTracks;
5803 }
5804
clearOutputTracks()5805 void AudioFlinger::DuplicatingThread::clearOutputTracks()
5806 {
5807 outputTracks.clear();
5808 }
5809
addOutputTrack(MixerThread * thread)5810 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5811 {
5812 Mutex::Autolock _l(mLock);
5813 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5814 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5815 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5816 const size_t frameCount =
5817 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5818 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5819 // from different OutputTracks and their associated MixerThreads (e.g. one may
5820 // nearly empty and the other may be dropping data).
5821
5822 sp<OutputTrack> outputTrack = new OutputTrack(thread,
5823 this,
5824 mSampleRate,
5825 mFormat,
5826 mChannelMask,
5827 frameCount,
5828 IPCThreadState::self()->getCallingUid());
5829 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
5830 if (status != NO_ERROR) {
5831 ALOGE("addOutputTrack() initCheck failed %d", status);
5832 return;
5833 }
5834 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5835 mOutputTracks.add(outputTrack);
5836 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5837 updateWaitTime_l();
5838 }
5839
removeOutputTrack(MixerThread * thread)5840 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5841 {
5842 Mutex::Autolock _l(mLock);
5843 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5844 if (mOutputTracks[i]->thread() == thread) {
5845 mOutputTracks[i]->destroy();
5846 mOutputTracks.removeAt(i);
5847 updateWaitTime_l();
5848 if (thread->getOutput() == mOutput) {
5849 mOutput = NULL;
5850 }
5851 return;
5852 }
5853 }
5854 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5855 }
5856
5857 // caller must hold mLock
updateWaitTime_l()5858 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5859 {
5860 mWaitTimeMs = UINT_MAX;
5861 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5862 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5863 if (strong != 0) {
5864 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5865 if (waitTimeMs < mWaitTimeMs) {
5866 mWaitTimeMs = waitTimeMs;
5867 }
5868 }
5869 }
5870 }
5871
5872
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)5873 bool AudioFlinger::DuplicatingThread::outputsReady(
5874 const SortedVector< sp<OutputTrack> > &outputTracks)
5875 {
5876 for (size_t i = 0; i < outputTracks.size(); i++) {
5877 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5878 if (thread == 0) {
5879 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5880 outputTracks[i].get());
5881 return false;
5882 }
5883 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5884 // see note at standby() declaration
5885 if (playbackThread->standby() && !playbackThread->isSuspended()) {
5886 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5887 thread.get());
5888 return false;
5889 }
5890 }
5891 return true;
5892 }
5893
activeSleepTimeUs() const5894 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5895 {
5896 return (mWaitTimeMs * 1000) / 2;
5897 }
5898
cacheParameters_l()5899 void AudioFlinger::DuplicatingThread::cacheParameters_l()
5900 {
5901 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5902 updateWaitTime_l();
5903
5904 MixerThread::cacheParameters_l();
5905 }
5906
5907 // ----------------------------------------------------------------------------
5908 // Record
5909 // ----------------------------------------------------------------------------
5910
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady,const sp<NBAIO_Sink> & teeSink)5911 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5912 AudioStreamIn *input,
5913 audio_io_handle_t id,
5914 audio_devices_t outDevice,
5915 audio_devices_t inDevice,
5916 bool systemReady
5917 #ifdef TEE_SINK
5918 , const sp<NBAIO_Sink>& teeSink
5919 #endif
5920 ) :
5921 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5922 mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5923 // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5924 mRsmpInRear(0)
5925 #ifdef TEE_SINK
5926 , mTeeSink(teeSink)
5927 #endif
5928 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5929 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5930 // mFastCapture below
5931 , mFastCaptureFutex(0)
5932 // mInputSource
5933 // mPipeSink
5934 // mPipeSource
5935 , mPipeFramesP2(0)
5936 // mPipeMemory
5937 // mFastCaptureNBLogWriter
5938 , mFastTrackAvail(false)
5939 {
5940 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5941 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5942
5943 readInputParameters_l();
5944
5945 // create an NBAIO source for the HAL input stream, and negotiate
5946 mInputSource = new AudioStreamInSource(input->stream);
5947 size_t numCounterOffers = 0;
5948 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5949 #if !LOG_NDEBUG
5950 ssize_t index =
5951 #else
5952 (void)
5953 #endif
5954 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5955 ALOG_ASSERT(index == 0);
5956
5957 // initialize fast capture depending on configuration
5958 bool initFastCapture;
5959 switch (kUseFastCapture) {
5960 case FastCapture_Never:
5961 initFastCapture = false;
5962 break;
5963 case FastCapture_Always:
5964 initFastCapture = true;
5965 break;
5966 case FastCapture_Static:
5967 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5968 break;
5969 // case FastCapture_Dynamic:
5970 }
5971
5972 if (initFastCapture) {
5973 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5974 NBAIO_Format format = mInputSource->format();
5975 size_t pipeFramesP2 = roundup(mSampleRate / 25); // double-buffering of 20 ms each
5976 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5977 void *pipeBuffer;
5978 const sp<MemoryDealer> roHeap(readOnlyHeap());
5979 sp<IMemory> pipeMemory;
5980 if ((roHeap == 0) ||
5981 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5982 (pipeBuffer = pipeMemory->pointer()) == NULL) {
5983 ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5984 goto failed;
5985 }
5986 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5987 memset(pipeBuffer, 0, pipeSize);
5988 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5989 const NBAIO_Format offers[1] = {format};
5990 size_t numCounterOffers = 0;
5991 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5992 ALOG_ASSERT(index == 0);
5993 mPipeSink = pipe;
5994 PipeReader *pipeReader = new PipeReader(*pipe);
5995 numCounterOffers = 0;
5996 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5997 ALOG_ASSERT(index == 0);
5998 mPipeSource = pipeReader;
5999 mPipeFramesP2 = pipeFramesP2;
6000 mPipeMemory = pipeMemory;
6001
6002 // create fast capture
6003 mFastCapture = new FastCapture();
6004 FastCaptureStateQueue *sq = mFastCapture->sq();
6005 #ifdef STATE_QUEUE_DUMP
6006 // FIXME
6007 #endif
6008 FastCaptureState *state = sq->begin();
6009 state->mCblk = NULL;
6010 state->mInputSource = mInputSource.get();
6011 state->mInputSourceGen++;
6012 state->mPipeSink = pipe;
6013 state->mPipeSinkGen++;
6014 state->mFrameCount = mFrameCount;
6015 state->mCommand = FastCaptureState::COLD_IDLE;
6016 // already done in constructor initialization list
6017 //mFastCaptureFutex = 0;
6018 state->mColdFutexAddr = &mFastCaptureFutex;
6019 state->mColdGen++;
6020 state->mDumpState = &mFastCaptureDumpState;
6021 #ifdef TEE_SINK
6022 // FIXME
6023 #endif
6024 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
6025 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
