1
2 /*
3 * Copyright 2014 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9 #ifndef GrResourceCache_DEFINED
10 #define GrResourceCache_DEFINED
11
12 #include "GrGpuResource.h"
13 #include "GrGpuResourceCacheAccess.h"
14 #include "GrGpuResourcePriv.h"
15 #include "GrResourceKey.h"
16 #include "SkMessageBus.h"
17 #include "SkRefCnt.h"
18 #include "SkTArray.h"
19 #include "SkTDPQueue.h"
20 #include "SkTInternalLList.h"
21 #include "SkTMultiMap.h"
22
23 class GrCaps;
24 class SkString;
25 class SkTraceMemoryDump;
26
27 /**
28 * Manages the lifetime of all GrGpuResource instances.
29 *
30 * Resources may have optionally have two types of keys:
31 * 1) A scratch key. This is for resources whose allocations are cached but not their contents.
32 * Multiple resources can share the same scratch key. This is so a caller can have two
33 * resource instances with the same properties (e.g. multipass rendering that ping-pongs
34 * between two temporary surfaces). The scratch key is set at resource creation time and
35 * should never change. Resources need not have a scratch key.
36 * 2) A unique key. This key's meaning is specific to the domain that created the key. Only one
37 * resource may have a given unique key. The unique key can be set, cleared, or changed
38 * anytime after resource creation.
39 *
40 * A unique key always takes precedence over a scratch key when a resource has both types of keys.
41 * If a resource has neither key type then it will be deleted as soon as the last reference to it
42 * is dropped.
43 *
44 * When proactive purging is enabled, on every flush, the timestamp of that flush is stored in a
45 * n-sized ring buffer. When purging occurs each purgeable resource's timestamp is compared to the
46 * timestamp of the n-th prior flush. If the resource's last use timestamp is older than the old
47 * flush then the resource is proactively purged even when the cache is under budget. By default
48 * this feature is disabled, though it can be enabled by calling GrResourceCache::setLimits.
49 */
50 class GrResourceCache {
51 public:
52 GrResourceCache(const GrCaps* caps);
53 ~GrResourceCache();
54
55 // Default maximum number of budgeted resources in the cache.
56 static const int kDefaultMaxCount = 2 * (1 << 12);
57 // Default maximum number of bytes of gpu memory of budgeted resources in the cache.
58 static const size_t kDefaultMaxSize = 96 * (1 << 20);
59 // Default number of flushes a budgeted resources can go unused in the cache before it is
60 // purged. Large values disable the feature (as the ring buffer of flush timestamps would be
61 // large). This is currently the default until we decide to enable this feature
62 // of the cache by default.
63 static const int kDefaultMaxUnusedFlushes = 64;
64
65 /** Used to access functionality needed by GrGpuResource for lifetime management. */
66 class ResourceAccess;
67 ResourceAccess resourceAccess();
68
69 /**
70 * Sets the cache limits in terms of number of resources, max gpu memory byte size, and number
71 * of GrContext flushes that a resource can be unused before it is evicted. The latter value is
72 * a suggestion and there is no promise that a resource will be purged immediately after it
73 * hasn't been used in maxUnusedFlushes flushes.
74 */
75 void setLimits(int count, size_t bytes, int maxUnusedFlushes = kDefaultMaxUnusedFlushes);
76
77 /**
78 * Returns the number of resources.
79 */
getResourceCount()80 int getResourceCount() const {
81 return fPurgeableQueue.count() + fNonpurgeableResources.count();
82 }
83
84 /**
85 * Returns the number of resources that count against the budget.
86 */
getBudgetedResourceCount()87 int getBudgetedResourceCount() const { return fBudgetedCount; }
88
89 /**
90 * Returns the number of bytes consumed by resources.
91 */
getResourceBytes()92 size_t getResourceBytes() const { return fBytes; }
93
94 /**
95 * Returns the number of bytes consumed by budgeted resources.
96 */
getBudgetedResourceBytes()97 size_t getBudgetedResourceBytes() const { return fBudgetedBytes; }
98
99 /**
100 * Returns the cached resources count budget.
101 */
getMaxResourceCount()102 int getMaxResourceCount() const { return fMaxCount; }
103
104 /**
105 * Returns the number of bytes consumed by cached resources.
106 */
getMaxResourceBytes()107 size_t getMaxResourceBytes() const { return fMaxBytes; }
108
109 /**
110 * Abandons the backend API resources owned by all GrGpuResource objects and removes them from
111 * the cache.
