• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* An expandable hash tables datatype.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
3    Free Software Foundation, Inc.
4    Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5 
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11 
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 Library General Public License for more details.
16 
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB.  If
19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21 
22 /* This package implements basic hash table functionality.  It is possible
23    to search for an entry, create an entry and destroy an entry.
24 
25    Elements in the table are generic pointers.
26 
27    The size of the table is not fixed; if the occupancy of the table
28    grows too high the hash table will be expanded.
29 
30    The abstract data implementation is based on generalized Algorithm D
31    from Knuth's book "The art of computer programming".  Hash table is
32    expanded by creation of new hash table and transferring elements from
33    the old table to the new table. */
34 
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38 
39 #include <sys/types.h>
40 
41 #ifdef HAVE_STDLIB_H
42 #include <stdlib.h>
43 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
47 #ifdef HAVE_MALLOC_H
48 #include <malloc.h>
49 #endif
50 #ifdef HAVE_LIMITS_H
51 #include <limits.h>
52 #endif
53 #ifdef HAVE_INTTYPES_H
54 #include <inttypes.h>
55 #endif
56 #ifdef HAVE_STDINT_H
57 #include <stdint.h>
58 #endif
59 
60 #include <stdio.h>
61 
62 #include "libiberty.h"
63 #include "ansidecl.h"
64 #include "hashtab.h"
65 
66 #ifndef CHAR_BIT
67 #define CHAR_BIT 8
68 #endif
69 
70 static unsigned int higher_prime_index (unsigned long);
71 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72 static hashval_t htab_mod (hashval_t, htab_t);
73 static hashval_t htab_mod_m2 (hashval_t, htab_t);
74 static hashval_t hash_pointer (const void *);
75 static int eq_pointer (const void *, const void *);
76 static int htab_expand (htab_t);
77 static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
78 
79 /* At some point, we could make these be NULL, and modify the
80    hash-table routines to handle NULL specially; that would avoid
81    function-call overhead for the common case of hashing pointers.  */
82 htab_hash htab_hash_pointer = hash_pointer;
83 htab_eq htab_eq_pointer = eq_pointer;
84 
85 /* Table of primes and multiplicative inverses.
86 
87    Note that these are not minimally reduced inverses.  Unlike when generating
88    code to divide by a constant, we want to be able to use the same algorithm
89    all the time.  All of these inverses (are implied to) have bit 32 set.
90 
91    For the record, here's the function that computed the table; it's a
92    vastly simplified version of the function of the same name from gcc.  */
93 
94 #if 0
95 unsigned int
96 ceil_log2 (unsigned int x)
97 {
98   int i;
99   for (i = 31; i >= 0 ; --i)
100     if (x > (1u << i))
101       return i+1;
102   abort ();
103 }
104 
105 unsigned int
106 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107 {
108   unsigned long long mhigh;
109   double nx;
110   int lgup, post_shift;
111   int pow, pow2;
112   int n = 32, precision = 32;
113 
114   lgup = ceil_log2 (d);
115   pow = n + lgup;
116   pow2 = n + lgup - precision;
117 
118   nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119   mhigh = nx / d;
120 
121   *shiftp = lgup - 1;
122   *mlp = mhigh;
123   return mhigh >> 32;
124 }
125 #endif
126 
127 struct prime_ent
128 {
129   hashval_t prime;
130   hashval_t inv;
131   hashval_t inv_m2;	/* inverse of prime-2 */
132   hashval_t shift;
133 };
134 
135 static struct prime_ent const prime_tab[] = {
136   {          7, 0x24924925, 0x9999999b, 2 },
137   {         13, 0x3b13b13c, 0x745d1747, 3 },
138   {         31, 0x08421085, 0x1a7b9612, 4 },
139   {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
140   {        127, 0x02040811, 0x0624dd30, 6 },
141   {        251, 0x05197f7e, 0x073260a5, 7 },
142   {        509, 0x01824366, 0x02864fc8, 8 },
143   {       1021, 0x00c0906d, 0x014191f7, 9 },
144   {       2039, 0x0121456f, 0x0161e69e, 10 },
145   {       4093, 0x00300902, 0x00501908, 11 },
146   {       8191, 0x00080041, 0x00180241, 12 },
147   {      16381, 0x000c0091, 0x00140191, 13 },
148   {      32749, 0x002605a5, 0x002a06e6, 14 },
149   {      65521, 0x000f00e2, 0x00110122, 15 },
150   {     131071, 0x00008001, 0x00018003, 16 },
