1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB. If
19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include <sys/types.h>
40
41 #ifdef HAVE_STDLIB_H
42 #include <stdlib.h>
43 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47 #ifdef HAVE_MALLOC_H
48 #include <malloc.h>
49 #endif
50 #ifdef HAVE_LIMITS_H
51 #include <limits.h>
52 #endif
53 #ifdef HAVE_INTTYPES_H
54 #include <inttypes.h>
55 #endif
56 #ifdef HAVE_STDINT_H
57 #include <stdint.h>
58 #endif
59
60 #include <stdio.h>
61
62 #include "libiberty.h"
63 #include "ansidecl.h"
64 #include "hashtab.h"
65
66 #ifndef CHAR_BIT
67 #define CHAR_BIT 8
68 #endif
69
70 static unsigned int higher_prime_index (unsigned long);
71 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72 static hashval_t htab_mod (hashval_t, htab_t);
73 static hashval_t htab_mod_m2 (hashval_t, htab_t);
74 static hashval_t hash_pointer (const void *);
75 static int eq_pointer (const void *, const void *);
76 static int htab_expand (htab_t);
77 static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
78
79 /* At some point, we could make these be NULL, and modify the
80 hash-table routines to handle NULL specially; that would avoid
81 function-call overhead for the common case of hashing pointers. */
82 htab_hash htab_hash_pointer = hash_pointer;
83 htab_eq htab_eq_pointer = eq_pointer;
84
85 /* Table of primes and multiplicative inverses.
86
87 Note that these are not minimally reduced inverses. Unlike when generating
88 code to divide by a constant, we want to be able to use the same algorithm
89 all the time. All of these inverses (are implied to) have bit 32 set.
90
91 For the record, here's the function that computed the table; it's a
92 vastly simplified version of the function of the same name from gcc. */
93
94 #if 0
95 unsigned int
96 ceil_log2 (unsigned int x)
97 {
98 int i;
99 for (i = 31; i >= 0 ; --i)
100 if (x > (1u << i))
101 return i+1;
102 abort ();
103 }
104
105 unsigned int
106 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107 {
108 unsigned long long mhigh;
109 double nx;
110 int lgup, post_shift;
111 int pow, pow2;
112 int n = 32, precision = 32;
113
114 lgup = ceil_log2 (d);
115 pow = n + lgup;
116 pow2 = n + lgup - precision;
117
118 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119 mhigh = nx / d;
120
121 *shiftp = lgup - 1;
122 *mlp = mhigh;
123 return mhigh >> 32;
124 }
125 #endif
126
127 struct prime_ent
128 {
129 hashval_t prime;
130 hashval_t inv;
131 hashval_t inv_m2; /* inverse of prime-2 */
132 hashval_t shift;
133 };
134
135 static struct prime_ent const prime_tab[] = {
136 { 7, 0x24924925, 0x9999999b, 2 },
137 { 13, 0x3b13b13c, 0x745d1747, 3 },
138 { 31, 0x08421085, 0x1a7b9612, 4 },
139 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
140 { 127, 0x02040811, 0x0624dd30, 6 },
141 { 251, 0x05197f7e, 0x073260a5, 7 },
142 { 509, 0x01824366, 0x02864fc8, 8 },
143 { 1021, 0x00c0906d, 0x014191f7, 9 },
144 { 2039, 0x0121456f, 0x0161e69e, 10 },
145 { 4093, 0x00300902, 0x00501908, 11 },
146 { 8191, 0x00080041, 0x00180241, 12 },
147 { 16381, 0x000c0091, 0x00140191, 13 },
148 { 32749, 0x002605a5, 0x002a06e6, 14 },
149 { 65521, 0x000f00e2, 0x00110122, 15 },
150 { 131071, 0x00008001, 0x00018003, 16 },
151 { 262139, 0x00014002, 0x0001c004, 17 },
152 { 524287, 0x00002001, 0x00006001, 18 },
153 { 1048573, 0x00003001, 0x00005001, 19 },
154 { 2097143, 0x00004801, 0x00005801, 20 },
155 { 4194301, 0x00000c01, 0x00001401, 21 },
156 { 8388593, 0x00001e01, 0x00002201, 22 },
157 { 16777213, 0x00000301, 0x00000501, 23 },
158 { 33554393, 0x00001381, 0x00001481, 24 },
159 { 67108859, 0x00000141, 0x000001c1, 25 },
160 { 134217689, 0x000004e1, 0x00000521, 26 },
161 { 268435399, 0x00000391, 0x000003b1, 27 },
162 { 536870909, 0x00000019, 0x00000029, 28 },
163 { 1073741789, 0x0000008d, 0x00000095, 29 },
164 { 2147483647, 0x00000003, 0x00000007, 30 },
165 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
166 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167 };
168
169 /* The following function returns an index into the above table of the
170 nearest prime number which is greater than N, and near a power of two. */
171
172 static unsigned int
higher_prime_index(unsigned long n)173 higher_prime_index (unsigned long n)
174 {
175 unsigned int low = 0;
176 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
177
178 while (low != high)
179 {
180 unsigned int mid = low + (high - low) / 2;
181 if (n > prime_tab[mid].prime)
182 low = mid + 1;
183 else
184 high = mid;
185 }
186
187 /* If we've run out of primes, abort. */
188 if (n > prime_tab[low].prime)
189 {
