1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // ...
26 // %i.next = add %i, 1
27 // %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 // of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 // smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 // multiple base registers, or as the increment expression in an addrec),
48 // we may not actually need both reg and (-1 * reg) in registers; the
49 // negation can be implemented by using a sub instead of an add. The
50 // lack of support for taking this into consideration when making
51 // register pressure decisions is partly worked around by the "Special"
52 // use kind.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/Hashing.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallBitVector.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include <algorithm>
79 using namespace llvm;
80
81 #define DEBUG_TYPE "loop-reduce"
82
83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
84 /// bail out. This threshold is far beyond the number of users that LSR can
85 /// conceivably solve, so it should not affect generated code, but catches the
86 /// worst cases before LSR burns too much compile time and stack space.
87 static const unsigned MaxIVUsers = 200;
88
89 // Temporary flag to cleanup congruent phis after LSR phi expansion.
90 // It's currently disabled until we can determine whether it's truly useful or
91 // not. The flag should be removed after the v3.0 release.
92 // This is now needed for ivchains.
93 static cl::opt<bool> EnablePhiElim(
94 "enable-lsr-phielim", cl::Hidden, cl::init(true),
95 cl::desc("Enable LSR phi elimination"));
96
97 #ifndef NDEBUG
98 // Stress test IV chain generation.
99 static cl::opt<bool> StressIVChain(
100 "stress-ivchain", cl::Hidden, cl::init(false),
101 cl::desc("Stress test LSR IV chains"));
102 #else
103 static bool StressIVChain = false;
104 #endif
105
106 namespace {
107
108 struct MemAccessTy {
109 /// Used in situations where the accessed memory type is unknown.
110 static const unsigned UnknownAddressSpace = ~0u;
111
112 Type *MemTy;
113 unsigned AddrSpace;
114
MemAccessTy__anondd02b9d70111::MemAccessTy115 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
116
MemAccessTy__anondd02b9d70111::MemAccessTy117 MemAccessTy(Type *Ty, unsigned AS) :
118 MemTy(Ty), AddrSpace(AS) {}
119
operator ==__anondd02b9d70111::MemAccessTy120 bool operator==(MemAccessTy Other) const {
121 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
122 }
123
operator !=__anondd02b9d70111::MemAccessTy124 bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
125
getUnknown__anondd02b9d70111::MemAccessTy126 static MemAccessTy getUnknown(LLVMContext &Ctx) {
127 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
128 }
129 };
130
131 /// This class holds data which is used to order reuse candidates.
132 class RegSortData {
133 public:
134 /// This represents the set of LSRUse indices which reference
135 /// a particular register.
136 SmallBitVector UsedByIndices;
137
138 void print(raw_ostream &OS) const;
139 void dump() const;
140 };
141
142 }
143
print(raw_ostream & OS) const144 void RegSortData::print(raw_ostream &OS) const {
145 OS << "[NumUses=" << UsedByIndices.count() << ']';
146 }
147
148 LLVM_DUMP_METHOD
dump() const149 void RegSortData::dump() const {
150 print(errs()); errs() << '\n';
151 }
152
153 namespace {
154
155 /// Map register candidates to information about how they are used.
156 class RegUseTracker {
157 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
158
159 RegUsesTy RegUsesMap;
160 SmallVector<const SCEV *, 16> RegSequence;
161
162 public:
163 void countRegister(const SCEV *Reg, size_t LUIdx);
164 void dropRegister(const SCEV *Reg, size_t LUIdx);
165 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
166
167 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
168
169 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
170
171 void clear();
172
173 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
174 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
begin()175 iterator begin() { return RegSequence.begin(); }
end()176 iterator end() { return RegSequence.end(); }
begin() const177 const_iterator begin() const { return RegSequence.begin(); }
end() const178 const_iterator end() const { return RegSequence.end(); }
179 };
180
181 }
182
183 void
countRegister(const SCEV * Reg,size_t LUIdx)184 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
185 std::pair<RegUsesTy::iterator, bool> Pair =
186 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
187 RegSortData &RSD = Pair.first->second;
188 if (Pair.second)
189 RegSequence.push_back(Reg);
190 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
191 RSD.UsedByIndices.set(LUIdx);
192 }
193
194 void
dropRegister(const SCEV * Reg,size_t LUIdx)195 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
196 RegUsesTy::iterator It = RegUsesMap.find(Reg);
197 assert(It != RegUsesMap.end());
198 RegSortData &RSD = It->second;
199 assert(RSD.UsedByIndices.size() > LUIdx);
200 RSD.UsedByIndices.reset(LUIdx);
201 }
202
203 void
swapAndDropUse(size_t LUIdx,size_t LastLUIdx)204 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
205 assert(LUIdx <= LastLUIdx);
206
207 // Update RegUses. The data structure is not optimized for this purpose;
208 // we must iterate through it and update each of the bit vectors.
209 for (auto &Pair : RegUsesMap) {
210 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
211 if (LUIdx < UsedByIndices.size())
212 UsedByIndices[LUIdx] =
213 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
214 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
215 }
216 }
217
218 bool
isRegUsedByUsesOtherThan(const SCEV * Reg,size_t LUIdx) const219 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
220 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
221 if (I == RegUsesMap.end())
222 return false;
223 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
224 int i = UsedByIndices.find_first();
225 if (i == -1) return false;
226 if ((size_t)i != LUIdx) return true;
227 return UsedByIndices.find_next(i) != -1;
228 }
229
getUsedByIndices(const SCEV * Reg) const230 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
231 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
232 assert(I != RegUsesMap.end() && "Unknown register!");
233 return I->second.UsedByIndices;
234 }
235
clear()236 void RegUseTracker::clear() {
237 RegUsesMap.clear();
238 RegSequence.clear();
239 }
240
241 namespace {
242
243 /// This class holds information that describes a formula for computing
244 /// satisfying a use. It may include broken-out immediates and scaled registers.
245 struct Formula {
246 /// Global base address used for complex addressing.
247 GlobalValue *BaseGV;
248
249 /// Base offset for complex addressing.
250 int64_t BaseOffset;
251
252 /// Whether any complex addressing has a base register.
253 bool HasBaseReg;
254
255 /// The scale of any complex addressing.
256 int64_t Scale;
257
258 /// The list of "base" registers for this use. When this is non-empty. The
259 /// canonical representation of a formula is
260 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
261 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
262 /// #1 enforces that the scaled register is always used when at least two
263 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
264 /// #2 enforces that 1 * reg is reg.
265 /// This invariant can be temporarly broken while building a formula.
266 /// However, every formula inserted into the LSRInstance must be in canonical
267 /// form.
268 SmallVector<const SCEV *, 4> BaseRegs;
269
270 /// The 'scaled' register for this use. This should be non-null when Scale is
271 /// not zero.
272 const SCEV *ScaledReg;
273
274 /// An additional constant offset which added near the use. This requires a
275 /// temporary register, but the offset itself can live in an add immediate
276 /// field rather than a register.
277 int64_t UnfoldedOffset;
278
Formula__anondd02b9d70311::Formula279 Formula()
280 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
281 ScaledReg(nullptr), UnfoldedOffset(0) {}
282
283 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
284
285 bool isCanonical() const;
286
287 void canonicalize();
288
289 bool unscale();
290
291 size_t getNumRegs() const;
292 Type *getType() const;
293
294 void deleteBaseReg(const SCEV *&S);
295
296 bool referencesReg(const SCEV *S) const;
297 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
298 const RegUseTracker &RegUses) const;
299
300 void print(raw_ostream &OS) const;
301 void dump() const;
302 };
303
304 }
305
306 /// Recursion helper for initialMatch.
DoInitialMatch(const SCEV * S,Loop * L,SmallVectorImpl<const SCEV * > & Good,SmallVectorImpl<const SCEV * > & Bad,ScalarEvolution & SE)307 static void DoInitialMatch(const SCEV *S, Loop *L,
308 SmallVectorImpl<const SCEV *> &Good,
309 SmallVectorImpl<const SCEV *> &Bad,
310 ScalarEvolution &SE) {
311 // Collect expressions which properly dominate the loop header.
312 if (SE.properlyDominates(S, L->getHeader())) {
313 Good.push_back(S);
314 return;
315 }
316
317 // Look at add operands.
318 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
319 for (const SCEV *S : Add->operands())
320 DoInitialMatch(S, L, Good, Bad, SE);
321 return;
322 }
323
324 // Look at addrec operands.
325 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
326 if (!AR->getStart()->isZero()) {
327 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
328 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
329 AR->getStepRecurrence(SE),
330 // FIXME: AR->getNoWrapFlags()
331 AR->getLoop(), SCEV::FlagAnyWrap),
332 L, Good, Bad, SE);
333 return;
334 }
335
336 // Handle a multiplication by -1 (negation) if it didn't fold.
337 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
338 if (Mul->getOperand(0)->isAllOnesValue()) {
339 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
340 const SCEV *NewMul = SE.getMulExpr(Ops);
341
342 SmallVector<const SCEV *, 4> MyGood;
343 SmallVector<const SCEV *, 4> MyBad;
344 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
345 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
346 SE.getEffectiveSCEVType(NewMul->getType())));
347 for (const SCEV *S : MyGood)
348 Good.push_back(SE.getMulExpr(NegOne, S));
349 for (const SCEV *S : MyBad)
350 Bad.push_back(SE.getMulExpr(NegOne, S));
351 return;
352 }
353
354 // Ok, we can't do anything interesting. Just stuff the whole thing into a
355 // register and hope for the best.
356 Bad.push_back(S);
357 }
358
359 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
360 /// all loop-invariant and loop-computable values in a single base register.
initialMatch(const SCEV * S,Loop * L,ScalarEvolution & SE)361 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
362 SmallVector<const SCEV *, 4> Good;
363 SmallVector<const SCEV *, 4> Bad;
364 DoInitialMatch(S, L, Good, Bad, SE);
365 if (!Good.empty()) {
366 const SCEV *Sum = SE.getAddExpr(Good);
367 if (!Sum->isZero())
368 BaseRegs.push_back(Sum);
369 HasBaseReg = true;
370 }
371 if (!Bad.empty()) {
372 const SCEV *Sum = SE.getAddExpr(Bad);
373 if (!Sum->isZero())
374 BaseRegs.push_back(Sum);
375 HasBaseReg = true;
376 }
377 canonicalize();
378 }
379
380 /// \brief Check whether or not this formula statisfies the canonical
381 /// representation.
382 /// \see Formula::BaseRegs.
isCanonical() const383 bool Formula::isCanonical() const {
384 if (ScaledReg)
385 return Scale != 1 || !BaseRegs.empty();
386 return BaseRegs.size() <= 1;
387 }
388
389 /// \brief Helper method to morph a formula into its canonical representation.
390 /// \see Formula::BaseRegs.
391 /// Every formula having more than one base register, must use the ScaledReg
392 /// field. Otherwise, we would have to do special cases everywhere in LSR
393 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
394 /// On the other hand, 1*reg should be canonicalized into reg.
canonicalize()395 void Formula::canonicalize() {
396 if (isCanonical())
397 return;
398 // So far we did not need this case. This is easy to implement but it is
399 // useless to maintain dead code. Beside it could hurt compile time.
400 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
401 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
402 ScaledReg = BaseRegs.back();
403 BaseRegs.pop_back();
404 Scale = 1;
405 size_t BaseRegsSize = BaseRegs.size();
406 size_t Try = 0;
407 // If ScaledReg is an invariant, try to find a variant expression.
408 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
409 std::swap(ScaledReg, BaseRegs[Try++]);
410 }
411
412 /// \brief Get rid of the scale in the formula.
413 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
414 /// \return true if it was possible to get rid of the scale, false otherwise.
415 /// \note After this operation the formula may not be in the canonical form.
unscale()416 bool Formula::unscale() {
417 if (Scale != 1)
418 return false;
419 Scale = 0;
420 BaseRegs.push_back(ScaledReg);
421 ScaledReg = nullptr;
422 return true;
423 }
424
425 /// Return the total number of register operands used by this formula. This does
426 /// not include register uses implied by non-constant addrec strides.
getNumRegs() const427 size_t Formula::getNumRegs() const {
428 return !!ScaledReg + BaseRegs.size();
429 }
430
431 /// Return the type of this formula, if it has one, or null otherwise. This type
432 /// is meaningless except for the bit size.
getType() const433 Type *Formula::getType() const {
434 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
435 ScaledReg ? ScaledReg->getType() :
436 BaseGV ? BaseGV->getType() :
437 nullptr;
438 }
439
440 /// Delete the given base reg from the BaseRegs list.
deleteBaseReg(const SCEV * & S)441 void Formula::deleteBaseReg(const SCEV *&S) {
442 if (&S != &BaseRegs.back())
443 std::swap(S, BaseRegs.back());
444 BaseRegs.pop_back();
445 }
446
447 /// Test if this formula references the given register.
referencesReg(const SCEV * S) const448 bool Formula::referencesReg(const SCEV *S) const {
449 return S == ScaledReg ||
450 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
451 }
452
453 /// Test whether this formula uses registers which are used by uses other than
454 /// the use with the given index.
hasRegsUsedByUsesOtherThan(size_t LUIdx,const RegUseTracker & RegUses) const455 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
456 const RegUseTracker &RegUses) const {
457 if (ScaledReg)
458 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
459 return true;
460 for (const SCEV *BaseReg : BaseRegs)
461 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
462 return true;
463 return false;
464 }
465
print(raw_ostream & OS) const466 void Formula::print(raw_ostream &OS) const {
467 bool First = true;
468 if (BaseGV) {
469 if (!First) OS << " + "; else First = false;
470 BaseGV->printAsOperand(OS, /*PrintType=*/false);
471 }
472 if (BaseOffset != 0) {
473 if (!First) OS << " + "; else First = false;
474 OS << BaseOffset;
475 }
476 for (const SCEV *BaseReg : BaseRegs) {
477 if (!First) OS << " + "; else First = false;
478 OS << "reg(" << *BaseReg << ')';
479 }
480 if (HasBaseReg && BaseRegs.empty()) {
481 if (!First) OS << " + "; else First = false;
482 OS << "**error: HasBaseReg**";
483 } else if (!HasBaseReg && !BaseRegs.empty()) {
484 if (!First) OS << " + "; else First = false;
485 OS << "**error: !HasBaseReg**";
486 }
487 if (Scale != 0) {
488 if (!First) OS << " + "; else First = false;
489 OS << Scale << "*reg(";
490 if (ScaledReg)
491 OS << *ScaledReg;
492 else
493 OS << "<unknown>";
494 OS << ')';
495 }
496 if (UnfoldedOffset != 0) {
497 if (!First) OS << " + ";
498 OS << "imm(" << UnfoldedOffset << ')';
499 }
500 }
501
502 LLVM_DUMP_METHOD
dump() const503 void Formula::dump() const {
504 print(errs()); errs() << '\n';
505 }
506
507 /// Return true if the given addrec can be sign-extended without changing its
508 /// value.
isAddRecSExtable(const SCEVAddRecExpr * AR,ScalarEvolution & SE)509 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
510 Type *WideTy =
511 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
512 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
513 }
514
515 /// Return true if the given add can be sign-extended without changing its
516 /// value.
isAddSExtable(const SCEVAddExpr * A,ScalarEvolution & SE)517 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
518 Type *WideTy =
519 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
520 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
521 }
522
523 /// Return true if the given mul can be sign-extended without changing its
524 /// value.
isMulSExtable(const SCEVMulExpr * M,ScalarEvolution & SE)525 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
526 Type *WideTy =
527 IntegerType::get(SE.getContext(),
528 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
529 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
530 }
531
532 /// Return an expression for LHS /s RHS, if it can be determined and if the
533 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
534 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
535 /// the multiplication may overflow, which is useful when the result will be
536 /// used in a context where the most significant bits are ignored.
getExactSDiv(const SCEV * LHS,const SCEV * RHS,ScalarEvolution & SE,bool IgnoreSignificantBits=false)537 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
538 ScalarEvolution &SE,
539 bool IgnoreSignificantBits = false) {
540 // Handle the trivial case, which works for any SCEV type.
541 if (LHS == RHS)
542 return SE.getConstant(LHS->getType(), 1);
543
544 // Handle a few RHS special cases.
545 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
546 if (RC) {
547 const APInt &RA = RC->getAPInt();
548 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
549 // some folding.
550 if (RA.isAllOnesValue())
551 return SE.getMulExpr(LHS, RC);
552 // Handle x /s 1 as x.
553 if (RA == 1)
554 return LHS;
555 }
556
557 // Check for a division of a constant by a constant.
558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
559 if (!RC)
560 return nullptr;
561 const APInt &LA = C->getAPInt();
562 const APInt &RA = RC->getAPInt();
563 if (LA.srem(RA) != 0)
564 return nullptr;
565 return SE.getConstant(LA.sdiv(RA));
566 }
567
568 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
569 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
570 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
571 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
572 IgnoreSignificantBits);
573 if (!Step) return nullptr;
574 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
575 IgnoreSignificantBits);
576 if (!Start) return nullptr;
577 // FlagNW is independent of the start value, step direction, and is
578 // preserved with smaller magnitude steps.
579 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
580 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
581 }
582 return nullptr;
583 }
584
585 // Distribute the sdiv over add operands, if the add doesn't overflow.
586 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
587 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
588 SmallVector<const SCEV *, 8> Ops;
589 for (const SCEV *S : Add->operands()) {
590 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
591 if (!Op) return nullptr;
592 Ops.push_back(Op);
593 }
594 return SE.getAddExpr(Ops);
595 }
596 return nullptr;
597 }
598
599 // Check for a multiply operand that we can pull RHS out of.
600 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
601 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
602 SmallVector<const SCEV *, 4> Ops;
603 bool Found = false;
604 for (const SCEV *S : Mul->operands()) {
605 if (!Found)
606 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
607 IgnoreSignificantBits)) {
608 S = Q;
609 Found = true;
610 }
611 Ops.push_back(S);
612 }
613 return Found ? SE.getMulExpr(Ops) : nullptr;
614 }
615 return nullptr;
616 }
617
618 // Otherwise we don't know.
619 return nullptr;
620 }
621
622 /// If S involves the addition of a constant integer value, return that integer
623 /// value, and mutate S to point to a new SCEV with that value excluded.
ExtractImmediate(const SCEV * & S,ScalarEvolution & SE)624 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
625 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
626 if (C->getAPInt().getMinSignedBits() <= 64) {
627 S = SE.getConstant(C->getType(), 0);
628 return C->getValue()->getSExtValue();
629 }
630 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
631 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
632 int64_t Result = ExtractImmediate(NewOps.front(), SE);
633 if (Result != 0)
634 S = SE.getAddExpr(NewOps);
635 return Result;
636 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
637 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
638 int64_t Result = ExtractImmediate(NewOps.front(), SE);
639 if (Result != 0)
640 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
641 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
642 SCEV::FlagAnyWrap);
643 return Result;
644 }
645 return 0;
646 }
647
648 /// If S involves the addition of a GlobalValue address, return that symbol, and
649 /// mutate S to point to a new SCEV with that value excluded.
ExtractSymbol(const SCEV * & S,ScalarEvolution & SE)650 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
651 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
652 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
653 S = SE.getConstant(GV->getType(), 0);
654 return GV;
655 }
656 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
657 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
658 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
659 if (Result)
660 S = SE.getAddExpr(NewOps);
661 return Result;
662 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
663 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
664 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
665 if (Result)
666 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
667 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
668 SCEV::FlagAnyWrap);
669 return Result;
670 }
671 return nullptr;
672 }
673
674 /// Returns true if the specified instruction is using the specified value as an
675 /// address.
isAddressUse(Instruction * Inst,Value * OperandVal)676 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
677 bool isAddress = isa<LoadInst>(Inst);
678 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
679 if (SI->getOperand(1) == OperandVal)
680 isAddress = true;
681 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
682 // Addressing modes can also be folded into prefetches and a variety
683 // of intrinsics.
684 switch (II->getIntrinsicID()) {
685 default: break;
686 case Intrinsic::prefetch:
687 case Intrinsic::x86_sse_storeu_ps:
688 case Intrinsic::x86_sse2_storeu_pd:
689 case Intrinsic::x86_sse2_storeu_dq:
690 case Intrinsic::x86_sse2_storel_dq:
691 if (II->getArgOperand(0) == OperandVal)
692 isAddress = true;
693 break;
694 }
695 }
696 return isAddress;
697 }
698
699 /// Return the type of the memory being accessed.
getAccessType(const Instruction * Inst)700 static MemAccessTy getAccessType(const Instruction *Inst) {
701 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
702 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
703 AccessTy.MemTy = SI->getOperand(0)->getType();
704 AccessTy.AddrSpace = SI->getPointerAddressSpace();
705 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
706 AccessTy.AddrSpace = LI->getPointerAddressSpace();
707 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
708 // Addressing modes can also be folded into prefetches and a variety
709 // of intrinsics.
710 switch (II->getIntrinsicID()) {
711 default: break;
712 case Intrinsic::x86_sse_storeu_ps:
713 case Intrinsic::x86_sse2_storeu_pd:
714 case Intrinsic::x86_sse2_storeu_dq:
715 case Intrinsic::x86_sse2_storel_dq:
716 AccessTy.MemTy = II->getArgOperand(0)->getType();
717 break;
718 }
719 }
720
721 // All pointers have the same requirements, so canonicalize them to an
722 // arbitrary pointer type to minimize variation.
