• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 
12 #ifndef EIGEN_SPARSE_LU_H
13 #define EIGEN_SPARSE_LU_H
14 
15 namespace Eigen {
16 
17 template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::Index> > class SparseLU;
18 template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19 template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20 
21 /** \ingroup SparseLU_Module
22   * \class SparseLU
23   *
24   * \brief Sparse supernodal LU factorization for general matrices
25   *
26   * This class implements the supernodal LU factorization for general matrices.
27   * It uses the main techniques from the sequential SuperLU package
28   * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
29   * and complex arithmetics with single and double precision, depending on the
30   * scalar type of your input matrix.
31   * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
32   * It benefits directly from the built-in high-performant Eigen BLAS routines.
33   * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
34   * enable a better optimization from the compiler. For best performance,
35   * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
36   *
37   * An important parameter of this class is the ordering method. It is used to reorder the columns
38   * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
39   * numerical factorization. The cheapest method available is COLAMD.
40   * See  \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
41   * built-in and external ordering methods.
42   *
43   * Simple example with key steps
44   * \code
45   * VectorXd x(n), b(n);
46   * SparseMatrix<double, ColMajor> A;
47   * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> >   solver;
48   * // fill A and b;
49   * // Compute the ordering permutation vector from the structural pattern of A
50   * solver.analyzePattern(A);
51   * // Compute the numerical factorization
52   * solver.factorize(A);
53   * //Use the factors to solve the linear system
54   * x = solver.solve(b);
55   * \endcode
56   *
57   * \warning The input matrix A should be in a \b compressed and \b column-major form.
58   * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
59   *
60   * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
61   * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
62   * If this is the case for your matrices, you can try the basic scaling method at
63   *  "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
64   *
65   * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
66   * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
67   *
68   *
69   * \sa \ref TutorialSparseDirectSolvers
70   * \sa \ref OrderingMethods_Module
71   */
72 template <typename _MatrixType, typename _OrderingType>
73 class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index>
74 {
75   public:
76     typedef _MatrixType MatrixType;
77     typedef _OrderingType OrderingType;
78     typedef typename MatrixType::Scalar Scalar;
79     typedef typename MatrixType::RealScalar RealScalar;
80     typedef typename MatrixType::Index Index;
81     typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
82     typedef internal::MappedSuperNodalMatrix<Scalar, Index> SCMatrix;
83     typedef Matrix<Scalar,Dynamic,1> ScalarVector;
84     typedef Matrix<Index,Dynamic,1> IndexVector;
85     typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
86     typedef internal::SparseLUImpl<Scalar, Index> Base;
87 
88   public:
SparseLU()89     SparseLU():m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
90     {
91       initperfvalues();
92     }
SparseLU(const MatrixType & matrix)93     SparseLU(const MatrixType& matrix):m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
94     {
95       initperfvalues();
96       compute(matrix);
97     }
98 
~SparseLU()99     ~SparseLU()
100     {
101       // Free all explicit dynamic pointers
102     }
103 
104     void analyzePattern (const MatrixType& matrix);
105     void factorize (const MatrixType& matrix);
106     void simplicialfactorize(const MatrixType& matrix);
107 
108     /**
109       * Compute the symbolic and numeric factorization of the input sparse matrix.
110       * The input matrix should be in column-major storage.
