• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <math.h>
6 #include <stdint.h>
7 #include <stdlib.h>
8 #include <limits>
9 
10 #include "include/v8config.h"
11 
12 #include "src/base/bits.h"
13 #include "src/wasm/wasm-external-refs.h"
14 
15 namespace v8 {
16 namespace internal {
17 namespace wasm {
18 
f32_trunc_wrapper(float * param)19 void f32_trunc_wrapper(float* param) { *param = truncf(*param); }
20 
f32_floor_wrapper(float * param)21 void f32_floor_wrapper(float* param) { *param = floorf(*param); }
22 
f32_ceil_wrapper(float * param)23 void f32_ceil_wrapper(float* param) { *param = ceilf(*param); }
24 
f32_nearest_int_wrapper(float * param)25 void f32_nearest_int_wrapper(float* param) { *param = nearbyintf(*param); }
26 
f64_trunc_wrapper(double * param)27 void f64_trunc_wrapper(double* param) { *param = trunc(*param); }
28 
f64_floor_wrapper(double * param)29 void f64_floor_wrapper(double* param) { *param = floor(*param); }
30 
f64_ceil_wrapper(double * param)31 void f64_ceil_wrapper(double* param) { *param = ceil(*param); }
32 
f64_nearest_int_wrapper(double * param)33 void f64_nearest_int_wrapper(double* param) { *param = nearbyint(*param); }
34 
int64_to_float32_wrapper(int64_t * input,float * output)35 void int64_to_float32_wrapper(int64_t* input, float* output) {
36   *output = static_cast<float>(*input);
37 }
38 
uint64_to_float32_wrapper(uint64_t * input,float * output)39 void uint64_to_float32_wrapper(uint64_t* input, float* output) {
40 #if V8_CC_MSVC
41   // With MSVC we use static_cast<float>(uint32_t) instead of
42   // static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even
43   // semantics. The idea is to calculate
44   // static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To
45   // achieve proper rounding in all cases we have to adjust the high_word
46   // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of
47   // the high_word if the low_word may affect the rounding of the high_word.
48   uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
49   uint32_t high_word = static_cast<uint32_t>(*input >> 32);
50 
51   float shift = static_cast<float>(1ull << 32);
52   // If the MSB of the high_word is set, then we make space for a rounding bit.
53   if (high_word < 0x80000000) {
54     high_word <<= 1;
55     shift = static_cast<float>(1ull << 31);
56   }
57 
58   if ((high_word & 0xfe000000) && low_word) {
59     // Set the rounding bit.
60     high_word |= 1;
61   }
62 
63   float result = static_cast<float>(high_word);
64   result *= shift;
65   result += static_cast<float>(low_word);
66   *output = result;
67 
68 #else
69   *output = static_cast<float>(*input);
70 #endif
71 }
72 
int64_to_float64_wrapper(int64_t * input,double * output)73 void int64_to_float64_wrapper(int64_t* input, double* output) {
74   *output = static_cast<double>(*input);
75 }
76 
uint64_to_float64_wrapper(uint64_t * input,double * output)77 void uint64_to_float64_wrapper(uint64_t* input, double* output) {
78 #if V8_CC_MSVC
79   // With MSVC we use static_cast<double>(uint32_t) instead of
80   // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even
81   // semantics. The idea is to calculate
82   // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word).
83   uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
84   uint32_t high_word = static_cast<uint32_t>(*input >> 32);
85 
86   double shift = static_cast<double>(1ull << 32);
87 
88   double result = static_cast<double>(high_word);
89   result *= shift;
90   result += static_cast<double>(low_word);
91   *output = result;
92 
93 #else
94   *output = static_cast<double>(*input);
95 #endif
96 }
97 
float32_to_int64_wrapper(float * input,int64_t * output)98 int32_t float32_to_int64_wrapper(float* input, int64_t* output) {
99   // We use "<" here to check the upper bound because of rounding problems: With
100   // "<=" some inputs would be considered within int64 range which are actually
101   // not within int64 range.
