1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines layout properties related to datatype size/offset/alignment
11 // information. It uses lazy annotations to cache information about how
12 // structure types are laid out and used.
13 //
14 // This structure should be created once, filled in if the defaults are not
15 // correct and then passed around by const&. None of the members functions
16 // require modification to the object.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #ifndef LLVM_IR_DATALAYOUT_H
21 #define LLVM_IR_DATALAYOUT_H
22
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/DataTypes.h"
29
30 // This needs to be outside of the namespace, to avoid conflict with llvm-c
31 // decl.
32 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
33
34 namespace llvm {
35
36 class Value;
37 class Type;
38 class IntegerType;
39 class StructType;
40 class StructLayout;
41 class Triple;
42 class GlobalVariable;
43 class LLVMContext;
44 template<typename T>
45 class ArrayRef;
46
47 /// Enum used to categorize the alignment types stored by LayoutAlignElem
48 enum AlignTypeEnum {
49 INVALID_ALIGN = 0,
50 INTEGER_ALIGN = 'i',
51 VECTOR_ALIGN = 'v',
52 FLOAT_ALIGN = 'f',
53 AGGREGATE_ALIGN = 'a'
54 };
55
56 // FIXME: Currently the DataLayout string carries a "preferred alignment"
57 // for types. As the DataLayout is module/global, this should likely be
58 // sunk down to an FTTI element that is queried rather than a global
59 // preference.
60
61 /// \brief Layout alignment element.
62 ///
63 /// Stores the alignment data associated with a given alignment type (integer,
64 /// vector, float) and type bit width.
65 ///
66 /// \note The unusual order of elements in the structure attempts to reduce
67 /// padding and make the structure slightly more cache friendly.
68 struct LayoutAlignElem {
69 /// \brief Alignment type from \c AlignTypeEnum
70 unsigned AlignType : 8;
71 unsigned TypeBitWidth : 24;
72 unsigned ABIAlign : 16;
73 unsigned PrefAlign : 16;
74
75 static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
76 unsigned pref_align, uint32_t bit_width);
77 bool operator==(const LayoutAlignElem &rhs) const;
78 };
79
80 /// \brief Layout pointer alignment element.
81 ///
82 /// Stores the alignment data associated with a given pointer and address space.
83 ///
84 /// \note The unusual order of elements in the structure attempts to reduce
85 /// padding and make the structure slightly more cache friendly.
86 struct PointerAlignElem {
87 unsigned ABIAlign;
88 unsigned PrefAlign;
89 uint32_t TypeByteWidth;
90 uint32_t AddressSpace;
91
92 /// Initializer
93 static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
94 unsigned PrefAlign, uint32_t TypeByteWidth);
95 bool operator==(const PointerAlignElem &rhs) const;
96 };
97
98 /// \brief A parsed version of the target data layout string in and methods for
99 /// querying it.
100 ///
101 /// The target data layout string is specified *by the target* - a frontend
102 /// generating LLVM IR is required to generate the right target data for the
103 /// target being codegen'd to.
104 class DataLayout {
105 private:
106 /// Defaults to false.
107 bool BigEndian;
108
109 unsigned StackNaturalAlign;
110
111 enum ManglingModeT {
112 MM_None,
113 MM_ELF,
114 MM_MachO,
115 MM_WinCOFF,
116 MM_WinCOFFX86,
117 MM_Mips
118 };
119 ManglingModeT ManglingMode;
120
121 SmallVector<unsigned char, 8> LegalIntWidths;
122
123 /// \brief Primitive type alignment data.
124 SmallVector<LayoutAlignElem, 16> Alignments;
125
126 /// \brief The string representation used to create this DataLayout
127 std::string StringRepresentation;
128
129 typedef SmallVector<PointerAlignElem, 8> PointersTy;
130 PointersTy Pointers;
131
132 PointersTy::const_iterator
findPointerLowerBound(uint32_t AddressSpace)133 findPointerLowerBound(uint32_t AddressSpace) const {
134 return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
135 }
136
137 PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
138
139 /// This member is a signal that a requested alignment type and bit width were
140 /// not found in the SmallVector.
