• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "class_linker.h"
18 
19 #include <algorithm>
20 #include <deque>
21 #include <iostream>
22 #include <memory>
23 #include <queue>
24 #include <string>
25 #include <tuple>
26 #include <unistd.h>
27 #include <unordered_map>
28 #include <utility>
29 #include <vector>
30 
31 #include "art_field-inl.h"
32 #include "art_method-inl.h"
33 #include "base/arena_allocator.h"
34 #include "base/casts.h"
35 #include "base/logging.h"
36 #include "base/scoped_arena_containers.h"
37 #include "base/scoped_flock.h"
38 #include "base/stl_util.h"
39 #include "base/systrace.h"
40 #include "base/time_utils.h"
41 #include "base/unix_file/fd_file.h"
42 #include "base/value_object.h"
43 #include "class_linker-inl.h"
44 #include "class_table-inl.h"
45 #include "compiler_callbacks.h"
46 #include "debugger.h"
47 #include "dex_file-inl.h"
48 #include "entrypoints/entrypoint_utils.h"
49 #include "entrypoints/runtime_asm_entrypoints.h"
50 #include "experimental_flags.h"
51 #include "gc_root-inl.h"
52 #include "gc/accounting/card_table-inl.h"
53 #include "gc/accounting/heap_bitmap-inl.h"
54 #include "gc/heap.h"
55 #include "gc/scoped_gc_critical_section.h"
56 #include "gc/space/image_space.h"
57 #include "handle_scope-inl.h"
58 #include "image-inl.h"
59 #include "intern_table.h"
60 #include "interpreter/interpreter.h"
61 #include "jit/jit.h"
62 #include "jit/jit_code_cache.h"
63 #include "jit/offline_profiling_info.h"
64 #include "leb128.h"
65 #include "linear_alloc.h"
66 #include "mirror/class.h"
67 #include "mirror/class-inl.h"
68 #include "mirror/class_loader.h"
69 #include "mirror/dex_cache-inl.h"
70 #include "mirror/field.h"
71 #include "mirror/iftable-inl.h"
72 #include "mirror/method.h"
73 #include "mirror/object-inl.h"
74 #include "mirror/object_array-inl.h"
75 #include "mirror/proxy.h"
76 #include "mirror/reference-inl.h"
77 #include "mirror/stack_trace_element.h"
78 #include "mirror/string-inl.h"
79 #include "native/dalvik_system_DexFile.h"
80 #include "oat.h"
81 #include "oat_file.h"
82 #include "oat_file-inl.h"
83 #include "oat_file_assistant.h"
84 #include "oat_file_manager.h"
85 #include "object_lock.h"
86 #include "os.h"
87 #include "runtime.h"
88 #include "ScopedLocalRef.h"
89 #include "scoped_thread_state_change.h"
90 #include "thread-inl.h"
91 #include "trace.h"
92 #include "utils.h"
93 #include "utils/dex_cache_arrays_layout-inl.h"
94 #include "verifier/method_verifier.h"
95 #include "well_known_classes.h"
96 
97 namespace art {
98 
99 static constexpr bool kSanityCheckObjects = kIsDebugBuild;
100 static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild;
101 
102 static void ThrowNoClassDefFoundError(const char* fmt, ...)
103     __attribute__((__format__(__printf__, 1, 2)))
104     SHARED_REQUIRES(Locks::mutator_lock_);
ThrowNoClassDefFoundError(const char * fmt,...)105 static void ThrowNoClassDefFoundError(const char* fmt, ...) {
106   va_list args;
107   va_start(args, fmt);
108   Thread* self = Thread::Current();
109   self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args);
110   va_end(args);
111 }
112 
HasInitWithString(Thread * self,ClassLinker * class_linker,const char * descriptor)113 static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor)
114     SHARED_REQUIRES(Locks::mutator_lock_) {
115   ArtMethod* method = self->GetCurrentMethod(nullptr);
116   StackHandleScope<1> hs(self);
117   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method != nullptr ?
118       method->GetDeclaringClass()->GetClassLoader() : nullptr));
119   mirror::Class* exception_class = class_linker->FindClass(self, descriptor, class_loader);
120 
121   if (exception_class == nullptr) {
122     // No exc class ~ no <init>-with-string.
123     CHECK(self->IsExceptionPending());
124     self->ClearException();
125     return false;
126   }
127 
128   ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod(
129       "<init>", "(Ljava/lang/String;)V", class_linker->GetImagePointerSize());
130   return exception_init_method != nullptr;
131 }
132 
133 // Helper for ThrowEarlierClassFailure. Throws the stored error.
HandleEarlierVerifyError(Thread * self,ClassLinker * class_linker,mirror::Class * c)134 static void HandleEarlierVerifyError(Thread* self, ClassLinker* class_linker, mirror::Class* c)
135     SHARED_REQUIRES(Locks::mutator_lock_) {
136   mirror::Object* obj = c->GetVerifyError();
137   DCHECK(obj != nullptr);
138   self->AssertNoPendingException();
139   if (obj->IsClass()) {
140     // Previous error has been stored as class. Create a new exception of that type.
141 
142     // It's possible the exception doesn't have a <init>(String).
143     std::string temp;
144     const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
145 
146     if (HasInitWithString(self, class_linker, descriptor)) {
147       self->ThrowNewException(descriptor, PrettyDescriptor(c).c_str());
148     } else {
149       self->ThrowNewException(descriptor, nullptr);
150     }
151   } else {
152     // Previous error has been stored as an instance. Just rethrow.
153     mirror::Class* throwable_class =
154         self->DecodeJObject(WellKnownClasses::java_lang_Throwable)->AsClass();
155     mirror::Class* error_class = obj->GetClass();
156     CHECK(throwable_class->IsAssignableFrom(error_class));
157     self->SetException(obj->AsThrowable());
158   }
159   self->AssertPendingException();
160 }
161 
ThrowEarlierClassFailure(mirror::Class * c,bool wrap_in_no_class_def)162 void ClassLinker::ThrowEarlierClassFailure(mirror::Class* c, bool wrap_in_no_class_def) {
163   // The class failed to initialize on a previous attempt, so we want to throw
164   // a NoClassDefFoundError (v2 2.17.5).  The exception to this rule is if we
165   // failed in verification, in which case v2 5.4.1 says we need to re-throw
166   // the previous error.
167   Runtime* const runtime = Runtime::Current();
168   if (!runtime->IsAotCompiler()) {  // Give info if this occurs at runtime.
169     std::string extra;
170     if (c->GetVerifyError() != nullptr) {
171       mirror::Object* verify_error = c->GetVerifyError();
172       if (verify_error->IsClass()) {
173         extra = PrettyDescriptor(verify_error->AsClass());
174       } else {
175         extra = verify_error->AsThrowable()->Dump();
176       }
177     }
178     LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c) << ": " << extra;
179   }
180 
181   CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus();
182   Thread* self = Thread::Current();
183   if (runtime->IsAotCompiler()) {
184     // At compile time, accurate errors and NCDFE are disabled to speed compilation.
185     mirror::Throwable* pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError();
186     self->SetException(pre_allocated);
187   } else {
188     if (c->GetVerifyError() != nullptr) {
189       // Rethrow stored error.
190       HandleEarlierVerifyError(self, this, c);
191     }
192     if (c->GetVerifyError() == nullptr || wrap_in_no_class_def) {
193       // If there isn't a recorded earlier error, or this is a repeat throw from initialization,
194       // the top-level exception must be a NoClassDefFoundError. The potentially already pending
195       // exception will be a cause.
196       self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;",
197                                      PrettyDescriptor(c).c_str());
198     }
199   }
200 }
201 
VlogClassInitializationFailure(Handle<mirror::Class> klass)202 static void VlogClassInitializationFailure(Handle<mirror::Class> klass)
203     SHARED_REQUIRES(Locks::mutator_lock_) {
204   if (VLOG_IS_ON(class_linker)) {
205     std::string temp;
206     LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from "
207               << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump();
208   }
209 }
210 
WrapExceptionInInitializer(Handle<mirror::Class> klass)211 static void WrapExceptionInInitializer(Handle<mirror::Class> klass)
212     SHARED_REQUIRES(Locks::mutator_lock_) {
213   Thread* self = Thread::Current();
214   JNIEnv* env = self->GetJniEnv();
215 
216   ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
217   CHECK(cause.get() != nullptr);
218 
219   env->ExceptionClear();
220   bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
221   env->Throw(cause.get());
222 
223   // We only wrap non-Error exceptions; an Error can just be used as-is.
224   if (!is_error) {
225     self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr);
226   }
227   VlogClassInitializationFailure(klass);
228 }
229 
230 // Gap between two fields in object layout.
231 struct FieldGap {
232   uint32_t start_offset;  // The offset from the start of the object.
233   uint32_t size;  // The gap size of 1, 2, or 4 bytes.
234 };
235 struct FieldGapsComparator {
FieldGapsComparatorart::FieldGapsComparator236   explicit FieldGapsComparator() {
237   }
operator ()art::FieldGapsComparator238   bool operator() (const FieldGap& lhs, const FieldGap& rhs)
239       NO_THREAD_SAFETY_ANALYSIS {
240     // Sort by gap size, largest first. Secondary sort by starting offset.
241     // Note that the priority queue returns the largest element, so operator()
242     // should return true if lhs is less than rhs.
243     return lhs.size < rhs.size || (lhs.size == rhs.size && lhs.start_offset > rhs.start_offset);
244   }
245 };
246 typedef std::priority_queue<FieldGap, std::vector<FieldGap>, FieldGapsComparator> FieldGaps;
247 
248 // Adds largest aligned gaps to queue of gaps.
AddFieldGap(uint32_t gap_start,uint32_t gap_end,FieldGaps * gaps)249 static void AddFieldGap(uint32_t gap_start, uint32_t gap_end, FieldGaps* gaps) {
250   DCHECK(gaps != nullptr);
251 
252   uint32_t current_offset = gap_start;
253   while (current_offset != gap_end) {
254     size_t remaining = gap_end - current_offset;
255     if (remaining >= sizeof(uint32_t) && IsAligned<4>(current_offset)) {
256       gaps->push(FieldGap {current_offset, sizeof(uint32_t)});
257       current_offset += sizeof(uint32_t);
258     } else if (remaining >= sizeof(uint16_t) && IsAligned<2>(current_offset)) {
259       gaps->push(FieldGap {current_offset, sizeof(uint16_t)});
260       current_offset += sizeof(uint16_t);
261     } else {
262       gaps->push(FieldGap {current_offset, sizeof(uint8_t)});
263       current_offset += sizeof(uint8_t);
264     }
265     DCHECK_LE(current_offset, gap_end) << "Overran gap";
266   }
267 }
268 // Shuffle fields forward, making use of gaps whenever possible.
269 template<int n>
ShuffleForward(size_t * current_field_idx,MemberOffset * field_offset,std::deque<ArtField * > * grouped_and_sorted_fields,FieldGaps * gaps)270 static void ShuffleForward(size_t* current_field_idx,
271                            MemberOffset* field_offset,
272                            std::deque<ArtField*>* grouped_and_sorted_fields,
273                            FieldGaps* gaps)
274     SHARED_REQUIRES(Locks::mutator_lock_) {
275   DCHECK(current_field_idx != nullptr);
276   DCHECK(grouped_and_sorted_fields != nullptr);
277   DCHECK(gaps != nullptr);
278   DCHECK(field_offset != nullptr);
279 
280   DCHECK(IsPowerOfTwo(n));
281   while (!grouped_and_sorted_fields->empty()) {
282     ArtField* field = grouped_and_sorted_fields->front();
283     Primitive::Type type = field->GetTypeAsPrimitiveType();
284     if (Primitive::ComponentSize(type) < n) {
285       break;
286     }
287     if (!IsAligned<n>(field_offset->Uint32Value())) {
288       MemberOffset old_offset = *field_offset;
289       *field_offset = MemberOffset(RoundUp(field_offset->Uint32Value(), n));
290       AddFieldGap(old_offset.Uint32Value(), field_offset->Uint32Value(), gaps);
291     }
292     CHECK(type != Primitive::kPrimNot) << PrettyField(field);  // should be primitive types
293     grouped_and_sorted_fields->pop_front();
294     if (!gaps->empty() && gaps->top().size >= n) {
295       FieldGap gap = gaps->top();
296       gaps->pop();
297       DCHECK_ALIGNED(gap.start_offset, n);
298       field->SetOffset(MemberOffset(gap.start_offset));
299       if (gap.size > n) {
300         AddFieldGap(gap.start_offset + n, gap.start_offset + gap.size, gaps);
301       }
302     } else {
303       DCHECK_ALIGNED(field_offset->Uint32Value(), n);
304       field->SetOffset(*field_offset);
305       *field_offset = MemberOffset(field_offset->Uint32Value() + n);
306     }
307     ++(*current_field_idx);
308   }
309 }
310 
ClassLinker(InternTable * intern_table)311 ClassLinker::ClassLinker(InternTable* intern_table)
312     // dex_lock_ is recursive as it may be used in stack dumping.
313     : dex_lock_("ClassLinker dex lock", kDefaultMutexLevel),
314       dex_cache_boot_image_class_lookup_required_(false),
315       failed_dex_cache_class_lookups_(0),
316       class_roots_(nullptr),
317       array_iftable_(nullptr),
318       find_array_class_cache_next_victim_(0),
319       init_done_(false),
320       log_new_class_table_roots_(false),
321       intern_table_(intern_table),
322       quick_resolution_trampoline_(nullptr),
323       quick_imt_conflict_trampoline_(nullptr),
324       quick_generic_jni_trampoline_(nullptr),
325       quick_to_interpreter_bridge_trampoline_(nullptr),
326       image_pointer_size_(sizeof(void*)) {
327   CHECK(intern_table_ != nullptr);
328   static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_),
329                 "Array cache size wrong.");
330   std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
331 }
332 
CheckSystemClass(Thread * self,Handle<mirror::Class> c1,const char * descriptor)333 void ClassLinker::CheckSystemClass(Thread* self, Handle<mirror::Class> c1, const char* descriptor) {
334   mirror::Class* c2 = FindSystemClass(self, descriptor);
335   if (c2 == nullptr) {
336     LOG(FATAL) << "Could not find class " << descriptor;
337     UNREACHABLE();
338   }
339   if (c1.Get() != c2) {
340     std::ostringstream os1, os2;
341     c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail);
342     c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail);
343     LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor
344                << ". This is most likely the result of a broken build. Make sure that "
345                << "libcore and art projects match.\n\n"
346                << os1.str() << "\n\n" << os2.str();
347     UNREACHABLE();
348   }
349 }
350 
InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,std::string * error_msg)351 bool ClassLinker::InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,
352                                    std::string* error_msg) {
353   VLOG(startup) << "ClassLinker::Init";
354 
355   Thread* const self = Thread::Current();
356   Runtime* const runtime = Runtime::Current();
357   gc::Heap* const heap = runtime->GetHeap();
358 
359   CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it.";
360   CHECK(!init_done_);
361 
362   // Use the pointer size from the runtime since we are probably creating the image.
363   image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet());
364   if (!ValidPointerSize(image_pointer_size_)) {
365     *error_msg = StringPrintf("Invalid image pointer size: %zu", image_pointer_size_);
366     return false;
367   }
368 
369   // java_lang_Class comes first, it's needed for AllocClass
370   // The GC can't handle an object with a null class since we can't get the size of this object.
371   heap->IncrementDisableMovingGC(self);
372   StackHandleScope<64> hs(self);  // 64 is picked arbitrarily.
373   auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_);
374   Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>(
375       heap->AllocNonMovableObject<true>(self, nullptr, class_class_size, VoidFunctor()))));
376   CHECK(java_lang_Class.Get() != nullptr);
377   mirror::Class::SetClassClass(java_lang_Class.Get());
378   java_lang_Class->SetClass(java_lang_Class.Get());
379   if (kUseBakerOrBrooksReadBarrier) {
380     java_lang_Class->AssertReadBarrierPointer();
381   }
382   java_lang_Class->SetClassSize(class_class_size);
383   java_lang_Class->SetPrimitiveType(Primitive::kPrimNot);
384   heap->DecrementDisableMovingGC(self);
385   // AllocClass(mirror::Class*) can now be used
386 
387   // Class[] is used for reflection support.
388   auto class_array_class_size = mirror::ObjectArray<mirror::Class>::ClassSize(image_pointer_size_);
389   Handle<mirror::Class> class_array_class(hs.NewHandle(
390       AllocClass(self, java_lang_Class.Get(), class_array_class_size)));
391   class_array_class->SetComponentType(java_lang_Class.Get());
392 
393   // java_lang_Object comes next so that object_array_class can be created.
394   Handle<mirror::Class> java_lang_Object(hs.NewHandle(
395       AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_))));
396   CHECK(java_lang_Object.Get() != nullptr);
397   // backfill Object as the super class of Class.
398   java_lang_Class->SetSuperClass(java_lang_Object.Get());
399   mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusLoaded, self);
400 
401   java_lang_Object->SetObjectSize(sizeof(mirror::Object));
402   // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
403   // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
404   runtime->SetSentinel(heap->AllocNonMovableObject<true>(self,
405                                                          java_lang_Object.Get(),
406                                                          java_lang_Object->GetObjectSize(),
407                                                          VoidFunctor()));
408 
409   // Object[] next to hold class roots.
410   Handle<mirror::Class> object_array_class(hs.NewHandle(
411       AllocClass(self, java_lang_Class.Get(),
412                  mirror::ObjectArray<mirror::Object>::ClassSize(image_pointer_size_))));
413   object_array_class->SetComponentType(java_lang_Object.Get());
414 
415   // Setup the char (primitive) class to be used for char[].
416   Handle<mirror::Class> char_class(hs.NewHandle(
417       AllocClass(self, java_lang_Class.Get(),
418                  mirror::Class::PrimitiveClassSize(image_pointer_size_))));
419   // The primitive char class won't be initialized by
420   // InitializePrimitiveClass until line 459, but strings (and
421   // internal char arrays) will be allocated before that and the
422   // component size, which is computed from the primitive type, needs
423   // to be set here.
424   char_class->SetPrimitiveType(Primitive::kPrimChar);
425 
426   // Setup the char[] class to be used for String.
427   Handle<mirror::Class> char_array_class(hs.NewHandle(
428       AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
429   char_array_class->SetComponentType(char_class.Get());
430   mirror::CharArray::SetArrayClass(char_array_class.Get());
431 
432   // Setup String.
433   Handle<mirror::Class> java_lang_String(hs.NewHandle(
434       AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_))));
435   java_lang_String->SetStringClass();
436   mirror::String::SetClass(java_lang_String.Get());
437   mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusResolved, self);
438 
439   // Setup java.lang.ref.Reference.
440   Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle(
441       AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_))));
442   mirror::Reference::SetClass(java_lang_ref_Reference.Get());
443   java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize());
444   mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusResolved, self);
445 
446   // Create storage for root classes, save away our work so far (requires descriptors).
447   class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
448       mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(),
449                                                 kClassRootsMax));
450   CHECK(!class_roots_.IsNull());
451   SetClassRoot(kJavaLangClass, java_lang_Class.Get());
452   SetClassRoot(kJavaLangObject, java_lang_Object.Get());
453   SetClassRoot(kClassArrayClass, class_array_class.Get());
454   SetClassRoot(kObjectArrayClass, object_array_class.Get());
455   SetClassRoot(kCharArrayClass, char_array_class.Get());
456   SetClassRoot(kJavaLangString, java_lang_String.Get());
457   SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get());
458 
459   // Setup the primitive type classes.
460   SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean));
461   SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte));
462   SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort));
463   SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt));
464   SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong));
465   SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat));
466   SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble));
467   SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid));
468 
469   // Create array interface entries to populate once we can load system classes.
470   array_iftable_ = GcRoot<mirror::IfTable>(AllocIfTable(self, 2));
471 
472   // Create int array type for AllocDexCache (done in AppendToBootClassPath).
473   Handle<mirror::Class> int_array_class(hs.NewHandle(
474       AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
475   int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
476   mirror::IntArray::SetArrayClass(int_array_class.Get());
477   SetClassRoot(kIntArrayClass, int_array_class.Get());
478 
479   // Create long array type for AllocDexCache (done in AppendToBootClassPath).
480   Handle<mirror::Class> long_array_class(hs.NewHandle(
481       AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
482   long_array_class->SetComponentType(GetClassRoot(kPrimitiveLong));
483   mirror::LongArray::SetArrayClass(long_array_class.Get());
484   SetClassRoot(kLongArrayClass, long_array_class.Get());
485 
486   // now that these are registered, we can use AllocClass() and AllocObjectArray
487 
488   // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache.
489   Handle<mirror::Class> java_lang_DexCache(hs.NewHandle(
490       AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_))));
491   SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get());
492   java_lang_DexCache->SetDexCacheClass();
493   java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize());
494   mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusResolved, self);
495 
496   // Set up array classes for string, field, method
497   Handle<mirror::Class> object_array_string(hs.NewHandle(
498       AllocClass(self, java_lang_Class.Get(),
499                  mirror::ObjectArray<mirror::String>::ClassSize(image_pointer_size_))));
500   object_array_string->SetComponentType(java_lang_String.Get());
501   SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get());
502 
503   LinearAlloc* linear_alloc = runtime->GetLinearAlloc();
504   // Create runtime resolution and imt conflict methods.
505   runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
506   runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc));
507   runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc));
508 
509   // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create
510   // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses
511   // these roots.
512   if (boot_class_path.empty()) {
513     *error_msg = "Boot classpath is empty.";
514     return false;
515   }
516   for (auto& dex_file : boot_class_path) {
517     if (dex_file.get() == nullptr) {
518       *error_msg = "Null dex file.";
519       return false;
520     }
521     AppendToBootClassPath(self, *dex_file);
522     boot_dex_files_.push_back(std::move(dex_file));
523   }
524 
525   // now we can use FindSystemClass
526 
527   // run char class through InitializePrimitiveClass to finish init
528   InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar);
529   SetClassRoot(kPrimitiveChar, char_class.Get());  // needs descriptor
530 
531   // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that
532   // we do not need friend classes or a publicly exposed setter.
533   quick_generic_jni_trampoline_ = GetQuickGenericJniStub();
534   if (!runtime->IsAotCompiler()) {
535     // We need to set up the generic trampolines since we don't have an image.
536     quick_resolution_trampoline_ = GetQuickResolutionStub();
537     quick_imt_conflict_trampoline_ = GetQuickImtConflictStub();
538     quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge();
539   }
540 
541   // Object, String and DexCache need to be rerun through FindSystemClass to finish init
542   mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusNotReady, self);
543   CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;");
544   CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize());
545   mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusNotReady, self);
546   CheckSystemClass(self, java_lang_String, "Ljava/lang/String;");
547   mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusNotReady, self);
548   CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;");
549   CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize());
550 
551   // Setup the primitive array type classes - can't be done until Object has a vtable.
552   SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z"));
553   mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
554 
555   SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B"));
556   mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
557 
558   CheckSystemClass(self, char_array_class, "[C");
559 
560   SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S"));
561   mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
562 
563   CheckSystemClass(self, int_array_class, "[I");
564   CheckSystemClass(self, long_array_class, "[J");
565 
566   SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F"));
567   mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
568 
569   SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D"));
570   mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
571 
572   // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it
573   // in class_table_.
574   CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;");
575 
576   CheckSystemClass(self, class_array_class, "[Ljava/lang/Class;");
577   CheckSystemClass(self, object_array_class, "[Ljava/lang/Object;");
578 
579   // Setup the single, global copy of "iftable".
580   auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;"));
581   CHECK(java_lang_Cloneable.Get() != nullptr);
582   auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;"));
583   CHECK(java_io_Serializable.Get() != nullptr);
584   // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to
585   // crawl up and explicitly list all of the supers as well.
586   array_iftable_.Read()->SetInterface(0, java_lang_Cloneable.Get());
587   array_iftable_.Read()->SetInterface(1, java_io_Serializable.Get());
588 
589   // Sanity check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread
590   // suspension.
591   CHECK_EQ(java_lang_Cloneable.Get(),
592            mirror::Class::GetDirectInterface(self, class_array_class, 0));
593   CHECK_EQ(java_io_Serializable.Get(),
594            mirror::Class::GetDirectInterface(self, class_array_class, 1));
595   CHECK_EQ(java_lang_Cloneable.Get(),
596            mirror::Class::GetDirectInterface(self, object_array_class, 0));
597   CHECK_EQ(java_io_Serializable.Get(),
598            mirror::Class::GetDirectInterface(self, object_array_class, 1));
599 
600   CHECK_EQ(object_array_string.Get(),
601            FindSystemClass(self, GetClassRootDescriptor(kJavaLangStringArrayClass)));
602 
603   // End of special init trickery, all subsequent classes may be loaded via FindSystemClass.
604 
605   // Create java.lang.reflect.Proxy root.
606   SetClassRoot(kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;"));
607 
608   // Create java.lang.reflect.Field.class root.
609   auto* class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;");
610   CHECK(class_root != nullptr);
611   SetClassRoot(kJavaLangReflectField, class_root);
612   mirror::Field::SetClass(class_root);
613 
614   // Create java.lang.reflect.Field array root.
615   class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;");
616   CHECK(class_root != nullptr);
617   SetClassRoot(kJavaLangReflectFieldArrayClass, class_root);
618   mirror::Field::SetArrayClass(class_root);
619 
620   // Create java.lang.reflect.Constructor.class root and array root.
621   class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;");
622   CHECK(class_root != nullptr);
623   SetClassRoot(kJavaLangReflectConstructor, class_root);
624   mirror::Constructor::SetClass(class_root);
625   class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;");
626   CHECK(class_root != nullptr);
627   SetClassRoot(kJavaLangReflectConstructorArrayClass, class_root);
628   mirror::Constructor::SetArrayClass(class_root);
629 
630   // Create java.lang.reflect.Method.class root and array root.
631   class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;");
632   CHECK(class_root != nullptr);
633   SetClassRoot(kJavaLangReflectMethod, class_root);
634   mirror::Method::SetClass(class_root);
635   class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;");
636   CHECK(class_root != nullptr);
637   SetClassRoot(kJavaLangReflectMethodArrayClass, class_root);
638   mirror::Method::SetArrayClass(class_root);
639 
640   // java.lang.ref classes need to be specially flagged, but otherwise are normal classes
641   // finish initializing Reference class
642   mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusNotReady, self);
643   CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;");
644   CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize());
645   CHECK_EQ(java_lang_ref_Reference->GetClassSize(),
646            mirror::Reference::ClassSize(image_pointer_size_));
647   class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
648   CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
649   class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference);
650   class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;");
651   CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
652   class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference);
653   class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;");
654   CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
655   class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference);
656   class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;");
657   CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
658   class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference);
659 
660   // Setup the ClassLoader, verifying the object_size_.
661   class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;");
662   class_root->SetClassLoaderClass();
663   CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize());
664   SetClassRoot(kJavaLangClassLoader, class_root);
665 
666   // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
667   // java.lang.StackTraceElement as a convenience.
668   SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;"));
669   mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
670   SetClassRoot(kJavaLangClassNotFoundException,
671                FindSystemClass(self, "Ljava/lang/ClassNotFoundException;"));
672   SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;"));
673   SetClassRoot(kJavaLangStackTraceElementArrayClass,
674                FindSystemClass(self, "[Ljava/lang/StackTraceElement;"));
675   mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
676 
677   // Ensure void type is resolved in the core's dex cache so java.lang.Void is correctly
678   // initialized.
679   {
680     const DexFile& dex_file = java_lang_Object->GetDexFile();
681     const DexFile::TypeId* void_type_id = dex_file.FindTypeId("V");
682     CHECK(void_type_id != nullptr);
683     uint16_t void_type_idx = dex_file.GetIndexForTypeId(*void_type_id);
684     // Now we resolve void type so the dex cache contains it. We use java.lang.Object class
685     // as referrer so the used dex cache is core's one.
686     mirror::Class* resolved_type = ResolveType(dex_file, void_type_idx, java_lang_Object.Get());
687     CHECK_EQ(resolved_type, GetClassRoot(kPrimitiveVoid));
688     self->AssertNoPendingException();
689   }
690 
691   // Create conflict tables that depend on the class linker.
692   runtime->FixupConflictTables();
693 
694   FinishInit(self);
695 
696   VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
697 
698   return true;
699 }
700 
FinishInit(Thread * self)701 void ClassLinker::FinishInit(Thread* self) {
702   VLOG(startup) << "ClassLinker::FinishInit entering";
703 
704   // Let the heap know some key offsets into java.lang.ref instances
705   // Note: we hard code the field indexes here rather than using FindInstanceField
706   // as the types of the field can't be resolved prior to the runtime being
707   // fully initialized
708   mirror::Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference);
709   mirror::Class* java_lang_ref_FinalizerReference =
710       FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
711 
712   ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
713   CHECK_STREQ(pendingNext->GetName(), "pendingNext");
714   CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
715 
716   ArtField* queue = java_lang_ref_Reference->GetInstanceField(1);
717   CHECK_STREQ(queue->GetName(), "queue");
718   CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;");
719 
720   ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2);
721   CHECK_STREQ(queueNext->GetName(), "queueNext");
722   CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
723 
724   ArtField* referent = java_lang_ref_Reference->GetInstanceField(3);
725   CHECK_STREQ(referent->GetName(), "referent");
726   CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;");
727 
728   ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
729   CHECK_STREQ(zombie->GetName(), "zombie");
730   CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;");
731 
732   // ensure all class_roots_ are initialized
733   for (size_t i = 0; i < kClassRootsMax; i++) {
734     ClassRoot class_root = static_cast<ClassRoot>(i);
735     mirror::Class* klass = GetClassRoot(class_root);
736     CHECK(klass != nullptr);
737     DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr);
738     // note SetClassRoot does additional validation.
739     // if possible add new checks there to catch errors early
740   }
741 
742   CHECK(!array_iftable_.IsNull());
743 
744   // disable the slow paths in FindClass and CreatePrimitiveClass now
745   // that Object, Class, and Object[] are setup
746   init_done_ = true;
747 
748   VLOG(startup) << "ClassLinker::FinishInit exiting";
749 }
750 
RunRootClinits()751 void ClassLinker::RunRootClinits() {
752   Thread* self = Thread::Current();
753   for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) {
754     mirror::Class* c = GetClassRoot(ClassRoot(i));
755     if (!c->IsArrayClass() && !c->IsPrimitive()) {
756       StackHandleScope<1> hs(self);
757       Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i))));
758       EnsureInitialized(self, h_class, true, true);
759       self->AssertNoPendingException();
760     }
761   }
762 }
763 
SanityCheckArtMethod(ArtMethod * m,mirror::Class * expected_class,const std::vector<gc::space::ImageSpace * > & spaces)764 static void SanityCheckArtMethod(ArtMethod* m,
765                                  mirror::Class* expected_class,
766                                  const std::vector<gc::space::ImageSpace*>& spaces)
767     SHARED_REQUIRES(Locks::mutator_lock_) {
768   if (m->IsRuntimeMethod()) {
769     mirror::Class* declaring_class = m->GetDeclaringClassUnchecked();
770     CHECK(declaring_class == nullptr) << declaring_class << " " << PrettyMethod(m);
771   } else if (m->IsCopied()) {
772     CHECK(m->GetDeclaringClass() != nullptr) << PrettyMethod(m);
773   } else if (expected_class != nullptr) {
774     CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << PrettyMethod(m);
775   }
776   if (!spaces.empty()) {
777     bool contains = false;
778     for (gc::space::ImageSpace* space : spaces) {
779       auto& header = space->GetImageHeader();
780       size_t offset = reinterpret_cast<uint8_t*>(m) - space->Begin();
781 
782       const ImageSection& methods = header.GetMethodsSection();
783       contains = contains || methods.Contains(offset);
784 
785       const ImageSection& runtime_methods = header.GetRuntimeMethodsSection();
786       contains = contains || runtime_methods.Contains(offset);
787     }
788     CHECK(contains) << m << " not found";
789   }
790 }
791 
SanityCheckArtMethodPointerArray(mirror::PointerArray * arr,mirror::Class * expected_class,size_t pointer_size,const std::vector<gc::space::ImageSpace * > & spaces)792 static void SanityCheckArtMethodPointerArray(mirror::PointerArray* arr,
793                                              mirror::Class* expected_class,
794                                              size_t pointer_size,
795                                              const std::vector<gc::space::ImageSpace*>& spaces)
796     SHARED_REQUIRES(Locks::mutator_lock_) {
797   CHECK(arr != nullptr);
798   for (int32_t j = 0; j < arr->GetLength(); ++j) {
799     auto* method = arr->GetElementPtrSize<ArtMethod*>(j, pointer_size);
800     // expected_class == null means we are a dex cache.
801     if (expected_class != nullptr) {
802       CHECK(method != nullptr);
803     }
804     if (method != nullptr) {
805       SanityCheckArtMethod(method, expected_class, spaces);
806     }
807   }
808 }
809 
SanityCheckArtMethodPointerArray(ArtMethod ** arr,size_t size,size_t pointer_size,const std::vector<gc::space::ImageSpace * > & spaces)810 static void SanityCheckArtMethodPointerArray(ArtMethod** arr,
811                                              size_t size,
812                                              size_t pointer_size,
813                                              const std::vector<gc::space::ImageSpace*>& spaces)
814     SHARED_REQUIRES(Locks::mutator_lock_) {
815   CHECK_EQ(arr != nullptr, size != 0u);
816   if (arr != nullptr) {
817     bool contains = false;
818     for (auto space : spaces) {
819       auto offset = reinterpret_cast<uint8_t*>(arr) - space->Begin();
820       if (space->GetImageHeader().GetImageSection(
821           ImageHeader::kSectionDexCacheArrays).Contains(offset)) {
822         contains = true;
823         break;
824       }
825     }
826     CHECK(contains);
827   }
828   for (size_t j = 0; j < size; ++j) {
829     ArtMethod* method = mirror::DexCache::GetElementPtrSize(arr, j, pointer_size);
830     // expected_class == null means we are a dex cache.
831     if (method != nullptr) {
832       SanityCheckArtMethod(method, nullptr, spaces);
833     }
834   }
835 }
836 
SanityCheckObjectsCallback(mirror::Object * obj,void * arg ATTRIBUTE_UNUSED)837 static void SanityCheckObjectsCallback(mirror::Object* obj, void* arg ATTRIBUTE_UNUSED)
838     SHARED_REQUIRES(Locks::mutator_lock_) {
839   DCHECK(obj != nullptr);
840   CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj;
841   CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj;
842   if (obj->IsClass()) {
843     auto klass = obj->AsClass();
844     for (ArtField& field : klass->GetIFields()) {
845       CHECK_EQ(field.GetDeclaringClass(), klass);
846     }
847     for (ArtField& field : klass->GetSFields()) {
848       CHECK_EQ(field.GetDeclaringClass(), klass);
849     }
850     auto* runtime = Runtime::Current();
851     auto image_spaces = runtime->GetHeap()->GetBootImageSpaces();
852     auto pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
853     for (auto& m : klass->GetMethods(pointer_size)) {
854       SanityCheckArtMethod(&m, klass, image_spaces);
855     }
856     auto* vtable = klass->GetVTable();
857     if (vtable != nullptr) {
858       SanityCheckArtMethodPointerArray(vtable, nullptr, pointer_size, image_spaces);
859     }
860     if (klass->ShouldHaveImt()) {
861       ImTable* imt = klass->GetImt(pointer_size);
862       for (size_t i = 0; i < ImTable::kSize; ++i) {
863         SanityCheckArtMethod(imt->Get(i, pointer_size), nullptr, image_spaces);
864       }
865     }
866     if (klass->ShouldHaveEmbeddedVTable()) {
867       for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) {
868         SanityCheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr, image_spaces);
869       }
870     }
871     auto* iftable = klass->GetIfTable();
872     if (iftable != nullptr) {
873       for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
874         if (iftable->GetMethodArrayCount(i) > 0) {
875           SanityCheckArtMethodPointerArray(
876               iftable->GetMethodArray(i), nullptr, pointer_size, image_spaces);
877         }
878       }
879     }
880   }
881 }
882 
883 // Set image methods' entry point to interpreter.
884 class SetInterpreterEntrypointArtMethodVisitor : public ArtMethodVisitor {
885  public:
SetInterpreterEntrypointArtMethodVisitor(size_t image_pointer_size)886   explicit SetInterpreterEntrypointArtMethodVisitor(size_t image_pointer_size)
887     : image_pointer_size_(image_pointer_size) {}
888 
Visit(ArtMethod * method)889   void Visit(ArtMethod* method) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
890     if (kIsDebugBuild && !method->IsRuntimeMethod()) {
891       CHECK(method->GetDeclaringClass() != nullptr);
892     }
893     if (!method->IsNative() && !method->IsRuntimeMethod() && !method->IsResolutionMethod()) {
894       method->SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(),
895                                                         image_pointer_size_);
896     }
897   }
898 
899  private:
900   const size_t image_pointer_size_;
901 
902   DISALLOW_COPY_AND_ASSIGN(SetInterpreterEntrypointArtMethodVisitor);
903 };
904 
905 struct TrampolineCheckData {
906   const void* quick_resolution_trampoline;
907   const void* quick_imt_conflict_trampoline;
908   const void* quick_generic_jni_trampoline;
909   const void* quick_to_interpreter_bridge_trampoline;
910   size_t pointer_size;
911   ArtMethod* m;
912   bool error;
913 };
914 
CheckTrampolines(mirror::Object * obj,void * arg)915 static void CheckTrampolines(mirror::Object* obj, void* arg) NO_THREAD_SAFETY_ANALYSIS {
916   if (obj->IsClass()) {
917     mirror::Class* klass = obj->AsClass();
918     TrampolineCheckData* d = reinterpret_cast<TrampolineCheckData*>(arg);
919     for (ArtMethod& m : klass->GetMethods(d->pointer_size)) {
920       const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(d->pointer_size);
921       if (entrypoint == d->quick_resolution_trampoline ||
922           entrypoint == d->quick_imt_conflict_trampoline ||
923           entrypoint == d->quick_generic_jni_trampoline ||
924           entrypoint == d->quick_to_interpreter_bridge_trampoline) {
925         d->m = &m;
926         d->error = true;
927         return;
928       }
929     }
930   }
931 }
932 
InitFromBootImage(std::string * error_msg)933 bool ClassLinker::InitFromBootImage(std::string* error_msg) {
934   VLOG(startup) << __FUNCTION__ << " entering";
935   CHECK(!init_done_);
936 
937   Runtime* const runtime = Runtime::Current();
938   Thread* const self = Thread::Current();
939   gc::Heap* const heap = runtime->GetHeap();
940   std::vector<gc::space::ImageSpace*> spaces = heap->GetBootImageSpaces();
941   CHECK(!spaces.empty());
942   image_pointer_size_ = spaces[0]->GetImageHeader().GetPointerSize();
943   if (!ValidPointerSize(image_pointer_size_)) {
944     *error_msg = StringPrintf("Invalid image pointer size: %zu", image_pointer_size_);
945     return false;
946   }
947   if (!runtime->IsAotCompiler()) {
948     // Only the Aot compiler supports having an image with a different pointer size than the
949     // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart
950     // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps.
951     if (image_pointer_size_ != sizeof(void*)) {
952       *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu",
953                                 image_pointer_size_,
954                                 sizeof(void*));
955       return false;
956     }
957   }
958   dex_cache_boot_image_class_lookup_required_ = true;
959   std::vector<const OatFile*> oat_files =
960       runtime->GetOatFileManager().RegisterImageOatFiles(spaces);
961   DCHECK(!oat_files.empty());
962   const OatHeader& default_oat_header = oat_files[0]->GetOatHeader();
963   CHECK_EQ(default_oat_header.GetImageFileLocationOatChecksum(), 0U);
964   CHECK_EQ(default_oat_header.GetImageFileLocationOatDataBegin(), 0U);
965   const char* image_file_location = oat_files[0]->GetOatHeader().
966       GetStoreValueByKey(OatHeader::kImageLocationKey);
967   CHECK(image_file_location == nullptr || *image_file_location == 0);
968   quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline();
969   quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline();
970   quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline();
971   quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge();
972   if (kIsDebugBuild) {
973     // Check that the other images use the same trampoline.
974     for (size_t i = 1; i < oat_files.size(); ++i) {
975       const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader();
976       const void* ith_quick_resolution_trampoline =
977           ith_oat_header.GetQuickResolutionTrampoline();
978       const void* ith_quick_imt_conflict_trampoline =
979           ith_oat_header.GetQuickImtConflictTrampoline();
980       const void* ith_quick_generic_jni_trampoline =
981           ith_oat_header.GetQuickGenericJniTrampoline();
982       const void* ith_quick_to_interpreter_bridge_trampoline =
983           ith_oat_header.GetQuickToInterpreterBridge();
984       if (ith_quick_resolution_trampoline != quick_resolution_trampoline_ ||
985           ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ ||
986           ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ ||
987           ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_) {
988         // Make sure that all methods in this image do not contain those trampolines as
989         // entrypoints. Otherwise the class-linker won't be able to work with a single set.
990         TrampolineCheckData data;
991         data.error = false;
992         data.pointer_size = GetImagePointerSize();
993         data.quick_resolution_trampoline = ith_quick_resolution_trampoline;
994         data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline;
995         data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline;
996         data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline;
997         ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
998         spaces[i]->GetLiveBitmap()->Walk(CheckTrampolines, &data);
999         if (data.error) {
1000           ArtMethod* m = data.m;
1001           LOG(ERROR) << "Found a broken ArtMethod: " << PrettyMethod(m);
1002           *error_msg = "Found an ArtMethod with a bad entrypoint";
1003           return false;
1004         }
1005       }
1006     }
1007   }
1008 
1009   class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
1010       down_cast<mirror::ObjectArray<mirror::Class>*>(
1011           spaces[0]->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)));
1012   mirror::Class::SetClassClass(class_roots_.Read()->Get(kJavaLangClass));
1013 
1014   // Special case of setting up the String class early so that we can test arbitrary objects
1015   // as being Strings or not
1016   mirror::String::SetClass(GetClassRoot(kJavaLangString));
1017 
1018   mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject);
1019   java_lang_Object->SetObjectSize(sizeof(mirror::Object));
1020   // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
1021   // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
1022   runtime->SetSentinel(heap->AllocNonMovableObject<true>(
1023       self, java_lang_Object, java_lang_Object->GetObjectSize(), VoidFunctor()));
1024 
1025   // reinit array_iftable_ from any array class instance, they should be ==
1026   array_iftable_ = GcRoot<mirror::IfTable>(GetClassRoot(kObjectArrayClass)->GetIfTable());
1027   DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable());
1028   // String class root was set above
1029   mirror::Field::SetClass(GetClassRoot(kJavaLangReflectField));
1030   mirror::Field::SetArrayClass(GetClassRoot(kJavaLangReflectFieldArrayClass));
1031   mirror::Constructor::SetClass(GetClassRoot(kJavaLangReflectConstructor));
1032   mirror::Constructor::SetArrayClass(GetClassRoot(kJavaLangReflectConstructorArrayClass));
1033   mirror::Method::SetClass(GetClassRoot(kJavaLangReflectMethod));
1034   mirror::Method::SetArrayClass(GetClassRoot(kJavaLangReflectMethodArrayClass));
1035   mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference));
1036   mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
1037   mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
1038   mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
1039   mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
1040   mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
1041   mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
1042   mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
1043   mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
1044   mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
1045   mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
1046 
1047   for (gc::space::ImageSpace* image_space : spaces) {
1048     // Boot class loader, use a null handle.
1049     std::vector<std::unique_ptr<const DexFile>> dex_files;
1050     if (!AddImageSpace(image_space,
1051                        ScopedNullHandle<mirror::ClassLoader>(),
1052                        /*dex_elements*/nullptr,
1053                        /*dex_location*/nullptr,
1054                        /*out*/&dex_files,
1055                        error_msg)) {
1056       return false;
1057     }
1058     // Append opened dex files at the end.
