• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // expression.cc -- expressions in linker scripts for gold
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <string>
26 
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34 
35 namespace gold
36 {
37 
38 // This file holds the code which handles linker expressions.
39 
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment.  The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols.  We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46 
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50 
51 struct Expression::Expression_eval_info
52 {
53   // The symbol table.
54   const Symbol_table* symtab;
55   // The layout--we use this to get section information.
56   const Layout* layout;
57   // Whether to check assertions.
58   bool check_assertions;
59   // Whether expressions can refer to the dot symbol.  The dot symbol
60   // is only available within a SECTIONS clause.
61   bool is_dot_available;
62   // The current value of the dot symbol.
63   uint64_t dot_value;
64   // The section in which the dot symbol is defined; this is NULL if
65   // it is absolute.
66   Output_section* dot_section;
67   // Points to where the section of the result should be stored.
68   Output_section** result_section_pointer;
69   // Pointer to where the alignment of the result should be stored.
70   uint64_t* result_alignment_pointer;
71   // Pointer to where the type of the symbol on the RHS should be stored.
72   elfcpp::STT* type_pointer;
73   // Pointer to where the visibility of the symbol on the RHS should be stored.
74   elfcpp::STV* vis_pointer;
75   // Pointer to where the rest of the symbol's st_other field should be stored.
76   unsigned char* nonvis_pointer;
77 };
78 
79 // Evaluate an expression.
80 
81 uint64_t
eval(const Symbol_table * symtab,const Layout * layout,bool check_assertions)82 Expression::eval(const Symbol_table* symtab, const Layout* layout,
83 		 bool check_assertions)
84 {
85   return this->eval_maybe_dot(symtab, layout, check_assertions, false, 0,
86 			      NULL, NULL, NULL, NULL, NULL, NULL, false);
87 }
88 
89 // Evaluate an expression which may refer to the dot symbol.
90 
91 uint64_t
eval_with_dot(const Symbol_table * symtab,const Layout * layout,bool check_assertions,uint64_t dot_value,Output_section * dot_section,Output_section ** result_section_pointer,uint64_t * result_alignment_pointer,bool is_section_dot_assignment)92 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
93 			  bool check_assertions, uint64_t dot_value,
94 			  Output_section* dot_section,
95 			  Output_section** result_section_pointer,
96 			  uint64_t* result_alignment_pointer,
97 			  bool is_section_dot_assignment)
98 {
99   return this->eval_maybe_dot(symtab, layout, check_assertions, true,
100 			      dot_value, dot_section, result_section_pointer,
101 			      result_alignment_pointer, NULL, NULL, NULL,
102 			      is_section_dot_assignment);
103 }
104 
105 // Evaluate an expression which may or may not refer to the dot
106 // symbol.
107 
108 uint64_t
eval_maybe_dot(const Symbol_table * symtab,const Layout * layout,bool check_assertions,bool is_dot_available,uint64_t dot_value,Output_section * dot_section,Output_section ** result_section_pointer,uint64_t * result_alignment_pointer,elfcpp::STT * type_pointer,elfcpp::STV * vis_pointer,unsigned char * nonvis_pointer,bool is_section_dot_assignment)109 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
110 			   bool check_assertions, bool is_dot_available,
111 			   uint64_t dot_value, Output_section* dot_section,
112 			   Output_section** result_section_pointer,
113 			   uint64_t* result_alignment_pointer,
114 			   elfcpp::STT* type_pointer,
115 			   elfcpp::STV* vis_pointer,
116 			   unsigned char* nonvis_pointer,
117 			   bool is_section_dot_assignment)
118 {
119   Expression_eval_info eei;
120   eei.symtab = symtab;
121   eei.layout = layout;
122   eei.check_assertions = check_assertions;
123   eei.is_dot_available = is_dot_available;
124   eei.dot_value = dot_value;
125   eei.dot_section = dot_section;
126 
127   // We assume the value is absolute, and only set this to a section
128   // if we find a section-relative reference.
129   if (result_section_pointer != NULL)
130     *result_section_pointer = NULL;
131   eei.result_section_pointer = result_section_pointer;
132 
133   // For symbol=symbol assignments, we need to track the type, visibility,
134   // and remaining st_other bits.
135   eei.type_pointer = type_pointer;
136   eei.vis_pointer = vis_pointer;
137   eei.nonvis_pointer = nonvis_pointer;
138 
139   eei.result_alignment_pointer = result_alignment_pointer;
140 
141   uint64_t val = this->value(&eei);
142 
143   // If this is an assignment to dot within a section, and the value
144   // is absolute, treat it as a section-relative offset.
145   if (is_section_dot_assignment && *result_section_pointer == NULL)
146     {
147       gold_assert(dot_section != NULL);
148       val += dot_section->address();
149       *result_section_pointer = dot_section;
150     }
151   return val;
152 }
153 
154 // A number.
155 
156 class Integer_expression : public Expression
157 {
158  public:
Integer_expression(uint64_t val)159   Integer_expression(uint64_t val)
160     : val_(val)
161   { }
162 
163   uint64_t
value(const Expression_eval_info *)164   value(const Expression_eval_info*)
165   { return this->val_; }
166 
167   void
print(FILE * f) const168   print(FILE* f) const
169   { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
170 
171  private:
172   uint64_t val_;
173 };
174 
175 extern "C" Expression*
script_exp_integer(uint64_t val)176 script_exp_integer(uint64_t val)
177 {
178   return new Integer_expression(val);
179 }
180 
181 // An expression whose value is the value of a symbol.
