• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.animation;
18 
19 import android.annotation.CallSuper;
20 import android.annotation.IntDef;
21 import android.annotation.TestApi;
22 import android.os.Looper;
23 import android.os.Trace;
24 import android.util.AndroidRuntimeException;
25 import android.util.Log;
26 import android.view.animation.AccelerateDecelerateInterpolator;
27 import android.view.animation.AnimationUtils;
28 import android.view.animation.LinearInterpolator;
29 
30 import java.lang.annotation.Retention;
31 import java.lang.annotation.RetentionPolicy;
32 import java.util.ArrayList;
33 import java.util.HashMap;
34 
35 /**
36  * This class provides a simple timing engine for running animations
37  * which calculate animated values and set them on target objects.
38  *
39  * <p>There is a single timing pulse that all animations use. It runs in a
40  * custom handler to ensure that property changes happen on the UI thread.</p>
41  *
42  * <p>By default, ValueAnimator uses non-linear time interpolation, via the
43  * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
44  * out of an animation. This behavior can be changed by calling
45  * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
46  *
47  * <p>Animators can be created from either code or resource files. Here is an example
48  * of a ValueAnimator resource file:</p>
49  *
50  * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
51  *
52  * <p>Starting from API 23, it is also possible to use a combination of {@link PropertyValuesHolder}
53  * and {@link Keyframe} resource tags to create a multi-step animation.
54  * Note that you can specify explicit fractional values (from 0 to 1) for
55  * each keyframe to determine when, in the overall duration, the animation should arrive at that
56  * value. Alternatively, you can leave the fractions off and the keyframes will be equally
57  * distributed within the total duration:</p>
58  *
59  * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
60  * ValueAnimatorKeyframeResources}
61  *
62  * <div class="special reference">
63  * <h3>Developer Guides</h3>
64  * <p>For more information about animating with {@code ValueAnimator}, read the
65  * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
66  * Animation</a> developer guide.</p>
67  * </div>
68  */
69 @SuppressWarnings("unchecked")
70 public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
71     private static final String TAG = "ValueAnimator";
72     private static final boolean DEBUG = false;
73 
74     /**
75      * Internal constants
76      */
77     private static float sDurationScale = 1.0f;
78 
79     /**
80      * Internal variables
81      * NOTE: This object implements the clone() method, making a deep copy of any referenced
82      * objects. As other non-trivial fields are added to this class, make sure to add logic
83      * to clone() to make deep copies of them.
84      */
85 
86     /**
87      * The first time that the animation's animateFrame() method is called. This time is used to
88      * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
89      * to animateFrame().
90      *
91      * Whenever mStartTime is set, you must also update mStartTimeCommitted.
92      */
93     long mStartTime;
94 
95     /**
96      * When true, the start time has been firmly committed as a chosen reference point in
97      * time by which the progress of the animation will be evaluated.  When false, the
98      * start time may be updated when the first animation frame is committed so as
99      * to compensate for jank that may have occurred between when the start time was
100      * initialized and when the frame was actually drawn.
101      *
102      * This flag is generally set to false during the first frame of the animation
103      * when the animation playing state transitions from STOPPED to RUNNING or
104      * resumes after having been paused.  This flag is set to true when the start time
105      * is firmly committed and should not be further compensated for jank.
106      */
107     boolean mStartTimeCommitted;
108 
109     /**
110      * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
111      * to a value.
112      */
113     float mSeekFraction = -1;
114 
115     /**
116      * Set on the next frame after pause() is called, used to calculate a new startTime
117      * or delayStartTime which allows the animator to continue from the point at which
118      * it was paused. If negative, has not yet been set.
119      */
120     private long mPauseTime;
121 
122     /**
123      * Set when an animator is resumed. This triggers logic in the next frame which
124      * actually resumes the animator.
125      */
126     private boolean mResumed = false;
127 
128     // The time interpolator to be used if none is set on the animation
129     private static final TimeInterpolator sDefaultInterpolator =
130             new AccelerateDecelerateInterpolator();
131 
132     /**
133      * Flag to indicate whether this animator is playing in reverse mode, specifically
134      * by being started or interrupted by a call to reverse(). This flag is different than
135      * mPlayingBackwards, which indicates merely whether the current iteration of the
136      * animator is playing in reverse. It is used in corner cases to determine proper end
137      * behavior.
138      */
139     private boolean mReversing;
140 
141     /**
142      * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
143      */
144     private float mOverallFraction = 0f;
145 
146     /**
147      * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
148      * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
149      */
150     private float mCurrentFraction = 0f;
151 
152     /**
153      * Tracks the time (in milliseconds) when the last frame arrived.
154      */
155     private long mLastFrameTime = 0;
156 
157     /**
158      * Additional playing state to indicate whether an animator has been start()'d. There is
159      * some lag between a call to start() and the first animation frame. We should still note
160      * that the animation has been started, even if it's first animation frame has not yet
161      * happened, and reflect that state in isRunning().
162      * Note that delayed animations are different: they are not started until their first
163      * animation frame, which occurs after their delay elapses.
164      */
165     private boolean mRunning = false;
166 
167     /**
168      * Additional playing state to indicate whether an animator has been start()'d, whether or
169      * not there is a nonzero startDelay.
170      */
171     private boolean mStarted = false;
172 
173     /**
174      * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
175      * complex to keep track of since we notify listeners at different times depending on
176      * startDelay and whether start() was called before end().
177      */
178     private boolean mStartListenersCalled = false;
179 
180     /**
181      * Flag that denotes whether the animation is set up and ready to go. Used to
182      * set up animation that has not yet been started.
183      */
184     boolean mInitialized = false;
185 
186     /**
187      * Flag that tracks whether animation has been requested to end.
188      */
189     private boolean mAnimationEndRequested = false;
190 
191     //
192     // Backing variables
193     //
194 
195     // How long the animation should last in ms
196     private long mDuration = 300;
197 
198     // The amount of time in ms to delay starting the animation after start() is called. Note
199     // that this start delay is unscaled. When there is a duration scale set on the animator, the
200     // scaling factor will be applied to this delay.
201     private long mStartDelay = 0;
202 
203     // The number of times the animation will repeat. The default is 0, which means the animation
204     // will play only once
205     private int mRepeatCount = 0;
206 
207     /**
208      * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
209      * animation will start from the beginning on every new cycle. REVERSE means the animation
210      * will reverse directions on each iteration.