1059     boot_dex_files_.insert(boot_dex_files_.end(),
1060                            std::make_move_iterator(dex_files.begin()),
1061                            std::make_move_iterator(dex_files.end()));
1062   }
1063   FinishInit(self);
1064 
1065   VLOG(startup) << __FUNCTION__ << " exiting";
1066   return true;
1067 }
1068 
IsBootClassLoader(ScopedObjectAccessAlreadyRunnable & soa,mirror::ClassLoader * class_loader)1069 bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
1070                                     mirror::ClassLoader* class_loader) {
1071   return class_loader == nullptr ||
1072       class_loader->GetClass() ==
1073           soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader);
1074 }
1075 
GetDexPathListElementName(ScopedObjectAccessUnchecked & soa,mirror::Object * element)1076 static mirror::String* GetDexPathListElementName(ScopedObjectAccessUnchecked& soa,
1077                                                  mirror::Object* element)
1078     SHARED_REQUIRES(Locks::mutator_lock_) {
1079   ArtField* const dex_file_field =
1080       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
1081   ArtField* const dex_file_name_field =
1082       soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_fileName);
1083   DCHECK(dex_file_field != nullptr);
1084   DCHECK(dex_file_name_field != nullptr);
1085   DCHECK(element != nullptr);
1086   CHECK_EQ(dex_file_field->GetDeclaringClass(), element->GetClass()) << PrettyTypeOf(element);
1087   mirror::Object* dex_file = dex_file_field->GetObject(element);
1088   if (dex_file == nullptr) {
1089     return nullptr;
1090   }
1091   mirror::Object* const name_object = dex_file_name_field->GetObject(dex_file);
1092   if (name_object != nullptr) {
1093     return name_object->AsString();
1094   }
1095   return nullptr;
1096 }
1097 
FlattenPathClassLoader(mirror::ClassLoader * class_loader,std::list<mirror::String * > * out_dex_file_names,std::string * error_msg)1098 static bool FlattenPathClassLoader(mirror::ClassLoader* class_loader,
1099                                    std::list<mirror::String*>* out_dex_file_names,
1100                                    std::string* error_msg)
1101     SHARED_REQUIRES(Locks::mutator_lock_) {
1102   DCHECK(out_dex_file_names != nullptr);
1103   DCHECK(error_msg != nullptr);
1104   ScopedObjectAccessUnchecked soa(Thread::Current());
1105   ArtField* const dex_path_list_field =
1106       soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList);
1107   ArtField* const dex_elements_field =
1108       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
1109   CHECK(dex_path_list_field != nullptr);
1110   CHECK(dex_elements_field != nullptr);
1111   while (!ClassLinker::IsBootClassLoader(soa, class_loader)) {
1112     if (class_loader->GetClass() !=
1113         soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)) {
1114       *error_msg = StringPrintf("Unknown class loader type %s", PrettyTypeOf(class_loader).c_str());
1115       // Unsupported class loader.
1116       return false;
1117     }
1118     mirror::Object* dex_path_list = dex_path_list_field->GetObject(class_loader);
1119     if (dex_path_list != nullptr) {
1120       // DexPathList has an array dexElements of Elements[] which each contain a dex file.
1121       mirror::Object* dex_elements_obj = dex_elements_field->GetObject(dex_path_list);
1122       // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
1123       // at the mCookie which is a DexFile vector.
1124       if (dex_elements_obj != nullptr) {
1125         mirror::ObjectArray<mirror::Object>* dex_elements =
1126             dex_elements_obj->AsObjectArray<mirror::Object>();
1127         // Reverse order since we insert the parent at the front.
1128         for (int32_t i = dex_elements->GetLength() - 1; i >= 0; --i) {
1129           mirror::Object* const element = dex_elements->GetWithoutChecks(i);
1130           if (element == nullptr) {
1131             *error_msg = StringPrintf("Null dex element at index %d", i);
1132             return false;
1133           }
1134           mirror::String* const name = GetDexPathListElementName(soa, element);
1135           if (name == nullptr) {
1136             *error_msg = StringPrintf("Null name for dex element at index %d", i);
1137             return false;
1138           }
1139           out_dex_file_names->push_front(name);
1140         }
1141       }
1142     }
1143     class_loader = class_loader->GetParent();
1144   }
1145   return true;
1146 }
1147 
1148 class FixupArtMethodArrayVisitor : public ArtMethodVisitor {
1149  public:
FixupArtMethodArrayVisitor(const ImageHeader & header)1150   explicit FixupArtMethodArrayVisitor(const ImageHeader& header) : header_(header) {}
1151 
Visit(ArtMethod * method)1152   virtual void Visit(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) {
1153     GcRoot<mirror::Class>* resolved_types = method->GetDexCacheResolvedTypes(sizeof(void*));
1154     const bool is_copied = method->IsCopied();
1155     if (resolved_types != nullptr) {
1156       bool in_image_space = false;
1157       if (kIsDebugBuild || is_copied) {
1158         in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1159             reinterpret_cast<const uint8_t*>(resolved_types) - header_.GetImageBegin());
1160       }
1161       // Must be in image space for non-miranda method.
1162       DCHECK(is_copied || in_image_space)
1163           << resolved_types << " is not in image starting at "
1164           << reinterpret_cast<void*>(header_.GetImageBegin());
1165       if (!is_copied || in_image_space) {
1166         // Go through the array so that we don't need to do a slow map lookup.
1167         method->SetDexCacheResolvedTypes(*reinterpret_cast<GcRoot<mirror::Class>**>(resolved_types),
1168                                          sizeof(void*));
1169       }
1170     }
1171     ArtMethod** resolved_methods = method->GetDexCacheResolvedMethods(sizeof(void*));
1172     if (resolved_methods != nullptr) {
1173       bool in_image_space = false;
1174       if (kIsDebugBuild || is_copied) {
1175         in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1176               reinterpret_cast<const uint8_t*>(resolved_methods) - header_.GetImageBegin());
1177       }
1178       // Must be in image space for non-miranda method.
1179       DCHECK(is_copied || in_image_space)
1180           << resolved_methods << " is not in image starting at "
1181           << reinterpret_cast<void*>(header_.GetImageBegin());
1182       if (!is_copied || in_image_space) {
1183         // Go through the array so that we don't need to do a slow map lookup.
1184         method->SetDexCacheResolvedMethods(*reinterpret_cast<ArtMethod***>(resolved_methods),
1185                                            sizeof(void*));
1186       }
1187     }
1188   }
1189 
1190  private:
1191   const ImageHeader& header_;
1192 };
1193 
1194 class VerifyClassInTableArtMethodVisitor : public ArtMethodVisitor {
1195  public:
VerifyClassInTableArtMethodVisitor(ClassTable * table)1196   explicit VerifyClassInTableArtMethodVisitor(ClassTable* table) : table_(table) {}
1197 
Visit(ArtMethod * method)1198   virtual void Visit(ArtMethod* method)
1199       SHARED_REQUIRES(Locks::mutator_lock_, Locks::classlinker_classes_lock_) {
1200     mirror::Class* klass = method->GetDeclaringClass();
1201     if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
1202       CHECK_EQ(table_->LookupByDescriptor(klass), klass) << PrettyClass(klass);
1203     }
1204   }
1205 
1206  private:
1207   ClassTable* const table_;
1208 };
1209 
1210 class VerifyDeclaringClassVisitor : public ArtMethodVisitor {
1211  public:
SHARED_REQUIRES(Locks::mutator_lock_,Locks::heap_bitmap_lock_)1212   VerifyDeclaringClassVisitor() SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1213       : live_bitmap_(Runtime::Current()->GetHeap()->GetLiveBitmap()) {}
1214 
Visit(ArtMethod * method)1215   virtual void Visit(ArtMethod* method)
1216       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1217     mirror::Class* klass = method->GetDeclaringClassUnchecked();
1218     if (klass != nullptr) {
1219       CHECK(live_bitmap_->Test(klass)) << "Image method has unmarked declaring class";
1220     }
1221   }
1222 
1223  private:
1224   gc::accounting::HeapBitmap* const live_bitmap_;
1225 };
1226 
UpdateAppImageClassLoadersAndDexCaches(gc::space::ImageSpace * space,Handle<mirror::ClassLoader> class_loader,Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches,ClassTable::ClassSet * new_class_set,bool * out_forward_dex_cache_array,std::string * out_error_msg)1227 bool ClassLinker::UpdateAppImageClassLoadersAndDexCaches(
1228     gc::space::ImageSpace* space,
1229     Handle<mirror::ClassLoader> class_loader,
1230     Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches,
1231     ClassTable::ClassSet* new_class_set,
1232     bool* out_forward_dex_cache_array,
1233     std::string* out_error_msg) {
1234   DCHECK(out_forward_dex_cache_array != nullptr);
1235   DCHECK(out_error_msg != nullptr);
1236   Thread* const self = Thread::Current();
1237   gc::Heap* const heap = Runtime::Current()->GetHeap();
1238   const ImageHeader& header = space->GetImageHeader();
1239   {
1240     // Add image classes into the class table for the class loader, and fixup the dex caches and
1241     // class loader fields.
1242     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1243     ClassTable* table = InsertClassTableForClassLoader(class_loader.Get());
1244     // Dex cache array fixup is all or nothing, we must reject app images that have mixed since we
1245     // rely on clobering the dex cache arrays in the image to forward to bss.
1246     size_t num_dex_caches_with_bss_arrays = 0;
1247     const size_t num_dex_caches = dex_caches->GetLength();
1248     for (size_t i = 0; i < num_dex_caches; i++) {
1249       mirror::DexCache* const dex_cache = dex_caches->Get(i);
1250       const DexFile* const dex_file = dex_cache->GetDexFile();
1251       const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1252       if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1253         ++num_dex_caches_with_bss_arrays;
1254       }
1255     }
1256     *out_forward_dex_cache_array = num_dex_caches_with_bss_arrays != 0;
1257     if (*out_forward_dex_cache_array) {
1258       if (num_dex_caches_with_bss_arrays != num_dex_caches) {
1259         // Reject application image since we cannot forward only some of the dex cache arrays.
1260         // TODO: We could get around this by having a dedicated forwarding slot. It should be an
1261         // uncommon case.
1262         *out_error_msg = StringPrintf("Dex caches in bss does not match total: %zu vs %zu",
1263                                       num_dex_caches_with_bss_arrays,
1264                                       num_dex_caches);
1265         return false;
1266       }
1267     }
1268     // Only add the classes to the class loader after the points where we can return false.
1269     for (size_t i = 0; i < num_dex_caches; i++) {
1270       mirror::DexCache* const dex_cache = dex_caches->Get(i);
1271       const DexFile* const dex_file = dex_cache->GetDexFile();
1272       const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1273       if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1274       // If the oat file expects the dex cache arrays to be in the BSS, then allocate there and
1275         // copy over the arrays.
1276         DCHECK(dex_file != nullptr);
1277         const size_t num_strings = dex_file->NumStringIds();
1278         const size_t num_types = dex_file->NumTypeIds();
1279         const size_t num_methods = dex_file->NumMethodIds();
1280         const size_t num_fields = dex_file->NumFieldIds();
1281         CHECK_EQ(num_strings, dex_cache->NumStrings());
1282         CHECK_EQ(num_types, dex_cache->NumResolvedTypes());
1283         CHECK_EQ(num_methods, dex_cache->NumResolvedMethods());
1284         CHECK_EQ(num_fields, dex_cache->NumResolvedFields());
1285         DexCacheArraysLayout layout(image_pointer_size_, dex_file);
1286         uint8_t* const raw_arrays = oat_dex_file->GetDexCacheArrays();
1287         // The space is not yet visible to the GC, we can avoid the read barriers and use
1288         // std::copy_n.
1289         if (num_strings != 0u) {
1290           GcRoot<mirror::String>* const image_resolved_strings = dex_cache->GetStrings();
1291           GcRoot<mirror::String>* const strings =
1292               reinterpret_cast<GcRoot<mirror::String>*>(raw_arrays + layout.StringsOffset());
1293           for (size_t j = 0; kIsDebugBuild && j < num_strings; ++j) {
1294             DCHECK(strings[j].IsNull());
1295           }
1296           std::copy_n(image_resolved_strings, num_strings, strings);
1297           dex_cache->SetStrings(strings);
1298         }
1299         if (num_types != 0u) {
1300           GcRoot<mirror::Class>* const image_resolved_types = dex_cache->GetResolvedTypes();
1301           GcRoot<mirror::Class>* const types =
1302               reinterpret_cast<GcRoot<mirror::Class>*>(raw_arrays + layout.TypesOffset());
1303           for (size_t j = 0; kIsDebugBuild && j < num_types; ++j) {
1304             DCHECK(types[j].IsNull());
1305           }
1306           std::copy_n(image_resolved_types, num_types, types);
1307           // Store a pointer to the new location for fast ArtMethod patching without requiring map.
1308           // This leaves random garbage at the start of the dex cache array, but nobody should ever
1309           // read from it again.
1310           *reinterpret_cast<GcRoot<mirror::Class>**>(image_resolved_types) = types;
1311           dex_cache->SetResolvedTypes(types);
1312         }
1313         if (num_methods != 0u) {
1314           ArtMethod** const methods = reinterpret_cast<ArtMethod**>(
1315               raw_arrays + layout.MethodsOffset());
1316           ArtMethod** const image_resolved_methods = dex_cache->GetResolvedMethods();
1317           for (size_t j = 0; kIsDebugBuild && j < num_methods; ++j) {
1318             DCHECK(methods[j] == nullptr);
1319           }
1320           std::copy_n(image_resolved_methods, num_methods, methods);
1321           // Store a pointer to the new location for fast ArtMethod patching without requiring map.
1322           *reinterpret_cast<ArtMethod***>(image_resolved_methods) = methods;
1323           dex_cache->SetResolvedMethods(methods);
1324         }
1325         if (num_fields != 0u) {
1326           ArtField** const fields =
1327               reinterpret_cast<ArtField**>(raw_arrays + layout.FieldsOffset());
1328           for (size_t j = 0; kIsDebugBuild && j < num_fields; ++j) {
1329             DCHECK(fields[j] == nullptr);
1330           }
1331           std::copy_n(dex_cache->GetResolvedFields(), num_fields, fields);
1332           dex_cache->SetResolvedFields(fields);
1333         }
1334       }
1335       {
1336         WriterMutexLock mu2(self, dex_lock_);
1337         // Make sure to do this after we update the arrays since we store the resolved types array
1338         // in DexCacheData in RegisterDexFileLocked. We need the array pointer to be the one in the
1339         // BSS.
1340         mirror::DexCache* existing_dex_cache = FindDexCacheLocked(self,
1341                                                                   *dex_file,
1342                                                                   /*allow_failure*/true);
1343         CHECK(existing_dex_cache == nullptr);
1344         StackHandleScope<1> hs3(self);
1345         RegisterDexFileLocked(*dex_file, hs3.NewHandle(dex_cache));
1346       }
1347       GcRoot<mirror::Class>* const types = dex_cache->GetResolvedTypes();
1348       const size_t num_types = dex_cache->NumResolvedTypes();
1349       if (new_class_set == nullptr) {
1350         for (int32_t j = 0; j < static_cast<int32_t>(num_types); j++) {
1351           // The image space is not yet added to the heap, avoid read barriers.
1352           mirror::Class* klass = types[j].Read();
1353           // There may also be boot image classes,
1354           if (space->HasAddress(klass)) {
1355             DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1356             // Update the class loader from the one in the image class loader to the one that loaded
1357             // the app image.
1358             klass->SetClassLoader(class_loader.Get());
1359             // The resolved type could be from another dex cache, go through the dex cache just in
1360             // case. May be null for array classes.
1361             if (klass->GetDexCacheStrings() != nullptr) {
1362               DCHECK(!klass->IsArrayClass());
1363               klass->SetDexCacheStrings(klass->GetDexCache()->GetStrings());
1364             }
1365             // If there are multiple dex caches, there may be the same class multiple times
1366             // in different dex caches. Check for this since inserting will add duplicates
1367             // otherwise.
1368             if (num_dex_caches > 1) {
1369               mirror::Class* existing = table->LookupByDescriptor(klass);
1370               if (existing != nullptr) {
1371                 DCHECK_EQ(existing, klass) << PrettyClass(klass);
1372               } else {
1373                 table->Insert(klass);
1374               }
1375             } else {
1376               table->Insert(klass);
1377             }
1378             // Double checked VLOG to avoid overhead.
1379             if (VLOG_IS_ON(image)) {
1380               VLOG(image) << PrettyClass(klass) << " " << klass->GetStatus();
1381               if (!klass->IsArrayClass()) {
1382                 VLOG(image) << "From " << klass->GetDexCache()->GetDexFile()->GetBaseLocation();
1383               }
1384               VLOG(image) << "Direct methods";
1385               for (ArtMethod& m : klass->GetDirectMethods(sizeof(void*))) {
1386                 VLOG(image) << PrettyMethod(&m);
1387               }
1388               VLOG(image) << "Virtual methods";
1389               for (ArtMethod& m : klass->GetVirtualMethods(sizeof(void*))) {
1390                 VLOG(image) << PrettyMethod(&m);
1391               }
1392             }
1393           } else {
1394             DCHECK(klass == nullptr || heap->ObjectIsInBootImageSpace(klass))
1395                 << klass << " " << PrettyClass(klass);
1396           }
1397         }
1398       }
1399       if (kIsDebugBuild) {
1400         for (int32_t j = 0; j < static_cast<int32_t>(num_types); j++) {
1401           // The image space is not yet added to the heap, avoid read barriers.
1402           mirror::Class* klass = types[j].Read();
1403           if (space->HasAddress(klass)) {
1404             DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1405             if (kIsDebugBuild) {
1406               if (new_class_set != nullptr) {
1407                 auto it = new_class_set->Find(GcRoot<mirror::Class>(klass));
1408                 DCHECK(it != new_class_set->end());
1409                 DCHECK_EQ(it->Read(), klass);
1410                 mirror::Class* super_class = klass->GetSuperClass();
1411                 if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) {
1412                   auto it2 = new_class_set->Find(GcRoot<mirror::Class>(super_class));
1413                   DCHECK(it2 != new_class_set->end());
1414                   DCHECK_EQ(it2->Read(), super_class);
1415                 }
1416               } else {
1417                 DCHECK_EQ(table->LookupByDescriptor(klass), klass);
1418                 mirror::Class* super_class = klass->GetSuperClass();
1419                 if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) {
1420                   CHECK_EQ(table->LookupByDescriptor(super_class), super_class);
1421                 }
1422               }
1423             }
1424             if (kIsDebugBuild) {
1425               for (ArtMethod& m : klass->GetDirectMethods(sizeof(void*))) {
1426                 const void* code = m.GetEntryPointFromQuickCompiledCode();
1427                 const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1428                 if (!IsQuickResolutionStub(code) &&
1429                     !IsQuickGenericJniStub(code) &&
1430                     !IsQuickToInterpreterBridge(code) &&
1431                     !m.IsNative()) {
1432                   DCHECK_EQ(code, oat_code) << PrettyMethod(&m);
1433                 }
1434               }
1435               for (ArtMethod& m : klass->GetVirtualMethods(sizeof(void*))) {
1436                 const void* code = m.GetEntryPointFromQuickCompiledCode();
1437                 const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1438                 if (!IsQuickResolutionStub(code) &&
1439                     !IsQuickGenericJniStub(code) &&
1440                     !IsQuickToInterpreterBridge(code) &&
1441                     !m.IsNative()) {
1442                   DCHECK_EQ(code, oat_code) << PrettyMethod(&m);
1443                 }
1444               }
1445             }
1446           }
1447         }
1448       }
1449     }
1450   }
1451   if (*out_forward_dex_cache_array) {
1452     ScopedTrace timing("Fixup ArtMethod dex cache arrays");
1453     FixupArtMethodArrayVisitor visitor(header);
1454     header.VisitPackedArtMethods(&visitor, space->Begin(), sizeof(void*));
1455     Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get());
1456   }
1457   if (kVerifyArtMethodDeclaringClasses) {
1458     ScopedTrace timing("Verify declaring classes");
1459     ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_);
1460     VerifyDeclaringClassVisitor visitor;
1461     header.VisitPackedArtMethods(&visitor, space->Begin(), sizeof(void*));
1462   }
1463   return true;
1464 }
1465 
1466 // Update the class loader and resolved string dex cache array of classes. Should only be used on
1467 // classes in the image space.
1468 class UpdateClassLoaderAndResolvedStringsVisitor {
1469  public:
UpdateClassLoaderAndResolvedStringsVisitor(gc::space::ImageSpace * space,mirror::ClassLoader * class_loader,bool forward_strings)1470   UpdateClassLoaderAndResolvedStringsVisitor(gc::space::ImageSpace* space,
1471                                              mirror::ClassLoader* class_loader,
1472                                              bool forward_strings)
1473       : space_(space),
1474         class_loader_(class_loader),
1475         forward_strings_(forward_strings) {}
1476 
operator ()(mirror::Class * klass) const1477   bool operator()(mirror::Class* klass) const SHARED_REQUIRES(Locks::mutator_lock_) {
1478     if (forward_strings_) {
1479       GcRoot<mirror::String>* strings = klass->GetDexCacheStrings();
1480       if (strings != nullptr) {
1481         DCHECK(
1482             space_->GetImageHeader().GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1483                 reinterpret_cast<uint8_t*>(strings) - space_->Begin()))
1484             << "String dex cache array for " << PrettyClass(klass) << " is not in app image";
1485         // Dex caches have already been updated, so take the strings pointer from there.
1486         GcRoot<mirror::String>* new_strings = klass->GetDexCache()->GetStrings();
1487         DCHECK_NE(strings, new_strings);
1488         klass->SetDexCacheStrings(new_strings);
1489       }
1490     }
1491     // Finally, update class loader.
1492     klass->SetClassLoader(class_loader_);
1493     return true;
1494   }
1495 
1496   gc::space::ImageSpace* const space_;
1497   mirror::ClassLoader* const class_loader_;
1498   const bool forward_strings_;
1499 };
1500 
OpenOatDexFile(const OatFile * oat_file,const char * location,std::string * error_msg)1501 static std::unique_ptr<const DexFile> OpenOatDexFile(const OatFile* oat_file,
1502                                                      const char* location,
1503                                                      std::string* error_msg)
1504     SHARED_REQUIRES(Locks::mutator_lock_) {
1505   DCHECK(error_msg != nullptr);
1506   std::unique_ptr<const DexFile> dex_file;
1507   const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr);
1508   if (oat_dex_file == nullptr) {
1509     *error_msg = StringPrintf("Failed finding oat dex file for %s %s",
1510                               oat_file->GetLocation().c_str(),
1511                               location);
1512     return std::unique_ptr<const DexFile>();
1513   }
1514   std::string inner_error_msg;
1515   dex_file = oat_dex_file->OpenDexFile(&inner_error_msg);
1516   if (dex_file == nullptr) {
1517     *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'",
1518                               location,
1519                               oat_file->GetLocation().c_str(),
1520                               inner_error_msg.c_str());
1521     return std::unique_ptr<const DexFile>();
1522   }
1523 
1524   if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) {
1525     *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x",
1526                               location,
1527                               dex_file->GetLocationChecksum(),
1528                               oat_dex_file->GetDexFileLocationChecksum());
1529     return std::unique_ptr<const DexFile>();
1530   }
1531   return dex_file;
1532 }
1533 
OpenImageDexFiles(gc::space::ImageSpace * space,std::vector<std::unique_ptr<const DexFile>> * out_dex_files,std::string * error_msg)1534 bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space,
1535                                     std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1536                                     std::string* error_msg) {
1537   ScopedAssertNoThreadSuspension nts(Thread::Current(), __FUNCTION__);
1538   const ImageHeader& header = space->GetImageHeader();
1539   mirror::Object* dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1540   DCHECK(dex_caches_object != nullptr);
1541   mirror::ObjectArray<mirror::DexCache>* dex_caches =
1542       dex_caches_object->AsObjectArray<mirror::DexCache>();
1543   const OatFile* oat_file = space->GetOatFile();
1544   for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1545     mirror::DexCache* dex_cache = dex_caches->Get(i);
1546     std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
1547     std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1548                                                              dex_file_location.c_str(),
1549                                                              error_msg);
1550     if (dex_file == nullptr) {
1551       return false;
1552     }
1553     dex_cache->SetDexFile(dex_file.get());
1554     out_dex_files->push_back(std::move(dex_file));
1555   }
1556   return true;
1557 }
1558 
AddImageSpace(gc::space::ImageSpace * space,Handle<mirror::ClassLoader> class_loader,jobjectArray dex_elements,const char * dex_location,std::vector<std::unique_ptr<const DexFile>> * out_dex_files,std::string * error_msg)1559 bool ClassLinker::AddImageSpace(
1560     gc::space::ImageSpace* space,
1561     Handle<mirror::ClassLoader> class_loader,
1562     jobjectArray dex_elements,
1563     const char* dex_location,
1564     std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1565     std::string* error_msg) {
1566   DCHECK(out_dex_files != nullptr);
1567   DCHECK(error_msg != nullptr);
1568   const uint64_t start_time = NanoTime();
1569   const bool app_image = class_loader.Get() != nullptr;
1570   const ImageHeader& header = space->GetImageHeader();
1571   mirror::Object* dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1572   DCHECK(dex_caches_object != nullptr);
1573   Runtime* const runtime = Runtime::Current();
1574   gc::Heap* const heap = runtime->GetHeap();
1575   Thread* const self = Thread::Current();
1576   StackHandleScope<2> hs(self);
1577   Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches(
1578       hs.NewHandle(dex_caches_object->AsObjectArray<mirror::DexCache>()));
1579   Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle(
1580       header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray<mirror::Class>()));
1581   const OatFile* oat_file = space->GetOatFile();
1582   std::unordered_set<mirror::ClassLoader*> image_class_loaders;
1583   // Check that the image is what we are expecting.
1584   if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) {
1585     *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu",
1586                               static_cast<size_t>(space->GetImageHeader().GetPointerSize()),
1587                               image_pointer_size_);
1588     return false;
1589   }
1590   DCHECK(class_roots.Get() != nullptr);
1591   if (class_roots->GetLength() != static_cast<int32_t>(kClassRootsMax)) {
1592     *error_msg = StringPrintf("Expected %d class roots but got %d",
1593                               class_roots->GetLength(),
1594                               static_cast<int32_t>(kClassRootsMax));
1595     return false;
1596   }
1597   // Check against existing class roots to make sure they match the ones in the boot image.
1598   for (size_t i = 0; i < kClassRootsMax; i++) {
1599     if (class_roots->Get(i) != GetClassRoot(static_cast<ClassRoot>(i))) {
1600       *error_msg = "App image class roots must have pointer equality with runtime ones.";
1601       return false;
1602     }
1603   }
1604   if (oat_file->GetOatHeader().GetDexFileCount() !=
1605       static_cast<uint32_t>(dex_caches->GetLength())) {
1606     *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from "
1607                  "image";
1608     return false;
1609   }
1610 
1611   StackHandleScope<1> hs2(self);
1612   MutableHandle<mirror::DexCache> h_dex_cache(hs2.NewHandle<mirror::DexCache>(nullptr));
1613   for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1614     h_dex_cache.Assign(dex_caches->Get(i));
1615     std::string dex_file_location(h_dex_cache->GetLocation()->ToModifiedUtf8());
1616     // TODO: Only store qualified paths.
1617     // If non qualified, qualify it.
1618     if (dex_file_location.find('/') == std::string::npos) {
1619       std::string dex_location_path = dex_location;
1620       const size_t pos = dex_location_path.find_last_of('/');
1621       CHECK_NE(pos, std::string::npos);
1622       dex_location_path = dex_location_path.substr(0, pos + 1);  // Keep trailing '/'
1623       dex_file_location = dex_location_path + dex_file_location;
1624     }
1625     std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1626                                                              dex_file_location.c_str(),
1627                                                              error_msg);
1628     if (dex_file == nullptr) {
1629       return false;
1630     }
1631 
1632     if (app_image) {
1633       // The current dex file field is bogus, overwrite it so that we can get the dex file in the
1634       // loop below.
1635       h_dex_cache->SetDexFile(dex_file.get());
1636       // Check that each class loader resolved the same way.
1637       // TODO: Store image class loaders as image roots.
1638       GcRoot<mirror::Class>* const types = h_dex_cache->GetResolvedTypes();
1639       for (int32_t j = 0, num_types = h_dex_cache->NumResolvedTypes(); j < num_types; j++) {
1640         mirror::Class* klass = types[j].Read();
1641         if (klass != nullptr) {
1642           DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1643           mirror::ClassLoader* image_class_loader = klass->GetClassLoader();
1644           image_class_loaders.insert(image_class_loader);
1645         }
1646       }
1647     } else {
1648       if (kSanityCheckObjects) {
1649         SanityCheckArtMethodPointerArray(h_dex_cache->GetResolvedMethods(),
1650                                          h_dex_cache->NumResolvedMethods(),
1651                                          image_pointer_size_,
1652                                          heap->GetBootImageSpaces());
1653       }
1654       // Register dex files, keep track of existing ones that are conflicts.
1655       AppendToBootClassPath(*dex_file.get(), h_dex_cache);
1656     }
1657     out_dex_files->push_back(std::move(dex_file));
1658   }
1659 
1660   if (app_image) {
1661     ScopedObjectAccessUnchecked soa(Thread::Current());
1662     // Check that the class loader resolves the same way as the ones in the image.
1663     // Image class loader [A][B][C][image dex files]
1664     // Class loader = [???][dex_elements][image dex files]
1665     // Need to ensure that [???][dex_elements] == [A][B][C].
1666     // For each class loader, PathClassLoader, the laoder checks the parent first. Also the logic
1667     // for PathClassLoader does this by looping through the array of dex files. To ensure they
1668     // resolve the same way, simply flatten the hierarchy in the way the resolution order would be,
1669     // and check that the dex file names are the same.
1670     for (mirror::ClassLoader* image_class_loader : image_class_loaders) {
1671       if (IsBootClassLoader(soa, image_class_loader)) {
1672         // The dex cache can reference types from the boot class loader.
1673         continue;
1674       }
1675       std::list<mirror::String*> image_dex_file_names;
1676       std::string temp_error_msg;
1677       if (!FlattenPathClassLoader(image_class_loader, &image_dex_file_names, &temp_error_msg)) {
1678         *error_msg = StringPrintf("Failed to flatten image class loader hierarchy '%s'",
1679                                   temp_error_msg.c_str());
1680         return false;
1681       }
1682       std::list<mirror::String*> loader_dex_file_names;
1683       if (!FlattenPathClassLoader(class_loader.Get(), &loader_dex_file_names, &temp_error_msg)) {
1684         *error_msg = StringPrintf("Failed to flatten class loader hierarchy '%s'",
1685                                   temp_error_msg.c_str());
1686         return false;
1687       }
1688       // Add the temporary dex path list elements at the end.
1689       auto* elements = soa.Decode<mirror::ObjectArray<mirror::Object>*>(dex_elements);
1690       for (size_t i = 0, num_elems = elements->GetLength(); i < num_elems; ++i) {
1691         mirror::Object* element = elements->GetWithoutChecks(i);
1692         if (element != nullptr) {
1693           // If we are somewhere in the middle of the array, there may be nulls at the end.
1694           loader_dex_file_names.push_back(GetDexPathListElementName(soa, element));
1695         }
1696       }
1697       // Ignore the number of image dex files since we are adding those to the class loader anyways.
1698       CHECK_GE(static_cast<size_t>(image_dex_file_names.size()),
1699                static_cast<size_t>(dex_caches->GetLength()));
1700       size_t image_count = image_dex_file_names.size() - dex_caches->GetLength();
1701       // Check that the dex file names match.
1702       bool equal = image_count == loader_dex_file_names.size();
1703       if (equal) {
1704         auto it1 = image_dex_file_names.begin();
1705         auto it2 = loader_dex_file_names.begin();
1706         for (size_t i = 0; equal && i < image_count; ++i, ++it1, ++it2) {
1707           equal = equal && (*it1)->Equals(*it2);
1708         }
1709       }
1710       if (!equal) {
1711         VLOG(image) << "Image dex files " << image_dex_file_names.size();
1712         for (mirror::String* name : image_dex_file_names) {
1713           VLOG(image) << name->ToModifiedUtf8();
1714         }
1715         VLOG(image) << "Loader dex files " << loader_dex_file_names.size();
1716         for (mirror::String* name : loader_dex_file_names) {
1717           VLOG(image) << name->ToModifiedUtf8();
1718         }
1719         *error_msg = "Rejecting application image due to class loader mismatch";
1720         // Ignore class loader mismatch for now since these would just use possibly incorrect
1721         // oat code anyways. The structural class check should be done in the parent.
1722       }
1723     }
1724   }
1725 
1726   if (kSanityCheckObjects) {
1727     for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1728       auto* dex_cache = dex_caches->Get(i);
1729       for (size_t j = 0; j < dex_cache->NumResolvedFields(); ++j) {
1730         auto* field = dex_cache->GetResolvedField(j, image_pointer_size_);
1731         if (field != nullptr) {
1732           CHECK(field->GetDeclaringClass()->GetClass() != nullptr);
1733         }
1734       }
1735     }
1736     if (!app_image) {
1737       heap->VisitObjects(SanityCheckObjectsCallback, nullptr);
1738     }
1739   }
1740 
1741   // Set entry point to interpreter if in InterpretOnly mode.
1742   if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) {
1743     SetInterpreterEntrypointArtMethodVisitor visitor(image_pointer_size_);
1744     header.VisitPackedArtMethods(&visitor, space->Begin(), image_pointer_size_);
1745   }
1746 
1747   ClassTable* class_table = nullptr;
1748   {
1749     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1750     class_table = InsertClassTableForClassLoader(class_loader.Get());
1751   }
1752   // If we have a class table section, read it and use it for verification in
1753   // UpdateAppImageClassLoadersAndDexCaches.
1754   ClassTable::ClassSet temp_set;
1755   const ImageSection& class_table_section = header.GetImageSection(ImageHeader::kSectionClassTable);
1756   const bool added_class_table = class_table_section.Size() > 0u;
1757   if (added_class_table) {
1758     const uint64_t start_time2 = NanoTime();
1759     size_t read_count = 0;
1760     temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(),
1761                                     /*make copy*/false,
1762                                     &read_count);
1763     if (!app_image) {
1764       dex_cache_boot_image_class_lookup_required_ = false;
1765     }
1766     VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2);
1767   }
1768   if (app_image) {
1769     bool forward_dex_cache_arrays = false;
1770     if (!UpdateAppImageClassLoadersAndDexCaches(space,
1771                                                 class_loader,
1772                                                 dex_caches,
1773                                                 added_class_table ? &temp_set : nullptr,
1774                                                 /*out*/&forward_dex_cache_arrays,
1775                                                 /*out*/error_msg)) {
1776       return false;
1777     }
1778     // Update class loader and resolved strings. If added_class_table is false, the resolved
1779     // strings were forwarded UpdateAppImageClassLoadersAndDexCaches.
1780     UpdateClassLoaderAndResolvedStringsVisitor visitor(space,
1781                                                        class_loader.Get(),
1782                                                        forward_dex_cache_arrays);
1783     if (added_class_table) {
1784       for (GcRoot<mirror::Class>& root : temp_set) {
1785         visitor(root.Read());
1786       }
1787     }
1788     // forward_dex_cache_arrays is true iff we copied all of the dex cache arrays into the .bss.
1789     // In this case, madvise away the dex cache arrays section of the image to reduce RAM usage and
1790     // mark as PROT_NONE to catch any invalid accesses.
1791     if (forward_dex_cache_arrays) {
1792       const ImageSection& dex_cache_section = header.GetImageSection(
1793           ImageHeader::kSectionDexCacheArrays);
1794       uint8_t* section_begin = AlignUp(space->Begin() + dex_cache_section.Offset(), kPageSize);
1795       uint8_t* section_end = AlignDown(space->Begin() + dex_cache_section.End(), kPageSize);
1796       if (section_begin < section_end) {
1797         madvise(section_begin, section_end - section_begin, MADV_DONTNEED);
1798         mprotect(section_begin, section_end - section_begin, PROT_NONE);
1799         VLOG(image) << "Released and protected dex cache array image section from "
1800                     << reinterpret_cast<const void*>(section_begin) << "-"
1801                     << reinterpret_cast<const void*>(section_end);
1802       }
1803     }
1804   }
1805   if (added_class_table) {
1806     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1807     class_table->AddClassSet(std::move(temp_set));
1808   }
1809   if (kIsDebugBuild && app_image) {
1810     // This verification needs to happen after the classes have been added to the class loader.
1811     // Since it ensures classes are in the class table.
1812     VerifyClassInTableArtMethodVisitor visitor2(class_table);
1813     header.VisitPackedArtMethods(&visitor2, space->Begin(), sizeof(void*));
1814   }
1815   VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time);
1816   return true;
1817 }
1818 
ClassInClassTable(mirror::Class * klass)1819 bool ClassLinker::ClassInClassTable(mirror::Class* klass) {
1820   ClassTable* const class_table = ClassTableForClassLoader(klass->GetClassLoader());
1821   return class_table != nullptr && class_table->Contains(klass);
1822 }
1823 
VisitClassRoots(RootVisitor * visitor,VisitRootFlags flags)1824 void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) {
1825   // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since
1826   // enabling tracing requires the mutator lock, there are no race conditions here.
1827   const bool tracing_enabled = Trace::IsTracingEnabled();
1828   Thread* const self = Thread::Current();
1829   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1830   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
1831       visitor, RootInfo(kRootStickyClass));
1832   if ((flags & kVisitRootFlagAllRoots) != 0) {
1833     // Argument for how root visiting deals with ArtField and ArtMethod roots.
1834     // There is 3 GC cases to handle:
1835     // Non moving concurrent:
1836     // This case is easy to handle since the reference members of ArtMethod and ArtFields are held
1837     // live by the class and class roots.
1838     //
1839     // Moving non-concurrent:
1840     // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move.
1841     // To prevent missing roots, this case needs to ensure that there is no
1842     // suspend points between the point which we allocate ArtMethod arrays and place them in a
1843     // class which is in the class table.
1844     //
1845     // Moving concurrent:
1846     // Need to make sure to not copy ArtMethods without doing read barriers since the roots are
1847     // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy.
1848     boot_class_table_.VisitRoots(buffered_visitor);
1849 
1850     // If tracing is enabled, then mark all the class loaders to prevent unloading.
1851     if ((flags & kVisitRootFlagClassLoader) != 0 || tracing_enabled) {
1852       for (const ClassLoaderData& data : class_loaders_) {
1853         GcRoot<mirror::Object> root(GcRoot<mirror::Object>(self->DecodeJObject(data.weak_root)));
1854         root.VisitRoot(visitor, RootInfo(kRootVMInternal));
1855       }
1856     }
1857   } else if ((flags & kVisitRootFlagNewRoots) != 0) {
1858     for (auto& root : new_class_roots_) {
1859       mirror::Class* old_ref = root.Read<kWithoutReadBarrier>();
1860       root.VisitRoot(visitor, RootInfo(kRootStickyClass));
1861       mirror::Class* new_ref = root.Read<kWithoutReadBarrier>();
1862       // Concurrent moving GC marked new roots through the to-space invariant.
1863       CHECK_EQ(new_ref, old_ref);
1864     }
1865   }
1866   buffered_visitor.Flush();  // Flush before clearing new_class_roots_.
1867   if ((flags & kVisitRootFlagClearRootLog) != 0) {
1868     new_class_roots_.clear();
1869   }
1870   if ((flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
1871     log_new_class_table_roots_ = true;
1872   } else if ((flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
1873     log_new_class_table_roots_ = false;
1874   }
1875   // We deliberately ignore the class roots in the image since we
1876   // handle image roots by using the MS/CMS rescanning of dirty cards.
1877 }
1878 
1879 // Keep in sync with InitCallback. Anything we visit, we need to
1880 // reinit references to when reinitializing a ClassLinker from a
1881 // mapped image.
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)1882 void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
1883   class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1884   VisitClassRoots(visitor, flags);
1885   array_iftable_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1886   // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class
1887   // unloading if we are marking roots.
1888   DropFindArrayClassCache();
1889 }
1890 
1891 class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor {
1892  public:
VisitClassLoaderClassesVisitor(ClassVisitor * visitor)1893   explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor)
1894       : visitor_(visitor),
1895         done_(false) {}
1896 
Visit(mirror::ClassLoader * class_loader)1897   void Visit(mirror::ClassLoader* class_loader)
1898       SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
1899     ClassTable* const class_table = class_loader->GetClassTable();
1900     if (!done_ && class_table != nullptr && !class_table->Visit(*visitor_)) {
1901       // If the visitor ClassTable returns false it means that we don't need to continue.
1902       done_ = true;
1903     }
1904   }
1905 
1906  private:
1907   ClassVisitor* const visitor_;
1908   // If done is true then we don't need to do any more visiting.
1909   bool done_;
1910 };
1911 
VisitClassesInternal(ClassVisitor * visitor)1912 void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) {
1913   if (boot_class_table_.Visit(*visitor)) {
1914     VisitClassLoaderClassesVisitor loader_visitor(visitor);
1915     VisitClassLoaders(&loader_visitor);
1916   }
1917 }
1918 
VisitClasses(ClassVisitor * visitor)1919 void ClassLinker::VisitClasses(ClassVisitor* visitor) {
1920   if (dex_cache_boot_image_class_lookup_required_) {
1921     AddBootImageClassesToClassTable();
1922   }
1923   Thread* const self = Thread::Current();
1924   ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1925   // Not safe to have thread suspension when we are holding a lock.
1926   if (self != nullptr) {
1927     ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
1928     VisitClassesInternal(visitor);
1929   } else {
1930     VisitClassesInternal(visitor);
1931   }
1932 }
1933 
1934 class GetClassesInToVector : public ClassVisitor {
1935  public:
operator ()(mirror::Class * klass)1936   bool operator()(mirror::Class* klass) OVERRIDE {
1937     classes_.push_back(klass);
1938     return true;
1939   }
1940   std::vector<mirror::Class*> classes_;
1941 };
1942 
1943 class GetClassInToObjectArray : public ClassVisitor {
1944  public:
GetClassInToObjectArray(mirror::ObjectArray<mirror::Class> * arr)1945   explicit GetClassInToObjectArray(mirror::ObjectArray<mirror::Class>* arr)
1946       : arr_(arr), index_(0) {}
1947 
operator ()(mirror::Class * klass)1948   bool operator()(mirror::Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1949     ++index_;
1950     if (index_ <= arr_->GetLength()) {
1951       arr_->Set(index_ - 1, klass);
1952       return true;
1953     }
1954     return false;
1955   }
1956 
Succeeded() const1957   bool Succeeded() const SHARED_REQUIRES(Locks::mutator_lock_) {
1958     return index_ <= arr_->GetLength();
1959   }
1960 
1961  private:
1962   mirror::ObjectArray<mirror::Class>* const arr_;
1963   int32_t index_;
1964 };
1965 
VisitClassesWithoutClassesLock(ClassVisitor * visitor)1966 void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) {
1967   // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem
1968   // is avoiding duplicates.
1969   Thread* const self = Thread::Current();
1970   if (!kMovingClasses) {
1971     ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
1972     GetClassesInToVector accumulator;
1973     VisitClasses(&accumulator);
1974     for (mirror::Class* klass : accumulator.classes_) {
1975       if (!visitor->operator()(klass)) {
1976         return;
1977       }
1978     }
1979   } else {
1980     StackHandleScope<1> hs(self);
1981     auto classes = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
1982     // We size the array assuming classes won't be added to the class table during the visit.
1983     // If this assumption fails we iterate again.
1984     while (true) {
1985       size_t class_table_size;
1986       {
1987         ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1988         // Add 100 in case new classes get loaded when we are filling in the object array.
1989         class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100;
1990       }
1991       mirror::Class* class_type = mirror::Class::GetJavaLangClass();
1992       mirror::Class* array_of_class = FindArrayClass(self, &class_type);
1993       classes.Assign(
1994           mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size));
1995       CHECK(classes.Get() != nullptr);  // OOME.
1996       GetClassInToObjectArray accumulator(classes.Get());
1997       VisitClasses(&accumulator);
1998       if (accumulator.Succeeded()) {
1999         break;
2000       }
2001     }
2002     for (int32_t i = 0; i < classes->GetLength(); ++i) {
2003       // If the class table shrank during creation of the clases array we expect null elements. If
2004       // the class table grew then the loop repeats. If classes are created after the loop has
2005       // finished then we don't visit.
2006       mirror::Class* klass = classes->Get(i);
2007       if (klass != nullptr && !visitor->operator()(klass)) {
2008         return;
2009       }
2010     }
2011   }
2012 }
2013 
~ClassLinker()2014 ClassLinker::~ClassLinker() {
2015   mirror::Class::ResetClass();
2016   mirror::Constructor::ResetClass();
2017   mirror::Field::ResetClass();
2018   mirror::Method::ResetClass();
2019   mirror::Reference::ResetClass();
2020   mirror::StackTraceElement::ResetClass();
2021   mirror::String::ResetClass();
2022   mirror::Throwable::ResetClass();
2023   mirror::BooleanArray::ResetArrayClass();
2024   mirror::ByteArray::ResetArrayClass();
2025   mirror::CharArray::ResetArrayClass();
2026   mirror::Constructor::ResetArrayClass();
2027   mirror::DoubleArray::ResetArrayClass();
2028   mirror::Field::ResetArrayClass();
2029   mirror::FloatArray::ResetArrayClass();
2030   mirror::Method::ResetArrayClass();
2031   mirror::IntArray::ResetArrayClass();
2032   mirror::LongArray::ResetArrayClass();
2033   mirror::ShortArray::ResetArrayClass();
2034   Thread* const self = Thread::Current();
2035   for (const ClassLoaderData& data : class_loaders_) {
2036     DeleteClassLoader(self, data);
2037   }
2038   class_loaders_.clear();
2039 }
2040 
DeleteClassLoader(Thread * self,const ClassLoaderData & data)2041 void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data) {
2042   Runtime* const runtime = Runtime::Current();
2043   JavaVMExt* const vm = runtime->GetJavaVM();
2044   vm->DeleteWeakGlobalRef(self, data.weak_root);
2045   // Notify the JIT that we need to remove the methods and/or profiling info.
2046   if (runtime->GetJit() != nullptr) {
2047     jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
2048     if (code_cache != nullptr) {
2049       code_cache->RemoveMethodsIn(self, *data.allocator);
2050     }
2051   }
2052   delete data.allocator;
2053   delete data.class_table;
2054 }
2055 
AllocPointerArray(Thread * self,size_t length)2056 mirror::PointerArray* ClassLinker::AllocPointerArray(Thread* self, size_t length) {
2057   return down_cast<mirror::PointerArray*>(image_pointer_size_ == 8u ?