111       */
compute(const MatrixType & matrix)112     void compute (const MatrixType& matrix)
113     {
114       // Analyze
115       analyzePattern(matrix);
116       //Factorize
117       factorize(matrix);
118     }
119 
rows()120     inline Index rows() const { return m_mat.rows(); }
cols()121     inline Index cols() const { return m_mat.cols(); }
122     /** Indicate that the pattern of the input matrix is symmetric */
isSymmetric(bool sym)123     void isSymmetric(bool sym)
124     {
125       m_symmetricmode = sym;
126     }
127 
128     /** \returns an expression of the matrix L, internally stored as supernodes
129       * The only operation available with this expression is the triangular solve
130       * \code
131       * y = b; matrixL().solveInPlace(y);
132       * \endcode
133       */
matrixL()134     SparseLUMatrixLReturnType<SCMatrix> matrixL() const
135     {
136       return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
137     }
138     /** \returns an expression of the matrix U,
139       * The only operation available with this expression is the triangular solve
140       * \code
141       * y = b; matrixU().solveInPlace(y);
142       * \endcode
143       */
matrixU()144     SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,Index> > matrixU() const
145     {
146       return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,Index> >(m_Lstore, m_Ustore);
147     }
148 
149     /**
150       * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
151       * \sa colsPermutation()
152       */
rowsPermutation()153     inline const PermutationType& rowsPermutation() const
154     {
155       return m_perm_r;
156     }
157     /**
158       * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
159       * \sa rowsPermutation()
160       */
colsPermutation()161     inline const PermutationType& colsPermutation() const
162     {
163       return m_perm_c;
164     }
165     /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
setPivotThreshold(const RealScalar & thresh)166     void setPivotThreshold(const RealScalar& thresh)
167     {
168       m_diagpivotthresh = thresh;
169     }
170 
171     /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
172       *
173       * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
174       *
175       * \sa compute()
176       */
177     template<typename Rhs>
solve(const MatrixBase<Rhs> & B)178     inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
179     {
180       eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
181       eigen_assert(rows()==B.rows()
182                     && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
183           return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
184     }
185 
186     /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
187       *
188       * \sa compute()
189       */
190     template<typename Rhs>
solve(const SparseMatrixBase<Rhs> & B)191     inline const internal::sparse_solve_retval<SparseLU, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
192     {
193       eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
194       eigen_assert(rows()==B.rows()
195                     && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
196           return internal::sparse_solve_retval<SparseLU, Rhs>(*this, B.derived());
197     }
198 
199     /** \brief Reports whether previous computation was successful.
200       *
201       * \returns \c Success if computation was succesful,
202       *          \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
203       *          \c InvalidInput if the input matrix is invalid
204       *
205       * \sa iparm()
206       */
info()207     ComputationInfo info() const
208     {
209       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
210       return m_info;
211     }
212 
213     /**
214       * \returns A string describing the type of error
215       */
lastErrorMessage()216     std::string lastErrorMessage() const
217     {
218       return m_lastError;
219     }
220 
221     template<typename Rhs, typename Dest>
_solve(const MatrixBase<Rhs> & B,MatrixBase<Dest> & X_base)222     bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
223     {
224       Dest& X(X_base.derived());
225       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
226       EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
227                         THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
228 
229       // Permute the right hand side to form X = Pr*B
230       // on return, X is overwritten by the computed solution
231       X.resize(B.rows(),B.cols());
232 
233       // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
234       for(Index j = 0; j < B.cols(); ++j)
235         X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
236 
237       //Forward substitution with L
238       this->matrixL().solveInPlace(X);
239       this->matrixU().solveInPlace(X);
240 
241       // Permute back the solution
242       for (Index j = 0; j < B.cols(); ++j)
243         X.col(j) = colsPermutation().inverse() * X.col(j);
244 
245       return true;
246     }
247 
248     /**
249       * \returns the absolute value of the determinant of the matrix of which
250       * *this is the QR decomposition.
251       *
252       * \warning a determinant can be very big or small, so for matrices
253       * of large enough dimension, there is a risk of overflow/underflow.
254       * One way to work around that is to use logAbsDeterminant() instead.
255       *
256       * \sa logAbsDeterminant(), signDeterminant()
257       */
absDeterminant()258      Scalar absDeterminant()
259     {
260       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
261       // Initialize with the determinant of the row matrix
262       Scalar det = Scalar(1.);
263       // Note that the diagonal blocks of U are stored in supernodes,
264       // which are available in the  L part :)
265       for (Index j = 0; j < this->cols(); ++j)
266       {
267         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
268         {
269           if(it.index() == j)
270           {
271             using std::abs;
272             det *= abs(it.value());
273             break;
274           }
275         }
276        }
277        return det;
278      }
279 
280      /** \returns the natural log of the absolute value of the determinant of the matrix
281        * of which **this is the QR decomposition
282        *
283        * \note This method is useful to work around the risk of overflow/underflow that's
284        * inherent to the determinant computation.