182 
183 class Symbol_expression : public Expression
184 {
185  public:
Symbol_expression(const char * name,size_t length)186   Symbol_expression(const char* name, size_t length)
187     : name_(name, length)
188   { }
189 
190   uint64_t
191   value(const Expression_eval_info*);
192 
193   void
print(FILE * f) const194   print(FILE* f) const
195   { fprintf(f, "%s", this->name_.c_str()); }
196 
197  private:
198   std::string name_;
199 };
200 
201 uint64_t
value(const Expression_eval_info * eei)202 Symbol_expression::value(const Expression_eval_info* eei)
203 {
204   Symbol* sym = eei->symtab->lookup(this->name_.c_str());
205   if (sym == NULL || !sym->is_defined())
206     {
207       gold_error(_("undefined symbol '%s' referenced in expression"),
208 		 this->name_.c_str());
209       return 0;
210     }
211 
212   if (eei->result_section_pointer != NULL)
213     *eei->result_section_pointer = sym->output_section();
214   if (eei->type_pointer != NULL)
215     *eei->type_pointer = sym->type();
216   if (eei->vis_pointer != NULL)
217     *eei->vis_pointer = sym->visibility();
218   if (eei->nonvis_pointer != NULL)
219     *eei->nonvis_pointer = sym->nonvis();
220 
221   if (parameters->target().get_size() == 32)
222     return eei->symtab->get_sized_symbol<32>(sym)->value();
223   else if (parameters->target().get_size() == 64)
224     return eei->symtab->get_sized_symbol<64>(sym)->value();
225   else
226     gold_unreachable();
227 }
228 
229 // An expression whose value is the value of the special symbol ".".
230 // This is only valid within a SECTIONS clause.
231 
232 class Dot_expression : public Expression
233 {
234  public:
Dot_expression()235   Dot_expression()
236   { }
237 
238   uint64_t
239   value(const Expression_eval_info*);
240 
241   void
print(FILE * f) const242   print(FILE* f) const
243   { fprintf(f, "."); }
244 };
245 
246 uint64_t
value(const Expression_eval_info * eei)247 Dot_expression::value(const Expression_eval_info* eei)
248 {
249   if (!eei->is_dot_available)
250     {
251       gold_error(_("invalid reference to dot symbol outside of "
252 		   "SECTIONS clause"));
253       return 0;
254     }
255   if (eei->result_section_pointer != NULL)
256     *eei->result_section_pointer = eei->dot_section;
257   return eei->dot_value;
258 }
259 
260 // A string.  This is either the name of a symbol, or ".".
261 
262 extern "C" Expression*
script_exp_string(const char * name,size_t length)263 script_exp_string(const char* name, size_t length)
264 {
265   if (length == 1 && name[0] == '.')
266     return new Dot_expression();
267   else
268     return new Symbol_expression(name, length);
269 }
270 
271 // A unary expression.
272 
273 class Unary_expression : public Expression
274 {
275  public:
Unary_expression(Expression * arg)276   Unary_expression(Expression* arg)
277     : arg_(arg)
278   { }
279 
~Unary_expression()280   ~Unary_expression()
281   { delete this->arg_; }
282 
283  protected:
284   uint64_t
arg_value(const Expression_eval_info * eei,Output_section ** arg_section_pointer) const285   arg_value(const Expression_eval_info* eei,
286 	    Output_section** arg_section_pointer) const
287   {
288     return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
289 				      eei->check_assertions,
290 				      eei->is_dot_available,
291 				      eei->dot_value,
292 				      eei->dot_section,
293 				      arg_section_pointer,
294 				      eei->result_alignment_pointer,
295 				      NULL,
296 				      NULL,
297 				      NULL,
298 				      false);
299   }
300 
301   void
arg_print(FILE * f) const302   arg_print(FILE* f) const
303   { this->arg_->print(f); }
304 
305  private:
306   Expression* arg_;
307 };
308 
309 // Handle unary operators.  We use a preprocessor macro as a hack to
310 // capture the C operator.
311 
312 #define UNARY_EXPRESSION(NAME, OPERATOR)				\
313   class Unary_ ## NAME : public Unary_expression			\
314   {									\
315   public:								\
316     Unary_ ## NAME(Expression* arg)					\
317       : Unary_expression(arg)						\
318     { }									\
319     									\
320     uint64_t								\
321     value(const Expression_eval_info* eei)				\
322     {									\
323       Output_section* arg_section;					\
324       uint64_t ret = OPERATOR this->arg_value(eei, &arg_section);	\
325       if (arg_section != NULL && parameters->options().relocatable())	\
326 	gold_warning(_("unary " #NAME " applied to section "		\
327 		       "relative value"));				\
328       return ret;							\
329     }									\
330 									\
331     void								\
332     print(FILE* f) const						\
333     {									\
334       fprintf(f, "(%s ", #OPERATOR);					\
335       this->arg_print(f);						\
336       fprintf(f, ")");							\
337     }									\
338   };									\
339 									\
340   extern "C" Expression*						\
341   script_exp_unary_ ## NAME(Expression* arg)				\
342   {									\
343       return new Unary_ ## NAME(arg);					\
344   }
345 
346 UNARY_EXPRESSION(minus, -)
347 UNARY_EXPRESSION(logical_not, !)
348 UNARY_EXPRESSION(bitwise_not, ~)
349 
350 // A binary expression.