2058       static_cast<mirror::Array*>(mirror::LongArray::Alloc(self, length)) :
2059       static_cast<mirror::Array*>(mirror::IntArray::Alloc(self, length)));
2060 }
2061 
AllocDexCache(Thread * self,const DexFile & dex_file,LinearAlloc * linear_alloc)2062 mirror::DexCache* ClassLinker::AllocDexCache(Thread* self,
2063                                              const DexFile& dex_file,
2064                                              LinearAlloc* linear_alloc) {
2065   StackHandleScope<6> hs(self);
2066   auto dex_cache(hs.NewHandle(down_cast<mirror::DexCache*>(
2067       GetClassRoot(kJavaLangDexCache)->AllocObject(self))));
2068   if (dex_cache.Get() == nullptr) {
2069     self->AssertPendingOOMException();
2070     return nullptr;
2071   }
2072   auto location(hs.NewHandle(intern_table_->InternStrong(dex_file.GetLocation().c_str())));
2073   if (location.Get() == nullptr) {
2074     self->AssertPendingOOMException();
2075     return nullptr;
2076   }
2077   DexCacheArraysLayout layout(image_pointer_size_, &dex_file);
2078   uint8_t* raw_arrays = nullptr;
2079   if (dex_file.GetOatDexFile() != nullptr &&
2080       dex_file.GetOatDexFile()->GetDexCacheArrays() != nullptr) {
2081     raw_arrays = dex_file.GetOatDexFile()->GetDexCacheArrays();
2082   } else if (dex_file.NumStringIds() != 0u || dex_file.NumTypeIds() != 0u ||
2083       dex_file.NumMethodIds() != 0u || dex_file.NumFieldIds() != 0u) {
2084     // NOTE: We "leak" the raw_arrays because we never destroy the dex cache.
2085     DCHECK(image_pointer_size_ == 4u || image_pointer_size_ == 8u);
2086     // Zero-initialized.
2087     raw_arrays = reinterpret_cast<uint8_t*>(linear_alloc->Alloc(self, layout.Size()));
2088   }
2089   GcRoot<mirror::String>* strings = (dex_file.NumStringIds() == 0u) ? nullptr :
2090       reinterpret_cast<GcRoot<mirror::String>*>(raw_arrays + layout.StringsOffset());
2091   GcRoot<mirror::Class>* types = (dex_file.NumTypeIds() == 0u) ? nullptr :
2092       reinterpret_cast<GcRoot<mirror::Class>*>(raw_arrays + layout.TypesOffset());
2093   ArtMethod** methods = (dex_file.NumMethodIds() == 0u) ? nullptr :
2094       reinterpret_cast<ArtMethod**>(raw_arrays + layout.MethodsOffset());
2095   ArtField** fields = (dex_file.NumFieldIds() == 0u) ? nullptr :
2096       reinterpret_cast<ArtField**>(raw_arrays + layout.FieldsOffset());
2097   if (kIsDebugBuild) {
2098     // Sanity check to make sure all the dex cache arrays are empty. b/28992179
2099     for (size_t i = 0; i < dex_file.NumStringIds(); ++i) {
2100       CHECK(strings[i].Read<kWithoutReadBarrier>() == nullptr);
2101     }
2102     for (size_t i = 0; i < dex_file.NumTypeIds(); ++i) {
2103       CHECK(types[i].Read<kWithoutReadBarrier>() == nullptr);
2104     }
2105     for (size_t i = 0; i < dex_file.NumMethodIds(); ++i) {
2106       CHECK(mirror::DexCache::GetElementPtrSize(methods, i, image_pointer_size_) == nullptr);
2107     }
2108     for (size_t i = 0; i < dex_file.NumFieldIds(); ++i) {
2109       CHECK(mirror::DexCache::GetElementPtrSize(fields, i, image_pointer_size_) == nullptr);
2110     }
2111   }
2112   dex_cache->Init(&dex_file,
2113                   location.Get(),
2114                   strings,
2115                   dex_file.NumStringIds(),
2116                   types,
2117                   dex_file.NumTypeIds(),
2118                   methods,
2119                   dex_file.NumMethodIds(),
2120                   fields,
2121                   dex_file.NumFieldIds(),
2122                   image_pointer_size_);
2123   return dex_cache.Get();
2124 }
2125 
AllocClass(Thread * self,mirror::Class * java_lang_Class,uint32_t class_size)2126 mirror::Class* ClassLinker::AllocClass(Thread* self, mirror::Class* java_lang_Class,
2127                                        uint32_t class_size) {
2128   DCHECK_GE(class_size, sizeof(mirror::Class));
2129   gc::Heap* heap = Runtime::Current()->GetHeap();
2130   mirror::Class::InitializeClassVisitor visitor(class_size);
2131   mirror::Object* k = kMovingClasses ?
2132       heap->AllocObject<true>(self, java_lang_Class, class_size, visitor) :
2133       heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor);
2134   if (UNLIKELY(k == nullptr)) {
2135     self->AssertPendingOOMException();
2136     return nullptr;
2137   }
2138   return k->AsClass();
2139 }
2140 
AllocClass(Thread * self,uint32_t class_size)2141 mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) {
2142   return AllocClass(self, GetClassRoot(kJavaLangClass), class_size);
2143 }
2144 
AllocStackTraceElementArray(Thread * self,size_t length)2145 mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray(
2146     Thread* self,
2147     size_t length) {
2148   return mirror::ObjectArray<mirror::StackTraceElement>::Alloc(
2149       self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length);
2150 }
2151 
EnsureResolved(Thread * self,const char * descriptor,mirror::Class * klass)2152 mirror::Class* ClassLinker::EnsureResolved(Thread* self,
2153                                            const char* descriptor,
2154                                            mirror::Class* klass) {
2155   DCHECK(klass != nullptr);
2156 
2157   // For temporary classes we must wait for them to be retired.
2158   if (init_done_ && klass->IsTemp()) {
2159     CHECK(!klass->IsResolved());
2160     if (klass->IsErroneous()) {
2161       ThrowEarlierClassFailure(klass);
2162       return nullptr;
2163     }
2164     StackHandleScope<1> hs(self);
2165     Handle<mirror::Class> h_class(hs.NewHandle(klass));
2166     ObjectLock<mirror::Class> lock(self, h_class);
2167     // Loop and wait for the resolving thread to retire this class.
2168     while (!h_class->IsRetired() && !h_class->IsErroneous()) {
2169       lock.WaitIgnoringInterrupts();
2170     }
2171     if (h_class->IsErroneous()) {
2172       ThrowEarlierClassFailure(h_class.Get());
2173       return nullptr;
2174     }
2175     CHECK(h_class->IsRetired());
2176     // Get the updated class from class table.
2177     klass = LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor),
2178                         h_class.Get()->GetClassLoader());
2179   }
2180 
2181   // Wait for the class if it has not already been linked.
2182   size_t index = 0;
2183   // Maximum number of yield iterations until we start sleeping.
2184   static const size_t kNumYieldIterations = 1000;
2185   // How long each sleep is in us.
2186   static const size_t kSleepDurationUS = 1000;  // 1 ms.
2187   while (!klass->IsResolved() && !klass->IsErroneous()) {
2188     StackHandleScope<1> hs(self);
2189     HandleWrapper<mirror::Class> h_class(hs.NewHandleWrapper(&klass));
2190     {
2191       ObjectTryLock<mirror::Class> lock(self, h_class);
2192       // Can not use a monitor wait here since it may block when returning and deadlock if another
2193       // thread has locked klass.
2194       if (lock.Acquired()) {
2195         // Check for circular dependencies between classes, the lock is required for SetStatus.
2196         if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) {
2197           ThrowClassCircularityError(h_class.Get());
2198           mirror::Class::SetStatus(h_class, mirror::Class::kStatusError, self);
2199           return nullptr;
2200         }
2201       }
2202     }
2203     {
2204       // Handle wrapper deals with klass moving.
2205       ScopedThreadSuspension sts(self, kSuspended);
2206       if (index < kNumYieldIterations) {
2207         sched_yield();
2208       } else {
2209         usleep(kSleepDurationUS);
2210       }
2211     }
2212     ++index;
2213   }
2214 
2215   if (klass->IsErroneous()) {
2216     ThrowEarlierClassFailure(klass);
2217     return nullptr;
2218   }
2219   // Return the loaded class.  No exceptions should be pending.
2220   CHECK(klass->IsResolved()) << PrettyClass(klass);
2221   self->AssertNoPendingException();
2222   return klass;
2223 }
2224 
2225 typedef std::pair<const DexFile*, const DexFile::ClassDef*> ClassPathEntry;
2226 
2227 // Search a collection of DexFiles for a descriptor
FindInClassPath(const char * descriptor,size_t hash,const std::vector<const DexFile * > & class_path)2228 ClassPathEntry FindInClassPath(const char* descriptor,
2229                                size_t hash, const std::vector<const DexFile*>& class_path) {
2230   for (const DexFile* dex_file : class_path) {
2231     const DexFile::ClassDef* dex_class_def = dex_file->FindClassDef(descriptor, hash);
2232     if (dex_class_def != nullptr) {
2233       return ClassPathEntry(dex_file, dex_class_def);
2234     }
2235   }
2236   return ClassPathEntry(nullptr, nullptr);
2237 }
2238 
FindClassInPathClassLoader(ScopedObjectAccessAlreadyRunnable & soa,Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,mirror::Class ** result)2239 bool ClassLinker::FindClassInPathClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
2240                                              Thread* self,
2241                                              const char* descriptor,
2242                                              size_t hash,
2243                                              Handle<mirror::ClassLoader> class_loader,
2244                                              mirror::Class** result) {
2245   // Termination case: boot class-loader.
2246   if (IsBootClassLoader(soa, class_loader.Get())) {
2247     // The boot class loader, search the boot class path.
2248     ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2249     if (pair.second != nullptr) {
2250       mirror::Class* klass = LookupClass(self, descriptor, hash, nullptr);
2251       if (klass != nullptr) {
2252         *result = EnsureResolved(self, descriptor, klass);
2253       } else {
2254         *result = DefineClass(self,
2255                               descriptor,
2256                               hash,
2257                               ScopedNullHandle<mirror::ClassLoader>(),
2258                               *pair.first,
2259                               *pair.second);
2260       }
2261       if (*result == nullptr) {
2262         CHECK(self->IsExceptionPending()) << descriptor;
2263         self->ClearException();
2264       }
2265     } else {
2266       *result = nullptr;
2267     }
2268     return true;
2269   }
2270 
2271   // Unsupported class-loader?
2272   if (class_loader->GetClass() !=
2273       soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader)) {
2274     *result = nullptr;
2275     return false;
2276   }
2277 
2278   // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension).
2279   StackHandleScope<4> hs(self);
2280   Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent()));
2281   bool recursive_result = FindClassInPathClassLoader(soa, self, descriptor, hash, h_parent, result);
2282 
2283   if (!recursive_result) {
2284     // Something wrong up the chain.
2285     return false;
2286   }
2287 
2288   if (*result != nullptr) {
2289     // Found the class up the chain.
2290     return true;
2291   }
2292 
2293   // Handle this step.
2294   // Handle as if this is the child PathClassLoader.
2295   // The class loader is a PathClassLoader which inherits from BaseDexClassLoader.
2296   // We need to get the DexPathList and loop through it.
2297   ArtField* const cookie_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie);
2298   ArtField* const dex_file_field =
2299       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
2300   mirror::Object* dex_path_list =
2301       soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList)->
2302       GetObject(class_loader.Get());
2303   if (dex_path_list != nullptr && dex_file_field != nullptr && cookie_field != nullptr) {
2304     // DexPathList has an array dexElements of Elements[] which each contain a dex file.
2305     mirror::Object* dex_elements_obj =
2306         soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements)->
2307         GetObject(dex_path_list);
2308     // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
2309     // at the mCookie which is a DexFile vector.
2310     if (dex_elements_obj != nullptr) {
2311       Handle<mirror::ObjectArray<mirror::Object>> dex_elements =
2312           hs.NewHandle(dex_elements_obj->AsObjectArray<mirror::Object>());
2313       for (int32_t i = 0; i < dex_elements->GetLength(); ++i) {
2314         mirror::Object* element = dex_elements->GetWithoutChecks(i);
2315         if (element == nullptr) {
2316           // Should never happen, fall back to java code to throw a NPE.
2317           break;
2318         }
2319         mirror::Object* dex_file = dex_file_field->GetObject(element);
2320         if (dex_file != nullptr) {
2321           mirror::LongArray* long_array = cookie_field->GetObject(dex_file)->AsLongArray();
2322           if (long_array == nullptr) {
2323             // This should never happen so log a warning.
2324             LOG(WARNING) << "Null DexFile::mCookie for " << descriptor;
2325             break;
2326           }
2327           int32_t long_array_size = long_array->GetLength();
2328           // First element is the oat file.
2329           for (int32_t j = kDexFileIndexStart; j < long_array_size; ++j) {
2330             const DexFile* cp_dex_file = reinterpret_cast<const DexFile*>(static_cast<uintptr_t>(
2331                 long_array->GetWithoutChecks(j)));
2332             const DexFile::ClassDef* dex_class_def = cp_dex_file->FindClassDef(descriptor, hash);
2333             if (dex_class_def != nullptr) {
2334               mirror::Class* klass = DefineClass(self,
2335                                                  descriptor,
2336                                                  hash,
2337                                                  class_loader,
2338                                                  *cp_dex_file,
2339                                                  *dex_class_def);
2340               if (klass == nullptr) {
2341                 CHECK(self->IsExceptionPending()) << descriptor;
2342                 self->ClearException();
2343                 // TODO: Is it really right to break here, and not check the other dex files?
2344                 return true;
2345               }
2346               *result = klass;
2347               return true;
2348             }
2349           }
2350         }
2351       }
2352     }
2353     self->AssertNoPendingException();
2354   }
2355 
2356   // Result is still null from the parent call, no need to set it again...
2357   return true;
2358 }
2359 
FindClass(Thread * self,const char * descriptor,Handle<mirror::ClassLoader> class_loader)2360 mirror::Class* ClassLinker::FindClass(Thread* self,
2361                                       const char* descriptor,
2362                                       Handle<mirror::ClassLoader> class_loader) {
2363   DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
2364   DCHECK(self != nullptr);
2365   self->AssertNoPendingException();
2366   if (descriptor[1] == '\0') {
2367     // only the descriptors of primitive types should be 1 character long, also avoid class lookup
2368     // for primitive classes that aren't backed by dex files.
2369     return FindPrimitiveClass(descriptor[0]);
2370   }
2371   const size_t hash = ComputeModifiedUtf8Hash(descriptor);
2372   // Find the class in the loaded classes table.
2373   mirror::Class* klass = LookupClass(self, descriptor, hash, class_loader.Get());
2374   if (klass != nullptr) {
2375     return EnsureResolved(self, descriptor, klass);
2376   }
2377   // Class is not yet loaded.
2378   if (descriptor[0] == '[') {
2379     return CreateArrayClass(self, descriptor, hash, class_loader);
2380   } else if (class_loader.Get() == nullptr) {
2381     // The boot class loader, search the boot class path.
2382     ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2383     if (pair.second != nullptr) {
2384       return DefineClass(self,
2385                          descriptor,
2386                          hash,
2387                          ScopedNullHandle<mirror::ClassLoader>(),
2388                          *pair.first,
2389                          *pair.second);
2390     } else {
2391       // The boot class loader is searched ahead of the application class loader, failures are
2392       // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to
2393       // trigger the chaining with a proper stack trace.
2394       mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2395       self->SetException(pre_allocated);
2396       return nullptr;
2397     }
2398   } else {
2399     ScopedObjectAccessUnchecked soa(self);
2400     mirror::Class* cp_klass;
2401     if (FindClassInPathClassLoader(soa, self, descriptor, hash, class_loader, &cp_klass)) {
2402       // The chain was understood. So the value in cp_klass is either the class we were looking
2403       // for, or not found.
2404       if (cp_klass != nullptr) {
2405         return cp_klass;
2406       }
2407       // TODO: We handle the boot classpath loader in FindClassInPathClassLoader. Try to unify this
2408       //       and the branch above. TODO: throw the right exception here.
2409 
2410       // We'll let the Java-side rediscover all this and throw the exception with the right stack
2411       // trace.
2412       if (!self->CanCallIntoJava()) {
2413         // Oops, we can't call into java so we can't run actual class-loader code.
2414         // This is true for e.g. for the compiler (jit or aot).
2415         mirror::Throwable* pre_allocated =
2416             Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2417         self->SetException(pre_allocated);
2418         return nullptr;
2419       }
2420     }
2421 
2422     if (Runtime::Current()->IsAotCompiler()) {
2423       // Oops, compile-time, can't run actual class-loader code.
2424       mirror::Throwable* pre_allocated = Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2425       self->SetException(pre_allocated);
2426       return nullptr;
2427     }
2428 
2429     ScopedLocalRef<jobject> class_loader_object(soa.Env(),
2430                                                 soa.AddLocalReference<jobject>(class_loader.Get()));
2431     std::string class_name_string(DescriptorToDot(descriptor));
2432     ScopedLocalRef<jobject> result(soa.Env(), nullptr);
2433     {
2434       ScopedThreadStateChange tsc(self, kNative);
2435       ScopedLocalRef<jobject> class_name_object(soa.Env(),
2436                                                 soa.Env()->NewStringUTF(class_name_string.c_str()));
2437       if (class_name_object.get() == nullptr) {
2438         DCHECK(self->IsExceptionPending());  // OOME.
2439         return nullptr;
2440       }
2441       CHECK(class_loader_object.get() != nullptr);
2442       result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(),
2443                                                WellKnownClasses::java_lang_ClassLoader_loadClass,
2444                                                class_name_object.get()));
2445     }
2446     if (self->IsExceptionPending()) {
2447       // If the ClassLoader threw, pass that exception up.
2448       return nullptr;
2449     } else if (result.get() == nullptr) {
2450       // broken loader - throw NPE to be compatible with Dalvik
2451       ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s",
2452                                              class_name_string.c_str()).c_str());
2453       return nullptr;
2454     } else {
2455       // success, return mirror::Class*
2456       return soa.Decode<mirror::Class*>(result.get());
2457     }
2458   }
2459   UNREACHABLE();
2460 }
2461 
DefineClass(Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def)2462 mirror::Class* ClassLinker::DefineClass(Thread* self,
2463                                         const char* descriptor,
2464                                         size_t hash,
2465                                         Handle<mirror::ClassLoader> class_loader,
2466                                         const DexFile& dex_file,
2467                                         const DexFile::ClassDef& dex_class_def) {
2468   StackHandleScope<3> hs(self);
2469   auto klass = hs.NewHandle<mirror::Class>(nullptr);
2470 
2471   // Load the class from the dex file.
2472   if (UNLIKELY(!init_done_)) {
2473     // finish up init of hand crafted class_roots_
2474     if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
2475       klass.Assign(GetClassRoot(kJavaLangObject));
2476     } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
2477       klass.Assign(GetClassRoot(kJavaLangClass));
2478     } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2479       klass.Assign(GetClassRoot(kJavaLangString));
2480     } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) {
2481       klass.Assign(GetClassRoot(kJavaLangRefReference));
2482     } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
2483       klass.Assign(GetClassRoot(kJavaLangDexCache));
2484     }
2485   }
2486 
2487   if (klass.Get() == nullptr) {
2488     // Allocate a class with the status of not ready.
2489     // Interface object should get the right size here. Regular class will
2490     // figure out the right size later and be replaced with one of the right
2491     // size when the class becomes resolved.
2492     klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def)));
2493   }
2494   if (UNLIKELY(klass.Get() == nullptr)) {
2495     self->AssertPendingOOMException();
2496     return nullptr;
2497   }
2498   mirror::DexCache* dex_cache = RegisterDexFile(dex_file, class_loader.Get());
2499   if (dex_cache == nullptr) {
2500     self->AssertPendingOOMException();
2501     return nullptr;
2502   }
2503   klass->SetDexCache(dex_cache);
2504   SetupClass(dex_file, dex_class_def, klass, class_loader.Get());
2505 
2506   // Mark the string class by setting its access flag.
2507   if (UNLIKELY(!init_done_)) {
2508     if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2509       klass->SetStringClass();
2510     }
2511   }
2512 
2513   ObjectLock<mirror::Class> lock(self, klass);
2514   klass->SetClinitThreadId(self->GetTid());
2515 
2516   // Add the newly loaded class to the loaded classes table.
2517   mirror::Class* existing = InsertClass(descriptor, klass.Get(), hash);
2518   if (existing != nullptr) {
2519     // We failed to insert because we raced with another thread. Calling EnsureResolved may cause
2520     // this thread to block.
2521     return EnsureResolved(self, descriptor, existing);
2522   }
2523 
2524   // Load the fields and other things after we are inserted in the table. This is so that we don't
2525   // end up allocating unfree-able linear alloc resources and then lose the race condition. The
2526   // other reason is that the field roots are only visited from the class table. So we need to be
2527   // inserted before we allocate / fill in these fields.
2528   LoadClass(self, dex_file, dex_class_def, klass);
2529   if (self->IsExceptionPending()) {
2530     VLOG(class_linker) << self->GetException()->Dump();
2531     // An exception occured during load, set status to erroneous while holding klass' lock in case
2532     // notification is necessary.
2533     if (!klass->IsErroneous()) {
2534       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2535     }
2536     return nullptr;
2537   }
2538 
2539   // Finish loading (if necessary) by finding parents
2540   CHECK(!klass->IsLoaded());
2541   if (!LoadSuperAndInterfaces(klass, dex_file)) {
2542     // Loading failed.
2543     if (!klass->IsErroneous()) {
2544       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2545     }
2546     return nullptr;
2547   }
2548   CHECK(klass->IsLoaded());
2549   // Link the class (if necessary)
2550   CHECK(!klass->IsResolved());
2551   // TODO: Use fast jobjects?
2552   auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
2553 
2554   MutableHandle<mirror::Class> h_new_class = hs.NewHandle<mirror::Class>(nullptr);
2555   if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) {
2556     // Linking failed.
2557     if (!klass->IsErroneous()) {
2558       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
2559     }
2560     return nullptr;
2561   }
2562   self->AssertNoPendingException();
2563   CHECK(h_new_class.Get() != nullptr) << descriptor;
2564   CHECK(h_new_class->IsResolved()) << descriptor;
2565 
2566   // Instrumentation may have updated entrypoints for all methods of all
2567   // classes. However it could not update methods of this class while we
2568   // were loading it. Now the class is resolved, we can update entrypoints
2569   // as required by instrumentation.
2570   if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) {
2571     // We must be in the kRunnable state to prevent instrumentation from
2572     // suspending all threads to update entrypoints while we are doing it
2573     // for this class.
2574     DCHECK_EQ(self->GetState(), kRunnable);
2575     Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get());
2576   }
2577 
2578   /*
2579    * We send CLASS_PREPARE events to the debugger from here.  The
2580    * definition of "preparation" is creating the static fields for a
2581    * class and initializing them to the standard default values, but not
2582    * executing any code (that comes later, during "initialization").
2583    *
2584    * We did the static preparation in LinkClass.
2585    *
2586    * The class has been prepared and resolved but possibly not yet verified
2587    * at this point.
2588    */
2589   Dbg::PostClassPrepare(h_new_class.Get());
2590 
2591   // Notify native debugger of the new class and its layout.
2592   jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get());
2593 
2594   return h_new_class.Get();
2595 }
2596 
SizeOfClassWithoutEmbeddedTables(const DexFile & dex_file,const DexFile::ClassDef & dex_class_def)2597 uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file,
2598                                                        const DexFile::ClassDef& dex_class_def) {
2599   const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
2600   size_t num_ref = 0;
2601   size_t num_8 = 0;
2602   size_t num_16 = 0;
2603   size_t num_32 = 0;
2604   size_t num_64 = 0;
2605   if (class_data != nullptr) {
2606     // We allow duplicate definitions of the same field in a class_data_item
2607     // but ignore the repeated indexes here, b/21868015.
2608     uint32_t last_field_idx = DexFile::kDexNoIndex;
2609     for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) {
2610       uint32_t field_idx = it.GetMemberIndex();
2611       // Ordering enforced by DexFileVerifier.
2612       DCHECK(last_field_idx == DexFile::kDexNoIndex || last_field_idx <= field_idx);
2613       if (UNLIKELY(field_idx == last_field_idx)) {
2614         continue;
2615       }
2616       last_field_idx = field_idx;
2617       const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
2618       const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
2619       char c = descriptor[0];
2620       switch (c) {
2621         case 'L':
2622         case '[':
2623           num_ref++;
2624           break;
2625         case 'J':
2626         case 'D':
2627           num_64++;
2628           break;
2629         case 'I':
2630         case 'F':
2631           num_32++;
2632           break;
2633         case 'S':
2634         case 'C':
2635           num_16++;
2636           break;
2637         case 'B':
2638         case 'Z':
2639           num_8++;
2640           break;
2641         default:
2642           LOG(FATAL) << "Unknown descriptor: " << c;
2643           UNREACHABLE();
2644       }
2645     }
2646   }
2647   return mirror::Class::ComputeClassSize(false,
2648                                          0,
2649                                          num_8,
2650                                          num_16,
2651                                          num_32,
2652                                          num_64,
2653                                          num_ref,
2654                                          image_pointer_size_);
2655 }
2656 
FindOatClass(const DexFile & dex_file,uint16_t class_def_idx,bool * found)2657 OatFile::OatClass ClassLinker::FindOatClass(const DexFile& dex_file,
2658                                             uint16_t class_def_idx,
2659                                             bool* found) {
2660   DCHECK_NE(class_def_idx, DexFile::kDexNoIndex16);
2661   const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
2662   if (oat_dex_file == nullptr) {
2663     *found = false;
2664     return OatFile::OatClass::Invalid();
2665   }
2666   *found = true;
2667   return oat_dex_file->GetOatClass(class_def_idx);
2668 }
2669 
GetOatMethodIndexFromMethodIndex(const DexFile & dex_file,uint16_t class_def_idx,uint32_t method_idx)2670 static uint32_t GetOatMethodIndexFromMethodIndex(const DexFile& dex_file,
2671                                                  uint16_t class_def_idx,
2672                                                  uint32_t method_idx) {
2673   const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_idx);
2674   const uint8_t* class_data = dex_file.GetClassData(class_def);
2675   CHECK(class_data != nullptr);
2676   ClassDataItemIterator it(dex_file, class_data);
2677   // Skip fields
2678   while (it.HasNextStaticField()) {
2679     it.Next();
2680   }
2681   while (it.HasNextInstanceField()) {
2682     it.Next();
2683   }
2684   // Process methods
2685   size_t class_def_method_index = 0;
2686   while (it.HasNextDirectMethod()) {
2687     if (it.GetMemberIndex() == method_idx) {
2688       return class_def_method_index;
2689     }
2690     class_def_method_index++;
2691     it.Next();
2692   }
2693   while (it.HasNextVirtualMethod()) {
2694     if (it.GetMemberIndex() == method_idx) {
2695       return class_def_method_index;
2696     }
2697     class_def_method_index++;
2698     it.Next();
2699   }
2700   DCHECK(!it.HasNext());
2701   LOG(FATAL) << "Failed to find method index " << method_idx << " in " << dex_file.GetLocation();
2702   UNREACHABLE();
2703 }
2704 
FindOatMethodFor(ArtMethod * method,bool * found)2705 const OatFile::OatMethod ClassLinker::FindOatMethodFor(ArtMethod* method, bool* found) {
2706   // Although we overwrite the trampoline of non-static methods, we may get here via the resolution
2707   // method for direct methods (or virtual methods made direct).
2708   mirror::Class* declaring_class = method->GetDeclaringClass();
2709   size_t oat_method_index;
2710   if (method->IsStatic() || method->IsDirect()) {
2711     // Simple case where the oat method index was stashed at load time.
2712     oat_method_index = method->GetMethodIndex();
2713   } else {
2714     // We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index
2715     // by search for its position in the declared virtual methods.
2716     oat_method_index = declaring_class->NumDirectMethods();
2717     bool found_virtual = false;
2718     for (ArtMethod& art_method : declaring_class->GetVirtualMethods(image_pointer_size_)) {
2719       // Check method index instead of identity in case of duplicate method definitions.
2720       if (method->GetDexMethodIndex() == art_method.GetDexMethodIndex()) {
2721         found_virtual = true;
2722         break;
2723       }
2724       oat_method_index++;
2725     }
2726     CHECK(found_virtual) << "Didn't find oat method index for virtual method: "
2727                          << PrettyMethod(method);
2728   }
2729   DCHECK_EQ(oat_method_index,
2730             GetOatMethodIndexFromMethodIndex(*declaring_class->GetDexCache()->GetDexFile(),
2731                                              method->GetDeclaringClass()->GetDexClassDefIndex(),
2732                                              method->GetDexMethodIndex()));
2733   OatFile::OatClass oat_class = FindOatClass(*declaring_class->GetDexCache()->GetDexFile(),
2734                                              declaring_class->GetDexClassDefIndex(),
2735                                              found);
2736   if (!(*found)) {
2737     return OatFile::OatMethod::Invalid();
2738   }
2739   return oat_class.GetOatMethod(oat_method_index);
2740 }
2741 
2742 // Special case to get oat code without overwriting a trampoline.
GetQuickOatCodeFor(ArtMethod * method)2743 const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) {
2744   CHECK(method->IsInvokable()) << PrettyMethod(method);
2745   if (method->IsProxyMethod()) {
2746     return GetQuickProxyInvokeHandler();
2747   }
2748   bool found;
2749   OatFile::OatMethod oat_method = FindOatMethodFor(method, &found);
2750   if (found) {
2751     auto* code = oat_method.GetQuickCode();
2752     if (code != nullptr) {
2753       return code;
2754     }
2755   }
2756   if (method->IsNative()) {
2757     // No code and native? Use generic trampoline.
2758     return GetQuickGenericJniStub();
2759   }
2760   return GetQuickToInterpreterBridge();
2761 }
2762 
GetOatMethodQuickCodeFor(ArtMethod * method)2763 const void* ClassLinker::GetOatMethodQuickCodeFor(ArtMethod* method) {
2764   if (method->IsNative() || !method->IsInvokable() || method->IsProxyMethod()) {
2765     return nullptr;
2766   }
2767   bool found;
2768   OatFile::OatMethod oat_method = FindOatMethodFor(method, &found);
2769   if (found) {
2770     return oat_method.GetQuickCode();
2771   }
2772   return nullptr;
2773 }
2774 
ShouldUseInterpreterEntrypoint(ArtMethod * method,const void * quick_code)2775 bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) {
2776   if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) {
2777     return false;
2778   }
2779 
2780   if (quick_code == nullptr) {
2781     return true;
2782   }
2783 
2784   Runtime* runtime = Runtime::Current();
2785   instrumentation::Instrumentation* instr = runtime->GetInstrumentation();
2786   if (instr->InterpretOnly()) {
2787     return true;
2788   }
2789 
2790   if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) {
2791     // Doing this check avoids doing compiled/interpreter transitions.
2792     return true;
2793   }
2794 
2795   if (Dbg::IsForcedInterpreterNeededForCalling(Thread::Current(), method)) {
2796     // Force the use of interpreter when it is required by the debugger.
2797     return true;
2798   }
2799 
2800   if (runtime->IsNativeDebuggable()) {
2801     DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse());
2802     // If we are doing native debugging, ignore application's AOT code,
2803     // since we want to JIT it with extra stackmaps for native debugging.
2804     // On the other hand, keep all AOT code from the boot image, since the
2805     // blocking JIT would results in non-negligible performance impact.
2806     return !runtime->GetHeap()->IsInBootImageOatFile(quick_code);
2807   }
2808 
2809   if (Dbg::IsDebuggerActive()) {
2810     // Boot image classes may be AOT-compiled as non-debuggable.
2811     // This is not suitable for the Java debugger, so ignore the AOT code.
2812     return runtime->GetHeap()->IsInBootImageOatFile(quick_code);
2813   }
2814 
2815   return false;
2816 }
2817 
FixupStaticTrampolines(mirror::Class * klass)2818 void ClassLinker::FixupStaticTrampolines(mirror::Class* klass) {
2819   DCHECK(klass->IsInitialized()) << PrettyDescriptor(klass);
2820   if (klass->NumDirectMethods() == 0) {
2821     return;  // No direct methods => no static methods.
2822   }
2823   Runtime* runtime = Runtime::Current();
2824   if (!runtime->IsStarted()) {
2825     if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) {
2826       return;  // OAT file unavailable.
2827     }
2828   }
2829 
2830   const DexFile& dex_file = klass->GetDexFile();
2831   const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
2832   CHECK(dex_class_def != nullptr);
2833   const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
2834   // There should always be class data if there were direct methods.
2835   CHECK(class_data != nullptr) << PrettyDescriptor(klass);
2836   ClassDataItemIterator it(dex_file, class_data);
2837   // Skip fields
2838   while (it.HasNextStaticField()) {
2839     it.Next();
2840   }
2841   while (it.HasNextInstanceField()) {
2842     it.Next();
2843   }
2844   bool has_oat_class;
2845   OatFile::OatClass oat_class = FindOatClass(dex_file,
2846                                              klass->GetDexClassDefIndex(),
2847                                              &has_oat_class);
2848   // Link the code of methods skipped by LinkCode.
2849   for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) {
2850     ArtMethod* method = klass->GetDirectMethod(method_index, image_pointer_size_);
2851     if (!method->IsStatic()) {
2852       // Only update static methods.
2853       continue;
2854     }
2855     const void* quick_code = nullptr;
2856     if (has_oat_class) {
2857       OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index);
2858       quick_code = oat_method.GetQuickCode();
2859     }
2860     // Check whether the method is native, in which case it's generic JNI.
2861     if (quick_code == nullptr && method->IsNative()) {
2862       quick_code = GetQuickGenericJniStub();
2863     } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) {
2864       // Use interpreter entry point.
2865       quick_code = GetQuickToInterpreterBridge();
2866     }
2867     runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code);
2868   }
2869   // Ignore virtual methods on the iterator.
2870 }
2871 
EnsureThrowsInvocationError(ArtMethod * method)2872 void ClassLinker::EnsureThrowsInvocationError(ArtMethod* method) {
2873   DCHECK(method != nullptr);
2874   DCHECK(!method->IsInvokable());
2875   method->SetEntryPointFromQuickCompiledCodePtrSize(quick_to_interpreter_bridge_trampoline_,
2876                                                     image_pointer_size_);
2877 }
2878 
LinkCode(ArtMethod * method,const OatFile::OatClass * oat_class,uint32_t class_def_method_index)2879 void ClassLinker::LinkCode(ArtMethod* method, const OatFile::OatClass* oat_class,
2880                            uint32_t class_def_method_index) {
2881   Runtime* const runtime = Runtime::Current();
2882   if (runtime->IsAotCompiler()) {
2883     // The following code only applies to a non-compiler runtime.
2884     return;
2885   }
2886   // Method shouldn't have already been linked.
2887   DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
2888   if (oat_class != nullptr) {
2889     // Every kind of method should at least get an invoke stub from the oat_method.
2890     // non-abstract methods also get their code pointers.
2891     const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index);
2892     oat_method.LinkMethod(method);
2893   }
2894 
2895   // Install entry point from interpreter.
2896   const void* quick_code = method->GetEntryPointFromQuickCompiledCode();
2897   bool enter_interpreter = ShouldUseInterpreterEntrypoint(method, quick_code);
2898 
2899   if (!method->IsInvokable()) {
2900     EnsureThrowsInvocationError(method);
2901     return;
2902   }
2903 
2904   if (method->IsStatic() && !method->IsConstructor()) {
2905     // For static methods excluding the class initializer, install the trampoline.
2906     // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
2907     // after initializing class (see ClassLinker::InitializeClass method).
2908     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
2909   } else if (quick_code == nullptr && method->IsNative()) {
2910     method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub());
2911   } else if (enter_interpreter) {
2912     // Set entry point from compiled code if there's no code or in interpreter only mode.
2913     method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
2914   }
2915 
2916   if (method->IsNative()) {
2917     // Unregistering restores the dlsym lookup stub.
2918     method->UnregisterNative();
2919 
2920     if (enter_interpreter || quick_code == nullptr) {
2921       // We have a native method here without code. Then it should have either the generic JNI
2922       // trampoline as entrypoint (non-static), or the resolution trampoline (static).
2923       // TODO: this doesn't handle all the cases where trampolines may be installed.
2924       const void* entry_point = method->GetEntryPointFromQuickCompiledCode();
2925       DCHECK(IsQuickGenericJniStub(entry_point) || IsQuickResolutionStub(entry_point));
2926     }
2927   }
2928 }
2929 
SetupClass(const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,Handle<mirror::Class> klass,mirror::ClassLoader * class_loader)2930 void ClassLinker::SetupClass(const DexFile& dex_file,
2931                              const DexFile::ClassDef& dex_class_def,
2932                              Handle<mirror::Class> klass,
2933                              mirror::ClassLoader* class_loader) {
2934   CHECK(klass.Get() != nullptr);
2935   CHECK(klass->GetDexCache() != nullptr);
2936   CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus());
2937   const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
2938   CHECK(descriptor != nullptr);
2939 
2940   klass->SetClass(GetClassRoot(kJavaLangClass));
2941   uint32_t access_flags = dex_class_def.GetJavaAccessFlags();
2942   CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
2943   klass->SetAccessFlags(access_flags);
2944   klass->SetClassLoader(class_loader);
2945   DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
2946   mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, nullptr);
2947 
2948   klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def));
2949   klass->SetDexTypeIndex(dex_class_def.class_idx_);
2950   CHECK(klass->GetDexCacheStrings() != nullptr);
2951 }
2952 
LoadClass(Thread * self,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,Handle<mirror::Class> klass)2953 void ClassLinker::LoadClass(Thread* self,
2954                             const DexFile& dex_file,
2955                             const DexFile::ClassDef& dex_class_def,
2956                             Handle<mirror::Class> klass) {
2957   const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
2958   if (class_data == nullptr) {
2959     return;  // no fields or methods - for example a marker interface
2960   }
2961   bool has_oat_class = false;
2962   if (Runtime::Current()->IsStarted() && !Runtime::Current()->IsAotCompiler()) {
2963     OatFile::OatClass oat_class = FindOatClass(dex_file, klass->GetDexClassDefIndex(),
2964                                                &has_oat_class);
2965     if (has_oat_class) {
2966       LoadClassMembers(self, dex_file, class_data, klass, &oat_class);
2967     }
2968   }
2969   if (!has_oat_class) {
2970     LoadClassMembers(self, dex_file, class_data, klass, nullptr);
2971   }
2972 }
2973 
AllocArtFieldArray(Thread * self,LinearAlloc * allocator,size_t length)2974 LengthPrefixedArray<ArtField>* ClassLinker::AllocArtFieldArray(Thread* self,
2975                                                                LinearAlloc* allocator,
2976                                                                size_t length) {
2977   if (length == 0) {
2978     return nullptr;
2979   }
2980   // If the ArtField alignment changes, review all uses of LengthPrefixedArray<ArtField>.
2981   static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4.");
2982   size_t storage_size = LengthPrefixedArray<ArtField>::ComputeSize(length);
2983   void* array_storage = allocator->Alloc(self, storage_size);
2984   auto* ret = new(array_storage) LengthPrefixedArray<ArtField>(length);
2985   CHECK(ret != nullptr);
2986   std::uninitialized_fill_n(&ret->At(0), length, ArtField());
2987   return ret;
2988 }
2989 
AllocArtMethodArray(Thread * self,LinearAlloc * allocator,size_t length)2990 LengthPrefixedArray<ArtMethod>* ClassLinker::AllocArtMethodArray(Thread* self,
2991                                                                  LinearAlloc* allocator,
2992                                                                  size_t length) {
2993   if (length == 0) {
2994     return nullptr;
2995   }
2996   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
2997   const size_t method_size = ArtMethod::Size(image_pointer_size_);
2998   const size_t storage_size =
2999       LengthPrefixedArray<ArtMethod>::ComputeSize(length, method_size, method_alignment);
3000   void* array_storage = allocator->Alloc(self, storage_size);
3001   auto* ret = new (array_storage) LengthPrefixedArray<ArtMethod>(length);
3002   CHECK(ret != nullptr);
3003   for (size_t i = 0; i < length; ++i) {
3004     new(reinterpret_cast<void*>(&ret->At(i, method_size, method_alignment))) ArtMethod;
3005   }
3006   return ret;
3007 }
3008 
GetAllocatorForClassLoader(mirror::ClassLoader * class_loader)3009 LinearAlloc* ClassLinker::GetAllocatorForClassLoader(mirror::ClassLoader* class_loader) {
3010   if (class_loader == nullptr) {
3011     return Runtime::Current()->GetLinearAlloc();
3012   }
3013   LinearAlloc* allocator = class_loader->GetAllocator();
3014   DCHECK(allocator != nullptr);
3015   return allocator;
3016 }
3017 
GetOrCreateAllocatorForClassLoader(mirror::ClassLoader * class_loader)3018 LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(mirror::ClassLoader* class_loader) {
3019   if (class_loader == nullptr) {
3020     return Runtime::Current()->GetLinearAlloc();
3021   }
3022   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3023   LinearAlloc* allocator = class_loader->GetAllocator();
3024   if (allocator == nullptr) {
3025     RegisterClassLoader(class_loader);
3026     allocator = class_loader->GetAllocator();
3027     CHECK(allocator != nullptr);
3028   }
3029   return allocator;
3030 }
3031 
LoadClassMembers(Thread * self,const DexFile & dex_file,const uint8_t * class_data,Handle<mirror::Class> klass,const OatFile::OatClass * oat_class)3032 void ClassLinker::LoadClassMembers(Thread* self,
3033                                    const DexFile& dex_file,
3034                                    const uint8_t* class_data,
3035                                    Handle<mirror::Class> klass,
3036                                    const OatFile::OatClass* oat_class) {
3037   {
3038     // Note: We cannot have thread suspension until the field and method arrays are setup or else
3039     // Class::VisitFieldRoots may miss some fields or methods.
3040     ScopedAssertNoThreadSuspension nts(self, __FUNCTION__);
3041     // Load static fields.
3042     // We allow duplicate definitions of the same field in a class_data_item
3043     // but ignore the repeated indexes here, b/21868015.
3044     LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
3045     ClassDataItemIterator it(dex_file, class_data);
3046     LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self,
3047                                                                 allocator,
3048                                                                 it.NumStaticFields());
3049     size_t num_sfields = 0;
3050     uint32_t last_field_idx = 0u;
3051     for (; it.HasNextStaticField(); it.Next()) {
3052       uint32_t field_idx = it.GetMemberIndex();
3053       DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
3054       if (num_sfields == 0 || LIKELY(field_idx > last_field_idx)) {
3055         DCHECK_LT(num_sfields, it.NumStaticFields());
3056         LoadField(it, klass, &sfields->At(num_sfields));
3057         ++num_sfields;
3058         last_field_idx = field_idx;
3059       }
3060     }
3061     // Load instance fields.
3062     LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self,
3063                                                                 allocator,
3064                                                                 it.NumInstanceFields());
3065     size_t num_ifields = 0u;
3066     last_field_idx = 0u;
3067     for (; it.HasNextInstanceField(); it.Next()) {
3068       uint32_t field_idx = it.GetMemberIndex();
3069       DCHECK_GE(field_idx, last_field_idx);  // Ordering enforced by DexFileVerifier.
3070       if (num_ifields == 0 || LIKELY(field_idx > last_field_idx)) {
3071         DCHECK_LT(num_ifields, it.NumInstanceFields());
3072         LoadField(it, klass, &ifields->At(num_ifields));
3073         ++num_ifields;
3074         last_field_idx = field_idx;
3075       }
3076     }
3077     if (UNLIKELY(num_sfields != it.NumStaticFields()) ||
3078         UNLIKELY(num_ifields != it.NumInstanceFields())) {
3079       LOG(WARNING) << "Duplicate fields in class " << PrettyDescriptor(klass.Get())
3080           << " (unique static fields: " << num_sfields << "/" << it.NumStaticFields()
3081           << ", unique instance fields: " << num_ifields << "/" << it.NumInstanceFields() << ")";
3082       // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size.
3083       if (sfields != nullptr) {
3084         sfields->SetSize(num_sfields);
3085       }
3086       if (ifields != nullptr) {
3087         ifields->SetSize(num_ifields);
3088       }
3089     }
3090     // Set the field arrays.
3091     klass->SetSFieldsPtr(sfields);
3092     DCHECK_EQ(klass->NumStaticFields(), num_sfields);
3093     klass->SetIFieldsPtr(ifields);
3094     DCHECK_EQ(klass->NumInstanceFields(), num_ifields);
3095     // Load methods.
3096     klass->SetMethodsPtr(
3097         AllocArtMethodArray(self, allocator, it.NumDirectMethods() + it.NumVirtualMethods()),
3098         it.NumDirectMethods(),
3099         it.NumVirtualMethods());
3100     size_t class_def_method_index = 0;
3101     uint32_t last_dex_method_index = DexFile::kDexNoIndex;
3102     size_t last_class_def_method_index = 0;
3103     // TODO These should really use the iterators.