285        *
286        * \sa absDeterminant(), signDeterminant()
287        */
logAbsDeterminant()288      Scalar logAbsDeterminant() const
289      {
290        eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
291        Scalar det = Scalar(0.);
292        for (Index j = 0; j < this->cols(); ++j)
293        {
294          for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
295          {
296            if(it.row() < j) continue;
297            if(it.row() == j)
298            {
299              using std::log; using std::abs;
300              det += log(abs(it.value()));
301              break;
302            }
303          }
304        }
305        return det;
306      }
307 
308     /** \returns A number representing the sign of the determinant
309       *
310       * \sa absDeterminant(), logAbsDeterminant()
311       */
signDeterminant()312     Scalar signDeterminant()
313     {
314       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
315       // Initialize with the determinant of the row matrix
316       Index det = 1;
317       // Note that the diagonal blocks of U are stored in supernodes,
318       // which are available in the  L part :)
319       for (Index j = 0; j < this->cols(); ++j)
320       {
321         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
322         {
323           if(it.index() == j)
324           {
325             if(it.value()<0)
326               det = -det;
327             else if(it.value()==0)
328               return 0;
329             break;
330           }
331         }
332       }
333       return det * m_detPermR * m_detPermC;
334     }
335 
336     /** \returns The determinant of the matrix.
337       *
338       * \sa absDeterminant(), logAbsDeterminant()
339       */
determinant()340     Scalar determinant()
341     {
342       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
343       // Initialize with the determinant of the row matrix
344       Scalar det = Scalar(1.);
345       // Note that the diagonal blocks of U are stored in supernodes,
346       // which are available in the  L part :)
347       for (Index j = 0; j < this->cols(); ++j)
348       {
349         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
350         {
351           if(it.index() == j)
352           {
353             det *= it.value();
354             break;
355           }
356         }
357       }
358       return det * Scalar(m_detPermR * m_detPermC);
359     }
360 
361   protected:
362     // Functions
initperfvalues()363     void initperfvalues()
364     {
365       m_perfv.panel_size = 16;
366       m_perfv.relax = 1;
367       m_perfv.maxsuper = 128;
368       m_perfv.rowblk = 16;
369       m_perfv.colblk = 8;
370       m_perfv.fillfactor = 20;
371     }
372 
373     // Variables
374     mutable ComputationInfo m_info;
375     bool m_isInitialized;
376     bool m_factorizationIsOk;
377     bool m_analysisIsOk;
378     std::string m_lastError;
379     NCMatrix m_mat; // The input (permuted ) matrix
380     SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
381     MappedSparseMatrix<Scalar,ColMajor,Index> m_Ustore; // The upper triangular matrix
382     PermutationType m_perm_c; // Column permutation
383     PermutationType m_perm_r ; // Row permutation
384     IndexVector m_etree; // Column elimination tree
385 
386     typename Base::GlobalLU_t m_glu;
387 
388     // SparseLU options
389     bool m_symmetricmode;
390     // values for performance
391     internal::perfvalues<Index> m_perfv;
392     RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
393     Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
394     Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
395   private:
396     // Disable copy constructor
397     SparseLU (const SparseLU& );
398 
399 }; // End class SparseLU
400 
401 
402 
403 // Functions needed by the anaysis phase
404 /**
405   * Compute the column permutation to minimize the fill-in
406   *
407   *  - Apply this permutation to the input matrix -
408   *
409   *  - Compute the column elimination tree on the permuted matrix
410   *
411   *  - Postorder the elimination tree and the column permutation
412   *
413   */
414 template <typename MatrixType, typename OrderingType>
analyzePattern(const MatrixType & mat)415 void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
416 {
417 
418   //TODO  It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
419 
420   OrderingType ord;
421   ord(mat,m_perm_c);
422 
423   // Apply the permutation to the column of the input  matrix
424   //First copy the whole input matrix.