211      */
212     private int mRepeatMode = RESTART;
213 
214     /**
215      * The time interpolator to be used. The elapsed fraction of the animation will be passed
216      * through this interpolator to calculate the interpolated fraction, which is then used to
217      * calculate the animated values.
218      */
219     private TimeInterpolator mInterpolator = sDefaultInterpolator;
220 
221     /**
222      * The set of listeners to be sent events through the life of an animation.
223      */
224     ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
225 
226     /**
227      * The property/value sets being animated.
228      */
229     PropertyValuesHolder[] mValues;
230 
231     /**
232      * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
233      * by property name during calls to getAnimatedValue(String).
234      */
235     HashMap<String, PropertyValuesHolder> mValuesMap;
236 
237     /**
238      * Public constants
239      */
240 
241     /** @hide */
242     @IntDef({RESTART, REVERSE})
243     @Retention(RetentionPolicy.SOURCE)
244     public @interface RepeatMode {}
245 
246     /**
247      * When the animation reaches the end and <code>repeatCount</code> is INFINITE
248      * or a positive value, the animation restarts from the beginning.
249      */
250     public static final int RESTART = 1;
251     /**
252      * When the animation reaches the end and <code>repeatCount</code> is INFINITE
253      * or a positive value, the animation reverses direction on every iteration.
254      */
255     public static final int REVERSE = 2;
256     /**
257      * This value used used with the {@link #setRepeatCount(int)} property to repeat
258      * the animation indefinitely.
259      */
260     public static final int INFINITE = -1;
261 
262     /**
263      * @hide
264      */
265     @TestApi
setDurationScale(float durationScale)266     public static void setDurationScale(float durationScale) {
267         sDurationScale = durationScale;
268     }
269 
270     /**
271      * @hide
272      */
273     @TestApi
getDurationScale()274     public static float getDurationScale() {
275         return sDurationScale;
276     }
277 
278     /**
279      * Creates a new ValueAnimator object. This default constructor is primarily for
280      * use internally; the factory methods which take parameters are more generally
281      * useful.
282      */
ValueAnimator()283     public ValueAnimator() {
284     }
285 
286     /**
287      * Constructs and returns a ValueAnimator that animates between int values. A single
288      * value implies that that value is the one being animated to. However, this is not typically
289      * useful in a ValueAnimator object because there is no way for the object to determine the
290      * starting value for the animation (unlike ObjectAnimator, which can derive that value
291      * from the target object and property being animated). Therefore, there should typically
292      * be two or more values.
293      *
294      * @param values A set of values that the animation will animate between over time.
295      * @return A ValueAnimator object that is set up to animate between the given values.
296      */
ofInt(int... values)297     public static ValueAnimator ofInt(int... values) {
298         ValueAnimator anim = new ValueAnimator();
299         anim.setIntValues(values);
300         return anim;
301     }
302 
303     /**
304      * Constructs and returns a ValueAnimator that animates between color values. A single
305      * value implies that that value is the one being animated to. However, this is not typically
306      * useful in a ValueAnimator object because there is no way for the object to determine the
307      * starting value for the animation (unlike ObjectAnimator, which can derive that value
308      * from the target object and property being animated). Therefore, there should typically
309      * be two or more values.
310      *
311      * @param values A set of values that the animation will animate between over time.
312      * @return A ValueAnimator object that is set up to animate between the given values.
313      */
ofArgb(int... values)314     public static ValueAnimator ofArgb(int... values) {
315         ValueAnimator anim = new ValueAnimator();
316         anim.setIntValues(values);
317         anim.setEvaluator(ArgbEvaluator.getInstance());
318         return anim;
319     }
320 
321     /**
322      * Constructs and returns a ValueAnimator that animates between float values. A single
323      * value implies that that value is the one being animated to. However, this is not typically
324      * useful in a ValueAnimator object because there is no way for the object to determine the
325      * starting value for the animation (unlike ObjectAnimator, which can derive that value
326      * from the target object and property being animated). Therefore, there should typically
327      * be two or more values.
328      *
329      * @param values A set of values that the animation will animate between over time.
330      * @return A ValueAnimator object that is set up to animate between the given values.
331      */
ofFloat(float... values)332     public static ValueAnimator ofFloat(float... values) {
333         ValueAnimator anim = new ValueAnimator();
334         anim.setFloatValues(values);
335         return anim;
336     }
337 
338     /**
339      * Constructs and returns a ValueAnimator that animates between the values
340      * specified in the PropertyValuesHolder objects.
341      *
342      * @param values A set of PropertyValuesHolder objects whose values will be animated
343      * between over time.
344      * @return A ValueAnimator object that is set up to animate between the given values.
345      */
ofPropertyValuesHolder(PropertyValuesHolder... values)346     public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
347         ValueAnimator anim = new ValueAnimator();
348         anim.setValues(values);
349         return anim;
350     }
351     /**
352      * Constructs and returns a ValueAnimator that animates between Object values. A single
353      * value implies that that value is the one being animated to. However, this is not typically
354      * useful in a ValueAnimator object because there is no way for the object to determine the
355      * starting value for the animation (unlike ObjectAnimator, which can derive that value
356      * from the target object and property being animated). Therefore, there should typically
357      * be two or more values.
358      *
359      * <p><strong>Note:</strong> The Object values are stored as references to the original
360      * objects, which means that changes to those objects after this method is called will
361      * affect the values on the animator. If the objects will be mutated externally after
362      * this method is called, callers should pass a copy of those objects instead.
363      *
364      * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
365      * factory method also takes a TypeEvaluator object that the ValueAnimator will use
366      * to perform that interpolation.
367      *
368      * @param evaluator A TypeEvaluator that will be called on each animation frame to
369      * provide the ncessry interpolation between the Object values to derive the animated
370      * value.
371      * @param values A set of values that the animation will animate between over time.
372      * @return A ValueAnimator object that is set up to animate between the given values.
373      */
ofObject(TypeEvaluator evaluator, Object... values)374     public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
375         ValueAnimator anim = new ValueAnimator();
376         anim.setObjectValues(values);
377         anim.setEvaluator(evaluator);
378         return anim;
379     }
380 
381     /**
382      * Sets int values that will be animated between. A single
383      * value implies that that value is the one being animated to. However, this is not typically
384      * useful in a ValueAnimator object because there is no way for the object to determine the
385      * starting value for the animation (unlike ObjectAnimator, which can derive that value
386      * from the target object and property being animated). Therefore, there should typically
387      * be two or more values.