3104     for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
3105       ArtMethod* method = klass->GetDirectMethodUnchecked(i, image_pointer_size_);
3106       LoadMethod(self, dex_file, it, klass, method);
3107       LinkCode(method, oat_class, class_def_method_index);
3108       uint32_t it_method_index = it.GetMemberIndex();
3109       if (last_dex_method_index == it_method_index) {
3110         // duplicate case
3111         method->SetMethodIndex(last_class_def_method_index);
3112       } else {
3113         method->SetMethodIndex(class_def_method_index);
3114         last_dex_method_index = it_method_index;
3115         last_class_def_method_index = class_def_method_index;
3116       }
3117       class_def_method_index++;
3118     }
3119     for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) {
3120       ArtMethod* method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
3121       LoadMethod(self, dex_file, it, klass, method);
3122       DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i);
3123       LinkCode(method, oat_class, class_def_method_index);
3124       class_def_method_index++;
3125     }
3126     DCHECK(!it.HasNext());
3127   }
3128   // Ensure that the card is marked so that remembered sets pick up native roots.
3129   Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass.Get());
3130   self->AllowThreadSuspension();
3131 }
3132 
LoadField(const ClassDataItemIterator & it,Handle<mirror::Class> klass,ArtField * dst)3133 void ClassLinker::LoadField(const ClassDataItemIterator& it,
3134                             Handle<mirror::Class> klass,
3135                             ArtField* dst) {
3136   const uint32_t field_idx = it.GetMemberIndex();
3137   dst->SetDexFieldIndex(field_idx);
3138   dst->SetDeclaringClass(klass.Get());
3139   dst->SetAccessFlags(it.GetFieldAccessFlags());
3140 }
3141 
LoadMethod(Thread * self,const DexFile & dex_file,const ClassDataItemIterator & it,Handle<mirror::Class> klass,ArtMethod * dst)3142 void ClassLinker::LoadMethod(Thread* self,
3143                              const DexFile& dex_file,
3144                              const ClassDataItemIterator& it,
3145                              Handle<mirror::Class> klass,
3146                              ArtMethod* dst) {
3147   uint32_t dex_method_idx = it.GetMemberIndex();
3148   const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
3149   const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_);
3150 
3151   ScopedAssertNoThreadSuspension ants(self, "LoadMethod");
3152   dst->SetDexMethodIndex(dex_method_idx);
3153   dst->SetDeclaringClass(klass.Get());
3154   dst->SetCodeItemOffset(it.GetMethodCodeItemOffset());
3155 
3156   dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods(), image_pointer_size_);
3157   dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes(), image_pointer_size_);
3158 
3159   uint32_t access_flags = it.GetMethodAccessFlags();
3160 
3161   if (UNLIKELY(strcmp("finalize", method_name) == 0)) {
3162     // Set finalizable flag on declaring class.
3163     if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) {
3164       // Void return type.
3165       if (klass->GetClassLoader() != nullptr) {  // All non-boot finalizer methods are flagged.
3166         klass->SetFinalizable();
3167       } else {
3168         std::string temp;
3169         const char* klass_descriptor = klass->GetDescriptor(&temp);
3170         // The Enum class declares a "final" finalize() method to prevent subclasses from
3171         // introducing a finalizer. We don't want to set the finalizable flag for Enum or its
3172         // subclasses, so we exclude it here.
3173         // We also want to avoid setting the flag on Object, where we know that finalize() is
3174         // empty.
3175         if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 &&
3176             strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) {
3177           klass->SetFinalizable();
3178         }
3179       }
3180     }
3181   } else if (method_name[0] == '<') {
3182     // Fix broken access flags for initializers. Bug 11157540.
3183     bool is_init = (strcmp("<init>", method_name) == 0);
3184     bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0);
3185     if (UNLIKELY(!is_init && !is_clinit)) {
3186       LOG(WARNING) << "Unexpected '<' at start of method name " << method_name;
3187     } else {
3188       if (UNLIKELY((access_flags & kAccConstructor) == 0)) {
3189         LOG(WARNING) << method_name << " didn't have expected constructor access flag in class "
3190             << PrettyDescriptor(klass.Get()) << " in dex file " << dex_file.GetLocation();
3191         access_flags |= kAccConstructor;
3192       }
3193     }
3194   }
3195   dst->SetAccessFlags(access_flags);
3196 }
3197 
AppendToBootClassPath(Thread * self,const DexFile & dex_file)3198 void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile& dex_file) {
3199   StackHandleScope<1> hs(self);
3200   Handle<mirror::DexCache> dex_cache(hs.NewHandle(AllocDexCache(
3201       self,
3202       dex_file,
3203       Runtime::Current()->GetLinearAlloc())));
3204   CHECK(dex_cache.Get() != nullptr) << "Failed to allocate dex cache for "
3205                                     << dex_file.GetLocation();
3206   AppendToBootClassPath(dex_file, dex_cache);
3207 }
3208 
AppendToBootClassPath(const DexFile & dex_file,Handle<mirror::DexCache> dex_cache)3209 void ClassLinker::AppendToBootClassPath(const DexFile& dex_file,
3210                                         Handle<mirror::DexCache> dex_cache) {
3211   CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation();
3212   boot_class_path_.push_back(&dex_file);
3213   RegisterDexFile(dex_file, dex_cache);
3214 }
3215 
RegisterDexFileLocked(const DexFile & dex_file,Handle<mirror::DexCache> dex_cache)3216 void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file,
3217                                         Handle<mirror::DexCache> dex_cache) {
3218   Thread* const self = Thread::Current();
3219   dex_lock_.AssertExclusiveHeld(self);
3220   CHECK(dex_cache.Get() != nullptr) << dex_file.GetLocation();
3221   // For app images, the dex cache location may be a suffix of the dex file location since the
3222   // dex file location is an absolute path.
3223   const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8();
3224   const size_t dex_cache_length = dex_cache_location.length();
3225   CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation();
3226   std::string dex_file_location = dex_file.GetLocation();
3227   CHECK_GE(dex_file_location.length(), dex_cache_length)
3228       << dex_cache_location << " " << dex_file.GetLocation();
3229   // Take suffix.
3230   const std::string dex_file_suffix = dex_file_location.substr(
3231       dex_file_location.length() - dex_cache_length,
3232       dex_cache_length);
3233   // Example dex_cache location is SettingsProvider.apk and
3234   // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk
3235   CHECK_EQ(dex_cache_location, dex_file_suffix);
3236   // Clean up pass to remove null dex caches.
3237   // Null dex caches can occur due to class unloading and we are lazily removing null entries.
3238   JavaVMExt* const vm = self->GetJniEnv()->vm;
3239   for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) {
3240     DexCacheData data = *it;
3241     if (self->IsJWeakCleared(data.weak_root)) {
3242       vm->DeleteWeakGlobalRef(self, data.weak_root);
3243       it = dex_caches_.erase(it);
3244     } else {
3245       ++it;
3246     }
3247   }
3248   jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache.Get());
3249   dex_cache->SetDexFile(&dex_file);
3250   DexCacheData data;
3251   data.weak_root = dex_cache_jweak;
3252   data.dex_file = dex_cache->GetDexFile();
3253   data.resolved_types = dex_cache->GetResolvedTypes();
3254   dex_caches_.push_back(data);
3255 }
3256 
RegisterDexFile(const DexFile & dex_file,mirror::ClassLoader * class_loader)3257 mirror::DexCache* ClassLinker::RegisterDexFile(const DexFile& dex_file,
3258                                                mirror::ClassLoader* class_loader) {
3259   Thread* self = Thread::Current();
3260   {
3261     ReaderMutexLock mu(self, dex_lock_);
3262     mirror::DexCache* dex_cache = FindDexCacheLocked(self, dex_file, true);
3263     if (dex_cache != nullptr) {
3264       return dex_cache;
3265     }
3266   }
3267   LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader);
3268   DCHECK(linear_alloc != nullptr);
3269   ClassTable* table;
3270   {
3271     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3272     table = InsertClassTableForClassLoader(class_loader);
3273   }
3274   // Don't alloc while holding the lock, since allocation may need to
3275   // suspend all threads and another thread may need the dex_lock_ to
3276   // get to a suspend point.
3277   StackHandleScope<1> hs(self);
3278   Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(AllocDexCache(self, dex_file, linear_alloc)));
3279   {
3280     WriterMutexLock mu(self, dex_lock_);
3281     mirror::DexCache* dex_cache = FindDexCacheLocked(self, dex_file, true);
3282     if (dex_cache != nullptr) {
3283       return dex_cache;
3284     }
3285     if (h_dex_cache.Get() == nullptr) {
3286       self->AssertPendingOOMException();
3287       return nullptr;
3288     }
3289     RegisterDexFileLocked(dex_file, h_dex_cache);
3290   }
3291   table->InsertStrongRoot(h_dex_cache.Get());
3292   return h_dex_cache.Get();
3293 }
3294 
RegisterDexFile(const DexFile & dex_file,Handle<mirror::DexCache> dex_cache)3295 void ClassLinker::RegisterDexFile(const DexFile& dex_file,
3296                                   Handle<mirror::DexCache> dex_cache) {
3297   WriterMutexLock mu(Thread::Current(), dex_lock_);
3298   RegisterDexFileLocked(dex_file, dex_cache);
3299 }
3300 
FindDexCache(Thread * self,const DexFile & dex_file,bool allow_failure)3301 mirror::DexCache* ClassLinker::FindDexCache(Thread* self,
3302                                             const DexFile& dex_file,
3303                                             bool allow_failure) {
3304   ReaderMutexLock mu(self, dex_lock_);
3305   return FindDexCacheLocked(self, dex_file, allow_failure);
3306 }
3307 
FindDexCacheLocked(Thread * self,const DexFile & dex_file,bool allow_failure)3308 mirror::DexCache* ClassLinker::FindDexCacheLocked(Thread* self,
3309                                                   const DexFile& dex_file,
3310                                                   bool allow_failure) {
3311   // Search assuming unique-ness of dex file.
3312   for (const DexCacheData& data : dex_caches_) {
3313     // Avoid decoding (and read barriers) other unrelated dex caches.
3314     if (data.dex_file == &dex_file) {
3315       mirror::DexCache* dex_cache =
3316           down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
3317       if (dex_cache != nullptr) {
3318         return dex_cache;
3319       } else {
3320         break;
3321       }
3322     }
3323   }
3324   if (allow_failure) {
3325     return nullptr;
3326   }
3327   std::string location(dex_file.GetLocation());
3328   // Failure, dump diagnostic and abort.
3329   for (const DexCacheData& data : dex_caches_) {
3330     mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
3331     if (dex_cache != nullptr) {
3332       LOG(ERROR) << "Registered dex file " << dex_cache->GetDexFile()->GetLocation();
3333     }
3334   }
3335   LOG(FATAL) << "Failed to find DexCache for DexFile " << location;
3336   UNREACHABLE();
3337 }
3338 
FixupDexCaches(ArtMethod * resolution_method)3339 void ClassLinker::FixupDexCaches(ArtMethod* resolution_method) {
3340   Thread* const self = Thread::Current();
3341   ReaderMutexLock mu(self, dex_lock_);
3342   for (const DexCacheData& data : dex_caches_) {
3343     if (!self->IsJWeakCleared(data.weak_root)) {
3344       mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(
3345           self->DecodeJObject(data.weak_root));
3346       if (dex_cache != nullptr) {
3347         dex_cache->Fixup(resolution_method, image_pointer_size_);
3348       }
3349     }
3350   }
3351 }
3352 
CreatePrimitiveClass(Thread * self,Primitive::Type type)3353 mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) {
3354   mirror::Class* klass = AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_));
3355   if (UNLIKELY(klass == nullptr)) {
3356     self->AssertPendingOOMException();
3357     return nullptr;
3358   }
3359   return InitializePrimitiveClass(klass, type);
3360 }
3361 
InitializePrimitiveClass(mirror::Class * primitive_class,Primitive::Type type)3362 mirror::Class* ClassLinker::InitializePrimitiveClass(mirror::Class* primitive_class,
3363                                                      Primitive::Type type) {
3364   CHECK(primitive_class != nullptr);
3365   // Must hold lock on object when initializing.
3366   Thread* self = Thread::Current();
3367   StackHandleScope<1> hs(self);
3368   Handle<mirror::Class> h_class(hs.NewHandle(primitive_class));
3369   ObjectLock<mirror::Class> lock(self, h_class);
3370   h_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
3371   h_class->SetPrimitiveType(type);
3372   mirror::Class::SetStatus(h_class, mirror::Class::kStatusInitialized, self);
3373   const char* descriptor = Primitive::Descriptor(type);
3374   mirror::Class* existing = InsertClass(descriptor, h_class.Get(),
3375                                         ComputeModifiedUtf8Hash(descriptor));
3376   CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed";
3377   return h_class.Get();
3378 }
3379 
3380 // Create an array class (i.e. the class object for the array, not the
3381 // array itself).  "descriptor" looks like "[C" or "[[[[B" or
3382 // "[Ljava/lang/String;".
3383 //
3384 // If "descriptor" refers to an array of primitives, look up the
3385 // primitive type's internally-generated class object.
3386 //
3387 // "class_loader" is the class loader of the class that's referring to
3388 // us.  It's used to ensure that we're looking for the element type in
3389 // the right context.  It does NOT become the class loader for the
3390 // array class; that always comes from the base element class.
3391 //
3392 // Returns null with an exception raised on failure.
CreateArrayClass(Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader)3393 mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash,
3394                                              Handle<mirror::ClassLoader> class_loader) {
3395   // Identify the underlying component type
3396   CHECK_EQ('[', descriptor[0]);
3397   StackHandleScope<2> hs(self);
3398   MutableHandle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1,
3399                                                                      class_loader)));
3400   if (component_type.Get() == nullptr) {
3401     DCHECK(self->IsExceptionPending());
3402     // We need to accept erroneous classes as component types.
3403     const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1);
3404     component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get()));
3405     if (component_type.Get() == nullptr) {
3406       DCHECK(self->IsExceptionPending());
3407       return nullptr;
3408     } else {
3409       self->ClearException();
3410     }
3411   }
3412   if (UNLIKELY(component_type->IsPrimitiveVoid())) {
3413     ThrowNoClassDefFoundError("Attempt to create array of void primitive type");
3414     return nullptr;
3415   }
3416   // See if the component type is already loaded.  Array classes are
3417   // always associated with the class loader of their underlying
3418   // element type -- an array of Strings goes with the loader for
3419   // java/lang/String -- so we need to look for it there.  (The
3420   // caller should have checked for the existence of the class
3421   // before calling here, but they did so with *their* class loader,
3422   // not the component type's loader.)
3423   //
3424   // If we find it, the caller adds "loader" to the class' initiating
3425   // loader list, which should prevent us from going through this again.
3426   //
3427   // This call is unnecessary if "loader" and "component_type->GetClassLoader()"
3428   // are the same, because our caller (FindClass) just did the
3429   // lookup.  (Even if we get this wrong we still have correct behavior,
3430   // because we effectively do this lookup again when we add the new
3431   // class to the hash table --- necessary because of possible races with
3432   // other threads.)
3433   if (class_loader.Get() != component_type->GetClassLoader()) {
3434     mirror::Class* new_class = LookupClass(self, descriptor, hash, component_type->GetClassLoader());
3435     if (new_class != nullptr) {
3436       return new_class;
3437     }
3438   }
3439 
3440   // Fill out the fields in the Class.
3441   //
3442   // It is possible to execute some methods against arrays, because
3443   // all arrays are subclasses of java_lang_Object_, so we need to set
3444   // up a vtable.  We can just point at the one in java_lang_Object_.
3445   //
3446   // Array classes are simple enough that we don't need to do a full
3447   // link step.
3448   auto new_class = hs.NewHandle<mirror::Class>(nullptr);
3449   if (UNLIKELY(!init_done_)) {
3450     // Classes that were hand created, ie not by FindSystemClass
3451     if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) {
3452       new_class.Assign(GetClassRoot(kClassArrayClass));
3453     } else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) {
3454       new_class.Assign(GetClassRoot(kObjectArrayClass));
3455     } else if (strcmp(descriptor, GetClassRootDescriptor(kJavaLangStringArrayClass)) == 0) {
3456       new_class.Assign(GetClassRoot(kJavaLangStringArrayClass));
3457     } else if (strcmp(descriptor, "[C") == 0) {
3458       new_class.Assign(GetClassRoot(kCharArrayClass));
3459     } else if (strcmp(descriptor, "[I") == 0) {
3460       new_class.Assign(GetClassRoot(kIntArrayClass));
3461     } else if (strcmp(descriptor, "[J") == 0) {
3462       new_class.Assign(GetClassRoot(kLongArrayClass));
3463     }
3464   }
3465   if (new_class.Get() == nullptr) {
3466     new_class.Assign(AllocClass(self, mirror::Array::ClassSize(image_pointer_size_)));
3467     if (new_class.Get() == nullptr) {
3468       self->AssertPendingOOMException();
3469       return nullptr;
3470     }
3471     new_class->SetComponentType(component_type.Get());
3472   }
3473   ObjectLock<mirror::Class> lock(self, new_class);  // Must hold lock on object when initializing.
3474   DCHECK(new_class->GetComponentType() != nullptr);
3475   mirror::Class* java_lang_Object = GetClassRoot(kJavaLangObject);
3476   new_class->SetSuperClass(java_lang_Object);
3477   new_class->SetVTable(java_lang_Object->GetVTable());
3478   new_class->SetPrimitiveType(Primitive::kPrimNot);
3479   new_class->SetClassLoader(component_type->GetClassLoader());
3480   if (component_type->IsPrimitive()) {
3481     new_class->SetClassFlags(mirror::kClassFlagNoReferenceFields);
3482   } else {
3483     new_class->SetClassFlags(mirror::kClassFlagObjectArray);
3484   }
3485   mirror::Class::SetStatus(new_class, mirror::Class::kStatusLoaded, self);
3486   new_class->PopulateEmbeddedVTable(image_pointer_size_);
3487   ImTable* object_imt = java_lang_Object->GetImt(image_pointer_size_);
3488   new_class->SetImt(object_imt, image_pointer_size_);
3489   mirror::Class::SetStatus(new_class, mirror::Class::kStatusInitialized, self);
3490   // don't need to set new_class->SetObjectSize(..)
3491   // because Object::SizeOf delegates to Array::SizeOf
3492 
3493   // All arrays have java/lang/Cloneable and java/io/Serializable as
3494   // interfaces.  We need to set that up here, so that stuff like
3495   // "instanceof" works right.
3496   //
3497   // Note: The GC could run during the call to FindSystemClass,
3498   // so we need to make sure the class object is GC-valid while we're in
3499   // there.  Do this by clearing the interface list so the GC will just
3500   // think that the entries are null.
3501 
3502 
3503   // Use the single, global copies of "interfaces" and "iftable"
3504   // (remember not to free them for arrays).
3505   {
3506     mirror::IfTable* array_iftable = array_iftable_.Read();
3507     CHECK(array_iftable != nullptr);
3508     new_class->SetIfTable(array_iftable);
3509   }
3510 
3511   // Inherit access flags from the component type.
3512   int access_flags = new_class->GetComponentType()->GetAccessFlags();
3513   // Lose any implementation detail flags; in particular, arrays aren't finalizable.
3514   access_flags &= kAccJavaFlagsMask;
3515   // Arrays can't be used as a superclass or interface, so we want to add "abstract final"
3516   // and remove "interface".
3517   access_flags |= kAccAbstract | kAccFinal;
3518   access_flags &= ~kAccInterface;
3519 
3520   new_class->SetAccessFlags(access_flags);
3521 
3522   mirror::Class* existing = InsertClass(descriptor, new_class.Get(), hash);
3523   if (existing == nullptr) {
3524     jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get());
3525     return new_class.Get();
3526   }
3527   // Another thread must have loaded the class after we
3528   // started but before we finished.  Abandon what we've
3529   // done.
3530   //
3531   // (Yes, this happens.)
3532 
3533   return existing;
3534 }
3535 
FindPrimitiveClass(char type)3536 mirror::Class* ClassLinker::FindPrimitiveClass(char type) {
3537   switch (type) {
3538     case 'B':
3539       return GetClassRoot(kPrimitiveByte);
3540     case 'C':
3541       return GetClassRoot(kPrimitiveChar);
3542     case 'D':
3543       return GetClassRoot(kPrimitiveDouble);
3544     case 'F':
3545       return GetClassRoot(kPrimitiveFloat);
3546     case 'I':
3547       return GetClassRoot(kPrimitiveInt);
3548     case 'J':
3549       return GetClassRoot(kPrimitiveLong);
3550     case 'S':
3551       return GetClassRoot(kPrimitiveShort);
3552     case 'Z':
3553       return GetClassRoot(kPrimitiveBoolean);
3554     case 'V':
3555       return GetClassRoot(kPrimitiveVoid);
3556     default:
3557       break;
3558   }
3559   std::string printable_type(PrintableChar(type));
3560   ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
3561   return nullptr;
3562 }
3563 
InsertClass(const char * descriptor,mirror::Class * klass,size_t hash)3564 mirror::Class* ClassLinker::InsertClass(const char* descriptor, mirror::Class* klass, size_t hash) {
3565   if (VLOG_IS_ON(class_linker)) {
3566     mirror::DexCache* dex_cache = klass->GetDexCache();
3567     std::string source;
3568     if (dex_cache != nullptr) {
3569       source += " from ";
3570       source += dex_cache->GetLocation()->ToModifiedUtf8();
3571     }
3572     LOG(INFO) << "Loaded class " << descriptor << source;
3573   }
3574   {
3575     WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3576     mirror::ClassLoader* const class_loader = klass->GetClassLoader();
3577     ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
3578     mirror::Class* existing = class_table->Lookup(descriptor, hash);
3579     if (existing != nullptr) {
3580       return existing;
3581     }
3582     if (kIsDebugBuild &&
3583         !klass->IsTemp() &&
3584         class_loader == nullptr &&
3585         dex_cache_boot_image_class_lookup_required_) {
3586       // Check a class loaded with the system class loader matches one in the image if the class
3587       // is in the image.
3588       existing = LookupClassFromBootImage(descriptor);
3589       if (existing != nullptr) {
3590         CHECK_EQ(klass, existing);
3591       }
3592     }
3593     VerifyObject(klass);
3594     class_table->InsertWithHash(klass, hash);
3595     if (class_loader != nullptr) {
3596       // This is necessary because we need to have the card dirtied for remembered sets.
3597       Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
3598     }
3599     if (log_new_class_table_roots_) {
3600       new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
3601     }
3602   }
3603   if (kIsDebugBuild) {
3604     // Test that copied methods correctly can find their holder.
3605     for (ArtMethod& method : klass->GetCopiedMethods(image_pointer_size_)) {
3606       CHECK_EQ(GetHoldingClassOfCopiedMethod(&method), klass);
3607     }
3608   }
3609   return nullptr;
3610 }
3611 
3612 // TODO This should really be in mirror::Class.
UpdateClassMethods(mirror::Class * klass,LengthPrefixedArray<ArtMethod> * new_methods)3613 void ClassLinker::UpdateClassMethods(mirror::Class* klass,
3614                                      LengthPrefixedArray<ArtMethod>* new_methods) {
3615   klass->SetMethodsPtrUnchecked(new_methods,
3616                                 klass->NumDirectMethods(),
3617                                 klass->NumDeclaredVirtualMethods());
3618   // Need to mark the card so that the remembered sets and mod union tables get updated.
3619   Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass);
3620 }
3621 
RemoveClass(const char * descriptor,mirror::ClassLoader * class_loader)3622 bool ClassLinker::RemoveClass(const char* descriptor, mirror::ClassLoader* class_loader) {
3623   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3624   ClassTable* const class_table = ClassTableForClassLoader(class_loader);
3625   return class_table != nullptr && class_table->Remove(descriptor);
3626 }
3627 
LookupClass(Thread * self,const char * descriptor,size_t hash,mirror::ClassLoader * class_loader)3628 mirror::Class* ClassLinker::LookupClass(Thread* self,
3629                                         const char* descriptor,
3630                                         size_t hash,
3631                                         mirror::ClassLoader* class_loader) {
3632   {
3633     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3634     ClassTable* const class_table = ClassTableForClassLoader(class_loader);
3635     if (class_table != nullptr) {
3636       mirror::Class* result = class_table->Lookup(descriptor, hash);
3637       if (result != nullptr) {
3638         return result;
3639       }
3640     }
3641   }
3642   if (class_loader != nullptr || !dex_cache_boot_image_class_lookup_required_) {
3643     return nullptr;
3644   }
3645   // Lookup failed but need to search dex_caches_.
3646   mirror::Class* result = LookupClassFromBootImage(descriptor);
3647   if (result != nullptr) {
3648     result = InsertClass(descriptor, result, hash);
3649   } else {
3650     // Searching the image dex files/caches failed, we don't want to get into this situation
3651     // often as map searches are faster, so after kMaxFailedDexCacheLookups move all image
3652     // classes into the class table.
3653     constexpr uint32_t kMaxFailedDexCacheLookups = 1000;
3654     if (++failed_dex_cache_class_lookups_ > kMaxFailedDexCacheLookups) {
3655       AddBootImageClassesToClassTable();
3656     }
3657   }
3658   return result;
3659 }
3660 
GetImageDexCaches(std::vector<gc::space::ImageSpace * > image_spaces)3661 static std::vector<mirror::ObjectArray<mirror::DexCache>*> GetImageDexCaches(
3662     std::vector<gc::space::ImageSpace*> image_spaces) SHARED_REQUIRES(Locks::mutator_lock_) {
3663   CHECK(!image_spaces.empty());
3664   std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector;
3665   for (gc::space::ImageSpace* image_space : image_spaces) {
3666     mirror::Object* root = image_space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches);
3667     DCHECK(root != nullptr);
3668     dex_caches_vector.push_back(root->AsObjectArray<mirror::DexCache>());
3669   }
3670   return dex_caches_vector;
3671 }
3672 
AddBootImageClassesToClassTable()3673 void ClassLinker::AddBootImageClassesToClassTable() {
3674   if (dex_cache_boot_image_class_lookup_required_) {
3675     AddImageClassesToClassTable(Runtime::Current()->GetHeap()->GetBootImageSpaces(),
3676                                 /*class_loader*/nullptr);
3677     dex_cache_boot_image_class_lookup_required_ = false;
3678   }
3679 }
3680 
AddImageClassesToClassTable(std::vector<gc::space::ImageSpace * > image_spaces,mirror::ClassLoader * class_loader)3681 void ClassLinker::AddImageClassesToClassTable(std::vector<gc::space::ImageSpace*> image_spaces,
3682                                               mirror::ClassLoader* class_loader) {
3683   Thread* self = Thread::Current();
3684   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3685   ScopedAssertNoThreadSuspension ants(self, "Moving image classes to class table");
3686 
3687   ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
3688 
3689   std::string temp;
3690   std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector =
3691       GetImageDexCaches(image_spaces);
3692   for (mirror::ObjectArray<mirror::DexCache>* dex_caches : dex_caches_vector) {
3693     for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
3694       mirror::DexCache* dex_cache = dex_caches->Get(i);
3695       GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
3696       for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) {
3697         mirror::Class* klass = types[j].Read();
3698         if (klass != nullptr) {
3699           DCHECK_EQ(klass->GetClassLoader(), class_loader);
3700           const char* descriptor = klass->GetDescriptor(&temp);
3701           size_t hash = ComputeModifiedUtf8Hash(descriptor);
3702           mirror::Class* existing = class_table->Lookup(descriptor, hash);
3703           if (existing != nullptr) {
3704             CHECK_EQ(existing, klass) << PrettyClassAndClassLoader(existing) << " != "
3705                 << PrettyClassAndClassLoader(klass);
3706           } else {
3707             class_table->Insert(klass);
3708             if (log_new_class_table_roots_) {
3709               new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
3710             }
3711           }
3712         }
3713       }
3714     }
3715   }
3716 }
3717 
3718 class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor {
3719  public:
MoveClassTableToPreZygoteVisitor()3720   explicit MoveClassTableToPreZygoteVisitor() {}
3721 
Visit(mirror::ClassLoader * class_loader)3722   void Visit(mirror::ClassLoader* class_loader)
3723       REQUIRES(Locks::classlinker_classes_lock_)
3724       SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE {
3725     ClassTable* const class_table = class_loader->GetClassTable();
3726     if (class_table != nullptr) {
3727       class_table->FreezeSnapshot();
3728     }
3729   }
3730 };
3731 
MoveClassTableToPreZygote()3732 void ClassLinker::MoveClassTableToPreZygote() {
3733   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3734   boot_class_table_.FreezeSnapshot();
3735   MoveClassTableToPreZygoteVisitor visitor;
3736   VisitClassLoaders(&visitor);
3737 }
3738 
LookupClassFromBootImage(const char * descriptor)3739 mirror::Class* ClassLinker::LookupClassFromBootImage(const char* descriptor) {
3740   ScopedAssertNoThreadSuspension ants(Thread::Current(), "Image class lookup");
3741   std::vector<mirror::ObjectArray<mirror::DexCache>*> dex_caches_vector =
3742       GetImageDexCaches(Runtime::Current()->GetHeap()->GetBootImageSpaces());
3743   for (mirror::ObjectArray<mirror::DexCache>* dex_caches : dex_caches_vector) {
3744     for (int32_t i = 0; i < dex_caches->GetLength(); ++i) {
3745       mirror::DexCache* dex_cache = dex_caches->Get(i);
3746       const DexFile* dex_file = dex_cache->GetDexFile();
3747       // Try binary searching the type index by descriptor.
3748       const DexFile::TypeId* type_id = dex_file->FindTypeId(descriptor);
3749       if (type_id != nullptr) {
3750         uint16_t type_idx = dex_file->GetIndexForTypeId(*type_id);
3751         mirror::Class* klass = dex_cache->GetResolvedType(type_idx);
3752         if (klass != nullptr) {
3753           return klass;
3754         }
3755       }
3756     }
3757   }
3758   return nullptr;
3759 }
3760 
3761 // Look up classes by hash and descriptor and put all matching ones in the result array.
3762 class LookupClassesVisitor : public ClassLoaderVisitor {
3763  public:
LookupClassesVisitor(const char * descriptor,size_t hash,std::vector<mirror::Class * > * result)3764   LookupClassesVisitor(const char* descriptor, size_t hash, std::vector<mirror::Class*>* result)
3765      : descriptor_(descriptor),
3766        hash_(hash),
3767        result_(result) {}
3768 
Visit(mirror::ClassLoader * class_loader)3769   void Visit(mirror::ClassLoader* class_loader)
3770       SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
3771     ClassTable* const class_table = class_loader->GetClassTable();
3772     mirror::Class* klass = class_table->Lookup(descriptor_, hash_);
3773     if (klass != nullptr) {
3774       result_->push_back(klass);
3775     }
3776   }
3777 
3778  private:
3779   const char* const descriptor_;
3780   const size_t hash_;
3781   std::vector<mirror::Class*>* const result_;
3782 };
3783 
LookupClasses(const char * descriptor,std::vector<mirror::Class * > & result)3784 void ClassLinker::LookupClasses(const char* descriptor, std::vector<mirror::Class*>& result) {
3785   result.clear();
3786   if (dex_cache_boot_image_class_lookup_required_) {
3787     AddBootImageClassesToClassTable();
3788   }
3789   Thread* const self = Thread::Current();
3790   ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3791   const size_t hash = ComputeModifiedUtf8Hash(descriptor);
3792   mirror::Class* klass = boot_class_table_.Lookup(descriptor, hash);
3793   if (klass != nullptr) {
3794     result.push_back(klass);
3795   }
3796   LookupClassesVisitor visitor(descriptor, hash, &result);
3797   VisitClassLoaders(&visitor);
3798 }
3799 
AttemptSupertypeVerification(Thread * self,Handle<mirror::Class> klass,Handle<mirror::Class> supertype)3800 bool ClassLinker::AttemptSupertypeVerification(Thread* self,
3801                                                Handle<mirror::Class> klass,
3802                                                Handle<mirror::Class> supertype) {
3803   DCHECK(self != nullptr);
3804   DCHECK(klass.Get() != nullptr);
3805   DCHECK(supertype.Get() != nullptr);
3806 
3807   if (!supertype->IsVerified() && !supertype->IsErroneous()) {
3808     VerifyClass(self, supertype);
3809   }
3810   if (supertype->IsCompileTimeVerified()) {
3811     // Either we are verified or we soft failed and need to retry at runtime.
3812     return true;
3813   }
3814   // If we got this far then we have a hard failure.
3815   std::string error_msg =
3816       StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s",
3817                    PrettyDescriptor(klass.Get()).c_str(),
3818                    PrettyDescriptor(supertype.Get()).c_str());
3819   LOG(WARNING) << error_msg  << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
3820   StackHandleScope<1> hs(self);
3821   Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
3822   if (cause.Get() != nullptr) {
3823     // Set during VerifyClass call (if at all).
3824     self->ClearException();
3825   }
3826   // Change into a verify error.
3827   ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
3828   if (cause.Get() != nullptr) {
3829     self->GetException()->SetCause(cause.Get());
3830   }
3831   ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex());
3832   if (Runtime::Current()->IsAotCompiler()) {
3833     Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
3834   }
3835   // Need to grab the lock to change status.
3836   ObjectLock<mirror::Class> super_lock(self, klass);
3837   mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
3838   return false;
3839 }
3840 
VerifyClass(Thread * self,Handle<mirror::Class> klass,LogSeverity log_level)3841 void ClassLinker::VerifyClass(Thread* self, Handle<mirror::Class> klass, LogSeverity log_level) {
3842   {
3843     // TODO: assert that the monitor on the Class is held
3844     ObjectLock<mirror::Class> lock(self, klass);
3845 
3846     // Is somebody verifying this now?
3847     mirror::Class::Status old_status = klass->GetStatus();
3848     while (old_status == mirror::Class::kStatusVerifying ||
3849         old_status == mirror::Class::kStatusVerifyingAtRuntime) {
3850       lock.WaitIgnoringInterrupts();
3851       CHECK(klass->IsErroneous() || (klass->GetStatus() > old_status))
3852           << "Class '" << PrettyClass(klass.Get()) << "' performed an illegal verification state "
3853           << "transition from " << old_status << " to " << klass->GetStatus();
3854       old_status = klass->GetStatus();
3855     }
3856 
3857     // The class might already be erroneous, for example at compile time if we attempted to verify
3858     // this class as a parent to another.
3859     if (klass->IsErroneous()) {
3860       ThrowEarlierClassFailure(klass.Get());
3861       return;
3862     }
3863 
3864     // Don't attempt to re-verify if already sufficiently verified.
3865     if (klass->IsVerified()) {
3866       EnsureSkipAccessChecksMethods(klass);
3867       return;
3868     }
3869     if (klass->IsCompileTimeVerified() && Runtime::Current()->IsAotCompiler()) {
3870       return;
3871     }
3872 
3873     if (klass->GetStatus() == mirror::Class::kStatusResolved) {
3874       mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifying, self);
3875     } else {
3876       CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime)
3877             << PrettyClass(klass.Get());
3878       CHECK(!Runtime::Current()->IsAotCompiler());
3879       mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifyingAtRuntime, self);
3880     }
3881 
3882     // Skip verification if disabled.
3883     if (!Runtime::Current()->IsVerificationEnabled()) {
3884       mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3885       EnsureSkipAccessChecksMethods(klass);
3886       return;
3887     }
3888   }
3889 
3890   // Verify super class.
3891   StackHandleScope<2> hs(self);
3892   MutableHandle<mirror::Class> supertype(hs.NewHandle(klass->GetSuperClass()));
3893   // If we have a superclass and we get a hard verification failure we can return immediately.
3894   if (supertype.Get() != nullptr && !AttemptSupertypeVerification(self, klass, supertype)) {
3895     CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
3896     return;
3897   }
3898 
3899   // Verify all default super-interfaces.
3900   //
3901   // (1) Don't bother if the superclass has already had a soft verification failure.
3902   //
3903   // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause
3904   //     recursive initialization by themselves. This is because when an interface is initialized
3905   //     directly it must not initialize its superinterfaces. We are allowed to verify regardless
3906   //     but choose not to for an optimization. If the interfaces is being verified due to a class
3907   //     initialization (which would need all the default interfaces to be verified) the class code
3908   //     will trigger the recursive verification anyway.
3909   if ((supertype.Get() == nullptr || supertype->IsVerified())  // See (1)
3910       && !klass->IsInterface()) {                              // See (2)
3911     int32_t iftable_count = klass->GetIfTableCount();
3912     MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
3913     // Loop through all interfaces this class has defined. It doesn't matter the order.
3914     for (int32_t i = 0; i < iftable_count; i++) {
3915       iface.Assign(klass->GetIfTable()->GetInterface(i));
3916       DCHECK(iface.Get() != nullptr);
3917       // We only care if we have default interfaces and can skip if we are already verified...
3918       if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) {
3919         continue;
3920       } else if (UNLIKELY(!AttemptSupertypeVerification(self, klass, iface))) {
3921         // We had a hard failure while verifying this interface. Just return immediately.
3922         CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
3923         return;
3924       } else if (UNLIKELY(!iface->IsVerified())) {
3925         // We softly failed to verify the iface. Stop checking and clean up.
3926         // Put the iface into the supertype handle so we know what caused us to fail.
3927         supertype.Assign(iface.Get());
3928         break;
3929       }
3930     }
3931   }
3932 
3933   // At this point if verification failed, then supertype is the "first" supertype that failed
3934   // verification (without a specific order). If verification succeeded, then supertype is either
3935   // null or the original superclass of klass and is verified.
3936   DCHECK(supertype.Get() == nullptr ||
3937          supertype.Get() == klass->GetSuperClass() ||
3938          !supertype->IsVerified());
3939 
3940   // Try to use verification information from the oat file, otherwise do runtime verification.
3941   const DexFile& dex_file = *klass->GetDexCache()->GetDexFile();
3942   mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady);
3943   bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status);
3944   // If the oat file says the class had an error, re-run the verifier. That way we will get a
3945   // precise error message. To ensure a rerun, test:
3946   //     oat_file_class_status == mirror::Class::kStatusError => !preverified
3947   DCHECK(!(oat_file_class_status == mirror::Class::kStatusError) || !preverified);
3948 
3949   verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure;
3950   std::string error_msg;
3951   if (!preverified) {
3952     Runtime* runtime = Runtime::Current();
3953     verifier_failure = verifier::MethodVerifier::VerifyClass(self,
3954                                                              klass.Get(),
3955                                                              runtime->GetCompilerCallbacks(),
3956                                                              runtime->IsAotCompiler(),
3957                                                              log_level,
3958                                                              &error_msg);
3959   }
3960 
3961   // Verification is done, grab the lock again.
3962   ObjectLock<mirror::Class> lock(self, klass);
3963 
3964   if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) {
3965     if (!preverified && verifier_failure != verifier::MethodVerifier::kNoFailure) {
3966       VLOG(class_linker) << "Soft verification failure in class " << PrettyDescriptor(klass.Get())
3967           << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
3968           << " because: " << error_msg;
3969     }
3970     self->AssertNoPendingException();
3971     // Make sure all classes referenced by catch blocks are resolved.
3972     ResolveClassExceptionHandlerTypes(klass);
3973     if (verifier_failure == verifier::MethodVerifier::kNoFailure) {
3974       // Even though there were no verifier failures we need to respect whether the super-class and
3975       // super-default-interfaces were verified or requiring runtime reverification.
3976       if (supertype.Get() == nullptr || supertype->IsVerified()) {
3977         mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3978       } else {
3979         CHECK_EQ(supertype->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
3980         mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
3981         // Pretend a soft failure occurred so that we don't consider the class verified below.
3982         verifier_failure = verifier::MethodVerifier::kSoftFailure;
3983       }
3984     } else {
3985       CHECK_EQ(verifier_failure, verifier::MethodVerifier::kSoftFailure);
3986       // Soft failures at compile time should be retried at runtime. Soft
3987       // failures at runtime will be handled by slow paths in the generated
3988       // code. Set status accordingly.
3989       if (Runtime::Current()->IsAotCompiler()) {
3990         mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
3991       } else {
3992         mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
3993         // As this is a fake verified status, make sure the methods are _not_ marked
3994         // kAccSkipAccessChecks later.
3995         klass->SetVerificationAttempted();
3996       }
3997     }
3998   } else {
3999     VLOG(verifier) << "Verification failed on class " << PrettyDescriptor(klass.Get())
4000                   << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
4001                   << " because: " << error_msg;
4002     self->AssertNoPendingException();
4003     ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
4004     mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4005   }
4006   if (preverified || verifier_failure == verifier::MethodVerifier::kNoFailure) {
4007     // Class is verified so we don't need to do any access check on its methods.
4008     // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each
4009     // method.
4010     // Note: we're going here during compilation and at runtime. When we set the
4011     // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded
4012     // in the image and is set when loading the image.
4013 
4014     if (UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) {
4015       // Never skip access checks if the verification soft fail is forced.
4016       // Mark the class as having a verification attempt to avoid re-running the verifier.
4017       klass->SetVerificationAttempted();
4018     } else {
4019       EnsureSkipAccessChecksMethods(klass);
4020     }
4021   }
4022 }
4023 
EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass)4024 void ClassLinker::EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass) {
4025   if (!klass->WasVerificationAttempted()) {
4026     klass->SetSkipAccessChecksFlagOnAllMethods(image_pointer_size_);
4027     klass->SetVerificationAttempted();
4028   }
4029 }
4030 
VerifyClassUsingOatFile(const DexFile & dex_file,mirror::Class * klass,mirror::Class::Status & oat_file_class_status)4031 bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file,
4032                                           mirror::Class* klass,
4033                                           mirror::Class::Status& oat_file_class_status) {
4034   // If we're compiling, we can only verify the class using the oat file if
4035   // we are not compiling the image or if the class we're verifying is not part of
4036   // the app.  In other words, we will only check for preverification of bootclasspath
4037   // classes.
4038   if (Runtime::Current()->IsAotCompiler()) {
4039     // Are we compiling the bootclasspath?
4040     if (Runtime::Current()->GetCompilerCallbacks()->IsBootImage()) {
4041       return false;
4042     }
4043     // We are compiling an app (not the image).
4044 
4045     // Is this an app class? (I.e. not a bootclasspath class)
4046     if (klass->GetClassLoader() != nullptr) {
4047       return false;
4048     }
4049   }
4050 
4051   const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
4052   // In case we run without an image there won't be a backing oat file.
4053   if (oat_dex_file == nullptr) {
4054     return false;
4055   }
4056 
4057   // We may be running with a preopted oat file but without image. In this case,
4058   // we don't skip verification of skip_access_checks classes to ensure we initialize
4059   // dex caches with all types resolved during verification.
4060   // We need to trust image classes, as these might be coming out of a pre-opted, quickened boot
4061   // image (that we just failed loading), and the verifier can't be run on quickened opcodes when
4062   // the runtime isn't started. On the other hand, app classes can be re-verified even if they are
4063   // already pre-opted, as then the runtime is started.
4064   if (!Runtime::Current()->IsAotCompiler() &&
4065       !Runtime::Current()->GetHeap()->HasBootImageSpace() &&
4066       klass->GetClassLoader() != nullptr) {
4067     return false;
4068   }
4069 
4070   uint16_t class_def_index = klass->GetDexClassDefIndex();
4071   oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
4072   if (oat_file_class_status == mirror::Class::kStatusVerified ||
4073       oat_file_class_status == mirror::Class::kStatusInitialized) {
4074     return true;
4075   }
4076   // If we only verified a subset of the classes at compile time, we can end up with classes that
4077   // were resolved by the verifier.
4078   if (oat_file_class_status == mirror::Class::kStatusResolved) {
4079     return false;
4080   }
4081   if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) {
4082     // Compile time verification failed with a soft error. Compile time verification can fail
4083     // because we have incomplete type information. Consider the following:
4084     // class ... {
4085     //   Foo x;
4086     //   .... () {
4087     //     if (...) {
4088     //       v1 gets assigned a type of resolved class Foo
4089     //     } else {
4090     //       v1 gets assigned a type of unresolved class Bar
4091     //     }
4092     //     iput x = v1
4093     // } }
4094     // when we merge v1 following the if-the-else it results in Conflict
4095     // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be
4096     // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as
4097     // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk
4098     // at compile time).
4099     return false;
4100   }
4101   if (oat_file_class_status == mirror::Class::kStatusError) {
4102     // Compile time verification failed with a hard error. This is caused by invalid instructions
4103     // in the class. These errors are unrecoverable.
4104     return false;
4105   }
4106   if (oat_file_class_status == mirror::Class::kStatusNotReady) {
4107     // Status is uninitialized if we couldn't determine the status at compile time, for example,
4108     // not loading the class.