723 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
724 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
725 PTy->getAddressSpace());
726
727 return AccessTy;
728 }
729
730 /// Return true if this AddRec is already a phi in its loop.
isExistingPhi(const SCEVAddRecExpr * AR,ScalarEvolution & SE)731 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
732 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
733 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
734 if (SE.isSCEVable(PN->getType()) &&
735 (SE.getEffectiveSCEVType(PN->getType()) ==
736 SE.getEffectiveSCEVType(AR->getType())) &&
737 SE.getSCEV(PN) == AR)
738 return true;
739 }
740 return false;
741 }
742
743 /// Check if expanding this expression is likely to incur significant cost. This
744 /// is tricky because SCEV doesn't track which expressions are actually computed
745 /// by the current IR.
746 ///
747 /// We currently allow expansion of IV increments that involve adds,
748 /// multiplication by constants, and AddRecs from existing phis.
749 ///
750 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
751 /// obvious multiple of the UDivExpr.
isHighCostExpansion(const SCEV * S,SmallPtrSetImpl<const SCEV * > & Processed,ScalarEvolution & SE)752 static bool isHighCostExpansion(const SCEV *S,
753 SmallPtrSetImpl<const SCEV*> &Processed,
754 ScalarEvolution &SE) {
755 // Zero/One operand expressions
756 switch (S->getSCEVType()) {
757 case scUnknown:
758 case scConstant:
759 return false;
760 case scTruncate:
761 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
762 Processed, SE);
763 case scZeroExtend:
764 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
765 Processed, SE);
766 case scSignExtend:
767 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
768 Processed, SE);
769 }
770
771 if (!Processed.insert(S).second)
772 return false;
773
774 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
775 for (const SCEV *S : Add->operands()) {
776 if (isHighCostExpansion(S, Processed, SE))
777 return true;
778 }
779 return false;
780 }
781
782 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
783 if (Mul->getNumOperands() == 2) {
784 // Multiplication by a constant is ok
785 if (isa<SCEVConstant>(Mul->getOperand(0)))
786 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
787
788 // If we have the value of one operand, check if an existing
789 // multiplication already generates this expression.
790 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
791 Value *UVal = U->getValue();
792 for (User *UR : UVal->users()) {
793 // If U is a constant, it may be used by a ConstantExpr.
794 Instruction *UI = dyn_cast<Instruction>(UR);
795 if (UI && UI->getOpcode() == Instruction::Mul &&
796 SE.isSCEVable(UI->getType())) {
797 return SE.getSCEV(UI) == Mul;
798 }
799 }
800 }
801 }
802 }
803
804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
805 if (isExistingPhi(AR, SE))
806 return false;
807 }
808
809 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
810 return true;
811 }
812
813 /// If any of the instructions is the specified set are trivially dead, delete
814 /// them and see if this makes any of their operands subsequently dead.
815 static bool
DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> & DeadInsts)816 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
817 bool Changed = false;
818
819 while (!DeadInsts.empty()) {
820 Value *V = DeadInsts.pop_back_val();
821 Instruction *I = dyn_cast_or_null<Instruction>(V);
822
823 if (!I || !isInstructionTriviallyDead(I))
824 continue;
825
826 for (Use &O : I->operands())
827 if (Instruction *U = dyn_cast<Instruction>(O)) {
828 O = nullptr;
829 if (U->use_empty())
830 DeadInsts.emplace_back(U);
831 }
832
833 I->eraseFromParent();
834 Changed = true;
835 }
836
837 return Changed;
838 }
839
840 namespace {
841 class LSRUse;
842 }
843
844 /// \brief Check if the addressing mode defined by \p F is completely
845 /// folded in \p LU at isel time.
846 /// This includes address-mode folding and special icmp tricks.
847 /// This function returns true if \p LU can accommodate what \p F
848 /// defines and up to 1 base + 1 scaled + offset.
849 /// In other words, if \p F has several base registers, this function may
850 /// still return true. Therefore, users still need to account for
851 /// additional base registers and/or unfolded offsets to derive an
852 /// accurate cost model.
853 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
854 const LSRUse &LU, const Formula &F);
855 // Get the cost of the scaling factor used in F for LU.
856 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
857 const LSRUse &LU, const Formula &F);
858
859 namespace {
860
861 /// This class is used to measure and compare candidate formulae.
862 class Cost {
863 /// TODO: Some of these could be merged. Also, a lexical ordering
864 /// isn't always optimal.
865 unsigned NumRegs;
866 unsigned AddRecCost;
867 unsigned NumIVMuls;
868 unsigned NumBaseAdds;
869 unsigned ImmCost;
870 unsigned SetupCost;
871 unsigned ScaleCost;
872
873 public:
Cost()874 Cost()
875 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
876 SetupCost(0), ScaleCost(0) {}
877
878 bool operator<(const Cost &Other) const;
879
880 void Lose();
881
882 #ifndef NDEBUG
883 // Once any of the metrics loses, they must all remain losers.
isValid()884 bool isValid() {
885 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
886 | ImmCost | SetupCost | ScaleCost) != ~0u)
887 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
888 & ImmCost & SetupCost & ScaleCost) == ~0u);
889 }
890 #endif
891
isLoser()892 bool isLoser() {
893 assert(isValid() && "invalid cost");
894 return NumRegs == ~0u;
895 }
896
897 void RateFormula(const TargetTransformInfo &TTI,
898 const Formula &F,
899 SmallPtrSetImpl<const SCEV *> &Regs,
900 const DenseSet<const SCEV *> &VisitedRegs,
901 const Loop *L,
902 const SmallVectorImpl<int64_t> &Offsets,
903 ScalarEvolution &SE, DominatorTree &DT,
904 const LSRUse &LU,
905 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
906
907 void print(raw_ostream &OS) const;
908 void dump() const;
909
910 private:
911 void RateRegister(const SCEV *Reg,
912 SmallPtrSetImpl<const SCEV *> &Regs,
913 const Loop *L,
914 ScalarEvolution &SE, DominatorTree &DT);
915 void RatePrimaryRegister(const SCEV *Reg,
916 SmallPtrSetImpl<const SCEV *> &Regs,
917 const Loop *L,
918 ScalarEvolution &SE, DominatorTree &DT,
919 SmallPtrSetImpl<const SCEV *> *LoserRegs);
920 };
921
922 }
923
924 /// Tally up interesting quantities from the given register.
RateRegister(const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,const Loop * L,ScalarEvolution & SE,DominatorTree & DT)925 void Cost::RateRegister(const SCEV *Reg,
926 SmallPtrSetImpl<const SCEV *> &Regs,
927 const Loop *L,
928 ScalarEvolution &SE, DominatorTree &DT) {
929 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
930 // If this is an addrec for another loop, don't second-guess its addrec phi
931 // nodes. LSR isn't currently smart enough to reason about more than one
932 // loop at a time. LSR has already run on inner loops, will not run on outer
933 // loops, and cannot be expected to change sibling loops.
934 if (AR->getLoop() != L) {
935 // If the AddRec exists, consider it's register free and leave it alone.
936 if (isExistingPhi(AR, SE))
937 return;
938
939 // Otherwise, do not consider this formula at all.
940 Lose();
941 return;
942 }
943 AddRecCost += 1; /// TODO: This should be a function of the stride.
944
945 // Add the step value register, if it needs one.
946 // TODO: The non-affine case isn't precisely modeled here.
947 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
948 if (!Regs.count(AR->getOperand(1))) {
949 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
950 if (isLoser())
951 return;
952 }
953 }
954 }
955 ++NumRegs;
956
957 // Rough heuristic; favor registers which don't require extra setup
958 // instructions in the preheader.
959 if (!isa<SCEVUnknown>(Reg) &&
960 !isa<SCEVConstant>(Reg) &&
961 !(isa<SCEVAddRecExpr>(Reg) &&
962 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
963 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
964 ++SetupCost;
965
966 NumIVMuls += isa<SCEVMulExpr>(Reg) &&
967 SE.hasComputableLoopEvolution(Reg, L);
968 }
969
970 /// Record this register in the set. If we haven't seen it before, rate
971 /// it. Optional LoserRegs provides a way to declare any formula that refers to
972 /// one of those regs an instant loser.
RatePrimaryRegister(const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,const Loop * L,ScalarEvolution & SE,DominatorTree & DT,SmallPtrSetImpl<const SCEV * > * LoserRegs)973 void Cost::RatePrimaryRegister(const SCEV *Reg,
974 SmallPtrSetImpl<const SCEV *> &Regs,
975 const Loop *L,
976 ScalarEvolution &SE, DominatorTree &DT,
977 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
978 if (LoserRegs && LoserRegs->count(Reg)) {
979 Lose();
980 return;
981 }
982 if (Regs.insert(Reg).second) {
983 RateRegister(Reg, Regs, L, SE, DT);
984 if (LoserRegs && isLoser())
985 LoserRegs->insert(Reg);
986 }
987 }
988
RateFormula(const TargetTransformInfo & TTI,const Formula & F,SmallPtrSetImpl<const SCEV * > & Regs,const DenseSet<const SCEV * > & VisitedRegs,const Loop * L,const SmallVectorImpl<int64_t> & Offsets,ScalarEvolution & SE,DominatorTree & DT,const LSRUse & LU,SmallPtrSetImpl<const SCEV * > * LoserRegs)989 void Cost::RateFormula(const TargetTransformInfo &TTI,
990 const Formula &F,
991 SmallPtrSetImpl<const SCEV *> &Regs,
992 const DenseSet<const SCEV *> &VisitedRegs,
993 const Loop *L,
994 const SmallVectorImpl<int64_t> &Offsets,
995 ScalarEvolution &SE, DominatorTree &DT,
996 const LSRUse &LU,
997 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
998 assert(F.isCanonical() && "Cost is accurate only for canonical formula");
999 // Tally up the registers.
1000 if (const SCEV *ScaledReg = F.ScaledReg) {
1001 if (VisitedRegs.count(ScaledReg)) {
1002 Lose();
1003 return;
1004 }
1005 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1006 if (isLoser())
1007 return;
1008 }
1009 for (const SCEV *BaseReg : F.BaseRegs) {
1010 if (VisitedRegs.count(BaseReg)) {
1011 Lose();
1012 return;
1013 }
1014 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1015 if (isLoser())
1016 return;
1017 }
1018
1019 // Determine how many (unfolded) adds we'll need inside the loop.
1020 size_t NumBaseParts = F.getNumRegs();
1021 if (NumBaseParts > 1)
1022 // Do not count the base and a possible second register if the target
1023 // allows to fold 2 registers.
1024 NumBaseAdds +=
1025 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1026 NumBaseAdds += (F.UnfoldedOffset != 0);
1027
1028 // Accumulate non-free scaling amounts.
1029 ScaleCost += getScalingFactorCost(TTI, LU, F);
1030
1031 // Tally up the non-zero immediates.
1032 for (int64_t O : Offsets) {
1033 int64_t Offset = (uint64_t)O + F.BaseOffset;
1034 if (F.BaseGV)
1035 ImmCost += 64; // Handle symbolic values conservatively.
1036 // TODO: This should probably be the pointer size.
1037 else if (Offset != 0)
1038 ImmCost += APInt(64, Offset, true).getMinSignedBits();
1039 }
1040 assert(isValid() && "invalid cost");
1041 }
1042
1043 /// Set this cost to a losing value.
Lose()1044 void Cost::Lose() {
1045 NumRegs = ~0u;
1046 AddRecCost = ~0u;
1047 NumIVMuls = ~0u;
1048 NumBaseAdds = ~0u;
1049 ImmCost = ~0u;
1050 SetupCost = ~0u;
1051 ScaleCost = ~0u;
1052 }
1053
1054 /// Choose the lower cost.
operator <(const Cost & Other) const1055 bool Cost::operator<(const Cost &Other) const {
1056 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1057 ImmCost, SetupCost) <
1058 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1059 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1060 Other.SetupCost);
1061 }
1062
print(raw_ostream & OS) const1063 void Cost::print(raw_ostream &OS) const {
1064 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1065 if (AddRecCost != 0)
1066 OS << ", with addrec cost " << AddRecCost;
1067 if (NumIVMuls != 0)
1068 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1069 if (NumBaseAdds != 0)
1070 OS << ", plus " << NumBaseAdds << " base add"
1071 << (NumBaseAdds == 1 ? "" : "s");
1072 if (ScaleCost != 0)
1073 OS << ", plus " << ScaleCost << " scale cost";
1074 if (ImmCost != 0)
1075 OS << ", plus " << ImmCost << " imm cost";
1076 if (SetupCost != 0)
1077 OS << ", plus " << SetupCost << " setup cost";
1078 }
1079
1080 LLVM_DUMP_METHOD
dump() const1081 void Cost::dump() const {
1082 print(errs()); errs() << '\n';
1083 }
1084
1085 namespace {
1086
1087 /// An operand value in an instruction which is to be replaced with some
1088 /// equivalent, possibly strength-reduced, replacement.
1089 struct LSRFixup {
1090 /// The instruction which will be updated.
1091 Instruction *UserInst;
1092
1093 /// The operand of the instruction which will be replaced. The operand may be
1094 /// used more than once; every instance will be replaced.
1095 Value *OperandValToReplace;
1096
1097 /// If this user is to use the post-incremented value of an induction
1098 /// variable, this variable is non-null and holds the loop associated with the
1099 /// induction variable.
1100 PostIncLoopSet PostIncLoops;
1101
1102 /// The index of the LSRUse describing the expression which this fixup needs,
1103 /// minus an offset (below).
1104 size_t LUIdx;
1105
1106 /// A constant offset to be added to the LSRUse expression. This allows
1107 /// multiple fixups to share the same LSRUse with different offsets, for
1108 /// example in an unrolled loop.
1109 int64_t Offset;
1110
1111 bool isUseFullyOutsideLoop(const Loop *L) const;
1112
1113 LSRFixup();
1114
1115 void print(raw_ostream &OS) const;
1116 void dump() const;
1117 };
1118
1119 }
1120
LSRFixup()1121 LSRFixup::LSRFixup()
1122 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
1123 Offset(0) {}
1124
1125 /// Test whether this fixup always uses its value outside of the given loop.
isUseFullyOutsideLoop(const Loop * L) const1126 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1127 // PHI nodes use their value in their incoming blocks.
1128 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1129 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1130 if (PN->getIncomingValue(i) == OperandValToReplace &&
1131 L->contains(PN->getIncomingBlock(i)))
1132 return false;
1133 return true;
1134 }
1135
1136 return !L->contains(UserInst);
1137 }
1138
print(raw_ostream & OS) const1139 void LSRFixup::print(raw_ostream &OS) const {
1140 OS << "UserInst=";
1141 // Store is common and interesting enough to be worth special-casing.
1142 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1143 OS << "store ";
1144 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1145 } else if (UserInst->getType()->isVoidTy())
1146 OS << UserInst->getOpcodeName();
1147 else
1148 UserInst->printAsOperand(OS, /*PrintType=*/false);
1149
1150 OS << ", OperandValToReplace=";
1151 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1152
1153 for (const Loop *PIL : PostIncLoops) {
1154 OS << ", PostIncLoop=";
1155 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1156 }
1157
1158 if (LUIdx != ~size_t(0))
1159 OS << ", LUIdx=" << LUIdx;
1160
1161 if (Offset != 0)
1162 OS << ", Offset=" << Offset;
1163 }
1164
1165 LLVM_DUMP_METHOD
dump() const1166 void LSRFixup::dump() const {
1167 print(errs()); errs() << '\n';
1168 }
1169
1170 namespace {
1171
1172 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1173 /// SmallVectors of const SCEV*.
1174 struct UniquifierDenseMapInfo {
getEmptyKey__anondd02b9d70711::UniquifierDenseMapInfo1175 static SmallVector<const SCEV *, 4> getEmptyKey() {
1176 SmallVector<const SCEV *, 4> V;
1177 V.push_back(reinterpret_cast<const SCEV *>(-1));
1178 return V;
1179 }
1180
getTombstoneKey__anondd02b9d70711::UniquifierDenseMapInfo1181 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1182 SmallVector<const SCEV *, 4> V;
1183 V.push_back(reinterpret_cast<const SCEV *>(-2));
1184 return V;
1185 }
1186
getHashValue__anondd02b9d70711::UniquifierDenseMapInfo1187 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1188 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1189 }
1190
isEqual__anondd02b9d70711::UniquifierDenseMapInfo1191 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1192 const SmallVector<const SCEV *, 4> &RHS) {
1193 return LHS == RHS;
1194 }
1195 };
1196
1197 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1198 /// as uses invented by LSR itself. It includes information about what kinds of
1199 /// things can be folded into the user, information about the user itself, and
1200 /// information about how the use may be satisfied. TODO: Represent multiple
1201 /// users of the same expression in common?
1202 class LSRUse {
1203 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1204
1205 public:
1206 /// An enum for a kind of use, indicating what types of scaled and immediate
1207 /// operands it might support.
1208 enum KindType {
1209 Basic, ///< A normal use, with no folding.
1210 Special, ///< A special case of basic, allowing -1 scales.
1211 Address, ///< An address use; folding according to TargetLowering
1212 ICmpZero ///< An equality icmp with both operands folded into one.
1213 // TODO: Add a generic icmp too?
1214 };
1215
1216 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1217
1218 KindType Kind;
1219 MemAccessTy AccessTy;
1220
1221 SmallVector<int64_t, 8> Offsets;
1222 int64_t MinOffset;
1223 int64_t MaxOffset;
1224
1225 /// This records whether all of the fixups using this LSRUse are outside of
1226 /// the loop, in which case some special-case heuristics may be used.
1227 bool AllFixupsOutsideLoop;
1228
1229 /// RigidFormula is set to true to guarantee that this use will be associated
1230 /// with a single formula--the one that initially matched. Some SCEV
1231 /// expressions cannot be expanded. This allows LSR to consider the registers
1232 /// used by those expressions without the need to expand them later after
1233 /// changing the formula.
1234 bool RigidFormula;
1235
1236 /// This records the widest use type for any fixup using this
1237 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1238 /// fixup widths to be equivalent, because the narrower one may be relying on
1239 /// the implicit truncation to truncate away bogus bits.
1240 Type *WidestFixupType;
1241
1242 /// A list of ways to build a value that can satisfy this user. After the
1243 /// list is populated, one of these is selected heuristically and used to
1244 /// formulate a replacement for OperandValToReplace in UserInst.
1245 SmallVector<Formula, 12> Formulae;
1246
1247 /// The set of register candidates used by all formulae in this LSRUse.
1248 SmallPtrSet<const SCEV *, 4> Regs;
1249
LSRUse(KindType K,MemAccessTy AT)1250 LSRUse(KindType K, MemAccessTy AT)
1251 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1252 AllFixupsOutsideLoop(true), RigidFormula(false),
1253 WidestFixupType(nullptr) {}
1254
1255 bool HasFormulaWithSameRegs(const Formula &F) const;
1256 bool InsertFormula(const Formula &F);
1257 void DeleteFormula(Formula &F);
1258 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1259
1260 void print(raw_ostream &OS) const;
1261 void dump() const;
1262 };
1263
1264 }
1265
1266 /// Test whether this use as a formula which has the same registers as the given
1267 /// formula.
HasFormulaWithSameRegs(const Formula & F) const1268 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1269 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1270 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1271 // Unstable sort by host order ok, because this is only used for uniquifying.
1272 std::sort(Key.begin(), Key.end());
1273 return Uniquifier.count(Key);
1274 }
1275
1276 /// If the given formula has not yet been inserted, add it to the list, and
1277 /// return true. Return false otherwise. The formula must be in canonical form.
InsertFormula(const Formula & F)1278 bool LSRUse::InsertFormula(const Formula &F) {
1279 assert(F.isCanonical() && "Invalid canonical representation");
1280
1281 if (!Formulae.empty() && RigidFormula)
1282 return false;
1283
1284 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1285 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1286 // Unstable sort by host order ok, because this is only used for uniquifying.
1287 std::sort(Key.begin(), Key.end());
1288
1289 if (!Uniquifier.insert(Key).second)
1290 return false;
1291
1292 // Using a register to hold the value of 0 is not profitable.
1293 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1294 "Zero allocated in a scaled register!");
1295 #ifndef NDEBUG
1296 for (const SCEV *BaseReg : F.BaseRegs)
1297 assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1298 #endif
1299
1300 // Add the formula to the list.
1301 Formulae.push_back(F);
1302
1303 // Record registers now being used by this use.
1304 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1305 if (F.ScaledReg)
1306 Regs.insert(F.ScaledReg);
1307
1308 return true;
1309 }
1310
1311 /// Remove the given formula from this use's list.
DeleteFormula(Formula & F)1312 void LSRUse::DeleteFormula(Formula &F) {
1313 if (&F != &Formulae.back())
1314 std::swap(F, Formulae.back());
1315 Formulae.pop_back();
1316 }
1317
1318 /// Recompute the Regs field, and update RegUses.
RecomputeRegs(size_t LUIdx,RegUseTracker & RegUses)1319 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1320 // Now that we've filtered out some formulae, recompute the Regs set.
1321 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1322 Regs.clear();
1323 for (const Formula &F : Formulae) {
1324 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1325 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1326 }
1327
1328 // Update the RegTracker.
