• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Originally written by Bodo Moeller for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <string.h>
71 
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75 
76 #include "internal.h"
77 
78 
79 /* Most method functions in this file are designed to work with non-trivial
80  * representations of field elements if necessary (see ecp_mont.c): while
81  * standard modular addition and subtraction are used, the field_mul and
82  * field_sqr methods will be used for multiplication, and field_encode and
83  * field_decode (if defined) will be used for converting between
84  * representations.
85 
86  * Functions ec_GFp_simple_points_make_affine() and
87  * ec_GFp_simple_point_get_affine_coordinates() specifically assume that if a
88  * non-trivial representation is used, it is a Montgomery representation (i.e.
89  * 'encoding' means multiplying by some factor R). */
90 
ec_GFp_simple_group_init(EC_GROUP * group)91 int ec_GFp_simple_group_init(EC_GROUP *group) {
92   BN_init(&group->field);
93   BN_init(&group->a);
94   BN_init(&group->b);
95   group->a_is_minus3 = 0;
96   return 1;
97 }
98 
ec_GFp_simple_group_finish(EC_GROUP * group)99 void ec_GFp_simple_group_finish(EC_GROUP *group) {
100   BN_free(&group->field);
101   BN_free(&group->a);
102   BN_free(&group->b);
103 }
104 
ec_GFp_simple_group_clear_finish(EC_GROUP * group)105 void ec_GFp_simple_group_clear_finish(EC_GROUP *group) {
106   BN_clear_free(&group->field);
107   BN_clear_free(&group->a);
108   BN_clear_free(&group->b);
109 }
110 
ec_GFp_simple_group_copy(EC_GROUP * dest,const EC_GROUP * src)111 int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) {
112   if (!BN_copy(&dest->field, &src->field) ||
113       !BN_copy(&dest->a, &src->a) ||
114       !BN_copy(&dest->b, &src->b)) {
115     return 0;
116   }
117 
118   dest->a_is_minus3 = src->a_is_minus3;
119   return 1;
120 }
121 
ec_GFp_simple_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)122 int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
123                                   const BIGNUM *a, const BIGNUM *b,
124                                   BN_CTX *ctx) {
125   int ret = 0;
126   BN_CTX *new_ctx = NULL;
127   BIGNUM *tmp_a;
128 
129   /* p must be a prime > 3 */
130   if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
131     OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
132     return 0;
133   }
134 
135   if (ctx == NULL) {
136     ctx = new_ctx = BN_CTX_new();
137     if (ctx == NULL) {
138       return 0;
139     }
140   }
141 
142   BN_CTX_start(ctx);
143   tmp_a = BN_CTX_get(ctx);
144   if (tmp_a == NULL) {
145     goto err;
146   }
147 
148   /* group->field */
149   if (!BN_copy(&group->field, p)) {
150     goto err;
151   }
152   BN_set_negative(&group->field, 0);
153 
154   /* group->a */
155   if (!BN_nnmod(tmp_a, a, p, ctx)) {
156     goto err;
157   }
158   if (group->meth->field_encode) {
159     if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) {
160       goto err;
161     }
162   } else if (!BN_copy(&group->a, tmp_a)) {
163     goto err;
164   }
165 
166   /* group->b */
167   if (!BN_nnmod(&group->b, b, p, ctx)) {
168     goto err;
169   }
170   if (group->meth->field_encode &&
171       !group->meth->field_encode(group, &group->b, &group->b, ctx)) {
172     goto err;
173   }
174 
175   /* group->a_is_minus3 */
176   if (!BN_add_word(tmp_a, 3)) {
177     goto err;
178   }
179   group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
180 
181   ret = 1;
182 
183 err:
184   BN_CTX_end(ctx);
185   BN_CTX_free(new_ctx);
186   return ret;
187 }
188 
ec_GFp_simple_group_get_curve(const EC_GROUP * group,BIGNUM * p,BIGNUM * a,BIGNUM * b,BN_CTX * ctx)189 int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
190                                   BIGNUM *b, BN_CTX *ctx) {
191   int ret = 0;
192   BN_CTX *new_ctx = NULL;
193 
194   if (p != NULL && !BN_copy(p, &group->field)) {
195     return 0;
196   }
197 
198   if (a != NULL || b != NULL) {
199     if (group->meth->field_decode) {
200       if (ctx == NULL) {
201         ctx = new_ctx = BN_CTX_new();
202         if (ctx == NULL) {
203           return 0;
204         }
205       }
206       if (a != NULL && !group->meth->field_decode(group, a, &group->a, ctx)) {
207         goto err;
208       }
209       if (b != NULL && !group->meth->field_decode(group, b, &group->b, ctx)) {
210         goto err;
211       }
212     } else {
213       if (a != NULL && !BN_copy(a, &group->a)) {
214         goto err;
215       }
216       if (b != NULL && !BN_copy(b, &group->b)) {