425   m_mat = mat;
426   if (m_perm_c.size()) {
427     m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
428     //Then, permute only the column pointers
429     const Index * outerIndexPtr;
430     if (mat.isCompressed()) outerIndexPtr = mat.outerIndexPtr();
431     else
432     {
433       Index *outerIndexPtr_t = new Index[mat.cols()+1];
434       for(Index i = 0; i <= mat.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
435       outerIndexPtr = outerIndexPtr_t;
436     }
437     for (Index i = 0; i < mat.cols(); i++)
438     {
439       m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
440       m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
441     }
442     if(!mat.isCompressed()) delete[] outerIndexPtr;
443   }
444   // Compute the column elimination tree of the permuted matrix
445   IndexVector firstRowElt;
446   internal::coletree(m_mat, m_etree,firstRowElt);
447 
448   // In symmetric mode, do not do postorder here
449   if (!m_symmetricmode) {
450     IndexVector post, iwork;
451     // Post order etree
452     internal::treePostorder(m_mat.cols(), m_etree, post);
453 
454 
455     // Renumber etree in postorder
456     Index m = m_mat.cols();
457     iwork.resize(m+1);
458     for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
459     m_etree = iwork;
460 
461     // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
462     PermutationType post_perm(m);
463     for (Index i = 0; i < m; i++)
464       post_perm.indices()(i) = post(i);
465 
466     // Combine the two permutations : postorder the permutation for future use
467     if(m_perm_c.size()) {
468       m_perm_c = post_perm * m_perm_c;
469     }
470 
471   } // end postordering
472 
473   m_analysisIsOk = true;
474 }
475 
476 // Functions needed by the numerical factorization phase
477 
478 
479 /**
480   *  - Numerical factorization
481   *  - Interleaved with the symbolic factorization
482   * On exit,  info is
483   *
484   *    = 0: successful factorization
485   *
486   *    > 0: if info = i, and i is
487   *
488   *       <= A->ncol: U(i,i) is exactly zero. The factorization has
489   *          been completed, but the factor U is exactly singular,
490   *          and division by zero will occur if it is used to solve a
491   *          system of equations.
492   *
493   *       > A->ncol: number of bytes allocated when memory allocation
494   *         failure occurred, plus A->ncol. If lwork = -1, it is
495   *         the estimated amount of space needed, plus A->ncol.
496   */
497 template <typename MatrixType, typename OrderingType>
factorize(const MatrixType & matrix)498 void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
499 {
500   using internal::emptyIdxLU;
501   eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
502   eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
503 
504   typedef typename IndexVector::Scalar Index;
505 
506 
507   // Apply the column permutation computed in analyzepattern()
508   //   m_mat = matrix * m_perm_c.inverse();
509   m_mat = matrix;
510   if (m_perm_c.size())
511   {
512     m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
513     //Then, permute only the column pointers
514     const Index * outerIndexPtr;
515     if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
516     else
517     {
518       Index* outerIndexPtr_t = new Index[matrix.cols()+1];
519       for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
520       outerIndexPtr = outerIndexPtr_t;
521     }
522     for (Index i = 0; i < matrix.cols(); i++)
523     {
524       m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
525       m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
526     }
527     if(!matrix.isCompressed()) delete[] outerIndexPtr;
528   }
529   else
530   { //FIXME This should not be needed if the empty permutation is handled transparently
531     m_perm_c.resize(matrix.cols());
532     for(Index i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
533   }
534 
535   Index m = m_mat.rows();
536   Index n = m_mat.cols();
537   Index nnz = m_mat.nonZeros();
538   Index maxpanel = m_perfv.panel_size * m;
539   // Allocate working storage common to the factor routines
540   Index lwork = 0;
541   Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
542   if (info)
543   {
544     m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
545     m_factorizationIsOk = false;
546     return ;
547   }
548 
549   // Set up pointers for integer working arrays
550   IndexVector segrep(m); segrep.setZero();
551   IndexVector parent(m); parent.setZero();
552   IndexVector xplore(m); xplore.setZero();