151   {     262139, 0x00014002, 0x0001c004, 17 },
152   {     524287, 0x00002001, 0x00006001, 18 },
153   {    1048573, 0x00003001, 0x00005001, 19 },
154   {    2097143, 0x00004801, 0x00005801, 20 },
155   {    4194301, 0x00000c01, 0x00001401, 21 },
156   {    8388593, 0x00001e01, 0x00002201, 22 },
157   {   16777213, 0x00000301, 0x00000501, 23 },
158   {   33554393, 0x00001381, 0x00001481, 24 },
159   {   67108859, 0x00000141, 0x000001c1, 25 },
160   {  134217689, 0x000004e1, 0x00000521, 26 },
161   {  268435399, 0x00000391, 0x000003b1, 27 },
162   {  536870909, 0x00000019, 0x00000029, 28 },
163   { 1073741789, 0x0000008d, 0x00000095, 29 },
164   { 2147483647, 0x00000003, 0x00000007, 30 },
165   /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
166   { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167 };
168 
169 /* The following function returns an index into the above table of the
170    nearest prime number which is greater than N, and near a power of two. */
171 
172 static unsigned int
higher_prime_index(unsigned long n)173 higher_prime_index (unsigned long n)
174 {
175   unsigned int low = 0;
176   unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
177 
178   while (low != high)
179     {
180       unsigned int mid = low + (high - low) / 2;
181       if (n > prime_tab[mid].prime)
182 	low = mid + 1;
183       else
184 	high = mid;
185     }
186 
187   /* If we've run out of primes, abort.  */
188   if (n > prime_tab[low].prime)
189     {
190       fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191       abort ();
192     }
193 
194   return low;
195 }
196 
197 /* Returns non-zero if P1 and P2 are equal.  */
198 
199 static int
eq_pointer(const PTR p1,const PTR p2)200 eq_pointer (const PTR p1, const PTR p2)
201 {
202   return p1 == p2;
203 }
204 
205 
206 /* The parens around the function names in the next two definitions
207    are essential in order to prevent macro expansions of the name.
208    The bodies, however, are expanded as expected, so they are not
209    recursive definitions.  */
210 
211 /* Return the current size of given hash table.  */
212 
213 #define htab_size(htab)  ((htab)->size)
214 
size_t(htab_size)215 size_t
216 (htab_size) (htab_t htab)
217 {
218   return htab_size (htab);
219 }
220 
221 /* Return the current number of elements in given hash table. */
222 
223 #define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
224 
size_t(htab_elements)225 size_t
226 (htab_elements) (htab_t htab)
227 {
228   return htab_elements (htab);
229 }
230 
231 /* Return X % Y.  */
232 
233 static inline hashval_t
htab_mod_1(hashval_t x,hashval_t y,hashval_t inv,int shift)234 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
235 {
236   /* The multiplicative inverses computed above are for 32-bit types, and
237      requires that we be able to compute a highpart multiply.  */
238 #ifdef UNSIGNED_64BIT_TYPE
239   __extension__ typedef UNSIGNED_64BIT_TYPE ull;
240   if (sizeof (hashval_t) * CHAR_BIT <= 32)
241     {
242       hashval_t t1, t2, t3, t4, q, r;
243 
244       t1 = ((ull)x * inv) >> 32;
245       t2 = x - t1;
246       t3 = t2 >> 1;
247       t4 = t1 + t3;
248       q  = t4 >> shift;
249       r  = x - (q * y);
250 
251       return r;
252     }
253 #endif
254 
255   /* Otherwise just use the native division routines.  */
256   return x % y;
257 }
258 
259 /* Compute the primary hash for HASH given HTAB's current size.  */
260 
261 static inline hashval_t
htab_mod(hashval_t hash,htab_t htab)262 htab_mod (hashval_t hash, htab_t htab)
263 {
264   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
265   return htab_mod_1 (hash, p->prime, p->inv, p->shift);
266 }
267 
268 /* Compute the secondary hash for HASH given HTAB's current size.  */
269 
270 static inline hashval_t
htab_mod_m2(hashval_t hash,htab_t htab)271 htab_mod_m2 (hashval_t hash, htab_t htab)
272 {
273   const struct prime_ent *p = &prime_tab[htab->size_prime_index];
274   return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
275 }
276 
277 /* This function creates table with length slightly longer than given
278    source length.  Created hash table is initiated as empty (all the
279    hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
280    created hash table, or NULL if memory allocation fails.  */
281 
282 htab_t
htab_create_alloc(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,htab_alloc alloc_f,htab_free free_f)283 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