217         goto err;
218       }
219     }
220   }
221 
222   ret = 1;
223 
224 err:
225   BN_CTX_free(new_ctx);
226   return ret;
227 }
228 
ec_GFp_simple_group_get_degree(const EC_GROUP * group)229 unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) {
230   return BN_num_bits(&group->field);
231 }
232 
ec_GFp_simple_group_check_discriminant(const EC_GROUP * group,BN_CTX * ctx)233 int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) {
234   int ret = 0;
235   BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
236   const BIGNUM *p = &group->field;
237   BN_CTX *new_ctx = NULL;
238 
239   if (ctx == NULL) {
240     ctx = new_ctx = BN_CTX_new();
241     if (ctx == NULL) {
242       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
243       goto err;
244     }
245   }
246   BN_CTX_start(ctx);
247   a = BN_CTX_get(ctx);
248   b = BN_CTX_get(ctx);
249   tmp_1 = BN_CTX_get(ctx);
250   tmp_2 = BN_CTX_get(ctx);
251   order = BN_CTX_get(ctx);
252   if (order == NULL) {
253     goto err;
254   }
255 
256   if (group->meth->field_decode) {
257     if (!group->meth->field_decode(group, a, &group->a, ctx) ||
258         !group->meth->field_decode(group, b, &group->b, ctx)) {
259       goto err;
260     }
261   } else {
262     if (!BN_copy(a, &group->a) || !BN_copy(b, &group->b)) {
263       goto err;
264     }
265   }
266 
267   /* check the discriminant:
268    * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
269    * 0 =< a, b < p */
270   if (BN_is_zero(a)) {
271     if (BN_is_zero(b)) {
272       goto err;
273     }
274   } else if (!BN_is_zero(b)) {
275     if (!BN_mod_sqr(tmp_1, a, p, ctx) ||
276         !BN_mod_mul(tmp_2, tmp_1, a, p, ctx) ||
277         !BN_lshift(tmp_1, tmp_2, 2)) {
278       goto err;
279     }
280     /* tmp_1 = 4*a^3 */
281 
282     if (!BN_mod_sqr(tmp_2, b, p, ctx) ||
283         !BN_mul_word(tmp_2, 27)) {
284       goto err;
285     }
286     /* tmp_2 = 27*b^2 */
287 
288     if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx) ||
289         BN_is_zero(a)) {
290       goto err;
291     }
292   }
293   ret = 1;
294 
295 err:
296   if (ctx != NULL) {
297     BN_CTX_end(ctx);
298   }
299   BN_CTX_free(new_ctx);
300   return ret;
301 }
302 
ec_GFp_simple_point_init(EC_POINT * point)303 int ec_GFp_simple_point_init(EC_POINT *point) {
304   BN_init(&point->X);
305   BN_init(&point->Y);
306   BN_init(&point->Z);
307   point->Z_is_one = 0;
308 
309   return 1;
310 }
311 
ec_GFp_simple_point_finish(EC_POINT * point)312 void ec_GFp_simple_point_finish(EC_POINT *point) {
313   BN_free(&point->X);
314   BN_free(&point->Y);
315   BN_free(&point->Z);
316 }
317 
ec_GFp_simple_point_clear_finish(EC_POINT * point)318 void ec_GFp_simple_point_clear_finish(EC_POINT *point) {
319   BN_clear_free(&point->X);
320   BN_clear_free(&point->Y);
321   BN_clear_free(&point->Z);
322   point->Z_is_one = 0;
323 }
324 
ec_GFp_simple_point_copy(EC_POINT * dest,const EC_POINT * src)325 int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) {
326   if (!BN_copy(&dest->X, &src->X) ||
327       !BN_copy(&dest->Y, &src->Y) ||
328       !BN_copy(&dest->Z, &src->Z)) {
329     return 0;
330   }
331   dest->Z_is_one = src->Z_is_one;
332 
333   return 1;
334 }
335 
ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group,EC_POINT * point)336 int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
337                                         EC_POINT *point) {
338   point->Z_is_one = 0;
339   BN_zero(&point->Z);
340   return 1;
341 }
342 
ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP * group,EC_POINT * point,const BIGNUM * x,const BIGNUM * y,const BIGNUM * z,BN_CTX * ctx)343 int ec_GFp_simple_set_Jprojective_coordinates_GFp(
344     const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y,
345     const BIGNUM *z, BN_CTX *ctx) {
346   BN_CTX *new_ctx = NULL;
347   int ret = 0;
348 
349   if (ctx == NULL) {
350     ctx = new_ctx = BN_CTX_new();
351     if (ctx == NULL) {
352       return 0;
353     }
354   }
355 
356   if (x != NULL) {
357     if (!BN_nnmod(&point->X, x, &group->field, ctx)) {
358       goto err;
359     }
360     if (group->meth->field_encode &&
361         !group->meth->field_encode(group, &point->X, &point->X, ctx)) {
362       goto err;
363     }
364   }
365 
366   if (y != NULL) {
367     if (!BN_nnmod(&point->Y, y, &group->field, ctx)) {
368       goto err;
369     }
370     if (group->meth->field_encode &&
371         !group->meth->field_encode(group, &point->Y, &point->Y, ctx)) {
372       goto err;
373     }
374   }
375 
376   if (z != NULL) {
377     int Z_is_one;
378 