388      *
389      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
390      * than one PropertyValuesHolder object, this method will set the values for the first
391      * of those objects.</p>
392      *
393      * @param values A set of values that the animation will animate between over time.
394      */
setIntValues(int... values)395     public void setIntValues(int... values) {
396         if (values == null || values.length == 0) {
397             return;
398         }
399         if (mValues == null || mValues.length == 0) {
400             setValues(PropertyValuesHolder.ofInt("", values));
401         } else {
402             PropertyValuesHolder valuesHolder = mValues[0];
403             valuesHolder.setIntValues(values);
404         }
405         // New property/values/target should cause re-initialization prior to starting
406         mInitialized = false;
407     }
408 
409     /**
410      * Sets float values that will be animated between. A single
411      * value implies that that value is the one being animated to. However, this is not typically
412      * useful in a ValueAnimator object because there is no way for the object to determine the
413      * starting value for the animation (unlike ObjectAnimator, which can derive that value
414      * from the target object and property being animated). Therefore, there should typically
415      * be two or more values.
416      *
417      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
418      * than one PropertyValuesHolder object, this method will set the values for the first
419      * of those objects.</p>
420      *
421      * @param values A set of values that the animation will animate between over time.
422      */
setFloatValues(float... values)423     public void setFloatValues(float... values) {
424         if (values == null || values.length == 0) {
425             return;
426         }
427         if (mValues == null || mValues.length == 0) {
428             setValues(PropertyValuesHolder.ofFloat("", values));
429         } else {
430             PropertyValuesHolder valuesHolder = mValues[0];
431             valuesHolder.setFloatValues(values);
432         }
433         // New property/values/target should cause re-initialization prior to starting
434         mInitialized = false;
435     }
436 
437     /**
438      * Sets the values to animate between for this animation. A single
439      * value implies that that value is the one being animated to. However, this is not typically
440      * useful in a ValueAnimator object because there is no way for the object to determine the
441      * starting value for the animation (unlike ObjectAnimator, which can derive that value
442      * from the target object and property being animated). Therefore, there should typically
443      * be two or more values.
444      *
445      * <p><strong>Note:</strong> The Object values are stored as references to the original
446      * objects, which means that changes to those objects after this method is called will
447      * affect the values on the animator. If the objects will be mutated externally after
448      * this method is called, callers should pass a copy of those objects instead.
449      *
450      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
451      * than one PropertyValuesHolder object, this method will set the values for the first
452      * of those objects.</p>
453      *
454      * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
455      * between these value objects. ValueAnimator only knows how to interpolate between the
456      * primitive types specified in the other setValues() methods.</p>
457      *
458      * @param values The set of values to animate between.
459      */
setObjectValues(Object... values)460     public void setObjectValues(Object... values) {
461         if (values == null || values.length == 0) {
462             return;
463         }
464         if (mValues == null || mValues.length == 0) {
465             setValues(PropertyValuesHolder.ofObject("", null, values));
466         } else {
467             PropertyValuesHolder valuesHolder = mValues[0];
468             valuesHolder.setObjectValues(values);
469         }
470         // New property/values/target should cause re-initialization prior to starting
471         mInitialized = false;
472     }
473 
474     /**
475      * Sets the values, per property, being animated between. This function is called internally
476      * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
477      * be constructed without values and this method can be called to set the values manually
478      * instead.
479      *
480      * @param values The set of values, per property, being animated between.
481      */
setValues(PropertyValuesHolder... values)482     public void setValues(PropertyValuesHolder... values) {
483         int numValues = values.length;
484         mValues = values;
485         mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
486         for (int i = 0; i < numValues; ++i) {
487             PropertyValuesHolder valuesHolder = values[i];
488             mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
489         }
490         // New property/values/target should cause re-initialization prior to starting
491         mInitialized = false;
492     }
493 
494     /**
495      * Returns the values that this ValueAnimator animates between. These values are stored in
496      * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
497      * of value objects instead.
498      *
499      * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
500      * values, per property, that define the animation.
501      */
getValues()502     public PropertyValuesHolder[] getValues() {
503         return mValues;
504     }
505 
506     /**
507      * This function is called immediately before processing the first animation
508      * frame of an animation. If there is a nonzero <code>startDelay</code>, the
509      * function is called after that delay ends.
510      * It takes care of the final initialization steps for the
511      * animation.
512      *
513      *  <p>Overrides of this method should call the superclass method to ensure
514      *  that internal mechanisms for the animation are set up correctly.</p>
515      */
516     @CallSuper
initAnimation()517     void initAnimation() {
518         if (!mInitialized) {
519             int numValues = mValues.length;
520             for (int i = 0; i < numValues; ++i) {
521                 mValues[i].init();
522             }
523             mInitialized = true;
524         }
525     }
526 
527     /**
528      * Sets the length of the animation. The default duration is 300 milliseconds.
529      *
530      * @param duration The length of the animation, in milliseconds. This value cannot
531      * be negative.
532      * @return ValueAnimator The object called with setDuration(). This return
533      * value makes it easier to compose statements together that construct and then set the
534      * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
535      */
536     @Override
setDuration(long duration)537     public ValueAnimator setDuration(long duration) {
538         if (duration < 0) {
539             throw new IllegalArgumentException("Animators cannot have negative duration: " +
540                     duration);
541         }
542         mDuration = duration;
543         return this;
544     }
545 
getScaledDuration()546     private long getScaledDuration() {
547         return (long)(mDuration * sDurationScale);
548     }
549 
550     /**
551      * Gets the length of the animation. The default duration is 300 milliseconds.
552      *
553      * @return The length of the animation, in milliseconds.
554      */
555     @Override
getDuration()556     public long getDuration() {
557         return mDuration;
558     }
559 
560     @Override
getTotalDuration()561     public long getTotalDuration() {
562         if (mRepeatCount == INFINITE) {
563             return DURATION_INFINITE;
564         } else {
565             return mStartDelay + (mDuration * (mRepeatCount + 1));
566         }
567     }
568 
569     /**
570      * Sets the position of the animation to the specified point in time. This time should
571      * be between 0 and the total duration of the animation, including any repetition. If
572      * the animation has not yet been started, then it will not advance forward after it is
573      * set to this time; it will simply set the time to this value and perform any appropriate
574      * actions based on that time. If the animation is already running, then setCurrentPlayTime()
575      * will set the current playing time to this value and continue playing from that point.