284                    htab_del del_f, htab_alloc alloc_f, htab_free free_f)
285 {
286   return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
287 				  free_f);
288 }
289 
290 /* As above, but uses the variants of ALLOC_F and FREE_F which accept
291    an extra argument.  */
292 
293 htab_t
htab_create_alloc_ex(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,void * alloc_arg,htab_alloc_with_arg alloc_f,htab_free_with_arg free_f)294 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
295 		      htab_del del_f, void *alloc_arg,
296 		      htab_alloc_with_arg alloc_f,
297 		      htab_free_with_arg free_f)
298 {
299   htab_t result;
300   unsigned int size_prime_index;
301 
302   size_prime_index = higher_prime_index (size);
303   size = prime_tab[size_prime_index].prime;
304 
305   result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
306   if (result == NULL)
307     return NULL;
308   result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
309   if (result->entries == NULL)
310     {
311       if (free_f != NULL)
312 	(*free_f) (alloc_arg, result);
313       return NULL;
314     }
315   result->size = size;
316   result->size_prime_index = size_prime_index;
317   result->hash_f = hash_f;
318   result->eq_f = eq_f;
319   result->del_f = del_f;
320   result->alloc_arg = alloc_arg;
321   result->alloc_with_arg_f = alloc_f;
322   result->free_with_arg_f = free_f;
323   return result;
324 }
325 
326 /*
327 
328 @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
329 htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
330 htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
331 htab_free @var{free_f})
332 
333 This function creates a hash table that uses two different allocators
334 @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
335 and its entries respectively.  This is useful when variables of different
336 types need to be allocated with different allocators.
337 
338 The created hash table is slightly larger than @var{size} and it is
339 initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
340 The function returns the created hash table, or @code{NULL} if memory
341 allocation fails.
342 
343 @end deftypefn
344 
345 */
346 
347 htab_t
htab_create_typed_alloc(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f,htab_alloc alloc_tab_f,htab_alloc alloc_f,htab_free free_f)348 htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
349 			 htab_del del_f, htab_alloc alloc_tab_f,
350 			 htab_alloc alloc_f, htab_free free_f)
351 {
352   htab_t result;
353   unsigned int size_prime_index;
354 
355   size_prime_index = higher_prime_index (size);
356   size = prime_tab[size_prime_index].prime;
357 
358   result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
359   if (result == NULL)
360     return NULL;
361   result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
362   if (result->entries == NULL)
363     {
364       if (free_f != NULL)
365 	(*free_f) (result);
366       return NULL;
367     }
368   result->size = size;
369   result->size_prime_index = size_prime_index;
370   result->hash_f = hash_f;
371   result->eq_f = eq_f;
372   result->del_f = del_f;
373   result->alloc_f = alloc_f;
374   result->free_f = free_f;
375   return result;
376 }
377 
378 
379 /* Update the function pointers and allocation parameter in the htab_t.  */
380 
381 void
htab_set_functions_ex(htab_t htab,htab_hash hash_f,htab_eq eq_f,htab_del del_f,PTR alloc_arg,htab_alloc_with_arg alloc_f,htab_free_with_arg free_f)382 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
383                        htab_del del_f, PTR alloc_arg,
384                        htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
385 {
386   htab->hash_f = hash_f;
387   htab->eq_f = eq_f;
388   htab->del_f = del_f;
389   htab->alloc_arg = alloc_arg;
390   htab->alloc_with_arg_f = alloc_f;
391   htab->free_with_arg_f = free_f;
392 }
393 
394 /* These functions exist solely for backward compatibility.  */
395 
396 #undef htab_create
397 htab_t
htab_create(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f)398 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
399 {
400   return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
401 }
402 
403 htab_t
htab_try_create(size_t size,htab_hash hash_f,htab_eq eq_f,htab_del del_f)404 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
405 {
406   return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
407 }
408 
409 /* This function frees all memory allocated for given hash table.