379     if (!BN_nnmod(&point->Z, z, &group->field, ctx)) {
380       goto err;
381     }
382     Z_is_one = BN_is_one(&point->Z);
383     if (group->meth->field_encode) {
384       if (Z_is_one && (group->meth->field_set_to_one != 0)) {
385         if (!group->meth->field_set_to_one(group, &point->Z, ctx)) {
386           goto err;
387         }
388       } else if (!group->meth->field_encode(group, &point->Z, &point->Z, ctx)) {
389         goto err;
390       }
391     }
392     point->Z_is_one = Z_is_one;
393   }
394 
395   ret = 1;
396 
397 err:
398   BN_CTX_free(new_ctx);
399   return ret;
400 }
401 
ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BIGNUM * z,BN_CTX * ctx)402 int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
403                                                   const EC_POINT *point,
404                                                   BIGNUM *x, BIGNUM *y,
405                                                   BIGNUM *z, BN_CTX *ctx) {
406   BN_CTX *new_ctx = NULL;
407   int ret = 0;
408 
409   if (group->meth->field_decode != 0) {
410     if (ctx == NULL) {
411       ctx = new_ctx = BN_CTX_new();
412       if (ctx == NULL) {
413         return 0;
414       }
415     }
416 
417     if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
418       goto err;
419     }
420     if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
421       goto err;
422     }
423     if (z != NULL && !group->meth->field_decode(group, z, &point->Z, ctx)) {
424       goto err;
425     }
426   } else {
427     if (x != NULL && !BN_copy(x, &point->X)) {
428       goto err;
429     }
430     if (y != NULL && !BN_copy(y, &point->Y)) {
431       goto err;
432     }
433     if (z != NULL && !BN_copy(z, &point->Z)) {
434       goto err;
435     }
436   }
437 
438   ret = 1;
439 
440 err:
441   BN_CTX_free(new_ctx);
442   return ret;
443 }
444 
ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP * group,EC_POINT * point,const BIGNUM * x,const BIGNUM * y,BN_CTX * ctx)445 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
446                                                EC_POINT *point, const BIGNUM *x,
447                                                const BIGNUM *y, BN_CTX *ctx) {
448   if (x == NULL || y == NULL) {
449     /* unlike for projective coordinates, we do not tolerate this */
450     OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
451     return 0;
452   }
453 
454   return ec_point_set_Jprojective_coordinates_GFp(group, point, x, y,
455                                                   BN_value_one(), ctx);
456 }
457 
ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)458 int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
459                                                const EC_POINT *point, BIGNUM *x,
460                                                BIGNUM *y, BN_CTX *ctx) {
461   BN_CTX *new_ctx = NULL;
462   BIGNUM *Z, *Z_1, *Z_2, *Z_3;
463   const BIGNUM *Z_;
464   int ret = 0;
465 
466   if (EC_POINT_is_at_infinity(group, point)) {
467     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
468     return 0;
469   }
470 
471   if (ctx == NULL) {
472     ctx = new_ctx = BN_CTX_new();
473     if (ctx == NULL) {
474       return 0;
475     }
476   }
477 
478   BN_CTX_start(ctx);
479   Z = BN_CTX_get(ctx);
480   Z_1 = BN_CTX_get(ctx);
481   Z_2 = BN_CTX_get(ctx);
482   Z_3 = BN_CTX_get(ctx);
483   if (Z == NULL || Z_1 == NULL || Z_2 == NULL || Z_3 == NULL) {
484     goto err;
485   }
486 
487   /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
488 
489   if (group->meth->field_decode) {
490     if (!group->meth->field_decode(group, Z, &point->Z, ctx)) {
491       goto err;
492     }
493     Z_ = Z;
494   } else {
495     Z_ = &point->Z;
496   }
497 
498   if (BN_is_one(Z_)) {
499     if (group->meth->field_decode) {
500       if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
501         goto err;
502       }
503       if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
504         goto err;
505       }
506     } else {
507       if (x != NULL && !BN_copy(x, &point->X)) {
508         goto err;
509       }
510       if (y != NULL && !BN_copy(y, &point->Y)) {
511         goto err;
512       }
513     }
514   } else {
515     if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) {
516       OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
517       goto err;
518     }
519 
520     if (group->meth->field_encode == 0) {
521       /* field_sqr works on standard representation */
522       if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) {
523         goto err;
524       }