112 */
113 void abandonAll();
114
115 /**
116 * Releases the backend API resources owned by all GrGpuResource objects and removes them from
117 * the cache.
118 */
119 void releaseAll();
120
121 enum {
122 /** Preferentially returns scratch resources with no pending IO. */
123 kPreferNoPendingIO_ScratchFlag = 0x1,
124 /** Will not return any resources that match but have pending IO. */
125 kRequireNoPendingIO_ScratchFlag = 0x2,
126 };
127
128 /**
129 * Find a resource that matches a scratch key.
130 */
131 GrGpuResource* findAndRefScratchResource(const GrScratchKey& scratchKey,
132 size_t resourceSize,
133 uint32_t flags);
134
135 #ifdef SK_DEBUG
136 // This is not particularly fast and only used for validation, so debug only.
countScratchEntriesForKey(const GrScratchKey & scratchKey)137 int countScratchEntriesForKey(const GrScratchKey& scratchKey) const {
138 return fScratchMap.countForKey(scratchKey);
139 }
140 #endif
141
142 /**
143 * Find a resource that matches a unique key.
144 */
findAndRefUniqueResource(const GrUniqueKey & key)145 GrGpuResource* findAndRefUniqueResource(const GrUniqueKey& key) {
146 GrGpuResource* resource = fUniqueHash.find(key);
147 if (resource) {
148 this->refAndMakeResourceMRU(resource);
149 }
150 return resource;
151 }
152
153 /**
154 * Query whether a unique key exists in the cache.
155 */
hasUniqueKey(const GrUniqueKey & key)156 bool hasUniqueKey(const GrUniqueKey& key) const {
157 return SkToBool(fUniqueHash.find(key));
158 }
159
160 /** Purges resources to become under budget and processes resources with invalidated unique
161 keys. */
162 void purgeAsNeeded();
163
164 /** Purges all resources that don't have external owners. */
165 void purgeAllUnlocked();
166
167 /**
168 * The callback function used by the cache when it is still over budget after a purge. The
169 * passed in 'data' is the same 'data' handed to setOverbudgetCallback.
170 */
171 typedef void (*PFOverBudgetCB)(void* data);
172
173 /**
174 * Set the callback the cache should use when it is still over budget after a purge. The 'data'
175 * provided here will be passed back to the callback. Note that the cache will attempt to purge
176 * any resources newly freed by the callback.
177 */
setOverBudgetCallback(PFOverBudgetCB overBudgetCB,void * data)178 void setOverBudgetCallback(PFOverBudgetCB overBudgetCB, void* data) {
179 fOverBudgetCB = overBudgetCB;
180 fOverBudgetData = data;
181 }
182
183 void notifyFlushOccurred();
184
185 #if GR_CACHE_STATS
186 struct Stats {
187 int fTotal;
188 int fNumPurgeable;
189 int fNumNonPurgeable;
190
191 int fScratch;
192 int fExternal;
193 int fBorrowed;
194 int fAdopted;
195 size_t fUnbudgetedSize;
196
StatsStats197 Stats() { this->reset(); }
198
resetStats199 void reset() {
200 fTotal = 0;
201 fNumPurgeable = 0;
202 fNumNonPurgeable = 0;
203 fScratch = 0;
204 fExternal = 0;
205 fBorrowed = 0;
206 fAdopted = 0;
207 fUnbudgetedSize = 0;
208 }
209
updateStats210 void update(GrGpuResource* resource) {
211 if (resource->cacheAccess().isScratch()) {
212 ++fScratch;
213 }
214 if (resource->cacheAccess().isExternal()) {
215 ++fExternal;
216 }
217 if (resource->cacheAccess().isBorrowed()) {
218 ++fBorrowed;
219 }
220 if (resource->cacheAccess().isAdopted()) {
221 ++fAdopted;
222 }
223 if (SkBudgeted::kNo == resource->resourcePriv().isBudgeted()) {
224 fUnbudgetedSize += resource->gpuMemorySize();
225 }
226 }
227 };
228
229 void getStats(Stats*) const;
230
231 void dumpStats(SkString*) const;
232
233 void dumpStatsKeyValuePairs(SkTArray<SkString>* keys, SkTArray<double>* value) const;
234 #endif
235
236 // This function is for unit testing and is only defined in test tools.
237 void changeTimestamp(uint32_t newTimestamp);
238
239 // Enumerates all cached resources and dumps their details to traceMemoryDump.