6026 sq->end();
6027 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6028
6029 // start the fast capture
6030 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
6031 pid_t tid = mFastCapture->getTid();
6032 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
6033 #ifdef AUDIO_WATCHDOG
6034 // FIXME
6035 #endif
6036
6037 mFastTrackAvail = true;
6038 }
6039 failed: ;
6040
6041 // FIXME mNormalSource
6042 }
6043
~RecordThread()6044 AudioFlinger::RecordThread::~RecordThread()
6045 {
6046 if (mFastCapture != 0) {
6047 FastCaptureStateQueue *sq = mFastCapture->sq();
6048 FastCaptureState *state = sq->begin();
6049 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6050 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6051 if (old == -1) {
6052 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6053 }
6054 }
6055 state->mCommand = FastCaptureState::EXIT;
6056 sq->end();
6057 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6058 mFastCapture->join();
6059 mFastCapture.clear();
6060 }
6061 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6062 mAudioFlinger->unregisterWriter(mNBLogWriter);
6063 free(mRsmpInBuffer);
6064 }
6065
onFirstRef()6066 void AudioFlinger::RecordThread::onFirstRef()
6067 {
6068 run(mThreadName, PRIORITY_URGENT_AUDIO);
6069 }
6070
threadLoop()6071 bool AudioFlinger::RecordThread::threadLoop()
6072 {
6073 nsecs_t lastWarning = 0;
6074
6075 inputStandBy();
6076
6077 reacquire_wakelock:
6078 sp<RecordTrack> activeTrack;
6079 int activeTracksGen;
6080 {
6081 Mutex::Autolock _l(mLock);
6082 size_t size = mActiveTracks.size();
6083 activeTracksGen = mActiveTracksGen;
6084 if (size > 0) {
6085 // FIXME an arbitrary choice
6086 activeTrack = mActiveTracks[0];
6087 acquireWakeLock_l(activeTrack->uid());
6088 if (size > 1) {
6089 SortedVector<int> tmp;
6090 for (size_t i = 0; i < size; i++) {
6091 tmp.add(mActiveTracks[i]->uid());
6092 }
6093 updateWakeLockUids_l(tmp);
6094 }
6095 } else {
6096 acquireWakeLock_l(-1);
6097 }
6098 }
6099
6100 // used to request a deferred sleep, to be executed later while mutex is unlocked
6101 uint32_t sleepUs = 0;
6102
6103 // loop while there is work to do
6104 for (;;) {
6105 Vector< sp<EffectChain> > effectChains;
6106
6107 // activeTracks accumulates a copy of a subset of mActiveTracks
6108 Vector< sp<RecordTrack> > activeTracks;
6109
6110 // reference to the (first and only) active fast track
6111 sp<RecordTrack> fastTrack;
6112
6113 // reference to a fast track which is about to be removed
6114 sp<RecordTrack> fastTrackToRemove;
6115
6116 { // scope for mLock
6117 Mutex::Autolock _l(mLock);
6118
6119 processConfigEvents_l();
6120
6121 // check exitPending here because checkForNewParameters_l() and
6122 // checkForNewParameters_l() can temporarily release mLock
6123 if (exitPending()) {
6124 break;
6125 }
6126
6127 // sleep with mutex unlocked
6128 if (sleepUs > 0) {
6129 ATRACE_BEGIN("sleepC");
6130 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6131 ATRACE_END();
6132 sleepUs = 0;
6133 continue;
6134 }
6135
6136 // if no active track(s), then standby and release wakelock
6137 size_t size = mActiveTracks.size();
6138 if (size == 0) {
6139 standbyIfNotAlreadyInStandby();
6140 // exitPending() can't become true here
6141 releaseWakeLock_l();
6142 ALOGV("RecordThread: loop stopping");
6143 // go to sleep
6144 mWaitWorkCV.wait(mLock);
6145 ALOGV("RecordThread: loop starting");
6146 goto reacquire_wakelock;
6147 }
6148
6149 if (mActiveTracksGen != activeTracksGen) {
6150 activeTracksGen = mActiveTracksGen;
6151 SortedVector<int> tmp;
6152 for (size_t i = 0; i < size; i++) {
6153 tmp.add(mActiveTracks[i]->uid());
6154 }
6155 updateWakeLockUids_l(tmp);
6156 }
6157
6158 bool doBroadcast = false;
6159 bool allStopped = true;
6160 for (size_t i = 0; i < size; ) {
6161
6162 activeTrack = mActiveTracks[i];
6163 if (activeTrack->isTerminated()) {
6164 if (activeTrack->isFastTrack()) {
6165 ALOG_ASSERT(fastTrackToRemove == 0);
6166 fastTrackToRemove = activeTrack;
6167 }
6168 removeTrack_l(activeTrack);
6169 mActiveTracks.remove(activeTrack);
6170 mActiveTracksGen++;
6171 size--;
6172 continue;
6173 }
6174
6175 TrackBase::track_state activeTrackState = activeTrack->mState;
6176 switch (activeTrackState) {
6177
6178 case TrackBase::PAUSING:
6179 mActiveTracks.remove(activeTrack);
6180 mActiveTracksGen++;
6181 doBroadcast = true;
6182 size--;
6183 continue;
6184
6185 case TrackBase::STARTING_1:
6186 sleepUs = 10000;
6187 i++;
6188 allStopped = false;
6189 continue;
6190
6191 case TrackBase::STARTING_2:
6192 doBroadcast = true;
6193 mStandby = false;
6194 activeTrack->mState = TrackBase::ACTIVE;
6195 allStopped = false;
6196 break;
6197
6198 case TrackBase::ACTIVE:
6199 allStopped = false;
6200 break;
6201
6202 case TrackBase::IDLE:
6203 i++;
6204 continue;
6205
6206 default:
6207 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6208 }
6209
6210 activeTracks.add(activeTrack);
6211 i++;
6212
6213 if (activeTrack->isFastTrack()) {
6214 ALOG_ASSERT(!mFastTrackAvail);
6215 ALOG_ASSERT(fastTrack == 0);
6216 fastTrack = activeTrack;
6217 }
6218 }
6219
6220 if (allStopped) {
6221 standbyIfNotAlreadyInStandby();
6222 }
6223 if (doBroadcast) {
6224 mStartStopCond.broadcast();
6225 }
6226
6227 // sleep if there are no active tracks to process
6228 if (activeTracks.size() == 0) {
6229 if (sleepUs == 0) {
6230 sleepUs = kRecordThreadSleepUs;
6231 }
6232 continue;
6233 }
6234 sleepUs = 0;
6235
6236 lockEffectChains_l(effectChains);
6237 }
6238
6239 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6240
6241 size_t size = effectChains.size();
6242 for (size_t i = 0; i < size; i++) {
6243 // thread mutex is not locked, but effect chain is locked
6244 effectChains[i]->process_l();
6245 }
6246
6247 // Push a new fast capture state if fast capture is not already running, or cblk change
6248 if (mFastCapture != 0) {
6249 FastCaptureStateQueue *sq = mFastCapture->sq();
6250 FastCaptureState *state = sq->begin();
6251 bool didModify = false;
6252 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6253 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6254 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6255 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6256 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6257 if (old == -1) {
6258 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6259 }
6260 }
6261 state->mCommand = FastCaptureState::READ_WRITE;
6262 #if 0 // FIXME
6263 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6264 FastThreadDumpState::kSamplingNforLowRamDevice :
6265 FastThreadDumpState::kSamplingN);
6266 #endif
6267 didModify = true;
6268 }
6269 audio_track_cblk_t *cblkOld = state->mCblk;
6270 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6271 if (cblkNew != cblkOld) {
6272 state->mCblk = cblkNew;
6273 // block until acked if removing a fast track
6274 if (cblkOld != NULL) {
6275 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6276 }
6277 didModify = true;
6278 }
6279 sq->end(didModify);
6280 if (didModify) {
6281 sq->push(block);
6282 #if 0
6283 if (kUseFastCapture == FastCapture_Dynamic) {
6284 mNormalSource = mPipeSource;
6285 }
6286 #endif
6287 }
6288 }
6289
6290 // now run the fast track destructor with thread mutex unlocked
6291 fastTrackToRemove.clear();
6292
6293 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6294 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6295 // slow, then this RecordThread will overrun by not calling HAL read often enough.