410    Naturally the hash table must already exist. */
411 
412 void
htab_delete(htab_t htab)413 htab_delete (htab_t htab)
414 {
415   size_t size = htab_size (htab);
416   PTR *entries = htab->entries;
417   int i;
418 
419   if (htab->del_f)
420     for (i = size - 1; i >= 0; i--)
421       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422 	(*htab->del_f) (entries[i]);
423 
424   if (htab->free_f != NULL)
425     {
426       (*htab->free_f) (entries);
427       (*htab->free_f) (htab);
428     }
429   else if (htab->free_with_arg_f != NULL)
430     {
431       (*htab->free_with_arg_f) (htab->alloc_arg, entries);
432       (*htab->free_with_arg_f) (htab->alloc_arg, htab);
433     }
434 }
435 
436 /* This function clears all entries in the given hash table.  */
437 
438 void
htab_empty(htab_t htab)439 htab_empty (htab_t htab)
440 {
441   size_t size = htab_size (htab);
442   PTR *entries = htab->entries;
443   int i;
444 
445   if (htab->del_f)
446     for (i = size - 1; i >= 0; i--)
447       if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
448 	(*htab->del_f) (entries[i]);
449 
450   /* Instead of clearing megabyte, downsize the table.  */
451   if (size > 1024*1024 / sizeof (PTR))
452     {
453       int nindex = higher_prime_index (1024 / sizeof (PTR));
454       int nsize = prime_tab[nindex].prime;
455 
456       if (htab->free_f != NULL)
457 	(*htab->free_f) (htab->entries);
458       else if (htab->free_with_arg_f != NULL)
459 	(*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
460       if (htab->alloc_with_arg_f != NULL)
461 	htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
462 						           sizeof (PTR *));
463       else
464 	htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
465      htab->size = nsize;
466      htab->size_prime_index = nindex;
467     }
468   else
469     memset (entries, 0, size * sizeof (PTR));
470   htab->n_deleted = 0;
471   htab->n_elements = 0;
472 }
473 
474 /* Similar to htab_find_slot, but without several unwanted side effects:
475     - Does not call htab->eq_f when it finds an existing entry.
476     - Does not change the count of elements/searches/collisions in the
477       hash table.