351 
352 class Binary_expression : public Expression
353 {
354  public:
Binary_expression(Expression * left,Expression * right)355   Binary_expression(Expression* left, Expression* right)
356     : left_(left), right_(right)
357   { }
358 
~Binary_expression()359   ~Binary_expression()
360   {
361     delete this->left_;
362     delete this->right_;
363   }
364 
365  protected:
366   uint64_t
left_value(const Expression_eval_info * eei,Output_section ** section_pointer,uint64_t * alignment_pointer) const367   left_value(const Expression_eval_info* eei,
368 	     Output_section** section_pointer,
369 	     uint64_t* alignment_pointer) const
370   {
371     return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
372 				       eei->check_assertions,
373 				       eei->is_dot_available,
374 				       eei->dot_value,
375 				       eei->dot_section,
376 				       section_pointer,
377 				       alignment_pointer,
378 				       NULL,
379 				       NULL,
380 				       NULL,
381 				       false);
382   }
383 
384   uint64_t
right_value(const Expression_eval_info * eei,Output_section ** section_pointer,uint64_t * alignment_pointer) const385   right_value(const Expression_eval_info* eei,
386 	      Output_section** section_pointer,
387 	      uint64_t* alignment_pointer) const
388   {
389     return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
390 					eei->check_assertions,
391 					eei->is_dot_available,
392 					eei->dot_value,
393 					eei->dot_section,
394 					section_pointer,
395 					alignment_pointer,
396 					NULL,
397 					NULL,
398 					NULL,
399 					false);
400   }
401 
402   void
left_print(FILE * f) const403   left_print(FILE* f) const
404   { this->left_->print(f); }
405 
406   void
right_print(FILE * f) const407   right_print(FILE* f) const
408   { this->right_->print(f); }
409 
410   // This is a call to function FUNCTION_NAME.  Print it.  This is for
411   // debugging.
412   void
print_function(FILE * f,const char * function_name) const413   print_function(FILE* f, const char* function_name) const
414   {
415     fprintf(f, "%s(", function_name);
416     this->left_print(f);
417     fprintf(f, ", ");
418     this->right_print(f);
419     fprintf(f, ")");
420   }
421 
422  private:
423   Expression* left_;
424   Expression* right_;
425 };
426 
427 // Handle binary operators.  We use a preprocessor macro as a hack to
428 // capture the C operator.  KEEP_LEFT means that if the left operand
429 // is section relative and the right operand is not, the result uses
430 // the same section as the left operand.  KEEP_RIGHT is the same with
431 // left and right swapped.  IS_DIV means that we need to give an error
432 // if the right operand is zero.  WARN means that we should warn if
433 // used on section relative values in a relocatable link.  We always
434 // warn if used on values in different sections in a relocatable link.
435 
436 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
437   class Binary_ ## NAME : public Binary_expression			\
438   {									\
439   public:								\
440     Binary_ ## NAME(Expression* left, Expression* right)		\
441       : Binary_expression(left, right)					\
442     { }									\
443 									\
444     uint64_t								\
445     value(const Expression_eval_info* eei)				\
446     {									\
447       Output_section* left_section;					\
448       uint64_t left_alignment = 0;					\
449       uint64_t left = this->left_value(eei, &left_section,		\
450 				       &left_alignment);		\
451       Output_section* right_section;					\
452       uint64_t right_alignment = 0;					\
453       uint64_t right = this->right_value(eei, &right_section,		\
454 					 &right_alignment);		\
455       if (KEEP_RIGHT && left_section == NULL && right_section != NULL)	\
456 	{								\
457 	  if (eei->result_section_pointer != NULL)			\
458 	    *eei->result_section_pointer = right_section;		\
459 	  if (eei->result_alignment_pointer != NULL			\
460 	      && right_alignment > *eei->result_alignment_pointer)	\
461 	    *eei->result_alignment_pointer = right_alignment;		\
462 	}								\
463       else if (KEEP_LEFT						\
464 	       && left_section != NULL					\
465 	       && right_section == NULL)				\
466 	{								\
467 	  if (eei->result_section_pointer != NULL)			\
468 	    *eei->result_section_pointer = left_section;		\
469 	  if (eei->result_alignment_pointer != NULL			\
470 	      && left_alignment > *eei->result_alignment_pointer)	\
471 	    *eei->result_alignment_pointer = left_alignment;		\
472 	}								\
473       else if ((WARN || left_section != right_section)			\
474 	       && (left_section != NULL || right_section != NULL)	\
475 	       && parameters->options().relocatable())			\
476 	gold_warning(_("binary " #NAME " applied to section "		\
477 		       "relative value"));				\
478       if (IS_DIV && right == 0)						\
479 	{								\
480 	  gold_error(_(#NAME " by zero"));				\
481 	  return 0;							\
482 	}								\
483       return left OPERATOR right;					\
484     }									\
485 									\
486     void								\
487     print(FILE* f) const						\
488     {									\
489       fprintf(f, "(");							\
490       this->left_print(f);						\
491       fprintf(f, " %s ", #OPERATOR);					\
492       this->right_print(f);						\
493       fprintf(f, ")");							\
494     }									\
495   };									\
496 									\
497   extern "C" Expression*						\
498   script_exp_binary_ ## NAME(Expression* left, Expression* right)	\
499   {									\
500     return new Binary_ ## NAME(left, right);				\
501   }
502 
503 BINARY_EXPRESSION(mult, *, false, false, false, true)
504 BINARY_EXPRESSION(div, /, false, false, true, true)
505 BINARY_EXPRESSION(mod, %, false, false, true, true)
506 BINARY_EXPRESSION(add, +, true, true, false, true)
507 BINARY_EXPRESSION(sub, -, true, false, false, false)
508 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
509 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
510 BINARY_EXPRESSION(eq, ==, false, false, false, false)
511 BINARY_EXPRESSION(ne, !=, false, false, false, false)
512 BINARY_EXPRESSION(le, <=, false, false, false, false)
513 BINARY_EXPRESSION(ge, >=, false, false, false, false)
514 BINARY_EXPRESSION(lt, <, false, false, false, false)
515 BINARY_EXPRESSION(gt, >, false, false, false, false)
516 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
517 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
518 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
519 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
520 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
521 
522 // A trinary expression.