141 static const LayoutAlignElem InvalidAlignmentElem;
142
143 /// This member is a signal that a requested pointer type and bit width were
144 /// not found in the DenseSet.
145 static const PointerAlignElem InvalidPointerElem;
146
147 // The StructType -> StructLayout map.
148 mutable void *LayoutMap;
149
150 void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
151 unsigned pref_align, uint32_t bit_width);
152 unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
153 bool ABIAlign, Type *Ty) const;
154 void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
155 unsigned PrefAlign, uint32_t TypeByteWidth);
156
157 /// Internal helper method that returns requested alignment for type.
158 unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
159
160 /// \brief Valid alignment predicate.
161 ///
162 /// Predicate that tests a LayoutAlignElem reference returned by get() against
163 /// InvalidAlignmentElem.
validAlignment(const LayoutAlignElem & align)164 bool validAlignment(const LayoutAlignElem &align) const {
165 return &align != &InvalidAlignmentElem;
166 }
167
168 /// \brief Valid pointer predicate.
169 ///
170 /// Predicate that tests a PointerAlignElem reference returned by get()
171 /// against \c InvalidPointerElem.
validPointer(const PointerAlignElem & align)172 bool validPointer(const PointerAlignElem &align) const {
173 return &align != &InvalidPointerElem;
174 }
175
176 /// Parses a target data specification string. Assert if the string is
177 /// malformed.
178 void parseSpecifier(StringRef LayoutDescription);
179
180 // Free all internal data structures.
181 void clear();
182
183 public:
184 /// Constructs a DataLayout from a specification string. See reset().
DataLayout(StringRef LayoutDescription)185 explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
186 reset(LayoutDescription);
187 }
188
189 /// Initialize target data from properties stored in the module.
190 explicit DataLayout(const Module *M);
191
192 void init(const Module *M);
193
DataLayout(const DataLayout & DL)194 DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
195
196 DataLayout &operator=(const DataLayout &DL) {
197 clear();
198 StringRepresentation = DL.StringRepresentation;
199 BigEndian = DL.isBigEndian();
200 StackNaturalAlign = DL.StackNaturalAlign;
201 ManglingMode = DL.ManglingMode;
202 LegalIntWidths = DL.LegalIntWidths;
203 Alignments = DL.Alignments;
204 Pointers = DL.Pointers;
205 return *this;
206 }
207
208 bool operator==(const DataLayout &Other) const;
209 bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
210
211 ~DataLayout(); // Not virtual, do not subclass this class
212
213 /// Parse a data layout string (with fallback to default values).
214 void reset(StringRef LayoutDescription);
215
216 /// Layout endianness...
isLittleEndian()217 bool isLittleEndian() const { return !BigEndian; }
isBigEndian()218 bool isBigEndian() const { return BigEndian; }
219
220 /// \brief Returns the string representation of the DataLayout.
221 ///
222 /// This representation is in the same format accepted by the string
223 /// constructor above. This should not be used to compare two DataLayout as
224 /// different string can represent the same layout.
getStringRepresentation()225 const std::string &getStringRepresentation() const {
226 return StringRepresentation;
227 }
228
229 /// \brief Test if the DataLayout was constructed from an empty string.
isDefault()230 bool isDefault() const { return StringRepresentation.empty(); }
231
232 /// \brief Returns true if the specified type is known to be a native integer
233 /// type supported by the CPU.
234 ///
235 /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
236 /// on any known one. This returns false if the integer width is not legal.