478    This function also assumes there are no deleted entries in the table.
479    HASH is the hash value for the element to be inserted.  */
480 
481 static PTR *
find_empty_slot_for_expand(htab_t htab,hashval_t hash)482 find_empty_slot_for_expand (htab_t htab, hashval_t hash)
483 {
484   hashval_t index = htab_mod (hash, htab);
485   size_t size = htab_size (htab);
486   PTR *slot = htab->entries + index;
487   hashval_t hash2;
488 
489   if (*slot == HTAB_EMPTY_ENTRY)
490     return slot;
491   else if (*slot == HTAB_DELETED_ENTRY)
492     abort ();
493 
494   hash2 = htab_mod_m2 (hash, htab);
495   for (;;)
496     {
497       index += hash2;
498       if (index >= size)
499 	index -= size;
500 
501       slot = htab->entries + index;
502       if (*slot == HTAB_EMPTY_ENTRY)
503 	return slot;
504       else if (*slot == HTAB_DELETED_ENTRY)
505 	abort ();
506     }
507 }
508 
509 /* The following function changes size of memory allocated for the
510    entries and repeatedly inserts the table elements.  The occupancy
511    of the table after the call will be about 50%.  Naturally the hash
512    table must already exist.  Remember also that the place of the
513    table entries is changed.  If memory allocation failures are allowed,
514    this function will return zero, indicating that the table could not be
515    expanded.  If all goes well, it will return a non-zero value.  */
516 
517 static int
htab_expand(htab_t htab)518 htab_expand (htab_t htab)
519 {
520   PTR *oentries;
521   PTR *olimit;
522   PTR *p;
523   PTR *nentries;
524   size_t nsize, osize, elts;
525   unsigned int oindex, nindex;
526 
527   oentries = htab->entries;
528   oindex = htab->size_prime_index;
529   osize = htab->size;
530   olimit = oentries + osize;
531   elts = htab_elements (htab);
532 
533   /* Resize only when table after removal of unused elements is either
534      too full or too empty.  */
535   if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
536     {
537       nindex = higher_prime_index (elts * 2);
538       nsize = prime_tab[nindex].prime;
539     }
540   else
541     {
542       nindex = oindex;
543       nsize = osize;
544     }
545 
546   if (htab->alloc_with_arg_f != NULL)
547     nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
548 						  sizeof (PTR *));
549   else
550     nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
551   if (nentries == NULL)
552     return 0;
553   htab->entries = nentries;
554   htab->size = nsize;
555   htab->size_prime_index = nindex;
556   htab->n_elements -= htab->n_deleted;
557   htab->n_deleted = 0;
558 
559   p = oentries;
560   do
561     {
562       PTR x = *p;
563 
564       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
565 	{
566 	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
567 
568 	  *q = x;
569 	}
570 
571       p++;
572     }
573   while (p < olimit);
574 
575   if (htab->free_f != NULL)
576     (*htab->free_f) (oentries);
577   else if (htab->free_with_arg_f != NULL)
578     (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
579   return 1;
580 }
581 
582 /* This function searches for a hash table entry equal to the given
583    element.  It cannot be used to insert or delete an element.  */
584 
585 PTR
htab_find_with_hash(htab_t htab,const PTR element,hashval_t hash)586 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
587 {
588   hashval_t index, hash2;
589   size_t size;
590   PTR entry;
591 
592   htab->searches++;
593   size = htab_size (htab);
594   index = htab_mod (hash, htab);
595 
596   entry = htab->entries[index];
597   if (entry == HTAB_EMPTY_ENTRY
598       || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
599     return entry;
600 
601   hash2 = htab_mod_m2 (hash, htab);
602   for (;;)
603     {
604       htab->collisions++;
605       index += hash2;
606       if (index >= size)
607 	index -= size;
608 
609       entry = htab->entries[index];
610       if (entry == HTAB_EMPTY_ENTRY
611 	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
612 	return entry;
613     }
614 }
615 
616 /* Like htab_find_slot_with_hash, but compute the hash value from the
617    element.  */
618 
619 PTR
htab_find(htab_t htab,const PTR element)620 htab_find (htab_t htab, const PTR element)
621 {
622   return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
623 }
624 
625 /* This function searches for a hash table slot containing an entry
626    equal to the given element.  To delete an entry, call this with
627    insert=NO_INSERT, then call htab_clear_slot on the slot returned
628    (possibly after doing some checks).  To insert an entry, call this
629    with insert=INSERT, then write the value you want into the returned
630    slot.  When inserting an entry, NULL may be returned if memory
631    allocation fails.  */
632 
633 PTR *
htab_find_slot_with_hash(htab_t htab,const PTR element,hashval_t hash,enum insert_option insert)634 htab_find_slot_with_hash (htab_t htab, const PTR element,