1329 for (const SCEV *S : OldRegs)
1330 if (!Regs.count(S))
1331 RegUses.dropRegister(S, LUIdx);
1332 }
1333
print(raw_ostream & OS) const1334 void LSRUse::print(raw_ostream &OS) const {
1335 OS << "LSR Use: Kind=";
1336 switch (Kind) {
1337 case Basic: OS << "Basic"; break;
1338 case Special: OS << "Special"; break;
1339 case ICmpZero: OS << "ICmpZero"; break;
1340 case Address:
1341 OS << "Address of ";
1342 if (AccessTy.MemTy->isPointerTy())
1343 OS << "pointer"; // the full pointer type could be really verbose
1344 else {
1345 OS << *AccessTy.MemTy;
1346 }
1347
1348 OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1349 }
1350
1351 OS << ", Offsets={";
1352 bool NeedComma = false;
1353 for (int64_t O : Offsets) {
1354 if (NeedComma) OS << ',';
1355 OS << O;
1356 NeedComma = true;
1357 }
1358 OS << '}';
1359
1360 if (AllFixupsOutsideLoop)
1361 OS << ", all-fixups-outside-loop";
1362
1363 if (WidestFixupType)
1364 OS << ", widest fixup type: " << *WidestFixupType;
1365 }
1366
1367 LLVM_DUMP_METHOD
dump() const1368 void LSRUse::dump() const {
1369 print(errs()); errs() << '\n';
1370 }
1371
isAMCompletelyFolded(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1372 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1373 LSRUse::KindType Kind, MemAccessTy AccessTy,
1374 GlobalValue *BaseGV, int64_t BaseOffset,
1375 bool HasBaseReg, int64_t Scale) {
1376 switch (Kind) {
1377 case LSRUse::Address:
1378 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1379 HasBaseReg, Scale, AccessTy.AddrSpace);
1380
1381 case LSRUse::ICmpZero:
1382 // There's not even a target hook for querying whether it would be legal to
1383 // fold a GV into an ICmp.
1384 if (BaseGV)
1385 return false;
1386
1387 // ICmp only has two operands; don't allow more than two non-trivial parts.
1388 if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1389 return false;
1390
1391 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1392 // putting the scaled register in the other operand of the icmp.
1393 if (Scale != 0 && Scale != -1)
1394 return false;
1395
1396 // If we have low-level target information, ask the target if it can fold an
1397 // integer immediate on an icmp.
1398 if (BaseOffset != 0) {
1399 // We have one of:
1400 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1401 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1402 // Offs is the ICmp immediate.
1403 if (Scale == 0)
1404 // The cast does the right thing with INT64_MIN.
1405 BaseOffset = -(uint64_t)BaseOffset;
1406 return TTI.isLegalICmpImmediate(BaseOffset);
1407 }
1408
1409 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1410 return true;
1411
1412 case LSRUse::Basic:
1413 // Only handle single-register values.
1414 return !BaseGV && Scale == 0 && BaseOffset == 0;
1415
1416 case LSRUse::Special:
1417 // Special case Basic to handle -1 scales.
1418 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1419 }
1420
1421 llvm_unreachable("Invalid LSRUse Kind!");
1422 }
1423
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1424 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1425 int64_t MinOffset, int64_t MaxOffset,
1426 LSRUse::KindType Kind, MemAccessTy AccessTy,
1427 GlobalValue *BaseGV, int64_t BaseOffset,
1428 bool HasBaseReg, int64_t Scale) {
1429 // Check for overflow.
1430 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1431 (MinOffset > 0))
1432 return false;
1433 MinOffset = (uint64_t)BaseOffset + MinOffset;
1434 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1435 (MaxOffset > 0))
1436 return false;
1437 MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1438
1439 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1440 HasBaseReg, Scale) &&
1441 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1442 HasBaseReg, Scale);
1443 }
1444
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F)1445 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1446 int64_t MinOffset, int64_t MaxOffset,
1447 LSRUse::KindType Kind, MemAccessTy AccessTy,
1448 const Formula &F) {
1449 // For the purpose of isAMCompletelyFolded either having a canonical formula
1450 // or a scale not equal to zero is correct.
1451 // Problems may arise from non canonical formulae having a scale == 0.
1452 // Strictly speaking it would best to just rely on canonical formulae.
1453 // However, when we generate the scaled formulae, we first check that the
1454 // scaling factor is profitable before computing the actual ScaledReg for
1455 // compile time sake.
1456 assert((F.isCanonical() || F.Scale != 0));
1457 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1458 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1459 }
1460
1461 /// Test whether we know how to expand the current formula.
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1462 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1463 int64_t MaxOffset, LSRUse::KindType Kind,
1464 MemAccessTy AccessTy, GlobalValue *BaseGV,
1465 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1466 // We know how to expand completely foldable formulae.
1467 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1468 BaseOffset, HasBaseReg, Scale) ||
1469 // Or formulae that use a base register produced by a sum of base
1470 // registers.
1471 (Scale == 1 &&
1472 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1473 BaseGV, BaseOffset, true, 0));
1474 }
1475
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F)1476 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1477 int64_t MaxOffset, LSRUse::KindType Kind,
1478 MemAccessTy AccessTy, const Formula &F) {
1479 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1480 F.BaseOffset, F.HasBaseReg, F.Scale);
1481 }
1482
isAMCompletelyFolded(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1483 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1484 const LSRUse &LU, const Formula &F) {
1485 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1486 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1487 F.Scale);
1488 }
1489
getScalingFactorCost(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1490 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1491 const LSRUse &LU, const Formula &F) {
1492 if (!F.Scale)
1493 return 0;
1494
1495 // If the use is not completely folded in that instruction, we will have to
1496 // pay an extra cost only for scale != 1.
1497 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1498 LU.AccessTy, F))
1499 return F.Scale != 1;
1500
1501 switch (LU.Kind) {
1502 case LSRUse::Address: {
1503 // Check the scaling factor cost with both the min and max offsets.
1504 int ScaleCostMinOffset = TTI.getScalingFactorCost(
1505 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1506 F.Scale, LU.AccessTy.AddrSpace);
1507 int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1508 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1509 F.Scale, LU.AccessTy.AddrSpace);
1510
1511 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1512 "Legal addressing mode has an illegal cost!");
1513 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1514 }
1515 case LSRUse::ICmpZero:
1516 case LSRUse::Basic:
1517 case LSRUse::Special:
1518 // The use is completely folded, i.e., everything is folded into the
1519 // instruction.
1520 return 0;
1521 }
1522
1523 llvm_unreachable("Invalid LSRUse Kind!");
1524 }
1525
isAlwaysFoldable(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg)1526 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1527 LSRUse::KindType Kind, MemAccessTy AccessTy,
1528 GlobalValue *BaseGV, int64_t BaseOffset,
1529 bool HasBaseReg) {
1530 // Fast-path: zero is always foldable.
1531 if (BaseOffset == 0 && !BaseGV) return true;
1532
1533 // Conservatively, create an address with an immediate and a
1534 // base and a scale.
1535 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1536
1537 // Canonicalize a scale of 1 to a base register if the formula doesn't
1538 // already have a base register.
1539 if (!HasBaseReg && Scale == 1) {
1540 Scale = 0;
1541 HasBaseReg = true;
1542 }
1543
1544 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1545 HasBaseReg, Scale);
1546 }
1547
isAlwaysFoldable(const TargetTransformInfo & TTI,ScalarEvolution & SE,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const SCEV * S,bool HasBaseReg)1548 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1549 ScalarEvolution &SE, int64_t MinOffset,
1550 int64_t MaxOffset, LSRUse::KindType Kind,
1551 MemAccessTy AccessTy, const SCEV *S,
1552 bool HasBaseReg) {
1553 // Fast-path: zero is always foldable.
1554 if (S->isZero()) return true;
1555
1556 // Conservatively, create an address with an immediate and a
1557 // base and a scale.
1558 int64_t BaseOffset = ExtractImmediate(S, SE);
1559 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1560
1561 // If there's anything else involved, it's not foldable.
1562 if (!S->isZero()) return false;
1563
1564 // Fast-path: zero is always foldable.
1565 if (BaseOffset == 0 && !BaseGV) return true;
1566
1567 // Conservatively, create an address with an immediate and a
1568 // base and a scale.
1569 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1570
1571 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1572 BaseOffset, HasBaseReg, Scale);
1573 }
1574
1575 namespace {
1576
1577 /// An individual increment in a Chain of IV increments. Relate an IV user to
1578 /// an expression that computes the IV it uses from the IV used by the previous
1579 /// link in the Chain.
1580 ///
1581 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1582 /// original IVOperand. The head of the chain's IVOperand is only valid during
1583 /// chain collection, before LSR replaces IV users. During chain generation,
1584 /// IncExpr can be used to find the new IVOperand that computes the same
1585 /// expression.
1586 struct IVInc {
1587 Instruction *UserInst;
1588 Value* IVOperand;
1589 const SCEV *IncExpr;
1590
IVInc__anondd02b9d70811::IVInc1591 IVInc(Instruction *U, Value *O, const SCEV *E):
1592 UserInst(U), IVOperand(O), IncExpr(E) {}
1593 };
1594
1595 // The list of IV increments in program order. We typically add the head of a
1596 // chain without finding subsequent links.
1597 struct IVChain {
1598 SmallVector<IVInc,1> Incs;
1599 const SCEV *ExprBase;
1600
IVChain__anondd02b9d70811::IVChain1601 IVChain() : ExprBase(nullptr) {}
1602
IVChain__anondd02b9d70811::IVChain1603 IVChain(const IVInc &Head, const SCEV *Base)
1604 : Incs(1, Head), ExprBase(Base) {}
1605
1606 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1607
1608 // Return the first increment in the chain.
begin__anondd02b9d70811::IVChain1609 const_iterator begin() const {
1610 assert(!Incs.empty());
1611 return std::next(Incs.begin());
1612 }
end__anondd02b9d70811::IVChain1613 const_iterator end() const {
1614 return Incs.end();
1615 }
1616
1617 // Returns true if this chain contains any increments.
hasIncs__anondd02b9d70811::IVChain1618 bool hasIncs() const { return Incs.size() >= 2; }
1619
1620 // Add an IVInc to the end of this chain.
add__anondd02b9d70811::IVChain1621 void add(const IVInc &X) { Incs.push_back(X); }
1622
1623 // Returns the last UserInst in the chain.
tailUserInst__anondd02b9d70811::IVChain1624 Instruction *tailUserInst() const { return Incs.back().UserInst; }
1625
1626 // Returns true if IncExpr can be profitably added to this chain.
1627 bool isProfitableIncrement(const SCEV *OperExpr,
1628 const SCEV *IncExpr,
1629 ScalarEvolution&);
1630 };
1631
1632 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1633 /// between FarUsers that definitely cross IV increments and NearUsers that may
1634 /// be used between IV increments.
1635 struct ChainUsers {
1636 SmallPtrSet<Instruction*, 4> FarUsers;
1637 SmallPtrSet<Instruction*, 4> NearUsers;
1638 };
1639
1640 /// This class holds state for the main loop strength reduction logic.
1641 class LSRInstance {
1642 IVUsers &IU;
1643 ScalarEvolution &SE;
1644 DominatorTree &DT;
1645 LoopInfo &LI;
1646 const TargetTransformInfo &TTI;
1647 Loop *const L;
1648 bool Changed;
1649
1650 /// This is the insert position that the current loop's induction variable
1651 /// increment should be placed. In simple loops, this is the latch block's
1652 /// terminator. But in more complicated cases, this is a position which will
1653 /// dominate all the in-loop post-increment users.
1654 Instruction *IVIncInsertPos;
1655
1656 /// Interesting factors between use strides.
1657 SmallSetVector<int64_t, 8> Factors;
1658
1659 /// Interesting use types, to facilitate truncation reuse.
1660 SmallSetVector<Type *, 4> Types;
1661
1662 /// The list of operands which are to be replaced.
1663 SmallVector<LSRFixup, 16> Fixups;
1664
1665 /// The list of interesting uses.
1666 SmallVector<LSRUse, 16> Uses;
1667
1668 /// Track which uses use which register candidates.
1669 RegUseTracker RegUses;
1670
1671 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1672 // have more than a few IV increment chains in a loop. Missing a Chain falls
1673 // back to normal LSR behavior for those uses.
1674 static const unsigned MaxChains = 8;
1675
1676 /// IV users can form a chain of IV increments.
1677 SmallVector<IVChain, MaxChains> IVChainVec;
1678
1679 /// IV users that belong to profitable IVChains.
1680 SmallPtrSet<Use*, MaxChains> IVIncSet;
1681
1682 void OptimizeShadowIV();
1683 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1684 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1685 void OptimizeLoopTermCond();
1686
1687 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1688 SmallVectorImpl<ChainUsers> &ChainUsersVec);
1689 void FinalizeChain(IVChain &Chain);
1690 void CollectChains();
1691 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1692 SmallVectorImpl<WeakVH> &DeadInsts);
1693
1694 void CollectInterestingTypesAndFactors();
1695 void CollectFixupsAndInitialFormulae();
1696
getNewFixup()1697 LSRFixup &getNewFixup() {
1698 Fixups.push_back(LSRFixup());
1699 return Fixups.back();
1700 }
1701
1702 // Support for sharing of LSRUses between LSRFixups.
1703 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1704 UseMapTy UseMap;
1705
1706 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1707 LSRUse::KindType Kind, MemAccessTy AccessTy);
1708
1709 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1710 MemAccessTy AccessTy);
1711
1712 void DeleteUse(LSRUse &LU, size_t LUIdx);
1713
1714 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1715
1716 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1717 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1718 void CountRegisters(const Formula &F, size_t LUIdx);
1719 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1720
1721 void CollectLoopInvariantFixupsAndFormulae();
1722
1723 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1724 unsigned Depth = 0);
1725
1726 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1727 const Formula &Base, unsigned Depth,
1728 size_t Idx, bool IsScaledReg = false);
1729 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1730 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1731 const Formula &Base, size_t Idx,
1732 bool IsScaledReg = false);
1733 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1734 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1735 const Formula &Base,
1736 const SmallVectorImpl<int64_t> &Worklist,
1737 size_t Idx, bool IsScaledReg = false);
1738 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1739 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1740 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1741 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1742 void GenerateCrossUseConstantOffsets();
1743 void GenerateAllReuseFormulae();
1744
1745 void FilterOutUndesirableDedicatedRegisters();
1746
1747 size_t EstimateSearchSpaceComplexity() const;
1748 void NarrowSearchSpaceByDetectingSupersets();
1749 void NarrowSearchSpaceByCollapsingUnrolledCode();
1750 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1751 void NarrowSearchSpaceByPickingWinnerRegs();
1752 void NarrowSearchSpaceUsingHeuristics();
1753
1754 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1755 Cost &SolutionCost,
1756 SmallVectorImpl<const Formula *> &Workspace,
1757 const Cost &CurCost,
1758 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1759 DenseSet<const SCEV *> &VisitedRegs) const;
1760 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1761
1762 BasicBlock::iterator
1763 HoistInsertPosition(BasicBlock::iterator IP,
1764 const SmallVectorImpl<Instruction *> &Inputs) const;
1765 BasicBlock::iterator
1766 AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1767 const LSRFixup &LF,
1768 const LSRUse &LU,
1769 SCEVExpander &Rewriter) const;
1770
1771 Value *Expand(const LSRFixup &LF,
1772 const Formula &F,
1773 BasicBlock::iterator IP,
1774 SCEVExpander &Rewriter,
1775 SmallVectorImpl<WeakVH> &DeadInsts) const;
1776 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1777 const Formula &F,
1778 SCEVExpander &Rewriter,
1779 SmallVectorImpl<WeakVH> &DeadInsts) const;
1780 void Rewrite(const LSRFixup &LF,
1781 const Formula &F,
1782 SCEVExpander &Rewriter,
1783 SmallVectorImpl<WeakVH> &DeadInsts) const;
1784 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1785
1786 public:
1787 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1788 LoopInfo &LI, const TargetTransformInfo &TTI);
1789
getChanged() const1790 bool getChanged() const { return Changed; }
1791
1792 void print_factors_and_types(raw_ostream &OS) const;
1793 void print_fixups(raw_ostream &OS) const;
1794 void print_uses(raw_ostream &OS) const;
1795 void print(raw_ostream &OS) const;
1796 void dump() const;
1797 };
1798
1799 }
1800
1801 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1802 /// the cast operation.
OptimizeShadowIV()1803 void LSRInstance::OptimizeShadowIV() {
1804 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1805 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1806 return;
1807
1808 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1809 UI != E; /* empty */) {
1810 IVUsers::const_iterator CandidateUI = UI;
1811 ++UI;
1812 Instruction *ShadowUse = CandidateUI->getUser();
1813 Type *DestTy = nullptr;
1814 bool IsSigned = false;
1815
1816 /* If shadow use is a int->float cast then insert a second IV
1817 to eliminate this cast.
1818
1819 for (unsigned i = 0; i < n; ++i)
1820 foo((double)i);
1821
1822 is transformed into
1823
1824 double d = 0.0;
1825 for (unsigned i = 0; i < n; ++i, ++d)
1826 foo(d);
1827 */
1828 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1829 IsSigned = false;
1830 DestTy = UCast->getDestTy();
1831 }
1832 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1833 IsSigned = true;
1834 DestTy = SCast->getDestTy();
1835 }
1836 if (!DestTy) continue;
1837
1838 // If target does not support DestTy natively then do not apply
1839 // this transformation.
1840 if (!TTI.isTypeLegal(DestTy)) continue;
1841
1842 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1843 if (!PH) continue;
1844 if (PH->getNumIncomingValues() != 2) continue;
1845
1846 Type *SrcTy = PH->getType();
1847 int Mantissa = DestTy->getFPMantissaWidth();
1848 if (Mantissa == -1) continue;
1849 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1850 continue;
1851
1852 unsigned Entry, Latch;
1853 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1854 Entry = 0;
1855 Latch = 1;
1856 } else {
1857 Entry = 1;
1858 Latch = 0;
1859 }
1860
1861 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1862 if (!Init) continue;
1863 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1864 (double)Init->getSExtValue() :
1865 (double)Init->getZExtValue());
1866
1867 BinaryOperator *Incr =
1868 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1869 if (!Incr) continue;
1870 if (Incr->getOpcode() != Instruction::Add
1871 && Incr->getOpcode() != Instruction::Sub)
1872 continue;
1873
1874 /* Initialize new IV, double d = 0.0 in above example. */
1875 ConstantInt *C = nullptr;
1876 if (Incr->getOperand(0) == PH)
1877 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1878 else if (Incr->getOperand(1) == PH)
1879 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1880 else
1881 continue;
1882
1883 if (!C) continue;
1884
1885 // Ignore negative constants, as the code below doesn't handle them
1886 // correctly. TODO: Remove this restriction.
1887 if (!C->getValue().isStrictlyPositive()) continue;
1888
1889 /* Add new PHINode. */
1890 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1891
1892 /* create new increment. '++d' in above example. */
1893 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1894 BinaryOperator *NewIncr =
1895 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1896 Instruction::FAdd : Instruction::FSub,
1897 NewPH, CFP, "IV.S.next.", Incr);
1898
1899 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1900 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1901
1902 /* Remove cast operation */
1903 ShadowUse->replaceAllUsesWith(NewPH);
1904 ShadowUse->eraseFromParent();
1905 Changed = true;
1906 break;
1907 }
1908 }
1909
1910 /// If Cond has an operand that is an expression of an IV, set the IV user and
1911 /// stride information and return true, otherwise return false.
FindIVUserForCond(ICmpInst * Cond,IVStrideUse * & CondUse)1912 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1913 for (IVStrideUse &U : IU)
1914 if (U.getUser() == Cond) {
1915 // NOTE: we could handle setcc instructions with multiple uses here, but
1916 // InstCombine does it as well for simple uses, it's not clear that it
1917 // occurs enough in real life to handle.
1918 CondUse = &U;
1919 return true;
1920 }
1921 return false;
1922 }
1923
1924 /// Rewrite the loop's terminating condition if it uses a max computation.
1925 ///
1926 /// This is a narrow solution to a specific, but acute, problem. For loops
1927 /// like this:
1928 ///
1929 /// i = 0;
1930 /// do {
1931 /// p[i] = 0.0;
1932 /// } while (++i < n);
1933 ///
1934 /// the trip count isn't just 'n', because 'n' might not be positive. And
1935 /// unfortunately this can come up even for loops where the user didn't use
1936 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1937 /// will commonly be lowered like this:
1938 //
1939 /// if (n > 0) {
1940 /// i = 0;
1941 /// do {
1942 /// p[i] = 0.0;
1943 /// } while (++i < n);
1944 /// }
1945 ///
1946 /// and then it's possible for subsequent optimization to obscure the if
1947 /// test in such a way that indvars can't find it.
1948 ///
1949 /// When indvars can't find the if test in loops like this, it creates a
1950 /// max expression, which allows it to give the loop a canonical
1951 /// induction variable:
1952 ///
1953 /// i = 0;
1954 /// max = n < 1 ? 1 : n;
1955 /// do {
1956 /// p[i] = 0.0;
1957 /// } while (++i != max);
1958 ///
1959 /// Canonical induction variables are necessary because the loop passes
1960 /// are designed around them. The most obvious example of this is the
1961 /// LoopInfo analysis, which doesn't remember trip count values. It
1962 /// expects to be able to rediscover the trip count each time it is
1963 /// needed, and it does this using a simple analysis that only succeeds if
1964 /// the loop has a canonical induction variable.