6296 // If destination is non-contiguous, first read past the nominal end of buffer, then
6297 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
6298
6299 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6300 ssize_t framesRead;
6301
6302 // If an NBAIO source is present, use it to read the normal capture's data
6303 if (mPipeSource != 0) {
6304 size_t framesToRead = mBufferSize / mFrameSize;
6305 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6306 framesToRead);
6307 if (framesRead == 0) {
6308 // since pipe is non-blocking, simulate blocking input
6309 sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6310 }
6311 // otherwise use the HAL / AudioStreamIn directly
6312 } else {
6313 ATRACE_BEGIN("read");
6314 ssize_t bytesRead = mInput->stream->read(mInput->stream,
6315 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6316 ATRACE_END();
6317 if (bytesRead < 0) {
6318 framesRead = bytesRead;
6319 } else {
6320 framesRead = bytesRead / mFrameSize;
6321 }
6322 }
6323
6324 // Update server timestamp with server stats
6325 // systemTime() is optional if the hardware supports timestamps.
6326 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6327 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6328
6329 // Update server timestamp with kernel stats
6330 if (mInput->stream->get_capture_position != nullptr
6331 && mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
6332 int64_t position, time;
6333 int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6334 if (ret == NO_ERROR) {
6335 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6336 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6337 // Note: In general record buffers should tend to be empty in
6338 // a properly running pipeline.
6339 //
6340 // Also, it is not advantageous to call get_presentation_position during the read
6341 // as the read obtains a lock, preventing the timestamp call from executing.
6342 }
6343 }
6344 // Use this to track timestamp information
6345 // ALOGD("%s", mTimestamp.toString().c_str());
6346
6347 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6348 ALOGE("read failed: framesRead=%zd", framesRead);
6349 // Force input into standby so that it tries to recover at next read attempt
6350 inputStandBy();
6351 sleepUs = kRecordThreadSleepUs;
6352 }
6353 if (framesRead <= 0) {
6354 goto unlock;
6355 }
6356 ALOG_ASSERT(framesRead > 0);
6357
6358 if (mTeeSink != 0) {
6359 (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6360 }
6361 // If destination is non-contiguous, we now correct for reading past end of buffer.
6362 {
6363 size_t part1 = mRsmpInFramesP2 - rear;
6364 if ((size_t) framesRead > part1) {
6365 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6366 (framesRead - part1) * mFrameSize);
6367 }
6368 }
6369 rear = mRsmpInRear += framesRead;
6370
6371 size = activeTracks.size();
6372 // loop over each active track
6373 for (size_t i = 0; i < size; i++) {
6374 activeTrack = activeTracks[i];
6375
6376 // skip fast tracks, as those are handled directly by FastCapture
6377 if (activeTrack->isFastTrack()) {
6378 continue;
6379 }
6380
6381 // TODO: This code probably should be moved to RecordTrack.
6382 // TODO: Update the activeTrack buffer converter in case of reconfigure.
6383
6384 enum {
6385 OVERRUN_UNKNOWN,
6386 OVERRUN_TRUE,
6387 OVERRUN_FALSE
6388 } overrun = OVERRUN_UNKNOWN;
6389
6390 // loop over getNextBuffer to handle circular sink
6391 for (;;) {
6392
6393 activeTrack->mSink.frameCount = ~0;
6394 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6395 size_t framesOut = activeTrack->mSink.frameCount;
6396 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6397
6398 // check available frames and handle overrun conditions
6399 // if the record track isn't draining fast enough.
6400 bool hasOverrun;
6401 size_t framesIn;
6402 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6403 if (hasOverrun) {
6404 overrun = OVERRUN_TRUE;
6405 }
6406 if (framesOut == 0 || framesIn == 0) {
6407 break;
6408 }
6409
6410 // Don't allow framesOut to be larger than what is possible with resampling
6411 // from framesIn.
6412 // This isn't strictly necessary but helps limit buffer resizing in
6413 // RecordBufferConverter. TODO: remove when no longer needed.
6414 framesOut = min(framesOut,
6415 destinationFramesPossible(
6416 framesIn, mSampleRate, activeTrack->mSampleRate));
6417 // process frames from the RecordThread buffer provider to the RecordTrack buffer
6418 framesOut = activeTrack->mRecordBufferConverter->convert(
6419 activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6420
6421 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6422 overrun = OVERRUN_FALSE;
6423 }
6424
6425 if (activeTrack->mFramesToDrop == 0) {
6426 if (framesOut > 0) {
6427 activeTrack->mSink.frameCount = framesOut;
6428 activeTrack->releaseBuffer(&activeTrack->mSink);
6429 }
6430 } else {
6431 // FIXME could do a partial drop of framesOut
6432 if (activeTrack->mFramesToDrop > 0) {
6433 activeTrack->mFramesToDrop -= framesOut;
6434 if (activeTrack->mFramesToDrop <= 0) {
6435 activeTrack->clearSyncStartEvent();
6436 }
6437 } else {
6438 activeTrack->mFramesToDrop += framesOut;
6439 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6440 activeTrack->mSyncStartEvent->isCancelled()) {
6441 ALOGW("Synced record %s, session %d, trigger session %d",
6442 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6443 activeTrack->sessionId(),
6444 (activeTrack->mSyncStartEvent != 0) ?
6445 activeTrack->mSyncStartEvent->triggerSession() :
6446 AUDIO_SESSION_NONE);
6447 activeTrack->clearSyncStartEvent();
6448 }
6449 }
6450 }
6451
6452 if (framesOut == 0) {
6453 break;
6454 }
6455 }
6456
6457 switch (overrun) {
6458 case OVERRUN_TRUE:
6459 // client isn't retrieving buffers fast enough
6460 if (!activeTrack->setOverflow()) {
6461 nsecs_t now = systemTime();
6462 // FIXME should lastWarning per track?