525     } else if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) {
526       goto err;
527     }
528 
529     /* in the Montgomery case, field_mul will cancel out Montgomery factor in
530      * X: */
531     if (x != NULL && !group->meth->field_mul(group, x, &point->X, Z_2, ctx)) {
532       goto err;
533     }
534 
535     if (y != NULL) {
536       if (group->meth->field_encode == 0) {
537         /* field_mul works on standard representation */
538         if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) {
539           goto err;
540         }
541       } else if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) {
542         goto err;
543       }
544 
545       /* in the Montgomery case, field_mul will cancel out Montgomery factor in
546        * Y: */
547       if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) {
548         goto err;
549       }
550     }
551   }
552 
553   ret = 1;
554 
555 err:
556   BN_CTX_end(ctx);
557   BN_CTX_free(new_ctx);
558   return ret;
559 }
560 
ec_GFp_simple_add(const EC_GROUP * group,EC_POINT * r,const EC_POINT * a,const EC_POINT * b,BN_CTX * ctx)561 int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
562                       const EC_POINT *b, BN_CTX *ctx) {
563   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
564                    BN_CTX *);
565   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
566   const BIGNUM *p;
567   BN_CTX *new_ctx = NULL;
568   BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
569   int ret = 0;
570 
571   if (a == b) {
572     return EC_POINT_dbl(group, r, a, ctx);
573   }
574   if (EC_POINT_is_at_infinity(group, a)) {
575     return EC_POINT_copy(r, b);
576   }
577   if (EC_POINT_is_at_infinity(group, b)) {
578     return EC_POINT_copy(r, a);
579   }
580 
581   field_mul = group->meth->field_mul;
582   field_sqr = group->meth->field_sqr;
583   p = &group->field;
584 
585   if (ctx == NULL) {
586     ctx = new_ctx = BN_CTX_new();
587     if (ctx == NULL) {
588       return 0;
589     }
590   }
591 
592   BN_CTX_start(ctx);
593   n0 = BN_CTX_get(ctx);
594   n1 = BN_CTX_get(ctx);
595   n2 = BN_CTX_get(ctx);
596   n3 = BN_CTX_get(ctx);
597   n4 = BN_CTX_get(ctx);
598   n5 = BN_CTX_get(ctx);
599   n6 = BN_CTX_get(ctx);
600   if (n6 == NULL) {
601     goto end;
602   }
603 
604   /* Note that in this function we must not read components of 'a' or 'b'
605    * once we have written the corresponding components of 'r'.
606    * ('r' might be one of 'a' or 'b'.)
607    */
608 
609   /* n1, n2 */
610   if (b->Z_is_one) {
611     if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) {
612       goto end;
613     }
614     /* n1 = X_a */
615     /* n2 = Y_a */
616   } else {
617     if (!field_sqr(group, n0, &b->Z, ctx) ||
618         !field_mul(group, n1, &a->X, n0, ctx)) {
619       goto end;
620     }
621     /* n1 = X_a * Z_b^2 */
622 
623     if (!field_mul(group, n0, n0, &b->Z, ctx) ||
624         !field_mul(group, n2, &a->Y, n0, ctx)) {
625       goto end;
626     }
627     /* n2 = Y_a * Z_b^3 */
628   }
629 
630   /* n3, n4 */
631   if (a->Z_is_one) {
632     if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) {
633       goto end;
634     }
635     /* n3 = X_b */
636     /* n4 = Y_b */
637   } else {
638     if (!field_sqr(group, n0, &a->Z, ctx) ||
639         !field_mul(group, n3, &b->X, n0, ctx)) {
640       goto end;
641     }
642     /* n3 = X_b * Z_a^2 */
643 
644     if (!field_mul(group, n0, n0, &a->Z, ctx) ||
645         !field_mul(group, n4, &b->Y, n0, ctx)) {
646       goto end;
647     }
648     /* n4 = Y_b * Z_a^3 */
649   }
650 
651   /* n5, n6 */
652   if (!BN_mod_sub_quick(n5, n1, n3, p) ||
653       !BN_mod_sub_quick(n6, n2, n4, p)) {
654     goto end;
655   }
656   /* n5 = n1 - n3 */
657   /* n6 = n2 - n4 */
658 
659   if (BN_is_zero(n5)) {
660     if (BN_is_zero(n6)) {
661       /* a is the same point as b */
662       BN_CTX_end(ctx);
663       ret = EC_POINT_dbl(group, r, a, ctx);
664       ctx = NULL;
665       goto end;
666     } else {
667       /* a is the inverse of b */
668       BN_zero(&r->Z);
669       r->Z_is_one = 0;
670       ret = 1;
671       goto end;
672     }
673   }
674 
675   /* 'n7', 'n8' */
676   if (!BN_mod_add_quick(n1, n1, n3, p) ||
677       !BN_mod_add_quick(n2, n2, n4, p)) {
678     goto end;
679   }
680   /* 'n7' = n1 + n3 */
681   /* 'n8' = n2 + n4 */
682 
683   /* Z_r */
684   if (a->Z_is_one && b->Z_is_one) {
685     if (!BN_copy(&r->Z, n5)) {
686       goto end;
687     }
688   } else {
689     if (a->Z_is_one) {
690       if (!BN_copy(n0, &b->Z)) {
691         goto end;
692       }