190 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191 abort ();
192 }
193
194 return low;
195 }
196
197 /* Returns non-zero if P1 and P2 are equal. */
198
199 static int
eq_pointer(const PTR p1,const PTR p2)200 eq_pointer (const PTR p1, const PTR p2)
201 {
202 return p1 == p2;
203 }
204
205
206 /* The parens around the function names in the next two definitions
207 are essential in order to prevent macro expansions of the name.
208 The bodies, however, are expanded as expected, so they are not
209 recursive definitions. */
210
211 /* Return the current size of given hash table. */
212
213 #define htab_size(htab) ((htab)->size)
214
size_t(htab_size)215 size_t
216 (htab_size) (htab_t htab)
217 {
218 return htab_size (htab);
219 }
220
221 /* Return the current number of elements in given hash table. */
222
223 #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
224
size_t(htab_elements)225 size_t
226 (htab_elements) (htab_t htab)
227 {
228 return htab_elements (htab);
229 }
230
231 /* Return X % Y. */
232
233 static inline hashval_t
htab_mod_1(hashval_t x,hashval_t y,hashval_t inv,int shift)234 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
235 {
236 /* The multiplicative inverses computed above are for 32-bit types, and
237 requires that we be able to compute a highpart multiply. */
238 #ifdef UNSIGNED_64BIT_TYPE
239 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
240 if (sizeof (hashval_t) * CHAR_BIT <= 32)
241 {
242 hashval_t t1, t2, t3, t4, q, r;
243
244 t1 = ((ull)x * inv) >> 32;
245 t2 = x - t1;
246 t3 = t2 >> 1;
247 t4 = t1 + t3;
248 q = t4 >> shift;
249 r = x - (q * y);
250
251 return r;
252 }
253 #endif
254
255 /* Otherwise just use the native division routines. */
256 return x % y;
257 }
258
259 /* Compute the primary hash for HASH given HTAB's current size. */
260
261 static inline hashval_t
htab_mod(hashval_t hash,htab_t htab)262 htab_mod (hashval_t hash, htab_t htab)
263 {
264 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
265 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
266 }
267
268 /* Compute the secondary hash for HASH given HTAB's current size. */
269
270 static inline hashval_t
htab_mod_m2(hashval_t hash,htab_t htab)271 htab_mod_m2 (hashval_t hash, htab_t htab)
272 {
273 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
274 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
275 }
276
277 /* This function creates table with length slightly longer than given
278 source length. Created hash table is initiated as empty (all the
279 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
280 created hash table, or NULL if memory allocation fails. */
281
282 htab_t
htab_create_alloc(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,htab_alloc alloc_f,htab_free free_f)283 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
284 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
285 {
286 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
287 free_f);
288 }
289
290 /* As above, but uses the variants of ALLOC_F and FREE_F which accept
291 an extra argument. */
292
293 htab_t
htab_create_alloc_ex(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,void * alloc_arg,htab_alloc_with_arg alloc_f,htab_free_with_arg free_f)294 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
295 htab_del del_f, void *alloc_arg,
296 htab_alloc_with_arg alloc_f,
297 htab_free_with_arg free_f)
298 {
299 htab_t result;
300 unsigned int size_prime_index;
301
302 size_prime_index = higher_prime_index (size);
303 size = prime_tab[size_prime_index].prime;
304
305 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
306 if (result == NULL)
307 return NULL;
308 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
309 if (result->entries == NULL)
310 {
311 if (free_f != NULL)
312 (*free_f) (alloc_arg, result);
313 return NULL;
314 }
315 result->size = size;
316 result->size_prime_index = size_prime_index;
317 result->hash_f = hash_f;
318 result->eq_f = eq_f;
319 result->del_f = del_f;
320 result->alloc_arg = alloc_arg;
321 result->alloc_with_arg_f = alloc_f;
322 result->free_with_arg_f = free_f;
323 return result;
324 }
325
326 /*
327
328 @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
329 htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
330 htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
331 htab_free @var{free_f})
332
333 This function creates a hash table that uses two different allocators
334 @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
335 and its entries respectively. This is useful when variables of different
336 types need to be allocated with different allocators.