6463 if ((now - lastWarning) > kWarningThrottleNs) {
6464 ALOGW("RecordThread: buffer overflow");
6465 lastWarning = now;
6466 }
6467 }
6468 break;
6469 case OVERRUN_FALSE:
6470 activeTrack->clearOverflow();
6471 break;
6472 case OVERRUN_UNKNOWN:
6473 break;
6474 }
6475
6476 // update frame information and push timestamp out
6477 activeTrack->updateTrackFrameInfo(
6478 activeTrack->mServerProxy->framesReleased(),
6479 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6480 mSampleRate, mTimestamp);
6481 }
6482
6483 unlock:
6484 // enable changes in effect chain
6485 unlockEffectChains(effectChains);
6486 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6487 }
6488
6489 standbyIfNotAlreadyInStandby();
6490
6491 {
6492 Mutex::Autolock _l(mLock);
6493 for (size_t i = 0; i < mTracks.size(); i++) {
6494 sp<RecordTrack> track = mTracks[i];
6495 track->invalidate();
6496 }
6497 mActiveTracks.clear();
6498 mActiveTracksGen++;
6499 mStartStopCond.broadcast();
6500 }
6501
6502 releaseWakeLock();
6503
6504 ALOGV("RecordThread %p exiting", this);
6505 return false;
6506 }
6507
standbyIfNotAlreadyInStandby()6508 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6509 {
6510 if (!mStandby) {
6511 inputStandBy();
6512 mStandby = true;
6513 }
6514 }
6515
inputStandBy()6516 void AudioFlinger::RecordThread::inputStandBy()
6517 {
6518 // Idle the fast capture if it's currently running
6519 if (mFastCapture != 0) {
6520 FastCaptureStateQueue *sq = mFastCapture->sq();
6521 FastCaptureState *state = sq->begin();
6522 if (!(state->mCommand & FastCaptureState::IDLE)) {
6523 state->mCommand = FastCaptureState::COLD_IDLE;
6524 state->mColdFutexAddr = &mFastCaptureFutex;
6525 state->mColdGen++;
6526 mFastCaptureFutex = 0;
6527 sq->end();
6528 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6529 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6530 #if 0
6531 if (kUseFastCapture == FastCapture_Dynamic) {
6532 // FIXME
6533 }
6534 #endif
6535 #ifdef AUDIO_WATCHDOG
6536 // FIXME
6537 #endif
6538 } else {
6539 sq->end(false /*didModify*/);
6540 }
6541 }
6542 mInput->stream->common.standby(&mInput->stream->common);
6543 }
6544
6545 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * notificationFrames,int uid,audio_input_flags_t * flags,pid_t tid,status_t * status)6546 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6547 const sp<AudioFlinger::Client>& client,
6548 uint32_t sampleRate,
6549 audio_format_t format,
6550 audio_channel_mask_t channelMask,
6551 size_t *pFrameCount,
6552 audio_session_t sessionId,
6553 size_t *notificationFrames,
6554 int uid,
6555 audio_input_flags_t *flags,
6556 pid_t tid,
6557 status_t *status)
6558 {
6559 size_t frameCount = *pFrameCount;
6560 sp<RecordTrack> track;
6561 status_t lStatus;
6562 audio_input_flags_t inputFlags = mInput->flags;
6563
6564 // special case for FAST flag considered OK if fast capture is present
6565 if (hasFastCapture()) {
6566 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6567 }
6568
6569 // Check if requested flags are compatible with output stream flags
6570 if ((*flags & inputFlags) != *flags) {
6571 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6572 " input flags (%08x)",
6573 *flags, inputFlags);
6574 *flags = (audio_input_flags_t)(*flags & inputFlags);
6575 }
6576
6577 // client expresses a preference for FAST, but we get the final say
6578 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6579 if (
6580 // we formerly checked for a callback handler (non-0 tid),
6581 // but that is no longer required for TRANSFER_OBTAIN mode
6582 //
6583 // frame count is not specified, or is exactly the pipe depth
6584 ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6585 // PCM data
6586 audio_is_linear_pcm(format) &&
6587 // hardware format
6588 (format == mFormat) &&
6589 // hardware channel mask
6590 (channelMask == mChannelMask) &&
6591 // hardware sample rate
6592 (sampleRate == mSampleRate) &&
6593 // record thread has an associated fast capture
6594 hasFastCapture() &&
6595 // there are sufficient fast track slots available
6596 mFastTrackAvail
6597 ) {
6598 // check compatibility with audio effects.
6599 Mutex::Autolock _l(mLock);
6600 // Do not accept FAST flag if the session has software effects
6601 sp<EffectChain> chain = getEffectChain_l(sessionId);
6602 if (chain != 0) {
6603 audio_input_flags_t old = *flags;
6604 chain->checkInputFlagCompatibility(flags);
6605 if (old != *flags) {
6606 ALOGV("AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
6607 (int)old, (int)*flags);
6608 }
6609 }
6610 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6611 "AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6612 frameCount, mFrameCount);
6613 } else {
6614 ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6615 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6616 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6617 frameCount, mFrameCount, mPipeFramesP2,
6618 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6619 hasFastCapture(), tid, mFastTrackAvail);
6620 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6621 }
6622 }
6623
6624 // compute track buffer size in frames, and suggest the notification frame count
6625 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6626 // fast track: frame count is exactly the pipe depth
6627 frameCount = mPipeFramesP2;
6628 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6629 *notificationFrames = mFrameCount;
6630 } else {
6631 // not fast track: max notification period is resampled equivalent of one HAL buffer time
6632 // or 20 ms if there is a fast capture
6633 // TODO This could be a roundupRatio inline, and const
6634 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6635 * sampleRate + mSampleRate - 1) / mSampleRate;
6636 // minimum number of notification periods is at least kMinNotifications,
6637 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6638 static const size_t kMinNotifications = 3;
6639 static const uint32_t kMinMs = 30;
6640 // TODO This could be a roundupRatio inline
6641 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6642 // TODO This could be a roundupRatio inline
6643 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6644 maxNotificationFrames;
6645 const size_t minFrameCount = maxNotificationFrames *
6646 max(kMinNotifications, minNotificationsByMs);
6647 frameCount = max(frameCount, minFrameCount);
6648 if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6649 *notificationFrames = maxNotificationFrames;
6650 }
6651 }
6652 *pFrameCount = frameCount;
6653
6654 lStatus = initCheck();
6655 if (lStatus != NO_ERROR) {
6656 ALOGE("createRecordTrack_l() audio driver not initialized");
6657 goto Exit;
6658 }
6659
6660 { // scope for mLock
6661 Mutex::Autolock _l(mLock);
6662
6663 track = new RecordTrack(this, client, sampleRate,
6664 format, channelMask, frameCount, NULL, sessionId, uid,
6665 *flags, TrackBase::TYPE_DEFAULT);
6666
6667 lStatus = track->initCheck();
6668 if (lStatus != NO_ERROR) {
6669 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6670 // track must be cleared from the caller as the caller has the AF lock
6671 goto Exit;
6672 }
6673 mTracks.add(track);
6674
6675 // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6676 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6677 mAudioFlinger->btNrecIsOff();
6678 setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6679 setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6680
6681 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
6682 pid_t callingPid = IPCThreadState::self()->getCallingPid();
6683 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6684 // so ask activity manager to do this on our behalf
6685 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6686 }
6687 }
6688
6689 lStatus = NO_ERROR;
6690
6691 Exit:
6692 *status = lStatus;
6693 return track;
6694 }
6695
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)6696 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6697 AudioSystem::sync_event_t event,
6698 audio_session_t triggerSession)
6699 {
6700 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6701 sp<ThreadBase> strongMe = this;
6702 status_t status = NO_ERROR;
6703
6704 if (event == AudioSystem::SYNC_EVENT_NONE) {
6705 recordTrack->clearSyncStartEvent();
6706 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6707 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6708 triggerSession,
6709 recordTrack->sessionId(),
6710 syncStartEventCallback,
6711 recordTrack);
6712 // Sync event can be cancelled by the trigger session if the track is not in a
6713 // compatible state in which case we start record immediately
6714 if (recordTrack->mSyncStartEvent->isCancelled()) {
6715 recordTrack->clearSyncStartEvent();
6716 } else {
6717 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6718 recordTrack->mFramesToDrop = -
6719 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6720 }
6721 }
6722
6723 {
6724 // This section is a rendezvous between binder thread executing start() and RecordThread
6725 AutoMutex lock(mLock);
6726 if (mActiveTracks.indexOf(recordTrack) >= 0) {
6727 if (recordTrack->mState == TrackBase::PAUSING) {
6728 ALOGV("active record track PAUSING -> ACTIVE");
6729 recordTrack->mState = TrackBase::ACTIVE;
6730 } else {
6731 ALOGV("active record track state %d", recordTrack->mState);
6732 }
6733 return status;
6734 }
6735
6736 // TODO consider other ways of handling this, such as changing the state to :STARTING and
6737 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6738 // or using a separate command thread
6739 recordTrack->mState = TrackBase::STARTING_1;
6740 mActiveTracks.add(recordTrack);
6741 mActiveTracksGen++;
6742 status_t status = NO_ERROR;
6743 if (recordTrack->isExternalTrack()) {
6744 mLock.unlock();
6745 status = AudioSystem::startInput(mId, recordTrack->sessionId());
6746 mLock.lock();
6747 // FIXME should verify that recordTrack is still in mActiveTracks
6748 if (status != NO_ERROR) {
6749 mActiveTracks.remove(recordTrack);
6750 mActiveTracksGen++;
6751 recordTrack->clearSyncStartEvent();
6752 ALOGV("RecordThread::start error %d", status);
6753 return status;
6754 }
6755 }
6756 // Catch up with current buffer indices if thread is already running.