693     } else if (b->Z_is_one) {
694       if (!BN_copy(n0, &a->Z)) {
695         goto end;
696       }
697     } else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) {
698       goto end;
699     }
700     if (!field_mul(group, &r->Z, n0, n5, ctx)) {
701       goto end;
702     }
703   }
704   r->Z_is_one = 0;
705   /* Z_r = Z_a * Z_b * n5 */
706 
707   /* X_r */
708   if (!field_sqr(group, n0, n6, ctx) ||
709       !field_sqr(group, n4, n5, ctx) ||
710       !field_mul(group, n3, n1, n4, ctx) ||
711       !BN_mod_sub_quick(&r->X, n0, n3, p)) {
712     goto end;
713   }
714   /* X_r = n6^2 - n5^2 * 'n7' */
715 
716   /* 'n9' */
717   if (!BN_mod_lshift1_quick(n0, &r->X, p) ||
718       !BN_mod_sub_quick(n0, n3, n0, p)) {
719     goto end;
720   }
721   /* n9 = n5^2 * 'n7' - 2 * X_r */
722 
723   /* Y_r */
724   if (!field_mul(group, n0, n0, n6, ctx) ||
725       !field_mul(group, n5, n4, n5, ctx)) {
726     goto end; /* now n5 is n5^3 */
727   }
728   if (!field_mul(group, n1, n2, n5, ctx) ||
729       !BN_mod_sub_quick(n0, n0, n1, p)) {
730     goto end;
731   }
732   if (BN_is_odd(n0) && !BN_add(n0, n0, p)) {
733     goto end;
734   }
735   /* now  0 <= n0 < 2*p,  and n0 is even */
736   if (!BN_rshift1(&r->Y, n0)) {
737     goto end;
738   }
739   /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
740 
741   ret = 1;
742 
743 end:
744   if (ctx) {
745     /* otherwise we already called BN_CTX_end */
746     BN_CTX_end(ctx);
747   }
748   BN_CTX_free(new_ctx);
749   return ret;
750 }
751 
ec_GFp_simple_dbl(const EC_GROUP * group,EC_POINT * r,const EC_POINT * a,BN_CTX * ctx)752 int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
753                       BN_CTX *ctx) {
754   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
755                    BN_CTX *);
756   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
757   const BIGNUM *p;
758   BN_CTX *new_ctx = NULL;
759   BIGNUM *n0, *n1, *n2, *n3;
760   int ret = 0;
761 
762   if (EC_POINT_is_at_infinity(group, a)) {
763     BN_zero(&r->Z);
764     r->Z_is_one = 0;
765     return 1;
766   }
767 
768   field_mul = group->meth->field_mul;
769   field_sqr = group->meth->field_sqr;
770   p = &group->field;
771 
772   if (ctx == NULL) {
773     ctx = new_ctx = BN_CTX_new();
774     if (ctx == NULL) {
775       return 0;
776     }
777   }
778 
779   BN_CTX_start(ctx);
780   n0 = BN_CTX_get(ctx);
781   n1 = BN_CTX_get(ctx);
782   n2 = BN_CTX_get(ctx);
783   n3 = BN_CTX_get(ctx);
784   if (n3 == NULL) {
785     goto err;
786   }
787 
788   /* Note that in this function we must not read components of 'a'
789    * once we have written the corresponding components of 'r'.
790    * ('r' might the same as 'a'.)
791    */
792 
793   /* n1 */
794   if (a->Z_is_one) {
795     if (!field_sqr(group, n0, &a->X, ctx) ||
796         !BN_mod_lshift1_quick(n1, n0, p) ||
797         !BN_mod_add_quick(n0, n0, n1, p) ||
798         !BN_mod_add_quick(n1, n0, &group->a, p)) {
799       goto err;
800     }
801     /* n1 = 3 * X_a^2 + a_curve */
802   } else if (group->a_is_minus3) {
803     if (!field_sqr(group, n1, &a->Z, ctx) ||
804         !BN_mod_add_quick(n0, &a->X, n1, p) ||
805         !BN_mod_sub_quick(n2, &a->X, n1, p) ||
806         !field_mul(group, n1, n0, n2, ctx) ||
807         !BN_mod_lshift1_quick(n0, n1, p) ||
808         !BN_mod_add_quick(n1, n0, n1, p)) {
809       goto err;
810     }
811     /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
812      *    = 3 * X_a^2 - 3 * Z_a^4 */
813   } else {
814     if (!field_sqr(group, n0, &a->X, ctx) ||
815         !BN_mod_lshift1_quick(n1, n0, p) ||
816         !BN_mod_add_quick(n0, n0, n1, p) ||
817         !field_sqr(group, n1, &a->Z, ctx) ||
818         !field_sqr(group, n1, n1, ctx) ||
819         !field_mul(group, n1, n1, &group->a, ctx) ||
820         !BN_mod_add_quick(n1, n1, n0, p)) {
821       goto err;
822     }
823     /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
824   }
825 
826   /* Z_r */
827   if (a->Z_is_one) {
828     if (!BN_copy(n0, &a->Y)) {
829       goto err;
830     }
831   } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
832     goto err;
833   }
834   if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
835     goto err;
836   }
837   r->Z_is_one = 0;
838   /* Z_r = 2 * Y_a * Z_a */
839 
840   /* n2 */
841   if (!field_sqr(group, n3, &a->Y, ctx) ||
842       !field_mul(group, n2, &a->X, n3, ctx) ||
843       !BN_mod_lshift_quick(n2, n2, 2, p)) {
844     goto err;
845   }
846   /* n2 = 4 * X_a * Y_a^2 */
847 
848   /* X_r */
849   if (!BN_mod_lshift1_quick(n0, n2, p) ||