102   if (*input >= static_cast<float>(std::numeric_limits<int64_t>::min()) &&
103       *input < static_cast<float>(std::numeric_limits<int64_t>::max())) {
104     *output = static_cast<int64_t>(*input);
105     return 1;
106   }
107   return 0;
108 }
109 
float32_to_uint64_wrapper(float * input,uint64_t * output)110 int32_t float32_to_uint64_wrapper(float* input, uint64_t* output) {
111   // We use "<" here to check the upper bound because of rounding problems: With
112   // "<=" some inputs would be considered within uint64 range which are actually
113   // not within uint64 range.
114   if (*input > -1.0 &&
115       *input < static_cast<float>(std::numeric_limits<uint64_t>::max())) {
116     *output = static_cast<uint64_t>(*input);
117     return 1;
118   }
119   return 0;
120 }
121 
float64_to_int64_wrapper(double * input,int64_t * output)122 int32_t float64_to_int64_wrapper(double* input, int64_t* output) {
123   // We use "<" here to check the upper bound because of rounding problems: With
124   // "<=" some inputs would be considered within int64 range which are actually
125   // not within int64 range.
126   if (*input >= static_cast<double>(std::numeric_limits<int64_t>::min()) &&
127       *input < static_cast<double>(std::numeric_limits<int64_t>::max())) {
128     *output = static_cast<int64_t>(*input);
129     return 1;
130   }
131   return 0;
132 }
133 
float64_to_uint64_wrapper(double * input,uint64_t * output)134 int32_t float64_to_uint64_wrapper(double* input, uint64_t* output) {
135   // We use "<" here to check the upper bound because of rounding problems: With
136   // "<=" some inputs would be considered within uint64 range which are actually
137   // not within uint64 range.
138   if (*input > -1.0 &&
139       *input < static_cast<double>(std::numeric_limits<uint64_t>::max())) {
140     *output = static_cast<uint64_t>(*input);
141     return 1;
142   }
143   return 0;
144 }
145 
int64_div_wrapper(int64_t * dst,int64_t * src)146 int32_t int64_div_wrapper(int64_t* dst, int64_t* src) {
147   if (*src == 0) {
148     return 0;
149   }
150   if (*src == -1 && *dst == std::numeric_limits<int64_t>::min()) {
151     return -1;
152   }
153   *dst /= *src;
154   return 1;
155 }
156 
int64_mod_wrapper(int64_t * dst,int64_t * src)157 int32_t int64_mod_wrapper(int64_t* dst, int64_t* src) {
158   if (*src == 0) {
159     return 0;
160   }
161   *dst %= *src;
162   return 1;
163 }
164 
uint64_div_wrapper(uint64_t * dst,uint64_t * src)165 int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src) {
166   if (*src == 0) {
167     return 0;
168   }
169   *dst /= *src;
170   return 1;
171 }
172 
uint64_mod_wrapper(uint64_t * dst,uint64_t * src)173 int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src) {
174   if (*src == 0) {
175     return 0;
176   }
177   *dst %= *src;
178   return 1;
179 }
180 
word32_ctz_wrapper(uint32_t * input)181 uint32_t word32_ctz_wrapper(uint32_t* input) {
182   return static_cast<uint32_t>(base::bits::CountTrailingZeros32(*input));
183 }
184 
word64_ctz_wrapper(uint64_t * input)185 uint32_t word64_ctz_wrapper(uint64_t* input) {
186   return static_cast<uint32_t>(base::bits::CountTrailingZeros64(*input));
187 }
188 
word32_popcnt_wrapper(uint32_t * input)189 uint32_t word32_popcnt_wrapper(uint32_t* input) {
190   return static_cast<uint32_t>(base::bits::CountPopulation(*input));
191 }
192 
word64_popcnt_wrapper(uint64_t * input)193 uint32_t word64_popcnt_wrapper(uint64_t* input) {
194   return static_cast<uint32_t>(base::bits::CountPopulation(*input));
195 }
196 
197 }  // namespace wasm
198 }  // namespace internal
199 }  // namespace v8
200