6757 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
6758 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6759 // see previously buffered data before it called start(), but with greater risk of overrun.
6760
6761 recordTrack->mResamplerBufferProvider->reset();
6762 // clear any converter state as new data will be discontinuous
6763 recordTrack->mRecordBufferConverter->reset();
6764 recordTrack->mState = TrackBase::STARTING_2;
6765 // signal thread to start
6766 mWaitWorkCV.broadcast();
6767 if (mActiveTracks.indexOf(recordTrack) < 0) {
6768 ALOGV("Record failed to start");
6769 status = BAD_VALUE;
6770 goto startError;
6771 }
6772 return status;
6773 }
6774
6775 startError:
6776 if (recordTrack->isExternalTrack()) {
6777 AudioSystem::stopInput(mId, recordTrack->sessionId());
6778 }
6779 recordTrack->clearSyncStartEvent();
6780 // FIXME I wonder why we do not reset the state here?
6781 return status;
6782 }
6783
syncStartEventCallback(const wp<SyncEvent> & event)6784 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6785 {
6786 sp<SyncEvent> strongEvent = event.promote();
6787
6788 if (strongEvent != 0) {
6789 sp<RefBase> ptr = strongEvent->cookie().promote();
6790 if (ptr != 0) {
6791 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6792 recordTrack->handleSyncStartEvent(strongEvent);
6793 }
6794 }
6795 }
6796
stop(RecordThread::RecordTrack * recordTrack)6797 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6798 ALOGV("RecordThread::stop");
6799 AutoMutex _l(mLock);
6800 if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6801 return false;
6802 }
6803 // note that threadLoop may still be processing the track at this point [without lock]
6804 recordTrack->mState = TrackBase::PAUSING;
6805 // signal thread to stop
6806 mWaitWorkCV.broadcast();
6807 // do not wait for mStartStopCond if exiting
6808 if (exitPending()) {
6809 return true;
6810 }
6811 // FIXME incorrect usage of wait: no explicit predicate or loop
6812 mStartStopCond.wait(mLock);
6813 // if we have been restarted, recordTrack is in mActiveTracks here
6814 if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6815 ALOGV("Record stopped OK");
6816 return true;
6817 }
6818 return false;
6819 }
6820
isValidSyncEvent(const sp<SyncEvent> & event __unused) const6821 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6822 {
6823 return false;
6824 }
6825
setSyncEvent(const sp<SyncEvent> & event __unused)6826 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6827 {
6828 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
6829 if (!isValidSyncEvent(event)) {
6830 return BAD_VALUE;
6831 }
6832
6833 audio_session_t eventSession = event->triggerSession();
6834 status_t ret = NAME_NOT_FOUND;
6835
6836 Mutex::Autolock _l(mLock);
6837
6838 for (size_t i = 0; i < mTracks.size(); i++) {
6839 sp<RecordTrack> track = mTracks[i];
6840 if (eventSession == track->sessionId()) {
6841 (void) track->setSyncEvent(event);
6842 ret = NO_ERROR;
6843 }
6844 }
6845 return ret;
6846 #else
6847 return BAD_VALUE;
6848 #endif
6849 }
6850
6851 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)6852 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6853 {
6854 track->terminate();
6855 track->mState = TrackBase::STOPPED;
6856 // active tracks are removed by threadLoop()
6857 if (mActiveTracks.indexOf(track) < 0) {
6858 removeTrack_l(track);
6859 }
6860 }
6861
removeTrack_l(const sp<RecordTrack> & track)6862 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6863 {
6864 mTracks.remove(track);
6865 // need anything related to effects here?
6866 if (track->isFastTrack()) {
6867 ALOG_ASSERT(!mFastTrackAvail);
6868 mFastTrackAvail = true;
6869 }
6870 }
6871
dump(int fd,const Vector<String16> & args)6872 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6873 {
6874 dumpInternals(fd, args);
6875 dumpTracks(fd, args);
6876 dumpEffectChains(fd, args);
6877 }
6878
dumpInternals(int fd,const Vector<String16> & args)6879 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6880 {
6881 dprintf(fd, "\nInput thread %p:\n", this);
6882
6883 dumpBase(fd, args);
6884
6885 if (mActiveTracks.size() == 0) {
6886 dprintf(fd, " No active record clients\n");
6887 }
6888 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6889 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6890
6891 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6892 // while we are dumping it. It may be inconsistent, but it won't mutate!
6893 // This is a large object so we place it on the heap.
6894 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6895 const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6896 copy->dump(fd);
6897 delete copy;
6898 }
6899
dumpTracks(int fd,const Vector<String16> & args __unused)6900 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6901 {
6902 const size_t SIZE = 256;
6903 char buffer[SIZE];
6904 String8 result;
6905
6906 size_t numtracks = mTracks.size();
6907 size_t numactive = mActiveTracks.size();
6908 size_t numactiveseen = 0;
6909 dprintf(fd, " %zu Tracks", numtracks);
6910 if (numtracks) {
6911 dprintf(fd, " of which %zu are active\n", numactive);
6912 RecordTrack::appendDumpHeader(result);
6913 for (size_t i = 0; i < numtracks ; ++i) {
6914 sp<RecordTrack> track = mTracks[i];
6915 if (track != 0) {
6916 bool active = mActiveTracks.indexOf(track) >= 0;
6917 if (active) {
6918 numactiveseen++;
6919 }
6920 track->dump(buffer, SIZE, active);
6921 result.append(buffer);
6922 }
6923 }
6924 } else {
6925 dprintf(fd, "\n");
6926 }
6927
6928 if (numactiveseen != numactive) {
6929 snprintf(buffer, SIZE, " The following tracks are in the active list but"
6930 " not in the track list\n");
6931 result.append(buffer);
6932 RecordTrack::appendDumpHeader(result);
6933 for (size_t i = 0; i < numactive; ++i) {
6934 sp<RecordTrack> track = mActiveTracks[i];
6935 if (mTracks.indexOf(track) < 0) {
6936 track->dump(buffer, SIZE, true);
6937 result.append(buffer);
6938 }
6939 }
6940
6941 }
6942 write(fd, result.string(), result.size());
6943 }
6944
6945
reset()6946 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6947 {
6948 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6949 RecordThread *recordThread = (RecordThread *) threadBase.get();
6950 mRsmpInFront = recordThread->mRsmpInRear;
6951 mRsmpInUnrel = 0;
6952 }
6953
sync(size_t * framesAvailable,bool * hasOverrun)6954 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6955 size_t *framesAvailable, bool *hasOverrun)
6956 {
6957 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6958 RecordThread *recordThread = (RecordThread *) threadBase.get();
6959 const int32_t rear = recordThread->mRsmpInRear;
6960 const int32_t front = mRsmpInFront;
6961 const ssize_t filled = rear - front;
6962
6963 size_t framesIn;
6964 bool overrun = false;
6965 if (filled < 0) {
6966 // should not happen, but treat like a massive overrun and re-sync
6967 framesIn = 0;
6968 mRsmpInFront = rear;
6969 overrun = true;
6970 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6971 framesIn = (size_t) filled;
6972 } else {
6973 // client is not keeping up with server, but give it latest data
6974 framesIn = recordThread->mRsmpInFrames;
6975 mRsmpInFront = /* front = */ rear - framesIn;
6976 overrun = true;
6977 }
6978 if (framesAvailable != NULL) {
6979 *framesAvailable = framesIn;
6980 }
6981 if (hasOverrun != NULL) {
6982 *hasOverrun = overrun;
6983 }
6984 }
6985
6986 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)6987 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6988 AudioBufferProvider::Buffer* buffer)
6989 {
6990 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6991 if (threadBase == 0) {
6992 buffer->frameCount = 0;
6993 buffer->raw = NULL;
6994 return NOT_ENOUGH_DATA;
6995 }
6996 RecordThread *recordThread = (RecordThread *) threadBase.get();
6997 int32_t rear = recordThread->mRsmpInRear;
6998 int32_t front = mRsmpInFront;
6999 ssize_t filled = rear - front;
7000 // FIXME should not be P2 (don't want to increase latency)
7001 // FIXME if client not keeping up, discard
7002 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
7003 // 'filled' may be non-contiguous, so return only the first contiguous chunk
7004 front &= recordThread->mRsmpInFramesP2 - 1;
7005 size_t part1 = recordThread->mRsmpInFramesP2 - front;
7006 if (part1 > (size_t) filled) {
7007 part1 = filled;
7008 }
7009 size_t ask = buffer->frameCount;
7010 ALOG_ASSERT(ask > 0);
7011 if (part1 > ask) {
7012 part1 = ask;
7013 }
7014 if (part1 == 0) {
7015 // out of data is fine since the resampler will return a short-count.