850       !field_sqr(group, &r->X, n1, ctx) ||
851       !BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
852     goto err;
853   }
854   /* X_r = n1^2 - 2 * n2 */
855 
856   /* n3 */
857   if (!field_sqr(group, n0, n3, ctx) ||
858       !BN_mod_lshift_quick(n3, n0, 3, p)) {
859     goto err;
860   }
861   /* n3 = 8 * Y_a^4 */
862 
863   /* Y_r */
864   if (!BN_mod_sub_quick(n0, n2, &r->X, p) ||
865       !field_mul(group, n0, n1, n0, ctx) ||
866       !BN_mod_sub_quick(&r->Y, n0, n3, p)) {
867     goto err;
868   }
869   /* Y_r = n1 * (n2 - X_r) - n3 */
870 
871   ret = 1;
872 
873 err:
874   BN_CTX_end(ctx);
875   BN_CTX_free(new_ctx);
876   return ret;
877 }
878 
ec_GFp_simple_invert(const EC_GROUP * group,EC_POINT * point,BN_CTX * ctx)879 int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) {
880   if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) {
881     /* point is its own inverse */
882     return 1;
883   }
884 
885   return BN_usub(&point->Y, &group->field, &point->Y);
886 }
887 
ec_GFp_simple_is_at_infinity(const EC_GROUP * group,const EC_POINT * point)888 int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
889   return !point->Z_is_one && BN_is_zero(&point->Z);
890 }
891 
ec_GFp_simple_is_on_curve(const EC_GROUP * group,const EC_POINT * point,BN_CTX * ctx)892 int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
893                               BN_CTX *ctx) {
894   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
895                    BN_CTX *);
896   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
897   const BIGNUM *p;
898   BN_CTX *new_ctx = NULL;
899   BIGNUM *rh, *tmp, *Z4, *Z6;
900   int ret = -1;
901 
902   if (EC_POINT_is_at_infinity(group, point)) {
903     return 1;
904   }
905 
906   field_mul = group->meth->field_mul;
907   field_sqr = group->meth->field_sqr;
908   p = &group->field;
909 
910   if (ctx == NULL) {
911     ctx = new_ctx = BN_CTX_new();
912     if (ctx == NULL) {
913       return -1;
914     }
915   }
916 
917   BN_CTX_start(ctx);
918   rh = BN_CTX_get(ctx);
919   tmp = BN_CTX_get(ctx);
920   Z4 = BN_CTX_get(ctx);
921   Z6 = BN_CTX_get(ctx);
922   if (Z6 == NULL) {
923     goto err;
924   }
925 
926   /* We have a curve defined by a Weierstrass equation
927    *      y^2 = x^3 + a*x + b.
928    * The point to consider is given in Jacobian projective coordinates
929    * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
930    * Substituting this and multiplying by  Z^6  transforms the above equation
931    * into
932    *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
933    * To test this, we add up the right-hand side in 'rh'.
934    */
935 
936   /* rh := X^2 */
937   if (!field_sqr(group, rh, &point->X, ctx)) {
938     goto err;
939   }
940 
941   if (!point->Z_is_one) {
942     if (!field_sqr(group, tmp, &point->Z, ctx) ||
943         !field_sqr(group, Z4, tmp, ctx) ||
944         !field_mul(group, Z6, Z4, tmp, ctx)) {
945       goto err;
946     }
947 
948     /* rh := (rh + a*Z^4)*X */
949     if (group->a_is_minus3) {
950       if (!BN_mod_lshift1_quick(tmp, Z4, p) ||
951           !BN_mod_add_quick(tmp, tmp, Z4, p) ||
952           !BN_mod_sub_quick(rh, rh, tmp, p) ||
953           !field_mul(group, rh, rh, &point->X, ctx)) {
954         goto err;
955       }
956     } else {
957       if (!field_mul(group, tmp, Z4, &group->a, ctx) ||
958           !BN_mod_add_quick(rh, rh, tmp, p) ||
959           !field_mul(group, rh, rh, &point->X, ctx)) {
960         goto err;
961       }
962     }
963 
964     /* rh := rh + b*Z^6 */
965     if (!field_mul(group, tmp, &group->b, Z6, ctx) ||
966         !BN_mod_add_quick(rh, rh, tmp, p)) {
967       goto err;
968     }
969   } else {
970     /* point->Z_is_one */
971 
972     /* rh := (rh + a)*X */
973     if (!BN_mod_add_quick(rh, rh, &group->a, p) ||
974         !field_mul(group, rh, rh, &point->X, ctx)) {
975       goto err;
976     }
977     /* rh := rh + b */
978     if (!BN_mod_add_quick(rh, rh, &group->b, p)) {
979       goto err;
980     }
981   }
982 
983   /* 'lh' := Y^2 */
984   if (!field_sqr(group, tmp, &point->Y, ctx)) {
985     goto err;
986   }
987 
988   ret = (0 == BN_ucmp(tmp, rh));
989 
990 err:
991   BN_CTX_end(ctx);
992   BN_CTX_free(new_ctx);
993   return ret;
994 }
995 
ec_GFp_simple_cmp(const EC_GROUP * group,const EC_POINT * a,const EC_POINT * b,BN_CTX * ctx)996 int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
997                       const EC_POINT *b, BN_CTX *ctx) {
998   /* return values:
999    *  -1   error
1000    *   0   equal (in affine coordinates)
1001    *   1   not equal
1002    */