337
338 The created hash table is slightly larger than @var{size} and it is
339 initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
340 The function returns the created hash table, or @code{NULL} if memory
341 allocation fails.
342
343 @end deftypefn
344
345 */
346
347 htab_t
htab_create_typed_alloc(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,htab_alloc alloc_tab_f,htab_alloc alloc_f,htab_free free_f)348 htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
349 htab_del del_f, htab_alloc alloc_tab_f,
350 htab_alloc alloc_f, htab_free free_f)
351 {
352 htab_t result;
353 unsigned int size_prime_index;
354
355 size_prime_index = higher_prime_index (size);
356 size = prime_tab[size_prime_index].prime;
357
358 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
359 if (result == NULL)
360 return NULL;
361 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
362 if (result->entries == NULL)
363 {
364 if (free_f != NULL)
365 (*free_f) (result);
366 return NULL;
367 }
368 result->size = size;
369 result->size_prime_index = size_prime_index;
370 result->hash_f = hash_f;
371 result->eq_f = eq_f;
372 result->del_f = del_f;
373 result->alloc_f = alloc_f;
374 result->free_f = free_f;
375 return result;
376 }
377
378
379 /* Update the function pointers and allocation parameter in the htab_t. */
380
381 void
htab_set_functions_ex(htab_t htab,htab_hash hash_f,htab_eq eq_f,htab_del del_f,PTR alloc_arg,htab_alloc_with_arg alloc_f,htab_free_with_arg free_f)382 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
383 htab_del del_f, PTR alloc_arg,
384 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
385 {
386 htab->hash_f = hash_f;
387 htab->eq_f = eq_f;
388 htab->del_f = del_f;
389 htab->alloc_arg = alloc_arg;
390 htab->alloc_with_arg_f = alloc_f;
391 htab->free_with_arg_f = free_f;
392 }
393
394 /* These functions exist solely for backward compatibility. */
395
396 #undef htab_create
397 htab_t
htab_create(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f)398 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
399 {
400 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
401 }
402
403 htab_t
htab_try_create(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f)404 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
405 {
406 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
407 }
408
409 /* This function frees all memory allocated for given hash table.
410 Naturally the hash table must already exist. */
411
412 void
htab_delete(htab_t htab)413 htab_delete (htab_t htab)
414 {
415 size_t size = htab_size (htab);
416 PTR *entries = htab->entries;
417 int i;
418
419 if (htab->del_f)
420 for (i = size - 1; i >= 0; i--)
421 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422 (*htab->del_f) (entries[i]);
423
424 if (htab->free_f != NULL)
425 {
426 (*htab->free_f) (entries);
427 (*htab->free_f) (htab);
428 }
429 else if (htab->free_with_arg_f != NULL)
430 {
431 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
432 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
433 }
434 }
435
436 /* This function clears all entries in the given hash table. */
437
438 void
htab_empty(htab_t htab)439 htab_empty (htab_t htab)
440 {
441 size_t size = htab_size (htab);
442 PTR *entries = htab->entries;
443 int i;
444
445 if (htab->del_f)
446 for (i = size - 1; i >= 0; i--)
447 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
448 (*htab->del_f) (entries[i]);
449
450 /* Instead of clearing megabyte, downsize the table. */
451 if (size > 1024*1024 / sizeof (PTR))
452 {
453 int nindex = higher_prime_index (1024 / sizeof (PTR));
454 int nsize = prime_tab[nindex].prime;
455
456 if (htab->free_f != NULL)
457 (*htab->free_f) (htab->entries);
458 else if (htab->free_with_arg_f != NULL)
459 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
460 if (htab->alloc_with_arg_f != NULL)
461 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
462 sizeof (PTR *));
463 else
464 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
465 htab->size = nsize;
466 htab->size_prime_index = nindex;
467 }
468 else
469 memset (entries, 0, size * sizeof (PTR));
470 htab->n_deleted = 0;
471 htab->n_elements = 0;
472 }
473
474 /* Similar to htab_find_slot, but without several unwanted side effects:
475 - Does not call htab->eq_f when it finds an existing entry.