4109     // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
4110     // isn't a problem and this case shouldn't occur
4111     return false;
4112   }
4113   std::string temp;
4114   LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
4115              << " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " "
4116              << klass->GetDescriptor(&temp);
4117   UNREACHABLE();
4118 }
4119 
ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass)4120 void ClassLinker::ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass) {
4121   for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) {
4122     ResolveMethodExceptionHandlerTypes(&method);
4123   }
4124 }
4125 
ResolveMethodExceptionHandlerTypes(ArtMethod * method)4126 void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) {
4127   // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
4128   const DexFile::CodeItem* code_item =
4129       method->GetDexFile()->GetCodeItem(method->GetCodeItemOffset());
4130   if (code_item == nullptr) {
4131     return;  // native or abstract method
4132   }
4133   if (code_item->tries_size_ == 0) {
4134     return;  // nothing to process
4135   }
4136   const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
4137   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
4138   for (uint32_t idx = 0; idx < handlers_size; idx++) {
4139     CatchHandlerIterator iterator(handlers_ptr);
4140     for (; iterator.HasNext(); iterator.Next()) {
4141       // Ensure exception types are resolved so that they don't need resolution to be delivered,
4142       // unresolved exception types will be ignored by exception delivery
4143       if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
4144         mirror::Class* exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method);
4145         if (exception_type == nullptr) {
4146           DCHECK(Thread::Current()->IsExceptionPending());
4147           Thread::Current()->ClearException();
4148         }
4149       }
4150     }
4151     handlers_ptr = iterator.EndDataPointer();
4152   }
4153 }
4154 
CreateProxyClass(ScopedObjectAccessAlreadyRunnable & soa,jstring name,jobjectArray interfaces,jobject loader,jobjectArray methods,jobjectArray throws)4155 mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa,
4156                                              jstring name,
4157                                              jobjectArray interfaces,
4158                                              jobject loader,
4159                                              jobjectArray methods,
4160                                              jobjectArray throws) {
4161   Thread* self = soa.Self();
4162   StackHandleScope<10> hs(self);
4163   MutableHandle<mirror::Class> klass(hs.NewHandle(
4164       AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class))));
4165   if (klass.Get() == nullptr) {
4166     CHECK(self->IsExceptionPending());  // OOME.
4167     return nullptr;
4168   }
4169   DCHECK(klass->GetClass() != nullptr);
4170   klass->SetObjectSize(sizeof(mirror::Proxy));
4171   // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on
4172   // the methods.
4173   klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted);
4174   klass->SetClassLoader(soa.Decode<mirror::ClassLoader*>(loader));
4175   DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
4176   klass->SetName(soa.Decode<mirror::String*>(name));
4177   klass->SetDexCache(GetClassRoot(kJavaLangReflectProxy)->GetDexCache());
4178   mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, self);
4179   std::string descriptor(GetDescriptorForProxy(klass.Get()));
4180   const size_t hash = ComputeModifiedUtf8Hash(descriptor.c_str());
4181 
4182   // Needs to be before we insert the class so that the allocator field is set.
4183   LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(klass->GetClassLoader());
4184 
4185   // Insert the class before loading the fields as the field roots
4186   // (ArtField::declaring_class_) are only visited from the class
4187   // table. There can't be any suspend points between inserting the
4188   // class and setting the field arrays below.
4189   mirror::Class* existing = InsertClass(descriptor.c_str(), klass.Get(), hash);
4190   CHECK(existing == nullptr);
4191 
4192   // Instance fields are inherited, but we add a couple of static fields...
4193   const size_t num_fields = 2;
4194   LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, num_fields);
4195   klass->SetSFieldsPtr(sfields);
4196 
4197   // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
4198   // our proxy, so Class.getInterfaces doesn't return the flattened set.
4199   ArtField& interfaces_sfield = sfields->At(0);
4200   interfaces_sfield.SetDexFieldIndex(0);
4201   interfaces_sfield.SetDeclaringClass(klass.Get());
4202   interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4203 
4204   // 2. Create a static field 'throws' that holds exceptions thrown by our methods.
4205   ArtField& throws_sfield = sfields->At(1);
4206   throws_sfield.SetDexFieldIndex(1);
4207   throws_sfield.SetDeclaringClass(klass.Get());
4208   throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4209 
4210   // Proxies have 1 direct method, the constructor
4211   const size_t num_direct_methods = 1;
4212 
4213   // They have as many virtual methods as the array
4214   auto h_methods = hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Method>*>(methods));
4215   DCHECK_EQ(h_methods->GetClass(), mirror::Method::ArrayClass())
4216       << PrettyClass(h_methods->GetClass());
4217   const size_t num_virtual_methods = h_methods->GetLength();
4218 
4219   // Create the methods array.
4220   LengthPrefixedArray<ArtMethod>* proxy_class_methods = AllocArtMethodArray(
4221         self, allocator, num_direct_methods + num_virtual_methods);
4222   // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we
4223   // want to throw OOM in the future.
4224   if (UNLIKELY(proxy_class_methods == nullptr)) {
4225     self->AssertPendingOOMException();
4226     return nullptr;
4227   }
4228   klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods);
4229 
4230   // Create the single direct method.
4231   CreateProxyConstructor(klass, klass->GetDirectMethodUnchecked(0, image_pointer_size_));
4232 
4233   // Create virtual method using specified prototypes.
4234   // TODO These should really use the iterators.
4235   for (size_t i = 0; i < num_virtual_methods; ++i) {
4236     auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4237     auto* prototype = h_methods->Get(i)->GetArtMethod();
4238     CreateProxyMethod(klass, prototype, virtual_method);
4239     DCHECK(virtual_method->GetDeclaringClass() != nullptr);
4240     DCHECK(prototype->GetDeclaringClass() != nullptr);
4241   }
4242 
4243   // The super class is java.lang.reflect.Proxy
4244   klass->SetSuperClass(GetClassRoot(kJavaLangReflectProxy));
4245   // Now effectively in the loaded state.
4246   mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, self);
4247   self->AssertNoPendingException();
4248 
4249   MutableHandle<mirror::Class> new_class = hs.NewHandle<mirror::Class>(nullptr);
4250   {
4251     // Must hold lock on object when resolved.
4252     ObjectLock<mirror::Class> resolution_lock(self, klass);
4253     // Link the fields and virtual methods, creating vtable and iftables.
4254     // The new class will replace the old one in the class table.
4255     Handle<mirror::ObjectArray<mirror::Class>> h_interfaces(
4256         hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces)));
4257     if (!LinkClass(self, descriptor.c_str(), klass, h_interfaces, &new_class)) {
4258       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4259       return nullptr;
4260     }
4261   }
4262   CHECK(klass->IsRetired());
4263   CHECK_NE(klass.Get(), new_class.Get());
4264   klass.Assign(new_class.Get());
4265 
4266   CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get());
4267   interfaces_sfield.SetObject<false>(klass.Get(),
4268                                      soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
4269   CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get());
4270   throws_sfield.SetObject<false>(
4271       klass.Get(), soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class> >*>(throws));
4272 
4273   {
4274     // Lock on klass is released. Lock new class object.
4275     ObjectLock<mirror::Class> initialization_lock(self, klass);
4276     mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4277   }
4278 
4279   // sanity checks
4280   if (kIsDebugBuild) {
4281     CHECK(klass->GetIFieldsPtr() == nullptr);
4282     CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_));
4283 
4284     for (size_t i = 0; i < num_virtual_methods; ++i) {
4285       auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4286       auto* prototype = h_methods->Get(i++)->GetArtMethod();
4287       CheckProxyMethod(virtual_method, prototype);
4288     }
4289 
4290     StackHandleScope<1> hs2(self);
4291     Handle<mirror::String> decoded_name = hs2.NewHandle(soa.Decode<mirror::String*>(name));
4292     std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
4293                                                    decoded_name->ToModifiedUtf8().c_str()));
4294     CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name);
4295 
4296     std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
4297                                                decoded_name->ToModifiedUtf8().c_str()));
4298     CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name);
4299 
4300     CHECK_EQ(klass.Get()->GetInterfaces(),
4301              soa.Decode<mirror::ObjectArray<mirror::Class>*>(interfaces));
4302     CHECK_EQ(klass.Get()->GetThrows(),
4303              soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>*>(throws));
4304   }
4305   return klass.Get();
4306 }
4307 
GetDescriptorForProxy(mirror::Class * proxy_class)4308 std::string ClassLinker::GetDescriptorForProxy(mirror::Class* proxy_class) {
4309   DCHECK(proxy_class->IsProxyClass());
4310   mirror::String* name = proxy_class->GetName();
4311   DCHECK(name != nullptr);
4312   return DotToDescriptor(name->ToModifiedUtf8().c_str());
4313 }
4314 
FindMethodForProxy(mirror::Class * proxy_class,ArtMethod * proxy_method)4315 ArtMethod* ClassLinker::FindMethodForProxy(mirror::Class* proxy_class, ArtMethod* proxy_method) {
4316   DCHECK(proxy_class->IsProxyClass());
4317   DCHECK(proxy_method->IsProxyMethod());
4318   {
4319     Thread* const self = Thread::Current();
4320     ReaderMutexLock mu(self, dex_lock_);
4321     // Locate the dex cache of the original interface/Object
4322     for (const DexCacheData& data : dex_caches_) {
4323       if (!self->IsJWeakCleared(data.weak_root) &&
4324           proxy_method->HasSameDexCacheResolvedTypes(data.resolved_types,
4325                                                      image_pointer_size_)) {
4326         mirror::DexCache* dex_cache = down_cast<mirror::DexCache*>(
4327             self->DecodeJObject(data.weak_root));
4328         if (dex_cache != nullptr) {
4329           ArtMethod* resolved_method = dex_cache->GetResolvedMethod(
4330               proxy_method->GetDexMethodIndex(), image_pointer_size_);
4331           CHECK(resolved_method != nullptr);
4332           return resolved_method;
4333         }
4334       }
4335     }
4336   }
4337   LOG(FATAL) << "Didn't find dex cache for " << PrettyClass(proxy_class) << " "
4338       << PrettyMethod(proxy_method);
4339   UNREACHABLE();
4340 }
4341 
CreateProxyConstructor(Handle<mirror::Class> klass,ArtMethod * out)4342 void ClassLinker::CreateProxyConstructor(Handle<mirror::Class> klass, ArtMethod* out) {
4343   // Create constructor for Proxy that must initialize the method.
4344   CHECK_EQ(GetClassRoot(kJavaLangReflectProxy)->NumDirectMethods(), 18u);
4345   ArtMethod* proxy_constructor = GetClassRoot(kJavaLangReflectProxy)->GetDirectMethodUnchecked(
4346       2, image_pointer_size_);
4347   DCHECK_EQ(std::string(proxy_constructor->GetName()), "<init>");
4348   // Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden
4349   // constructor method.
4350   GetClassRoot(kJavaLangReflectProxy)->GetDexCache()->SetResolvedMethod(
4351       proxy_constructor->GetDexMethodIndex(), proxy_constructor, image_pointer_size_);
4352   // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
4353   // code_ too)
4354   DCHECK(out != nullptr);
4355   out->CopyFrom(proxy_constructor, image_pointer_size_);
4356   // Make this constructor public and fix the class to be our Proxy version
4357   out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic);
4358   out->SetDeclaringClass(klass.Get());
4359 }
4360 
CheckProxyConstructor(ArtMethod * constructor) const4361 void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const {
4362   CHECK(constructor->IsConstructor());
4363   auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_);
4364   CHECK_STREQ(np->GetName(), "<init>");
4365   CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V");
4366   DCHECK(constructor->IsPublic());
4367 }
4368 
CreateProxyMethod(Handle<mirror::Class> klass,ArtMethod * prototype,ArtMethod * out)4369 void ClassLinker::CreateProxyMethod(Handle<mirror::Class> klass, ArtMethod* prototype,
4370                                     ArtMethod* out) {
4371   // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden
4372   // prototype method
4373   auto* dex_cache = prototype->GetDeclaringClass()->GetDexCache();
4374   // Avoid dirtying the dex cache unless we need to.
4375   if (dex_cache->GetResolvedMethod(prototype->GetDexMethodIndex(), image_pointer_size_) !=
4376       prototype) {
4377     dex_cache->SetResolvedMethod(
4378         prototype->GetDexMethodIndex(), prototype, image_pointer_size_);
4379   }
4380   // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
4381   // as necessary
4382   DCHECK(out != nullptr);
4383   out->CopyFrom(prototype, image_pointer_size_);
4384 
4385   // Set class to be the concrete proxy class.
4386   out->SetDeclaringClass(klass.Get());
4387   // Clear the abstract, default and conflict flags to ensure that defaults aren't picked in
4388   // preference to the invocation handler.
4389   const uint32_t kRemoveFlags = kAccAbstract | kAccDefault | kAccDefaultConflict;
4390   // Make the method final.
4391   const uint32_t kAddFlags = kAccFinal;
4392   out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags);
4393 
4394   // Clear the dex_code_item_offset_. It needs to be 0 since proxy methods have no CodeItems but the
4395   // method they copy might (if it's a default method).
4396   out->SetCodeItemOffset(0);
4397 
4398   // At runtime the method looks like a reference and argument saving method, clone the code
4399   // related parameters from this method.
4400   out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler());
4401 }
4402 
CheckProxyMethod(ArtMethod * method,ArtMethod * prototype) const4403 void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const {
4404   // Basic sanity
4405   CHECK(!prototype->IsFinal());
4406   CHECK(method->IsFinal());
4407   CHECK(method->IsInvokable());
4408 
4409   // The proxy method doesn't have its own dex cache or dex file and so it steals those of its
4410   // interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
4411   CHECK(prototype->HasSameDexCacheResolvedMethods(method, image_pointer_size_));
4412   CHECK(prototype->HasSameDexCacheResolvedTypes(method, image_pointer_size_));
4413   auto* np = method->GetInterfaceMethodIfProxy(image_pointer_size_);
4414   CHECK_EQ(prototype->GetDeclaringClass()->GetDexCache(), np->GetDexCache());
4415   CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
4416 
4417   CHECK_STREQ(np->GetName(), prototype->GetName());
4418   CHECK_STREQ(np->GetShorty(), prototype->GetShorty());
4419   // More complex sanity - via dex cache
4420   CHECK_EQ(np->GetReturnType(true /* resolve */, image_pointer_size_),
4421            prototype->GetReturnType(true /* resolve */, image_pointer_size_));
4422 }
4423 
CanWeInitializeClass(mirror::Class * klass,bool can_init_statics,bool can_init_parents)4424 bool ClassLinker::CanWeInitializeClass(mirror::Class* klass, bool can_init_statics,
4425                                        bool can_init_parents) {
4426   if (can_init_statics && can_init_parents) {
4427     return true;
4428   }
4429   if (!can_init_statics) {
4430     // Check if there's a class initializer.
4431     ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4432     if (clinit != nullptr) {
4433       return false;
4434     }
4435     // Check if there are encoded static values needing initialization.
4436     if (klass->NumStaticFields() != 0) {
4437       const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4438       DCHECK(dex_class_def != nullptr);
4439       if (dex_class_def->static_values_off_ != 0) {
4440         return false;
4441       }
4442     }
4443     // If we are a class we need to initialize all interfaces with default methods when we are
4444     // initialized. Check all of them.
4445     if (!klass->IsInterface()) {
4446       size_t num_interfaces = klass->GetIfTableCount();
4447       for (size_t i = 0; i < num_interfaces; i++) {
4448         mirror::Class* iface = klass->GetIfTable()->GetInterface(i);
4449         if (iface->HasDefaultMethods() &&
4450             !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) {
4451           return false;
4452         }
4453       }
4454     }
4455   }
4456   if (klass->IsInterface() || !klass->HasSuperClass()) {
4457     return true;
4458   }
4459   mirror::Class* super_class = klass->GetSuperClass();
4460   if (!can_init_parents && !super_class->IsInitialized()) {
4461     return false;
4462   }
4463   return CanWeInitializeClass(super_class, can_init_statics, can_init_parents);
4464 }
4465 
InitializeClass(Thread * self,Handle<mirror::Class> klass,bool can_init_statics,bool can_init_parents)4466 bool ClassLinker::InitializeClass(Thread* self, Handle<mirror::Class> klass,
4467                                   bool can_init_statics, bool can_init_parents) {
4468   // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
4469 
4470   // Are we already initialized and therefore done?
4471   // Note: we differ from the JLS here as we don't do this under the lock, this is benign as
4472   // an initialized class will never change its state.
4473   if (klass->IsInitialized()) {
4474     return true;
4475   }
4476 
4477   // Fast fail if initialization requires a full runtime. Not part of the JLS.
4478   if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) {
4479     return false;
4480   }
4481 
4482   self->AllowThreadSuspension();
4483   uint64_t t0;
4484   {
4485     ObjectLock<mirror::Class> lock(self, klass);
4486 
4487     // Re-check under the lock in case another thread initialized ahead of us.
4488     if (klass->IsInitialized()) {
4489       return true;
4490     }
4491 
4492     // Was the class already found to be erroneous? Done under the lock to match the JLS.
4493     if (klass->IsErroneous()) {
4494       ThrowEarlierClassFailure(klass.Get(), true);
4495       VlogClassInitializationFailure(klass);
4496       return false;
4497     }
4498 
4499     CHECK(klass->IsResolved()) << PrettyClass(klass.Get()) << ": state=" << klass->GetStatus();
4500 
4501     if (!klass->IsVerified()) {
4502       VerifyClass(self, klass);
4503       if (!klass->IsVerified()) {
4504         // We failed to verify, expect either the klass to be erroneous or verification failed at
4505         // compile time.
4506         if (klass->IsErroneous()) {
4507           // The class is erroneous. This may be a verifier error, or another thread attempted
4508           // verification and/or initialization and failed. We can distinguish those cases by
4509           // whether an exception is already pending.
4510           if (self->IsExceptionPending()) {
4511             // Check that it's a VerifyError.
4512             DCHECK_EQ("java.lang.Class<java.lang.VerifyError>",
4513                       PrettyClass(self->GetException()->GetClass()));
4514           } else {
4515             // Check that another thread attempted initialization.
4516             DCHECK_NE(0, klass->GetClinitThreadId());
4517             DCHECK_NE(self->GetTid(), klass->GetClinitThreadId());
4518             // Need to rethrow the previous failure now.
4519             ThrowEarlierClassFailure(klass.Get(), true);
4520           }
4521           VlogClassInitializationFailure(klass);
4522         } else {
4523           CHECK(Runtime::Current()->IsAotCompiler());
4524           CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
4525         }
4526         return false;
4527       } else {
4528         self->AssertNoPendingException();
4529       }
4530 
4531       // A separate thread could have moved us all the way to initialized. A "simple" example
4532       // involves a subclass of the current class being initialized at the same time (which
4533       // will implicitly initialize the superclass, if scheduled that way). b/28254258
4534       DCHECK_NE(mirror::Class::kStatusError, klass->GetStatus());
4535       if (klass->IsInitialized()) {
4536         return true;
4537       }
4538     }
4539 
4540     // If the class is kStatusInitializing, either this thread is
4541     // initializing higher up the stack or another thread has beat us
4542     // to initializing and we need to wait. Either way, this
4543     // invocation of InitializeClass will not be responsible for
4544     // running <clinit> and will return.
4545     if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4546       // Could have got an exception during verification.
4547       if (self->IsExceptionPending()) {
4548         VlogClassInitializationFailure(klass);
4549         return false;
4550       }
4551       // We caught somebody else in the act; was it us?
4552       if (klass->GetClinitThreadId() == self->GetTid()) {
4553         // Yes. That's fine. Return so we can continue initializing.
4554         return true;
4555       }
4556       // No. That's fine. Wait for another thread to finish initializing.
4557       return WaitForInitializeClass(klass, self, lock);
4558     }
4559 
4560     if (!ValidateSuperClassDescriptors(klass)) {
4561       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4562       return false;
4563     }
4564     self->AllowThreadSuspension();
4565 
4566     CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << PrettyClass(klass.Get())
4567         << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId();
4568 
4569     // From here out other threads may observe that we're initializing and so changes of state
4570     // require the a notification.
4571     klass->SetClinitThreadId(self->GetTid());
4572     mirror::Class::SetStatus(klass, mirror::Class::kStatusInitializing, self);
4573 
4574     t0 = NanoTime();
4575   }
4576 
4577   // Initialize super classes, must be done while initializing for the JLS.
4578   if (!klass->IsInterface() && klass->HasSuperClass()) {
4579     mirror::Class* super_class = klass->GetSuperClass();
4580     if (!super_class->IsInitialized()) {
4581       CHECK(!super_class->IsInterface());
4582       CHECK(can_init_parents);
4583       StackHandleScope<1> hs(self);
4584       Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
4585       bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true);
4586       if (!super_initialized) {
4587         // The super class was verified ahead of entering initializing, we should only be here if
4588         // the super class became erroneous due to initialization.
4589         CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending())
4590             << "Super class initialization failed for "
4591             << PrettyDescriptor(handle_scope_super.Get())
4592             << " that has unexpected status " << handle_scope_super->GetStatus()
4593             << "\nPending exception:\n"
4594             << (self->GetException() != nullptr ? self->GetException()->Dump() : "");
4595         ObjectLock<mirror::Class> lock(self, klass);
4596         // Initialization failed because the super-class is erroneous.
4597         mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4598         return false;
4599       }
4600     }
4601   }
4602 
4603   if (!klass->IsInterface()) {
4604     // Initialize interfaces with default methods for the JLS.
4605     size_t num_direct_interfaces = klass->NumDirectInterfaces();
4606     // Only setup the (expensive) handle scope if we actually need to.
4607     if (UNLIKELY(num_direct_interfaces > 0)) {
4608       StackHandleScope<1> hs_iface(self);
4609       MutableHandle<mirror::Class> handle_scope_iface(hs_iface.NewHandle<mirror::Class>(nullptr));
4610       for (size_t i = 0; i < num_direct_interfaces; i++) {
4611         handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass, i));
4612         CHECK(handle_scope_iface.Get() != nullptr);
4613         CHECK(handle_scope_iface->IsInterface());
4614         if (handle_scope_iface->HasBeenRecursivelyInitialized()) {
4615           // We have already done this for this interface. Skip it.
4616           continue;
4617         }
4618         // We cannot just call initialize class directly because we need to ensure that ALL
4619         // interfaces with default methods are initialized. Non-default interface initialization
4620         // will not affect other non-default super-interfaces.
4621         bool iface_initialized = InitializeDefaultInterfaceRecursive(self,
4622                                                                      handle_scope_iface,
4623                                                                      can_init_statics,
4624                                                                      can_init_parents);
4625         if (!iface_initialized) {
4626           ObjectLock<mirror::Class> lock(self, klass);
4627           // Initialization failed because one of our interfaces with default methods is erroneous.
4628           mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4629           return false;
4630         }
4631       }
4632     }
4633   }
4634 
4635   const size_t num_static_fields = klass->NumStaticFields();
4636   if (num_static_fields > 0) {
4637     const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4638     CHECK(dex_class_def != nullptr);
4639     const DexFile& dex_file = klass->GetDexFile();
4640     StackHandleScope<3> hs(self);
4641     Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
4642     Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
4643 
4644     // Eagerly fill in static fields so that the we don't have to do as many expensive
4645     // Class::FindStaticField in ResolveField.
4646     for (size_t i = 0; i < num_static_fields; ++i) {
4647       ArtField* field = klass->GetStaticField(i);
4648       const uint32_t field_idx = field->GetDexFieldIndex();
4649       ArtField* resolved_field = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
4650       if (resolved_field == nullptr) {
4651         dex_cache->SetResolvedField(field_idx, field, image_pointer_size_);
4652       } else {
4653         DCHECK_EQ(field, resolved_field);
4654       }
4655     }
4656 
4657     EncodedStaticFieldValueIterator value_it(dex_file, &dex_cache, &class_loader,
4658                                              this, *dex_class_def);
4659     const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
4660     ClassDataItemIterator field_it(dex_file, class_data);
4661     if (value_it.HasNext()) {
4662       DCHECK(field_it.HasNextStaticField());
4663       CHECK(can_init_statics);
4664       for ( ; value_it.HasNext(); value_it.Next(), field_it.Next()) {
4665         ArtField* field = ResolveField(
4666             dex_file, field_it.GetMemberIndex(), dex_cache, class_loader, true);
4667         if (Runtime::Current()->IsActiveTransaction()) {
4668           value_it.ReadValueToField<true>(field);
4669         } else {
4670           value_it.ReadValueToField<false>(field);
4671         }
4672         if (self->IsExceptionPending()) {
4673           break;
4674         }
4675         DCHECK(!value_it.HasNext() || field_it.HasNextStaticField());
4676       }
4677     }
4678   }
4679 
4680 
4681   if (!self->IsExceptionPending()) {
4682     ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4683     if (clinit != nullptr) {
4684       CHECK(can_init_statics);
4685       JValue result;
4686       clinit->Invoke(self, nullptr, 0, &result, "V");
4687     }
4688   }
4689   self->AllowThreadSuspension();
4690   uint64_t t1 = NanoTime();
4691 
4692   bool success = true;
4693   {
4694     ObjectLock<mirror::Class> lock(self, klass);
4695 
4696     if (self->IsExceptionPending()) {
4697       WrapExceptionInInitializer(klass);
4698       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4699       success = false;
4700     } else if (Runtime::Current()->IsTransactionAborted()) {
4701       // The exception thrown when the transaction aborted has been caught and cleared
4702       // so we need to throw it again now.
4703       VLOG(compiler) << "Return from class initializer of " << PrettyDescriptor(klass.Get())
4704                      << " without exception while transaction was aborted: re-throw it now.";
4705       Runtime::Current()->ThrowTransactionAbortError(self);
4706       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4707       success = false;
4708     } else {
4709       RuntimeStats* global_stats = Runtime::Current()->GetStats();
4710       RuntimeStats* thread_stats = self->GetStats();
4711       ++global_stats->class_init_count;
4712       ++thread_stats->class_init_count;
4713       global_stats->class_init_time_ns += (t1 - t0);
4714       thread_stats->class_init_time_ns += (t1 - t0);
4715       // Set the class as initialized except if failed to initialize static fields.
4716       mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4717       if (VLOG_IS_ON(class_linker)) {
4718         std::string temp;
4719         LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " <<
4720             klass->GetLocation();
4721       }
4722       // Opportunistically set static method trampolines to their destination.
4723       FixupStaticTrampolines(klass.Get());
4724     }
4725   }
4726   return success;
4727 }
4728 
4729 // We recursively run down the tree of interfaces. We need to do this in the order they are declared
4730 // and perform the initialization only on those interfaces that contain default methods.
InitializeDefaultInterfaceRecursive(Thread * self,Handle<mirror::Class> iface,bool can_init_statics,bool can_init_parents)4731 bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self,
4732                                                       Handle<mirror::Class> iface,
4733                                                       bool can_init_statics,
4734                                                       bool can_init_parents) {
4735   CHECK(iface->IsInterface());
4736   size_t num_direct_ifaces = iface->NumDirectInterfaces();
4737   // Only create the (expensive) handle scope if we need it.
4738   if (UNLIKELY(num_direct_ifaces > 0)) {
4739     StackHandleScope<1> hs(self);
4740     MutableHandle<mirror::Class> handle_super_iface(hs.NewHandle<mirror::Class>(nullptr));
4741     // First we initialize all of iface's super-interfaces recursively.
4742     for (size_t i = 0; i < num_direct_ifaces; i++) {
4743       mirror::Class* super_iface = mirror::Class::GetDirectInterface(self, iface, i);
4744       if (!super_iface->HasBeenRecursivelyInitialized()) {
4745         // Recursive step
4746         handle_super_iface.Assign(super_iface);
4747         if (!InitializeDefaultInterfaceRecursive(self,
4748                                                  handle_super_iface,
4749                                                  can_init_statics,
4750                                                  can_init_parents)) {
4751           return false;
4752         }
4753       }
4754     }
4755   }
4756 
4757   bool result = true;
4758   // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not)
4759   // initialize if we don't have default methods.
4760   if (iface->HasDefaultMethods()) {
4761     result = EnsureInitialized(self, iface, can_init_statics, can_init_parents);
4762   }
4763 
4764   // Mark that this interface has undergone recursive default interface initialization so we know we
4765   // can skip it on any later class initializations. We do this even if we are not a default
4766   // interface since we can still avoid the traversal. This is purely a performance optimization.
4767   if (result) {
4768     // TODO This should be done in a better way
4769     ObjectLock<mirror::Class> lock(self, iface);
4770     iface->SetRecursivelyInitialized();
4771   }
4772   return result;
4773 }
4774 
WaitForInitializeClass(Handle<mirror::Class> klass,Thread * self,ObjectLock<mirror::Class> & lock)4775 bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass,
4776                                          Thread* self,
4777                                          ObjectLock<mirror::Class>& lock)
4778     SHARED_REQUIRES(Locks::mutator_lock_) {
4779   while (true) {
4780     self->AssertNoPendingException();
4781     CHECK(!klass->IsInitialized());
4782     lock.WaitIgnoringInterrupts();
4783 
4784     // When we wake up, repeat the test for init-in-progress.  If
4785     // there's an exception pending (only possible if
4786     // we were not using WaitIgnoringInterrupts), bail out.
4787     if (self->IsExceptionPending()) {
4788       WrapExceptionInInitializer(klass);
4789       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
4790       return false;
4791     }
4792     // Spurious wakeup? Go back to waiting.
4793     if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4794       continue;
4795     }
4796     if (klass->GetStatus() == mirror::Class::kStatusVerified &&
4797         Runtime::Current()->IsAotCompiler()) {
4798       // Compile time initialization failed.
4799       return false;
4800     }
4801     if (klass->IsErroneous()) {
4802       // The caller wants an exception, but it was thrown in a
4803       // different thread.  Synthesize one here.
4804       ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
4805                                 PrettyDescriptor(klass.Get()).c_str());
4806       VlogClassInitializationFailure(klass);
4807       return false;
4808     }
4809     if (klass->IsInitialized()) {
4810       return true;
4811     }
4812     LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass.Get()) << " is "
4813         << klass->GetStatus();
4814   }
4815   UNREACHABLE();
4816 }
4817 
ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,ArtMethod * m)4818 static void ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,
4819                                                           Handle<mirror::Class> super_klass,
4820                                                           ArtMethod* method,
4821                                                           ArtMethod* m)
4822     SHARED_REQUIRES(Locks::mutator_lock_) {
4823   DCHECK(Thread::Current()->IsExceptionPending());
4824   DCHECK(!m->IsProxyMethod());
4825   const DexFile* dex_file = m->GetDexFile();
4826   const DexFile::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex());
4827   const DexFile::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id);
4828   uint16_t return_type_idx = proto_id.return_type_idx_;
4829   std::string return_type = PrettyType(return_type_idx, *dex_file);
4830   std::string class_loader = PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4831   ThrowWrappedLinkageError(klass.Get(),
4832                            "While checking class %s method %s signature against %s %s: "
4833                            "Failed to resolve return type %s with %s",
4834                            PrettyDescriptor(klass.Get()).c_str(),
4835                            PrettyMethod(method).c_str(),
4836                            super_klass->IsInterface() ? "interface" : "superclass",
4837                            PrettyDescriptor(super_klass.Get()).c_str(),
4838                            return_type.c_str(), class_loader.c_str());
4839 }
4840 
ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,ArtMethod * m,uint32_t index,uint32_t arg_type_idx)4841 static void ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,
4842                                                    Handle<mirror::Class> super_klass,
4843                                                    ArtMethod* method,
4844                                                    ArtMethod* m,
4845                                                    uint32_t index,
4846                                                    uint32_t arg_type_idx)
4847     SHARED_REQUIRES(Locks::mutator_lock_) {
4848   DCHECK(Thread::Current()->IsExceptionPending());
4849   DCHECK(!m->IsProxyMethod());
4850   const DexFile* dex_file = m->GetDexFile();
4851   std::string arg_type = PrettyType(arg_type_idx, *dex_file);
4852   std::string class_loader = PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4853   ThrowWrappedLinkageError(klass.Get(),
4854                            "While checking class %s method %s signature against %s %s: "
4855                            "Failed to resolve arg %u type %s with %s",
4856                            PrettyDescriptor(klass.Get()).c_str(),
4857                            PrettyMethod(method).c_str(),
4858                            super_klass->IsInterface() ? "interface" : "superclass",
4859                            PrettyDescriptor(super_klass.Get()).c_str(),
4860                            index, arg_type.c_str(), class_loader.c_str());
4861 }
4862 
ThrowSignatureMismatch(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,const std::string & error_msg)4863 static void ThrowSignatureMismatch(Handle<mirror::Class> klass,
4864                                    Handle<mirror::Class> super_klass,
4865                                    ArtMethod* method,
4866                                    const std::string& error_msg)
4867     SHARED_REQUIRES(Locks::mutator_lock_) {
4868   ThrowLinkageError(klass.Get(),
4869                     "Class %s method %s resolves differently in %s %s: %s",
4870                     PrettyDescriptor(klass.Get()).c_str(),
4871                     PrettyMethod(method).c_str(),
4872                     super_klass->IsInterface() ? "interface" : "superclass",
4873                     PrettyDescriptor(super_klass.Get()).c_str(),
4874                     error_msg.c_str());
4875 }
4876 
HasSameSignatureWithDifferentClassLoaders(Thread * self,size_t pointer_size,Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method1,ArtMethod * method2)4877 static bool HasSameSignatureWithDifferentClassLoaders(Thread* self,
4878                                                       size_t pointer_size,
4879                                                       Handle<mirror::Class> klass,
4880                                                       Handle<mirror::Class> super_klass,
4881                                                       ArtMethod* method1,
4882                                                       ArtMethod* method2)
4883     SHARED_REQUIRES(Locks::mutator_lock_) {
4884   {
4885     StackHandleScope<1> hs(self);
4886     Handle<mirror::Class> return_type(hs.NewHandle(method1->GetReturnType(true /* resolve */,
4887                                                                           pointer_size)));
4888     if (UNLIKELY(return_type.Get() == nullptr)) {
4889       ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1);
4890       return false;
4891     }
4892     mirror::Class* other_return_type = method2->GetReturnType(true /* resolve */,
4893                                                               pointer_size);
4894     if (UNLIKELY(other_return_type == nullptr)) {
4895       ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2);
4896       return false;
4897     }
4898     if (UNLIKELY(other_return_type != return_type.Get())) {
4899       ThrowSignatureMismatch(klass, super_klass, method1,
4900                              StringPrintf("Return types mismatch: %s(%p) vs %s(%p)",
4901                                           PrettyClassAndClassLoader(return_type.Get()).c_str(),
4902                                           return_type.Get(),
4903                                           PrettyClassAndClassLoader(other_return_type).c_str(),
4904                                           other_return_type));
4905       return false;
4906     }
4907   }
4908   const DexFile::TypeList* types1 = method1->GetParameterTypeList();
4909   const DexFile::TypeList* types2 = method2->GetParameterTypeList();
4910   if (types1 == nullptr) {
4911     if (types2 != nullptr && types2->Size() != 0) {
4912       ThrowSignatureMismatch(klass, super_klass, method1,
4913                              StringPrintf("Type list mismatch with %s",
4914                                           PrettyMethod(method2, true).c_str()));
4915       return false;
4916     }
4917     return true;
4918   } else if (UNLIKELY(types2 == nullptr)) {
4919     if (types1->Size() != 0) {
4920       ThrowSignatureMismatch(klass, super_klass, method1,
4921                              StringPrintf("Type list mismatch with %s",
4922                                           PrettyMethod(method2, true).c_str()));
4923       return false;
4924     }
4925     return true;
4926   }
4927   uint32_t num_types = types1->Size();
4928   if (UNLIKELY(num_types != types2->Size())) {
4929     ThrowSignatureMismatch(klass, super_klass, method1,
4930                            StringPrintf("Type list mismatch with %s",
4931                                         PrettyMethod(method2, true).c_str()));
4932     return false;
4933   }
4934   for (uint32_t i = 0; i < num_types; ++i) {
4935     StackHandleScope<1> hs(self);
4936     uint32_t param_type_idx = types1->GetTypeItem(i).type_idx_;
4937     Handle<mirror::Class> param_type(hs.NewHandle(
4938         method1->GetClassFromTypeIndex(param_type_idx, true /* resolve */, pointer_size)));
4939     if (UNLIKELY(param_type.Get() == nullptr)) {
4940       ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
4941                                              method1, i, param_type_idx);
4942       return false;
4943     }
4944     uint32_t other_param_type_idx = types2->GetTypeItem(i).type_idx_;
4945     mirror::Class* other_param_type =
4946         method2->GetClassFromTypeIndex(other_param_type_idx, true /* resolve */, pointer_size);
4947     if (UNLIKELY(other_param_type == nullptr)) {
4948       ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
4949                                              method2, i, other_param_type_idx);
4950       return false;
4951     }
4952     if (UNLIKELY(param_type.Get() != other_param_type)) {
4953       ThrowSignatureMismatch(klass, super_klass, method1,
4954                              StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)",
4955                                           i,
4956                                           PrettyClassAndClassLoader(param_type.Get()).c_str(),
4957                                           param_type.Get(),
4958                                           PrettyClassAndClassLoader(other_param_type).c_str(),
4959                                           other_param_type));
4960       return false;
4961     }
4962   }
4963   return true;
4964 }
4965 
4966 
ValidateSuperClassDescriptors(Handle<mirror::Class> klass)4967 bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) {
4968   if (klass->IsInterface()) {
4969     return true;
4970   }
4971   // Begin with the methods local to the superclass.
4972   Thread* self = Thread::Current();
4973   StackHandleScope<1> hs(self);
4974   MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(nullptr));
4975   if (klass->HasSuperClass() &&
4976       klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
4977     super_klass.Assign(klass->GetSuperClass());
4978     for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) {
4979       auto* m = klass->GetVTableEntry(i, image_pointer_size_);
4980       auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_);
4981       if (m != super_m) {
4982         if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, image_pointer_size_,
4983                                                                 klass, super_klass,
4984                                                                 m, super_m))) {
4985           self->AssertPendingException();
4986           return false;
4987         }
4988       }
4989     }
4990   }
4991   for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
4992     super_klass.Assign(klass->GetIfTable()->GetInterface(i));
4993     if (klass->GetClassLoader() != super_klass->GetClassLoader()) {
4994       uint32_t num_methods = super_klass->NumVirtualMethods();
4995       for (uint32_t j = 0; j < num_methods; ++j) {
4996         auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>(
4997             j, image_pointer_size_);
4998         auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_);
4999         if (m != super_m) {
5000           if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, image_pointer_size_,
5001                                                                   klass, super_klass,
5002                                                                   m, super_m))) {
5003             self->AssertPendingException();
5004             return false;
5005           }
5006         }
5007       }
5008     }
5009   }
5010   return true;
5011 }
5012 
EnsureInitialized(Thread * self,Handle<mirror::Class> c,bool can_init_fields,bool can_init_parents)5013 bool ClassLinker::EnsureInitialized(Thread* self, Handle<mirror::Class> c, bool can_init_fields,
5014                                     bool can_init_parents) {
5015   DCHECK(c.Get() != nullptr);
5016   if (c->IsInitialized()) {
5017     EnsureSkipAccessChecksMethods(c);
5018     return true;
5019   }
5020   const bool success = InitializeClass(self, c, can_init_fields, can_init_parents);
5021   if (!success) {
5022     if (can_init_fields && can_init_parents) {
5023       CHECK(self->IsExceptionPending()) << PrettyClass(c.Get());
5024     }
5025   } else {
5026     self->AssertNoPendingException();
5027   }
5028   return success;
5029 }
5030 
FixupTemporaryDeclaringClass(mirror::Class * temp_class,mirror::Class * new_class)5031 void ClassLinker::FixupTemporaryDeclaringClass(mirror::Class* temp_class,
5032                                                mirror::Class* new_class) {
5033   DCHECK_EQ(temp_class->NumInstanceFields(), 0u);
5034   for (ArtField& field : new_class->GetIFields()) {
5035     if (field.GetDeclaringClass() == temp_class) {
5036       field.SetDeclaringClass(new_class);
5037     }
5038   }
5039 
5040   DCHECK_EQ(temp_class->NumStaticFields(), 0u);
5041   for (ArtField& field : new_class->GetSFields()) {
5042     if (field.GetDeclaringClass() == temp_class) {
5043       field.SetDeclaringClass(new_class);
5044     }
5045   }
5046 
5047   DCHECK_EQ(temp_class->NumDirectMethods(), 0u);
5048   DCHECK_EQ(temp_class->NumVirtualMethods(), 0u);
5049   for (auto& method : new_class->GetMethods(image_pointer_size_)) {
5050     if (method.GetDeclaringClass() == temp_class) {
5051       method.SetDeclaringClass(new_class);
5052     }
5053   }
5054 
5055   // Make sure the remembered set and mod-union tables know that we updated some of the native
5056   // roots.
5057   Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(new_class);
5058 }
5059 
RegisterClassLoader(mirror::ClassLoader * class_loader)5060 void ClassLinker::RegisterClassLoader(mirror::ClassLoader* class_loader) {
5061   CHECK(class_loader->GetAllocator() == nullptr);
5062   CHECK(class_loader->GetClassTable() == nullptr);
5063   Thread* const self = Thread::Current();
5064   ClassLoaderData data;
5065   data.weak_root = self->GetJniEnv()->vm->AddWeakGlobalRef(self, class_loader);
5066   // Create and set the class table.
5067   data.class_table = new ClassTable;
5068   class_loader->SetClassTable(data.class_table);
5069   // Create and set the linear allocator.
5070   data.allocator = Runtime::Current()->CreateLinearAlloc();
5071   class_loader->SetAllocator(data.allocator);
5072   // Add to the list so that we know to free the data later.
5073   class_loaders_.push_back(data);
5074 }
5075 
InsertClassTableForClassLoader(mirror::ClassLoader * class_loader)5076 ClassTable* ClassLinker::InsertClassTableForClassLoader(mirror::ClassLoader* class_loader) {
5077   if (class_loader == nullptr) {
5078     return &boot_class_table_;
5079   }
5080   ClassTable* class_table = class_loader->GetClassTable();
5081   if (class_table == nullptr) {
5082     RegisterClassLoader(class_loader);
5083     class_table = class_loader->GetClassTable();
5084     DCHECK(class_table != nullptr);
5085   }
5086   return class_table;
5087 }
5088 
ClassTableForClassLoader(mirror::ClassLoader * class_loader)5089 ClassTable* ClassLinker::ClassTableForClassLoader(mirror::ClassLoader* class_loader) {
5090   return class_loader == nullptr ? &boot_class_table_ : class_loader->GetClassTable();
5091 }
5092 
FindSuperImt(mirror::Class * klass,size_t pointer_size)5093 static ImTable* FindSuperImt(mirror::Class* klass, size_t pointer_size)
5094     SHARED_REQUIRES(Locks::mutator_lock_) {
5095   while (klass->HasSuperClass()) {
5096     klass = klass->GetSuperClass();
5097     if (klass->ShouldHaveImt()) {
5098       return klass->GetImt(pointer_size);
5099     }
5100   }
5101   return nullptr;
5102 }
5103 
LinkClass(Thread * self,const char * descriptor,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces,MutableHandle<mirror::Class> * h_new_class_out)5104 bool ClassLinker::LinkClass(Thread* self,
5105                             const char* descriptor,
5106                             Handle<mirror::Class> klass,
5107                             Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5108                             MutableHandle<mirror::Class>* h_new_class_out) {
5109   CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5110 
5111   if (!LinkSuperClass(klass)) {
5112     return false;
5113   }
5114   ArtMethod* imt_data[ImTable::kSize];
5115   // If there are any new conflicts compared to super class.
5116   bool new_conflict = false;
5117   std::fill_n(imt_data, arraysize(imt_data), Runtime::Current()->GetImtUnimplementedMethod());
5118   if (!LinkMethods(self, klass, interfaces, &new_conflict, imt_data)) {
5119     return false;
5120   }
5121   if (!LinkInstanceFields(self, klass)) {
5122     return false;
5123   }
5124   size_t class_size;
5125   if (!LinkStaticFields(self, klass, &class_size)) {
5126     return false;
5127   }
5128   CreateReferenceInstanceOffsets(klass);
5129   CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5130 
5131   ImTable* imt = nullptr;
5132   if (klass->ShouldHaveImt()) {
5133     // If there are any new conflicts compared to the super class we can not make a copy. There
5134     // can be cases where both will have a conflict method at the same slot without having the same
5135     // set of conflicts. In this case, we can not share the IMT since the conflict table slow path
5136     // will possibly create a table that is incorrect for either of the classes.
5137     // Same IMT with new_conflict does not happen very often.
5138     if (!new_conflict) {
5139       ImTable* super_imt = FindSuperImt(klass.Get(), image_pointer_size_);
5140       if (super_imt != nullptr) {
5141         bool imt_equals = true;
5142         for (size_t i = 0; i < ImTable::kSize && imt_equals; ++i) {
5143           imt_equals = imt_equals && (super_imt->Get(i, image_pointer_size_) == imt_data[i]);
5144         }
5145         if (imt_equals) {
5146           imt = super_imt;
5147         }
5148       }
5149     }
5150     if (imt == nullptr) {
5151       LinearAlloc* allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
5152       imt = reinterpret_cast<ImTable*>(
5153           allocator->Alloc(self, ImTable::SizeInBytes(image_pointer_size_)));
5154       if (imt == nullptr) {
5155         return false;
5156       }
5157       imt->Populate(imt_data, image_pointer_size_);
5158     }
5159   }
5160 
5161   if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) {
5162     // We don't need to retire this class as it has no embedded tables or it was created the
5163     // correct size during class linker initialization.
5164     CHECK_EQ(klass->GetClassSize(), class_size) << PrettyDescriptor(klass.Get());
5165 
5166     if (klass->ShouldHaveEmbeddedVTable()) {
5167       klass->PopulateEmbeddedVTable(image_pointer_size_);
5168     }
5169     if (klass->ShouldHaveImt()) {
5170       klass->SetImt(imt, image_pointer_size_);
5171     }
5172     // This will notify waiters on klass that saw the not yet resolved
5173     // class in the class_table_ during EnsureResolved.