1003 
1004   int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
1005                    BN_CTX *);
1006   int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1007   BN_CTX *new_ctx = NULL;
1008   BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1009   const BIGNUM *tmp1_, *tmp2_;
1010   int ret = -1;
1011 
1012   if (EC_POINT_is_at_infinity(group, a)) {
1013     return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1014   }
1015 
1016   if (EC_POINT_is_at_infinity(group, b)) {
1017     return 1;
1018   }
1019 
1020   if (a->Z_is_one && b->Z_is_one) {
1021     return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
1022   }
1023 
1024   field_mul = group->meth->field_mul;
1025   field_sqr = group->meth->field_sqr;
1026 
1027   if (ctx == NULL) {
1028     ctx = new_ctx = BN_CTX_new();
1029     if (ctx == NULL) {
1030       return -1;
1031     }
1032   }
1033 
1034   BN_CTX_start(ctx);
1035   tmp1 = BN_CTX_get(ctx);
1036   tmp2 = BN_CTX_get(ctx);
1037   Za23 = BN_CTX_get(ctx);
1038   Zb23 = BN_CTX_get(ctx);
1039   if (Zb23 == NULL) {
1040     goto end;
1041   }
1042 
1043   /* We have to decide whether
1044    *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1045    * or equivalently, whether
1046    *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1047    */
1048 
1049   if (!b->Z_is_one) {
1050     if (!field_sqr(group, Zb23, &b->Z, ctx) ||
1051         !field_mul(group, tmp1, &a->X, Zb23, ctx)) {
1052       goto end;
1053     }
1054     tmp1_ = tmp1;
1055   } else {
1056     tmp1_ = &a->X;
1057   }
1058   if (!a->Z_is_one) {
1059     if (!field_sqr(group, Za23, &a->Z, ctx) ||
1060         !field_mul(group, tmp2, &b->X, Za23, ctx)) {
1061       goto end;
1062     }
1063     tmp2_ = tmp2;
1064   } else {
1065     tmp2_ = &b->X;
1066   }
1067 
1068   /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1069   if (BN_cmp(tmp1_, tmp2_) != 0) {
1070     ret = 1; /* points differ */
1071     goto end;
1072   }
1073 
1074 
1075   if (!b->Z_is_one) {
1076     if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) ||
1077         !field_mul(group, tmp1, &a->Y, Zb23, ctx)) {
1078       goto end;
1079     }
1080     /* tmp1_ = tmp1 */
1081   } else {
1082     tmp1_ = &a->Y;
1083   }
1084   if (!a->Z_is_one) {
1085     if (!field_mul(group, Za23, Za23, &a->Z, ctx) ||
1086         !field_mul(group, tmp2, &b->Y, Za23, ctx)) {
1087       goto end;
1088     }
1089     /* tmp2_ = tmp2 */
1090   } else {
1091     tmp2_ = &b->Y;
1092   }
1093 
1094   /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1095   if (BN_cmp(tmp1_, tmp2_) != 0) {
1096     ret = 1; /* points differ */
1097     goto end;
1098   }
1099 
1100   /* points are equal */
1101   ret = 0;
1102 
1103 end:
1104   BN_CTX_end(ctx);
1105   BN_CTX_free(new_ctx);
1106   return ret;
1107 }
1108 
ec_GFp_simple_make_affine(const EC_GROUP * group,EC_POINT * point,BN_CTX * ctx)1109 int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
1110                               BN_CTX *ctx) {
1111   BN_CTX *new_ctx = NULL;
1112   BIGNUM *x, *y;
1113   int ret = 0;
1114 
1115   if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) {
1116     return 1;
1117   }
1118 
1119   if (ctx == NULL) {
1120     ctx = new_ctx = BN_CTX_new();
1121     if (ctx == NULL) {
1122       return 0;
1123     }
1124   }
1125 
1126   BN_CTX_start(ctx);
1127   x = BN_CTX_get(ctx);
1128   y = BN_CTX_get(ctx);
1129   if (y == NULL) {
1130     goto err;
1131   }
1132 
1133   if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx) ||
1134       !EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) {
1135     goto err;
1136   }
1137   if (!point->Z_is_one) {
1138     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
1139     goto err;
1140   }
1141 
1142   ret = 1;
1143 
1144 err:
1145   BN_CTX_end(ctx);
1146   BN_CTX_free(new_ctx);
1147   return ret;
1148 }
1149 
ec_GFp_simple_points_make_affine(const EC_GROUP * group,size_t num,EC_POINT * points[],BN_CTX * ctx)1150 int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
1151                                      EC_POINT *points[], BN_CTX *ctx) {
1152   BN_CTX *new_ctx = NULL;
1153   BIGNUM *tmp, *tmp_Z;
1154   BIGNUM **prod_Z = NULL;
1155   size_t i;
1156   int ret = 0;
1157 
1158   if (num == 0) {
1159     return 1;
1160   }
1161 
1162   if (ctx == NULL) {
1163     ctx = new_ctx = BN_CTX_new();
1164     if (ctx == NULL) {
1165       return 0;
1166     }
1167   }
1168 
1169   BN_CTX_start(ctx);
1170   tmp = BN_CTX_get(ctx);
1171   tmp_Z = BN_CTX_get(ctx);
1172   if (tmp == NULL || tmp_Z == NULL) {
1173     goto err;
1174   }
1175 