476 - Does not change the count of elements/searches/collisions in the
477 hash table.
478 This function also assumes there are no deleted entries in the table.
479 HASH is the hash value for the element to be inserted. */
480
481 static PTR *
find_empty_slot_for_expand(htab_t htab,hashval_t hash)482 find_empty_slot_for_expand (htab_t htab, hashval_t hash)
483 {
484 hashval_t index = htab_mod (hash, htab);
485 size_t size = htab_size (htab);
486 PTR *slot = htab->entries + index;
487 hashval_t hash2;
488
489 if (*slot == HTAB_EMPTY_ENTRY)
490 return slot;
491 else if (*slot == HTAB_DELETED_ENTRY)
492 abort ();
493
494 hash2 = htab_mod_m2 (hash, htab);
495 for (;;)
496 {
497 index += hash2;
498 if (index >= size)
499 index -= size;
500
501 slot = htab->entries + index;
502 if (*slot == HTAB_EMPTY_ENTRY)
503 return slot;
504 else if (*slot == HTAB_DELETED_ENTRY)
505 abort ();
506 }
507 }
508
509 /* The following function changes size of memory allocated for the
510 entries and repeatedly inserts the table elements. The occupancy
511 of the table after the call will be about 50%. Naturally the hash
512 table must already exist. Remember also that the place of the
513 table entries is changed. If memory allocation failures are allowed,
514 this function will return zero, indicating that the table could not be
515 expanded. If all goes well, it will return a non-zero value. */
516
517 static int
htab_expand(htab_t htab)518 htab_expand (htab_t htab)
519 {
520 PTR *oentries;
521 PTR *olimit;
522 PTR *p;
523 PTR *nentries;
524 size_t nsize, osize, elts;
525 unsigned int oindex, nindex;
526
527 oentries = htab->entries;
528 oindex = htab->size_prime_index;
529 osize = htab->size;
530 olimit = oentries + osize;
531 elts = htab_elements (htab);
532
533 /* Resize only when table after removal of unused elements is either
534 too full or too empty. */
535 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
536 {
537 nindex = higher_prime_index (elts * 2);
538 nsize = prime_tab[nindex].prime;
539 }
540 else
541 {
542 nindex = oindex;
543 nsize = osize;
544 }
545
546 if (htab->alloc_with_arg_f != NULL)
547 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
548 sizeof (PTR *));
549 else
550 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
551 if (nentries == NULL)
552 return 0;
553 htab->entries = nentries;
554 htab->size = nsize;
555 htab->size_prime_index = nindex;
556 htab->n_elements -= htab->n_deleted;
557 htab->n_deleted = 0;
558
559 p = oentries;
560 do
561 {
562 PTR x = *p;
563
564 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
565 {
566 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
567
568 *q = x;
569 }
570
571 p++;
572 }
573 while (p < olimit);
574
575 if (htab->free_f != NULL)
576 (*htab->free_f) (oentries);
577 else if (htab->free_with_arg_f != NULL)
578 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
579 return 1;
580 }
581
582 /* This function searches for a hash table entry equal to the given
583 element. It cannot be used to insert or delete an element. */
584
585 PTR
htab_find_with_hash(htab_t htab,const PTR element,hashval_t hash)586 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
587 {
588 hashval_t index, hash2;
589 size_t size;
590 PTR entry;
591
592 htab->searches++;
593 size = htab_size (htab);
594 index = htab_mod (hash, htab);
595
596 entry = htab->entries[index];
597 if (entry == HTAB_EMPTY_ENTRY
598 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
599 return entry;
600
601 hash2 = htab_mod_m2 (hash, htab);
602 for (;;)
603 {
604 htab->collisions++;
605 index += hash2;
606 if (index >= size)
607 index -= size;
608
609 entry = htab->entries[index];
610 if (entry == HTAB_EMPTY_ENTRY
611 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
612 return entry;
613 }
614 }
615
616 /* Like htab_find_slot_with_hash, but compute the hash value from the
617 element. */
618
619 PTR
htab_find(htab_t htab,const PTR element)620 htab_find (htab_t htab, const PTR element)
621 {
622 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
623 }
624
625 /* This function searches for a hash table slot containing an entry