576      *
577      * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
578      */
setCurrentPlayTime(long playTime)579     public void setCurrentPlayTime(long playTime) {
580         float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
581         setCurrentFraction(fraction);
582     }
583 
584     /**
585      * Sets the position of the animation to the specified fraction. This fraction should
586      * be between 0 and the total fraction of the animation, including any repetition. That is,
587      * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
588      * and a value of 2 at the end of a reversing animator that repeats once. If
589      * the animation has not yet been started, then it will not advance forward after it is
590      * set to this fraction; it will simply set the fraction to this value and perform any
591      * appropriate actions based on that fraction. If the animation is already running, then
592      * setCurrentFraction() will set the current fraction to this value and continue
593      * playing from that point. {@link Animator.AnimatorListener} events are not called
594      * due to changing the fraction; those events are only processed while the animation
595      * is running.
596      *
597      * @param fraction The fraction to which the animation is advanced or rewound. Values
598      * outside the range of 0 to the maximum fraction for the animator will be clamped to
599      * the correct range.
600      */
setCurrentFraction(float fraction)601     public void setCurrentFraction(float fraction) {
602         initAnimation();
603         fraction = clampFraction(fraction);
604         long seekTime = (long) (getScaledDuration() * fraction);
605         long currentTime = AnimationUtils.currentAnimationTimeMillis();
606         mStartTime = currentTime - seekTime;
607         mStartTimeCommitted = true; // do not allow start time to be compensated for jank
608         if (!isPulsingInternal()) {
609             // If the animation loop hasn't started, the startTime will be adjusted in the first
610             // frame based on seek fraction.
611             mSeekFraction = fraction;
612         }
613         mOverallFraction = fraction;
614         final float currentIterationFraction = getCurrentIterationFraction(fraction);
615         animateValue(currentIterationFraction);
616     }
617 
618     /**
619      * Calculates current iteration based on the overall fraction. The overall fraction will be
620      * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
621      * iteration can be derived from it.
622      */
getCurrentIteration(float fraction)623     private int getCurrentIteration(float fraction) {
624         fraction = clampFraction(fraction);
625         // If the overall fraction is a positive integer, we consider the current iteration to be
626         // complete. In other words, the fraction for the current iteration would be 1, and the
627         // current iteration would be overall fraction - 1.
628         double iteration = Math.floor(fraction);
629         if (fraction == iteration && fraction > 0) {
630             iteration--;
631         }
632         return (int) iteration;
633     }
634 
635     /**
636      * Calculates the fraction of the current iteration, taking into account whether the animation
637      * should be played backwards. E.g. When the animation is played backwards in an iteration,
638      * the fraction for that iteration will go from 1f to 0f.
639      */
getCurrentIterationFraction(float fraction)640     private float getCurrentIterationFraction(float fraction) {
641         fraction = clampFraction(fraction);
642         int iteration = getCurrentIteration(fraction);
643         float currentFraction = fraction - iteration;
644         return shouldPlayBackward(iteration) ? 1f - currentFraction : currentFraction;
645     }
646 
647     /**
648      * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
649      * no upper bound will be set for the fraction.
650      *
651      * @param fraction fraction to be clamped
652      * @return fraction clamped into the range of [0, mRepeatCount + 1]
653      */
clampFraction(float fraction)654     private float clampFraction(float fraction) {
655         if (fraction < 0) {
656             fraction = 0;
657         } else if (mRepeatCount != INFINITE) {
658             fraction = Math.min(fraction, mRepeatCount + 1);
659         }
660         return fraction;
661     }
662 
663     /**
664      * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
665      * whether the entire animation is being reversed, 2) repeat mode applied to the current
666      * iteration.
667      */
shouldPlayBackward(int iteration)668     private boolean shouldPlayBackward(int iteration) {
669         if (iteration > 0 && mRepeatMode == REVERSE &&
670                 (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
671             // if we were seeked to some other iteration in a reversing animator,
672             // figure out the correct direction to start playing based on the iteration
673             if (mReversing) {
674                 return (iteration % 2) == 0;
675             } else {
676                 return (iteration % 2) != 0;
677             }
678         } else {
679             return mReversing;
680         }
681     }
682 
683     /**
684      * Gets the current position of the animation in time, which is equal to the current
685      * time minus the time that the animation started. An animation that is not yet started will
686      * return a value of zero, unless the animation has has its play time set via
687      * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
688      * it will return the time that was set.
689      *
690      * @return The current position in time of the animation.
691      */
getCurrentPlayTime()692     public long getCurrentPlayTime() {
693         if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
694             return 0;
695         }
696         if (mSeekFraction >= 0) {
697             return (long) (mDuration * mSeekFraction);
698         }
699         float durationScale = sDurationScale == 0 ? 1 : sDurationScale;
700         return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
701     }
702 
703     /**
704      * The amount of time, in milliseconds, to delay starting the animation after
705      * {@link #start()} is called.
706      *
707      * @return the number of milliseconds to delay running the animation
708      */
709     @Override
getStartDelay()710     public long getStartDelay() {
711         return mStartDelay;
712     }
713 
714     /**
715      * The amount of time, in milliseconds, to delay starting the animation after
716      * {@link #start()} is called. Note that the start delay should always be non-negative. Any
717      * negative start delay will be clamped to 0 on N and above.
718      *
719      * @param startDelay The amount of the delay, in milliseconds
720      */
721     @Override
setStartDelay(long startDelay)722     public void setStartDelay(long startDelay) {
723         // Clamp start delay to non-negative range.
724         if (startDelay < 0) {
725             Log.w(TAG, "Start delay should always be non-negative");
726             startDelay = 0;
727         }
728         mStartDelay = startDelay;
729     }
730 
731     /**
732      * The amount of time, in milliseconds, between each frame of the animation. This is a
733      * requested time that the animation will attempt to honor, but the actual delay between
734      * frames may be different, depending on system load and capabilities. This is a static
735      * function because the same delay will be applied to all animations, since they are all
736      * run off of a single timing loop.
737      *
738      * The frame delay may be ignored when the animation system uses an external timing
739      * source, such as the display refresh rate (vsync), to govern animations.
740      *
741      * Note that this method should be called from the same thread that {@link #start()} is
742      * called in order to check the frame delay for that animation. A runtime exception will be
743      * thrown if the calling thread does not have a Looper.