635                           hashval_t hash, enum insert_option insert)
636 {
637   PTR *first_deleted_slot;
638   hashval_t index, hash2;
639   size_t size;
640   PTR entry;
641 
642   size = htab_size (htab);
643   if (insert == INSERT && size * 3 <= htab->n_elements * 4)
644     {
645       if (htab_expand (htab) == 0)
646 	return NULL;
647       size = htab_size (htab);
648     }
649 
650   index = htab_mod (hash, htab);
651 
652   htab->searches++;
653   first_deleted_slot = NULL;
654 
655   entry = htab->entries[index];
656   if (entry == HTAB_EMPTY_ENTRY)
657     goto empty_entry;
658   else if (entry == HTAB_DELETED_ENTRY)
659     first_deleted_slot = &htab->entries[index];
660   else if ((*htab->eq_f) (entry, element))
661     return &htab->entries[index];
662 
663   hash2 = htab_mod_m2 (hash, htab);
664   for (;;)
665     {
666       htab->collisions++;
667       index += hash2;
668       if (index >= size)
669 	index -= size;
670 
671       entry = htab->entries[index];
672       if (entry == HTAB_EMPTY_ENTRY)
673 	goto empty_entry;
674       else if (entry == HTAB_DELETED_ENTRY)
675 	{
676 	  if (!first_deleted_slot)
677 	    first_deleted_slot = &htab->entries[index];
678 	}
679       else if ((*htab->eq_f) (entry, element))
680 	return &htab->entries[index];
681     }
682 
683  empty_entry:
684   if (insert == NO_INSERT)
685     return NULL;
686 
687   if (first_deleted_slot)
688     {
689       htab->n_deleted--;
690       *first_deleted_slot = HTAB_EMPTY_ENTRY;
691       return first_deleted_slot;
692     }
693 
694   htab->n_elements++;
695   return &htab->entries[index];
696 }
697 
698 /* Like htab_find_slot_with_hash, but compute the hash value from the
699    element.  */
700 
701 PTR *
htab_find_slot(htab_t htab,const PTR element,enum insert_option insert)702 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
703 {
704   return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
705 				   insert);
706 }
707 
708 /* This function deletes an element with the given value from hash
709    table (the hash is computed from the element).  If there is no matching
710    element in the hash table, this function does nothing.  */
711 
712 void
htab_remove_elt(htab_t htab,PTR element)713 htab_remove_elt (htab_t htab, PTR element)
714 {
715   htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
716 }
717 
718 
719 /* This function deletes an element with the given value from hash
720    table.  If there is no matching element in the hash table, this
721    function does nothing.  */
722 
723 void
htab_remove_elt_with_hash(htab_t htab,PTR element,hashval_t hash)724 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
725 {
726   PTR *slot;
727 
728   slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
729   if (*slot == HTAB_EMPTY_ENTRY)
730     return;
731 
732   if (htab->del_f)
733     (*htab->del_f) (*slot);
734 
735   *slot = HTAB_DELETED_ENTRY;
736   htab->n_deleted++;
737 }
738 
739 /* This function clears a specified slot in a hash table.  It is
740    useful when you've already done the lookup and don't want to do it
741    again.  */
742 
743 void
htab_clear_slot(htab_t htab,PTR * slot)744 htab_clear_slot (htab_t htab, PTR *slot)
745 {
746   if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
747       || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
748     abort ();
749 
750   if (htab->del_f)
751     (*htab->del_f) (*slot);
752 
753   *slot = HTAB_DELETED_ENTRY;
754   htab->n_deleted++;
755 }
756 
757 /* This function scans over the entire hash table calling
758    CALLBACK for each live entry.  If CALLBACK returns false,
759    the iteration stops.  INFO is passed as CALLBACK's second
760    argument.  */
761 
762 void
htab_traverse_noresize(htab_t htab,htab_trav callback,PTR info)763 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
764 {
765   PTR *slot;
766   PTR *limit;
767 
768   slot = htab->entries;
769   limit = slot + htab_size (htab);
770 
771   do
772     {
773       PTR x = *slot;
774 
775       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
776 	if (!(*callback) (slot, info))
777 	  break;
778     }
779   while (++slot < limit);
780 }
781 
782 /* Like htab_traverse_noresize, but does resize the table when it is
783    too empty to improve effectivity of subsequent calls.  */
784 
785 void
htab_traverse(htab_t htab,htab_trav callback,PTR info)786 htab_traverse (htab_t htab, htab_trav callback, PTR info)
787 {
788   size_t size = htab_size (htab);
789   if (htab_elements (htab) * 8 < size && size > 32)
790     htab_expand (htab);
791 
792   htab_traverse_noresize (htab, callback, info);
793 }
794 
795 /* Return the fraction of fixed collisions during all work with given
796    hash table. */
797 
798 double
htab_collisions(htab_t htab)799 htab_collisions (htab_t htab)
800 {
801   if (htab->searches == 0)
802     return 0.0;
803 
804   return (double) htab->collisions / (double) htab->searches;
805 }
806 
807 /* Hash P as a null-terminated string.