237 ///
238 /// The width is specified in bits.
isLegalInteger(unsigned Width)239 bool isLegalInteger(unsigned Width) const {
240 for (unsigned LegalIntWidth : LegalIntWidths)
241 if (LegalIntWidth == Width)
242 return true;
243 return false;
244 }
245
isIllegalInteger(unsigned Width)246 bool isIllegalInteger(unsigned Width) const { return !isLegalInteger(Width); }
247
248 /// Returns true if the given alignment exceeds the natural stack alignment.
exceedsNaturalStackAlignment(unsigned Align)249 bool exceedsNaturalStackAlignment(unsigned Align) const {
250 return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
251 }
252
getStackAlignment()253 unsigned getStackAlignment() const { return StackNaturalAlign; }
254
hasMicrosoftFastStdCallMangling()255 bool hasMicrosoftFastStdCallMangling() const {
256 return ManglingMode == MM_WinCOFFX86;
257 }
258
hasLinkerPrivateGlobalPrefix()259 bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
260
getLinkerPrivateGlobalPrefix()261 const char *getLinkerPrivateGlobalPrefix() const {
262 if (ManglingMode == MM_MachO)
263 return "l";
264 return "";
265 }
266
getGlobalPrefix()267 char getGlobalPrefix() const {
268 switch (ManglingMode) {
269 case MM_None:
270 case MM_ELF:
271 case MM_Mips:
272 case MM_WinCOFF:
273 return '\0';
274 case MM_MachO:
275 case MM_WinCOFFX86:
276 return '_';
277 }
278 llvm_unreachable("invalid mangling mode");
279 }
280
getPrivateGlobalPrefix()281 const char *getPrivateGlobalPrefix() const {
282 switch (ManglingMode) {
283 case MM_None:
284 return "";
285 case MM_ELF:
286 return ".L";
287 case MM_Mips:
288 return "$";
289 case MM_MachO:
290 case MM_WinCOFF:
291 case MM_WinCOFFX86:
292 return "L";
293 }
294 llvm_unreachable("invalid mangling mode");
295 }
296
297 static const char *getManglingComponent(const Triple &T);
298
299 /// \brief Returns true if the specified type fits in a native integer type
300 /// supported by the CPU.
301 ///
302 /// For example, if the CPU only supports i32 as a native integer type, then
303 /// i27 fits in a legal integer type but i45 does not.
fitsInLegalInteger(unsigned Width)304 bool fitsInLegalInteger(unsigned Width) const {
305 for (unsigned LegalIntWidth : LegalIntWidths)
306 if (Width <= LegalIntWidth)
307 return true;
308 return false;
309 }
310
311 /// Layout pointer alignment
312 /// FIXME: The defaults need to be removed once all of
313 /// the backends/clients are updated.
314 unsigned getPointerABIAlignment(unsigned AS = 0) const;
315
316 /// Return target's alignment for stack-based pointers
317 /// FIXME: The defaults need to be removed once all of
318 /// the backends/clients are updated.
319 unsigned getPointerPrefAlignment(unsigned AS = 0) const;
320
321 /// Layout pointer size
322 /// FIXME: The defaults need to be removed once all of
323 /// the backends/clients are updated.
324 unsigned getPointerSize(unsigned AS = 0) const;
325
326 /// Layout pointer size, in bits
327 /// FIXME: The defaults need to be removed once all of
328 /// the backends/clients are updated.
329 unsigned getPointerSizeInBits(unsigned AS = 0) const {
330 return getPointerSize(AS) * 8;
331 }
332
333 /// Layout pointer size, in bits, based on the type. If this function is
334 /// called with a pointer type, then the type size of the pointer is returned.
335 /// If this function is called with a vector of pointers, then the type size
336 /// of the pointer is returned. This should only be called with a pointer or
337 /// vector of pointers.
338 unsigned getPointerTypeSizeInBits(Type *) const;
339
getPointerTypeSize(Type * Ty)340 unsigned getPointerTypeSize(Type *Ty) const {
341 return getPointerTypeSizeInBits(Ty) / 8;
342 }
343
344 /// Size examples:
345 ///
346 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
347 /// ---- ---------- --------------- ---------------
348 /// i1 1 8 8
349 /// i8 8 8 8
350 /// i19 19 24 32
351 /// i32 32 32 32
352 /// i100 100 104 128
353 /// i128 128 128 128
354 /// Float 32 32 32
355 /// Double 64 64 64
356 /// X86_FP80 80 80 96
357 ///
358 /// [*] The alloc size depends on the alignment, and thus on the target.