553   IndexVector repfnz(maxpanel);
554   IndexVector panel_lsub(maxpanel);
555   IndexVector xprune(n); xprune.setZero();
556   IndexVector marker(m*internal::LUNoMarker); marker.setZero();
557 
558   repfnz.setConstant(-1);
559   panel_lsub.setConstant(-1);
560 
561   // Set up pointers for scalar working arrays
562   ScalarVector dense;
563   dense.setZero(maxpanel);
564   ScalarVector tempv;
565   tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
566 
567   // Compute the inverse of perm_c
568   PermutationType iperm_c(m_perm_c.inverse());
569 
570   // Identify initial relaxed snodes
571   IndexVector relax_end(n);
572   if ( m_symmetricmode == true )
573     Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
574   else
575     Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
576 
577 
578   m_perm_r.resize(m);
579   m_perm_r.indices().setConstant(-1);
580   marker.setConstant(-1);
581   m_detPermR = 1; // Record the determinant of the row permutation
582 
583   m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
584   m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
585 
586   // Work on one 'panel' at a time. A panel is one of the following :
587   //  (a) a relaxed supernode at the bottom of the etree, or
588   //  (b) panel_size contiguous columns, <panel_size> defined by the user
589   Index jcol;
590   IndexVector panel_histo(n);
591   Index pivrow; // Pivotal row number in the original row matrix
592   Index nseg1; // Number of segments in U-column above panel row jcol
593   Index nseg; // Number of segments in each U-column
594   Index irep;
595   Index i, k, jj;
596   for (jcol = 0; jcol < n; )
597   {
598     // Adjust panel size so that a panel won't overlap with the next relaxed snode.
599     Index panel_size = m_perfv.panel_size; // upper bound on panel width
600     for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
601     {
602       if (relax_end(k) != emptyIdxLU)
603       {
604         panel_size = k - jcol;
605         break;
606       }
607     }
608     if (k == n)
609       panel_size = n - jcol;
610 
611     // Symbolic outer factorization on a panel of columns
612     Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
613 
614     // Numeric sup-panel updates in topological order
615     Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
616 
617     // Sparse LU within the panel, and below the panel diagonal
618     for ( jj = jcol; jj< jcol + panel_size; jj++)
619     {
620       k = (jj - jcol) * m; // Column index for w-wide arrays
621 
622       nseg = nseg1; // begin after all the panel segments
623       //Depth-first-search for the current column
624       VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
625       VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
626       info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
627       if ( info )
628       {
629         m_lastError =  "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
630         m_info = NumericalIssue;
631         m_factorizationIsOk = false;
632         return;
633       }
634       // Numeric updates to this column
635       VectorBlock<ScalarVector> dense_k(dense, k, m);
636       VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
637       info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
638       if ( info )
639       {
640         m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
641         m_info = NumericalIssue;
642         m_factorizationIsOk = false;
643         return;
644       }
645 
646       // Copy the U-segments to ucol(*)
647       info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
648       if ( info )
649       {
650         m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
651         m_info = NumericalIssue;
652         m_factorizationIsOk = false;
653         return;
654       }
655 
656       // Form the L-segment
657       info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
658       if ( info )
659       {
660         m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
661         std::ostringstream returnInfo;
662         returnInfo << info;
663         m_lastError += returnInfo.str();
664         m_info = NumericalIssue;
665         m_factorizationIsOk = false;
666         return;
667       }
668 
669       // Update the determinant of the row permutation matrix
670       // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
671       if (pivrow != jj) m_detPermR = -m_detPermR;
672 
673       // Prune columns (0:jj-1) using column jj
674       Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
675 