1965 ///
1966 /// However, when it comes time to generate code, the maximum operation
1967 /// can be quite costly, especially if it's inside of an outer loop.
1968 ///
1969 /// This function solves this problem by detecting this type of loop and
1970 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1971 /// the instructions for the maximum computation.
1972 ///
OptimizeMax(ICmpInst * Cond,IVStrideUse * & CondUse)1973 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1974 // Check that the loop matches the pattern we're looking for.
1975 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1976 Cond->getPredicate() != CmpInst::ICMP_NE)
1977 return Cond;
1978
1979 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1980 if (!Sel || !Sel->hasOneUse()) return Cond;
1981
1982 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1983 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1984 return Cond;
1985 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1986
1987 // Add one to the backedge-taken count to get the trip count.
1988 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1989 if (IterationCount != SE.getSCEV(Sel)) return Cond;
1990
1991 // Check for a max calculation that matches the pattern. There's no check
1992 // for ICMP_ULE here because the comparison would be with zero, which
1993 // isn't interesting.
1994 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1995 const SCEVNAryExpr *Max = nullptr;
1996 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1997 Pred = ICmpInst::ICMP_SLE;
1998 Max = S;
1999 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2000 Pred = ICmpInst::ICMP_SLT;
2001 Max = S;
2002 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2003 Pred = ICmpInst::ICMP_ULT;
2004 Max = U;
2005 } else {
2006 // No match; bail.
2007 return Cond;
2008 }
2009
2010 // To handle a max with more than two operands, this optimization would
2011 // require additional checking and setup.
2012 if (Max->getNumOperands() != 2)
2013 return Cond;
2014
2015 const SCEV *MaxLHS = Max->getOperand(0);
2016 const SCEV *MaxRHS = Max->getOperand(1);
2017
2018 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2019 // for a comparison with 1. For <= and >=, a comparison with zero.
2020 if (!MaxLHS ||
2021 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2022 return Cond;
2023
2024 // Check the relevant induction variable for conformance to
2025 // the pattern.
2026 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2027 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2028 if (!AR || !AR->isAffine() ||
2029 AR->getStart() != One ||
2030 AR->getStepRecurrence(SE) != One)
2031 return Cond;
2032
2033 assert(AR->getLoop() == L &&
2034 "Loop condition operand is an addrec in a different loop!");
2035
2036 // Check the right operand of the select, and remember it, as it will
2037 // be used in the new comparison instruction.
2038 Value *NewRHS = nullptr;
2039 if (ICmpInst::isTrueWhenEqual(Pred)) {
2040 // Look for n+1, and grab n.
2041 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2042 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2043 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2044 NewRHS = BO->getOperand(0);
2045 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2046 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2047 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2048 NewRHS = BO->getOperand(0);
2049 if (!NewRHS)
2050 return Cond;
2051 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2052 NewRHS = Sel->getOperand(1);
2053 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2054 NewRHS = Sel->getOperand(2);
2055 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2056 NewRHS = SU->getValue();
2057 else
2058 // Max doesn't match expected pattern.
2059 return Cond;
2060
2061 // Determine the new comparison opcode. It may be signed or unsigned,
2062 // and the original comparison may be either equality or inequality.
2063 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2064 Pred = CmpInst::getInversePredicate(Pred);
2065
2066 // Ok, everything looks ok to change the condition into an SLT or SGE and
2067 // delete the max calculation.
2068 ICmpInst *NewCond =
2069 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2070
2071 // Delete the max calculation instructions.
2072 Cond->replaceAllUsesWith(NewCond);
2073 CondUse->setUser(NewCond);
2074 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2075 Cond->eraseFromParent();
2076 Sel->eraseFromParent();
2077 if (Cmp->use_empty())
2078 Cmp->eraseFromParent();
2079 return NewCond;
2080 }
2081
2082 /// Change loop terminating condition to use the postinc iv when possible.
2083 void
OptimizeLoopTermCond()2084 LSRInstance::OptimizeLoopTermCond() {
2085 SmallPtrSet<Instruction *, 4> PostIncs;
2086
2087 BasicBlock *LatchBlock = L->getLoopLatch();
2088 SmallVector<BasicBlock*, 8> ExitingBlocks;
2089 L->getExitingBlocks(ExitingBlocks);
2090
2091 for (BasicBlock *ExitingBlock : ExitingBlocks) {
2092
2093 // Get the terminating condition for the loop if possible. If we
2094 // can, we want to change it to use a post-incremented version of its
2095 // induction variable, to allow coalescing the live ranges for the IV into
2096 // one register value.
2097
2098 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2099 if (!TermBr)
2100 continue;
2101 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2102 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2103 continue;
2104
2105 // Search IVUsesByStride to find Cond's IVUse if there is one.
2106 IVStrideUse *CondUse = nullptr;
2107 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2108 if (!FindIVUserForCond(Cond, CondUse))
2109 continue;
2110
2111 // If the trip count is computed in terms of a max (due to ScalarEvolution
2112 // being unable to find a sufficient guard, for example), change the loop
2113 // comparison to use SLT or ULT instead of NE.
2114 // One consequence of doing this now is that it disrupts the count-down
2115 // optimization. That's not always a bad thing though, because in such
2116 // cases it may still be worthwhile to avoid a max.
2117 Cond = OptimizeMax(Cond, CondUse);
2118
2119 // If this exiting block dominates the latch block, it may also use
2120 // the post-inc value if it won't be shared with other uses.
2121 // Check for dominance.
2122 if (!DT.dominates(ExitingBlock, LatchBlock))
2123 continue;
2124
2125 // Conservatively avoid trying to use the post-inc value in non-latch
2126 // exits if there may be pre-inc users in intervening blocks.
2127 if (LatchBlock != ExitingBlock)
2128 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2129 // Test if the use is reachable from the exiting block. This dominator
2130 // query is a conservative approximation of reachability.
2131 if (&*UI != CondUse &&
2132 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2133 // Conservatively assume there may be reuse if the quotient of their
2134 // strides could be a legal scale.
2135 const SCEV *A = IU.getStride(*CondUse, L);
2136 const SCEV *B = IU.getStride(*UI, L);
2137 if (!A || !B) continue;
2138 if (SE.getTypeSizeInBits(A->getType()) !=
2139 SE.getTypeSizeInBits(B->getType())) {
2140 if (SE.getTypeSizeInBits(A->getType()) >
2141 SE.getTypeSizeInBits(B->getType()))
2142 B = SE.getSignExtendExpr(B, A->getType());
2143 else
2144 A = SE.getSignExtendExpr(A, B->getType());
2145 }
2146 if (const SCEVConstant *D =
2147 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2148 const ConstantInt *C = D->getValue();
2149 // Stride of one or negative one can have reuse with non-addresses.
2150 if (C->isOne() || C->isAllOnesValue())
2151 goto decline_post_inc;
2152 // Avoid weird situations.
2153 if (C->getValue().getMinSignedBits() >= 64 ||
2154 C->getValue().isMinSignedValue())
2155 goto decline_post_inc;
2156 // Check for possible scaled-address reuse.
2157 MemAccessTy AccessTy = getAccessType(UI->getUser());
2158 int64_t Scale = C->getSExtValue();
2159 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2160 /*BaseOffset=*/0,
2161 /*HasBaseReg=*/false, Scale,
2162 AccessTy.AddrSpace))
2163 goto decline_post_inc;
2164 Scale = -Scale;
2165 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2166 /*BaseOffset=*/0,
2167 /*HasBaseReg=*/false, Scale,
2168 AccessTy.AddrSpace))
2169 goto decline_post_inc;
2170 }
2171 }
2172
2173 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2174 << *Cond << '\n');
2175
2176 // It's possible for the setcc instruction to be anywhere in the loop, and
2177 // possible for it to have multiple users. If it is not immediately before
2178 // the exiting block branch, move it.
2179 if (&*++BasicBlock::iterator(Cond) != TermBr) {
2180 if (Cond->hasOneUse()) {
2181 Cond->moveBefore(TermBr);
2182 } else {
2183 // Clone the terminating condition and insert into the loopend.
2184 ICmpInst *OldCond = Cond;
2185 Cond = cast<ICmpInst>(Cond->clone());
2186 Cond->setName(L->getHeader()->getName() + ".termcond");
2187 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2188
2189 // Clone the IVUse, as the old use still exists!
2190 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2191 TermBr->replaceUsesOfWith(OldCond, Cond);
2192 }
2193 }
2194
2195 // If we get to here, we know that we can transform the setcc instruction to
2196 // use the post-incremented version of the IV, allowing us to coalesce the
2197 // live ranges for the IV correctly.
2198 CondUse->transformToPostInc(L);
2199 Changed = true;
2200
2201 PostIncs.insert(Cond);
2202 decline_post_inc:;
2203 }
2204
2205 // Determine an insertion point for the loop induction variable increment. It
2206 // must dominate all the post-inc comparisons we just set up, and it must
2207 // dominate the loop latch edge.
2208 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2209 for (Instruction *Inst : PostIncs) {
2210 BasicBlock *BB =
2211 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2212 Inst->getParent());
2213 if (BB == Inst->getParent())
2214 IVIncInsertPos = Inst;
2215 else if (BB != IVIncInsertPos->getParent())
2216 IVIncInsertPos = BB->getTerminator();
2217 }
2218 }
2219
2220 /// Determine if the given use can accommodate a fixup at the given offset and
2221 /// other details. If so, update the use and return true.
reconcileNewOffset(LSRUse & LU,int64_t NewOffset,bool HasBaseReg,LSRUse::KindType Kind,MemAccessTy AccessTy)2222 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2223 bool HasBaseReg, LSRUse::KindType Kind,
2224 MemAccessTy AccessTy) {
2225 int64_t NewMinOffset = LU.MinOffset;
2226 int64_t NewMaxOffset = LU.MaxOffset;
2227 MemAccessTy NewAccessTy = AccessTy;
2228
2229 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2230 // something conservative, however this can pessimize in the case that one of
2231 // the uses will have all its uses outside the loop, for example.
2232 if (LU.Kind != Kind)
2233 return false;
2234
2235 // Check for a mismatched access type, and fall back conservatively as needed.
2236 // TODO: Be less conservative when the type is similar and can use the same
2237 // addressing modes.
2238 if (Kind == LSRUse::Address) {
2239 if (AccessTy != LU.AccessTy)
2240 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
2241 }
2242
2243 // Conservatively assume HasBaseReg is true for now.
2244 if (NewOffset < LU.MinOffset) {
2245 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2246 LU.MaxOffset - NewOffset, HasBaseReg))
2247 return false;
2248 NewMinOffset = NewOffset;
2249 } else if (NewOffset > LU.MaxOffset) {
2250 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2251 NewOffset - LU.MinOffset, HasBaseReg))
2252 return false;
2253 NewMaxOffset = NewOffset;
2254 }
2255
2256 // Update the use.
2257 LU.MinOffset = NewMinOffset;
2258 LU.MaxOffset = NewMaxOffset;
2259 LU.AccessTy = NewAccessTy;
2260 if (NewOffset != LU.Offsets.back())
2261 LU.Offsets.push_back(NewOffset);
2262 return true;
2263 }
2264
2265 /// Return an LSRUse index and an offset value for a fixup which needs the given
2266 /// expression, with the given kind and optional access type. Either reuse an
2267 /// existing use or create a new one, as needed.
getUse(const SCEV * & Expr,LSRUse::KindType Kind,MemAccessTy AccessTy)2268 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2269 LSRUse::KindType Kind,
2270 MemAccessTy AccessTy) {
2271 const SCEV *Copy = Expr;
2272 int64_t Offset = ExtractImmediate(Expr, SE);
2273
2274 // Basic uses can't accept any offset, for example.
2275 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2276 Offset, /*HasBaseReg=*/ true)) {
2277 Expr = Copy;
2278 Offset = 0;
2279 }
2280
2281 std::pair<UseMapTy::iterator, bool> P =
2282 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2283 if (!P.second) {
2284 // A use already existed with this base.
2285 size_t LUIdx = P.first->second;
2286 LSRUse &LU = Uses[LUIdx];
2287 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2288 // Reuse this use.
2289 return std::make_pair(LUIdx, Offset);
2290 }
2291
2292 // Create a new use.
2293 size_t LUIdx = Uses.size();
2294 P.first->second = LUIdx;
2295 Uses.push_back(LSRUse(Kind, AccessTy));
2296 LSRUse &LU = Uses[LUIdx];
2297
2298 // We don't need to track redundant offsets, but we don't need to go out
2299 // of our way here to avoid them.
2300 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2301 LU.Offsets.push_back(Offset);
2302
2303 LU.MinOffset = Offset;
2304 LU.MaxOffset = Offset;
2305 return std::make_pair(LUIdx, Offset);
2306 }
2307
2308 /// Delete the given use from the Uses list.
DeleteUse(LSRUse & LU,size_t LUIdx)2309 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2310 if (&LU != &Uses.back())
2311 std::swap(LU, Uses.back());
2312 Uses.pop_back();
2313
2314 // Update RegUses.
2315 RegUses.swapAndDropUse(LUIdx, Uses.size());
2316 }
2317
2318 /// Look for a use distinct from OrigLU which is has a formula that has the same
2319 /// registers as the given formula.
2320 LSRUse *
FindUseWithSimilarFormula(const Formula & OrigF,const LSRUse & OrigLU)2321 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2322 const LSRUse &OrigLU) {
2323 // Search all uses for the formula. This could be more clever.
2324 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2325 LSRUse &LU = Uses[LUIdx];
2326 // Check whether this use is close enough to OrigLU, to see whether it's
2327 // worthwhile looking through its formulae.
2328 // Ignore ICmpZero uses because they may contain formulae generated by
2329 // GenerateICmpZeroScales, in which case adding fixup offsets may
2330 // be invalid.
2331 if (&LU != &OrigLU &&
2332 LU.Kind != LSRUse::ICmpZero &&
2333 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2334 LU.WidestFixupType == OrigLU.WidestFixupType &&
2335 LU.HasFormulaWithSameRegs(OrigF)) {
2336 // Scan through this use's formulae.
2337 for (const Formula &F : LU.Formulae) {
2338 // Check to see if this formula has the same registers and symbols
2339 // as OrigF.
2340 if (F.BaseRegs == OrigF.BaseRegs &&
2341 F.ScaledReg == OrigF.ScaledReg &&
2342 F.BaseGV == OrigF.BaseGV &&
2343 F.Scale == OrigF.Scale &&
2344 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2345 if (F.BaseOffset == 0)
2346 return &LU;
2347 // This is the formula where all the registers and symbols matched;
2348 // there aren't going to be any others. Since we declined it, we
2349 // can skip the rest of the formulae and proceed to the next LSRUse.
2350 break;
2351 }
2352 }
2353 }
2354 }
2355
2356 // Nothing looked good.
2357 return nullptr;
2358 }
2359
CollectInterestingTypesAndFactors()2360 void LSRInstance::CollectInterestingTypesAndFactors() {
2361 SmallSetVector<const SCEV *, 4> Strides;
2362
2363 // Collect interesting types and strides.
2364 SmallVector<const SCEV *, 4> Worklist;
2365 for (const IVStrideUse &U : IU) {
2366 const SCEV *Expr = IU.getExpr(U);
2367
2368 // Collect interesting types.
2369 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2370
2371 // Add strides for mentioned loops.
2372 Worklist.push_back(Expr);
2373 do {
2374 const SCEV *S = Worklist.pop_back_val();
2375 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2376 if (AR->getLoop() == L)
2377 Strides.insert(AR->getStepRecurrence(SE));
2378 Worklist.push_back(AR->getStart());
2379 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2380 Worklist.append(Add->op_begin(), Add->op_end());
2381 }
2382 } while (!Worklist.empty());
2383 }
2384
2385 // Compute interesting factors from the set of interesting strides.
2386 for (SmallSetVector<const SCEV *, 4>::const_iterator
2387 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2388 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2389 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2390 const SCEV *OldStride = *I;
2391 const SCEV *NewStride = *NewStrideIter;
2392
2393 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2394 SE.getTypeSizeInBits(NewStride->getType())) {
2395 if (SE.getTypeSizeInBits(OldStride->getType()) >
2396 SE.getTypeSizeInBits(NewStride->getType()))
2397 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2398 else
2399 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2400 }
2401 if (const SCEVConstant *Factor =
2402 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2403 SE, true))) {
2404 if (Factor->getAPInt().getMinSignedBits() <= 64)
2405 Factors.insert(Factor->getAPInt().getSExtValue());
2406 } else if (const SCEVConstant *Factor =
2407 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2408 NewStride,
2409 SE, true))) {
2410 if (Factor->getAPInt().getMinSignedBits() <= 64)
2411 Factors.insert(Factor->getAPInt().getSExtValue());
2412 }
2413 }
2414
2415 // If all uses use the same type, don't bother looking for truncation-based
2416 // reuse.
2417 if (Types.size() == 1)
2418 Types.clear();
2419
2420 DEBUG(print_factors_and_types(dbgs()));
2421 }
2422
2423 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2424 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2425 /// IVStrideUses, we could partially skip this.
2426 static User::op_iterator
findIVOperand(User::op_iterator OI,User::op_iterator OE,Loop * L,ScalarEvolution & SE)2427 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2428 Loop *L, ScalarEvolution &SE) {
2429 for(; OI != OE; ++OI) {
2430 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2431 if (!SE.isSCEVable(Oper->getType()))
2432 continue;
2433
2434 if (const SCEVAddRecExpr *AR =
2435 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2436 if (AR->getLoop() == L)
2437 break;
2438 }
2439 }
2440 }
2441 return OI;
2442 }
2443
2444 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2445 /// a convenient helper.
getWideOperand(Value * Oper)2446 static Value *getWideOperand(Value *Oper) {
2447 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2448 return Trunc->getOperand(0);
2449 return Oper;
2450 }
2451
2452 /// Return true if we allow an IV chain to include both types.
isCompatibleIVType(Value * LVal,Value * RVal)2453 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2454 Type *LType = LVal->getType();
2455 Type *RType = RVal->getType();
2456 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2457 }
2458
2459 /// Return an approximation of this SCEV expression's "base", or NULL for any
2460 /// constant. Returning the expression itself is conservative. Returning a
2461 /// deeper subexpression is more precise and valid as long as it isn't less
2462 /// complex than another subexpression. For expressions involving multiple
2463 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2464 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2465 /// IVInc==b-a.
2466 ///
2467 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2468 /// SCEVUnknown, we simply return the rightmost SCEV operand.
getExprBase(const SCEV * S)2469 static const SCEV *getExprBase(const SCEV *S) {
2470 switch (S->getSCEVType()) {
2471 default: // uncluding scUnknown.
2472 return S;
2473 case scConstant:
2474 return nullptr;
2475 case scTruncate:
2476 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2477 case scZeroExtend:
2478 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2479 case scSignExtend:
2480 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2481 case scAddExpr: {
2482 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2483 // there's nothing more complex.
2484 // FIXME: not sure if we want to recognize negation.
2485 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2486 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2487 E(Add->op_begin()); I != E; ++I) {
2488 const SCEV *SubExpr = *I;
2489 if (SubExpr->getSCEVType() == scAddExpr)
2490 return getExprBase(SubExpr);
2491
2492 if (SubExpr->getSCEVType() != scMulExpr)
2493 return SubExpr;
2494 }
2495 return S; // all operands are scaled, be conservative.
2496 }
2497 case scAddRecExpr:
2498 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2499 }
2500 }
2501
2502 /// Return true if the chain increment is profitable to expand into a loop
2503 /// invariant value, which may require its own register. A profitable chain
2504 /// increment will be an offset relative to the same base. We allow such offsets
2505 /// to potentially be used as chain increment as long as it's not obviously
2506 /// expensive to expand using real instructions.
isProfitableIncrement(const SCEV * OperExpr,const SCEV * IncExpr,ScalarEvolution & SE)2507 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2508 const SCEV *IncExpr,
2509 ScalarEvolution &SE) {
2510 // Aggressively form chains when -stress-ivchain.
2511 if (StressIVChain)
2512 return true;
2513
2514 // Do not replace a constant offset from IV head with a nonconstant IV
2515 // increment.
2516 if (!isa<SCEVConstant>(IncExpr)) {
2517 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2518 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2519 return 0;
2520 }
2521
2522 SmallPtrSet<const SCEV*, 8> Processed;
2523 return !isHighCostExpansion(IncExpr, Processed, SE);
2524 }
2525
2526 /// Return true if the number of registers needed for the chain is estimated to
2527 /// be less than the number required for the individual IV users. First prohibit
2528 /// any IV users that keep the IV live across increments (the Users set should
2529 /// be empty). Next count the number and type of increments in the chain.
2530 ///
2531 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2532 /// effectively use postinc addressing modes. Only consider it profitable it the
2533 /// increments can be computed in fewer registers when chained.
2534 ///
2535 /// TODO: Consider IVInc free if it's already used in another chains.