808 
809    Copied from gcc/hashtable.c.  Zack had the following to say with respect
810    to applicability, though note that unlike hashtable.c, this hash table
811    implementation re-hashes rather than chain buckets.
812 
813    http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
814    From: Zack Weinberg <zackw@panix.com>
815    Date: Fri, 17 Aug 2001 02:15:56 -0400
816 
817    I got it by extracting all the identifiers from all the source code
818    I had lying around in mid-1999, and testing many recurrences of
819    the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
820    prime numbers or the appropriate identity.  This was the best one.
821    I don't remember exactly what constituted "best", except I was
822    looking at bucket-length distributions mostly.
823 
824    So it should be very good at hashing identifiers, but might not be
825    as good at arbitrary strings.
826 
827    I'll add that it thoroughly trounces the hash functions recommended
828    for this use at http://burtleburtle.net/bob/hash/index.html, both
829    on speed and bucket distribution.  I haven't tried it against the
830    function they just started using for Perl's hashes.  */
831 
832 hashval_t
htab_hash_string(const PTR p)833 htab_hash_string (const PTR p)
834 {
835   const unsigned char *str = (const unsigned char *) p;
836   hashval_t r = 0;
837   unsigned char c;
838 
839   while ((c = *str++) != 0)
840     r = r * 67 + c - 113;
841 
842   return r;
843 }
844 
845 /* DERIVED FROM:
846 --------------------------------------------------------------------
847 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
848 hash(), hash2(), hash3, and mix() are externally useful functions.
849 Routines to test the hash are included if SELF_TEST is defined.
850 You can use this free for any purpose.  It has no warranty.
851 --------------------------------------------------------------------
852 */
853 
854 /*
855 --------------------------------------------------------------------
856 mix -- mix 3 32-bit values reversibly.
857 For every delta with one or two bit set, and the deltas of all three
858   high bits or all three low bits, whether the original value of a,b,c
859   is almost all zero or is uniformly distributed,
860 * If mix() is run forward or backward, at least 32 bits in a,b,c
861   have at least 1/4 probability of changing.
862 * If mix() is run forward, every bit of c will change between 1/3 and
863   2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
864 mix() was built out of 36 single-cycle latency instructions in a
865   structure that could supported 2x parallelism, like so:
866       a -= b;
867       a -= c; x = (c>>13);
868       b -= c; a ^= x;
869       b -= a; x = (a<<8);
870       c -= a; b ^= x;
871       c -= b; x = (b>>13);
872       ...
873   Unfortunately, superscalar Pentiums and Sparcs can't take advantage
874   of that parallelism.  They've also turned some of those single-cycle
875   latency instructions into multi-cycle latency instructions.  Still,
876   this is the fastest good hash I could find.  There were about 2^^68
877   to choose from.  I only looked at a billion or so.