523 
524 class Trinary_expression : public Expression
525 {
526  public:
Trinary_expression(Expression * arg1,Expression * arg2,Expression * arg3)527   Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
528     : arg1_(arg1), arg2_(arg2), arg3_(arg3)
529   { }
530 
~Trinary_expression()531   ~Trinary_expression()
532   {
533     delete this->arg1_;
534     delete this->arg2_;
535     delete this->arg3_;
536   }
537 
538  protected:
539   uint64_t
arg1_value(const Expression_eval_info * eei,Output_section ** section_pointer) const540   arg1_value(const Expression_eval_info* eei,
541 	     Output_section** section_pointer) const
542   {
543     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
544 				       eei->check_assertions,
545 				       eei->is_dot_available,
546 				       eei->dot_value,
547 				       eei->dot_section,
548 				       section_pointer,
549 				       NULL,
550 				       NULL,
551 				       NULL,
552 				       NULL,
553 				       false);
554   }
555 
556   uint64_t
arg2_value(const Expression_eval_info * eei,Output_section ** section_pointer,uint64_t * alignment_pointer) const557   arg2_value(const Expression_eval_info* eei,
558 	     Output_section** section_pointer,
559 	     uint64_t* alignment_pointer) const
560   {
561     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
562 				       eei->check_assertions,
563 				       eei->is_dot_available,
564 				       eei->dot_value,
565 				       eei->dot_section,
566 				       section_pointer,
567 				       alignment_pointer,
568 				       NULL,
569 				       NULL,
570 				       NULL,
571 				       false);
572   }
573 
574   uint64_t
arg3_value(const Expression_eval_info * eei,Output_section ** section_pointer,uint64_t * alignment_pointer) const575   arg3_value(const Expression_eval_info* eei,
576 	     Output_section** section_pointer,
577 	     uint64_t* alignment_pointer) const
578   {
579     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
580 				       eei->check_assertions,
581 				       eei->is_dot_available,
582 				       eei->dot_value,
583 				       eei->dot_section,
584 				       section_pointer,
585 				       alignment_pointer,
586 				       NULL,
587 				       NULL,
588 				       NULL,
589 				       false);
590   }
591 
592   void
arg1_print(FILE * f) const593   arg1_print(FILE* f) const
594   { this->arg1_->print(f); }
595 
596   void
arg2_print(FILE * f) const597   arg2_print(FILE* f) const
598   { this->arg2_->print(f); }
599 
600   void
arg3_print(FILE * f) const601   arg3_print(FILE* f) const
602   { this->arg3_->print(f); }
603 
604  private:
605   Expression* arg1_;
606   Expression* arg2_;
607   Expression* arg3_;
608 };
609 
610 // The conditional operator.
611 
612 class Trinary_cond : public Trinary_expression
613 {
614  public:
Trinary_cond(Expression * arg1,Expression * arg2,Expression * arg3)615   Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
616     : Trinary_expression(arg1, arg2, arg3)
617   { }
618 
619   uint64_t
value(const Expression_eval_info * eei)620   value(const Expression_eval_info* eei)
621   {
622     Output_section* arg1_section;
623     uint64_t arg1 = this->arg1_value(eei, &arg1_section);
624     return (arg1
625 	    ? this->arg2_value(eei, eei->result_section_pointer,
626 			       eei->result_alignment_pointer)
627 	    : this->arg3_value(eei, eei->result_section_pointer,
628 			       eei->result_alignment_pointer));
629   }
630 
631   void
print(FILE * f) const632   print(FILE* f) const
633   {
634     fprintf(f, "(");
635     this->arg1_print(f);
636     fprintf(f, " ? ");
637     this->arg2_print(f);
638     fprintf(f, " : ");
639     this->arg3_print(f);
640     fprintf(f, ")");
641   }
642 };
643 
644 extern "C" Expression*
script_exp_trinary_cond(Expression * arg1,Expression * arg2,Expression * arg3)645 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
646 {
647   return new Trinary_cond(arg1, arg2, arg3);
648 }
649 
650 // Max function.