2536 static bool
isProfitableChain(IVChain & Chain,SmallPtrSetImpl<Instruction * > & Users,ScalarEvolution & SE,const TargetTransformInfo & TTI)2537 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2538 ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2539 if (StressIVChain)
2540 return true;
2541
2542 if (!Chain.hasIncs())
2543 return false;
2544
2545 if (!Users.empty()) {
2546 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2547 for (Instruction *Inst : Users) {
2548 dbgs() << " " << *Inst << "\n";
2549 });
2550 return false;
2551 }
2552 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2553
2554 // The chain itself may require a register, so intialize cost to 1.
2555 int cost = 1;
2556
2557 // A complete chain likely eliminates the need for keeping the original IV in
2558 // a register. LSR does not currently know how to form a complete chain unless
2559 // the header phi already exists.
2560 if (isa<PHINode>(Chain.tailUserInst())
2561 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2562 --cost;
2563 }
2564 const SCEV *LastIncExpr = nullptr;
2565 unsigned NumConstIncrements = 0;
2566 unsigned NumVarIncrements = 0;
2567 unsigned NumReusedIncrements = 0;
2568 for (const IVInc &Inc : Chain) {
2569 if (Inc.IncExpr->isZero())
2570 continue;
2571
2572 // Incrementing by zero or some constant is neutral. We assume constants can
2573 // be folded into an addressing mode or an add's immediate operand.
2574 if (isa<SCEVConstant>(Inc.IncExpr)) {
2575 ++NumConstIncrements;
2576 continue;
2577 }
2578
2579 if (Inc.IncExpr == LastIncExpr)
2580 ++NumReusedIncrements;
2581 else
2582 ++NumVarIncrements;
2583
2584 LastIncExpr = Inc.IncExpr;
2585 }
2586 // An IV chain with a single increment is handled by LSR's postinc
2587 // uses. However, a chain with multiple increments requires keeping the IV's
2588 // value live longer than it needs to be if chained.
2589 if (NumConstIncrements > 1)
2590 --cost;
2591
2592 // Materializing increment expressions in the preheader that didn't exist in
2593 // the original code may cost a register. For example, sign-extended array
2594 // indices can produce ridiculous increments like this:
2595 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2596 cost += NumVarIncrements;
2597
2598 // Reusing variable increments likely saves a register to hold the multiple of
2599 // the stride.
2600 cost -= NumReusedIncrements;
2601
2602 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2603 << "\n");
2604
2605 return cost < 0;
2606 }
2607
2608 /// Add this IV user to an existing chain or make it the head of a new chain.
ChainInstruction(Instruction * UserInst,Instruction * IVOper,SmallVectorImpl<ChainUsers> & ChainUsersVec)2609 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2610 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2611 // When IVs are used as types of varying widths, they are generally converted
2612 // to a wider type with some uses remaining narrow under a (free) trunc.
2613 Value *const NextIV = getWideOperand(IVOper);
2614 const SCEV *const OperExpr = SE.getSCEV(NextIV);
2615 const SCEV *const OperExprBase = getExprBase(OperExpr);
2616
2617 // Visit all existing chains. Check if its IVOper can be computed as a
2618 // profitable loop invariant increment from the last link in the Chain.
2619 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2620 const SCEV *LastIncExpr = nullptr;
2621 for (; ChainIdx < NChains; ++ChainIdx) {
2622 IVChain &Chain = IVChainVec[ChainIdx];
2623
2624 // Prune the solution space aggressively by checking that both IV operands
2625 // are expressions that operate on the same unscaled SCEVUnknown. This
2626 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2627 // first avoids creating extra SCEV expressions.
2628 if (!StressIVChain && Chain.ExprBase != OperExprBase)
2629 continue;
2630
2631 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2632 if (!isCompatibleIVType(PrevIV, NextIV))
2633 continue;
2634
2635 // A phi node terminates a chain.
2636 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2637 continue;
2638
2639 // The increment must be loop-invariant so it can be kept in a register.
2640 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2641 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2642 if (!SE.isLoopInvariant(IncExpr, L))
2643 continue;
2644
2645 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2646 LastIncExpr = IncExpr;
2647 break;
2648 }
2649 }
2650 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2651 // bother for phi nodes, because they must be last in the chain.
2652 if (ChainIdx == NChains) {
2653 if (isa<PHINode>(UserInst))
2654 return;
2655 if (NChains >= MaxChains && !StressIVChain) {
2656 DEBUG(dbgs() << "IV Chain Limit\n");
2657 return;
2658 }
2659 LastIncExpr = OperExpr;
2660 // IVUsers may have skipped over sign/zero extensions. We don't currently
2661 // attempt to form chains involving extensions unless they can be hoisted
2662 // into this loop's AddRec.
2663 if (!isa<SCEVAddRecExpr>(LastIncExpr))
2664 return;
2665 ++NChains;
2666 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2667 OperExprBase));
2668 ChainUsersVec.resize(NChains);
2669 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2670 << ") IV=" << *LastIncExpr << "\n");
2671 } else {
2672 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
2673 << ") IV+" << *LastIncExpr << "\n");
2674 // Add this IV user to the end of the chain.
2675 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2676 }
2677 IVChain &Chain = IVChainVec[ChainIdx];
2678
2679 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2680 // This chain's NearUsers become FarUsers.
2681 if (!LastIncExpr->isZero()) {
2682 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2683 NearUsers.end());
2684 NearUsers.clear();
2685 }
2686
2687 // All other uses of IVOperand become near uses of the chain.
2688 // We currently ignore intermediate values within SCEV expressions, assuming
2689 // they will eventually be used be the current chain, or can be computed
2690 // from one of the chain increments. To be more precise we could
2691 // transitively follow its user and only add leaf IV users to the set.
2692 for (User *U : IVOper->users()) {
2693 Instruction *OtherUse = dyn_cast<Instruction>(U);
2694 if (!OtherUse)
2695 continue;
2696 // Uses in the chain will no longer be uses if the chain is formed.
2697 // Include the head of the chain in this iteration (not Chain.begin()).
2698 IVChain::const_iterator IncIter = Chain.Incs.begin();
2699 IVChain::const_iterator IncEnd = Chain.Incs.end();
2700 for( ; IncIter != IncEnd; ++IncIter) {
2701 if (IncIter->UserInst == OtherUse)
2702 break;
2703 }
2704 if (IncIter != IncEnd)
2705 continue;
2706
2707 if (SE.isSCEVable(OtherUse->getType())
2708 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2709 && IU.isIVUserOrOperand(OtherUse)) {
2710 continue;
2711 }
2712 NearUsers.insert(OtherUse);
2713 }
2714
2715 // Since this user is part of the chain, it's no longer considered a use
2716 // of the chain.
2717 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2718 }
2719
2720 /// Populate the vector of Chains.
2721 ///
2722 /// This decreases ILP at the architecture level. Targets with ample registers,
2723 /// multiple memory ports, and no register renaming probably don't want
2724 /// this. However, such targets should probably disable LSR altogether.
2725 ///
2726 /// The job of LSR is to make a reasonable choice of induction variables across
2727 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2728 /// ILP *within the loop* if the target wants it.
2729 ///
2730 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2731 /// will not reorder memory operations, it will recognize this as a chain, but
2732 /// will generate redundant IV increments. Ideally this would be corrected later
2733 /// by a smart scheduler:
2734 /// = A[i]
2735 /// = A[i+x]
2736 /// A[i] =
2737 /// A[i+x] =
2738 ///
2739 /// TODO: Walk the entire domtree within this loop, not just the path to the
2740 /// loop latch. This will discover chains on side paths, but requires
2741 /// maintaining multiple copies of the Chains state.
CollectChains()2742 void LSRInstance::CollectChains() {
2743 DEBUG(dbgs() << "Collecting IV Chains.\n");
2744 SmallVector<ChainUsers, 8> ChainUsersVec;
2745
2746 SmallVector<BasicBlock *,8> LatchPath;
2747 BasicBlock *LoopHeader = L->getHeader();
2748 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2749 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2750 LatchPath.push_back(Rung->getBlock());
2751 }
2752 LatchPath.push_back(LoopHeader);
2753
2754 // Walk the instruction stream from the loop header to the loop latch.
2755 for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2756 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2757 BBIter != BBEnd; ++BBIter) {
2758 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2759 I != E; ++I) {
2760 // Skip instructions that weren't seen by IVUsers analysis.
2761 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I))
2762 continue;
2763
2764 // Ignore users that are part of a SCEV expression. This way we only
2765 // consider leaf IV Users. This effectively rediscovers a portion of
2766 // IVUsers analysis but in program order this time.
2767 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I)))
2768 continue;
2769
2770 // Remove this instruction from any NearUsers set it may be in.
2771 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2772 ChainIdx < NChains; ++ChainIdx) {
2773 ChainUsersVec[ChainIdx].NearUsers.erase(&*I);
2774 }
2775 // Search for operands that can be chained.
2776 SmallPtrSet<Instruction*, 4> UniqueOperands;
2777 User::op_iterator IVOpEnd = I->op_end();
2778 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2779 while (IVOpIter != IVOpEnd) {
2780 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2781 if (UniqueOperands.insert(IVOpInst).second)
2782 ChainInstruction(&*I, IVOpInst, ChainUsersVec);
2783 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2784 }
2785 } // Continue walking down the instructions.
2786 } // Continue walking down the domtree.
2787 // Visit phi backedges to determine if the chain can generate the IV postinc.
2788 for (BasicBlock::iterator I = L->getHeader()->begin();
2789 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2790 if (!SE.isSCEVable(PN->getType()))
2791 continue;
2792
2793 Instruction *IncV =
2794 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2795 if (IncV)
2796 ChainInstruction(PN, IncV, ChainUsersVec);
2797 }
2798 // Remove any unprofitable chains.
2799 unsigned ChainIdx = 0;
2800 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2801 UsersIdx < NChains; ++UsersIdx) {
2802 if (!isProfitableChain(IVChainVec[UsersIdx],
2803 ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2804 continue;
2805 // Preserve the chain at UsesIdx.
2806 if (ChainIdx != UsersIdx)
2807 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2808 FinalizeChain(IVChainVec[ChainIdx]);
2809 ++ChainIdx;
2810 }
2811 IVChainVec.resize(ChainIdx);
2812 }
2813
FinalizeChain(IVChain & Chain)2814 void LSRInstance::FinalizeChain(IVChain &Chain) {
2815 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2816 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2817
2818 for (const IVInc &Inc : Chain) {
2819 DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n");
2820 auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
2821 Inc.IVOperand);
2822 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2823 IVIncSet.insert(UseI);
2824 }
2825 }
2826
2827 /// Return true if the IVInc can be folded into an addressing mode.
canFoldIVIncExpr(const SCEV * IncExpr,Instruction * UserInst,Value * Operand,const TargetTransformInfo & TTI)2828 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2829 Value *Operand, const TargetTransformInfo &TTI) {
2830 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2831 if (!IncConst || !isAddressUse(UserInst, Operand))
2832 return false;
2833
2834 if (IncConst->getAPInt().getMinSignedBits() > 64)
2835 return false;
2836
2837 MemAccessTy AccessTy = getAccessType(UserInst);
2838 int64_t IncOffset = IncConst->getValue()->getSExtValue();
2839 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2840 IncOffset, /*HaseBaseReg=*/false))
2841 return false;
2842
2843 return true;
2844 }
2845
2846 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2847 /// user's operand from the previous IV user's operand.
GenerateIVChain(const IVChain & Chain,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts)2848 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2849 SmallVectorImpl<WeakVH> &DeadInsts) {
2850 // Find the new IVOperand for the head of the chain. It may have been replaced
2851 // by LSR.
2852 const IVInc &Head = Chain.Incs[0];
2853 User::op_iterator IVOpEnd = Head.UserInst->op_end();
2854 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2855 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2856 IVOpEnd, L, SE);
2857 Value *IVSrc = nullptr;
2858 while (IVOpIter != IVOpEnd) {
2859 IVSrc = getWideOperand(*IVOpIter);
2860
2861 // If this operand computes the expression that the chain needs, we may use
2862 // it. (Check this after setting IVSrc which is used below.)
2863 //
2864 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2865 // narrow for the chain, so we can no longer use it. We do allow using a
2866 // wider phi, assuming the LSR checked for free truncation. In that case we
2867 // should already have a truncate on this operand such that
2868 // getSCEV(IVSrc) == IncExpr.
2869 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2870 || SE.getSCEV(IVSrc) == Head.IncExpr) {
2871 break;
2872 }
2873 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2874 }
2875 if (IVOpIter == IVOpEnd) {
2876 // Gracefully give up on this chain.
2877 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2878 return;
2879 }
2880
2881 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2882 Type *IVTy = IVSrc->getType();
2883 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2884 const SCEV *LeftOverExpr = nullptr;
2885 for (const IVInc &Inc : Chain) {
2886 Instruction *InsertPt = Inc.UserInst;
2887 if (isa<PHINode>(InsertPt))
2888 InsertPt = L->getLoopLatch()->getTerminator();
2889
2890 // IVOper will replace the current IV User's operand. IVSrc is the IV
2891 // value currently held in a register.
2892 Value *IVOper = IVSrc;
2893 if (!Inc.IncExpr->isZero()) {
2894 // IncExpr was the result of subtraction of two narrow values, so must
2895 // be signed.
2896 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2897 LeftOverExpr = LeftOverExpr ?
2898 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2899 }
2900 if (LeftOverExpr && !LeftOverExpr->isZero()) {
2901 // Expand the IV increment.
2902 Rewriter.clearPostInc();
2903 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2904 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2905 SE.getUnknown(IncV));
2906 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2907
2908 // If an IV increment can't be folded, use it as the next IV value.
2909 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2910 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2911 IVSrc = IVOper;
2912 LeftOverExpr = nullptr;
2913 }
2914 }
2915 Type *OperTy = Inc.IVOperand->getType();
2916 if (IVTy != OperTy) {
2917 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2918 "cannot extend a chained IV");
2919 IRBuilder<> Builder(InsertPt);
2920 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2921 }
2922 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2923 DeadInsts.emplace_back(Inc.IVOperand);
2924 }
2925 // If LSR created a new, wider phi, we may also replace its postinc. We only
2926 // do this if we also found a wide value for the head of the chain.
2927 if (isa<PHINode>(Chain.tailUserInst())) {
2928 for (BasicBlock::iterator I = L->getHeader()->begin();
2929 PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2930 if (!isCompatibleIVType(Phi, IVSrc))
2931 continue;
2932 Instruction *PostIncV = dyn_cast<Instruction>(
2933 Phi->getIncomingValueForBlock(L->getLoopLatch()));
2934 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2935 continue;
2936 Value *IVOper = IVSrc;
2937 Type *PostIncTy = PostIncV->getType();
2938 if (IVTy != PostIncTy) {
2939 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2940 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2941 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2942 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2943 }
2944 Phi->replaceUsesOfWith(PostIncV, IVOper);
2945 DeadInsts.emplace_back(PostIncV);
2946 }
2947 }
2948 }
2949
CollectFixupsAndInitialFormulae()2950 void LSRInstance::CollectFixupsAndInitialFormulae() {
2951 for (const IVStrideUse &U : IU) {
2952 Instruction *UserInst = U.getUser();
2953 // Skip IV users that are part of profitable IV Chains.
2954 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2955 U.getOperandValToReplace());
2956 assert(UseI != UserInst->op_end() && "cannot find IV operand");
2957 if (IVIncSet.count(UseI))
2958 continue;
2959
2960 // Record the uses.
2961 LSRFixup &LF = getNewFixup();
2962 LF.UserInst = UserInst;
2963 LF.OperandValToReplace = U.getOperandValToReplace();
2964 LF.PostIncLoops = U.getPostIncLoops();
2965
2966 LSRUse::KindType Kind = LSRUse::Basic;
2967 MemAccessTy AccessTy;
2968 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2969 Kind = LSRUse::Address;
2970 AccessTy = getAccessType(LF.UserInst);
2971 }
2972
2973 const SCEV *S = IU.getExpr(U);
2974
2975 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2976 // (N - i == 0), and this allows (N - i) to be the expression that we work
2977 // with rather than just N or i, so we can consider the register
2978 // requirements for both N and i at the same time. Limiting this code to
2979 // equality icmps is not a problem because all interesting loops use
2980 // equality icmps, thanks to IndVarSimplify.
2981 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2982 if (CI->isEquality()) {
2983 // Swap the operands if needed to put the OperandValToReplace on the
2984 // left, for consistency.
2985 Value *NV = CI->getOperand(1);
2986 if (NV == LF.OperandValToReplace) {
2987 CI->setOperand(1, CI->getOperand(0));
2988 CI->setOperand(0, NV);
2989 NV = CI->getOperand(1);
2990 Changed = true;
2991 }
2992
2993 // x == y --> x - y == 0
2994 const SCEV *N = SE.getSCEV(NV);
2995 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
2996 // S is normalized, so normalize N before folding it into S
2997 // to keep the result normalized.
2998 N = TransformForPostIncUse(Normalize, N, CI, nullptr,
2999 LF.PostIncLoops, SE, DT);
3000 Kind = LSRUse::ICmpZero;
3001 S = SE.getMinusSCEV(N, S);
3002 }
3003
3004 // -1 and the negations of all interesting strides (except the negation
3005 // of -1) are now also interesting.
3006 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3007 if (Factors[i] != -1)
3008 Factors.insert(-(uint64_t)Factors[i]);
3009 Factors.insert(-1);
3010 }
3011
3012 // Set up the initial formula for this use.
3013 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3014 LF.LUIdx = P.first;
3015 LF.Offset = P.second;
3016 LSRUse &LU = Uses[LF.LUIdx];
3017 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3018 if (!LU.WidestFixupType ||
3019 SE.getTypeSizeInBits(LU.WidestFixupType) <
3020 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3021 LU.WidestFixupType = LF.OperandValToReplace->getType();
3022
3023 // If this is the first use of this LSRUse, give it a formula.
3024 if (LU.Formulae.empty()) {
3025 InsertInitialFormula(S, LU, LF.LUIdx);
3026 CountRegisters(LU.Formulae.back(), LF.LUIdx);
3027 }
3028 }
3029
3030 DEBUG(print_fixups(dbgs()));
3031 }
3032
3033 /// Insert a formula for the given expression into the given use, separating out
3034 /// loop-variant portions from loop-invariant and loop-computable portions.
3035 void
InsertInitialFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3036 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3037 // Mark uses whose expressions cannot be expanded.
3038 if (!isSafeToExpand(S, SE))
3039 LU.RigidFormula = true;
3040
3041 Formula F;
3042 F.initialMatch(S, L, SE);
3043 bool Inserted = InsertFormula(LU, LUIdx, F);
3044 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3045 }
3046
3047 /// Insert a simple single-register formula for the given expression into the
3048 /// given use.
3049 void
InsertSupplementalFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3050 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3051 LSRUse &LU, size_t LUIdx) {
3052 Formula F;
3053 F.BaseRegs.push_back(S);
3054 F.HasBaseReg = true;
3055 bool Inserted = InsertFormula(LU, LUIdx, F);
3056 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3057 }
3058
3059 /// Note which registers are used by the given formula, updating RegUses.
CountRegisters(const Formula & F,size_t LUIdx)3060 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3061 if (F.ScaledReg)
3062 RegUses.countRegister(F.ScaledReg, LUIdx);
3063 for (const SCEV *BaseReg : F.BaseRegs)
3064 RegUses.countRegister(BaseReg, LUIdx);
3065 }
3066
3067 /// If the given formula has not yet been inserted, add it to the list, and
3068 /// return true. Return false otherwise.
InsertFormula(LSRUse & LU,unsigned LUIdx,const Formula & F)3069 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3070 // Do not insert formula that we will not be able to expand.
3071 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3072 "Formula is illegal");
3073 if (!LU.InsertFormula(F))
3074 return false;
3075
3076 CountRegisters(F, LUIdx);
3077 return true;
3078 }
3079
3080 /// Check for other uses of loop-invariant values which we're tracking. These
3081 /// other uses will pin these values in registers, making them less profitable
3082 /// for elimination.
3083 /// TODO: This currently misses non-constant addrec step registers.
3084 /// TODO: Should this give more weight to users inside the loop?
3085 void
CollectLoopInvariantFixupsAndFormulae()3086 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3087 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3088 SmallPtrSet<const SCEV *, 32> Visited;
3089
3090 while (!Worklist.empty()) {
3091 const SCEV *S = Worklist.pop_back_val();
3092
3093 // Don't process the same SCEV twice
3094 if (!Visited.insert(S).second)
3095 continue;
3096
3097 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3098 Worklist.append(N->op_begin(), N->op_end());
3099 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3100 Worklist.push_back(C->getOperand());
3101 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3102 Worklist.push_back(D->getLHS());
3103 Worklist.push_back(D->getRHS());
3104 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3105 const Value *V = US->getValue();
3106 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3107 // Look for instructions defined outside the loop.
3108 if (L->contains(Inst)) continue;
3109 } else if (isa<UndefValue>(V))
3110 // Undef doesn't have a live range, so it doesn't matter.
3111 continue;
3112 for (const Use &U : V->uses()) {
3113 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3114 // Ignore non-instructions.
3115 if (!UserInst)
3116 continue;
3117 // Ignore instructions in other functions (as can happen with
3118 // Constants).
3119 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3120 continue;
3121 // Ignore instructions not dominated by the loop.
3122 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3123 UserInst->getParent() :
3124 cast<PHINode>(UserInst)->getIncomingBlock(
3125 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3126 if (!DT.dominates(L->getHeader(), UseBB))
3127 continue;
3128 // Don't bother if the instruction is in a BB which ends in an EHPad.