744      *
745      * @return the requested time between frames, in milliseconds
746      */
getFrameDelay()747     public static long getFrameDelay() {
748         return AnimationHandler.getInstance().getFrameDelay();
749     }
750 
751     /**
752      * The amount of time, in milliseconds, between each frame of the animation. This is a
753      * requested time that the animation will attempt to honor, but the actual delay between
754      * frames may be different, depending on system load and capabilities. This is a static
755      * function because the same delay will be applied to all animations, since they are all
756      * run off of a single timing loop.
757      *
758      * The frame delay may be ignored when the animation system uses an external timing
759      * source, such as the display refresh rate (vsync), to govern animations.
760      *
761      * Note that this method should be called from the same thread that {@link #start()} is
762      * called in order to have the new frame delay take effect on that animation. A runtime
763      * exception will be thrown if the calling thread does not have a Looper.
764      *
765      * @param frameDelay the requested time between frames, in milliseconds
766      */
setFrameDelay(long frameDelay)767     public static void setFrameDelay(long frameDelay) {
768         AnimationHandler.getInstance().setFrameDelay(frameDelay);
769     }
770 
771     /**
772      * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
773      * property being animated. This value is only sensible while the animation is running. The main
774      * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
775      * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
776      * is called during each animation frame, immediately after the value is calculated.
777      *
778      * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
779      * the single property being animated. If there are several properties being animated
780      * (specified by several PropertyValuesHolder objects in the constructor), this function
781      * returns the animated value for the first of those objects.
782      */
getAnimatedValue()783     public Object getAnimatedValue() {
784         if (mValues != null && mValues.length > 0) {
785             return mValues[0].getAnimatedValue();
786         }
787         // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
788         return null;
789     }
790 
791     /**
792      * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
793      * The main purpose for this read-only property is to retrieve the value from the
794      * <code>ValueAnimator</code> during a call to
795      * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
796      * is called during each animation frame, immediately after the value is calculated.
797      *
798      * @return animatedValue The value most recently calculated for the named property
799      * by this <code>ValueAnimator</code>.
800      */
getAnimatedValue(String propertyName)801     public Object getAnimatedValue(String propertyName) {
802         PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
803         if (valuesHolder != null) {
804             return valuesHolder.getAnimatedValue();
805         } else {
806             // At least avoid crashing if called with bogus propertyName
807             return null;
808         }
809     }
810 
811     /**
812      * Sets how many times the animation should be repeated. If the repeat
813      * count is 0, the animation is never repeated. If the repeat count is
814      * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
815      * into account. The repeat count is 0 by default.
816      *
817      * @param value the number of times the animation should be repeated
818      */
setRepeatCount(int value)819     public void setRepeatCount(int value) {
820         mRepeatCount = value;
821     }
822     /**
823      * Defines how many times the animation should repeat. The default value
824      * is 0.
825      *
826      * @return the number of times the animation should repeat, or {@link #INFINITE}
827      */
getRepeatCount()828     public int getRepeatCount() {
829         return mRepeatCount;
830     }
831 
832     /**
833      * Defines what this animation should do when it reaches the end. This
834      * setting is applied only when the repeat count is either greater than
835      * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
836      *
837      * @param value {@link #RESTART} or {@link #REVERSE}
838      */
setRepeatMode(@epeatMode int value)839     public void setRepeatMode(@RepeatMode int value) {
840         mRepeatMode = value;
841     }
842 
843     /**
844      * Defines what this animation should do when it reaches the end.
845      *
846      * @return either one of {@link #REVERSE} or {@link #RESTART}
847      */
848     @RepeatMode
getRepeatMode()849     public int getRepeatMode() {
850         return mRepeatMode;
851     }
852 
853     /**
854      * Adds a listener to the set of listeners that are sent update events through the life of
855      * an animation. This method is called on all listeners for every frame of the animation,
856      * after the values for the animation have been calculated.
857      *
858      * @param listener the listener to be added to the current set of listeners for this animation.
859      */
addUpdateListener(AnimatorUpdateListener listener)860     public void addUpdateListener(AnimatorUpdateListener listener) {
861         if (mUpdateListeners == null) {
862             mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
863         }
864         mUpdateListeners.add(listener);
865     }
866 
867     /**
868      * Removes all listeners from the set listening to frame updates for this animation.
869      */
removeAllUpdateListeners()870     public void removeAllUpdateListeners() {
871         if (mUpdateListeners == null) {
872             return;
873         }
874         mUpdateListeners.clear();
875         mUpdateListeners = null;
876     }
877 
878     /**
879      * Removes a listener from the set listening to frame updates for this animation.
880      *
881      * @param listener the listener to be removed from the current set of update listeners
882      * for this animation.
883      */
removeUpdateListener(AnimatorUpdateListener listener)884     public void removeUpdateListener(AnimatorUpdateListener listener) {
885         if (mUpdateListeners == null) {
886             return;
887         }
888         mUpdateListeners.remove(listener);
889         if (mUpdateListeners.size() == 0) {
890             mUpdateListeners = null;
891         }
892     }
893 
894 
895     /**
896      * The time interpolator used in calculating the elapsed fraction of this animation. The
897      * interpolator determines whether the animation runs with linear or non-linear motion,
898      * such as acceleration and deceleration. The default value is
899      * {@link android.view.animation.AccelerateDecelerateInterpolator}
900      *
901      * @param value the interpolator to be used by this animation. A value of <code>null</code>
902      * will result in linear interpolation.
903      */
904     @Override
setInterpolator(TimeInterpolator value)905     public void setInterpolator(TimeInterpolator value) {
906         if (value != null) {
907             mInterpolator = value;
908         } else {
909             mInterpolator = new LinearInterpolator();
910         }
911     }
912 
913     /**
914      * Returns the timing interpolator that this ValueAnimator uses.
915      *
916      * @return The timing interpolator for this ValueAnimator.
917      */
918     @Override
getInterpolator()919     public TimeInterpolator getInterpolator() {
920         return mInterpolator;
921     }
922 
923     /**
924      * The type evaluator to be used when calculating the animated values of this animation.
925      * The system will automatically assign a float or int evaluator based on the type
926      * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
927      * are not one of these primitive types, or if different evaluation is desired (such as is
928      * necessary with int values that represent colors), a custom evaluator needs to be assigned.
929      * For example, when running an animation on color values, the {@link ArgbEvaluator}
930      * should be used to get correct RGB color interpolation.