676       // Reset repfnz for this column
677       for (i = 0; i < nseg; i++)
678       {
679         irep = segrep(i);
680         repfnz_k(irep) = emptyIdxLU;
681       }
682     } // end SparseLU within the panel
683     jcol += panel_size;  // Move to the next panel
684   } // end for -- end elimination
685 
686   m_detPermR = m_perm_r.determinant();
687   m_detPermC = m_perm_c.determinant();
688 
689   // Count the number of nonzeros in factors
690   Base::countnz(n, m_nnzL, m_nnzU, m_glu);
691   // Apply permutation  to the L subscripts
692   Base::fixupL(n, m_perm_r.indices(), m_glu);
693 
694   // Create supernode matrix L
695   m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
696   // Create the column major upper sparse matrix  U;
697   new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, Index> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
698 
699   m_info = Success;
700   m_factorizationIsOk = true;
701 }
702 
703 template<typename MappedSupernodalType>
704 struct SparseLUMatrixLReturnType : internal::no_assignment_operator
705 {
706   typedef typename MappedSupernodalType::Index Index;
707   typedef typename MappedSupernodalType::Scalar Scalar;
SparseLUMatrixLReturnTypeSparseLUMatrixLReturnType708   SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
709   { }
rowsSparseLUMatrixLReturnType710   Index rows() { return m_mapL.rows(); }
colsSparseLUMatrixLReturnType711   Index cols() { return m_mapL.cols(); }
712   template<typename Dest>
solveInPlaceSparseLUMatrixLReturnType713   void solveInPlace( MatrixBase<Dest> &X) const
714   {
715     m_mapL.solveInPlace(X);
716   }
717   const MappedSupernodalType& m_mapL;
718 };
719 
720 template<typename MatrixLType, typename MatrixUType>
721 struct SparseLUMatrixUReturnType : internal::no_assignment_operator
722 {
723   typedef typename MatrixLType::Index Index;
724   typedef typename MatrixLType::Scalar Scalar;
SparseLUMatrixUReturnTypeSparseLUMatrixUReturnType725   SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
726   : m_mapL(mapL),m_mapU(mapU)
727   { }
rowsSparseLUMatrixUReturnType728   Index rows() { return m_mapL.rows(); }
colsSparseLUMatrixUReturnType729   Index cols() { return m_mapL.cols(); }
730 
solveInPlaceSparseLUMatrixUReturnType731   template<typename Dest>   void solveInPlace(MatrixBase<Dest> &X) const
732   {
733     Index nrhs = X.cols();
734     Index n = X.rows();
735     // Backward solve with U
736     for (Index k = m_mapL.nsuper(); k >= 0; k--)
737     {
738       Index fsupc = m_mapL.supToCol()[k];
739       Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
740       Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
741       Index luptr = m_mapL.colIndexPtr()[fsupc];
742 
743       if (nsupc == 1)
744       {
745         for (Index j = 0; j < nrhs; j++)
746         {
747           X(fsupc, j) /= m_mapL.valuePtr()[luptr];
748         }
749       }
750       else
751       {
752         Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
753         Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
754         U = A.template triangularView<Upper>().solve(U);
755       }
756 
757       for (Index j = 0; j < nrhs; ++j)
758       {
759         for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
760         {
761           typename MatrixUType::InnerIterator it(m_mapU, jcol);
762           for ( ; it; ++it)
763           {
764             Index irow = it.index();
765             X(irow, j) -= X(jcol, j) * it.value();
766           }
767         }
768       }
769     } // End For U-solve
770   }
771   const MatrixLType& m_mapL;
772   const MatrixUType& m_mapU;
773 };
774 
775 namespace internal {
776 
777 template<typename _MatrixType, typename Derived, typename Rhs>
778 struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
779   : solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
780 {
781   typedef SparseLU<_MatrixType,Derived> Dec;
782   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
783 
784   template<typename Dest> void evalTo(Dest& dst) const
785   {
786     dec()._solve(rhs(),dst);
787   }
788 };
789 
790 template<typename _MatrixType, typename Derived, typename Rhs>
791 struct sparse_solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
792   : sparse_solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
793 {
794   typedef SparseLU<_MatrixType,Derived> Dec;
795   EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
796 
797   template<typename Dest> void evalTo(Dest& dst) const
798   {
799     this->defaultEvalTo(dst);
800   }
801 };
802 } // end namespace internal
803 
804 } // End namespace Eigen
805 
806 #endif
807