359 /// These values are for x86-32 linux.
360
361 /// \brief Returns the number of bits necessary to hold the specified type.
362 ///
363 /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
364 /// have a size (Type::isSized() must return true).
365 uint64_t getTypeSizeInBits(Type *Ty) const;
366
367 /// \brief Returns the maximum number of bytes that may be overwritten by
368 /// storing the specified type.
369 ///
370 /// For example, returns 5 for i36 and 10 for x86_fp80.
getTypeStoreSize(Type * Ty)371 uint64_t getTypeStoreSize(Type *Ty) const {
372 return (getTypeSizeInBits(Ty) + 7) / 8;
373 }
374
375 /// \brief Returns the maximum number of bits that may be overwritten by
376 /// storing the specified type; always a multiple of 8.
377 ///
378 /// For example, returns 40 for i36 and 80 for x86_fp80.
getTypeStoreSizeInBits(Type * Ty)379 uint64_t getTypeStoreSizeInBits(Type *Ty) const {
380 return 8 * getTypeStoreSize(Ty);
381 }
382
383 /// \brief Returns the offset in bytes between successive objects of the
384 /// specified type, including alignment padding.
385 ///
386 /// This is the amount that alloca reserves for this type. For example,
387 /// returns 12 or 16 for x86_fp80, depending on alignment.
getTypeAllocSize(Type * Ty)388 uint64_t getTypeAllocSize(Type *Ty) const {
389 // Round up to the next alignment boundary.
390 return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
391 }
392
393 /// \brief Returns the offset in bits between successive objects of the
394 /// specified type, including alignment padding; always a multiple of 8.
395 ///
396 /// This is the amount that alloca reserves for this type. For example,
397 /// returns 96 or 128 for x86_fp80, depending on alignment.
getTypeAllocSizeInBits(Type * Ty)398 uint64_t getTypeAllocSizeInBits(Type *Ty) const {
399 return 8 * getTypeAllocSize(Ty);
400 }
401
402 /// \brief Returns the minimum ABI-required alignment for the specified type.
403 unsigned getABITypeAlignment(Type *Ty) const;
404
405 /// \brief Returns the minimum ABI-required alignment for an integer type of
406 /// the specified bitwidth.
407 unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
408
409 /// \brief Returns the preferred stack/global alignment for the specified
410 /// type.
411 ///
412 /// This is always at least as good as the ABI alignment.
413 unsigned getPrefTypeAlignment(Type *Ty) const;
414
415 /// \brief Returns the preferred alignment for the specified type, returned as
416 /// log2 of the value (a shift amount).
417 unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
418
419 /// \brief Returns an integer type with size at least as big as that of a
420 /// pointer in the given address space.
421 IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
422
423 /// \brief Returns an integer (vector of integer) type with size at least as
424 /// big as that of a pointer of the given pointer (vector of pointer) type.
425 Type *getIntPtrType(Type *) const;
426
427 /// \brief Returns the smallest integer type with size at least as big as
428 /// Width bits.
429 Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
430
431 /// \brief Returns the largest legal integer type, or null if none are set.
getLargestLegalIntType(LLVMContext & C)432 Type *getLargestLegalIntType(LLVMContext &C) const {
433 unsigned LargestSize = getLargestLegalIntTypeSize();
434 return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
435 }
436
437 /// \brief Returns the size of largest legal integer type size, or 0 if none
438 /// are set.
439 unsigned getLargestLegalIntTypeSize() const;
440
441 /// \brief Returns the offset from the beginning of the type for the specified
442 /// indices.
443 ///
444 /// This is used to implement getelementptr.
445 uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
446
447 /// \brief Returns a StructLayout object, indicating the alignment of the
448 /// struct, its size, and the offsets of its fields.