931      *
932      * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
933      * will be used for that set. If there are several sets of values being animated, which is
934      * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
935      * is assigned just to the first PropertyValuesHolder object.</p>
936      *
937      * @param value the evaluator to be used this animation
938      */
setEvaluator(TypeEvaluator value)939     public void setEvaluator(TypeEvaluator value) {
940         if (value != null && mValues != null && mValues.length > 0) {
941             mValues[0].setEvaluator(value);
942         }
943     }
944 
notifyStartListeners()945     private void notifyStartListeners() {
946         if (mListeners != null && !mStartListenersCalled) {
947             ArrayList<AnimatorListener> tmpListeners =
948                     (ArrayList<AnimatorListener>) mListeners.clone();
949             int numListeners = tmpListeners.size();
950             for (int i = 0; i < numListeners; ++i) {
951                 tmpListeners.get(i).onAnimationStart(this);
952             }
953         }
954         mStartListenersCalled = true;
955     }
956 
957     /**
958      * Start the animation playing. This version of start() takes a boolean flag that indicates
959      * whether the animation should play in reverse. The flag is usually false, but may be set
960      * to true if called from the reverse() method.
961      *
962      * <p>The animation started by calling this method will be run on the thread that called
963      * this method. This thread should have a Looper on it (a runtime exception will be thrown if
964      * this is not the case). Also, if the animation will animate
965      * properties of objects in the view hierarchy, then the calling thread should be the UI
966      * thread for that view hierarchy.</p>
967      *
968      * @param playBackwards Whether the ValueAnimator should start playing in reverse.
969      */
start(boolean playBackwards)970     private void start(boolean playBackwards) {
971         if (Looper.myLooper() == null) {
972             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
973         }
974         mReversing = playBackwards;
975         // Special case: reversing from seek-to-0 should act as if not seeked at all.
976         if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
977             if (mRepeatCount == INFINITE) {
978                 // Calculate the fraction of the current iteration.
979                 float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
980                 mSeekFraction = 1 - fraction;
981             } else {
982                 mSeekFraction = 1 + mRepeatCount - mSeekFraction;
983             }
984         }
985         mStarted = true;
986         mPaused = false;
987         mRunning = false;
988         mAnimationEndRequested = false;
989         // Resets mLastFrameTime when start() is called, so that if the animation was running,
990         // calling start() would put the animation in the
991         // started-but-not-yet-reached-the-first-frame phase.
992         mLastFrameTime = 0;
993         AnimationHandler animationHandler = AnimationHandler.getInstance();
994         animationHandler.addAnimationFrameCallback(this, (long) (mStartDelay * sDurationScale));
995 
996         if (mStartDelay == 0 || mSeekFraction >= 0) {
997             // If there's no start delay, init the animation and notify start listeners right away
998             // to be consistent with the previous behavior. Otherwise, postpone this until the first
999             // frame after the start delay.
1000             startAnimation();
1001             if (mSeekFraction == -1) {
1002                 // No seek, start at play time 0. Note that the reason we are not using fraction 0
1003                 // is because for animations with 0 duration, we want to be consistent with pre-N
1004                 // behavior: skip to the final value immediately.
1005                 setCurrentPlayTime(0);
1006             } else {
1007                 setCurrentFraction(mSeekFraction);
1008             }
1009         }
1010     }
1011 
1012     @Override
start()1013     public void start() {
1014         start(false);
1015     }
1016 
1017     @Override
cancel()1018     public void cancel() {
1019         if (Looper.myLooper() == null) {
1020             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1021         }
1022 
1023         // If end has already been requested, through a previous end() or cancel() call, no-op
1024         // until animation starts again.
1025         if (mAnimationEndRequested) {
1026             return;
1027         }
1028 
1029         // Only cancel if the animation is actually running or has been started and is about
1030         // to run
1031         // Only notify listeners if the animator has actually started
1032         if ((mStarted || mRunning) && mListeners != null) {
1033             if (!mRunning) {
1034                 // If it's not yet running, then start listeners weren't called. Call them now.
1035                 notifyStartListeners();
1036             }
1037             ArrayList<AnimatorListener> tmpListeners =
1038                     (ArrayList<AnimatorListener>) mListeners.clone();
1039             for (AnimatorListener listener : tmpListeners) {
1040                 listener.onAnimationCancel(this);
1041             }
1042         }
1043         endAnimation();
1044 
1045     }
1046 
1047     @Override
end()1048     public void end() {
1049         if (Looper.myLooper() == null) {
1050             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1051         }
1052         if (!mRunning) {
1053             // Special case if the animation has not yet started; get it ready for ending
1054             startAnimation();
1055             mStarted = true;
1056         } else if (!mInitialized) {
1057             initAnimation();
1058         }
1059         animateValue(shouldPlayBackward(mRepeatCount) ? 0f : 1f);
1060         endAnimation();
1061     }
1062 
1063     @Override
resume()1064     public void resume() {
1065         if (Looper.myLooper() == null) {
1066             throw new AndroidRuntimeException("Animators may only be resumed from the same " +
1067                     "thread that the animator was started on");
1068         }
1069         if (mPaused && !mResumed) {
1070             mResumed = true;
1071             if (mPauseTime > 0) {
1072                 AnimationHandler handler = AnimationHandler.getInstance();
1073                 handler.addAnimationFrameCallback(this, 0);
1074             }
1075         }
1076         super.resume();
1077     }
1078 
1079     @Override
pause()1080     public void pause() {
1081         boolean previouslyPaused = mPaused;
1082         super.pause();
1083         if (!previouslyPaused && mPaused) {
1084             mPauseTime = -1;
1085             mResumed = false;
1086         }
1087     }
1088 
1089     @Override
isRunning()1090     public boolean isRunning() {
1091         return mRunning;
1092     }
1093 
1094     @Override
isStarted()1095     public boolean isStarted() {
1096         return mStarted;
1097     }
1098 
1099     /**
1100      * Plays the ValueAnimator in reverse. If the animation is already running,
1101      * it will stop itself and play backwards from the point reached when reverse was called.
1102      * If the animation is not currently running, then it will start from the end and
1103      * play backwards. This behavior is only set for the current animation; future playing
1104      * of the animation will use the default behavior of playing forward.