651 
652 class Max_expression : public Binary_expression
653 {
654  public:
Max_expression(Expression * left,Expression * right)655   Max_expression(Expression* left, Expression* right)
656     : Binary_expression(left, right)
657   { }
658 
659   uint64_t
value(const Expression_eval_info * eei)660   value(const Expression_eval_info* eei)
661   {
662     Output_section* left_section;
663     uint64_t left_alignment;
664     uint64_t left = this->left_value(eei, &left_section, &left_alignment);
665     Output_section* right_section;
666     uint64_t right_alignment;
667     uint64_t right = this->right_value(eei, &right_section, &right_alignment);
668     if (left_section == right_section)
669       {
670 	if (eei->result_section_pointer != NULL)
671 	  *eei->result_section_pointer = left_section;
672       }
673     else if ((left_section != NULL || right_section != NULL)
674 	     && parameters->options().relocatable())
675       gold_warning(_("max applied to section relative value"));
676     if (eei->result_alignment_pointer != NULL)
677       {
678 	uint64_t ra = *eei->result_alignment_pointer;
679 	if (left > right)
680 	  ra = std::max(ra, left_alignment);
681 	else if (right > left)
682 	  ra = std::max(ra, right_alignment);
683 	else
684 	  ra = std::max(ra, std::max(left_alignment, right_alignment));
685 	*eei->result_alignment_pointer = ra;
686       }
687     return std::max(left, right);
688   }
689 
690   void
print(FILE * f) const691   print(FILE* f) const
692   { this->print_function(f, "MAX"); }
693 };
694 
695 extern "C" Expression*
script_exp_function_max(Expression * left,Expression * right)696 script_exp_function_max(Expression* left, Expression* right)
697 {
698   return new Max_expression(left, right);
699 }
700 
701 // Min function.
702 
703 class Min_expression : public Binary_expression
704 {
705  public:
Min_expression(Expression * left,Expression * right)706   Min_expression(Expression* left, Expression* right)
707     : Binary_expression(left, right)
708   { }
709 
710   uint64_t
value(const Expression_eval_info * eei)711   value(const Expression_eval_info* eei)
712   {
713     Output_section* left_section;
714     uint64_t left_alignment;
715     uint64_t left = this->left_value(eei, &left_section, &left_alignment);
716     Output_section* right_section;
717     uint64_t right_alignment;
718     uint64_t right = this->right_value(eei, &right_section, &right_alignment);
719     if (left_section == right_section)
720       {
721 	if (eei->result_section_pointer != NULL)
722 	  *eei->result_section_pointer = left_section;
723       }
724     else if ((left_section != NULL || right_section != NULL)
725 	     && parameters->options().relocatable())
726       gold_warning(_("min applied to section relative value"));
727     if (eei->result_alignment_pointer != NULL)
728       {
729 	uint64_t ra = *eei->result_alignment_pointer;
730 	if (left < right)
731 	  ra = std::max(ra, left_alignment);
732 	else if (right < left)
733 	  ra = std::max(ra, right_alignment);
734 	else
735 	  ra = std::max(ra, std::max(left_alignment, right_alignment));
736 	*eei->result_alignment_pointer = ra;
737       }
738     return std::min(left, right);
739   }
740 
741   void
print(FILE * f) const742   print(FILE* f) const
743   { this->print_function(f, "MIN"); }
744 };
745 
746 extern "C" Expression*
script_exp_function_min(Expression * left,Expression * right)747 script_exp_function_min(Expression* left, Expression* right)
748 {
749   return new Min_expression(left, right);
750 }
751 
752 // Class Section_expression.  This is a parent class used for
753 // functions which take the name of an output section.
754 
755 class Section_expression : public Expression
756 {
757  public:
Section_expression(const char * section_name,size_t section_name_len)758   Section_expression(const char* section_name, size_t section_name_len)
759     : section_name_(section_name, section_name_len)
760   { }
761 
762   uint64_t
763   value(const Expression_eval_info*);
764 
765   void
print(FILE * f) const766   print(FILE* f) const
767   { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
768 
769  protected:
770   // The child class must implement this.
771   virtual uint64_t
772   value_from_output_section(const Expression_eval_info*,
773 			    Output_section*) = 0;
774 
775   // The child class must implement this.
776   virtual uint64_t
777   value_from_script_output_section(uint64_t address, uint64_t load_address,
778                                    uint64_t addralign, uint64_t size) = 0;
779 
780   // The child class must implement this.
781   virtual const char*
782   function_name() const = 0;
783 
784  private:
785   std::string section_name_;
786 };
787 
788 uint64_t
value(const Expression_eval_info * eei)789 Section_expression::value(const Expression_eval_info* eei)
790 {
791   const char* section_name = this->section_name_.c_str();
792   Output_section* os = eei->layout->find_output_section(section_name);
793   if (os != NULL)
794     return this->value_from_output_section(eei, os);
795 
796   uint64_t address;
797   uint64_t load_address;
798   uint64_t addralign;
799   uint64_t size;
800   const Script_options* ss = eei->layout->script_options();
801   if (ss->saw_sections_clause())
802     {
803       if (ss->script_sections()->get_output_section_info(section_name,
804                                                          &address,
805                                                          &load_address,
806                                                          &addralign,
807                                                          &size))
808         return this->value_from_script_output_section(address, load_address,
809                                                       addralign, size);
810     }
811 
812   gold_error("%s called on nonexistent output section '%s'",
813              this->function_name(), section_name);
814   return 0;
815 }
816 
817 // ABSOLUTE function.