240 void dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const;
241
242 private:
243 ///////////////////////////////////////////////////////////////////////////
244 /// @name Methods accessible via ResourceAccess
245 ////
246 void insertResource(GrGpuResource*);
247 void removeResource(GrGpuResource*);
248 void notifyCntReachedZero(GrGpuResource*, uint32_t flags);
249 void didChangeGpuMemorySize(const GrGpuResource*, size_t oldSize);
250 void changeUniqueKey(GrGpuResource*, const GrUniqueKey&);
251 void removeUniqueKey(GrGpuResource*);
252 void willRemoveScratchKey(const GrGpuResource*);
253 void didChangeBudgetStatus(GrGpuResource*);
254 void refAndMakeResourceMRU(GrGpuResource*);
255 /// @}
256
257 void resetFlushTimestamps();
258 void processInvalidUniqueKeys(const SkTArray<GrUniqueKeyInvalidatedMessage>&);
259 void addToNonpurgeableArray(GrGpuResource*);
260 void removeFromNonpurgeableArray(GrGpuResource*);
overBudget()261 bool overBudget() const { return fBudgetedBytes > fMaxBytes || fBudgetedCount > fMaxCount; }
262
wouldFit(size_t bytes)263 bool wouldFit(size_t bytes) {
264 return fBudgetedBytes+bytes <= fMaxBytes && fBudgetedCount+1 <= fMaxCount;
265 }
266
267 uint32_t getNextTimestamp();
268
269 #ifdef SK_DEBUG
270 bool isInCache(const GrGpuResource* r) const;
271 void validate() const;
272 #else
validate()273 void validate() const {}
274 #endif
275
276 class AutoValidate;
277
278 class AvailableForScratchUse;
279
280 struct ScratchMapTraits {
GetKeyScratchMapTraits281 static const GrScratchKey& GetKey(const GrGpuResource& r) {
282 return r.resourcePriv().getScratchKey();
283 }
284
HashScratchMapTraits285 static uint32_t Hash(const GrScratchKey& key) { return key.hash(); }
286 };
287 typedef SkTMultiMap<GrGpuResource, GrScratchKey, ScratchMapTraits> ScratchMap;
288
289 struct UniqueHashTraits {
GetKeyUniqueHashTraits290 static const GrUniqueKey& GetKey(const GrGpuResource& r) { return r.getUniqueKey(); }
291
HashUniqueHashTraits292 static uint32_t Hash(const GrUniqueKey& key) { return key.hash(); }
293 };
294 typedef SkTDynamicHash<GrGpuResource, GrUniqueKey, UniqueHashTraits> UniqueHash;
295
CompareTimestamp(GrGpuResource * const & a,GrGpuResource * const & b)296 static bool CompareTimestamp(GrGpuResource* const& a, GrGpuResource* const& b) {
297 return a->cacheAccess().timestamp() < b->cacheAccess().timestamp();
298 }
299
AccessResourceIndex(GrGpuResource * const & res)300 static int* AccessResourceIndex(GrGpuResource* const& res) {
301 return res->cacheAccess().accessCacheIndex();
302 }
303
304 typedef SkMessageBus<GrUniqueKeyInvalidatedMessage>::Inbox InvalidUniqueKeyInbox;
305 typedef SkTDPQueue<GrGpuResource*, CompareTimestamp, AccessResourceIndex> PurgeableQueue;
306 typedef SkTDArray<GrGpuResource*> ResourceArray;
307
308 // Whenever a resource is added to the cache or the result of a cache lookup, fTimestamp is
309 // assigned as the resource's timestamp and then incremented. fPurgeableQueue orders the
310 // purgeable resources by this value, and thus is used to purge resources in LRU order.
311 uint32_t fTimestamp;
312 PurgeableQueue fPurgeableQueue;
313 ResourceArray fNonpurgeableResources;
314
315 // This map holds all resources that can be used as scratch resources.
316 ScratchMap fScratchMap;
317 // This holds all resources that have unique keys.
318 UniqueHash fUniqueHash;
319
320 // our budget, used in purgeAsNeeded()
321 int fMaxCount;
322 size_t fMaxBytes;
323 int fMaxUnusedFlushes;
324
325 #if GR_CACHE_STATS
326 int fHighWaterCount;
327 size_t fHighWaterBytes;
328 int fBudgetedHighWaterCount;
329 size_t fBudgetedHighWaterBytes;
330 #endif
331
332 // our current stats for all resources
333 SkDEBUGCODE(int fCount;)
334 size_t fBytes;
335
336 // our current stats for resources that count against the budget
337 int fBudgetedCount;
338 size_t fBudgetedBytes;
339
340 PFOverBudgetCB fOverBudgetCB;
341 void* fOverBudgetData;
342
343 // We keep track of the "timestamps" of the last n flushes. If a resource hasn't been used in
344 // that time then we well preemptively purge it to reduce memory usage.