3129 if (UseBB->getTerminator()->isEHPad())
3130 continue;
3131 // Ignore uses which are part of other SCEV expressions, to avoid
3132 // analyzing them multiple times.
3133 if (SE.isSCEVable(UserInst->getType())) {
3134 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3135 // If the user is a no-op, look through to its uses.
3136 if (!isa<SCEVUnknown>(UserS))
3137 continue;
3138 if (UserS == US) {
3139 Worklist.push_back(
3140 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3141 continue;
3142 }
3143 }
3144 // Ignore icmp instructions which are already being analyzed.
3145 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3146 unsigned OtherIdx = !U.getOperandNo();
3147 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3148 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3149 continue;
3150 }
3151
3152 LSRFixup &LF = getNewFixup();
3153 LF.UserInst = const_cast<Instruction *>(UserInst);
3154 LF.OperandValToReplace = U;
3155 std::pair<size_t, int64_t> P = getUse(
3156 S, LSRUse::Basic, MemAccessTy());
3157 LF.LUIdx = P.first;
3158 LF.Offset = P.second;
3159 LSRUse &LU = Uses[LF.LUIdx];
3160 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3161 if (!LU.WidestFixupType ||
3162 SE.getTypeSizeInBits(LU.WidestFixupType) <
3163 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3164 LU.WidestFixupType = LF.OperandValToReplace->getType();
3165 InsertSupplementalFormula(US, LU, LF.LUIdx);
3166 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3167 break;
3168 }
3169 }
3170 }
3171 }
3172
3173 /// Split S into subexpressions which can be pulled out into separate
3174 /// registers. If C is non-null, multiply each subexpression by C.
3175 ///
3176 /// Return remainder expression after factoring the subexpressions captured by
3177 /// Ops. If Ops is complete, return NULL.
CollectSubexprs(const SCEV * S,const SCEVConstant * C,SmallVectorImpl<const SCEV * > & Ops,const Loop * L,ScalarEvolution & SE,unsigned Depth=0)3178 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3179 SmallVectorImpl<const SCEV *> &Ops,
3180 const Loop *L,
3181 ScalarEvolution &SE,
3182 unsigned Depth = 0) {
3183 // Arbitrarily cap recursion to protect compile time.
3184 if (Depth >= 3)
3185 return S;
3186
3187 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3188 // Break out add operands.
3189 for (const SCEV *S : Add->operands()) {
3190 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3191 if (Remainder)
3192 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3193 }
3194 return nullptr;
3195 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3196 // Split a non-zero base out of an addrec.
3197 if (AR->getStart()->isZero())
3198 return S;
3199
3200 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3201 C, Ops, L, SE, Depth+1);
3202 // Split the non-zero AddRec unless it is part of a nested recurrence that
3203 // does not pertain to this loop.
3204 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3205 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3206 Remainder = nullptr;
3207 }
3208 if (Remainder != AR->getStart()) {
3209 if (!Remainder)
3210 Remainder = SE.getConstant(AR->getType(), 0);
3211 return SE.getAddRecExpr(Remainder,
3212 AR->getStepRecurrence(SE),
3213 AR->getLoop(),
3214 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3215 SCEV::FlagAnyWrap);
3216 }
3217 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3218 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3219 if (Mul->getNumOperands() != 2)
3220 return S;
3221 if (const SCEVConstant *Op0 =
3222 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3223 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3224 const SCEV *Remainder =
3225 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3226 if (Remainder)
3227 Ops.push_back(SE.getMulExpr(C, Remainder));
3228 return nullptr;
3229 }
3230 }
3231 return S;
3232 }
3233
3234 /// \brief Helper function for LSRInstance::GenerateReassociations.
GenerateReassociationsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,unsigned Depth,size_t Idx,bool IsScaledReg)3235 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3236 const Formula &Base,
3237 unsigned Depth, size_t Idx,
3238 bool IsScaledReg) {
3239 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3240 SmallVector<const SCEV *, 8> AddOps;
3241 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3242 if (Remainder)
3243 AddOps.push_back(Remainder);
3244
3245 if (AddOps.size() == 1)
3246 return;
3247
3248 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3249 JE = AddOps.end();
3250 J != JE; ++J) {
3251
3252 // Loop-variant "unknown" values are uninteresting; we won't be able to
3253 // do anything meaningful with them.
3254 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3255 continue;
3256
3257 // Don't pull a constant into a register if the constant could be folded
3258 // into an immediate field.
3259 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3260 LU.AccessTy, *J, Base.getNumRegs() > 1))
3261 continue;
3262
3263 // Collect all operands except *J.
3264 SmallVector<const SCEV *, 8> InnerAddOps(
3265 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3266 InnerAddOps.append(std::next(J),
3267 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3268
3269 // Don't leave just a constant behind in a register if the constant could
3270 // be folded into an immediate field.
3271 if (InnerAddOps.size() == 1 &&
3272 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3273 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3274 continue;
3275
3276 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3277 if (InnerSum->isZero())
3278 continue;
3279 Formula F = Base;
3280
3281 // Add the remaining pieces of the add back into the new formula.
3282 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3283 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3284 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3285 InnerSumSC->getValue()->getZExtValue())) {
3286 F.UnfoldedOffset =
3287 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3288 if (IsScaledReg)
3289 F.ScaledReg = nullptr;
3290 else
3291 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3292 } else if (IsScaledReg)
3293 F.ScaledReg = InnerSum;
3294 else
3295 F.BaseRegs[Idx] = InnerSum;
3296
3297 // Add J as its own register, or an unfolded immediate.
3298 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3299 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3300 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3301 SC->getValue()->getZExtValue()))
3302 F.UnfoldedOffset =
3303 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3304 else
3305 F.BaseRegs.push_back(*J);
3306 // We may have changed the number of register in base regs, adjust the
3307 // formula accordingly.
3308 F.canonicalize();
3309
3310 if (InsertFormula(LU, LUIdx, F))
3311 // If that formula hadn't been seen before, recurse to find more like
3312 // it.
3313 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3314 }
3315 }
3316
3317 /// Split out subexpressions from adds and the bases of addrecs.
GenerateReassociations(LSRUse & LU,unsigned LUIdx,Formula Base,unsigned Depth)3318 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3319 Formula Base, unsigned Depth) {
3320 assert(Base.isCanonical() && "Input must be in the canonical form");
3321 // Arbitrarily cap recursion to protect compile time.
3322 if (Depth >= 3)
3323 return;
3324
3325 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3326 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3327
3328 if (Base.Scale == 1)
3329 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3330 /* Idx */ -1, /* IsScaledReg */ true);
3331 }
3332
3333 /// Generate a formula consisting of all of the loop-dominating registers added
3334 /// into a single register.
GenerateCombinations(LSRUse & LU,unsigned LUIdx,Formula Base)3335 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3336 Formula Base) {
3337 // This method is only interesting on a plurality of registers.
3338 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3339 return;
3340
3341 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3342 // processing the formula.
3343 Base.unscale();
3344 Formula F = Base;
3345 F.BaseRegs.clear();
3346 SmallVector<const SCEV *, 4> Ops;
3347 for (const SCEV *BaseReg : Base.BaseRegs) {
3348 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3349 !SE.hasComputableLoopEvolution(BaseReg, L))
3350 Ops.push_back(BaseReg);
3351 else
3352 F.BaseRegs.push_back(BaseReg);
3353 }
3354 if (Ops.size() > 1) {
3355 const SCEV *Sum = SE.getAddExpr(Ops);
3356 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3357 // opportunity to fold something. For now, just ignore such cases
3358 // rather than proceed with zero in a register.
3359 if (!Sum->isZero()) {
3360 F.BaseRegs.push_back(Sum);
3361 F.canonicalize();
3362 (void)InsertFormula(LU, LUIdx, F);
3363 }
3364 }
3365 }
3366
3367 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
GenerateSymbolicOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,size_t Idx,bool IsScaledReg)3368 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3369 const Formula &Base, size_t Idx,
3370 bool IsScaledReg) {
3371 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3372 GlobalValue *GV = ExtractSymbol(G, SE);
3373 if (G->isZero() || !GV)
3374 return;
3375 Formula F = Base;
3376 F.BaseGV = GV;
3377 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3378 return;
3379 if (IsScaledReg)
3380 F.ScaledReg = G;
3381 else
3382 F.BaseRegs[Idx] = G;
3383 (void)InsertFormula(LU, LUIdx, F);
3384 }
3385
3386 /// Generate reuse formulae using symbolic offsets.
GenerateSymbolicOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3387 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3388 Formula Base) {
3389 // We can't add a symbolic offset if the address already contains one.
3390 if (Base.BaseGV) return;
3391
3392 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3393 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3394 if (Base.Scale == 1)
3395 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3396 /* IsScaledReg */ true);
3397 }
3398
3399 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
GenerateConstantOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,const SmallVectorImpl<int64_t> & Worklist,size_t Idx,bool IsScaledReg)3400 void LSRInstance::GenerateConstantOffsetsImpl(
3401 LSRUse &LU, unsigned LUIdx, const Formula &Base,
3402 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3403 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3404 for (int64_t Offset : Worklist) {
3405 Formula F = Base;
3406 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3407 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3408 LU.AccessTy, F)) {
3409 // Add the offset to the base register.
3410 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3411 // If it cancelled out, drop the base register, otherwise update it.
3412 if (NewG->isZero()) {
3413 if (IsScaledReg) {
3414 F.Scale = 0;
3415 F.ScaledReg = nullptr;
3416 } else
3417 F.deleteBaseReg(F.BaseRegs[Idx]);
3418 F.canonicalize();
3419 } else if (IsScaledReg)
3420 F.ScaledReg = NewG;
3421 else
3422 F.BaseRegs[Idx] = NewG;
3423
3424 (void)InsertFormula(LU, LUIdx, F);
3425 }
3426 }
3427
3428 int64_t Imm = ExtractImmediate(G, SE);
3429 if (G->isZero() || Imm == 0)
3430 return;
3431 Formula F = Base;
3432 F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3433 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3434 return;
3435 if (IsScaledReg)
3436 F.ScaledReg = G;
3437 else
3438 F.BaseRegs[Idx] = G;
3439 (void)InsertFormula(LU, LUIdx, F);
3440 }
3441
3442 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
GenerateConstantOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3443 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3444 Formula Base) {
3445 // TODO: For now, just add the min and max offset, because it usually isn't
3446 // worthwhile looking at everything inbetween.
3447 SmallVector<int64_t, 2> Worklist;
3448 Worklist.push_back(LU.MinOffset);
3449 if (LU.MaxOffset != LU.MinOffset)
3450 Worklist.push_back(LU.MaxOffset);
3451
3452 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3453 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3454 if (Base.Scale == 1)
3455 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3456 /* IsScaledReg */ true);
3457 }
3458
3459 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3460 /// == y -> x*c == y*c.
GenerateICmpZeroScales(LSRUse & LU,unsigned LUIdx,Formula Base)3461 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3462 Formula Base) {
3463 if (LU.Kind != LSRUse::ICmpZero) return;
3464
3465 // Determine the integer type for the base formula.
3466 Type *IntTy = Base.getType();
3467 if (!IntTy) return;
3468 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3469
3470 // Don't do this if there is more than one offset.
3471 if (LU.MinOffset != LU.MaxOffset) return;
3472
3473 assert(!Base.BaseGV && "ICmpZero use is not legal!");
3474
3475 // Check each interesting stride.
3476 for (int64_t Factor : Factors) {
3477 // Check that the multiplication doesn't overflow.
3478 if (Base.BaseOffset == INT64_MIN && Factor == -1)
3479 continue;
3480 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3481 if (NewBaseOffset / Factor != Base.BaseOffset)
3482 continue;
3483 // If the offset will be truncated at this use, check that it is in bounds.
3484 if (!IntTy->isPointerTy() &&
3485 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3486 continue;
3487
3488 // Check that multiplying with the use offset doesn't overflow.
3489 int64_t Offset = LU.MinOffset;
3490 if (Offset == INT64_MIN && Factor == -1)
3491 continue;
3492 Offset = (uint64_t)Offset * Factor;
3493 if (Offset / Factor != LU.MinOffset)
3494 continue;
3495 // If the offset will be truncated at this use, check that it is in bounds.
3496 if (!IntTy->isPointerTy() &&
3497 !ConstantInt::isValueValidForType(IntTy, Offset))
3498 continue;
3499
3500 Formula F = Base;
3501 F.BaseOffset = NewBaseOffset;
3502
3503 // Check that this scale is legal.
3504 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3505 continue;
3506
3507 // Compensate for the use having MinOffset built into it.
3508 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3509
3510 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3511
3512 // Check that multiplying with each base register doesn't overflow.
3513 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3514 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3515 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3516 goto next;
3517 }
3518
3519 // Check that multiplying with the scaled register doesn't overflow.
3520 if (F.ScaledReg) {
3521 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3522 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3523 continue;
3524 }
3525
3526 // Check that multiplying with the unfolded offset doesn't overflow.
3527 if (F.UnfoldedOffset != 0) {
3528 if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3529 continue;
3530 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3531 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3532 continue;
3533 // If the offset will be truncated, check that it is in bounds.
3534 if (!IntTy->isPointerTy() &&
3535 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3536 continue;
3537 }
3538
3539 // If we make it here and it's legal, add it.
3540 (void)InsertFormula(LU, LUIdx, F);
3541 next:;
3542 }
3543 }
3544
3545 /// Generate stride factor reuse formulae by making use of scaled-offset address
3546 /// modes, for example.
GenerateScales(LSRUse & LU,unsigned LUIdx,Formula Base)3547 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3548 // Determine the integer type for the base formula.
3549 Type *IntTy = Base.getType();
3550 if (!IntTy) return;
3551
3552 // If this Formula already has a scaled register, we can't add another one.
3553 // Try to unscale the formula to generate a better scale.
3554 if (Base.Scale != 0 && !Base.unscale())
3555 return;
3556
3557 assert(Base.Scale == 0 && "unscale did not did its job!");
3558
3559 // Check each interesting stride.
3560 for (int64_t Factor : Factors) {
3561 Base.Scale = Factor;
3562 Base.HasBaseReg = Base.BaseRegs.size() > 1;
3563 // Check whether this scale is going to be legal.
3564 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3565 Base)) {
3566 // As a special-case, handle special out-of-loop Basic users specially.
3567 // TODO: Reconsider this special case.
3568 if (LU.Kind == LSRUse::Basic &&
3569 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3570 LU.AccessTy, Base) &&
3571 LU.AllFixupsOutsideLoop)
3572 LU.Kind = LSRUse::Special;
3573 else
3574 continue;
3575 }
3576 // For an ICmpZero, negating a solitary base register won't lead to
3577 // new solutions.
3578 if (LU.Kind == LSRUse::ICmpZero &&
3579 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3580 continue;
3581 // For each addrec base reg, apply the scale, if possible.
3582 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3583 if (const SCEVAddRecExpr *AR =
3584 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3585 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3586 if (FactorS->isZero())
3587 continue;
3588 // Divide out the factor, ignoring high bits, since we'll be
3589 // scaling the value back up in the end.
3590 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3591 // TODO: This could be optimized to avoid all the copying.
3592 Formula F = Base;
3593 F.ScaledReg = Quotient;
3594 F.deleteBaseReg(F.BaseRegs[i]);
3595 // The canonical representation of 1*reg is reg, which is already in
3596 // Base. In that case, do not try to insert the formula, it will be
3597 // rejected anyway.
3598 if (F.Scale == 1 && F.BaseRegs.empty())
3599 continue;
3600 (void)InsertFormula(LU, LUIdx, F);
3601 }
3602 }
3603 }
3604 }
3605
3606 /// Generate reuse formulae from different IV types.
GenerateTruncates(LSRUse & LU,unsigned LUIdx,Formula Base)3607 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3608 // Don't bother truncating symbolic values.
3609 if (Base.BaseGV) return;
3610
3611 // Determine the integer type for the base formula.
3612 Type *DstTy = Base.getType();
3613 if (!DstTy) return;
3614 DstTy = SE.getEffectiveSCEVType(DstTy);
3615
3616 for (Type *SrcTy : Types) {
3617 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3618 Formula F = Base;
3619
3620 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3621 for (const SCEV *&BaseReg : F.BaseRegs)
3622 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3623
3624 // TODO: This assumes we've done basic processing on all uses and
3625 // have an idea what the register usage is.
3626 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3627 continue;
3628
3629 (void)InsertFormula(LU, LUIdx, F);
3630 }
3631 }
3632 }
3633
3634 namespace {
3635
3636 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3637 /// modifications so that the search phase doesn't have to worry about the data
3638 /// structures moving underneath it.
3639 struct WorkItem {
3640 size_t LUIdx;
3641 int64_t Imm;
3642 const SCEV *OrigReg;
3643
WorkItem__anondd02b9d70911::WorkItem3644 WorkItem(size_t LI, int64_t I, const SCEV *R)
3645 : LUIdx(LI), Imm(I), OrigReg(R) {}
3646
3647 void print(raw_ostream &OS) const;
3648 void dump() const;
3649 };
3650
3651 }
3652
print(raw_ostream & OS) const3653 void WorkItem::print(raw_ostream &OS) const {
3654 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3655 << " , add offset " << Imm;
3656 }
3657
3658 LLVM_DUMP_METHOD
dump() const3659 void WorkItem::dump() const {
3660 print(errs()); errs() << '\n';
3661 }
3662
3663 /// Look for registers which are a constant distance apart and try to form reuse
3664 /// opportunities between them.
GenerateCrossUseConstantOffsets()3665 void LSRInstance::GenerateCrossUseConstantOffsets() {
3666 // Group the registers by their value without any added constant offset.
3667 typedef std::map<int64_t, const SCEV *> ImmMapTy;
3668 DenseMap<const SCEV *, ImmMapTy> Map;
3669 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3670 SmallVector<const SCEV *, 8> Sequence;
3671 for (const SCEV *Use : RegUses) {
3672 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3673 int64_t Imm = ExtractImmediate(Reg, SE);
3674 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3675 if (Pair.second)
3676 Sequence.push_back(Reg);
3677 Pair.first->second.insert(std::make_pair(Imm, Use));
3678 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3679 }
3680
3681 // Now examine each set of registers with the same base value. Build up
3682 // a list of work to do and do the work in a separate step so that we're
3683 // not adding formulae and register counts while we're searching.
3684 SmallVector<WorkItem, 32> WorkItems;
3685 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3686 for (const SCEV *Reg : Sequence) {
3687 const ImmMapTy &Imms = Map.find(Reg)->second;
3688
3689 // It's not worthwhile looking for reuse if there's only one offset.
3690 if (Imms.size() == 1)
3691 continue;
3692
3693 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3694 for (const auto &Entry : Imms)
3695 dbgs() << ' ' << Entry.first;
3696 dbgs() << '\n');
3697
3698 // Examine each offset.
3699 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3700 J != JE; ++J) {
3701 const SCEV *OrigReg = J->second;
3702
3703 int64_t JImm = J->first;
3704 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3705
3706 if (!isa<SCEVConstant>(OrigReg) &&
3707 UsedByIndicesMap[Reg].count() == 1) {
3708 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3709 continue;
3710 }
3711
3712 // Conservatively examine offsets between this orig reg a few selected
3713 // other orig regs.
3714 ImmMapTy::const_iterator OtherImms[] = {
3715 Imms.begin(), std::prev(Imms.end()),
3716 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3717 2)
3718 };
3719 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3720 ImmMapTy::const_iterator M = OtherImms[i];
3721 if (M == J || M == JE) continue;
3722
3723 // Compute the difference between the two.
3724 int64_t Imm = (uint64_t)JImm - M->first;
3725 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3726 LUIdx = UsedByIndices.find_next(LUIdx))
3727 // Make a memo of this use, offset, and register tuple.
3728 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3729 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3730 }
3731 }
3732 }
3733
3734 Map.clear();
3735 Sequence.clear();
3736 UsedByIndicesMap.clear();
3737 UniqueItems.clear();
3738
3739 // Now iterate through the worklist and add new formulae.
3740 for (const WorkItem &WI : WorkItems) {
3741 size_t LUIdx = WI.LUIdx;
3742 LSRUse &LU = Uses[LUIdx];
3743 int64_t Imm = WI.Imm;
3744 const SCEV *OrigReg = WI.OrigReg;
3745
3746 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3747 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3748 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3749
3750 // TODO: Use a more targeted data structure.
3751 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3752 Formula F = LU.Formulae[L];
3753 // FIXME: The code for the scaled and unscaled registers looks
3754 // very similar but slightly different. Investigate if they
3755 // could be merged. That way, we would not have to unscale the
3756 // Formula.
3757 F.unscale();
3758 // Use the immediate in the scaled register.
3759 if (F.ScaledReg == OrigReg) {
3760 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3761 // Don't create 50 + reg(-50).
3762 if (F.referencesReg(SE.getSCEV(
3763 ConstantInt::get(IntTy, -(uint64_t)Offset))))
3764 continue;
3765 Formula NewF = F;
3766 NewF.BaseOffset = Offset;
3767 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3768 NewF))
3769 continue;
3770 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3771
3772 // If the new scale is a constant in a register, and adding the constant
3773 // value to the immediate would produce a value closer to zero than the
3774 // immediate itself, then the formula isn't worthwhile.