1105      */
1106     @Override
reverse()1107     public void reverse() {
1108         if (isPulsingInternal()) {
1109             long currentTime = AnimationUtils.currentAnimationTimeMillis();
1110             long currentPlayTime = currentTime - mStartTime;
1111             long timeLeft = getScaledDuration() - currentPlayTime;
1112             mStartTime = currentTime - timeLeft;
1113             mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1114             mReversing = !mReversing;
1115         } else if (mStarted) {
1116             mReversing = !mReversing;
1117             end();
1118         } else {
1119             start(true);
1120         }
1121     }
1122 
1123     /**
1124      * @hide
1125      */
1126     @Override
canReverse()1127     public boolean canReverse() {
1128         return true;
1129     }
1130 
1131     /**
1132      * Called internally to end an animation by removing it from the animations list. Must be
1133      * called on the UI thread.
1134      */
endAnimation()1135     private void endAnimation() {
1136         if (mAnimationEndRequested) {
1137             return;
1138         }
1139         AnimationHandler handler = AnimationHandler.getInstance();
1140         handler.removeCallback(this);
1141 
1142         mAnimationEndRequested = true;
1143         mPaused = false;
1144         if ((mStarted || mRunning) && mListeners != null) {
1145             if (!mRunning) {
1146                 // If it's not yet running, then start listeners weren't called. Call them now.
1147                 notifyStartListeners();
1148              }
1149             ArrayList<AnimatorListener> tmpListeners =
1150                     (ArrayList<AnimatorListener>) mListeners.clone();
1151             int numListeners = tmpListeners.size();
1152             for (int i = 0; i < numListeners; ++i) {
1153                 tmpListeners.get(i).onAnimationEnd(this);
1154             }
1155         }
1156         mRunning = false;
1157         mStarted = false;
1158         mStartListenersCalled = false;
1159         mReversing = false;
1160         mLastFrameTime = 0;
1161         if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1162             Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1163                     System.identityHashCode(this));
1164         }
1165     }
1166 
1167     /**
1168      * Called internally to start an animation by adding it to the active animations list. Must be
1169      * called on the UI thread.
1170      */
startAnimation()1171     private void startAnimation() {
1172         if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1173             Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1174                     System.identityHashCode(this));
1175         }
1176 
1177         mAnimationEndRequested = false;
1178         initAnimation();
1179         mRunning = true;
1180         if (mSeekFraction >= 0) {
1181             mOverallFraction = mSeekFraction;
1182         } else {
1183             mOverallFraction = 0f;
1184         }
1185         if (mListeners != null) {
1186             notifyStartListeners();
1187         }
1188     }
1189 
1190     /**
1191      * Internal only: This tracks whether the animation has gotten on the animation loop. Note
1192      * this is different than {@link #isRunning()} in that the latter tracks the time after start()
1193      * is called (or after start delay if any), which may be before the animation loop starts.
1194      */
isPulsingInternal()1195     private boolean isPulsingInternal() {
1196         return mLastFrameTime > 0;
1197     }
1198 
1199     /**
1200      * Returns the name of this animator for debugging purposes.
1201      */
getNameForTrace()1202     String getNameForTrace() {
1203         return "animator";
1204     }
1205 
1206     /**
1207      * Applies an adjustment to the animation to compensate for jank between when
1208      * the animation first ran and when the frame was drawn.
1209      * @hide
1210      */
commitAnimationFrame(long frameTime)1211     public void commitAnimationFrame(long frameTime) {
1212         if (!mStartTimeCommitted) {
1213             mStartTimeCommitted = true;
1214             long adjustment = frameTime - mLastFrameTime;
1215             if (adjustment > 0) {
1216                 mStartTime += adjustment;
1217                 if (DEBUG) {
1218                     Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1219                 }
1220             }
1221         }
1222     }
1223 
1224     /**
1225      * This internal function processes a single animation frame for a given animation. The
1226      * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1227      * elapsed duration, and therefore
1228      * the elapsed fraction, of the animation. The return value indicates whether the animation
1229      * should be ended (which happens when the elapsed time of the animation exceeds the
1230      * animation's duration, including the repeatCount).
1231      *
1232      * @param currentTime The current time, as tracked by the static timing handler
1233      * @return true if the animation's duration, including any repetitions due to
1234      * <code>repeatCount</code> has been exceeded and the animation should be ended.
1235      */
animateBasedOnTime(long currentTime)1236     boolean animateBasedOnTime(long currentTime) {
1237         boolean done = false;
1238         if (mRunning) {
1239             final long scaledDuration = getScaledDuration();
1240             final float fraction = scaledDuration > 0 ?
1241                     (float)(currentTime - mStartTime) / scaledDuration : 1f;
1242             final float lastFraction = mOverallFraction;
1243             final boolean newIteration = (int) fraction > (int) lastFraction;
1244             final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1245                     (mRepeatCount != INFINITE);
1246             if (scaledDuration == 0) {
1247                 // 0 duration animator, ignore the repeat count and skip to the end
1248                 done = true;
1249             } else if (newIteration && !lastIterationFinished) {
1250                 // Time to repeat
1251                 if (mListeners != null) {
1252                     int numListeners = mListeners.size();
1253                     for (int i = 0; i < numListeners; ++i) {
1254                         mListeners.get(i).onAnimationRepeat(this);
1255                     }
1256                 }
1257             } else if (lastIterationFinished) {
1258                 done = true;
1259             }
1260             mOverallFraction = clampFraction(fraction);
1261             float currentIterationFraction = getCurrentIterationFraction(mOverallFraction);
1262             animateValue(currentIterationFraction);
1263         }
1264         return done;
1265     }
1266 
1267     /**
1268      * Processes a frame of the animation, adjusting the start time if needed.
1269      *
1270      * @param frameTime The frame time.
1271      * @return true if the animation has ended.
1272      * @hide
1273      */
doAnimationFrame(long frameTime)1274     public final void doAnimationFrame(long frameTime) {
1275         AnimationHandler handler = AnimationHandler.getInstance();
1276         if (mLastFrameTime == 0) {
1277             // First frame
1278             handler.addOneShotCommitCallback(this);
1279             if (mStartDelay > 0) {
1280                 startAnimation();
1281             }
1282             if (mSeekFraction < 0) {
1283                 mStartTime = frameTime;
1284             } else {
1285                 long seekTime = (long) (getScaledDuration() * mSeekFraction);
1286                 mStartTime = frameTime - seekTime;
1287                 mSeekFraction = -1;
1288             }
1289             mStartTimeCommitted = false; // allow start time to be compensated for jank
1290         }
1291         mLastFrameTime = frameTime;
1292         if (mPaused) {
1293             mPauseTime = frameTime;
1294             handler.removeCallback(this);
1295             return;
1296         } else if (mResumed) {
1297             mResumed = false;
1298             if (mPauseTime > 0) {
1299                 // Offset by the duration that the animation was paused
1300                 mStartTime += (frameTime - mPauseTime);
1301                 mStartTimeCommitted = false; // allow start time to be compensated for jank
1302             }
1303             handler.addOneShotCommitCallback(this);
1304         }
1305         // The frame time might be before the start time during the first frame of
1306         // an animation.  The "current time" must always be on or after the start
1307         // time to avoid animating frames at negative time intervals.  In practice, this
1308         // is very rare and only happens when seeking backwards.