818 
819 class Absolute_expression : public Unary_expression
820 {
821  public:
Absolute_expression(Expression * arg)822   Absolute_expression(Expression* arg)
823     : Unary_expression(arg)
824   { }
825 
826   uint64_t
value(const Expression_eval_info * eei)827   value(const Expression_eval_info* eei)
828   {
829     uint64_t ret = this->arg_value(eei, NULL);
830     // Force the value to be absolute.
831     if (eei->result_section_pointer != NULL)
832       *eei->result_section_pointer = NULL;
833     return ret;
834   }
835 
836   void
print(FILE * f) const837   print(FILE* f) const
838   {
839     fprintf(f, "ABSOLUTE(");
840     this->arg_print(f);
841     fprintf(f, ")");
842   }
843 };
844 
845 extern "C" Expression*
script_exp_function_absolute(Expression * arg)846 script_exp_function_absolute(Expression* arg)
847 {
848   return new Absolute_expression(arg);
849 }
850 
851 // ALIGN function.
852 
853 class Align_expression : public Binary_expression
854 {
855  public:
Align_expression(Expression * left,Expression * right)856   Align_expression(Expression* left, Expression* right)
857     : Binary_expression(left, right)
858   { }
859 
860   uint64_t
value(const Expression_eval_info * eei)861   value(const Expression_eval_info* eei)
862   {
863     Output_section* align_section;
864     uint64_t align = this->right_value(eei, &align_section, NULL);
865     if (align_section != NULL
866 	&& parameters->options().relocatable())
867       gold_warning(_("aligning to section relative value"));
868 
869     if (eei->result_alignment_pointer != NULL
870 	&& align > *eei->result_alignment_pointer)
871       {
872 	uint64_t a = align;
873 	while ((a & (a - 1)) != 0)
874 	  a &= a - 1;
875 	*eei->result_alignment_pointer = a;
876       }
877 
878     uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
879     if (align <= 1)
880       return value;
881     return ((value + align - 1) / align) * align;
882   }
883 
884   void
print(FILE * f) const885   print(FILE* f) const
886   { this->print_function(f, "ALIGN"); }
887 };
888 
889 extern "C" Expression*
script_exp_function_align(Expression * left,Expression * right)890 script_exp_function_align(Expression* left, Expression* right)
891 {
892   return new Align_expression(left, right);
893 }
894 
895 // ASSERT function.
896 
897 class Assert_expression : public Unary_expression
898 {
899  public:
Assert_expression(Expression * arg,const char * message,size_t length)900   Assert_expression(Expression* arg, const char* message, size_t length)
901     : Unary_expression(arg), message_(message, length)
902   { }
903 
904   uint64_t
value(const Expression_eval_info * eei)905   value(const Expression_eval_info* eei)
906   {
907     uint64_t value = this->arg_value(eei, eei->result_section_pointer);
908     if (!value && eei->check_assertions)
909       gold_error("%s", this->message_.c_str());
910     return value;
911   }
912 
913   void
print(FILE * f) const914   print(FILE* f) const
915   {
916     fprintf(f, "ASSERT(");
917     this->arg_print(f);
918     fprintf(f, ", %s)", this->message_.c_str());
919   }
920 
921  private:
922   std::string message_;
923 };
924 
925 extern "C" Expression*
script_exp_function_assert(Expression * expr,const char * message,size_t length)926 script_exp_function_assert(Expression* expr, const char* message,
927 			   size_t length)
928 {
929   return new Assert_expression(expr, message, length);
930 }
931 
932 // ADDR function.
933 
934 class Addr_expression : public Section_expression
935 {
936  public:
Addr_expression(const char * section_name,size_t section_name_len)937   Addr_expression(const char* section_name, size_t section_name_len)
938     : Section_expression(section_name, section_name_len)
939   { }
940 
941  protected:
942   uint64_t
value_from_output_section(const Expression_eval_info * eei,Output_section * os)943   value_from_output_section(const Expression_eval_info* eei,
944 			    Output_section* os)
945   {
946     if (eei->result_section_pointer != NULL)
947       *eei->result_section_pointer = os;
948     return os->address();
949   }
950 
951   uint64_t
value_from_script_output_section(uint64_t address,uint64_t,uint64_t,uint64_t)952   value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
953                                    uint64_t)
954   { return address; }
955 
956   const char*
function_name() const957   function_name() const
958   { return "ADDR"; }
959 };
960 
961 extern "C" Expression*
script_exp_function_addr(const char * section_name,size_t section_name_len)962 script_exp_function_addr(const char* section_name, size_t section_name_len)
963 {
964   return new Addr_expression(section_name, section_name_len);
965 }
966 
967 // ALIGNOF.
968 
969 class Alignof_expression : public Section_expression
970 {
971  public:
Alignof_expression(const char * section_name,size_t section_name_len)972   Alignof_expression(const char* section_name, size_t section_name_len)
973     : Section_expression(section_name, section_name_len)
974   { }
975 
976  protected:
977   uint64_t
value_from_output_section(const Expression_eval_info *,Output_section * os)978   value_from_output_section(const Expression_eval_info*,
979 			    Output_section* os)
980   { return os->addralign(); }
981 
982   uint64_t
value_from_script_output_section(uint64_t,uint64_t,uint64_t addralign,uint64_t)983   value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
984                                    uint64_t)
985   { return addralign; }
986 
987   const char*
function_name() const988   function_name() const
989   { return "ALIGNOF"; }
990 };
991 
992 extern "C" Expression*
script_exp_function_alignof(const char * section_name,size_t section_name_len)993 script_exp_function_alignof(const char* section_name, size_t section_name_len)
994 {
995   return new Alignof_expression(section_name, section_name_len);
996 }
997 
998 // CONSTANT.  It would be nice if we could simply evaluate this
999 // immediately and return an Integer_expression, but unfortunately we
1000 // don't know the target.