7016 buffer->raw = NULL;
7017 buffer->frameCount = 0;
7018 mRsmpInUnrel = 0;
7019 return NOT_ENOUGH_DATA;
7020 }
7021
7022 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
7023 buffer->frameCount = part1;
7024 mRsmpInUnrel = part1;
7025 return NO_ERROR;
7026 }
7027
7028 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)7029 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
7030 AudioBufferProvider::Buffer* buffer)
7031 {
7032 size_t stepCount = buffer->frameCount;
7033 if (stepCount == 0) {
7034 return;
7035 }
7036 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
7037 mRsmpInUnrel -= stepCount;
7038 mRsmpInFront += stepCount;
7039 buffer->raw = NULL;
7040 buffer->frameCount = 0;
7041 }
7042
RecordBufferConverter(audio_channel_mask_t srcChannelMask,audio_format_t srcFormat,uint32_t srcSampleRate,audio_channel_mask_t dstChannelMask,audio_format_t dstFormat,uint32_t dstSampleRate)7043 AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
7044 audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
7045 uint32_t srcSampleRate,
7046 audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
7047 uint32_t dstSampleRate) :
7048 mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
7049 // mSrcFormat
7050 // mSrcSampleRate
7051 // mDstChannelMask
7052 // mDstFormat
7053 // mDstSampleRate
7054 // mSrcChannelCount
7055 // mDstChannelCount
7056 // mDstFrameSize
7057 mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
7058 mResampler(NULL),
7059 mIsLegacyDownmix(false),
7060 mIsLegacyUpmix(false),
7061 mRequiresFloat(false),
7062 mInputConverterProvider(NULL)
7063 {
7064 (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
7065 dstChannelMask, dstFormat, dstSampleRate);
7066 }
7067
~RecordBufferConverter()7068 AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
7069 free(mBuf);
7070 delete mResampler;
7071 delete mInputConverterProvider;
7072 }
7073
convert(void * dst,AudioBufferProvider * provider,size_t frames)7074 size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
7075 AudioBufferProvider *provider, size_t frames)
7076 {
7077 if (mInputConverterProvider != NULL) {
7078 mInputConverterProvider->setBufferProvider(provider);
7079 provider = mInputConverterProvider;
7080 }
7081
7082 if (mResampler == NULL) {
7083 ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7084 mSrcSampleRate, mSrcFormat, mDstFormat);
7085
7086 AudioBufferProvider::Buffer buffer;
7087 for (size_t i = frames; i > 0; ) {
7088 buffer.frameCount = i;
7089 status_t status = provider->getNextBuffer(&buffer);
7090 if (status != OK || buffer.frameCount == 0) {
7091 frames -= i; // cannot fill request.
7092 break;
7093 }
7094 // format convert to destination buffer
7095 convertNoResampler(dst, buffer.raw, buffer.frameCount);
7096
7097 dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
7098 i -= buffer.frameCount;
7099 provider->releaseBuffer(&buffer);
7100 }
7101 } else {
7102 ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7103 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
7104
7105 // reallocate buffer if needed
7106 if (mBufFrameSize != 0 && mBufFrames < frames) {
7107 free(mBuf);
7108 mBufFrames = frames;
7109 (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7110 }
7111 // resampler accumulates, but we only have one source track
7112 memset(mBuf, 0, frames * mBufFrameSize);
7113 frames = mResampler->resample((int32_t*)mBuf, frames, provider);
7114 // format convert to destination buffer
7115 convertResampler(dst, mBuf, frames);
7116 }
7117 return frames;
7118 }
7119
updateParameters(audio_channel_mask_t srcChannelMask,audio_format_t srcFormat,uint32_t srcSampleRate,audio_channel_mask_t dstChannelMask,audio_format_t dstFormat,uint32_t dstSampleRate)7120 status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
7121 audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
7122 uint32_t srcSampleRate,
7123 audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
7124 uint32_t dstSampleRate)
7125 {
7126 // quick evaluation if there is any change.
7127 if (mSrcFormat == srcFormat
7128 && mSrcChannelMask == srcChannelMask
7129 && mSrcSampleRate == srcSampleRate
7130 && mDstFormat == dstFormat
7131 && mDstChannelMask == dstChannelMask
7132 && mDstSampleRate == dstSampleRate) {
7133 return NO_ERROR;
7134 }
7135
7136 ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
7137 " srcFormat:%#x dstFormat:%#x srcRate:%u dstRate:%u",
7138 srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
7139 const bool valid =
7140 audio_is_input_channel(srcChannelMask)
7141 && audio_is_input_channel(dstChannelMask)
7142 && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
7143 && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
7144 && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
7145 ; // no upsampling checks for now
7146 if (!valid) {
7147 return BAD_VALUE;
7148 }
7149
7150 mSrcFormat = srcFormat;
7151 mSrcChannelMask = srcChannelMask;
7152 mSrcSampleRate = srcSampleRate;
7153 mDstFormat = dstFormat;
7154 mDstChannelMask = dstChannelMask;
7155 mDstSampleRate = dstSampleRate;
7156
7157 // compute derived parameters
7158 mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
7159 mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
7160 mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
7161
7162 // do we need to resample?
7163 delete mResampler;
7164 mResampler = NULL;
7165 if (mSrcSampleRate != mDstSampleRate) {
7166 mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
7167 mSrcChannelCount, mDstSampleRate);
7168 mResampler->setSampleRate(mSrcSampleRate);
7169 mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
7170 }
7171
7172 // are we running legacy channel conversion modes?
7173 mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
7174 || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
7175 && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
7176 mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
7177 && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
7178 || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
7179
7180 // do we need to process in float?
7181 mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
7182
7183 // do we need a staging buffer to convert for destination (we can still optimize this)?
7184 // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
7185 if (mResampler != NULL) {
7186 mBufFrameSize = max(mSrcChannelCount, FCC_2)
7187 * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7188 } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
7189 mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7190 } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
7191 mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
7192 } else {
7193 mBufFrameSize = 0;
7194 }
7195 mBufFrames = 0; // force the buffer to be resized.
7196
7197 // do we need an input converter buffer provider to give us float?
7198 delete mInputConverterProvider;
7199 mInputConverterProvider = NULL;
7200 if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
7201 mInputConverterProvider = new ReformatBufferProvider(
7202 audio_channel_count_from_in_mask(mSrcChannelMask),
7203 mSrcFormat,
7204 AUDIO_FORMAT_PCM_FLOAT,
7205 256 /* provider buffer frame count */);
7206 }
7207
7208 // do we need a remixer to do channel mask conversion
7209 if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
7210 (void) memcpy_by_index_array_initialization_from_channel_mask(
7211 mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
7212 }
7213 return NO_ERROR;
7214 }
7215
convertNoResampler(void * dst,const void * src,size_t frames)7216 void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
7217 void *dst, const void *src, size_t frames)
7218 {
7219 // src is native type unless there is legacy upmix or downmix, whereupon it is float.