1176   prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
1177   if (prod_Z == NULL) {
1178     goto err;
1179   }
1180   memset(prod_Z, 0, num * sizeof(prod_Z[0]));
1181   for (i = 0; i < num; i++) {
1182     prod_Z[i] = BN_new();
1183     if (prod_Z[i] == NULL) {
1184       goto err;
1185     }
1186   }
1187 
1188   /* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
1189    * skipping any zero-valued inputs (pretend that they're 1). */
1190 
1191   if (!BN_is_zero(&points[0]->Z)) {
1192     if (!BN_copy(prod_Z[0], &points[0]->Z)) {
1193       goto err;
1194     }
1195   } else {
1196     if (group->meth->field_set_to_one != 0) {
1197       if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) {
1198         goto err;
1199       }
1200     } else {
1201       if (!BN_one(prod_Z[0])) {
1202         goto err;
1203       }
1204     }
1205   }
1206 
1207   for (i = 1; i < num; i++) {
1208     if (!BN_is_zero(&points[i]->Z)) {
1209       if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
1210                                   &points[i]->Z, ctx)) {
1211         goto err;
1212       }
1213     } else {
1214       if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
1215         goto err;
1216       }
1217     }
1218   }
1219 
1220   /* Now use a single explicit inversion to replace every
1221    * non-zero points[i]->Z by its inverse. */
1222 
1223   if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) {
1224     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
1225     goto err;
1226   }
1227 
1228   if (group->meth->field_encode != NULL) {
1229     /* In the Montgomery case, we just turned R*H (representing H)
1230      * into 1/(R*H), but we need R*(1/H) (representing 1/H);
1231      * i.e. we need to multiply by the Montgomery factor twice. */
1232     if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
1233         !group->meth->field_encode(group, tmp, tmp, ctx)) {
1234       goto err;
1235     }
1236   }
1237 
1238   for (i = num - 1; i > 0; --i) {
1239     /* Loop invariant: tmp is the product of the inverses of
1240      * points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
1241     if (BN_is_zero(&points[i]->Z)) {
1242       continue;
1243     }
1244 
1245     /* Set tmp_Z to the inverse of points[i]->Z (as product
1246      * of Z inverses 0 .. i, Z values 0 .. i - 1). */
1247     if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
1248         /* Update tmp to satisfy the loop invariant for i - 1. */
1249         !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
1250         /* Replace points[i]->Z by its inverse. */
1251         !BN_copy(&points[i]->Z, tmp_Z)) {
1252       goto err;
1253     }
1254   }
1255 
1256   /* Replace points[0]->Z by its inverse. */
1257   if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
1258     goto err;
1259   }
1260 
1261   /* Finally, fix up the X and Y coordinates for all points. */
1262   for (i = 0; i < num; i++) {
1263     EC_POINT *p = points[i];
1264 
1265     if (!BN_is_zero(&p->Z)) {
1266       /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). */
1267       if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
1268           !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
1269           !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
1270           !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
1271         goto err;
1272       }
1273 
1274       if (group->meth->field_set_to_one != NULL) {
1275         if (!group->meth->field_set_to_one(group, &p->Z, ctx)) {
1276           goto err;
1277         }
1278       } else {
1279         if (!BN_one(&p->Z)) {
1280           goto err;
1281         }
1282       }
1283       p->Z_is_one = 1;
1284     }
1285   }
1286 
1287   ret = 1;
1288 
1289 err:
1290   BN_CTX_end(ctx);
1291   BN_CTX_free(new_ctx);
1292   if (prod_Z != NULL) {
1293     for (i = 0; i < num; i++) {
1294       if (prod_Z[i] == NULL) {
1295         break;
1296       }
1297       BN_clear_free(prod_Z[i]);
1298     }
1299     OPENSSL_free(prod_Z);
1300   }
1301 
1302   return ret;
1303 }
1304 
ec_GFp_simple_field_mul(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)1305 int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1306                             const BIGNUM *b, BN_CTX *ctx) {
1307   return BN_mod_mul(r, a, b, &group->field, ctx);
1308 }
1309 
ec_GFp_simple_field_sqr(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)1310 int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1311                             BN_CTX *ctx) {
1312   return BN_mod_sqr(r, a, &group->field, ctx);
1313 }
1314