626 equal to the given element. To delete an entry, call this with
627 insert=NO_INSERT, then call htab_clear_slot on the slot returned
628 (possibly after doing some checks). To insert an entry, call this
629 with insert=INSERT, then write the value you want into the returned
630 slot. When inserting an entry, NULL may be returned if memory
631 allocation fails. */
632
633 PTR *
htab_find_slot_with_hash(htab_t htab,const PTR element,hashval_t hash,enum insert_option insert)634 htab_find_slot_with_hash (htab_t htab, const PTR element,
635 hashval_t hash, enum insert_option insert)
636 {
637 PTR *first_deleted_slot;
638 hashval_t index, hash2;
639 size_t size;
640 PTR entry;
641
642 size = htab_size (htab);
643 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
644 {
645 if (htab_expand (htab) == 0)
646 return NULL;
647 size = htab_size (htab);
648 }
649
650 index = htab_mod (hash, htab);
651
652 htab->searches++;
653 first_deleted_slot = NULL;
654
655 entry = htab->entries[index];
656 if (entry == HTAB_EMPTY_ENTRY)
657 goto empty_entry;
658 else if (entry == HTAB_DELETED_ENTRY)
659 first_deleted_slot = &htab->entries[index];
660 else if ((*htab->eq_f) (entry, element))
661 return &htab->entries[index];
662
663 hash2 = htab_mod_m2 (hash, htab);
664 for (;;)
665 {
666 htab->collisions++;
667 index += hash2;
668 if (index >= size)
669 index -= size;
670
671 entry = htab->entries[index];
672 if (entry == HTAB_EMPTY_ENTRY)
673 goto empty_entry;
674 else if (entry == HTAB_DELETED_ENTRY)
675 {
676 if (!first_deleted_slot)
677 first_deleted_slot = &htab->entries[index];
678 }
679 else if ((*htab->eq_f) (entry, element))
680 return &htab->entries[index];
681 }
682
683 empty_entry:
684 if (insert == NO_INSERT)
685 return NULL;
686
687 if (first_deleted_slot)
688 {
689 htab->n_deleted--;
690 *first_deleted_slot = HTAB_EMPTY_ENTRY;
691 return first_deleted_slot;
692 }
693
694 htab->n_elements++;
695 return &htab->entries[index];
696 }
697
698 /* Like htab_find_slot_with_hash, but compute the hash value from the
699 element. */
700
701 PTR *
htab_find_slot(htab_t htab,const PTR element,enum insert_option insert)702 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
703 {
704 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
705 insert);
706 }
707
708 /* This function deletes an element with the given value from hash
709 table (the hash is computed from the element). If there is no matching
710 element in the hash table, this function does nothing. */
711
712 void
htab_remove_elt(htab_t htab,PTR element)713 htab_remove_elt (htab_t htab, PTR element)
714 {
715 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
716 }
717
718
719 /* This function deletes an element with the given value from hash
720 table. If there is no matching element in the hash table, this
721 function does nothing. */
722
723 void
htab_remove_elt_with_hash(htab_t htab,PTR element,hashval_t hash)724 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
725 {
726 PTR *slot;
727
728 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
729 if (*slot == HTAB_EMPTY_ENTRY)
730 return;
731
732 if (htab->del_f)
733 (*htab->del_f) (*slot);
734
735 *slot = HTAB_DELETED_ENTRY;
736 htab->n_deleted++;
737 }
738
739 /* This function clears a specified slot in a hash table. It is
740 useful when you've already done the lookup and don't want to do it
741 again. */
742
743 void
htab_clear_slot(htab_t htab,PTR * slot)744 htab_clear_slot (htab_t htab, PTR *slot)
745 {
746 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
747 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
748 abort ();
749
750 if (htab->del_f)
751 (*htab->del_f) (*slot);
752
753 *slot = HTAB_DELETED_ENTRY;
754 htab->n_deleted++;
755 }
756
757 /* This function scans over the entire hash table calling
758 CALLBACK for each live entry. If CALLBACK returns false,
759 the iteration stops. INFO is passed as CALLBACK's second
760 argument. */
761
762 void
htab_traverse_noresize(htab_t htab,htab_trav callback,PTR info)763 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