7220 if (mBufFrameSize != 0 && mBufFrames < frames) {
7221 free(mBuf);
7222 mBufFrames = frames;
7223 (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7224 }
7225 // do we need to do legacy upmix and downmix?
7226 if (mIsLegacyUpmix || mIsLegacyDownmix) {
7227 void *dstBuf = mBuf != NULL ? mBuf : dst;
7228 if (mIsLegacyUpmix) {
7229 upmix_to_stereo_float_from_mono_float((float *)dstBuf,
7230 (const float *)src, frames);
7231 } else /*mIsLegacyDownmix */ {
7232 downmix_to_mono_float_from_stereo_float((float *)dstBuf,
7233 (const float *)src, frames);
7234 }
7235 if (mBuf != NULL) {
7236 memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
7237 frames * mDstChannelCount);
7238 }
7239 return;
7240 }
7241 // do we need to do channel mask conversion?
7242 if (mSrcChannelMask != mDstChannelMask) {
7243 void *dstBuf = mBuf != NULL ? mBuf : dst;
7244 memcpy_by_index_array(dstBuf, mDstChannelCount,
7245 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
7246 if (dstBuf == dst) {
7247 return; // format is the same
7248 }
7249 }
7250 // convert to destination buffer
7251 const void *convertBuf = mBuf != NULL ? mBuf : src;
7252 memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
7253 frames * mDstChannelCount);
7254 }
7255
convertResampler(void * dst,void * src,size_t frames)7256 void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
7257 void *dst, /*not-a-const*/ void *src, size_t frames)
7258 {
7259 // src buffer format is ALWAYS float when entering this routine
7260 if (mIsLegacyUpmix) {
7261 ; // mono to stereo already handled by resampler
7262 } else if (mIsLegacyDownmix
7263 || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
7264 // the resampler outputs stereo for mono input channel (a feature?)
7265 // must convert to mono
7266 downmix_to_mono_float_from_stereo_float((float *)src,
7267 (const float *)src, frames);
7268 } else if (mSrcChannelMask != mDstChannelMask) {
7269 // convert to mono channel again for channel mask conversion (could be skipped
7270 // with further optimization).
7271 if (mSrcChannelCount == 1) {
7272 downmix_to_mono_float_from_stereo_float((float *)src,
7273 (const float *)src, frames);
7274 }
7275 // convert to destination format (in place, OK as float is larger than other types)
7276 if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
7277 memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7278 frames * mSrcChannelCount);
7279 }
7280 // channel convert and save to dst
7281 memcpy_by_index_array(dst, mDstChannelCount,
7282 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
7283 return;
7284 }
7285 // convert to destination format and save to dst
7286 memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7287 frames * mDstChannelCount);
7288 }
7289
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)7290 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7291 status_t& status)
7292 {
7293 bool reconfig = false;
7294
7295 status = NO_ERROR;
7296
7297 audio_format_t reqFormat = mFormat;
7298 uint32_t samplingRate = mSampleRate;
7299 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7300 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7301
7302 AudioParameter param = AudioParameter(keyValuePair);
7303 int value;
7304
7305 // scope for AutoPark extends to end of method
7306 AutoPark<FastCapture> park(mFastCapture);
7307
7308 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7309 // channel count change can be requested. Do we mandate the first client defines the
7310 // HAL sampling rate and channel count or do we allow changes on the fly?
7311 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7312 samplingRate = value;
7313 reconfig = true;
7314 }
7315 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7316 if (!audio_is_linear_pcm((audio_format_t) value)) {
7317 status = BAD_VALUE;
7318 } else {
7319 reqFormat = (audio_format_t) value;
7320 reconfig = true;
7321 }
7322 }
7323 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7324 audio_channel_mask_t mask = (audio_channel_mask_t) value;
7325 if (!audio_is_input_channel(mask) ||
7326 audio_channel_count_from_in_mask(mask) > FCC_8) {
7327 status = BAD_VALUE;
7328 } else {
7329 channelMask = mask;
7330 reconfig = true;
7331 }
7332 }
7333 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7334 // do not accept frame count changes if tracks are open as the track buffer
7335 // size depends on frame count and correct behavior would not be guaranteed
7336 // if frame count is changed after track creation
7337 if (mActiveTracks.size() > 0) {
7338 status = INVALID_OPERATION;
7339 } else {
7340 reconfig = true;
7341 }
7342 }
7343 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7344 // forward device change to effects that have requested to be
7345 // aware of attached audio device.
7346 for (size_t i = 0; i < mEffectChains.size(); i++) {
7347 mEffectChains[i]->setDevice_l(value);
7348 }
7349
7350 // store input device and output device but do not forward output device to audio HAL.
7351 // Note that status is ignored by the caller for output device
7352 // (see AudioFlinger::setParameters()
7353 if (audio_is_output_devices(value)) {
7354 mOutDevice = value;
7355 status = BAD_VALUE;
7356 } else {
7357 mInDevice = value;
7358 if (value != AUDIO_DEVICE_NONE) {
7359 mPrevInDevice = value;
7360 }
7361 // disable AEC and NS if the device is a BT SCO headset supporting those
7362 // pre processings
7363 if (mTracks.size() > 0) {
7364 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7365 mAudioFlinger->btNrecIsOff();
7366 for (size_t i = 0; i < mTracks.size(); i++) {
7367 sp<RecordTrack> track = mTracks[i];
7368 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7369 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7370 }
7371 }
7372 }
7373 }
7374 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7375 mAudioSource != (audio_source_t)value) {
7376 // forward device change to effects that have requested to be
7377 // aware of attached audio device.
7378 for (size_t i = 0; i < mEffectChains.size(); i++) {
7379 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7380 }
7381 mAudioSource = (audio_source_t)value;
7382 }
7383
7384 if (status == NO_ERROR) {
7385 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7386 keyValuePair.string());
7387 if (status == INVALID_OPERATION) {
7388 inputStandBy();
7389 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7390 keyValuePair.string());
7391 }
7392 if (reconfig) {
7393 if (status == BAD_VALUE &&
7394 audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7395 audio_is_linear_pcm(reqFormat) &&
7396 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7397 <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7398 audio_channel_count_from_in_mask(
7399 mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7400 status = NO_ERROR;
7401 }
7402 if (status == NO_ERROR) {
7403 readInputParameters_l();
7404 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7405 }
7406 }
7407 }
7408
7409 return reconfig;
7410 }
7411
getParameters(const String8 & keys)7412 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7413 {
7414 Mutex::Autolock _l(mLock);
7415 if (initCheck() != NO_ERROR) {
7416 return String8();
7417 }
7418
7419 char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7420 const String8 out_s8(s);
7421 free(s);
7422 return out_s8;
7423 }
7424
ioConfigChanged(audio_io_config_event event,pid_t pid)7425 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7426 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7427
7428 desc->mIoHandle = mId;
7429
7430 switch (event) {
7431 case AUDIO_INPUT_OPENED:
7432 case AUDIO_INPUT_CONFIG_CHANGED:
7433 desc->mPatch = mPatch;
7434 desc->mChannelMask = mChannelMask;
7435 desc->mSamplingRate = mSampleRate;
7436 desc->mFormat = mFormat;
7437 desc->mFrameCount = mFrameCount;
7438 desc->mFrameCountHAL = mFrameCount;
7439 desc->mLatency = 0;
7440 break;
7441
7442 case AUDIO_INPUT_CLOSED:
7443 default:
7444 break;
7445 }
7446 mAudioFlinger->ioConfigChanged(event, desc, pid);
7447 }
7448
readInputParameters_l()7449 void AudioFlinger::RecordThread::readInputParameters_l()
7450 {
7451 mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7452 mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7453 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7454 if (mChannelCount > FCC_8) {
7455 ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7456 }
7457 mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7458 mFormat = mHALFormat;
7459 if (!audio_is_linear_pcm(mFormat)) {
7460 ALOGE("HAL format %#x is not linear pcm", mFormat);
7461 }
7462 mFrameSize = audio_stream_in_frame_size(mInput->stream);
7463 mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7464 mFrameCount = mBufferSize / mFrameSize;
7465 // This is the formula for calculating the temporary buffer size.