3775 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3776 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3777 (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3778 .ule(std::abs(NewF.BaseOffset)))
3779 continue;
3780
3781 // OK, looks good.
3782 NewF.canonicalize();
3783 (void)InsertFormula(LU, LUIdx, NewF);
3784 } else {
3785 // Use the immediate in a base register.
3786 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3787 const SCEV *BaseReg = F.BaseRegs[N];
3788 if (BaseReg != OrigReg)
3789 continue;
3790 Formula NewF = F;
3791 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3792 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3793 LU.Kind, LU.AccessTy, NewF)) {
3794 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3795 continue;
3796 NewF = F;
3797 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3798 }
3799 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3800
3801 // If the new formula has a constant in a register, and adding the
3802 // constant value to the immediate would produce a value closer to
3803 // zero than the immediate itself, then the formula isn't worthwhile.
3804 for (const SCEV *NewReg : NewF.BaseRegs)
3805 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3806 if ((C->getAPInt() + NewF.BaseOffset)
3807 .abs()
3808 .slt(std::abs(NewF.BaseOffset)) &&
3809 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3810 countTrailingZeros<uint64_t>(NewF.BaseOffset))
3811 goto skip_formula;
3812
3813 // Ok, looks good.
3814 NewF.canonicalize();
3815 (void)InsertFormula(LU, LUIdx, NewF);
3816 break;
3817 skip_formula:;
3818 }
3819 }
3820 }
3821 }
3822 }
3823
3824 /// Generate formulae for each use.
3825 void
GenerateAllReuseFormulae()3826 LSRInstance::GenerateAllReuseFormulae() {
3827 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3828 // queries are more precise.
3829 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3830 LSRUse &LU = Uses[LUIdx];
3831 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3832 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3833 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3834 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3835 }
3836 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3837 LSRUse &LU = Uses[LUIdx];
3838 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3839 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3840 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3841 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3842 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3843 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3844 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3845 GenerateScales(LU, LUIdx, LU.Formulae[i]);
3846 }
3847 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3848 LSRUse &LU = Uses[LUIdx];
3849 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3850 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3851 }
3852
3853 GenerateCrossUseConstantOffsets();
3854
3855 DEBUG(dbgs() << "\n"
3856 "After generating reuse formulae:\n";
3857 print_uses(dbgs()));
3858 }
3859
3860 /// If there are multiple formulae with the same set of registers used
3861 /// by other uses, pick the best one and delete the others.
FilterOutUndesirableDedicatedRegisters()3862 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3863 DenseSet<const SCEV *> VisitedRegs;
3864 SmallPtrSet<const SCEV *, 16> Regs;
3865 SmallPtrSet<const SCEV *, 16> LoserRegs;
3866 #ifndef NDEBUG
3867 bool ChangedFormulae = false;
3868 #endif
3869
3870 // Collect the best formula for each unique set of shared registers. This
3871 // is reset for each use.
3872 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3873 BestFormulaeTy;
3874 BestFormulaeTy BestFormulae;
3875
3876 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3877 LSRUse &LU = Uses[LUIdx];
3878 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3879
3880 bool Any = false;
3881 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3882 FIdx != NumForms; ++FIdx) {
3883 Formula &F = LU.Formulae[FIdx];
3884
3885 // Some formulas are instant losers. For example, they may depend on
3886 // nonexistent AddRecs from other loops. These need to be filtered
3887 // immediately, otherwise heuristics could choose them over others leading
3888 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3889 // avoids the need to recompute this information across formulae using the
3890 // same bad AddRec. Passing LoserRegs is also essential unless we remove
3891 // the corresponding bad register from the Regs set.
3892 Cost CostF;
3893 Regs.clear();
3894 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3895 &LoserRegs);
3896 if (CostF.isLoser()) {
3897 // During initial formula generation, undesirable formulae are generated
3898 // by uses within other loops that have some non-trivial address mode or
3899 // use the postinc form of the IV. LSR needs to provide these formulae
3900 // as the basis of rediscovering the desired formula that uses an AddRec
3901 // corresponding to the existing phi. Once all formulae have been
3902 // generated, these initial losers may be pruned.
3903 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
3904 dbgs() << "\n");
3905 }
3906 else {
3907 SmallVector<const SCEV *, 4> Key;
3908 for (const SCEV *Reg : F.BaseRegs) {
3909 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3910 Key.push_back(Reg);
3911 }
3912 if (F.ScaledReg &&
3913 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3914 Key.push_back(F.ScaledReg);
3915 // Unstable sort by host order ok, because this is only used for
3916 // uniquifying.
3917 std::sort(Key.begin(), Key.end());
3918
3919 std::pair<BestFormulaeTy::const_iterator, bool> P =
3920 BestFormulae.insert(std::make_pair(Key, FIdx));
3921 if (P.second)
3922 continue;
3923
3924 Formula &Best = LU.Formulae[P.first->second];
3925
3926 Cost CostBest;
3927 Regs.clear();
3928 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3929 DT, LU);
3930 if (CostF < CostBest)
3931 std::swap(F, Best);
3932 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
3933 dbgs() << "\n"
3934 " in favor of formula "; Best.print(dbgs());
3935 dbgs() << '\n');
3936 }
3937 #ifndef NDEBUG
3938 ChangedFormulae = true;
3939 #endif
3940 LU.DeleteFormula(F);
3941 --FIdx;
3942 --NumForms;
3943 Any = true;
3944 }
3945
3946 // Now that we've filtered out some formulae, recompute the Regs set.
3947 if (Any)
3948 LU.RecomputeRegs(LUIdx, RegUses);
3949
3950 // Reset this to prepare for the next use.
3951 BestFormulae.clear();
3952 }
3953
3954 DEBUG(if (ChangedFormulae) {
3955 dbgs() << "\n"
3956 "After filtering out undesirable candidates:\n";
3957 print_uses(dbgs());
3958 });
3959 }
3960
3961 // This is a rough guess that seems to work fairly well.
3962 static const size_t ComplexityLimit = UINT16_MAX;
3963
3964 /// Estimate the worst-case number of solutions the solver might have to
3965 /// consider. It almost never considers this many solutions because it prune the
3966 /// search space, but the pruning isn't always sufficient.
EstimateSearchSpaceComplexity() const3967 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3968 size_t Power = 1;
3969 for (const LSRUse &LU : Uses) {
3970 size_t FSize = LU.Formulae.size();
3971 if (FSize >= ComplexityLimit) {
3972 Power = ComplexityLimit;
3973 break;
3974 }
3975 Power *= FSize;
3976 if (Power >= ComplexityLimit)
3977 break;
3978 }
3979 return Power;
3980 }
3981
3982 /// When one formula uses a superset of the registers of another formula, it
3983 /// won't help reduce register pressure (though it may not necessarily hurt
3984 /// register pressure); remove it to simplify the system.
NarrowSearchSpaceByDetectingSupersets()3985 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3986 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3987 DEBUG(dbgs() << "The search space is too complex.\n");
3988
3989 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3990 "which use a superset of registers used by other "
3991 "formulae.\n");
3992
3993 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3994 LSRUse &LU = Uses[LUIdx];
3995 bool Any = false;
3996 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3997 Formula &F = LU.Formulae[i];
3998 // Look for a formula with a constant or GV in a register. If the use
3999 // also has a formula with that same value in an immediate field,
4000 // delete the one that uses a register.
4001 for (SmallVectorImpl<const SCEV *>::const_iterator
4002 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4003 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4004 Formula NewF = F;
4005 NewF.BaseOffset += C->getValue()->getSExtValue();
4006 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4007 (I - F.BaseRegs.begin()));
4008 if (LU.HasFormulaWithSameRegs(NewF)) {
4009 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4010 LU.DeleteFormula(F);
4011 --i;
4012 --e;
4013 Any = true;
4014 break;
4015 }
4016 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4017 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4018 if (!F.BaseGV) {
4019 Formula NewF = F;
4020 NewF.BaseGV = GV;
4021 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4022 (I - F.BaseRegs.begin()));
4023 if (LU.HasFormulaWithSameRegs(NewF)) {
4024 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4025 dbgs() << '\n');
4026 LU.DeleteFormula(F);
4027 --i;
4028 --e;
4029 Any = true;
4030 break;
4031 }
4032 }
4033 }
4034 }
4035 }
4036 if (Any)
4037 LU.RecomputeRegs(LUIdx, RegUses);
4038 }
4039
4040 DEBUG(dbgs() << "After pre-selection:\n";
4041 print_uses(dbgs()));
4042 }
4043 }
4044
4045 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4046 /// allocate a single register for them.
NarrowSearchSpaceByCollapsingUnrolledCode()4047 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4048 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4049 return;
4050
4051 DEBUG(dbgs() << "The search space is too complex.\n"
4052 "Narrowing the search space by assuming that uses separated "
4053 "by a constant offset will use the same registers.\n");
4054
4055 // This is especially useful for unrolled loops.
4056
4057 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4058 LSRUse &LU = Uses[LUIdx];
4059 for (const Formula &F : LU.Formulae) {
4060 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4061 continue;
4062
4063 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4064 if (!LUThatHas)
4065 continue;
4066
4067 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4068 LU.Kind, LU.AccessTy))
4069 continue;
4070
4071 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4072
4073 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4074
4075 // Update the relocs to reference the new use.
4076 for (LSRFixup &Fixup : Fixups) {
4077 if (Fixup.LUIdx == LUIdx) {
4078 Fixup.LUIdx = LUThatHas - &Uses.front();
4079 Fixup.Offset += F.BaseOffset;
4080 // Add the new offset to LUThatHas' offset list.
4081 if (LUThatHas->Offsets.back() != Fixup.Offset) {
4082 LUThatHas->Offsets.push_back(Fixup.Offset);
4083 if (Fixup.Offset > LUThatHas->MaxOffset)
4084 LUThatHas->MaxOffset = Fixup.Offset;
4085 if (Fixup.Offset < LUThatHas->MinOffset)
4086 LUThatHas->MinOffset = Fixup.Offset;
4087 }
4088 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4089 }
4090 if (Fixup.LUIdx == NumUses-1)
4091 Fixup.LUIdx = LUIdx;
4092 }
4093
4094 // Delete formulae from the new use which are no longer legal.
4095 bool Any = false;
4096 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4097 Formula &F = LUThatHas->Formulae[i];
4098 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4099 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4100 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4101 dbgs() << '\n');
4102 LUThatHas->DeleteFormula(F);
4103 --i;
4104 --e;
4105 Any = true;
4106 }
4107 }
4108
4109 if (Any)
4110 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4111
4112 // Delete the old use.
4113 DeleteUse(LU, LUIdx);
4114 --LUIdx;
4115 --NumUses;
4116 break;
4117 }
4118 }
4119
4120 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4121 }
4122
4123 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4124 /// we've done more filtering, as it may be able to find more formulae to
4125 /// eliminate.
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters()4126 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4127 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4128 DEBUG(dbgs() << "The search space is too complex.\n");
4129
4130 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4131 "undesirable dedicated registers.\n");
4132
4133 FilterOutUndesirableDedicatedRegisters();
4134
4135 DEBUG(dbgs() << "After pre-selection:\n";
4136 print_uses(dbgs()));
4137 }
4138 }
4139
4140 /// Pick a register which seems likely to be profitable, and then in any use
4141 /// which has any reference to that register, delete all formulae which do not
4142 /// reference that register.
NarrowSearchSpaceByPickingWinnerRegs()4143 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4144 // With all other options exhausted, loop until the system is simple
4145 // enough to handle.
4146 SmallPtrSet<const SCEV *, 4> Taken;
4147 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4148 // Ok, we have too many of formulae on our hands to conveniently handle.
4149 // Use a rough heuristic to thin out the list.
4150 DEBUG(dbgs() << "The search space is too complex.\n");
4151
4152 // Pick the register which is used by the most LSRUses, which is likely
4153 // to be a good reuse register candidate.
4154 const SCEV *Best = nullptr;
4155 unsigned BestNum = 0;
4156 for (const SCEV *Reg : RegUses) {
4157 if (Taken.count(Reg))
4158 continue;
4159 if (!Best)
4160 Best = Reg;
4161 else {
4162 unsigned Count = RegUses.getUsedByIndices(Reg).count();
4163 if (Count > BestNum) {
4164 Best = Reg;
4165 BestNum = Count;
4166 }
4167 }
4168 }
4169
4170 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4171 << " will yield profitable reuse.\n");
4172 Taken.insert(Best);
4173
4174 // In any use with formulae which references this register, delete formulae
4175 // which don't reference it.
4176 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4177 LSRUse &LU = Uses[LUIdx];
4178 if (!LU.Regs.count(Best)) continue;
4179
4180 bool Any = false;
4181 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4182 Formula &F = LU.Formulae[i];
4183 if (!F.referencesReg(Best)) {
4184 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4185 LU.DeleteFormula(F);
4186 --e;
4187 --i;
4188 Any = true;
4189 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4190 continue;
4191 }
4192 }
4193
4194 if (Any)
4195 LU.RecomputeRegs(LUIdx, RegUses);
4196 }
4197
4198 DEBUG(dbgs() << "After pre-selection:\n";
4199 print_uses(dbgs()));
4200 }
4201 }
4202
4203 /// If there are an extraordinary number of formulae to choose from, use some
4204 /// rough heuristics to prune down the number of formulae. This keeps the main
4205 /// solver from taking an extraordinary amount of time in some worst-case
4206 /// scenarios.
NarrowSearchSpaceUsingHeuristics()4207 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4208 NarrowSearchSpaceByDetectingSupersets();
4209 NarrowSearchSpaceByCollapsingUnrolledCode();
4210 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4211 NarrowSearchSpaceByPickingWinnerRegs();
4212 }
4213
4214 /// This is the recursive solver.
SolveRecurse(SmallVectorImpl<const Formula * > & Solution,Cost & SolutionCost,SmallVectorImpl<const Formula * > & Workspace,const Cost & CurCost,const SmallPtrSet<const SCEV *,16> & CurRegs,DenseSet<const SCEV * > & VisitedRegs) const4215 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4216 Cost &SolutionCost,
4217 SmallVectorImpl<const Formula *> &Workspace,
4218 const Cost &CurCost,
4219 const SmallPtrSet<const SCEV *, 16> &CurRegs,
4220 DenseSet<const SCEV *> &VisitedRegs) const {
4221 // Some ideas:
4222 // - prune more:
4223 // - use more aggressive filtering
4224 // - sort the formula so that the most profitable solutions are found first
4225 // - sort the uses too
4226 // - search faster:
4227 // - don't compute a cost, and then compare. compare while computing a cost
4228 // and bail early.
4229 // - track register sets with SmallBitVector
4230
4231 const LSRUse &LU = Uses[Workspace.size()];
4232
4233 // If this use references any register that's already a part of the
4234 // in-progress solution, consider it a requirement that a formula must
4235 // reference that register in order to be considered. This prunes out
4236 // unprofitable searching.
4237 SmallSetVector<const SCEV *, 4> ReqRegs;
4238 for (const SCEV *S : CurRegs)
4239 if (LU.Regs.count(S))
4240 ReqRegs.insert(S);
4241
4242 SmallPtrSet<const SCEV *, 16> NewRegs;
4243 Cost NewCost;
4244 for (const Formula &F : LU.Formulae) {
4245 // Ignore formulae which may not be ideal in terms of register reuse of
4246 // ReqRegs. The formula should use all required registers before
4247 // introducing new ones.
4248 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4249 for (const SCEV *Reg : ReqRegs) {
4250 if ((F.ScaledReg && F.ScaledReg == Reg) ||
4251 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
4252 F.BaseRegs.end()) {
4253 --NumReqRegsToFind;
4254 if (NumReqRegsToFind == 0)
4255 break;
4256 }
4257 }
4258 if (NumReqRegsToFind != 0) {
4259 // If none of the formulae satisfied the required registers, then we could
4260 // clear ReqRegs and try again. Currently, we simply give up in this case.
4261 continue;
4262 }
4263
4264 // Evaluate the cost of the current formula. If it's already worse than
4265 // the current best, prune the search at that point.
4266 NewCost = CurCost;
4267 NewRegs = CurRegs;
4268 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4269 LU);
4270 if (NewCost < SolutionCost) {
4271 Workspace.push_back(&F);
4272 if (Workspace.size() != Uses.size()) {
4273 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4274 NewRegs, VisitedRegs);
4275 if (F.getNumRegs() == 1 && Workspace.size() == 1)
4276 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4277 } else {
4278 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4279 dbgs() << ".\n Regs:";
4280 for (const SCEV *S : NewRegs)
4281 dbgs() << ' ' << *S;
4282 dbgs() << '\n');
4283
4284 SolutionCost = NewCost;
4285 Solution = Workspace;
4286 }
4287 Workspace.pop_back();
4288 }
4289 }
4290 }
4291
4292 /// Choose one formula from each use. Return the results in the given Solution
4293 /// vector.
Solve(SmallVectorImpl<const Formula * > & Solution) const4294 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4295 SmallVector<const Formula *, 8> Workspace;
4296 Cost SolutionCost;
4297 SolutionCost.Lose();
4298 Cost CurCost;
4299 SmallPtrSet<const SCEV *, 16> CurRegs;
4300 DenseSet<const SCEV *> VisitedRegs;
4301 Workspace.reserve(Uses.size());
4302
4303 // SolveRecurse does all the work.
4304 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4305 CurRegs, VisitedRegs);
4306 if (Solution.empty()) {
4307 DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4308 return;
4309 }
4310
4311 // Ok, we've now made all our decisions.
4312 DEBUG(dbgs() << "\n"
4313 "The chosen solution requires "; SolutionCost.print(dbgs());
4314 dbgs() << ":\n";
4315 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4316 dbgs() << " ";
4317 Uses[i].print(dbgs());
4318 dbgs() << "\n"
4319 " ";
4320 Solution[i]->print(dbgs());
4321 dbgs() << '\n';
4322 });
4323
4324 assert(Solution.size() == Uses.size() && "Malformed solution!");
4325 }
4326
4327 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4328 /// we can go while still being dominated by the input positions. This helps
4329 /// canonicalize the insert position, which encourages sharing.
4330 BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,const SmallVectorImpl<Instruction * > & Inputs) const4331 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4332 const SmallVectorImpl<Instruction *> &Inputs)
4333 const {
4334 for (;;) {
4335 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4336 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4337
4338 BasicBlock *IDom;
4339 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4340 if (!Rung) return IP;
4341 Rung = Rung->getIDom();
4342 if (!Rung) return IP;
4343 IDom = Rung->getBlock();
4344
4345 // Don't climb into a loop though.
4346 const Loop *IDomLoop = LI.getLoopFor(IDom);
4347 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4348 if (IDomDepth <= IPLoopDepth &&
4349 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4350 break;
4351 }
4352
4353 bool AllDominate = true;
4354 Instruction *BetterPos = nullptr;
4355 Instruction *Tentative = IDom->getTerminator();
4356 for (Instruction *Inst : Inputs) {
4357 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4358 AllDominate = false;
4359 break;
4360 }
4361 // Attempt to find an insert position in the middle of the block,
4362 // instead of at the end, so that it can be used for other expansions.
4363 if (IDom == Inst->getParent() &&
4364 (!BetterPos || !DT.dominates(Inst, BetterPos)))
4365 BetterPos = &*std::next(BasicBlock::iterator(Inst));
4366 }
4367 if (!AllDominate)
4368 break;
4369 if (BetterPos)
4370 IP = BetterPos->getIterator();
4371 else
4372 IP = Tentative->getIterator();
4373 }
4374
4375 return IP;
4376 }
4377
4378 /// Determine an input position which will be dominated by the operands and
4379 /// which will dominate the result.
4380 BasicBlock::iterator
AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,const LSRFixup & LF,const LSRUse & LU,SCEVExpander & Rewriter) const4381 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4382 const LSRFixup &LF,
4383 const LSRUse &LU,
4384 SCEVExpander &Rewriter) const {
4385 // Collect some instructions which must be dominated by the
4386 // expanding replacement. These must be dominated by any operands that
4387 // will be required in the expansion.
4388 SmallVector<Instruction *, 4> Inputs;
4389 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4390 Inputs.push_back(I);
4391 if (LU.Kind == LSRUse::ICmpZero)
4392 if (Instruction *I =
4393 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4394 Inputs.push_back(I);
4395 if (LF.PostIncLoops.count(L)) {
4396 if (LF.isUseFullyOutsideLoop(L))
4397 Inputs.push_back(L->getLoopLatch()->getTerminator());
4398 else
4399 Inputs.push_back(IVIncInsertPos);
4400 }
4401 // The expansion must also be dominated by the increment positions of any
4402 // loops it for which it is using post-inc mode.
4403 for (const Loop *PIL : LF.PostIncLoops) {
4404 if (PIL == L) continue;
4405
4406 // Be dominated by the loop exit.
4407 SmallVector<BasicBlock *, 4> ExitingBlocks;
4408 PIL->getExitingBlocks(ExitingBlocks);
4409 if (!ExitingBlocks.empty()) {
4410 BasicBlock *BB = ExitingBlocks[0];
4411 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4412 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4413 Inputs.push_back(BB->getTerminator());
4414 }
4415 }
4416
4417 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4418 && !isa<DbgInfoIntrinsic>(LowestIP) &&
4419 "Insertion point must be a normal instruction");
4420
4421 // Then, climb up the immediate dominator tree as far as we can go while
4422 // still being dominated by the input positions.