1001 
1002 class Constant_expression : public Expression
1003 {
1004  public:
1005   Constant_expression(const char* name, size_t length);
1006 
1007   uint64_t
1008   value(const Expression_eval_info*);
1009 
1010   void
1011   print(FILE* f) const;
1012 
1013  private:
1014   enum Constant_function
1015   {
1016     CONSTANT_MAXPAGESIZE,
1017     CONSTANT_COMMONPAGESIZE
1018   };
1019 
1020   Constant_function function_;
1021 };
1022 
Constant_expression(const char * name,size_t length)1023 Constant_expression::Constant_expression(const char* name, size_t length)
1024 {
1025   if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
1026     this->function_ = CONSTANT_MAXPAGESIZE;
1027   else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
1028     this->function_ = CONSTANT_COMMONPAGESIZE;
1029   else
1030     {
1031       std::string s(name, length);
1032       gold_error(_("unknown constant %s"), s.c_str());
1033       this->function_ = CONSTANT_MAXPAGESIZE;
1034     }
1035 }
1036 
1037 uint64_t
value(const Expression_eval_info *)1038 Constant_expression::value(const Expression_eval_info*)
1039 {
1040   switch (this->function_)
1041     {
1042     case CONSTANT_MAXPAGESIZE:
1043       return parameters->target().abi_pagesize();
1044     case CONSTANT_COMMONPAGESIZE:
1045       return parameters->target().common_pagesize();
1046     default:
1047       gold_unreachable();
1048     }
1049 }
1050 
1051 void
print(FILE * f) const1052 Constant_expression::print(FILE* f) const
1053 {
1054   const char* name;
1055   switch (this->function_)
1056     {
1057     case CONSTANT_MAXPAGESIZE:
1058       name = "MAXPAGESIZE";
1059       break;
1060     case CONSTANT_COMMONPAGESIZE:
1061       name = "COMMONPAGESIZE";
1062       break;
1063     default:
1064       gold_unreachable();
1065     }
1066   fprintf(f, "CONSTANT(%s)", name);
1067 }
1068 
1069 extern "C" Expression*
script_exp_function_constant(const char * name,size_t length)1070 script_exp_function_constant(const char* name, size_t length)
1071 {
1072   return new Constant_expression(name, length);
1073 }
1074 
1075 // DATA_SEGMENT_ALIGN.  FIXME: we don't implement this; we always fall
1076 // back to the general case.
1077 
1078 extern "C" Expression*
script_exp_function_data_segment_align(Expression * left,Expression *)1079 script_exp_function_data_segment_align(Expression* left, Expression*)
1080 {
1081   Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
1082   Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
1083   Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
1084 						 e2);
1085   return script_exp_binary_add(e1, e3);
1086 }
1087 
1088 // DATA_SEGMENT_RELRO.  FIXME: This is not implemented.
1089 
1090 extern "C" Expression*
script_exp_function_data_segment_relro_end(Expression *,Expression * right)1091 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
1092 {
1093   return right;
1094 }
1095 
1096 // DATA_SEGMENT_END.  FIXME: This is not implemented.
1097 
1098 extern "C" Expression*
script_exp_function_data_segment_end(Expression * val)1099 script_exp_function_data_segment_end(Expression* val)
1100 {
1101   return val;
1102 }
1103 
1104 // DEFINED function.