764 {
765 PTR *slot;
766 PTR *limit;
767
768 slot = htab->entries;
769 limit = slot + htab_size (htab);
770
771 do
772 {
773 PTR x = *slot;
774
775 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
776 if (!(*callback) (slot, info))
777 break;
778 }
779 while (++slot < limit);
780 }
781
782 /* Like htab_traverse_noresize, but does resize the table when it is
783 too empty to improve effectivity of subsequent calls. */
784
785 void
htab_traverse(htab_t htab,htab_trav callback,PTR info)786 htab_traverse (htab_t htab, htab_trav callback, PTR info)
787 {
788 size_t size = htab_size (htab);
789 if (htab_elements (htab) * 8 < size && size > 32)
790 htab_expand (htab);
791
792 htab_traverse_noresize (htab, callback, info);
793 }
794
795 /* Return the fraction of fixed collisions during all work with given
796 hash table. */
797
798 double
htab_collisions(htab_t htab)799 htab_collisions (htab_t htab)
800 {
801 if (htab->searches == 0)
802 return 0.0;
803
804 return (double) htab->collisions / (double) htab->searches;
805 }
806
807 /* Hash P as a null-terminated string.
808
809 Copied from gcc/hashtable.c. Zack had the following to say with respect
810 to applicability, though note that unlike hashtable.c, this hash table
811 implementation re-hashes rather than chain buckets.
812
813 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
814 From: Zack Weinberg <zackw@panix.com>
815 Date: Fri, 17 Aug 2001 02:15:56 -0400
816
817 I got it by extracting all the identifiers from all the source code
818 I had lying around in mid-1999, and testing many recurrences of
819 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
820 prime numbers or the appropriate identity. This was the best one.
821 I don't remember exactly what constituted "best", except I was
822 looking at bucket-length distributions mostly.
823
824 So it should be very good at hashing identifiers, but might not be
825 as good at arbitrary strings.
826
827 I'll add that it thoroughly trounces the hash functions recommended
828 for this use at http://burtleburtle.net/bob/hash/index.html, both
829 on speed and bucket distribution. I haven't tried it against the
830 function they just started using for Perl's hashes. */
831
832 hashval_t
htab_hash_string(const PTR p)833 htab_hash_string (const PTR p)
834 {
835 const unsigned char *str = (const unsigned char *) p;
836 hashval_t r = 0;
837 unsigned char c;
838
839 while ((c = *str++) != 0)
840 r = r * 67 + c - 113;
841
842 return r;
843 }
844
845 /* DERIVED FROM:
846 --------------------------------------------------------------------
847 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
848 hash(), hash2(), hash3, and mix() are externally useful functions.
849 Routines to test the hash are included if SELF_TEST is defined.
850 You can use this free for any purpose. It has no warranty.
851 --------------------------------------------------------------------
852 */
853
854 /*
855 --------------------------------------------------------------------
856 mix -- mix 3 32-bit values reversibly.
857 For every delta with one or two bit set, and the deltas of all three
858 high bits or all three low bits, whether the original value of a,b,c
859 is almost all zero or is uniformly distributed,
860 * If mix() is run forward or backward, at least 32 bits in a,b,c
861 have at least 1/4 probability of changing.
862 * If mix() is run forward, every bit of c will change between 1/3 and
863 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
864 mix() was built out of 36 single-cycle latency instructions in a
865 structure that could supported 2x parallelism, like so:
866 a -= b;
867 a -= c; x = (c>>13);
868 b -= c; a ^= x;
869 b -= a; x = (a<<8);
870 c -= a; b ^= x;
871 c -= b; x = (b>>13);
872 ...
873 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
874 of that parallelism. They've also turned some of those single-cycle
875 latency instructions into multi-cycle latency instructions. Still,
876 this is the fastest good hash I could find. There were about 2^^68
877 to choose from. I only looked at a billion or so.