449 ///
450 /// Note that this information is lazily cached.
451 const StructLayout *getStructLayout(StructType *Ty) const;
452
453 /// \brief Returns the preferred alignment of the specified global.
454 ///
455 /// This includes an explicitly requested alignment (if the global has one).
456 unsigned getPreferredAlignment(const GlobalVariable *GV) const;
457
458 /// \brief Returns the preferred alignment of the specified global, returned
459 /// in log form.
460 ///
461 /// This includes an explicitly requested alignment (if the global has one).
462 unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
463 };
464
unwrap(LLVMTargetDataRef P)465 inline DataLayout *unwrap(LLVMTargetDataRef P) {
466 return reinterpret_cast<DataLayout *>(P);
467 }
468
wrap(const DataLayout * P)469 inline LLVMTargetDataRef wrap(const DataLayout *P) {
470 return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
471 }
472
473 /// Used to lazily calculate structure layout information for a target machine,
474 /// based on the DataLayout structure.
475 class StructLayout {
476 uint64_t StructSize;
477 unsigned StructAlignment;
478 bool IsPadded : 1;
479 unsigned NumElements : 31;
480 uint64_t MemberOffsets[1]; // variable sized array!
481 public:
getSizeInBytes()482 uint64_t getSizeInBytes() const { return StructSize; }
483
getSizeInBits()484 uint64_t getSizeInBits() const { return 8 * StructSize; }
485
getAlignment()486 unsigned getAlignment() const { return StructAlignment; }
487
488 /// Returns whether the struct has padding or not between its fields.
489 /// NB: Padding in nested element is not taken into account.
hasPadding()490 bool hasPadding() const { return IsPadded; }
491
492 /// \brief Given a valid byte offset into the structure, returns the structure
493 /// index that contains it.
494 unsigned getElementContainingOffset(uint64_t Offset) const;
495
getElementOffset(unsigned Idx)496 uint64_t getElementOffset(unsigned Idx) const {
497 assert(Idx < NumElements && "Invalid element idx!");
498 return MemberOffsets[Idx];
499 }
500
getElementOffsetInBits(unsigned Idx)501 uint64_t getElementOffsetInBits(unsigned Idx) const {
502 return getElementOffset(Idx) * 8;
503 }
504
505 private:
506 friend class DataLayout; // Only DataLayout can create this class
507 StructLayout(StructType *ST, const DataLayout &DL);
508 };
509
510 // The implementation of this method is provided inline as it is particularly
511 // well suited to constant folding when called on a specific Type subclass.
getTypeSizeInBits(Type * Ty)512 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
513 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
514 switch (Ty->getTypeID()) {
515 case Type::LabelTyID:
516 return getPointerSizeInBits(0);
517 case Type::PointerTyID:
518 return getPointerSizeInBits(Ty->getPointerAddressSpace());
519 case Type::ArrayTyID: {
520 ArrayType *ATy = cast<ArrayType>(Ty);
521 return ATy->getNumElements() *
522 getTypeAllocSizeInBits(ATy->getElementType());
523 }
524 case Type::StructTyID:
525 // Get the layout annotation... which is lazily created on demand.
526 return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
527 case Type::IntegerTyID:
528 return Ty->getIntegerBitWidth();
529 case Type::HalfTyID:
530 return 16;
531 case Type::FloatTyID:
532 return 32;
533 case Type::DoubleTyID:
534 case Type::X86_MMXTyID:
535 return 64;
536 case Type::PPC_FP128TyID:
537 case Type::FP128TyID:
538 return 128;
539 // In memory objects this is always aligned to a higher boundary, but
540 // only 80 bits contain information.
541 case Type::X86_FP80TyID:
542 return 80;
543 case Type::VectorTyID: {
544 VectorType *VTy = cast<VectorType>(Ty);
545 return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
546 }
547 default:
548 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
549 }
550 }
551
552 } // End llvm namespace
553
554 #endif
555