878 --------------------------------------------------------------------
879 */
880 /* same, but slower, works on systems that might have 8 byte hashval_t's */
881 #define mix(a,b,c) \
882 { \
883   a -= b; a -= c; a ^= (c>>13); \
884   b -= c; b -= a; b ^= (a<< 8); \
885   c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
886   a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
887   b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
888   c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
889   a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
890   b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
891   c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
892 }
893 
894 /*
895 --------------------------------------------------------------------
896 hash() -- hash a variable-length key into a 32-bit value
897   k     : the key (the unaligned variable-length array of bytes)
898   len   : the length of the key, counting by bytes
899   level : can be any 4-byte value
900 Returns a 32-bit value.  Every bit of the key affects every bit of
901 the return value.  Every 1-bit and 2-bit delta achieves avalanche.
902 About 36+6len instructions.
903 
904 The best hash table sizes are powers of 2.  There is no need to do
905 mod a prime (mod is sooo slow!).  If you need less than 32 bits,
906 use a bitmask.  For example, if you need only 10 bits, do
907   h = (h & hashmask(10));
908 In which case, the hash table should have hashsize(10) elements.
909 
910 If you are hashing n strings (ub1 **)k, do it like this:
911   for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
912 
913 By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
914 code any way you wish, private, educational, or commercial.  It's free.
915 
916 See http://burtleburtle.net/bob/hash/evahash.html
917 Use for hash table lookup, or anything where one collision in 2^32 is
918 acceptable.  Do NOT use for cryptographic purposes.
919 --------------------------------------------------------------------
920 */
921 
922 hashval_t
iterative_hash(const PTR k_in,register size_t length,register hashval_t initval)923 iterative_hash (const PTR k_in /* the key */,
924                 register size_t  length /* the length of the key */,
925                 register hashval_t initval /* the previous hash, or
926                                               an arbitrary value */)
927 {
928   register const unsigned char *k = (const unsigned char *)k_in;
929   register hashval_t a,b,c,len;
930 
931   /* Set up the internal state */
932   len = length;
933   a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
934   c = initval;           /* the previous hash value */
935 
936   /*---------------------------------------- handle most of the key */
937 #ifndef WORDS_BIGENDIAN
938   /* On a little-endian machine, if the data is 4-byte aligned we can hash
939      by word for better speed.  This gives nondeterministic results on
940      big-endian machines.  */
941   if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
942     while (len >= 12)    /* aligned */
943       {
944 	a += *(hashval_t *)(k+0);
945 	b += *(hashval_t *)(k+4);
946 	c += *(hashval_t *)(k+8);
947 	mix(a,b,c);
948 	k += 12; len -= 12;
949       }
950   else /* unaligned */
951 #endif
952     while (len >= 12)
953       {
954 	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
955 	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
956 	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
957 	mix(a,b,c);
958 	k += 12; len -= 12;
959       }
960 
961   /*------------------------------------- handle the last 11 bytes */
962   c += length;
963   switch(len)              /* all the case statements fall through */
964     {
965     case 11: c+=((hashval_t)k[10]<<24);
966     case 10: c+=((hashval_t)k[9]<<16);
967     case 9 : c+=((hashval_t)k[8]<<8);
968       /* the first byte of c is reserved for the length */
969     case 8 : b+=((hashval_t)k[7]<<24);
970     case 7 : b+=((hashval_t)k[6]<<16);
971     case 6 : b+=((hashval_t)k[5]<<8);
972     case 5 : b+=k[4];
973     case 4 : a+=((hashval_t)k[3]<<24);
974     case 3 : a+=((hashval_t)k[2]<<16);
975     case 2 : a+=((hashval_t)k[1]<<8);
976     case 1 : a+=k[0];
977       /* case 0: nothing left to add */
978     }
979   mix(a,b,c);
980   /*-------------------------------------------- report the result */
981   return c;
982 }
983 
984 /* Returns a hash code for pointer P. Simplified version of evahash */
985 
986 static hashval_t
hash_pointer(const PTR p)987 hash_pointer (const PTR p)
988 {
989   intptr_t v = (intptr_t) p;
990   unsigned a, b, c;
991 
992   a = b = 0x9e3779b9;
993   a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
994   b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
995   c = 0x42135234;
996   mix (a, b, c);
997   return c;
998 }
999