878 --------------------------------------------------------------------
879 */
880 /* same, but slower, works on systems that might have 8 byte hashval_t's */
881 #define mix(a,b,c) \
882 { \
883 a -= b; a -= c; a ^= (c>>13); \
884 b -= c; b -= a; b ^= (a<< 8); \
885 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
886 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
887 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
888 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
889 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
890 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
891 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
892 }
893
894 /*
895 --------------------------------------------------------------------
896 hash() -- hash a variable-length key into a 32-bit value
897 k : the key (the unaligned variable-length array of bytes)
898 len : the length of the key, counting by bytes
899 level : can be any 4-byte value
900 Returns a 32-bit value. Every bit of the key affects every bit of
901 the return value. Every 1-bit and 2-bit delta achieves avalanche.
902 About 36+6len instructions.
903
904 The best hash table sizes are powers of 2. There is no need to do
905 mod a prime (mod is sooo slow!). If you need less than 32 bits,
906 use a bitmask. For example, if you need only 10 bits, do
907 h = (h & hashmask(10));
908 In which case, the hash table should have hashsize(10) elements.
909
910 If you are hashing n strings (ub1 **)k, do it like this:
911 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
912
913 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
914 code any way you wish, private, educational, or commercial. It's free.
915
916 See http://burtleburtle.net/bob/hash/evahash.html
917 Use for hash table lookup, or anything where one collision in 2^32 is
918 acceptable. Do NOT use for cryptographic purposes.
919 --------------------------------------------------------------------
920 */
921
922 hashval_t
iterative_hash(const PTR k_in,register size_t length,register hashval_t initval)923 iterative_hash (const PTR k_in /* the key */,
924 register size_t length /* the length of the key */,
925 register hashval_t initval /* the previous hash, or
926 an arbitrary value */)
927 {
928 register const unsigned char *k = (const unsigned char *)k_in;
929 register hashval_t a,b,c,len;
930
931 /* Set up the internal state */
932 len = length;
933 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
934 c = initval; /* the previous hash value */
935
936 /*---------------------------------------- handle most of the key */
937 #ifndef WORDS_BIGENDIAN
938 /* On a little-endian machine, if the data is 4-byte aligned we can hash
939 by word for better speed. This gives nondeterministic results on
940 big-endian machines. */
941 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
942 while (len >= 12) /* aligned */
943 {
944 a += *(hashval_t *)(k+0);
945 b += *(hashval_t *)(k+4);
946 c += *(hashval_t *)(k+8);
947 mix(a,b,c);
948 k += 12; len -= 12;
949 }
950 else /* unaligned */
951 #endif
952 while (len >= 12)
953 {
954 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
955 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
956 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
957 mix(a,b,c);
958 k += 12; len -= 12;
959 }
960
961 /*------------------------------------- handle the last 11 bytes */
962 c += length;
963 switch(len) /* all the case statements fall through */
964 {
965 case 11: c+=((hashval_t)k[10]<<24);
966 case 10: c+=((hashval_t)k[9]<<16);
967 case 9 : c+=((hashval_t)k[8]<<8);
968 /* the first byte of c is reserved for the length */
969 case 8 : b+=((hashval_t)k[7]<<24);
970 case 7 : b+=((hashval_t)k[6]<<16);
971 case 6 : b+=((hashval_t)k[5]<<8);
972 case 5 : b+=k[4];
973 case 4 : a+=((hashval_t)k[3]<<24);
974 case 3 : a+=((hashval_t)k[2]<<16);
975 case 2 : a+=((hashval_t)k[1]<<8);
976 case 1 : a+=k[0];
977 /* case 0: nothing left to add */
978 }
979 mix(a,b,c);
980 /*-------------------------------------------- report the result */
981 return c;
982 }
983
984 /* Returns a hash code for pointer P. Simplified version of evahash */
985
986 static hashval_t
hash_pointer(const PTR p)987 hash_pointer (const PTR p)
988 {
989 intptr_t v = (intptr_t) p;
990 unsigned a, b, c;
991
992 a = b = 0x9e3779b9;
993 a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
994 b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
995 c = 0x42135234;
996 mix (a, b, c);
997 return c;
998 }
999