5174     mirror::Class::SetStatus(klass, mirror::Class::kStatusResolved, self);
5175     h_new_class_out->Assign(klass.Get());
5176   } else {
5177     CHECK(!klass->IsResolved());
5178     // Retire the temporary class and create the correctly sized resolved class.
5179     StackHandleScope<1> hs(self);
5180     auto h_new_class = hs.NewHandle(klass->CopyOf(self, class_size, imt, image_pointer_size_));
5181     // Set arrays to null since we don't want to have multiple classes with the same ArtField or
5182     // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC
5183     // may not see any references to the target space and clean the card for a class if another
5184     // class had the same array pointer.
5185     klass->SetMethodsPtrUnchecked(nullptr, 0, 0);
5186     klass->SetSFieldsPtrUnchecked(nullptr);
5187     klass->SetIFieldsPtrUnchecked(nullptr);
5188     if (UNLIKELY(h_new_class.Get() == nullptr)) {
5189       self->AssertPendingOOMException();
5190       mirror::Class::SetStatus(klass, mirror::Class::kStatusError, self);
5191       return false;
5192     }
5193 
5194     CHECK_EQ(h_new_class->GetClassSize(), class_size);
5195     ObjectLock<mirror::Class> lock(self, h_new_class);
5196     FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get());
5197 
5198     {
5199       WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
5200       mirror::ClassLoader* const class_loader = h_new_class.Get()->GetClassLoader();
5201       ClassTable* const table = InsertClassTableForClassLoader(class_loader);
5202       mirror::Class* existing = table->UpdateClass(descriptor, h_new_class.Get(),
5203                                                    ComputeModifiedUtf8Hash(descriptor));
5204       if (class_loader != nullptr) {
5205         // We updated the class in the class table, perform the write barrier so that the GC knows
5206         // about the change.
5207         Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
5208       }
5209       CHECK_EQ(existing, klass.Get());
5210       if (kIsDebugBuild && class_loader == nullptr && dex_cache_boot_image_class_lookup_required_) {
5211         // Check a class loaded with the system class loader matches one in the image if the class
5212         // is in the image.
5213         mirror::Class* const image_class = LookupClassFromBootImage(descriptor);
5214         if (image_class != nullptr) {
5215           CHECK_EQ(klass.Get(), existing) << descriptor;
5216         }
5217       }
5218       if (log_new_class_table_roots_) {
5219         new_class_roots_.push_back(GcRoot<mirror::Class>(h_new_class.Get()));
5220       }
5221     }
5222 
5223     // This will notify waiters on temp class that saw the not yet resolved class in the
5224     // class_table_ during EnsureResolved.
5225     mirror::Class::SetStatus(klass, mirror::Class::kStatusRetired, self);
5226 
5227     CHECK_EQ(h_new_class->GetStatus(), mirror::Class::kStatusResolving);
5228     // This will notify waiters on new_class that saw the not yet resolved
5229     // class in the class_table_ during EnsureResolved.
5230     mirror::Class::SetStatus(h_new_class, mirror::Class::kStatusResolved, self);
5231     // Return the new class.
5232     h_new_class_out->Assign(h_new_class.Get());
5233   }
5234   return true;
5235 }
5236 
CountMethodsAndFields(ClassDataItemIterator & dex_data,size_t * virtual_methods,size_t * direct_methods,size_t * static_fields,size_t * instance_fields)5237 static void CountMethodsAndFields(ClassDataItemIterator& dex_data,
5238                                   size_t* virtual_methods,
5239                                   size_t* direct_methods,
5240                                   size_t* static_fields,
5241                                   size_t* instance_fields) {
5242   *virtual_methods = *direct_methods = *static_fields = *instance_fields = 0;
5243 
5244   while (dex_data.HasNextStaticField()) {
5245     dex_data.Next();
5246     (*static_fields)++;
5247   }
5248   while (dex_data.HasNextInstanceField()) {
5249     dex_data.Next();
5250     (*instance_fields)++;
5251   }
5252   while (dex_data.HasNextDirectMethod()) {
5253     (*direct_methods)++;
5254     dex_data.Next();
5255   }
5256   while (dex_data.HasNextVirtualMethod()) {
5257     (*virtual_methods)++;
5258     dex_data.Next();
5259   }
5260   DCHECK(!dex_data.HasNext());
5261 }
5262 
DumpClass(std::ostream & os,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,const char * suffix)5263 static void DumpClass(std::ostream& os,
5264                       const DexFile& dex_file, const DexFile::ClassDef& dex_class_def,
5265                       const char* suffix) {
5266   ClassDataItemIterator dex_data(dex_file, dex_file.GetClassData(dex_class_def));
5267   os << dex_file.GetClassDescriptor(dex_class_def) << suffix << ":\n";
5268   os << " Static fields:\n";
5269   while (dex_data.HasNextStaticField()) {
5270     const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5271     os << "  " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5272     dex_data.Next();
5273   }
5274   os << " Instance fields:\n";
5275   while (dex_data.HasNextInstanceField()) {
5276     const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5277     os << "  " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5278     dex_data.Next();
5279   }
5280   os << " Direct methods:\n";
5281   while (dex_data.HasNextDirectMethod()) {
5282     const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5283     os << "  " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5284     dex_data.Next();
5285   }
5286   os << " Virtual methods:\n";
5287   while (dex_data.HasNextVirtualMethod()) {
5288     const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5289     os << "  " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5290     dex_data.Next();
5291   }
5292 }
5293 
DumpClasses(const DexFile & dex_file1,const DexFile::ClassDef & dex_class_def1,const DexFile & dex_file2,const DexFile::ClassDef & dex_class_def2)5294 static std::string DumpClasses(const DexFile& dex_file1,
5295                                const DexFile::ClassDef& dex_class_def1,
5296                                const DexFile& dex_file2,
5297                                const DexFile::ClassDef& dex_class_def2) {
5298   std::ostringstream os;
5299   DumpClass(os, dex_file1, dex_class_def1, " (Compile time)");
5300   DumpClass(os, dex_file2, dex_class_def2, " (Runtime)");
5301   return os.str();
5302 }
5303 
5304 
5305 // Very simple structural check on whether the classes match. Only compares the number of
5306 // methods and fields.
SimpleStructuralCheck(const DexFile & dex_file1,const DexFile::ClassDef & dex_class_def1,const DexFile & dex_file2,const DexFile::ClassDef & dex_class_def2,std::string * error_msg)5307 static bool SimpleStructuralCheck(const DexFile& dex_file1,
5308                                   const DexFile::ClassDef& dex_class_def1,
5309                                   const DexFile& dex_file2,
5310                                   const DexFile::ClassDef& dex_class_def2,
5311                                   std::string* error_msg) {
5312   ClassDataItemIterator dex_data1(dex_file1, dex_file1.GetClassData(dex_class_def1));
5313   ClassDataItemIterator dex_data2(dex_file2, dex_file2.GetClassData(dex_class_def2));
5314 
5315   // Counters for current dex file.
5316   size_t dex_virtual_methods1, dex_direct_methods1, dex_static_fields1, dex_instance_fields1;
5317   CountMethodsAndFields(dex_data1,
5318                         &dex_virtual_methods1,
5319                         &dex_direct_methods1,
5320                         &dex_static_fields1,
5321                         &dex_instance_fields1);
5322   // Counters for compile-time dex file.
5323   size_t dex_virtual_methods2, dex_direct_methods2, dex_static_fields2, dex_instance_fields2;
5324   CountMethodsAndFields(dex_data2,
5325                         &dex_virtual_methods2,
5326                         &dex_direct_methods2,
5327                         &dex_static_fields2,
5328                         &dex_instance_fields2);
5329 
5330   if (dex_virtual_methods1 != dex_virtual_methods2) {
5331     std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5332     *error_msg = StringPrintf("Virtual method count off: %zu vs %zu\n%s",
5333                               dex_virtual_methods1,
5334                               dex_virtual_methods2,
5335                               class_dump.c_str());
5336     return false;
5337   }
5338   if (dex_direct_methods1 != dex_direct_methods2) {
5339     std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5340     *error_msg = StringPrintf("Direct method count off: %zu vs %zu\n%s",
5341                               dex_direct_methods1,
5342                               dex_direct_methods2,
5343                               class_dump.c_str());
5344     return false;
5345   }
5346   if (dex_static_fields1 != dex_static_fields2) {
5347     std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5348     *error_msg = StringPrintf("Static field count off: %zu vs %zu\n%s",
5349                               dex_static_fields1,
5350                               dex_static_fields2,
5351                               class_dump.c_str());
5352     return false;
5353   }
5354   if (dex_instance_fields1 != dex_instance_fields2) {
5355     std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5356     *error_msg = StringPrintf("Instance field count off: %zu vs %zu\n%s",
5357                               dex_instance_fields1,
5358                               dex_instance_fields2,
5359                               class_dump.c_str());
5360     return false;
5361   }
5362 
5363   return true;
5364 }
5365 
5366 // Checks whether a the super-class changed from what we had at compile-time. This would
5367 // invalidate quickening.
CheckSuperClassChange(Handle<mirror::Class> klass,const DexFile & dex_file,const DexFile::ClassDef & class_def,mirror::Class * super_class)5368 static bool CheckSuperClassChange(Handle<mirror::Class> klass,
5369                                   const DexFile& dex_file,
5370                                   const DexFile::ClassDef& class_def,
5371                                   mirror::Class* super_class)
5372     SHARED_REQUIRES(Locks::mutator_lock_) {
5373   // Check for unexpected changes in the superclass.
5374   // Quick check 1) is the super_class class-loader the boot class loader? This always has
5375   // precedence.
5376   if (super_class->GetClassLoader() != nullptr &&
5377       // Quick check 2) different dex cache? Breaks can only occur for different dex files,
5378       // which is implied by different dex cache.
5379       klass->GetDexCache() != super_class->GetDexCache()) {
5380     // Now comes the expensive part: things can be broken if (a) the klass' dex file has a
5381     // definition for the super-class, and (b) the files are in separate oat files. The oat files
5382     // are referenced from the dex file, so do (b) first. Only relevant if we have oat files.
5383     const OatDexFile* class_oat_dex_file = dex_file.GetOatDexFile();
5384     const OatFile* class_oat_file = nullptr;
5385     if (class_oat_dex_file != nullptr) {
5386       class_oat_file = class_oat_dex_file->GetOatFile();
5387     }
5388 
5389     if (class_oat_file != nullptr) {
5390       const OatDexFile* loaded_super_oat_dex_file = super_class->GetDexFile().GetOatDexFile();
5391       const OatFile* loaded_super_oat_file = nullptr;
5392       if (loaded_super_oat_dex_file != nullptr) {
5393         loaded_super_oat_file = loaded_super_oat_dex_file->GetOatFile();
5394       }
5395 
5396       if (loaded_super_oat_file != nullptr && class_oat_file != loaded_super_oat_file) {
5397         // Now check (a).
5398         const DexFile::ClassDef* super_class_def = dex_file.FindClassDef(class_def.superclass_idx_);
5399         if (super_class_def != nullptr) {
5400           // Uh-oh, we found something. Do our check.
5401           std::string error_msg;
5402           if (!SimpleStructuralCheck(dex_file, *super_class_def,
5403                                      super_class->GetDexFile(), *super_class->GetClassDef(),
5404                                      &error_msg)) {
5405             // Print a warning to the log. This exception might be caught, e.g., as common in test
5406             // drivers. When the class is later tried to be used, we re-throw a new instance, as we
5407             // only save the type of the exception.
5408             LOG(WARNING) << "Incompatible structural change detected: " <<
5409                 StringPrintf(
5410                     "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5411                     PrettyType(super_class_def->class_idx_, dex_file).c_str(),
5412                     class_oat_file->GetLocation().c_str(),
5413                     loaded_super_oat_file->GetLocation().c_str(),
5414                     error_msg.c_str());
5415             ThrowIncompatibleClassChangeError(klass.Get(),
5416                 "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5417                 PrettyType(super_class_def->class_idx_, dex_file).c_str(),
5418                 class_oat_file->GetLocation().c_str(),
5419                 loaded_super_oat_file->GetLocation().c_str(),
5420                 error_msg.c_str());
5421             return false;
5422           }
5423         }
5424       }
5425     }
5426   }
5427   return true;
5428 }
5429 
LoadSuperAndInterfaces(Handle<mirror::Class> klass,const DexFile & dex_file)5430 bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) {
5431   CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus());
5432   const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex());
5433   uint16_t super_class_idx = class_def.superclass_idx_;
5434   if (super_class_idx != DexFile::kDexNoIndex16) {
5435     // Check that a class does not inherit from itself directly.
5436     //
5437     // TODO: This is a cheap check to detect the straightforward case
5438     // of a class extending itself (b/28685551), but we should do a
5439     // proper cycle detection on loaded classes, to detect all cases
5440     // of class circularity errors (b/28830038).
5441     if (super_class_idx == class_def.class_idx_) {
5442       ThrowClassCircularityError(klass.Get(),
5443                                  "Class %s extends itself",
5444                                  PrettyDescriptor(klass.Get()).c_str());
5445       return false;
5446     }
5447 
5448     mirror::Class* super_class = ResolveType(dex_file, super_class_idx, klass.Get());
5449     if (super_class == nullptr) {
5450       DCHECK(Thread::Current()->IsExceptionPending());
5451       return false;
5452     }
5453     // Verify
5454     if (!klass->CanAccess(super_class)) {
5455       ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible",
5456                               PrettyDescriptor(super_class).c_str(),
5457                               PrettyDescriptor(klass.Get()).c_str());
5458       return false;
5459     }
5460     CHECK(super_class->IsResolved());
5461     klass->SetSuperClass(super_class);
5462 
5463     if (!CheckSuperClassChange(klass, dex_file, class_def, super_class)) {
5464       DCHECK(Thread::Current()->IsExceptionPending());
5465       return false;
5466     }
5467   }
5468   const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def);
5469   if (interfaces != nullptr) {
5470     for (size_t i = 0; i < interfaces->Size(); i++) {
5471       uint16_t idx = interfaces->GetTypeItem(i).type_idx_;
5472       mirror::Class* interface = ResolveType(dex_file, idx, klass.Get());
5473       if (interface == nullptr) {
5474         DCHECK(Thread::Current()->IsExceptionPending());
5475         return false;
5476       }
5477       // Verify
5478       if (!klass->CanAccess(interface)) {
5479         // TODO: the RI seemed to ignore this in my testing.
5480         ThrowIllegalAccessError(klass.Get(),
5481                                 "Interface %s implemented by class %s is inaccessible",
5482                                 PrettyDescriptor(interface).c_str(),
5483                                 PrettyDescriptor(klass.Get()).c_str());
5484         return false;
5485       }
5486     }
5487   }
5488   // Mark the class as loaded.
5489   mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, nullptr);
5490   return true;
5491 }
5492 
LinkSuperClass(Handle<mirror::Class> klass)5493 bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) {
5494   CHECK(!klass->IsPrimitive());
5495   mirror::Class* super = klass->GetSuperClass();
5496   if (klass.Get() == GetClassRoot(kJavaLangObject)) {
5497     if (super != nullptr) {
5498       ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass");
5499       return false;
5500     }
5501     return true;
5502   }
5503   if (super == nullptr) {
5504     ThrowLinkageError(klass.Get(), "No superclass defined for class %s",
5505                       PrettyDescriptor(klass.Get()).c_str());
5506     return false;
5507   }
5508   // Verify
5509   if (super->IsFinal() || super->IsInterface()) {
5510     ThrowIncompatibleClassChangeError(klass.Get(),
5511                                       "Superclass %s of %s is %s",
5512                                       PrettyDescriptor(super).c_str(),
5513                                       PrettyDescriptor(klass.Get()).c_str(),
5514                                       super->IsFinal() ? "declared final" : "an interface");
5515     return false;
5516   }
5517   if (!klass->CanAccess(super)) {
5518     ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s",
5519                             PrettyDescriptor(super).c_str(),
5520                             PrettyDescriptor(klass.Get()).c_str());
5521     return false;
5522   }
5523 
5524   // Inherit kAccClassIsFinalizable from the superclass in case this
5525   // class doesn't override finalize.
5526   if (super->IsFinalizable()) {
5527     klass->SetFinalizable();
5528   }
5529 
5530   // Inherit class loader flag form super class.
5531   if (super->IsClassLoaderClass()) {
5532     klass->SetClassLoaderClass();
5533   }
5534 
5535   // Inherit reference flags (if any) from the superclass.
5536   uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference);
5537   if (reference_flags != 0) {
5538     CHECK_EQ(klass->GetClassFlags(), 0u);
5539     klass->SetClassFlags(klass->GetClassFlags() | reference_flags);
5540   }
5541   // Disallow custom direct subclasses of java.lang.ref.Reference.
5542   if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) {
5543     ThrowLinkageError(klass.Get(),
5544                       "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
5545                       PrettyDescriptor(klass.Get()).c_str());
5546     return false;
5547   }
5548 
5549   if (kIsDebugBuild) {
5550     // Ensure super classes are fully resolved prior to resolving fields..
5551     while (super != nullptr) {
5552       CHECK(super->IsResolved());
5553       super = super->GetSuperClass();
5554     }
5555   }
5556   return true;
5557 }
5558 
5559 // Populate the class vtable and itable. Compute return type indices.
LinkMethods(Thread * self,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces,bool * out_new_conflict,ArtMethod ** out_imt)5560 bool ClassLinker::LinkMethods(Thread* self,
5561                               Handle<mirror::Class> klass,
5562                               Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5563                               bool* out_new_conflict,
5564                               ArtMethod** out_imt) {
5565   self->AllowThreadSuspension();
5566   // A map from vtable indexes to the method they need to be updated to point to. Used because we
5567   // need to have default methods be in the virtuals array of each class but we don't set that up
5568   // until LinkInterfaceMethods.
5569   std::unordered_map<size_t, ClassLinker::MethodTranslation> default_translations;
5570   // Link virtual methods then interface methods.
5571   // We set up the interface lookup table first because we need it to determine if we need to update
5572   // any vtable entries with new default method implementations.
5573   return SetupInterfaceLookupTable(self, klass, interfaces)
5574           && LinkVirtualMethods(self, klass, /*out*/ &default_translations)
5575           && LinkInterfaceMethods(self, klass, default_translations, out_new_conflict, out_imt);
5576 }
5577 
5578 // Comparator for name and signature of a method, used in finding overriding methods. Implementation
5579 // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex
5580 // caches in the implementation below.
5581 class MethodNameAndSignatureComparator FINAL : public ValueObject {
5582  public:
5583   explicit MethodNameAndSignatureComparator(ArtMethod* method)
SHARED_REQUIRES(Locks::mutator_lock_)5584       SHARED_REQUIRES(Locks::mutator_lock_) :
5585       dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())),
5586       name_(nullptr), name_len_(0) {
5587     DCHECK(!method->IsProxyMethod()) << PrettyMethod(method);
5588   }
5589 
GetName()5590   const char* GetName() {
5591     if (name_ == nullptr) {
5592       name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_);
5593     }
5594     return name_;
5595   }
5596 
HasSameNameAndSignature(ArtMethod * other)5597   bool HasSameNameAndSignature(ArtMethod* other)
5598       SHARED_REQUIRES(Locks::mutator_lock_) {
5599     DCHECK(!other->IsProxyMethod()) << PrettyMethod(other);
5600     const DexFile* other_dex_file = other->GetDexFile();
5601     const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex());
5602     if (dex_file_ == other_dex_file) {
5603       return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_;
5604     }
5605     GetName();  // Only used to make sure its calculated.
5606     uint32_t other_name_len;
5607     const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_,
5608                                                                            &other_name_len);
5609     if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) {
5610       return false;
5611     }
5612     return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid);
5613   }
5614 
5615  private:
5616   // Dex file for the method to compare against.
5617   const DexFile* const dex_file_;
5618   // MethodId for the method to compare against.
5619   const DexFile::MethodId* const mid_;
5620   // Lazily computed name from the dex file's strings.
5621   const char* name_;
5622   // Lazily computed name length.
5623   uint32_t name_len_;
5624 };
5625 
5626 class LinkVirtualHashTable {
5627  public:
LinkVirtualHashTable(Handle<mirror::Class> klass,size_t hash_size,uint32_t * hash_table,size_t image_pointer_size)5628   LinkVirtualHashTable(Handle<mirror::Class> klass,
5629                        size_t hash_size,
5630                        uint32_t* hash_table,
5631                        size_t image_pointer_size)
5632      : klass_(klass),
5633        hash_size_(hash_size),
5634        hash_table_(hash_table),
5635        image_pointer_size_(image_pointer_size) {
5636     std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_);
5637   }
5638 
Add(uint32_t virtual_method_index)5639   void Add(uint32_t virtual_method_index) SHARED_REQUIRES(Locks::mutator_lock_) {
5640     ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking(
5641         virtual_method_index, image_pointer_size_);
5642     const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName();
5643     uint32_t hash = ComputeModifiedUtf8Hash(name);
5644     uint32_t index = hash % hash_size_;
5645     // Linear probe until we have an empty slot.
5646     while (hash_table_[index] != invalid_index_) {
5647       if (++index == hash_size_) {
5648         index = 0;
5649       }
5650     }
5651     hash_table_[index] = virtual_method_index;
5652   }
5653 
FindAndRemove(MethodNameAndSignatureComparator * comparator)5654   uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator)
5655       SHARED_REQUIRES(Locks::mutator_lock_) {
5656     const char* name = comparator->GetName();
5657     uint32_t hash = ComputeModifiedUtf8Hash(name);
5658     size_t index = hash % hash_size_;
5659     while (true) {
5660       const uint32_t value = hash_table_[index];
5661       // Since linear probe makes continuous blocks, hitting an invalid index means we are done
5662       // the block and can safely assume not found.
5663       if (value == invalid_index_) {
5664         break;
5665       }
5666       if (value != removed_index_) {  // This signifies not already overriden.
5667         ArtMethod* virtual_method =
5668             klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_);
5669         if (comparator->HasSameNameAndSignature(
5670             virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
5671           hash_table_[index] = removed_index_;
5672           return value;
5673         }
5674       }
5675       if (++index == hash_size_) {
5676         index = 0;
5677       }
5678     }
5679     return GetNotFoundIndex();
5680   }
5681 
GetNotFoundIndex()5682   static uint32_t GetNotFoundIndex() {
5683     return invalid_index_;
5684   }
5685 
5686  private:
5687   static const uint32_t invalid_index_;
5688   static const uint32_t removed_index_;
5689 
5690   Handle<mirror::Class> klass_;
5691   const size_t hash_size_;
5692   uint32_t* const hash_table_;
5693   const size_t image_pointer_size_;
5694 };
5695 
5696 const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max();
5697 const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1;
5698 
LinkVirtualMethods(Thread * self,Handle<mirror::Class> klass,std::unordered_map<size_t,ClassLinker::MethodTranslation> * default_translations)5699 bool ClassLinker::LinkVirtualMethods(
5700     Thread* self,
5701     Handle<mirror::Class> klass,
5702     /*out*/std::unordered_map<size_t, ClassLinker::MethodTranslation>* default_translations) {
5703   const size_t num_virtual_methods = klass->NumVirtualMethods();
5704   if (klass->IsInterface()) {
5705     // No vtable.
5706     if (!IsUint<16>(num_virtual_methods)) {
5707       ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods);
5708       return false;
5709     }
5710     bool has_defaults = false;
5711     // Assign each method an IMT index and set the default flag.
5712     for (size_t i = 0; i < num_virtual_methods; ++i) {
5713       ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5714       m->SetMethodIndex(i);
5715       if (!m->IsAbstract()) {
5716         m->SetAccessFlags(m->GetAccessFlags() | kAccDefault);
5717         has_defaults = true;
5718       }
5719     }
5720     // Mark that we have default methods so that we won't need to scan the virtual_methods_ array
5721     // during initialization. This is a performance optimization. We could simply traverse the
5722     // virtual_methods_ array again during initialization.
5723     if (has_defaults) {
5724       klass->SetHasDefaultMethods();
5725     }
5726     return true;
5727   } else if (klass->HasSuperClass()) {
5728     const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength();
5729     const size_t max_count = num_virtual_methods + super_vtable_length;
5730     StackHandleScope<2> hs(self);
5731     Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass()));
5732     MutableHandle<mirror::PointerArray> vtable;
5733     if (super_class->ShouldHaveEmbeddedVTable()) {
5734       vtable = hs.NewHandle(AllocPointerArray(self, max_count));
5735       if (UNLIKELY(vtable.Get() == nullptr)) {
5736         self->AssertPendingOOMException();
5737         return false;
5738       }
5739       for (size_t i = 0; i < super_vtable_length; i++) {
5740         vtable->SetElementPtrSize(
5741             i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_);
5742       }
5743       // We might need to change vtable if we have new virtual methods or new interfaces (since that
5744       // might give us new default methods). If no new interfaces then we can skip the rest since
5745       // the class cannot override any of the super-class's methods. This is required for
5746       // correctness since without it we might not update overridden default method vtable entries
5747       // correctly.
5748       if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5749         klass->SetVTable(vtable.Get());
5750         return true;
5751       }
5752     } else {
5753       DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass());
5754       auto* super_vtable = super_class->GetVTable();
5755       CHECK(super_vtable != nullptr) << PrettyClass(super_class.Get());
5756       // We might need to change vtable if we have new virtual methods or new interfaces (since that
5757       // might give us new default methods). See comment above.
5758       if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5759         klass->SetVTable(super_vtable);
5760         return true;
5761       }
5762       vtable = hs.NewHandle(down_cast<mirror::PointerArray*>(
5763           super_vtable->CopyOf(self, max_count)));
5764       if (UNLIKELY(vtable.Get() == nullptr)) {
5765         self->AssertPendingOOMException();
5766         return false;
5767       }
5768     }
5769     // How the algorithm works:
5770     // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash
5771     // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual
5772     // method which has not been matched to a vtable method, and j if the virtual method at the
5773     // index overrode the super virtual method at index j.
5774     // 2. Loop through super virtual methods, if they overwrite, update hash table to j
5775     // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing
5776     // the need for the initial vtable which we later shrink back down).
5777     // 3. Add non overridden methods to the end of the vtable.
5778     static constexpr size_t kMaxStackHash = 250;
5779     // + 1 so that even if we only have new default methods we will still be able to use this hash
5780     // table (i.e. it will never have 0 size).
5781     const size_t hash_table_size = num_virtual_methods * 3 + 1;
5782     uint32_t* hash_table_ptr;
5783     std::unique_ptr<uint32_t[]> hash_heap_storage;
5784     if (hash_table_size <= kMaxStackHash) {
5785       hash_table_ptr = reinterpret_cast<uint32_t*>(
5786           alloca(hash_table_size * sizeof(*hash_table_ptr)));
5787     } else {
5788       hash_heap_storage.reset(new uint32_t[hash_table_size]);
5789       hash_table_ptr = hash_heap_storage.get();
5790     }
5791     LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_);
5792     // Add virtual methods to the hash table.
5793     for (size_t i = 0; i < num_virtual_methods; ++i) {
5794       DCHECK(klass->GetVirtualMethodDuringLinking(
5795           i, image_pointer_size_)->GetDeclaringClass() != nullptr);
5796       hash_table.Add(i);
5797     }
5798     // Loop through each super vtable method and see if they are overridden by a method we added to
5799     // the hash table.
5800     for (size_t j = 0; j < super_vtable_length; ++j) {
5801       // Search the hash table to see if we are overridden by any method.
5802       ArtMethod* super_method = vtable->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
5803       MethodNameAndSignatureComparator super_method_name_comparator(
5804           super_method->GetInterfaceMethodIfProxy(image_pointer_size_));
5805       uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator);
5806       if (hash_index != hash_table.GetNotFoundIndex()) {
5807         ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(
5808             hash_index, image_pointer_size_);
5809         if (klass->CanAccessMember(super_method->GetDeclaringClass(),
5810                                    super_method->GetAccessFlags())) {
5811           if (super_method->IsFinal()) {
5812             ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s",
5813                               PrettyMethod(virtual_method).c_str(),
5814                               super_method->GetDeclaringClassDescriptor());
5815             return false;
5816           }
5817           vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_);
5818           virtual_method->SetMethodIndex(j);
5819         } else {
5820           LOG(WARNING) << "Before Android 4.1, method " << PrettyMethod(virtual_method)
5821                        << " would have incorrectly overridden the package-private method in "
5822                        << PrettyDescriptor(super_method->GetDeclaringClassDescriptor());
5823         }
5824       } else if (super_method->IsOverridableByDefaultMethod()) {
5825         // We didn't directly override this method but we might through default methods...
5826         // Check for default method update.
5827         ArtMethod* default_method = nullptr;
5828         switch (FindDefaultMethodImplementation(self,
5829                                                 super_method,
5830                                                 klass,
5831                                                 /*out*/&default_method)) {
5832           case DefaultMethodSearchResult::kDefaultConflict: {
5833             // A conflict was found looking for default methods. Note this (assuming it wasn't
5834             // pre-existing) in the translations map.
5835             if (UNLIKELY(!super_method->IsDefaultConflicting())) {
5836               // Don't generate another conflict method to reduce memory use as an optimization.
5837               default_translations->insert(
5838                   {j, ClassLinker::MethodTranslation::CreateConflictingMethod()});
5839             }
5840             break;
5841           }
5842           case DefaultMethodSearchResult::kAbstractFound: {
5843             // No conflict but method is abstract.
5844             // We note that this vtable entry must be made abstract.
5845             if (UNLIKELY(!super_method->IsAbstract())) {
5846               default_translations->insert(
5847                   {j, ClassLinker::MethodTranslation::CreateAbstractMethod()});
5848             }
5849             break;
5850           }
5851           case DefaultMethodSearchResult::kDefaultFound: {
5852             if (UNLIKELY(super_method->IsDefaultConflicting() ||
5853                         default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) {
5854               // Found a default method implementation that is new.
5855               // TODO Refactor this add default methods to virtuals here and not in
5856               //      LinkInterfaceMethods maybe.
5857               //      The problem is default methods might override previously present
5858               //      default-method or miranda-method vtable entries from the superclass.
5859               //      Unfortunately we need these to be entries in this class's virtuals. We do not
5860               //      give these entries there until LinkInterfaceMethods so we pass this map around
5861               //      to let it know which vtable entries need to be updated.
5862               // Make a note that vtable entry j must be updated, store what it needs to be updated
5863               // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up
5864               // then.
5865               default_translations->insert(
5866                   {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)});
5867               VLOG(class_linker) << "Method " << PrettyMethod(super_method)
5868                                  << " overridden by default " << PrettyMethod(default_method)
5869                                  << " in " << PrettyClass(klass.Get());
5870             }
5871             break;
5872           }
5873         }
5874       }
5875     }
5876     size_t actual_count = super_vtable_length;
5877     // Add the non-overridden methods at the end.
5878     for (size_t i = 0; i < num_virtual_methods; ++i) {
5879       ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5880       size_t method_idx = local_method->GetMethodIndexDuringLinking();
5881       if (method_idx < super_vtable_length &&
5882           local_method == vtable->GetElementPtrSize<ArtMethod*>(method_idx, image_pointer_size_)) {
5883         continue;
5884       }
5885       vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_);
5886       local_method->SetMethodIndex(actual_count);
5887       ++actual_count;
5888     }
5889     if (!IsUint<16>(actual_count)) {
5890       ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count);
5891       return false;
5892     }
5893     // Shrink vtable if possible
5894     CHECK_LE(actual_count, max_count);
5895     if (actual_count < max_count) {
5896       vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, actual_count)));
5897       if (UNLIKELY(vtable.Get() == nullptr)) {
5898         self->AssertPendingOOMException();
5899         return false;
5900       }
5901     }
5902     klass->SetVTable(vtable.Get());
5903   } else {
5904     CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject));
5905     if (!IsUint<16>(num_virtual_methods)) {
5906       ThrowClassFormatError(klass.Get(), "Too many methods: %d",
5907                             static_cast<int>(num_virtual_methods));
5908       return false;
5909     }
5910     auto* vtable = AllocPointerArray(self, num_virtual_methods);
5911     if (UNLIKELY(vtable == nullptr)) {
5912       self->AssertPendingOOMException();
5913       return false;
5914     }
5915     for (size_t i = 0; i < num_virtual_methods; ++i) {
5916       ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5917       vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_);
5918       virtual_method->SetMethodIndex(i & 0xFFFF);
5919     }
5920     klass->SetVTable(vtable);
5921   }
5922   return true;
5923 }
5924 
5925 // Determine if the given iface has any subinterface in the given list that declares the method
5926 // specified by 'target'.
5927 //
5928 // Arguments
5929 // - self:    The thread we are running on
5930 // - target:  A comparator that will match any method that overrides the method we are checking for
5931 // - iftable: The iftable we are searching for an overriding method on.
5932 // - ifstart: The index of the interface we are checking to see if anything overrides
5933 // - iface:   The interface we are checking to see if anything overrides.
5934 // - image_pointer_size:
5935 //            The image pointer size.
5936 //
5937 // Returns
5938 // - True:  There is some method that matches the target comparator defined in an interface that
5939 //          is a subtype of iface.
5940 // - False: There is no method that matches the target comparator in any interface that is a subtype
5941 //          of iface.
ContainsOverridingMethodOf(Thread * self,MethodNameAndSignatureComparator & target,Handle<mirror::IfTable> iftable,size_t ifstart,Handle<mirror::Class> iface,size_t image_pointer_size)5942 static bool ContainsOverridingMethodOf(Thread* self,
5943                                        MethodNameAndSignatureComparator& target,
5944                                        Handle<mirror::IfTable> iftable,
5945                                        size_t ifstart,
5946                                        Handle<mirror::Class> iface,
5947                                        size_t image_pointer_size)
5948     SHARED_REQUIRES(Locks::mutator_lock_) {
5949   DCHECK(self != nullptr);
5950   DCHECK(iface.Get() != nullptr);
5951   DCHECK(iftable.Get() != nullptr);
5952   DCHECK_GE(ifstart, 0u);
5953   DCHECK_LT(ifstart, iftable->Count());
5954   DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart));
5955   DCHECK(iface->IsInterface());
5956 
5957   size_t iftable_count = iftable->Count();
5958   StackHandleScope<1> hs(self);
5959   MutableHandle<mirror::Class> current_iface(hs.NewHandle<mirror::Class>(nullptr));
5960   for (size_t k = ifstart + 1; k < iftable_count; k++) {
5961     // Skip ifstart since our current interface obviously cannot override itself.
5962     current_iface.Assign(iftable->GetInterface(k));
5963     // Iterate through every method on this interface. The order does not matter.
5964     for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) {
5965       if (UNLIKELY(target.HasSameNameAndSignature(
5966                       current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) {
5967         // Check if the i'th interface is a subtype of this one.
5968         if (iface->IsAssignableFrom(current_iface.Get())) {
5969           return true;
5970         }
5971         break;
5972       }
5973     }
5974   }
5975   return false;
5976 }
5977 
5978 // Find the default method implementation for 'interface_method' in 'klass'. Stores it into
5979 // out_default_method and returns kDefaultFound on success. If no default method was found return
5980 // kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a
5981 // default_method conflict) it will return kDefaultConflict.
FindDefaultMethodImplementation(Thread * self,ArtMethod * target_method,Handle<mirror::Class> klass,ArtMethod ** out_default_method) const5982 ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation(
5983     Thread* self,
5984     ArtMethod* target_method,
5985     Handle<mirror::Class> klass,
5986     /*out*/ArtMethod** out_default_method) const {
5987   DCHECK(self != nullptr);
5988   DCHECK(target_method != nullptr);
5989   DCHECK(out_default_method != nullptr);
5990 
5991   *out_default_method = nullptr;
5992 
5993   // We organize the interface table so that, for interface I any subinterfaces J follow it in the
5994   // table. This lets us walk the table backwards when searching for default methods.  The first one
5995   // we encounter is the best candidate since it is the most specific. Once we have found it we keep
5996   // track of it and then continue checking all other interfaces, since we need to throw an error if
5997   // we encounter conflicting default method implementations (one is not a subtype of the other).
5998   //
5999   // The order of unrelated interfaces does not matter and is not defined.
6000   size_t iftable_count = klass->GetIfTableCount();
6001   if (iftable_count == 0) {
6002     // No interfaces. We have already reset out to null so just return kAbstractFound.
6003     return DefaultMethodSearchResult::kAbstractFound;
6004   }
6005 
6006   StackHandleScope<3> hs(self);
6007   MutableHandle<mirror::Class> chosen_iface(hs.NewHandle<mirror::Class>(nullptr));
6008   MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
6009   MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
6010   MethodNameAndSignatureComparator target_name_comparator(
6011       target_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6012   // Iterates over the klass's iftable in reverse
6013   for (size_t k = iftable_count; k != 0; ) {
6014     --k;
6015 
6016     DCHECK_LT(k, iftable->Count());
6017 
6018     iface.Assign(iftable->GetInterface(k));
6019     // Iterate through every declared method on this interface. The order does not matter.
6020     for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) {
6021       ArtMethod* current_method = &method_iter;
6022       // Skip abstract methods and methods with different names.
6023       if (current_method->IsAbstract() ||
6024           !target_name_comparator.HasSameNameAndSignature(
6025               current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6026         continue;
6027       } else if (!current_method->IsPublic()) {
6028         // The verifier should have caught the non-public method for dex version 37. Just warn and
6029         // skip it since this is from before default-methods so we don't really need to care that it
6030         // has code.
6031         LOG(WARNING) << "Interface method " << PrettyMethod(current_method) << " is not public! "
6032                      << "This will be a fatal error in subsequent versions of android. "
6033                      << "Continuing anyway.";
6034       }
6035       if (UNLIKELY(chosen_iface.Get() != nullptr)) {
6036         // We have multiple default impls of the same method. This is a potential default conflict.
6037         // We need to check if this possibly conflicting method is either a superclass of the chosen
6038         // default implementation or is overridden by a non-default interface method. In either case
6039         // there is no conflict.
6040         if (!iface->IsAssignableFrom(chosen_iface.Get()) &&
6041             !ContainsOverridingMethodOf(self,
6042                                         target_name_comparator,
6043                                         iftable,
6044                                         k,
6045                                         iface,
6046                                         image_pointer_size_)) {
6047           VLOG(class_linker) << "Conflicting default method implementations found: "
6048                              << PrettyMethod(current_method) << " and "
6049                              << PrettyMethod(*out_default_method) << " in class "
6050                              << PrettyClass(klass.Get()) << " conflict.";
6051           *out_default_method = nullptr;
6052           return DefaultMethodSearchResult::kDefaultConflict;
6053         } else {
6054           break;  // Continue checking at the next interface.
6055         }
6056       } else {
6057         // chosen_iface == null
6058         if (!ContainsOverridingMethodOf(self,
6059                                         target_name_comparator,
6060                                         iftable,
6061                                         k,
6062                                         iface,
6063                                         image_pointer_size_)) {
6064           // Don't set this as the chosen interface if something else is overriding it (because that
6065           // other interface would be potentially chosen instead if it was default). If the other
6066           // interface was abstract then we wouldn't select this interface as chosen anyway since
6067           // the abstract method masks it.
6068           *out_default_method = current_method;
6069           chosen_iface.Assign(iface.Get());
6070           // We should now finish traversing the graph to find if we have default methods that
6071           // conflict.
6072         } else {
6073           VLOG(class_linker) << "A default method '" << PrettyMethod(current_method) << "' was "
6074                             << "skipped because it was overridden by an abstract method in a "
6075                             << "subinterface on class '" << PrettyClass(klass.Get()) << "'";
6076         }
6077       }
6078       break;
6079     }
6080   }
6081   if (*out_default_method != nullptr) {
6082     VLOG(class_linker) << "Default method '" << PrettyMethod(*out_default_method) << "' selected "
6083                        << "as the implementation for '" << PrettyMethod(target_method) << "' "
6084                        << "in '" << PrettyClass(klass.Get()) << "'";
6085     return DefaultMethodSearchResult::kDefaultFound;
6086   } else {
6087     return DefaultMethodSearchResult::kAbstractFound;
6088   }
6089 }
6090 
AddMethodToConflictTable(mirror::Class * klass,ArtMethod * conflict_method,ArtMethod * interface_method,ArtMethod * method,bool force_new_conflict_method)6091 ArtMethod* ClassLinker::AddMethodToConflictTable(mirror::Class* klass,
6092                                                  ArtMethod* conflict_method,
6093                                                  ArtMethod* interface_method,
6094                                                  ArtMethod* method,
6095                                                  bool force_new_conflict_method) {
6096   ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
6097   Runtime* const runtime = Runtime::Current();
6098   LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6099   bool new_entry = conflict_method == runtime->GetImtConflictMethod() || force_new_conflict_method;
6100 
6101   // Create a new entry if the existing one is the shared conflict method.
6102   ArtMethod* new_conflict_method = new_entry
6103       ? runtime->CreateImtConflictMethod(linear_alloc)
6104       : conflict_method;
6105 
6106   // Allocate a new table. Note that we will leak this table at the next conflict,
6107   // but that's a tradeoff compared to making the table fixed size.
6108   void* data = linear_alloc->Alloc(
6109       Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table,
6110                                                                        image_pointer_size_));
6111   if (data == nullptr) {
6112     LOG(ERROR) << "Failed to allocate conflict table";
6113     return conflict_method;
6114   }
6115   ImtConflictTable* new_table = new (data) ImtConflictTable(current_table,
6116                                                             interface_method,
6117                                                             method,
6118                                                             image_pointer_size_);
6119 
6120   // Do a fence to ensure threads see the data in the table before it is assigned
6121   // to the conflict method.
6122   // Note that there is a race in the presence of multiple threads and we may leak
6123   // memory from the LinearAlloc, but that's a tradeoff compared to using
6124   // atomic operations.
6125   QuasiAtomic::ThreadFenceRelease();
6126   new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6127   return new_conflict_method;
6128 }
6129 
SetIMTRef(ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,ArtMethod * current_method,bool * new_conflict,ArtMethod ** imt_ref)6130 void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method,
6131                             ArtMethod* imt_conflict_method,
6132                             ArtMethod* current_method,
6133                             /*out*/bool* new_conflict,
6134                             /*out*/ArtMethod** imt_ref) {
6135   // Place method in imt if entry is empty, place conflict otherwise.
6136   if (*imt_ref == unimplemented_method) {
6137     *imt_ref = current_method;
6138   } else if (!(*imt_ref)->IsRuntimeMethod()) {
6139     // If we are not a conflict and we have the same signature and name as the imt
6140     // entry, it must be that we overwrote a superclass vtable entry.
6141     // Note that we have checked IsRuntimeMethod, as there may be multiple different
6142     // conflict methods.
6143     MethodNameAndSignatureComparator imt_comparator(
6144         (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_));
6145     if (imt_comparator.HasSameNameAndSignature(
6146           current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6147       *imt_ref = current_method;
6148     } else {
6149       *imt_ref = imt_conflict_method;
6150       *new_conflict = true;
6151     }
6152   } else {
6153     // Place the default conflict method. Note that there may be an existing conflict
6154     // method in the IMT, but it could be one tailored to the super class, with a
6155     // specific ImtConflictTable.
6156     *imt_ref = imt_conflict_method;
6157     *new_conflict = true;
6158   }
6159 }
6160 
FillIMTAndConflictTables(mirror::Class * klass)6161 void ClassLinker::FillIMTAndConflictTables(mirror::Class* klass) {
6162   DCHECK(klass->ShouldHaveImt()) << PrettyClass(klass);
6163   DCHECK(!klass->IsTemp()) << PrettyClass(klass);
6164   ArtMethod* imt_data[ImTable::kSize];
6165   Runtime* const runtime = Runtime::Current();
6166   ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6167   ArtMethod* const conflict_method = runtime->GetImtConflictMethod();
6168   std::fill_n(imt_data, arraysize(imt_data), unimplemented_method);
6169   if (klass->GetIfTable() != nullptr) {
6170     bool new_conflict = false;
6171     FillIMTFromIfTable(klass->GetIfTable(),
6172                        unimplemented_method,
6173                        conflict_method,
6174                        klass,
6175                        /*create_conflict_tables*/true,
6176                        /*ignore_copied_methods*/false,
6177                        &new_conflict,
6178                        &imt_data[0]);
6179   }
6180   if (!klass->ShouldHaveImt()) {
6181     return;
6182   }
6183   // Compare the IMT with the super class including the conflict methods. If they are equivalent,
6184   // we can just use the same pointer.
6185   ImTable* imt = nullptr;
6186   mirror::Class* super_class = klass->GetSuperClass();
6187   if (super_class != nullptr && super_class->ShouldHaveImt()) {
6188     ImTable* super_imt = super_class->GetImt(image_pointer_size_);
6189     bool same = true;
6190     for (size_t i = 0; same && i < ImTable::kSize; ++i) {
6191       ArtMethod* method = imt_data[i];
6192       ArtMethod* super_method = super_imt->Get(i, image_pointer_size_);
6193       if (method != super_method) {
6194         bool is_conflict_table = method->IsRuntimeMethod() &&
6195                                  method != unimplemented_method &&
6196                                  method != conflict_method;
6197         // Verify conflict contents.