345 uint32_t* fFlushTimestamps;
346 int fLastFlushTimestampIndex;
347
348 InvalidUniqueKeyInbox fInvalidUniqueKeyInbox;
349
350 // This resource is allowed to be in the nonpurgeable array for the sake of validate() because
351 // we're in the midst of converting it to purgeable status.
352 SkDEBUGCODE(GrGpuResource* fNewlyPurgeableResourceForValidation;)
353
354 bool fPreferVRAMUseOverFlushes;
355 };
356
357 class GrResourceCache::ResourceAccess {
358 private:
ResourceAccess(GrResourceCache * cache)359 ResourceAccess(GrResourceCache* cache) : fCache(cache) { }
ResourceAccess(const ResourceAccess & that)360 ResourceAccess(const ResourceAccess& that) : fCache(that.fCache) { }
361 ResourceAccess& operator=(const ResourceAccess&); // unimpl
362
363 /**
364 * Insert a resource into the cache.
365 */
insertResource(GrGpuResource * resource)366 void insertResource(GrGpuResource* resource) { fCache->insertResource(resource); }
367
368 /**
369 * Removes a resource from the cache.
370 */
removeResource(GrGpuResource * resource)371 void removeResource(GrGpuResource* resource) { fCache->removeResource(resource); }
372
373 /**
374 * Notifications that should be sent to the cache when the ref/io cnt status of resources
375 * changes.
376 */
377 enum RefNotificationFlags {
378 /** All types of refs on the resource have reached zero. */
379 kAllCntsReachedZero_RefNotificationFlag = 0x1,
380 /** The normal (not pending IO type) ref cnt has reached zero. */
381 kRefCntReachedZero_RefNotificationFlag = 0x2,
382 };
383 /**
384 * Called by GrGpuResources when they detect that their ref/io cnts have reached zero. When the
385 * normal ref cnt reaches zero the flags that are set should be:
386 * a) kRefCntReachedZero if a pending IO cnt is still non-zero.
387 * b) (kRefCntReachedZero | kAllCntsReachedZero) when all pending IO cnts are also zero.
388 * kAllCntsReachedZero is set by itself if a pending IO cnt is decremented to zero and all the
389 * the other cnts are already zero.
390 */
notifyCntReachedZero(GrGpuResource * resource,uint32_t flags)391 void notifyCntReachedZero(GrGpuResource* resource, uint32_t flags) {
392 fCache->notifyCntReachedZero(resource, flags);
393 }
394
395 /**
396 * Called by GrGpuResources when their sizes change.
397 */
didChangeGpuMemorySize(const GrGpuResource * resource,size_t oldSize)398 void didChangeGpuMemorySize(const GrGpuResource* resource, size_t oldSize) {
399 fCache->didChangeGpuMemorySize(resource, oldSize);
400 }
401
402 /**
403 * Called by GrGpuResources to change their unique keys.
404 */
changeUniqueKey(GrGpuResource * resource,const GrUniqueKey & newKey)405 void changeUniqueKey(GrGpuResource* resource, const GrUniqueKey& newKey) {
406 fCache->changeUniqueKey(resource, newKey);
407 }
408
409 /**
410 * Called by a GrGpuResource to remove its unique key.
411 */
removeUniqueKey(GrGpuResource * resource)412 void removeUniqueKey(GrGpuResource* resource) { fCache->removeUniqueKey(resource); }
413
414 /**
415 * Called by a GrGpuResource when it removes its scratch key.
416 */
willRemoveScratchKey(const GrGpuResource * resource)417 void willRemoveScratchKey(const GrGpuResource* resource) {
418 fCache->willRemoveScratchKey(resource);
419 }
420
421 /**
422 * Called by GrGpuResources when they change from budgeted to unbudgeted or vice versa.
423 */
didChangeBudgetStatus(GrGpuResource * resource)424 void didChangeBudgetStatus(GrGpuResource* resource) { fCache->didChangeBudgetStatus(resource); }
425
426 // No taking addresses of this type.
427 const ResourceAccess* operator&() const;
428 ResourceAccess* operator&();
429
430 GrResourceCache* fCache;
431
432 friend class GrGpuResource; // To access all the proxy inline methods.
433 friend class GrResourceCache; // To create this type.
434 };
435
resourceAccess()436 inline GrResourceCache::ResourceAccess GrResourceCache::resourceAccess() {
437 return ResourceAccess(this);
438 }
439
440 #endif
441