4423 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4424
4425 // Don't insert instructions before PHI nodes.
4426 while (isa<PHINode>(IP)) ++IP;
4427
4428 // Ignore landingpad instructions.
4429 while (!isa<TerminatorInst>(IP) && IP->isEHPad()) ++IP;
4430
4431 // Ignore debug intrinsics.
4432 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4433
4434 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4435 // IP consistent across expansions and allows the previously inserted
4436 // instructions to be reused by subsequent expansion.
4437 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4438 ++IP;
4439
4440 return IP;
4441 }
4442
4443 /// Emit instructions for the leading candidate expression for this LSRUse (this
4444 /// is called "expanding").
Expand(const LSRFixup & LF,const Formula & F,BasicBlock::iterator IP,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts) const4445 Value *LSRInstance::Expand(const LSRFixup &LF,
4446 const Formula &F,
4447 BasicBlock::iterator IP,
4448 SCEVExpander &Rewriter,
4449 SmallVectorImpl<WeakVH> &DeadInsts) const {
4450 const LSRUse &LU = Uses[LF.LUIdx];
4451 if (LU.RigidFormula)
4452 return LF.OperandValToReplace;
4453
4454 // Determine an input position which will be dominated by the operands and
4455 // which will dominate the result.
4456 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4457
4458 // Inform the Rewriter if we have a post-increment use, so that it can
4459 // perform an advantageous expansion.
4460 Rewriter.setPostInc(LF.PostIncLoops);
4461
4462 // This is the type that the user actually needs.
4463 Type *OpTy = LF.OperandValToReplace->getType();
4464 // This will be the type that we'll initially expand to.
4465 Type *Ty = F.getType();
4466 if (!Ty)
4467 // No type known; just expand directly to the ultimate type.
4468 Ty = OpTy;
4469 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4470 // Expand directly to the ultimate type if it's the right size.
4471 Ty = OpTy;
4472 // This is the type to do integer arithmetic in.
4473 Type *IntTy = SE.getEffectiveSCEVType(Ty);
4474
4475 // Build up a list of operands to add together to form the full base.
4476 SmallVector<const SCEV *, 8> Ops;
4477
4478 // Expand the BaseRegs portion.
4479 for (const SCEV *Reg : F.BaseRegs) {
4480 assert(!Reg->isZero() && "Zero allocated in a base register!");
4481
4482 // If we're expanding for a post-inc user, make the post-inc adjustment.
4483 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4484 Reg = TransformForPostIncUse(Denormalize, Reg,
4485 LF.UserInst, LF.OperandValToReplace,
4486 Loops, SE, DT);
4487
4488 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP)));
4489 }
4490
4491 // Expand the ScaledReg portion.
4492 Value *ICmpScaledV = nullptr;
4493 if (F.Scale != 0) {
4494 const SCEV *ScaledS = F.ScaledReg;
4495
4496 // If we're expanding for a post-inc user, make the post-inc adjustment.
4497 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4498 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4499 LF.UserInst, LF.OperandValToReplace,
4500 Loops, SE, DT);
4501
4502 if (LU.Kind == LSRUse::ICmpZero) {
4503 // Expand ScaleReg as if it was part of the base regs.
4504 if (F.Scale == 1)
4505 Ops.push_back(
4506 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)));
4507 else {
4508 // An interesting way of "folding" with an icmp is to use a negated
4509 // scale, which we'll implement by inserting it into the other operand
4510 // of the icmp.
4511 assert(F.Scale == -1 &&
4512 "The only scale supported by ICmpZero uses is -1!");
4513 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP);
4514 }
4515 } else {
4516 // Otherwise just expand the scaled register and an explicit scale,
4517 // which is expected to be matched as part of the address.
4518
4519 // Flush the operand list to suppress SCEVExpander hoisting address modes.
4520 // Unless the addressing mode will not be folded.
4521 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4522 isAMCompletelyFolded(TTI, LU, F)) {
4523 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4524 Ops.clear();
4525 Ops.push_back(SE.getUnknown(FullV));
4526 }
4527 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP));
4528 if (F.Scale != 1)
4529 ScaledS =
4530 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4531 Ops.push_back(ScaledS);
4532 }
4533 }
4534
4535 // Expand the GV portion.
4536 if (F.BaseGV) {
4537 // Flush the operand list to suppress SCEVExpander hoisting.
4538 if (!Ops.empty()) {
4539 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4540 Ops.clear();
4541 Ops.push_back(SE.getUnknown(FullV));
4542 }
4543 Ops.push_back(SE.getUnknown(F.BaseGV));
4544 }
4545
4546 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4547 // unfolded offsets. LSR assumes they both live next to their uses.
4548 if (!Ops.empty()) {
4549 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4550 Ops.clear();
4551 Ops.push_back(SE.getUnknown(FullV));
4552 }
4553
4554 // Expand the immediate portion.
4555 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4556 if (Offset != 0) {
4557 if (LU.Kind == LSRUse::ICmpZero) {
4558 // The other interesting way of "folding" with an ICmpZero is to use a
4559 // negated immediate.
4560 if (!ICmpScaledV)
4561 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4562 else {
4563 Ops.push_back(SE.getUnknown(ICmpScaledV));
4564 ICmpScaledV = ConstantInt::get(IntTy, Offset);
4565 }
4566 } else {
4567 // Just add the immediate values. These again are expected to be matched
4568 // as part of the address.
4569 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4570 }
4571 }
4572
4573 // Expand the unfolded offset portion.
4574 int64_t UnfoldedOffset = F.UnfoldedOffset;
4575 if (UnfoldedOffset != 0) {
4576 // Just add the immediate values.
4577 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4578 UnfoldedOffset)));
4579 }
4580
4581 // Emit instructions summing all the operands.
4582 const SCEV *FullS = Ops.empty() ?
4583 SE.getConstant(IntTy, 0) :
4584 SE.getAddExpr(Ops);
4585 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP);
4586
4587 // We're done expanding now, so reset the rewriter.
4588 Rewriter.clearPostInc();
4589
4590 // An ICmpZero Formula represents an ICmp which we're handling as a
4591 // comparison against zero. Now that we've expanded an expression for that
4592 // form, update the ICmp's other operand.
4593 if (LU.Kind == LSRUse::ICmpZero) {
4594 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4595 DeadInsts.emplace_back(CI->getOperand(1));
4596 assert(!F.BaseGV && "ICmp does not support folding a global value and "
4597 "a scale at the same time!");
4598 if (F.Scale == -1) {
4599 if (ICmpScaledV->getType() != OpTy) {
4600 Instruction *Cast =
4601 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4602 OpTy, false),
4603 ICmpScaledV, OpTy, "tmp", CI);
4604 ICmpScaledV = Cast;
4605 }
4606 CI->setOperand(1, ICmpScaledV);
4607 } else {
4608 // A scale of 1 means that the scale has been expanded as part of the
4609 // base regs.
4610 assert((F.Scale == 0 || F.Scale == 1) &&
4611 "ICmp does not support folding a global value and "
4612 "a scale at the same time!");
4613 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4614 -(uint64_t)Offset);
4615 if (C->getType() != OpTy)
4616 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4617 OpTy, false),
4618 C, OpTy);
4619
4620 CI->setOperand(1, C);
4621 }
4622 }
4623
4624 return FullV;
4625 }
4626
4627 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4628 /// effectively happens in their predecessor blocks, so the expression may need
4629 /// to be expanded in multiple places.
RewriteForPHI(PHINode * PN,const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts) const4630 void LSRInstance::RewriteForPHI(PHINode *PN,
4631 const LSRFixup &LF,
4632 const Formula &F,
4633 SCEVExpander &Rewriter,
4634 SmallVectorImpl<WeakVH> &DeadInsts) const {
4635 DenseMap<BasicBlock *, Value *> Inserted;
4636 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4637 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4638 BasicBlock *BB = PN->getIncomingBlock(i);
4639
4640 // If this is a critical edge, split the edge so that we do not insert
4641 // the code on all predecessor/successor paths. We do this unless this
4642 // is the canonical backedge for this loop, which complicates post-inc
4643 // users.
4644 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4645 !isa<IndirectBrInst>(BB->getTerminator())) {
4646 BasicBlock *Parent = PN->getParent();
4647 Loop *PNLoop = LI.getLoopFor(Parent);
4648 if (!PNLoop || Parent != PNLoop->getHeader()) {
4649 // Split the critical edge.
4650 BasicBlock *NewBB = nullptr;
4651 if (!Parent->isLandingPad()) {
4652 NewBB = SplitCriticalEdge(BB, Parent,
4653 CriticalEdgeSplittingOptions(&DT, &LI)
4654 .setMergeIdenticalEdges()
4655 .setDontDeleteUselessPHIs());
4656 } else {
4657 SmallVector<BasicBlock*, 2> NewBBs;
4658 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4659 NewBB = NewBBs[0];
4660 }
4661 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4662 // phi predecessors are identical. The simple thing to do is skip
4663 // splitting in this case rather than complicate the API.
4664 if (NewBB) {
4665 // If PN is outside of the loop and BB is in the loop, we want to
4666 // move the block to be immediately before the PHI block, not
4667 // immediately after BB.
4668 if (L->contains(BB) && !L->contains(PN))
4669 NewBB->moveBefore(PN->getParent());
4670
4671 // Splitting the edge can reduce the number of PHI entries we have.
4672 e = PN->getNumIncomingValues();
4673 BB = NewBB;
4674 i = PN->getBasicBlockIndex(BB);
4675 }
4676 }
4677 }
4678
4679 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4680 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4681 if (!Pair.second)
4682 PN->setIncomingValue(i, Pair.first->second);
4683 else {
4684 Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(),
4685 Rewriter, DeadInsts);
4686
4687 // If this is reuse-by-noop-cast, insert the noop cast.
4688 Type *OpTy = LF.OperandValToReplace->getType();
4689 if (FullV->getType() != OpTy)
4690 FullV =
4691 CastInst::Create(CastInst::getCastOpcode(FullV, false,
4692 OpTy, false),
4693 FullV, LF.OperandValToReplace->getType(),
4694 "tmp", BB->getTerminator());
4695
4696 PN->setIncomingValue(i, FullV);
4697 Pair.first->second = FullV;
4698 }
4699 }
4700 }
4701
4702 /// Emit instructions for the leading candidate expression for this LSRUse (this
4703 /// is called "expanding"), and update the UserInst to reference the newly
4704 /// expanded value.
Rewrite(const LSRFixup & LF,const Formula & F,SCEVExpander & Rewriter,SmallVectorImpl<WeakVH> & DeadInsts) const4705 void LSRInstance::Rewrite(const LSRFixup &LF,
4706 const Formula &F,
4707 SCEVExpander &Rewriter,
4708 SmallVectorImpl<WeakVH> &DeadInsts) const {
4709 // First, find an insertion point that dominates UserInst. For PHI nodes,
4710 // find the nearest block which dominates all the relevant uses.
4711 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4712 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
4713 } else {
4714 Value *FullV =
4715 Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4716
4717 // If this is reuse-by-noop-cast, insert the noop cast.
4718 Type *OpTy = LF.OperandValToReplace->getType();
4719 if (FullV->getType() != OpTy) {
4720 Instruction *Cast =
4721 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4722 FullV, OpTy, "tmp", LF.UserInst);
4723 FullV = Cast;
4724 }
4725
4726 // Update the user. ICmpZero is handled specially here (for now) because
4727 // Expand may have updated one of the operands of the icmp already, and
4728 // its new value may happen to be equal to LF.OperandValToReplace, in
4729 // which case doing replaceUsesOfWith leads to replacing both operands
4730 // with the same value. TODO: Reorganize this.
4731 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4732 LF.UserInst->setOperand(0, FullV);
4733 else
4734 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4735 }
4736
4737 DeadInsts.emplace_back(LF.OperandValToReplace);
4738 }
4739
4740 /// Rewrite all the fixup locations with new values, following the chosen
4741 /// solution.
ImplementSolution(const SmallVectorImpl<const Formula * > & Solution)4742 void LSRInstance::ImplementSolution(
4743 const SmallVectorImpl<const Formula *> &Solution) {
4744 // Keep track of instructions we may have made dead, so that
4745 // we can remove them after we are done working.
4746 SmallVector<WeakVH, 16> DeadInsts;
4747
4748 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4749 "lsr");
4750 #ifndef NDEBUG
4751 Rewriter.setDebugType(DEBUG_TYPE);
4752 #endif
4753 Rewriter.disableCanonicalMode();
4754 Rewriter.enableLSRMode();
4755 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4756
4757 // Mark phi nodes that terminate chains so the expander tries to reuse them.
4758 for (const IVChain &Chain : IVChainVec) {
4759 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4760 Rewriter.setChainedPhi(PN);
4761 }
4762
4763 // Expand the new value definitions and update the users.
4764 for (const LSRFixup &Fixup : Fixups) {
4765 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
4766
4767 Changed = true;
4768 }
4769
4770 for (const IVChain &Chain : IVChainVec) {
4771 GenerateIVChain(Chain, Rewriter, DeadInsts);
4772 Changed = true;
4773 }
4774 // Clean up after ourselves. This must be done before deleting any
4775 // instructions.
4776 Rewriter.clear();
4777
4778 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4779 }
4780
LSRInstance(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI)4781 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4782 DominatorTree &DT, LoopInfo &LI,
4783 const TargetTransformInfo &TTI)
4784 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4785 IVIncInsertPos(nullptr) {
4786 // If LoopSimplify form is not available, stay out of trouble.
4787 if (!L->isLoopSimplifyForm())
4788 return;
4789
4790 // If there's no interesting work to be done, bail early.
4791 if (IU.empty()) return;
4792
4793 // If there's too much analysis to be done, bail early. We won't be able to
4794 // model the problem anyway.
4795 unsigned NumUsers = 0;
4796 for (const IVStrideUse &U : IU) {
4797 if (++NumUsers > MaxIVUsers) {
4798 (void)U;
4799 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4800 return;
4801 }
4802 }
4803
4804 #ifndef NDEBUG
4805 // All dominating loops must have preheaders, or SCEVExpander may not be able
4806 // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4807 //
4808 // IVUsers analysis should only create users that are dominated by simple loop
4809 // headers. Since this loop should dominate all of its users, its user list
4810 // should be empty if this loop itself is not within a simple loop nest.
4811 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4812 Rung; Rung = Rung->getIDom()) {
4813 BasicBlock *BB = Rung->getBlock();
4814 const Loop *DomLoop = LI.getLoopFor(BB);
4815 if (DomLoop && DomLoop->getHeader() == BB) {
4816 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4817 }
4818 }
4819 #endif // DEBUG
4820
4821 DEBUG(dbgs() << "\nLSR on loop ";
4822 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4823 dbgs() << ":\n");
4824
4825 // First, perform some low-level loop optimizations.
4826 OptimizeShadowIV();
4827 OptimizeLoopTermCond();
4828
4829 // If loop preparation eliminates all interesting IV users, bail.
4830 if (IU.empty()) return;
4831
4832 // Skip nested loops until we can model them better with formulae.
4833 if (!L->empty()) {
4834 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4835 return;
4836 }
4837
4838 // Start collecting data and preparing for the solver.
4839 CollectChains();
4840 CollectInterestingTypesAndFactors();
4841 CollectFixupsAndInitialFormulae();
4842 CollectLoopInvariantFixupsAndFormulae();
4843
4844 assert(!Uses.empty() && "IVUsers reported at least one use");
4845 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4846 print_uses(dbgs()));
4847
4848 // Now use the reuse data to generate a bunch of interesting ways
4849 // to formulate the values needed for the uses.
4850 GenerateAllReuseFormulae();
4851
4852 FilterOutUndesirableDedicatedRegisters();
4853 NarrowSearchSpaceUsingHeuristics();
4854
4855 SmallVector<const Formula *, 8> Solution;
4856 Solve(Solution);
4857
4858 // Release memory that is no longer needed.
4859 Factors.clear();
4860 Types.clear();
4861 RegUses.clear();
4862
4863 if (Solution.empty())
4864 return;
4865
4866 #ifndef NDEBUG
4867 // Formulae should be legal.
4868 for (const LSRUse &LU : Uses) {
4869 for (const Formula &F : LU.Formulae)
4870 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4871 F) && "Illegal formula generated!");
4872 };
4873 #endif
4874
4875 // Now that we've decided what we want, make it so.
4876 ImplementSolution(Solution);
4877 }
4878
print_factors_and_types(raw_ostream & OS) const4879 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4880 if (Factors.empty() && Types.empty()) return;
4881
4882 OS << "LSR has identified the following interesting factors and types: ";
4883 bool First = true;
4884
4885 for (int64_t Factor : Factors) {
4886 if (!First) OS << ", ";
4887 First = false;
4888 OS << '*' << Factor;
4889 }
4890
4891 for (Type *Ty : Types) {
4892 if (!First) OS << ", ";
4893 First = false;
4894 OS << '(' << *Ty << ')';
4895 }
4896 OS << '\n';
4897 }
4898
print_fixups(raw_ostream & OS) const4899 void LSRInstance::print_fixups(raw_ostream &OS) const {
4900 OS << "LSR is examining the following fixup sites:\n";
4901 for (const LSRFixup &LF : Fixups) {
4902 dbgs() << " ";
4903 LF.print(OS);
4904 OS << '\n';
4905 }
4906 }
4907
print_uses(raw_ostream & OS) const4908 void LSRInstance::print_uses(raw_ostream &OS) const {
4909 OS << "LSR is examining the following uses:\n";
4910 for (const LSRUse &LU : Uses) {
4911 dbgs() << " ";
4912 LU.print(OS);
4913 OS << '\n';
4914 for (const Formula &F : LU.Formulae) {
4915 OS << " ";
4916 F.print(OS);
4917 OS << '\n';
4918 }
4919 }
4920 }
4921
print(raw_ostream & OS) const4922 void LSRInstance::print(raw_ostream &OS) const {
4923 print_factors_and_types(OS);
4924 print_fixups(OS);
4925 print_uses(OS);
4926 }
4927
4928 LLVM_DUMP_METHOD
dump() const4929 void LSRInstance::dump() const {
4930 print(errs()); errs() << '\n';
4931 }
4932
4933 namespace {
4934
4935 class LoopStrengthReduce : public LoopPass {
4936 public:
4937 static char ID; // Pass ID, replacement for typeid
4938 LoopStrengthReduce();
4939
4940 private:
4941 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4942 void getAnalysisUsage(AnalysisUsage &AU) const override;
4943 };
4944
4945 }
4946
4947 char LoopStrengthReduce::ID = 0;
4948 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4949 "Loop Strength Reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)4950 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4951 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4952 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4953 INITIALIZE_PASS_DEPENDENCY(IVUsers)
4954 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
4955 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4956 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4957 "Loop Strength Reduction", false, false)
4958
4959
4960 Pass *llvm::createLoopStrengthReducePass() {
4961 return new LoopStrengthReduce();
4962 }
4963
LoopStrengthReduce()4964 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4965 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4966 }
4967
getAnalysisUsage(AnalysisUsage & AU) const4968 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4969 // We split critical edges, so we change the CFG. However, we do update
4970 // many analyses if they are around.
4971 AU.addPreservedID(LoopSimplifyID);
4972
4973 AU.addRequired<LoopInfoWrapperPass>();
4974 AU.addPreserved<LoopInfoWrapperPass>();
4975 AU.addRequiredID(LoopSimplifyID);
4976 AU.addRequired<DominatorTreeWrapperPass>();
4977 AU.addPreserved<DominatorTreeWrapperPass>();
4978 AU.addRequired<ScalarEvolutionWrapperPass>();
4979 AU.addPreserved<ScalarEvolutionWrapperPass>();
4980 // Requiring LoopSimplify a second time here prevents IVUsers from running
4981 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4982 AU.addRequiredID(LoopSimplifyID);
4983 AU.addRequired<IVUsers>();
4984 AU.addPreserved<IVUsers>();
4985 AU.addRequired<TargetTransformInfoWrapperPass>();
4986 }
4987
runOnLoop(Loop * L,LPPassManager &)4988 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4989 if (skipOptnoneFunction(L))
4990 return false;
4991
4992 auto &IU = getAnalysis<IVUsers>();
4993 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4994 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4995 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4996 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
4997 *L->getHeader()->getParent());
4998 bool Changed = false;
4999
5000 // Run the main LSR transformation.
5001 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5002
5003 // Remove any extra phis created by processing inner loops.
5004 Changed |= DeleteDeadPHIs(L->getHeader());
5005 if (EnablePhiElim && L->isLoopSimplifyForm()) {
5006 SmallVector<WeakVH, 16> DeadInsts;
5007 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5008 SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL,
5009 "lsr");
5010 #ifndef NDEBUG
5011 Rewriter.setDebugType(DEBUG_TYPE);
5012 #endif
5013 unsigned numFolded = Rewriter.replaceCongruentIVs(
5014 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
5015 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5016 *L->getHeader()->getParent()));
5017 if (numFolded) {
5018 Changed = true;
5019 DeleteTriviallyDeadInstructions(DeadInsts);
5020 DeleteDeadPHIs(L->getHeader());
5021 }
5022 }
5023 return Changed;
5024 }
5025