7466 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7467 // 1 full output buffer, regardless of the alignment of the available input.
7468 // The value is somewhat arbitrary, and could probably be even larger.
7469 // A larger value should allow more old data to be read after a track calls start(),
7470 // without increasing latency.
7471 //
7472 // Note this is independent of the maximum downsampling ratio permitted for capture.
7473 mRsmpInFrames = mFrameCount * 7;
7474 mRsmpInFramesP2 = roundup(mRsmpInFrames);
7475 free(mRsmpInBuffer);
7476 mRsmpInBuffer = NULL;
7477
7478 // TODO optimize audio capture buffer sizes ...
7479 // Here we calculate the size of the sliding buffer used as a source
7480 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7481 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
7482 // be better to have it derived from the pipe depth in the long term.
7483 // The current value is higher than necessary. However it should not add to latency.
7484
7485 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7486 size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7487 (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7488 memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7489
7490 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7491 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7492 }
7493
getInputFramesLost()7494 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7495 {
7496 Mutex::Autolock _l(mLock);
7497 if (initCheck() != NO_ERROR) {
7498 return 0;
7499 }
7500
7501 return mInput->stream->get_input_frames_lost(mInput->stream);
7502 }
7503
7504 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const7505 uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7506 {
7507 uint32_t result = 0;
7508 if (getEffectChain_l(sessionId) != 0) {
7509 result = EFFECT_SESSION;
7510 }
7511
7512 for (size_t i = 0; i < mTracks.size(); ++i) {
7513 if (sessionId == mTracks[i]->sessionId()) {
7514 result |= TRACK_SESSION;
7515 if (mTracks[i]->isFastTrack()) {
7516 result |= FAST_SESSION;
7517 }
7518 break;
7519 }
7520 }
7521
7522 return result;
7523 }
7524
sessionIds() const7525 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7526 {
7527 KeyedVector<audio_session_t, bool> ids;
7528 Mutex::Autolock _l(mLock);
7529 for (size_t j = 0; j < mTracks.size(); ++j) {
7530 sp<RecordThread::RecordTrack> track = mTracks[j];
7531 audio_session_t sessionId = track->sessionId();
7532 if (ids.indexOfKey(sessionId) < 0) {
7533 ids.add(sessionId, true);
7534 }
7535 }
7536 return ids;
7537 }
7538
clearInput()7539 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7540 {
7541 Mutex::Autolock _l(mLock);
7542 AudioStreamIn *input = mInput;
7543 mInput = NULL;
7544 return input;
7545 }
7546
7547 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const7548 audio_stream_t* AudioFlinger::RecordThread::stream() const
7549 {
7550 if (mInput == NULL) {
7551 return NULL;
7552 }
7553 return &mInput->stream->common;
7554 }
7555
addEffectChain_l(const sp<EffectChain> & chain)7556 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7557 {
7558 // only one chain per input thread
7559 if (mEffectChains.size() != 0) {
7560 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7561 return INVALID_OPERATION;
7562 }
7563 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7564 chain->setThread(this);
7565 chain->setInBuffer(NULL);
7566 chain->setOutBuffer(NULL);
7567
7568 checkSuspendOnAddEffectChain_l(chain);
7569
7570 // make sure enabled pre processing effects state is communicated to the HAL as we
7571 // just moved them to a new input stream.
7572 chain->syncHalEffectsState();
7573
7574 mEffectChains.add(chain);
7575
7576 return NO_ERROR;
7577 }
7578
removeEffectChain_l(const sp<EffectChain> & chain)7579 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7580 {
7581 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7582 ALOGW_IF(mEffectChains.size() != 1,
7583 "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7584 chain.get(), mEffectChains.size(), this);
7585 if (mEffectChains.size() == 1) {
7586 mEffectChains.removeAt(0);
7587 }
7588 return 0;
7589 }
7590
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7591 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7592 audio_patch_handle_t *handle)
7593 {
7594 status_t status = NO_ERROR;
7595
7596 // store new device and send to effects
7597 mInDevice = patch->sources[0].ext.device.type;
7598 mPatch = *patch;
7599 for (size_t i = 0; i < mEffectChains.size(); i++) {
7600 mEffectChains[i]->setDevice_l(mInDevice);
7601 }
7602
7603 // disable AEC and NS if the device is a BT SCO headset supporting those
7604 // pre processings
7605 if (mTracks.size() > 0) {
7606 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7607 mAudioFlinger->btNrecIsOff();
7608 for (size_t i = 0; i < mTracks.size(); i++) {
7609 sp<RecordTrack> track = mTracks[i];
7610 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7611 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7612 }
7613 }
7614
7615 // store new source and send to effects
7616 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7617 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7618 for (size_t i = 0; i < mEffectChains.size(); i++) {
7619 mEffectChains[i]->setAudioSource_l(mAudioSource);
7620 }
7621 }
7622
7623 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7624 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7625 status = hwDevice->create_audio_patch(hwDevice,
7626 patch->num_sources,
7627 patch->sources,
7628 patch->num_sinks,
7629 patch->sinks,
7630 handle);
7631 } else {
7632 char *address;
7633 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7634 address = audio_device_address_to_parameter(
7635 patch->sources[0].ext.device.type,
7636 patch->sources[0].ext.device.address);
7637 } else {
7638 address = (char *)calloc(1, 1);
7639 }
7640 AudioParameter param = AudioParameter(String8(address));
7641 free(address);
7642 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7643 (int)patch->sources[0].ext.device.type);
7644 param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7645 (int)patch->sinks[0].ext.mix.usecase.source);
7646 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7647 param.toString().string());
7648 *handle = AUDIO_PATCH_HANDLE_NONE;
7649 }
7650
7651 if (mInDevice != mPrevInDevice) {
7652 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7653 mPrevInDevice = mInDevice;
7654 }
7655
7656 return status;
7657 }
7658
releaseAudioPatch_l(const audio_patch_handle_t handle)7659 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7660 {
7661 status_t status = NO_ERROR;
7662
7663 mInDevice = AUDIO_DEVICE_NONE;
7664
7665 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7666 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7667 status = hwDevice->release_audio_patch(hwDevice, handle);
7668 } else {
7669 AudioParameter param;
7670 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7671 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7672 param.toString().string());
7673 }
7674 return status;
7675 }
7676
addPatchRecord(const sp<PatchRecord> & record)7677 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7678 {
7679 Mutex::Autolock _l(mLock);
7680 mTracks.add(record);
7681 }
7682
deletePatchRecord(const sp<PatchRecord> & record)7683 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7684 {
7685 Mutex::Autolock _l(mLock);
7686 destroyTrack_l(record);
7687 }
7688
getAudioPortConfig(struct audio_port_config * config)7689 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7690 {
7691 ThreadBase::getAudioPortConfig(config);
7692 config->role = AUDIO_PORT_ROLE_SINK;
7693 config->ext.mix.hw_module = mInput->audioHwDev->handle();
7694 config->ext.mix.usecase.source = mAudioSource;
7695 }
7696
7697 } // namespace android
7698