1105 
1106 class Defined_expression : public Expression
1107 {
1108  public:
Defined_expression(const char * symbol_name,size_t symbol_name_len)1109   Defined_expression(const char* symbol_name, size_t symbol_name_len)
1110     : symbol_name_(symbol_name, symbol_name_len)
1111   { }
1112 
1113   uint64_t
value(const Expression_eval_info * eei)1114   value(const Expression_eval_info* eei)
1115   {
1116     Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
1117     return sym != NULL && sym->is_defined();
1118   }
1119 
1120   void
print(FILE * f) const1121   print(FILE* f) const
1122   { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
1123 
1124  private:
1125   std::string symbol_name_;
1126 };
1127 
1128 extern "C" Expression*
script_exp_function_defined(const char * symbol_name,size_t symbol_name_len)1129 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
1130 {
1131   return new Defined_expression(symbol_name, symbol_name_len);
1132 }
1133 
1134 // LOADADDR function
1135 
1136 class Loadaddr_expression : public Section_expression
1137 {
1138  public:
Loadaddr_expression(const char * section_name,size_t section_name_len)1139   Loadaddr_expression(const char* section_name, size_t section_name_len)
1140     : Section_expression(section_name, section_name_len)
1141   { }
1142 
1143  protected:
1144   uint64_t
value_from_output_section(const Expression_eval_info * eei,Output_section * os)1145   value_from_output_section(const Expression_eval_info* eei,
1146 			    Output_section* os)
1147   {
1148     if (os->has_load_address())
1149       return os->load_address();
1150     else
1151       {
1152 	if (eei->result_section_pointer != NULL)
1153 	  *eei->result_section_pointer = os;
1154 	return os->address();
1155       }
1156   }
1157 
1158   uint64_t
value_from_script_output_section(uint64_t,uint64_t load_address,uint64_t,uint64_t)1159   value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
1160                                    uint64_t)
1161   { return load_address; }
1162 
1163   const char*
function_name() const1164   function_name() const
1165   { return "LOADADDR"; }
1166 };
1167 
1168 extern "C" Expression*
script_exp_function_loadaddr(const char * section_name,size_t section_name_len)1169 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
1170 {
1171   return new Loadaddr_expression(section_name, section_name_len);
1172 }
1173 
1174 // SIZEOF function
1175 
1176 class Sizeof_expression : public Section_expression
1177 {
1178  public:
Sizeof_expression(const char * section_name,size_t section_name_len)1179   Sizeof_expression(const char* section_name, size_t section_name_len)
1180     : Section_expression(section_name, section_name_len)
1181   { }
1182 
1183  protected:
1184   uint64_t
value_from_output_section(const Expression_eval_info *,Output_section * os)1185   value_from_output_section(const Expression_eval_info*,
1186 			    Output_section* os)
1187   {
1188     // We can not use data_size here, as the size of the section may
1189     // not have been finalized.  Instead we get whatever the current
1190     // size is.  This will work correctly for backward references in
1191     // linker scripts.
1192     return os->current_data_size();
1193   }
1194 
1195   uint64_t
value_from_script_output_section(uint64_t,uint64_t,uint64_t,uint64_t size)1196   value_from_script_output_section(uint64_t, uint64_t, uint64_t,
1197                                    uint64_t size)
1198   { return size; }
1199 
1200   const char*
function_name() const1201   function_name() const
1202   { return "SIZEOF"; }
1203 };
1204 
1205 extern "C" Expression*
script_exp_function_sizeof(const char * section_name,size_t section_name_len)1206 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1207 {
1208   return new Sizeof_expression(section_name, section_name_len);
1209 }
1210 
1211 // SIZEOF_HEADERS.
1212 
1213 class Sizeof_headers_expression : public Expression
1214 {
1215  public:
Sizeof_headers_expression()1216   Sizeof_headers_expression()
1217   { }
1218 
1219   uint64_t
1220   value(const Expression_eval_info*);
1221 
1222   void
print(FILE * f) const1223   print(FILE* f) const
1224   { fprintf(f, "SIZEOF_HEADERS"); }
1225 };
1226 
1227 uint64_t
value(const Expression_eval_info * eei)1228 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1229 {
1230   unsigned int ehdr_size;
1231   unsigned int phdr_size;
1232   if (parameters->target().get_size() == 32)
1233     {
1234       ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1235       phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1236     }
1237   else if (parameters->target().get_size() == 64)
1238     {
1239       ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1240       phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1241     }
1242   else
1243     gold_unreachable();
1244 
1245   return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1246 }
1247 
1248 extern "C" Expression*
script_exp_function_sizeof_headers()1249 script_exp_function_sizeof_headers()
1250 {
1251   return new Sizeof_headers_expression();
1252 }
1253 
1254 // SEGMENT_START.
1255 
1256 class Segment_start_expression : public Unary_expression
1257 {
1258  public:
Segment_start_expression(const char * segment_name,size_t segment_name_len,Expression * default_value)1259   Segment_start_expression(const char* segment_name, size_t segment_name_len,
1260 			   Expression* default_value)
1261     : Unary_expression(default_value),
1262       segment_name_(segment_name, segment_name_len)
1263   { }
1264 
1265   uint64_t
1266   value(const Expression_eval_info*);
1267 
1268   void
print(FILE * f) const1269   print(FILE* f) const
1270   {
1271     fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
1272     this->arg_print(f);
1273     fprintf(f, ")");
1274   }
1275 
1276  private:
1277   std::string segment_name_;
1278 };
1279 
1280 uint64_t
value(const Expression_eval_info * eei)1281 Segment_start_expression::value(const Expression_eval_info* eei)
1282 {
1283   // Check for command line overrides.
1284   if (parameters->options().user_set_Ttext()
1285       && this->segment_name_ == ".text")
1286     return parameters->options().Ttext();
1287   else if (parameters->options().user_set_Tdata()
1288 	   && this->segment_name_ == ".data")
1289     return parameters->options().Tdata();
1290   else if (parameters->options().user_set_Tbss()
1291 	   && this->segment_name_ == ".bss")
1292     return parameters->options().Tbss();
1293   else
1294     {
1295       uint64_t ret = this->arg_value(eei, NULL);
1296       // Force the value to be absolute.
1297       if (eei->result_section_pointer != NULL)
1298         *eei->result_section_pointer = NULL;
1299       return ret;
1300     }
1301 }
1302 
1303 extern "C" Expression*
script_exp_function_segment_start(const char * segment_name,size_t segment_name_len,Expression * default_value)1304 script_exp_function_segment_start(const char* segment_name,
1305 				  size_t segment_name_len,
1306 				  Expression* default_value)
1307 {
1308   return new Segment_start_expression(segment_name, segment_name_len,
1309 				      default_value);
1310 }
1311 
1312 } // End namespace gold.
1313