6198         bool super_conflict_table = super_method->IsRuntimeMethod() &&
6199                                     super_method != unimplemented_method &&
6200                                     super_method != conflict_method;
6201         if (!is_conflict_table || !super_conflict_table) {
6202           same = false;
6203         } else {
6204           ImtConflictTable* table1 = method->GetImtConflictTable(image_pointer_size_);
6205           ImtConflictTable* table2 = super_method->GetImtConflictTable(image_pointer_size_);
6206           same = same && table1->Equals(table2, image_pointer_size_);
6207         }
6208       }
6209     }
6210     if (same) {
6211       imt = super_imt;
6212     }
6213   }
6214   if (imt == nullptr) {
6215     imt = klass->GetImt(image_pointer_size_);
6216     DCHECK(imt != nullptr);
6217     imt->Populate(imt_data, image_pointer_size_);
6218   } else {
6219     klass->SetImt(imt, image_pointer_size_);
6220   }
6221 }
6222 
GetIMTIndex(ArtMethod * interface_method)6223 static inline uint32_t GetIMTIndex(ArtMethod* interface_method)
6224     SHARED_REQUIRES(Locks::mutator_lock_) {
6225   return interface_method->GetDexMethodIndex() % ImTable::kSize;
6226 }
6227 
CreateImtConflictTable(size_t count,LinearAlloc * linear_alloc,size_t image_pointer_size)6228 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count,
6229                                                       LinearAlloc* linear_alloc,
6230                                                       size_t image_pointer_size) {
6231   void* data = linear_alloc->Alloc(Thread::Current(),
6232                                    ImtConflictTable::ComputeSize(count,
6233                                                                  image_pointer_size));
6234   return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr;
6235 }
6236 
CreateImtConflictTable(size_t count,LinearAlloc * linear_alloc)6237 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) {
6238   return CreateImtConflictTable(count, linear_alloc, image_pointer_size_);
6239 }
6240 
FillIMTFromIfTable(mirror::IfTable * if_table,ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,mirror::Class * klass,bool create_conflict_tables,bool ignore_copied_methods,bool * new_conflict,ArtMethod ** imt)6241 void ClassLinker::FillIMTFromIfTable(mirror::IfTable* if_table,
6242                                      ArtMethod* unimplemented_method,
6243                                      ArtMethod* imt_conflict_method,
6244                                      mirror::Class* klass,
6245                                      bool create_conflict_tables,
6246                                      bool ignore_copied_methods,
6247                                      /*out*/bool* new_conflict,
6248                                      /*out*/ArtMethod** imt) {
6249   uint32_t conflict_counts[ImTable::kSize] = {};
6250   for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6251     mirror::Class* interface = if_table->GetInterface(i);
6252     const size_t num_virtuals = interface->NumVirtualMethods();
6253     const size_t method_array_count = if_table->GetMethodArrayCount(i);
6254     // Virtual methods can be larger than the if table methods if there are default methods.
6255     DCHECK_GE(num_virtuals, method_array_count);
6256     if (kIsDebugBuild) {
6257       if (klass->IsInterface()) {
6258         DCHECK_EQ(method_array_count, 0u);
6259       } else {
6260         DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count);
6261       }
6262     }
6263     if (method_array_count == 0) {
6264       continue;
6265     }
6266     auto* method_array = if_table->GetMethodArray(i);
6267     for (size_t j = 0; j < method_array_count; ++j) {
6268       ArtMethod* implementation_method =
6269           method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6270       if (ignore_copied_methods && implementation_method->IsCopied()) {
6271         continue;
6272       }
6273       DCHECK(implementation_method != nullptr);
6274       // Miranda methods cannot be used to implement an interface method, but they are safe to put
6275       // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods
6276       // or interface methods in the IMT here they will not create extra conflicts since we compare
6277       // names and signatures in SetIMTRef.
6278       ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6279       const uint32_t imt_index = GetIMTIndex(interface_method);
6280 
6281       // There is only any conflicts if all of the interface methods for an IMT slot don't have
6282       // the same implementation method, keep track of this to avoid creating a conflict table in
6283       // this case.
6284 
6285       // Conflict table size for each IMT slot.
6286       ++conflict_counts[imt_index];
6287 
6288       SetIMTRef(unimplemented_method,
6289                 imt_conflict_method,
6290                 implementation_method,
6291                 /*out*/new_conflict,
6292                 /*out*/&imt[imt_index]);
6293     }
6294   }
6295 
6296   if (create_conflict_tables) {
6297     // Create the conflict tables.
6298     LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6299     for (size_t i = 0; i < ImTable::kSize; ++i) {
6300       size_t conflicts = conflict_counts[i];
6301       if (imt[i] == imt_conflict_method) {
6302         ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc);
6303         if (new_table != nullptr) {
6304           ArtMethod* new_conflict_method =
6305               Runtime::Current()->CreateImtConflictMethod(linear_alloc);
6306           new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6307           imt[i] = new_conflict_method;
6308         } else {
6309           LOG(ERROR) << "Failed to allocate conflict table";
6310           imt[i] = imt_conflict_method;
6311         }
6312       } else {
6313         DCHECK_NE(imt[i], imt_conflict_method);
6314       }
6315     }
6316 
6317     for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6318       mirror::Class* interface = if_table->GetInterface(i);
6319       const size_t method_array_count = if_table->GetMethodArrayCount(i);
6320       // Virtual methods can be larger than the if table methods if there are default methods.
6321       if (method_array_count == 0) {
6322         continue;
6323       }
6324       auto* method_array = if_table->GetMethodArray(i);
6325       for (size_t j = 0; j < method_array_count; ++j) {
6326         ArtMethod* implementation_method =
6327             method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6328         if (ignore_copied_methods && implementation_method->IsCopied()) {
6329           continue;
6330         }
6331         DCHECK(implementation_method != nullptr);
6332         ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6333         const uint32_t imt_index = GetIMTIndex(interface_method);
6334         if (!imt[imt_index]->IsRuntimeMethod() ||
6335             imt[imt_index] == unimplemented_method ||
6336             imt[imt_index] == imt_conflict_method) {
6337           continue;
6338         }
6339         ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_);
6340         const size_t num_entries = table->NumEntries(image_pointer_size_);
6341         table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method);
6342         table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method);
6343       }
6344     }
6345   }
6346 }
6347 
6348 // Simple helper function that checks that no subtypes of 'val' are contained within the 'classes'
6349 // set.
NotSubinterfaceOfAny(const std::unordered_set<mirror::Class * > & classes,mirror::Class * val)6350 static bool NotSubinterfaceOfAny(const std::unordered_set<mirror::Class*>& classes,
6351                                  mirror::Class* val)
6352     REQUIRES(Roles::uninterruptible_)
6353     SHARED_REQUIRES(Locks::mutator_lock_) {
6354   DCHECK(val != nullptr);
6355   for (auto c : classes) {
6356     if (val->IsAssignableFrom(&*c)) {
6357       return false;
6358     }
6359   }
6360   return true;
6361 }
6362 
6363 // Fills in and flattens the interface inheritance hierarchy.
6364 //
6365 // By the end of this function all interfaces in the transitive closure of to_process are added to
6366 // the iftable and every interface precedes all of its sub-interfaces in this list.
6367 //
6368 // all I, J: Interface | I <: J implies J precedes I
6369 //
6370 // (note A <: B means that A is a subtype of B)
6371 //
6372 // This returns the total number of items in the iftable. The iftable might be resized down after
6373 // this call.
6374 //
6375 // We order this backwards so that we do not need to reorder superclass interfaces when new
6376 // interfaces are added in subclass's interface tables.
6377 //
6378 // Upon entry into this function iftable is a copy of the superclass's iftable with the first
6379 // super_ifcount entries filled in with the transitive closure of the interfaces of the superclass.
6380 // The other entries are uninitialized.  We will fill in the remaining entries in this function. The
6381 // iftable must be large enough to hold all interfaces without changing its size.
FillIfTable(mirror::IfTable * iftable,size_t super_ifcount,std::vector<mirror::Class * > to_process)6382 static size_t FillIfTable(mirror::IfTable* iftable,
6383                           size_t super_ifcount,
6384                           std::vector<mirror::Class*> to_process)
6385     REQUIRES(Roles::uninterruptible_)
6386     SHARED_REQUIRES(Locks::mutator_lock_) {
6387   // This is the set of all class's already in the iftable. Used to make checking if a class has
6388   // already been added quicker.
6389   std::unordered_set<mirror::Class*> classes_in_iftable;
6390   // The first super_ifcount elements are from the superclass. We note that they are already added.
6391   for (size_t i = 0; i < super_ifcount; i++) {
6392     mirror::Class* iface = iftable->GetInterface(i);
6393     DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering.";
6394     classes_in_iftable.insert(iface);
6395   }
6396   size_t filled_ifcount = super_ifcount;
6397   for (mirror::Class* interface : to_process) {
6398     // Let us call the first filled_ifcount elements of iftable the current-iface-list.
6399     // At this point in the loop current-iface-list has the invariant that:
6400     //    for every pair of interfaces I,J within it:
6401     //      if index_of(I) < index_of(J) then I is not a subtype of J
6402 
6403     // If we have already seen this element then all of its super-interfaces must already be in the
6404     // current-iface-list so we can skip adding it.
6405     if (!ContainsElement(classes_in_iftable, interface)) {
6406       // We haven't seen this interface so add all of its super-interfaces onto the
6407       // current-iface-list, skipping those already on it.
6408       int32_t ifcount = interface->GetIfTableCount();
6409       for (int32_t j = 0; j < ifcount; j++) {
6410         mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j);
6411         if (!ContainsElement(classes_in_iftable, super_interface)) {
6412           DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering.";
6413           classes_in_iftable.insert(super_interface);
6414           iftable->SetInterface(filled_ifcount, super_interface);
6415           filled_ifcount++;
6416         }
6417       }
6418       DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering";
6419       // Place this interface onto the current-iface-list after all of its super-interfaces.
6420       classes_in_iftable.insert(interface);
6421       iftable->SetInterface(filled_ifcount, interface);
6422       filled_ifcount++;
6423     } else if (kIsDebugBuild) {
6424       // Check all super-interfaces are already in the list.
6425       int32_t ifcount = interface->GetIfTableCount();
6426       for (int32_t j = 0; j < ifcount; j++) {
6427         mirror::Class* super_interface = interface->GetIfTable()->GetInterface(j);
6428         DCHECK(ContainsElement(classes_in_iftable, super_interface))
6429             << "Iftable does not contain " << PrettyClass(super_interface)
6430             << ", a superinterface of " << PrettyClass(interface);
6431       }
6432     }
6433   }
6434   if (kIsDebugBuild) {
6435     // Check that the iftable is ordered correctly.
6436     for (size_t i = 0; i < filled_ifcount; i++) {
6437       mirror::Class* if_a = iftable->GetInterface(i);
6438       for (size_t j = i + 1; j < filled_ifcount; j++) {
6439         mirror::Class* if_b = iftable->GetInterface(j);
6440         // !(if_a <: if_b)
6441         CHECK(!if_b->IsAssignableFrom(if_a))
6442             << "Bad interface order: " << PrettyClass(if_a) << " (index " << i << ") extends "
6443             << PrettyClass(if_b) << " (index " << j << ") and so should be after it in the "
6444             << "interface list.";
6445       }
6446     }
6447   }
6448   return filled_ifcount;
6449 }
6450 
SetupInterfaceLookupTable(Thread * self,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces)6451 bool ClassLinker::SetupInterfaceLookupTable(Thread* self, Handle<mirror::Class> klass,
6452                                             Handle<mirror::ObjectArray<mirror::Class>> interfaces) {
6453   StackHandleScope<1> hs(self);
6454   const size_t super_ifcount =
6455       klass->HasSuperClass() ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6456   const bool have_interfaces = interfaces.Get() != nullptr;
6457   const size_t num_interfaces =
6458       have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces();
6459   if (num_interfaces == 0) {
6460     if (super_ifcount == 0) {
6461       // Class implements no interfaces.
6462       DCHECK_EQ(klass->GetIfTableCount(), 0);
6463       DCHECK(klass->GetIfTable() == nullptr);
6464       return true;
6465     }
6466     // Class implements same interfaces as parent, are any of these not marker interfaces?
6467     bool has_non_marker_interface = false;
6468     mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
6469     for (size_t i = 0; i < super_ifcount; ++i) {
6470       if (super_iftable->GetMethodArrayCount(i) > 0) {
6471         has_non_marker_interface = true;
6472         break;
6473       }
6474     }
6475     // Class just inherits marker interfaces from parent so recycle parent's iftable.
6476     if (!has_non_marker_interface) {
6477       klass->SetIfTable(super_iftable);
6478       return true;
6479     }
6480   }
6481   size_t ifcount = super_ifcount + num_interfaces;
6482   // Check that every class being implemented is an interface.
6483   for (size_t i = 0; i < num_interfaces; i++) {
6484     mirror::Class* interface = have_interfaces
6485         ? interfaces->GetWithoutChecks(i)
6486         : mirror::Class::GetDirectInterface(self, klass, i);
6487     DCHECK(interface != nullptr);
6488     if (UNLIKELY(!interface->IsInterface())) {
6489       std::string temp;
6490       ThrowIncompatibleClassChangeError(klass.Get(),
6491                                         "Class %s implements non-interface class %s",
6492                                         PrettyDescriptor(klass.Get()).c_str(),
6493                                         PrettyDescriptor(interface->GetDescriptor(&temp)).c_str());
6494       return false;
6495     }
6496     ifcount += interface->GetIfTableCount();
6497   }
6498   // Create the interface function table.
6499   MutableHandle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount)));
6500   if (UNLIKELY(iftable.Get() == nullptr)) {
6501     self->AssertPendingOOMException();
6502     return false;
6503   }
6504   // Fill in table with superclass's iftable.
6505   if (super_ifcount != 0) {
6506     mirror::IfTable* super_iftable = klass->GetSuperClass()->GetIfTable();
6507     for (size_t i = 0; i < super_ifcount; i++) {
6508       mirror::Class* super_interface = super_iftable->GetInterface(i);
6509       iftable->SetInterface(i, super_interface);
6510     }
6511   }
6512 
6513   // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread
6514   // cancellation. That is it will suspend if one has a pending suspend request but otherwise
6515   // doesn't really do anything.
6516   self->AllowThreadSuspension();
6517 
6518   size_t new_ifcount;
6519   {
6520     ScopedAssertNoThreadSuspension nts(self, "Copying mirror::Class*'s for FillIfTable");
6521     std::vector<mirror::Class*> to_add;
6522     for (size_t i = 0; i < num_interfaces; i++) {
6523       mirror::Class* interface = have_interfaces ? interfaces->Get(i) :
6524           mirror::Class::GetDirectInterface(self, klass, i);
6525       to_add.push_back(interface);
6526     }
6527 
6528     new_ifcount = FillIfTable(iftable.Get(), super_ifcount, std::move(to_add));
6529   }
6530 
6531   self->AllowThreadSuspension();
6532 
6533   // Shrink iftable in case duplicates were found
6534   if (new_ifcount < ifcount) {
6535     DCHECK_NE(num_interfaces, 0U);
6536     iftable.Assign(down_cast<mirror::IfTable*>(
6537         iftable->CopyOf(self, new_ifcount * mirror::IfTable::kMax)));
6538     if (UNLIKELY(iftable.Get() == nullptr)) {
6539       self->AssertPendingOOMException();
6540       return false;
6541     }
6542     ifcount = new_ifcount;
6543   } else {
6544     DCHECK_EQ(new_ifcount, ifcount);
6545   }
6546   klass->SetIfTable(iftable.Get());
6547   return true;
6548 }
6549 
6550 // Finds the method with a name/signature that matches cmp in the given lists of methods. The list
6551 // of methods must be unique.
FindSameNameAndSignature(MethodNameAndSignatureComparator & cmp ATTRIBUTE_UNUSED)6552 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp ATTRIBUTE_UNUSED) {
6553   return nullptr;
6554 }
6555 
6556 template <typename ... Types>
FindSameNameAndSignature(MethodNameAndSignatureComparator & cmp,const ScopedArenaVector<ArtMethod * > & list,const Types &...rest)6557 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp,
6558                                            const ScopedArenaVector<ArtMethod*>& list,
6559                                            const Types& ... rest)
6560     SHARED_REQUIRES(Locks::mutator_lock_) {
6561   for (ArtMethod* method : list) {
6562     if (cmp.HasSameNameAndSignature(method)) {
6563       return method;
6564     }
6565   }
6566   return FindSameNameAndSignature(cmp, rest...);
6567 }
6568 
6569 // Check that all vtable entries are present in this class's virtuals or are the same as a
6570 // superclasses vtable entry.
CheckClassOwnsVTableEntries(Thread * self,Handle<mirror::Class> klass,size_t pointer_size)6571 static void CheckClassOwnsVTableEntries(Thread* self,
6572                                         Handle<mirror::Class> klass,
6573                                         size_t pointer_size)
6574     SHARED_REQUIRES(Locks::mutator_lock_) {
6575   StackHandleScope<2> hs(self);
6576   Handle<mirror::PointerArray> check_vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6577   mirror::Class* super_temp = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr;
6578   Handle<mirror::Class> superclass(hs.NewHandle(super_temp));
6579   int32_t super_vtable_length = (superclass.Get() != nullptr) ? superclass->GetVTableLength() : 0;
6580   for (int32_t i = 0; i < check_vtable->GetLength(); ++i) {
6581     ArtMethod* m = check_vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
6582     CHECK(m != nullptr);
6583 
6584     CHECK_EQ(m->GetMethodIndexDuringLinking(), i)
6585         << PrettyMethod(m) << " has an unexpected method index for its spot in the vtable for class"
6586         << PrettyClass(klass.Get());
6587     ArraySlice<ArtMethod> virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size);
6588     auto is_same_method = [m] (const ArtMethod& meth) {
6589       return &meth == m;
6590     };
6591     CHECK((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) ||
6592           std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())
6593         << PrettyMethod(m) << " does not seem to be owned by current class "
6594         << PrettyClass(klass.Get()) << " or any of its superclasses!";
6595   }
6596 }
6597 
6598 // Check to make sure the vtable does not have duplicates. Duplicates could cause problems when a
6599 // method is overridden in a subclass.
CheckVTableHasNoDuplicates(Thread * self,Handle<mirror::Class> klass,size_t pointer_size)6600 static void CheckVTableHasNoDuplicates(Thread* self,
6601                                        Handle<mirror::Class> klass,
6602                                        size_t pointer_size)
6603     SHARED_REQUIRES(Locks::mutator_lock_) {
6604   StackHandleScope<1> hs(self);
6605   Handle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6606   int32_t num_entries = vtable->GetLength();
6607   for (int32_t i = 0; i < num_entries; i++) {
6608     ArtMethod* vtable_entry = vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
6609     // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member maybe).
6610     if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(),
6611                                 vtable_entry->GetAccessFlags())) {
6612       continue;
6613     }
6614     MethodNameAndSignatureComparator name_comparator(
6615         vtable_entry->GetInterfaceMethodIfProxy(pointer_size));
6616     for (int32_t j = i+1; j < num_entries; j++) {
6617       ArtMethod* other_entry = vtable->GetElementPtrSize<ArtMethod*>(j, pointer_size);
6618       CHECK(vtable_entry != other_entry &&
6619             !name_comparator.HasSameNameAndSignature(
6620                 other_entry->GetInterfaceMethodIfProxy(pointer_size)))
6621           << "vtable entries " << i << " and " << j << " are identical for "
6622           << PrettyClass(klass.Get()) << " in method " << PrettyMethod(vtable_entry) << " and "
6623           << PrettyMethod(other_entry);
6624     }
6625   }
6626 }
6627 
SanityCheckVTable(Thread * self,Handle<mirror::Class> klass,size_t pointer_size)6628 static void SanityCheckVTable(Thread* self, Handle<mirror::Class> klass, size_t pointer_size)
6629     SHARED_REQUIRES(Locks::mutator_lock_) {
6630   CheckClassOwnsVTableEntries(self, klass, pointer_size);
6631   CheckVTableHasNoDuplicates(self, klass, pointer_size);
6632 }
6633 
FillImtFromSuperClass(Handle<mirror::Class> klass,ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,bool * new_conflict,ArtMethod ** imt)6634 void ClassLinker::FillImtFromSuperClass(Handle<mirror::Class> klass,
6635                                         ArtMethod* unimplemented_method,
6636                                         ArtMethod* imt_conflict_method,
6637                                         bool* new_conflict,
6638                                         ArtMethod** imt) {
6639   DCHECK(klass->HasSuperClass());
6640   mirror::Class* super_class = klass->GetSuperClass();
6641   if (super_class->ShouldHaveImt()) {
6642     ImTable* super_imt = super_class->GetImt(image_pointer_size_);
6643     for (size_t i = 0; i < ImTable::kSize; ++i) {
6644       imt[i] = super_imt->Get(i, image_pointer_size_);
6645     }
6646   } else {
6647     // No imt in the super class, need to reconstruct from the iftable.
6648     mirror::IfTable* if_table = super_class->GetIfTable();
6649     if (if_table != nullptr) {
6650       // Ignore copied methods since we will handle these in LinkInterfaceMethods.
6651       FillIMTFromIfTable(if_table,
6652                          unimplemented_method,
6653                          imt_conflict_method,
6654                          klass.Get(),
6655                          /*create_conflict_table*/false,
6656                          /*ignore_copied_methods*/true,
6657                          /*out*/new_conflict,
6658                          /*out*/imt);
6659     }
6660   }
6661 }
6662 
6663 // TODO This method needs to be split up into several smaller methods.
LinkInterfaceMethods(Thread * self,Handle<mirror::Class> klass,const std::unordered_map<size_t,ClassLinker::MethodTranslation> & default_translations,bool * out_new_conflict,ArtMethod ** out_imt)6664 bool ClassLinker::LinkInterfaceMethods(
6665     Thread* self,
6666     Handle<mirror::Class> klass,
6667     const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
6668     bool* out_new_conflict,
6669     ArtMethod** out_imt) {
6670   StackHandleScope<3> hs(self);
6671   Runtime* const runtime = Runtime::Current();
6672 
6673   const bool is_interface = klass->IsInterface();
6674   const bool has_superclass = klass->HasSuperClass();
6675   const bool fill_tables = !is_interface;
6676   const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6677   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
6678   const size_t method_size = ArtMethod::Size(image_pointer_size_);
6679   const size_t ifcount = klass->GetIfTableCount();
6680 
6681   MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
6682 
6683   // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create
6684   // the virtual methods array.
6685   // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array
6686   // during cross compilation.
6687   // Use the linear alloc pool since this one is in the low 4gb for the compiler.
6688   ArenaStack stack(runtime->GetLinearAlloc()->GetArenaPool());
6689   ScopedArenaAllocator allocator(&stack);
6690 
6691   ScopedArenaVector<ArtMethod*> default_conflict_methods(allocator.Adapter());
6692   ScopedArenaVector<ArtMethod*> overriding_default_conflict_methods(allocator.Adapter());
6693   ScopedArenaVector<ArtMethod*> miranda_methods(allocator.Adapter());
6694   ScopedArenaVector<ArtMethod*> default_methods(allocator.Adapter());
6695   ScopedArenaVector<ArtMethod*> overriding_default_methods(allocator.Adapter());
6696 
6697   MutableHandle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6698   ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6699   ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod();
6700   // Copy the IMT from the super class if possible.
6701   const bool extend_super_iftable = has_superclass;
6702   if (has_superclass && fill_tables) {
6703     FillImtFromSuperClass(klass,
6704                           unimplemented_method,
6705                           imt_conflict_method,
6706                           out_new_conflict,
6707                           out_imt);
6708   }
6709   // Allocate method arrays before since we don't want miss visiting miranda method roots due to
6710   // thread suspension.
6711   if (fill_tables) {
6712     for (size_t i = 0; i < ifcount; ++i) {
6713       size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6714       if (num_methods > 0) {
6715         const bool is_super = i < super_ifcount;
6716         // This is an interface implemented by a super-class. Therefore we can just copy the method
6717         // array from the superclass.
6718         const bool super_interface = is_super && extend_super_iftable;
6719         mirror::PointerArray* method_array;
6720         if (super_interface) {
6721           mirror::IfTable* if_table = klass->GetSuperClass()->GetIfTable();
6722           DCHECK(if_table != nullptr);
6723           DCHECK(if_table->GetMethodArray(i) != nullptr);
6724           // If we are working on a super interface, try extending the existing method array.
6725           method_array = down_cast<mirror::PointerArray*>(if_table->GetMethodArray(i)->Clone(self));
6726         } else {
6727           method_array = AllocPointerArray(self, num_methods);
6728         }
6729         if (UNLIKELY(method_array == nullptr)) {
6730           self->AssertPendingOOMException();
6731           return false;
6732         }
6733         iftable->SetMethodArray(i, method_array);
6734       }
6735     }
6736   }
6737 
6738   auto* old_cause = self->StartAssertNoThreadSuspension(
6739       "Copying ArtMethods for LinkInterfaceMethods");
6740   // Going in reverse to ensure that we will hit abstract methods that override defaults before the
6741   // defaults. This means we don't need to do any trickery when creating the Miranda methods, since
6742   // they will already be null. This has the additional benefit that the declarer of a miranda
6743   // method will actually declare an abstract method.
6744   for (size_t i = ifcount; i != 0; ) {
6745     --i;
6746 
6747     DCHECK_GE(i, 0u);
6748     DCHECK_LT(i, ifcount);
6749 
6750     size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6751     if (num_methods > 0) {
6752       StackHandleScope<2> hs2(self);
6753       const bool is_super = i < super_ifcount;
6754       const bool super_interface = is_super && extend_super_iftable;
6755       // We don't actually create or fill these tables for interfaces, we just copy some methods for
6756       // conflict methods. Just set this as nullptr in those cases.
6757       Handle<mirror::PointerArray> method_array(fill_tables
6758                                                 ? hs2.NewHandle(iftable->GetMethodArray(i))
6759                                                 : hs2.NewHandle<mirror::PointerArray>(nullptr));
6760 
6761       ArraySlice<ArtMethod> input_virtual_methods;
6762       ScopedNullHandle<mirror::PointerArray> null_handle;
6763       Handle<mirror::PointerArray> input_vtable_array(null_handle);
6764       int32_t input_array_length = 0;
6765 
6766       // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty
6767       //      and confusing. Default methods should always look through all the superclasses
6768       //      because they are the last choice of an implementation. We get around this by looking
6769       //      at the super-classes iftable methods (copied into method_array previously) when we are
6770       //      looking for the implementation of a super-interface method but that is rather dirty.
6771       bool using_virtuals;
6772       if (super_interface || is_interface) {
6773         // If we are overwriting a super class interface, try to only virtual methods instead of the
6774         // whole vtable.
6775         using_virtuals = true;
6776         input_virtual_methods = klass->GetDeclaredMethodsSlice(image_pointer_size_);
6777         input_array_length = input_virtual_methods.size();
6778       } else {
6779         // For a new interface, however, we need the whole vtable in case a new
6780         // interface method is implemented in the whole superclass.
6781         using_virtuals = false;
6782         DCHECK(vtable.Get() != nullptr);
6783         input_vtable_array = vtable;
6784         input_array_length = input_vtable_array->GetLength();
6785       }
6786 
6787       // For each method in interface
6788       for (size_t j = 0; j < num_methods; ++j) {
6789         auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_);
6790         MethodNameAndSignatureComparator interface_name_comparator(
6791             interface_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6792         uint32_t imt_index = GetIMTIndex(interface_method);
6793         ArtMethod** imt_ptr = &out_imt[imt_index];
6794         // For each method listed in the interface's method list, find the
6795         // matching method in our class's method list.  We want to favor the
6796         // subclass over the superclass, which just requires walking
6797         // back from the end of the vtable.  (This only matters if the
6798         // superclass defines a private method and this class redefines
6799         // it -- otherwise it would use the same vtable slot.  In .dex files
6800         // those don't end up in the virtual method table, so it shouldn't
6801         // matter which direction we go.  We walk it backward anyway.)
6802         //
6803         // To find defaults we need to do the same but also go over interfaces.
6804         bool found_impl = false;
6805         ArtMethod* vtable_impl = nullptr;
6806         for (int32_t k = input_array_length - 1; k >= 0; --k) {
6807           ArtMethod* vtable_method = using_virtuals ?
6808               &input_virtual_methods[k] :
6809               input_vtable_array->GetElementPtrSize<ArtMethod*>(k, image_pointer_size_);
6810           ArtMethod* vtable_method_for_name_comparison =
6811               vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_);
6812           if (interface_name_comparator.HasSameNameAndSignature(
6813               vtable_method_for_name_comparison)) {
6814             if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) {
6815               // Must do EndAssertNoThreadSuspension before throw since the throw can cause
6816               // allocations.
6817               self->EndAssertNoThreadSuspension(old_cause);
6818               ThrowIllegalAccessError(klass.Get(),
6819                   "Method '%s' implementing interface method '%s' is not public",
6820                   PrettyMethod(vtable_method).c_str(), PrettyMethod(interface_method).c_str());
6821               return false;
6822             } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) {
6823               // We might have a newer, better, default method for this, so we just skip it. If we
6824               // are still using this we will select it again when scanning for default methods. To
6825               // obviate the need to copy the method again we will make a note that we already found
6826               // a default here.
6827               // TODO This should be much cleaner.
6828               vtable_impl = vtable_method;
6829               break;
6830             } else {
6831               found_impl = true;
6832               if (LIKELY(fill_tables)) {
6833                 method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_);
6834                 // Place method in imt if entry is empty, place conflict otherwise.
6835                 SetIMTRef(unimplemented_method,
6836                           imt_conflict_method,
6837                           vtable_method,
6838                           /*out*/out_new_conflict,
6839                           /*out*/imt_ptr);
6840               }
6841               break;
6842             }
6843           }
6844         }
6845         // Continue on to the next method if we are done.
6846         if (LIKELY(found_impl)) {
6847           continue;
6848         } else if (LIKELY(super_interface)) {
6849           // Don't look for a default implementation when the super-method is implemented directly
6850           // by the class.
6851           //
6852           // See if we can use the superclasses method and skip searching everything else.
6853           // Note: !found_impl && super_interface
6854           CHECK(extend_super_iftable);
6855           // If this is a super_interface method it is possible we shouldn't override it because a
6856           // superclass could have implemented it directly.  We get the method the superclass used
6857           // to implement this to know if we can override it with a default method. Doing this is
6858           // safe since we know that the super_iftable is filled in so we can simply pull it from
6859           // there. We don't bother if this is not a super-classes interface since in that case we
6860           // have scanned the entire vtable anyway and would have found it.
6861           // TODO This is rather dirty but it is faster than searching through the entire vtable
6862           //      every time.
6863           ArtMethod* supers_method =
6864               method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6865           DCHECK(supers_method != nullptr);
6866           DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method));
6867           if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) {
6868             // The method is not overridable by a default method (i.e. it is directly implemented
6869             // in some class). Therefore move onto the next interface method.
6870             continue;
6871           } else {
6872             // If the super-classes method is override-able by a default method we need to keep
6873             // track of it since though it is override-able it is not guaranteed to be 'overridden'.
6874             // If it turns out not to be overridden and we did not keep track of it we might add it
6875             // to the vtable twice, causing corruption in this class and possibly any subclasses.
6876             DCHECK(vtable_impl == nullptr || vtable_impl == supers_method)
6877                 << "vtable_impl was " << PrettyMethod(vtable_impl) << " and not 'nullptr' or "
6878                 << PrettyMethod(supers_method) << " as expected. IFTable appears to be corrupt!";
6879             vtable_impl = supers_method;
6880           }
6881         }
6882         // If we haven't found it yet we should search through the interfaces for default methods.
6883         ArtMethod* current_method = nullptr;
6884         switch (FindDefaultMethodImplementation(self,
6885                                                 interface_method,
6886                                                 klass,
6887                                                 /*out*/&current_method)) {
6888           case DefaultMethodSearchResult::kDefaultConflict: {
6889             // Default method conflict.
6890             DCHECK(current_method == nullptr);
6891             ArtMethod* default_conflict_method = nullptr;
6892             if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) {
6893               // We can reuse the method from the superclass, don't bother adding it to virtuals.
6894               default_conflict_method = vtable_impl;
6895             } else {
6896               // See if we already have a conflict method for this method.
6897               ArtMethod* preexisting_conflict = FindSameNameAndSignature(
6898                   interface_name_comparator,
6899                   default_conflict_methods,
6900                   overriding_default_conflict_methods);
6901               if (LIKELY(preexisting_conflict != nullptr)) {
6902                 // We already have another conflict we can reuse.
6903                 default_conflict_method = preexisting_conflict;
6904               } else {
6905                 // Note that we do this even if we are an interface since we need to create this and
6906                 // cannot reuse another classes.
6907                 // Create a new conflict method for this to use.
6908                 default_conflict_method =
6909                     reinterpret_cast<ArtMethod*>(allocator.Alloc(method_size));
6910                 new(default_conflict_method) ArtMethod(interface_method, image_pointer_size_);
6911                 if (vtable_impl == nullptr) {
6912                   // Save the conflict method. We need to add it to the vtable.
6913                   default_conflict_methods.push_back(default_conflict_method);
6914                 } else {
6915                   // Save the conflict method but it is already in the vtable.
6916                   overriding_default_conflict_methods.push_back(default_conflict_method);
6917                 }
6918               }
6919             }
6920             current_method = default_conflict_method;
6921             break;
6922           }  // case kDefaultConflict
6923           case DefaultMethodSearchResult::kDefaultFound: {
6924             DCHECK(current_method != nullptr);
6925             // Found a default method.
6926             if (vtable_impl != nullptr &&
6927                 current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) {
6928               // We found a default method but it was the same one we already have from our
6929               // superclass. Don't bother adding it to our vtable again.
6930               current_method = vtable_impl;
6931             } else if (LIKELY(fill_tables)) {
6932               // Interfaces don't need to copy default methods since they don't have vtables.
6933               // Only record this default method if it is new to save space.
6934               // TODO It might be worthwhile to copy default methods on interfaces anyway since it
6935               //      would make lookup for interface super much faster. (We would only need to scan
6936               //      the iftable to find if there is a NSME or AME.)
6937               ArtMethod* old = FindSameNameAndSignature(interface_name_comparator,
6938                                                         default_methods,
6939                                                         overriding_default_methods);
6940               if (old == nullptr) {
6941                 // We found a default method implementation and there were no conflicts.
6942                 if (vtable_impl == nullptr) {
6943                   // Save the default method. We need to add it to the vtable.
6944                   default_methods.push_back(current_method);
6945                 } else {
6946                   // Save the default method but it is already in the vtable.
6947                   overriding_default_methods.push_back(current_method);
6948                 }
6949               } else {
6950                 CHECK(old == current_method) << "Multiple default implementations selected!";
6951               }
6952             }
6953             break;
6954           }  // case kDefaultFound
6955           case DefaultMethodSearchResult::kAbstractFound: {
6956             DCHECK(current_method == nullptr);
6957             // Abstract method masks all defaults.
6958             if (vtable_impl != nullptr &&
6959                 vtable_impl->IsAbstract() &&
6960                 !vtable_impl->IsDefaultConflicting()) {
6961               // We need to make this an abstract method but the version in the vtable already is so
6962               // don't do anything.
6963               current_method = vtable_impl;
6964             }
6965             break;
6966           }  // case kAbstractFound
6967         }
6968         if (LIKELY(fill_tables)) {
6969           if (current_method == nullptr && !super_interface) {
6970             // We could not find an implementation for this method and since it is a brand new
6971             // interface we searched the entire vtable (and all default methods) for an
6972             // implementation but couldn't find one. We therefore need to make a miranda method.
6973             //
6974             // Find out if there is already a miranda method we can use.
6975             ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator,
6976                                                                  miranda_methods);
6977             if (miranda_method == nullptr) {
6978               DCHECK(interface_method->IsAbstract()) << PrettyMethod(interface_method);
6979               miranda_method = reinterpret_cast<ArtMethod*>(allocator.Alloc(method_size));
6980               CHECK(miranda_method != nullptr);
6981               // Point the interface table at a phantom slot.
6982               new(miranda_method) ArtMethod(interface_method, image_pointer_size_);
6983               miranda_methods.push_back(miranda_method);
6984             }
6985             current_method = miranda_method;
6986           }
6987 
6988           if (current_method != nullptr) {
6989             // We found a default method implementation. Record it in the iftable and IMT.
6990             method_array->SetElementPtrSize(j, current_method, image_pointer_size_);
6991             SetIMTRef(unimplemented_method,
6992                       imt_conflict_method,
6993                       current_method,
6994                       /*out*/out_new_conflict,
6995                       /*out*/imt_ptr);
6996           }
6997         }
6998       }  // For each method in interface end.
6999     }  // if (num_methods > 0)
7000   }  // For each interface.
7001   const bool has_new_virtuals = !(miranda_methods.empty() &&
7002                                   default_methods.empty() &&
7003                                   overriding_default_methods.empty() &&
7004                                   overriding_default_conflict_methods.empty() &&
7005                                   default_conflict_methods.empty());
7006   // TODO don't extend virtuals of interface unless necessary (when is it?).
7007   if (has_new_virtuals) {
7008     DCHECK(!is_interface || (default_methods.empty() && miranda_methods.empty()))
7009         << "Interfaces should only have default-conflict methods appended to them.";
7010     VLOG(class_linker) << PrettyClass(klass.Get()) << ": miranda_methods=" << miranda_methods.size()
7011                        << " default_methods=" << default_methods.size()
7012                        << " overriding_default_methods=" << overriding_default_methods.size()
7013                        << " default_conflict_methods=" << default_conflict_methods.size()
7014                        << " overriding_default_conflict_methods="
7015                        << overriding_default_conflict_methods.size();
7016     const size_t old_method_count = klass->NumMethods();
7017     const size_t new_method_count = old_method_count +
7018                                     miranda_methods.size() +
7019                                     default_methods.size() +
7020                                     overriding_default_conflict_methods.size() +
7021                                     overriding_default_methods.size() +
7022                                     default_conflict_methods.size();
7023     // Attempt to realloc to save RAM if possible.
7024     LengthPrefixedArray<ArtMethod>* old_methods = klass->GetMethodsPtr();
7025     // The Realloced virtual methods aren't visible from the class roots, so there is no issue
7026     // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the
7027     // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since
7028     // CopyFrom has internal read barriers.
7029     //
7030     // TODO We should maybe move some of this into mirror::Class or at least into another method.
7031     const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_method_count,
7032                                                                         method_size,
7033                                                                         method_alignment);
7034     const size_t new_size = LengthPrefixedArray<ArtMethod>::ComputeSize(new_method_count,
7035                                                                         method_size,
7036                                                                         method_alignment);
7037     const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0;
7038     auto* methods = reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(
7039         runtime->GetLinearAlloc()->Realloc(self, old_methods, old_methods_ptr_size, new_size));
7040     if (UNLIKELY(methods == nullptr)) {
7041       self->AssertPendingOOMException();
7042       self->EndAssertNoThreadSuspension(old_cause);
7043       return false;
7044     }
7045     ScopedArenaUnorderedMap<ArtMethod*, ArtMethod*> move_table(allocator.Adapter());
7046     if (methods != old_methods) {
7047       // Maps from heap allocated miranda method to linear alloc miranda method.
7048       StrideIterator<ArtMethod> out = methods->begin(method_size, method_alignment);
7049       // Copy over the old methods.
7050       for (auto& m : klass->GetMethods(image_pointer_size_)) {
7051         move_table.emplace(&m, &*out);
7052         // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read
7053         // barriers when it copies.
7054         out->CopyFrom(&m, image_pointer_size_);
7055         ++out;
7056       }
7057     }
7058     StrideIterator<ArtMethod> out(methods->begin(method_size, method_alignment) + old_method_count);
7059     // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and
7060     // we want the roots of the miranda methods to get visited.
7061     for (ArtMethod* mir_method : miranda_methods) {
7062       ArtMethod& new_method = *out;
7063       new_method.CopyFrom(mir_method, image_pointer_size_);
7064       new_method.SetAccessFlags(new_method.GetAccessFlags() | kAccMiranda | kAccCopied);
7065       DCHECK_NE(new_method.GetAccessFlags() & kAccAbstract, 0u)
7066           << "Miranda method should be abstract!";
7067       move_table.emplace(mir_method, &new_method);
7068       ++out;
7069     }
7070     // We need to copy the default methods into our own method table since the runtime requires that
7071     // every method on a class's vtable be in that respective class's virtual method table.
7072     // NOTE This means that two classes might have the same implementation of a method from the same
7073     // interface but will have different ArtMethod*s for them. This also means we cannot compare a
7074     // default method found on a class with one found on the declaring interface directly and must
7075     // look at the declaring class to determine if they are the same.
7076     for (const ScopedArenaVector<ArtMethod*>& methods_vec : {default_methods,
7077                                                              overriding_default_methods}) {
7078       for (ArtMethod* def_method : methods_vec) {
7079         ArtMethod& new_method = *out;
7080         new_method.CopyFrom(def_method, image_pointer_size_);
7081         // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been
7082         // verified yet it shouldn't have methods that are skipping access checks.
7083         // TODO This is rather arbitrary. We should maybe support classes where only some of its
7084         // methods are skip_access_checks.
7085         constexpr uint32_t kSetFlags = kAccDefault | kAccCopied;
7086         constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks;
7087         new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
7088         move_table.emplace(def_method, &new_method);
7089         ++out;
7090       }
7091     }
7092     for (const ScopedArenaVector<ArtMethod*>& methods_vec : {default_conflict_methods,
7093                                                              overriding_default_conflict_methods}) {
7094       for (ArtMethod* conf_method : methods_vec) {
7095         ArtMethod& new_method = *out;
7096         new_method.CopyFrom(conf_method, image_pointer_size_);
7097         // This is a type of default method (there are default method impls, just a conflict) so
7098         // mark this as a default, non-abstract method, since thats what it is. Also clear the
7099         // kAccSkipAccessChecks bit since this class hasn't been verified yet it shouldn't have
7100         // methods that are skipping access checks.
7101         constexpr uint32_t kSetFlags = kAccDefault | kAccDefaultConflict | kAccCopied;
7102         constexpr uint32_t kMaskFlags = ~(kAccAbstract | kAccSkipAccessChecks);
7103         new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
7104         DCHECK(new_method.IsDefaultConflicting());
7105         // The actual method might or might not be marked abstract since we just copied it from a
7106         // (possibly default) interface method. We need to set it entry point to be the bridge so
7107         // that the compiler will not invoke the implementation of whatever method we copied from.
7108         EnsureThrowsInvocationError(&new_method);
7109         move_table.emplace(conf_method, &new_method);
7110         ++out;
7111       }
7112     }
7113     methods->SetSize(new_method_count);
7114     UpdateClassMethods(klass.Get(), methods);
7115     // Done copying methods, they are all roots in the class now, so we can end the no thread
7116     // suspension assert.
7117     self->EndAssertNoThreadSuspension(old_cause);
7118 
7119     if (fill_tables) {
7120       // Update the vtable to the new method structures. We can skip this for interfaces since they
7121       // do not have vtables.
7122       const size_t old_vtable_count = vtable->GetLength();
7123       const size_t new_vtable_count = old_vtable_count +
7124                                       miranda_methods.size() +
7125                                       default_methods.size() +
7126                                       default_conflict_methods.size();
7127 
7128       vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, new_vtable_count)));
7129       if (UNLIKELY(vtable.Get() == nullptr)) {
7130         self->AssertPendingOOMException();
7131         return false;
7132       }
7133       size_t vtable_pos = old_vtable_count;
7134       // Update all the newly copied method's indexes so they denote their placement in the vtable.
7135       for (const ScopedArenaVector<ArtMethod*>& methods_vec : {default_methods,
7136                                                                default_conflict_methods,
7137                                                                miranda_methods}) {
7138         // These are the functions that are not already in the vtable!
7139         for (ArtMethod* new_method : methods_vec) {
7140           auto translated_method_it = move_table.find(new_method);
7141           CHECK(translated_method_it != move_table.end())
7142               << "We must have a translation for methods added to the classes methods_ array! We "
7143               << "could not find the ArtMethod added for " << PrettyMethod(new_method);
7144           ArtMethod* new_vtable_method = translated_method_it->second;
7145           // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_
7146           // fields are references into the dex file the method was defined in. Since the ArtMethod
7147           // does not store that information it uses declaring_class_->dex_cache_.
7148           new_vtable_method->SetMethodIndex(0xFFFF & vtable_pos);
7149           vtable->SetElementPtrSize(vtable_pos, new_vtable_method, image_pointer_size_);
7150           ++vtable_pos;
7151         }
7152       }
7153       CHECK_EQ(vtable_pos, new_vtable_count);
7154       // Update old vtable methods. We use the default_translations map to figure out what each
7155       // vtable entry should be updated to, if they need to be at all.
7156       for (size_t i = 0; i < old_vtable_count; ++i) {
7157         ArtMethod* translated_method = vtable->GetElementPtrSize<ArtMethod*>(
7158               i, image_pointer_size_);
7159         // Try and find what we need to change this method to.
7160         auto translation_it = default_translations.find(i);
7161         bool found_translation = false;
7162         if (translation_it != default_translations.end()) {
7163           if (translation_it->second.IsInConflict()) {
7164             // Find which conflict method we are to use for this method.
7165             MethodNameAndSignatureComparator old_method_comparator(
7166                 translated_method->GetInterfaceMethodIfProxy(image_pointer_size_));
7167             // We only need to look through overriding_default_conflict_methods since this is an
7168             // overridden method we are fixing up here.