1309         final long currentTime = Math.max(frameTime, mStartTime);
1310         boolean finished = animateBasedOnTime(currentTime);
1311 
1312         if (finished) {
1313             endAnimation();
1314         }
1315     }
1316 
1317     /**
1318      * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1319      * the most recent frame update on the animation.
1320      *
1321      * @return Elapsed/interpolated fraction of the animation.
1322      */
getAnimatedFraction()1323     public float getAnimatedFraction() {
1324         return mCurrentFraction;
1325     }
1326 
1327     /**
1328      * This method is called with the elapsed fraction of the animation during every
1329      * animation frame. This function turns the elapsed fraction into an interpolated fraction
1330      * and then into an animated value (from the evaluator. The function is called mostly during
1331      * animation updates, but it is also called when the <code>end()</code>
1332      * function is called, to set the final value on the property.
1333      *
1334      * <p>Overrides of this method must call the superclass to perform the calculation
1335      * of the animated value.</p>
1336      *
1337      * @param fraction The elapsed fraction of the animation.
1338      */
1339     @CallSuper
animateValue(float fraction)1340     void animateValue(float fraction) {
1341         fraction = mInterpolator.getInterpolation(fraction);
1342         mCurrentFraction = fraction;
1343         int numValues = mValues.length;
1344         for (int i = 0; i < numValues; ++i) {
1345             mValues[i].calculateValue(fraction);
1346         }
1347         if (mUpdateListeners != null) {
1348             int numListeners = mUpdateListeners.size();
1349             for (int i = 0; i < numListeners; ++i) {
1350                 mUpdateListeners.get(i).onAnimationUpdate(this);
1351             }
1352         }
1353     }
1354 
1355     @Override
clone()1356     public ValueAnimator clone() {
1357         final ValueAnimator anim = (ValueAnimator) super.clone();
1358         if (mUpdateListeners != null) {
1359             anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1360         }
1361         anim.mSeekFraction = -1;
1362         anim.mReversing = false;
1363         anim.mInitialized = false;
1364         anim.mStarted = false;
1365         anim.mRunning = false;
1366         anim.mPaused = false;
1367         anim.mResumed = false;
1368         anim.mStartListenersCalled = false;
1369         anim.mStartTime = 0;
1370         anim.mStartTimeCommitted = false;
1371         anim.mAnimationEndRequested = false;
1372         anim.mPauseTime = 0;
1373         anim.mLastFrameTime = 0;
1374         anim.mOverallFraction = 0;
1375         anim.mCurrentFraction = 0;
1376 
1377         PropertyValuesHolder[] oldValues = mValues;
1378         if (oldValues != null) {
1379             int numValues = oldValues.length;
1380             anim.mValues = new PropertyValuesHolder[numValues];
1381             anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1382             for (int i = 0; i < numValues; ++i) {
1383                 PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1384                 anim.mValues[i] = newValuesHolder;
1385                 anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1386             }
1387         }
1388         return anim;
1389     }
1390 
1391     /**
1392      * Implementors of this interface can add themselves as update listeners
1393      * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1394      * frame, after the current frame's values have been calculated for that
1395      * <code>ValueAnimator</code>.
1396      */
1397     public static interface AnimatorUpdateListener {
1398         /**
1399          * <p>Notifies the occurrence of another frame of the animation.</p>
1400          *
1401          * @param animation The animation which was repeated.
1402          */
onAnimationUpdate(ValueAnimator animation)1403         void onAnimationUpdate(ValueAnimator animation);
1404 
1405     }
1406 
1407     /**
1408      * Return the number of animations currently running.
1409      *
1410      * Used by StrictMode internally to annotate violations.
1411      * May be called on arbitrary threads!
1412      *
1413      * @hide
1414      */
getCurrentAnimationsCount()1415     public static int getCurrentAnimationsCount() {
1416         return AnimationHandler.getAnimationCount();
1417     }
1418 
1419     @Override
toString()1420     public String toString() {
1421         String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1422         if (mValues != null) {
1423             for (int i = 0; i < mValues.length; ++i) {
1424                 returnVal += "\n    " + mValues[i].toString();
1425             }
1426         }
1427         return returnVal;
1428     }
1429 
1430     /**
1431      * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1432      * the UI thread. This is a hint that informs the ValueAnimator that it is
1433      * OK to run the animation off-thread, however ValueAnimator may decide
1434      * that it must run the animation on the UI thread anyway. For example if there
1435      * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1436      * regardless of the value of this hint.</p>
1437      *
1438      * <p>Regardless of whether or not the animation runs asynchronously, all
1439      * listener callbacks will be called on the UI thread.</p>
1440      *
1441      * <p>To be able to use this hint the following must be true:</p>
1442      * <ol>
1443      * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1444      * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1445      *    to change values, duration, delay, etc... may be ignored.</li>
1446      * <li>Lifecycle callback events may be asynchronous. Events such as
1447      *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1448      *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1449      *    as they must be posted back to the UI thread, and any actions performed
1450      *    by those callbacks (such as starting new animations) will not happen
1451      *    in the same frame.</li>
1452      * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1453      *    may be asynchronous. It is guaranteed that all state changes that are
1454      *    performed on the UI thread in the same frame will be applied as a single
1455      *    atomic update, however that frame may be the current frame,
1456      *    the next frame, or some future frame. This will also impact the observed
1457      *    state of the Animator. For example, {@link #isStarted()} may still return true
1458      *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1459      *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1460      *    for this reason.</li>
1461      * </ol>
1462      * @hide
1463      */
1464     @Override
setAllowRunningAsynchronously(boolean mayRunAsync)1465     public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1466         // It is up to subclasses to support this, if they can.
1467     }
1468 }
1469