7169             ArtMethod* new_conflict_method = FindSameNameAndSignature(
7170                 old_method_comparator, overriding_default_conflict_methods);
7171             CHECK(new_conflict_method != nullptr) << "Expected a conflict method!";
7172             translated_method = new_conflict_method;
7173           } else if (translation_it->second.IsAbstract()) {
7174             // Find which miranda method we are to use for this method.
7175             MethodNameAndSignatureComparator old_method_comparator(
7176                 translated_method->GetInterfaceMethodIfProxy(image_pointer_size_));
7177             ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator,
7178                                                                  miranda_methods);
7179             DCHECK(miranda_method != nullptr);
7180             translated_method = miranda_method;
7181           } else {
7182             // Normal default method (changed from an older default or abstract interface method).
7183             DCHECK(translation_it->second.IsTranslation());
7184             translated_method = translation_it->second.GetTranslation();
7185           }
7186           found_translation = true;
7187         }
7188         DCHECK(translated_method != nullptr);
7189         auto it = move_table.find(translated_method);
7190         if (it != move_table.end()) {
7191           auto* new_method = it->second;
7192           DCHECK(new_method != nullptr);
7193           // Make sure the new_methods index is set.
7194           if (new_method->GetMethodIndexDuringLinking() != i) {
7195             DCHECK_LE(reinterpret_cast<uintptr_t>(&*methods->begin(method_size, method_alignment)),
7196                       reinterpret_cast<uintptr_t>(new_method));
7197             DCHECK_LT(reinterpret_cast<uintptr_t>(new_method),
7198                       reinterpret_cast<uintptr_t>(&*methods->end(method_size, method_alignment)));
7199             new_method->SetMethodIndex(0xFFFF & i);
7200           }
7201           vtable->SetElementPtrSize(i, new_method, image_pointer_size_);
7202         } else {
7203           // If it was not going to be updated we wouldn't have put it into the default_translations
7204           // map.
7205           CHECK(!found_translation) << "We were asked to update this vtable entry. Must not fail.";
7206         }
7207       }
7208       klass->SetVTable(vtable.Get());
7209 
7210       // Go fix up all the stale iftable pointers.
7211       for (size_t i = 0; i < ifcount; ++i) {
7212         for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
7213           auto* method_array = iftable->GetMethodArray(i);
7214           auto* m = method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
7215           DCHECK(m != nullptr) << PrettyClass(klass.Get());
7216           auto it = move_table.find(m);
7217           if (it != move_table.end()) {
7218             auto* new_m = it->second;
7219             DCHECK(new_m != nullptr) << PrettyClass(klass.Get());
7220             method_array->SetElementPtrSize(j, new_m, image_pointer_size_);
7221           }
7222         }
7223       }
7224 
7225       // Fix up IMT next
7226       for (size_t i = 0; i < ImTable::kSize; ++i) {
7227         auto it = move_table.find(out_imt[i]);
7228         if (it != move_table.end()) {
7229           out_imt[i] = it->second;
7230         }
7231       }
7232     }
7233 
7234     // Check that there are no stale methods are in the dex cache array.
7235     if (kIsDebugBuild) {
7236       auto* resolved_methods = klass->GetDexCache()->GetResolvedMethods();
7237       for (size_t i = 0, count = klass->GetDexCache()->NumResolvedMethods(); i < count; ++i) {
7238         auto* m = mirror::DexCache::GetElementPtrSize(resolved_methods, i, image_pointer_size_);
7239         CHECK(move_table.find(m) == move_table.end() ||
7240               // The original versions of copied methods will still be present so allow those too.
7241               // Note that if the first check passes this might fail to GetDeclaringClass().
7242               std::find_if(m->GetDeclaringClass()->GetMethods(image_pointer_size_).begin(),
7243                            m->GetDeclaringClass()->GetMethods(image_pointer_size_).end(),
7244                            [m] (ArtMethod& meth) {
7245                              return &meth == m;
7246                            }) != m->GetDeclaringClass()->GetMethods(image_pointer_size_).end())
7247             << "Obsolete methods " << PrettyMethod(m) << " is in dex cache!";
7248       }
7249     }
7250     // Put some random garbage in old methods to help find stale pointers.
7251     if (methods != old_methods && old_methods != nullptr && kIsDebugBuild) {
7252       // Need to make sure the GC is not running since it could be scanning the methods we are
7253       // about to overwrite.
7254       ScopedThreadStateChange tsc(self, kSuspended);
7255       gc::ScopedGCCriticalSection gcs(self,
7256                                       gc::kGcCauseClassLinker,
7257                                       gc::kCollectorTypeClassLinker);
7258       memset(old_methods, 0xFEu, old_size);
7259     }
7260   } else {
7261     self->EndAssertNoThreadSuspension(old_cause);
7262   }
7263   if (kIsDebugBuild && !is_interface) {
7264     SanityCheckVTable(self, klass, image_pointer_size_);
7265   }
7266   return true;
7267 }
7268 
LinkInstanceFields(Thread * self,Handle<mirror::Class> klass)7269 bool ClassLinker::LinkInstanceFields(Thread* self, Handle<mirror::Class> klass) {
7270   CHECK(klass.Get() != nullptr);
7271   return LinkFields(self, klass, false, nullptr);
7272 }
7273 
LinkStaticFields(Thread * self,Handle<mirror::Class> klass,size_t * class_size)7274 bool ClassLinker::LinkStaticFields(Thread* self, Handle<mirror::Class> klass, size_t* class_size) {
7275   CHECK(klass.Get() != nullptr);
7276   return LinkFields(self, klass, true, class_size);
7277 }
7278 
7279 struct LinkFieldsComparator {
SHARED_REQUIRESart::LinkFieldsComparator7280   explicit LinkFieldsComparator() SHARED_REQUIRES(Locks::mutator_lock_) {
7281   }
7282   // No thread safety analysis as will be called from STL. Checked lock held in constructor.
operator ()art::LinkFieldsComparator7283   bool operator()(ArtField* field1, ArtField* field2)
7284       NO_THREAD_SAFETY_ANALYSIS {
7285     // First come reference fields, then 64-bit, then 32-bit, and then 16-bit, then finally 8-bit.
7286     Primitive::Type type1 = field1->GetTypeAsPrimitiveType();
7287     Primitive::Type type2 = field2->GetTypeAsPrimitiveType();
7288     if (type1 != type2) {
7289       if (type1 == Primitive::kPrimNot) {
7290         // Reference always goes first.
7291         return true;
7292       }
7293       if (type2 == Primitive::kPrimNot) {
7294         // Reference always goes first.
7295         return false;
7296       }
7297       size_t size1 = Primitive::ComponentSize(type1);
7298       size_t size2 = Primitive::ComponentSize(type2);
7299       if (size1 != size2) {
7300         // Larger primitive types go first.
7301         return size1 > size2;
7302       }
7303       // Primitive types differ but sizes match. Arbitrarily order by primitive type.
7304       return type1 < type2;
7305     }
7306     // Same basic group? Then sort by dex field index. This is guaranteed to be sorted
7307     // by name and for equal names by type id index.
7308     // NOTE: This works also for proxies. Their static fields are assigned appropriate indexes.
7309     return field1->GetDexFieldIndex() < field2->GetDexFieldIndex();
7310   }
7311 };
7312 
LinkFields(Thread * self,Handle<mirror::Class> klass,bool is_static,size_t * class_size)7313 bool ClassLinker::LinkFields(Thread* self,
7314                              Handle<mirror::Class> klass,
7315                              bool is_static,
7316                              size_t* class_size) {
7317   self->AllowThreadSuspension();
7318   const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
7319   LengthPrefixedArray<ArtField>* const fields = is_static ? klass->GetSFieldsPtr() :
7320       klass->GetIFieldsPtr();
7321 
7322   // Initialize field_offset
7323   MemberOffset field_offset(0);
7324   if (is_static) {
7325     field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_);
7326   } else {
7327     mirror::Class* super_class = klass->GetSuperClass();
7328     if (super_class != nullptr) {
7329       CHECK(super_class->IsResolved())
7330           << PrettyClass(klass.Get()) << " " << PrettyClass(super_class);
7331       field_offset = MemberOffset(super_class->GetObjectSize());
7332     }
7333   }
7334 
7335   CHECK_EQ(num_fields == 0, fields == nullptr) << PrettyClass(klass.Get());
7336 
7337   // we want a relatively stable order so that adding new fields
7338   // minimizes disruption of C++ version such as Class and Method.
7339   //
7340   // The overall sort order order is:
7341   // 1) All object reference fields, sorted alphabetically.
7342   // 2) All java long (64-bit) integer fields, sorted alphabetically.
7343   // 3) All java double (64-bit) floating point fields, sorted alphabetically.
7344   // 4) All java int (32-bit) integer fields, sorted alphabetically.
7345   // 5) All java float (32-bit) floating point fields, sorted alphabetically.
7346   // 6) All java char (16-bit) integer fields, sorted alphabetically.
7347   // 7) All java short (16-bit) integer fields, sorted alphabetically.
7348   // 8) All java boolean (8-bit) integer fields, sorted alphabetically.
7349   // 9) All java byte (8-bit) integer fields, sorted alphabetically.
7350   //
7351   // Once the fields are sorted in this order we will attempt to fill any gaps that might be present
7352   // in the memory layout of the structure. See ShuffleForward for how this is done.
7353   std::deque<ArtField*> grouped_and_sorted_fields;
7354   const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension(
7355       "Naked ArtField references in deque");
7356   for (size_t i = 0; i < num_fields; i++) {
7357     grouped_and_sorted_fields.push_back(&fields->At(i));
7358   }
7359   std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(),
7360             LinkFieldsComparator());
7361 
7362   // References should be at the front.
7363   size_t current_field = 0;
7364   size_t num_reference_fields = 0;
7365   FieldGaps gaps;
7366 
7367   for (; current_field < num_fields; current_field++) {
7368     ArtField* field = grouped_and_sorted_fields.front();
7369     Primitive::Type type = field->GetTypeAsPrimitiveType();
7370     bool isPrimitive = type != Primitive::kPrimNot;
7371     if (isPrimitive) {
7372       break;  // past last reference, move on to the next phase
7373     }
7374     if (UNLIKELY(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(
7375         field_offset.Uint32Value()))) {
7376       MemberOffset old_offset = field_offset;
7377       field_offset = MemberOffset(RoundUp(field_offset.Uint32Value(), 4));
7378       AddFieldGap(old_offset.Uint32Value(), field_offset.Uint32Value(), &gaps);
7379     }
7380     DCHECK_ALIGNED(field_offset.Uint32Value(), sizeof(mirror::HeapReference<mirror::Object>));
7381     grouped_and_sorted_fields.pop_front();
7382     num_reference_fields++;
7383     field->SetOffset(field_offset);
7384     field_offset = MemberOffset(field_offset.Uint32Value() +
7385                                 sizeof(mirror::HeapReference<mirror::Object>));
7386   }
7387   // Gaps are stored as a max heap which means that we must shuffle from largest to smallest
7388   // otherwise we could end up with suboptimal gap fills.
7389   ShuffleForward<8>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7390   ShuffleForward<4>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7391   ShuffleForward<2>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7392   ShuffleForward<1>(&current_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7393   CHECK(grouped_and_sorted_fields.empty()) << "Missed " << grouped_and_sorted_fields.size() <<
7394       " fields.";
7395   self->EndAssertNoThreadSuspension(old_no_suspend_cause);
7396 
7397   // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
7398   if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) {
7399     // We know there are no non-reference fields in the Reference classes, and we know
7400     // that 'referent' is alphabetically last, so this is easy...
7401     CHECK_EQ(num_reference_fields, num_fields) << PrettyClass(klass.Get());
7402     CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent")
7403         << PrettyClass(klass.Get());
7404     --num_reference_fields;
7405   }
7406 
7407   size_t size = field_offset.Uint32Value();
7408   // Update klass
7409   if (is_static) {
7410     klass->SetNumReferenceStaticFields(num_reference_fields);
7411     *class_size = size;
7412   } else {
7413     klass->SetNumReferenceInstanceFields(num_reference_fields);
7414     mirror::Class* super_class = klass->GetSuperClass();
7415     if (num_reference_fields == 0 || super_class == nullptr) {
7416       // object has one reference field, klass, but we ignore it since we always visit the class.
7417       // super_class is null iff the class is java.lang.Object.
7418       if (super_class == nullptr ||
7419           (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) {
7420         klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields);
7421       }
7422     }
7423     if (kIsDebugBuild) {
7424       DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;"));
7425       size_t total_reference_instance_fields = 0;
7426       mirror::Class* cur_super = klass.Get();
7427       while (cur_super != nullptr) {
7428         total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking();
7429         cur_super = cur_super->GetSuperClass();
7430       }
7431       if (super_class == nullptr) {
7432         CHECK_EQ(total_reference_instance_fields, 1u) << PrettyDescriptor(klass.Get());
7433       } else {
7434         // Check that there is at least num_reference_fields other than Object.class.
7435         CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields)
7436             << PrettyClass(klass.Get());
7437       }
7438     }
7439     if (!klass->IsVariableSize()) {
7440       std::string temp;
7441       DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp);
7442       size_t previous_size = klass->GetObjectSize();
7443       if (previous_size != 0) {
7444         // Make sure that we didn't originally have an incorrect size.
7445         CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp);
7446       }
7447       klass->SetObjectSize(size);
7448     }
7449   }
7450 
7451   if (kIsDebugBuild) {
7452     // Make sure that the fields array is ordered by name but all reference
7453     // offsets are at the beginning as far as alignment allows.
7454     MemberOffset start_ref_offset = is_static
7455         ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_)
7456         : klass->GetFirstReferenceInstanceFieldOffset();
7457     MemberOffset end_ref_offset(start_ref_offset.Uint32Value() +
7458                                 num_reference_fields *
7459                                     sizeof(mirror::HeapReference<mirror::Object>));
7460     MemberOffset current_ref_offset = start_ref_offset;
7461     for (size_t i = 0; i < num_fields; i++) {
7462       ArtField* field = &fields->At(i);
7463       VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance")
7464           << " class=" << PrettyClass(klass.Get()) << " field=" << PrettyField(field) << " offset="
7465           << field->GetOffsetDuringLinking();
7466       if (i != 0) {
7467         ArtField* const prev_field = &fields->At(i - 1);
7468         // NOTE: The field names can be the same. This is not possible in the Java language
7469         // but it's valid Java/dex bytecode and for example proguard can generate such bytecode.
7470         DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0);
7471       }
7472       Primitive::Type type = field->GetTypeAsPrimitiveType();
7473       bool is_primitive = type != Primitive::kPrimNot;
7474       if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") &&
7475           strcmp("referent", field->GetName()) == 0) {
7476         is_primitive = true;  // We lied above, so we have to expect a lie here.
7477       }
7478       MemberOffset offset = field->GetOffsetDuringLinking();
7479       if (is_primitive) {
7480         if (offset.Uint32Value() < end_ref_offset.Uint32Value()) {
7481           // Shuffled before references.
7482           size_t type_size = Primitive::ComponentSize(type);
7483           CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>));
7484           CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value());
7485           CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value());
7486           CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value()));
7487         }
7488       } else {
7489         CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value());
7490         current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() +
7491                                           sizeof(mirror::HeapReference<mirror::Object>));
7492       }
7493     }
7494     CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value());
7495   }
7496   return true;
7497 }
7498 
7499 //  Set the bitmap of reference instance field offsets.
CreateReferenceInstanceOffsets(Handle<mirror::Class> klass)7500 void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) {
7501   uint32_t reference_offsets = 0;
7502   mirror::Class* super_class = klass->GetSuperClass();
7503   // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially).
7504   if (super_class != nullptr) {
7505     reference_offsets = super_class->GetReferenceInstanceOffsets();
7506     // Compute reference offsets unless our superclass overflowed.
7507     if (reference_offsets != mirror::Class::kClassWalkSuper) {
7508       size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking();
7509       if (num_reference_fields != 0u) {
7510         // All of the fields that contain object references are guaranteed be grouped in memory
7511         // starting at an appropriately aligned address after super class object data.
7512         uint32_t start_offset = RoundUp(super_class->GetObjectSize(),
7513                                         sizeof(mirror::HeapReference<mirror::Object>));
7514         uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) /
7515             sizeof(mirror::HeapReference<mirror::Object>);
7516         if (start_bit + num_reference_fields > 32) {
7517           reference_offsets = mirror::Class::kClassWalkSuper;
7518         } else {
7519           reference_offsets |= (0xffffffffu << start_bit) &
7520                                (0xffffffffu >> (32 - (start_bit + num_reference_fields)));
7521         }
7522       }
7523     }
7524   }
7525   klass->SetReferenceInstanceOffsets(reference_offsets);
7526 }
7527 
ResolveString(const DexFile & dex_file,uint32_t string_idx,Handle<mirror::DexCache> dex_cache)7528 mirror::String* ClassLinker::ResolveString(const DexFile& dex_file,
7529                                            uint32_t string_idx,
7530                                            Handle<mirror::DexCache> dex_cache) {
7531   DCHECK(dex_cache.Get() != nullptr);
7532   mirror::String* resolved = dex_cache->GetResolvedString(string_idx);
7533   if (resolved != nullptr) {
7534     return resolved;
7535   }
7536   uint32_t utf16_length;
7537   const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7538   mirror::String* string = intern_table_->InternStrong(utf16_length, utf8_data);
7539   dex_cache->SetResolvedString(string_idx, string);
7540   return string;
7541 }
7542 
LookupString(const DexFile & dex_file,uint32_t string_idx,Handle<mirror::DexCache> dex_cache)7543 mirror::String* ClassLinker::LookupString(const DexFile& dex_file,
7544                                           uint32_t string_idx,
7545                                           Handle<mirror::DexCache> dex_cache) {
7546   DCHECK(dex_cache.Get() != nullptr);
7547   mirror::String* resolved = dex_cache->GetResolvedString(string_idx);
7548   if (resolved != nullptr) {
7549     return resolved;
7550   }
7551   uint32_t utf16_length;
7552   const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7553   mirror::String* string = intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data);
7554   if (string != nullptr) {
7555     dex_cache->SetResolvedString(string_idx, string);
7556   }
7557   return string;
7558 }
7559 
ResolveType(const DexFile & dex_file,uint16_t type_idx,mirror::Class * referrer)7560 mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7561                                         uint16_t type_idx,
7562                                         mirror::Class* referrer) {
7563   StackHandleScope<2> hs(Thread::Current());
7564   Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
7565   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
7566   return ResolveType(dex_file, type_idx, dex_cache, class_loader);
7567 }
7568 
ResolveType(const DexFile & dex_file,uint16_t type_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)7569 mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7570                                         uint16_t type_idx,
7571                                         Handle<mirror::DexCache> dex_cache,
7572                                         Handle<mirror::ClassLoader> class_loader) {
7573   DCHECK(dex_cache.Get() != nullptr);
7574   mirror::Class* resolved = dex_cache->GetResolvedType(type_idx);
7575   if (resolved == nullptr) {
7576     Thread* self = Thread::Current();
7577     const char* descriptor = dex_file.StringByTypeIdx(type_idx);
7578     resolved = FindClass(self, descriptor, class_loader);
7579     if (resolved != nullptr) {
7580       // TODO: we used to throw here if resolved's class loader was not the
7581       //       boot class loader. This was to permit different classes with the
7582       //       same name to be loaded simultaneously by different loaders
7583       dex_cache->SetResolvedType(type_idx, resolved);
7584     } else {
7585       CHECK(self->IsExceptionPending())
7586           << "Expected pending exception for failed resolution of: " << descriptor;
7587       // Convert a ClassNotFoundException to a NoClassDefFoundError.
7588       StackHandleScope<1> hs(self);
7589       Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
7590       if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) {
7591         DCHECK(resolved == nullptr);  // No Handle needed to preserve resolved.
7592         self->ClearException();
7593         ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
7594         self->GetException()->SetCause(cause.Get());
7595       }
7596     }
7597   }
7598   DCHECK((resolved == nullptr) || resolved->IsResolved() || resolved->IsErroneous())
7599       << PrettyDescriptor(resolved) << " " << resolved->GetStatus();
7600   return resolved;
7601 }
7602 
7603 template <ClassLinker::ResolveMode kResolveMode>
ResolveMethod(const DexFile & dex_file,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,ArtMethod * referrer,InvokeType type)7604 ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file,
7605                                       uint32_t method_idx,
7606                                       Handle<mirror::DexCache> dex_cache,
7607                                       Handle<mirror::ClassLoader> class_loader,
7608                                       ArtMethod* referrer,
7609                                       InvokeType type) {
7610   DCHECK(dex_cache.Get() != nullptr);
7611   // Check for hit in the dex cache.
7612   ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
7613   if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
7614     DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
7615     if (kResolveMode == ClassLinker::kForceICCECheck) {
7616       if (resolved->CheckIncompatibleClassChange(type)) {
7617         ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
7618         return nullptr;
7619       }
7620     }
7621     return resolved;
7622   }
7623   // Fail, get the declaring class.
7624   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7625   mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
7626   if (klass == nullptr) {
7627     DCHECK(Thread::Current()->IsExceptionPending());
7628     return nullptr;
7629   }
7630   // Scan using method_idx, this saves string compares but will only hit for matching dex
7631   // caches/files.
7632   switch (type) {
7633     case kDirect:  // Fall-through.
7634     case kStatic:
7635       resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7636       DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
7637       break;
7638     case kInterface:
7639       // We have to check whether the method id really belongs to an interface (dex static bytecode
7640       // constraint A15). Otherwise you must not invoke-interface on it.
7641       //
7642       // This is not symmetric to A12-A14 (direct, static, virtual), as using FindInterfaceMethod
7643       // assumes that the given type is an interface, and will check the interface table if the
7644       // method isn't declared in the class. So it may find an interface method (usually by name
7645       // in the handling below, but we do the constraint check early). In that case,
7646       // CheckIncompatibleClassChange will succeed (as it is called on an interface method)
7647       // unexpectedly.
7648       // Example:
7649       //    interface I {
7650       //      foo()
7651       //    }
7652       //    class A implements I {
7653       //      ...
7654       //    }
7655       //    class B extends A {
7656       //      ...
7657       //    }
7658       //    invoke-interface B.foo
7659       //      -> FindInterfaceMethod finds I.foo (interface method), not A.foo (miranda method)
7660       if (UNLIKELY(!klass->IsInterface())) {
7661         ThrowIncompatibleClassChangeError(klass,
7662                                           "Found class %s, but interface was expected",
7663                                           PrettyDescriptor(klass).c_str());
7664         return nullptr;
7665       } else {
7666         resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7667         DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
7668       }
7669       break;
7670     case kSuper:
7671       if (klass->IsInterface()) {
7672         resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7673       } else {
7674         resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7675       }
7676       break;
7677     case kVirtual:
7678       resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7679       break;
7680     default:
7681       LOG(FATAL) << "Unreachable - invocation type: " << type;
7682       UNREACHABLE();
7683   }
7684   if (resolved == nullptr) {
7685     // Search by name, which works across dex files.
7686     const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
7687     const Signature signature = dex_file.GetMethodSignature(method_id);
7688     switch (type) {
7689       case kDirect:  // Fall-through.
7690       case kStatic:
7691         resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
7692         DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
7693         break;
7694       case kInterface:
7695         resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7696         DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
7697         break;
7698       case kSuper:
7699         if (klass->IsInterface()) {
7700           resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7701         } else {
7702           resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7703         }
7704         break;
7705       case kVirtual:
7706         resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7707         break;
7708     }
7709   }
7710   // If we found a method, check for incompatible class changes.
7711   if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) {
7712     // Be a good citizen and update the dex cache to speed subsequent calls.
7713     dex_cache->SetResolvedMethod(method_idx, resolved, image_pointer_size_);
7714     return resolved;
7715   } else {
7716     // If we had a method, it's an incompatible-class-change error.
7717     if (resolved != nullptr) {
7718       ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
7719     } else {
7720       // We failed to find the method which means either an access error, an incompatible class
7721       // change, or no such method. First try to find the method among direct and virtual methods.
7722       const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
7723       const Signature signature = dex_file.GetMethodSignature(method_id);
7724       switch (type) {
7725         case kDirect:
7726         case kStatic:
7727           resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7728           // Note: kDirect and kStatic are also mutually exclusive, but in that case we would
7729           //       have had a resolved method before, which triggers the "true" branch above.
7730           break;
7731         case kInterface:
7732         case kVirtual:
7733         case kSuper:
7734           resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
7735           break;
7736       }
7737 
7738       // If we found something, check that it can be accessed by the referrer.
7739       bool exception_generated = false;
7740       if (resolved != nullptr && referrer != nullptr) {
7741         mirror::Class* methods_class = resolved->GetDeclaringClass();
7742         mirror::Class* referring_class = referrer->GetDeclaringClass();
7743         if (!referring_class->CanAccess(methods_class)) {
7744           ThrowIllegalAccessErrorClassForMethodDispatch(referring_class,
7745                                                         methods_class,
7746                                                         resolved,
7747                                                         type);
7748           exception_generated = true;
7749         } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) {
7750           ThrowIllegalAccessErrorMethod(referring_class, resolved);
7751           exception_generated = true;
7752         }
7753       }
7754       if (!exception_generated) {
7755         // Otherwise, throw an IncompatibleClassChangeError if we found something, and check
7756         // interface methods and throw if we find the method there. If we find nothing, throw a
7757         // NoSuchMethodError.
7758         switch (type) {
7759           case kDirect:
7760           case kStatic:
7761             if (resolved != nullptr) {
7762               ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
7763             } else {
7764               resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7765               if (resolved != nullptr) {
7766                 ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
7767               } else {
7768                 ThrowNoSuchMethodError(type, klass, name, signature);
7769               }
7770             }
7771             break;
7772           case kInterface:
7773             if (resolved != nullptr) {
7774               ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7775             } else {
7776               resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
7777               if (resolved != nullptr) {
7778                 ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
7779               } else {
7780                 ThrowNoSuchMethodError(type, klass, name, signature);
7781               }
7782             }
7783             break;
7784           case kSuper:
7785             if (resolved != nullptr) {
7786               ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7787             } else {
7788               ThrowNoSuchMethodError(type, klass, name, signature);
7789             }
7790             break;
7791           case kVirtual:
7792             if (resolved != nullptr) {
7793               ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
7794             } else {
7795               resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
7796               if (resolved != nullptr) {
7797                 ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
7798               } else {
7799                 ThrowNoSuchMethodError(type, klass, name, signature);
7800               }
7801             }
7802             break;
7803         }
7804       }
7805     }
7806     Thread::Current()->AssertPendingException();
7807     return nullptr;
7808   }
7809 }
7810 
ResolveMethodWithoutInvokeType(const DexFile & dex_file,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)7811 ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(const DexFile& dex_file,
7812                                                        uint32_t method_idx,
7813                                                        Handle<mirror::DexCache> dex_cache,
7814                                                        Handle<mirror::ClassLoader> class_loader) {
7815   ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
7816   if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
7817     DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
7818     return resolved;
7819   }
7820   // Fail, get the declaring class.
7821   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7822   mirror::Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
7823   if (klass == nullptr) {
7824     Thread::Current()->AssertPendingException();
7825     return nullptr;
7826   }
7827   if (klass->IsInterface()) {
7828     LOG(FATAL) << "ResolveAmbiguousMethod: unexpected method in interface: " << PrettyClass(klass);
7829     return nullptr;
7830   }
7831 
7832   // Search both direct and virtual methods
7833   resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7834   if (resolved == nullptr) {
7835     resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7836   }
7837 
7838   return resolved;
7839 }
7840 
ResolveField(const DexFile & dex_file,uint32_t field_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,bool is_static)7841 ArtField* ClassLinker::ResolveField(const DexFile& dex_file,
7842                                     uint32_t field_idx,
7843                                     Handle<mirror::DexCache> dex_cache,
7844                                     Handle<mirror::ClassLoader> class_loader,
7845                                     bool is_static) {
7846   DCHECK(dex_cache.Get() != nullptr);
7847   ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
7848   if (resolved != nullptr) {
7849     return resolved;
7850   }
7851   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
7852   Thread* const self = Thread::Current();
7853   StackHandleScope<1> hs(self);
7854   Handle<mirror::Class> klass(
7855       hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)));
7856   if (klass.Get() == nullptr) {
7857     DCHECK(Thread::Current()->IsExceptionPending());
7858     return nullptr;
7859   }
7860 
7861   if (is_static) {
7862     resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx);
7863   } else {
7864     resolved = klass->FindInstanceField(dex_cache.Get(), field_idx);
7865   }
7866 
7867   if (resolved == nullptr) {
7868     const char* name = dex_file.GetFieldName(field_id);
7869     const char* type = dex_file.GetFieldTypeDescriptor(field_id);
7870     if (is_static) {
7871       resolved = mirror::Class::FindStaticField(self, klass, name, type);
7872     } else {
7873       resolved = klass->FindInstanceField(name, type);
7874     }
7875     if (resolved == nullptr) {
7876       ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass.Get(), type, name);
7877       return nullptr;
7878     }
7879   }
7880   dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
7881   return resolved;
7882 }
7883 
ResolveFieldJLS(const DexFile & dex_file,uint32_t field_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)7884 ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file,
7885                                        uint32_t field_idx,
7886                                        Handle<mirror::DexCache> dex_cache,
7887                                        Handle<mirror::ClassLoader> class_loader) {
7888   DCHECK(dex_cache.Get() != nullptr);
7889   ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
7890   if (resolved != nullptr) {
7891     return resolved;
7892   }
7893   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
7894   Thread* self = Thread::Current();
7895   StackHandleScope<1> hs(self);
7896   Handle<mirror::Class> klass(
7897       hs.NewHandle(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)));
7898   if (klass.Get() == nullptr) {
7899     DCHECK(Thread::Current()->IsExceptionPending());
7900     return nullptr;
7901   }
7902 
7903   StringPiece name(dex_file.StringDataByIdx(field_id.name_idx_));
7904   StringPiece type(dex_file.StringDataByIdx(
7905       dex_file.GetTypeId(field_id.type_idx_).descriptor_idx_));
7906   resolved = mirror::Class::FindField(self, klass, name, type);
7907   if (resolved != nullptr) {
7908     dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
7909   } else {
7910     ThrowNoSuchFieldError("", klass.Get(), type, name);
7911   }
7912   return resolved;
7913 }
7914 
MethodShorty(uint32_t method_idx,ArtMethod * referrer,uint32_t * length)7915 const char* ClassLinker::MethodShorty(uint32_t method_idx,
7916                                       ArtMethod* referrer,
7917                                       uint32_t* length) {
7918   mirror::Class* declaring_class = referrer->GetDeclaringClass();
7919   mirror::DexCache* dex_cache = declaring_class->GetDexCache();
7920   const DexFile& dex_file = *dex_cache->GetDexFile();
7921   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7922   return dex_file.GetMethodShorty(method_id, length);
7923 }
7924 
7925 class DumpClassVisitor : public ClassVisitor {
7926  public:
DumpClassVisitor(int flags)7927   explicit DumpClassVisitor(int flags) : flags_(flags) {}
7928 
operator ()(mirror::Class * klass)7929   bool operator()(mirror::Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
7930     klass->DumpClass(LOG(ERROR), flags_);
7931     return true;
7932   }
7933 
7934  private:
7935   const int flags_;
7936 };
7937 
DumpAllClasses(int flags)7938 void ClassLinker::DumpAllClasses(int flags) {
7939   DumpClassVisitor visitor(flags);
7940   VisitClasses(&visitor);
7941 }
7942 
CreateOatMethod(const void * code)7943 static OatFile::OatMethod CreateOatMethod(const void* code) {
7944   CHECK(code != nullptr);
7945   const uint8_t* base = reinterpret_cast<const uint8_t*>(code);  // Base of data points at code.
7946   base -= sizeof(void*);  // Move backward so that code_offset != 0.
7947   const uint32_t code_offset = sizeof(void*);
7948   return OatFile::OatMethod(base, code_offset);
7949 }
7950 
IsQuickResolutionStub(const void * entry_point) const7951 bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const {
7952   return (entry_point == GetQuickResolutionStub()) ||
7953       (quick_resolution_trampoline_ == entry_point);
7954 }
7955 
IsQuickToInterpreterBridge(const void * entry_point) const7956 bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const {
7957   return (entry_point == GetQuickToInterpreterBridge()) ||
7958       (quick_to_interpreter_bridge_trampoline_ == entry_point);
7959 }
7960 
IsQuickGenericJniStub(const void * entry_point) const7961 bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const {
7962   return (entry_point == GetQuickGenericJniStub()) ||
7963       (quick_generic_jni_trampoline_ == entry_point);
7964 }
7965 
GetRuntimeQuickGenericJniStub() const7966 const void* ClassLinker::GetRuntimeQuickGenericJniStub() const {
7967   return GetQuickGenericJniStub();
7968 }
7969 
SetEntryPointsToCompiledCode(ArtMethod * method,const void * method_code) const7970 void ClassLinker::SetEntryPointsToCompiledCode(ArtMethod* method,
7971                                                const void* method_code) const {
7972   OatFile::OatMethod oat_method = CreateOatMethod(method_code);
7973   oat_method.LinkMethod(method);
7974 }
7975 
SetEntryPointsToInterpreter(ArtMethod * method) const7976 void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const {
7977   if (!method->IsNative()) {
7978     method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
7979   } else {
7980     const void* quick_method_code = GetQuickGenericJniStub();
7981     OatFile::OatMethod oat_method = CreateOatMethod(quick_method_code);
7982     oat_method.LinkMethod(method);
7983   }
7984 }
7985 
DumpForSigQuit(std::ostream & os)7986 void ClassLinker::DumpForSigQuit(std::ostream& os) {
7987   ScopedObjectAccess soa(Thread::Current());
7988   if (dex_cache_boot_image_class_lookup_required_) {
7989     AddBootImageClassesToClassTable();
7990   }
7991   ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_);
7992   os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes="
7993      << NumNonZygoteClasses() << "\n";
7994 }
7995 
7996 class CountClassesVisitor : public ClassLoaderVisitor {
7997  public:
CountClassesVisitor()7998   CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {}
7999 
Visit(mirror::ClassLoader * class_loader)8000   void Visit(mirror::ClassLoader* class_loader)
8001       SHARED_REQUIRES(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
8002     ClassTable* const class_table = class_loader->GetClassTable();
8003     if (class_table != nullptr) {
8004       num_zygote_classes += class_table->NumZygoteClasses();
8005       num_non_zygote_classes += class_table->NumNonZygoteClasses();
8006     }
8007   }
8008 
8009   size_t num_zygote_classes;
8010   size_t num_non_zygote_classes;
8011 };
8012 
NumZygoteClasses() const8013 size_t ClassLinker::NumZygoteClasses() const {
8014   CountClassesVisitor visitor;
8015   VisitClassLoaders(&visitor);
8016   return visitor.num_zygote_classes + boot_class_table_.NumZygoteClasses();
8017 }
8018 
NumNonZygoteClasses() const8019 size_t ClassLinker::NumNonZygoteClasses() const {
8020   CountClassesVisitor visitor;
8021   VisitClassLoaders(&visitor);
8022   return visitor.num_non_zygote_classes + boot_class_table_.NumNonZygoteClasses();
8023 }
8024 
NumLoadedClasses()8025 size_t ClassLinker::NumLoadedClasses() {
8026   if (dex_cache_boot_image_class_lookup_required_) {
8027     AddBootImageClassesToClassTable();
8028   }
8029   ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
8030   // Only return non zygote classes since these are the ones which apps which care about.
8031   return NumNonZygoteClasses();
8032 }
8033 
GetClassesLockOwner()8034 pid_t ClassLinker::GetClassesLockOwner() {
8035   return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid();
8036 }
8037 
GetDexLockOwner()8038 pid_t ClassLinker::GetDexLockOwner() {
8039   return dex_lock_.GetExclusiveOwnerTid();
8040 }
8041 
SetClassRoot(ClassRoot class_root,mirror::Class * klass)8042 void ClassLinker::SetClassRoot(ClassRoot class_root, mirror::Class* klass) {
8043   DCHECK(!init_done_);
8044 
8045   DCHECK(klass != nullptr);
8046   DCHECK(klass->GetClassLoader() == nullptr);
8047 
8048   mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read();
8049   DCHECK(class_roots != nullptr);
8050   DCHECK(class_roots->Get(class_root) == nullptr);
8051   class_roots->Set<false>(class_root, klass);
8052 }
8053 
GetClassRootDescriptor(ClassRoot class_root)8054 const char* ClassLinker::GetClassRootDescriptor(ClassRoot class_root) {
8055   static const char* class_roots_descriptors[] = {
8056     "Ljava/lang/Class;",
8057     "Ljava/lang/Object;",
8058     "[Ljava/lang/Class;",
8059     "[Ljava/lang/Object;",
8060     "Ljava/lang/String;",
8061     "Ljava/lang/DexCache;",
8062     "Ljava/lang/ref/Reference;",
8063     "Ljava/lang/reflect/Constructor;",
8064     "Ljava/lang/reflect/Field;",
8065     "Ljava/lang/reflect/Method;",
8066     "Ljava/lang/reflect/Proxy;",
8067     "[Ljava/lang/String;",
8068     "[Ljava/lang/reflect/Constructor;",
8069     "[Ljava/lang/reflect/Field;",
8070     "[Ljava/lang/reflect/Method;",
8071     "Ljava/lang/ClassLoader;",
8072     "Ljava/lang/Throwable;",
8073     "Ljava/lang/ClassNotFoundException;",
8074     "Ljava/lang/StackTraceElement;",
8075     "Z",
8076     "B",
8077     "C",
8078     "D",
8079     "F",
8080     "I",
8081     "J",
8082     "S",
8083     "V",
8084     "[Z",
8085     "[B",
8086     "[C",
8087     "[D",
8088     "[F",
8089     "[I",
8090     "[J",
8091     "[S",
8092     "[Ljava/lang/StackTraceElement;",
8093   };
8094   static_assert(arraysize(class_roots_descriptors) == size_t(kClassRootsMax),
8095                 "Mismatch between class descriptors and class-root enum");
8096 
8097   const char* descriptor = class_roots_descriptors[class_root];
8098   CHECK(descriptor != nullptr);
8099   return descriptor;
8100 }
8101 
CreatePathClassLoader(Thread * self,const std::vector<const DexFile * > & dex_files)8102 jobject ClassLinker::CreatePathClassLoader(Thread* self,
8103                                            const std::vector<const DexFile*>& dex_files) {
8104   // SOAAlreadyRunnable is protected, and we need something to add a global reference.
8105   // We could move the jobject to the callers, but all call-sites do this...
8106   ScopedObjectAccessUnchecked soa(self);
8107 
8108   // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex.
8109   StackHandleScope<10> hs(self);
8110 
8111   ArtField* dex_elements_field =
8112       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
8113 
8114   mirror::Class* dex_elements_class = dex_elements_field->GetType<true>();
8115   DCHECK(dex_elements_class != nullptr);
8116   DCHECK(dex_elements_class->IsArrayClass());
8117   Handle<mirror::ObjectArray<mirror::Object>> h_dex_elements(hs.NewHandle(
8118       mirror::ObjectArray<mirror::Object>::Alloc(self, dex_elements_class, dex_files.size())));
8119   Handle<mirror::Class> h_dex_element_class =
8120       hs.NewHandle(dex_elements_class->GetComponentType());
8121 
8122   ArtField* element_file_field =
8123       soa.DecodeField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
8124   DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass());
8125 
8126   ArtField* cookie_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_cookie);
8127   DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->GetType<false>());
8128 
8129   ArtField* file_name_field = soa.DecodeField(WellKnownClasses::dalvik_system_DexFile_fileName);
8130   DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->GetType<false>());
8131 
8132   // Fill the elements array.
8133   int32_t index = 0;
8134   for (const DexFile* dex_file : dex_files) {
8135     StackHandleScope<4> hs2(self);
8136 
8137     // CreatePathClassLoader is only used by gtests. Index 0 of h_long_array is supposed to be the
8138     // oat file but we can leave it null.
8139     Handle<mirror::LongArray> h_long_array = hs2.NewHandle(mirror::LongArray::Alloc(
8140         self,
8141         kDexFileIndexStart + 1));
8142     DCHECK(h_long_array.Get() != nullptr);
8143     h_long_array->Set(kDexFileIndexStart, reinterpret_cast<intptr_t>(dex_file));
8144 
8145     Handle<mirror::Object> h_dex_file = hs2.NewHandle(
8146         cookie_field->GetDeclaringClass()->AllocObject(self));
8147     DCHECK(h_dex_file.Get() != nullptr);
8148     cookie_field->SetObject<false>(h_dex_file.Get(), h_long_array.Get());
8149 
8150     Handle<mirror::String> h_file_name = hs2.NewHandle(
8151         mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str()));
8152     DCHECK(h_file_name.Get() != nullptr);
8153     file_name_field->SetObject<false>(h_dex_file.Get(), h_file_name.Get());
8154 
8155     Handle<mirror::Object> h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self));
8156     DCHECK(h_element.Get() != nullptr);
8157     element_file_field->SetObject<false>(h_element.Get(), h_dex_file.Get());
8158 
8159     h_dex_elements->Set(index, h_element.Get());
8160     index++;
8161   }
8162   DCHECK_EQ(index, h_dex_elements->GetLength());
8163 
8164   // Create DexPathList.
8165   Handle<mirror::Object> h_dex_path_list = hs.NewHandle(
8166       dex_elements_field->GetDeclaringClass()->AllocObject(self));
8167   DCHECK(h_dex_path_list.Get() != nullptr);
8168   // Set elements.
8169   dex_elements_field->SetObject<false>(h_dex_path_list.Get(), h_dex_elements.Get());
8170 
8171   // Create PathClassLoader.
8172   Handle<mirror::Class> h_path_class_class = hs.NewHandle(
8173       soa.Decode<mirror::Class*>(WellKnownClasses::dalvik_system_PathClassLoader));
8174   Handle<mirror::Object> h_path_class_loader = hs.NewHandle(
8175       h_path_class_class->AllocObject(self));
8176   DCHECK(h_path_class_loader.Get() != nullptr);
8177   // Set DexPathList.
8178   ArtField* path_list_field =
8179       soa.DecodeField(WellKnownClasses::dalvik_system_PathClassLoader_pathList);
8180   DCHECK(path_list_field != nullptr);
8181   path_list_field->SetObject<false>(h_path_class_loader.Get(), h_dex_path_list.Get());
8182 
8183   // Make a pretend boot-classpath.
8184   // TODO: Should we scan the image?
8185   ArtField* const parent_field =
8186       mirror::Class::FindField(self, hs.NewHandle(h_path_class_loader->GetClass()), "parent",
8187                                "Ljava/lang/ClassLoader;");
8188   DCHECK(parent_field != nullptr);
8189   mirror::Object* boot_cl =
8190       soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self);
8191   parent_field->SetObject<false>(h_path_class_loader.Get(), boot_cl);
8192 
8193   // Make it a global ref and return.
8194   ScopedLocalRef<jobject> local_ref(
8195       soa.Env(), soa.Env()->AddLocalReference<jobject>(h_path_class_loader.Get()));
8196   return soa.Env()->NewGlobalRef(local_ref.get());
8197 }
8198 
CreateRuntimeMethod(LinearAlloc * linear_alloc)8199 ArtMethod* ClassLinker::CreateRuntimeMethod(LinearAlloc* linear_alloc) {
8200   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
8201   const size_t method_size = ArtMethod::Size(image_pointer_size_);
8202   LengthPrefixedArray<ArtMethod>* method_array = AllocArtMethodArray(
8203       Thread::Current(),
8204       linear_alloc,
8205       1);
8206   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
8207   CHECK(method != nullptr);
8208   method->SetDexMethodIndex(DexFile::kDexNoIndex);
8209   CHECK(method->IsRuntimeMethod());
8210   return method;
8211 }
8212 
DropFindArrayClassCache()8213 void ClassLinker::DropFindArrayClassCache() {
8214   std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
8215   find_array_class_cache_next_victim_ = 0;
8216 }
8217 
ClearClassTableStrongRoots() const8218 void ClassLinker::ClearClassTableStrongRoots() const {
8219   Thread* const self = Thread::Current();
8220   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8221   for (const ClassLoaderData& data : class_loaders_) {
8222     if (data.class_table != nullptr) {
8223       data.class_table->ClearStrongRoots();
8224     }
8225   }
8226 }
8227 
VisitClassLoaders(ClassLoaderVisitor * visitor) const8228 void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const {
8229   Thread* const self = Thread::Current();
8230   for (const ClassLoaderData& data : class_loaders_) {
8231     // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8232     auto* const class_loader = down_cast<mirror::ClassLoader*>(self->DecodeJObject(data.weak_root));
8233     if (class_loader != nullptr) {
8234       visitor->Visit(class_loader);
8235     }
8236   }
8237 }
8238 
InsertDexFileInToClassLoader(mirror::Object * dex_file,mirror::ClassLoader * class_loader)8239 void ClassLinker::InsertDexFileInToClassLoader(mirror::Object* dex_file,
8240                                                mirror::ClassLoader* class_loader) {
8241   DCHECK(dex_file != nullptr);
8242   Thread* const self = Thread::Current();
8243   WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8244   ClassTable* const table = ClassTableForClassLoader(class_loader);
8245   DCHECK(table != nullptr);
8246   if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) {
8247     // It was not already inserted, perform the write barrier to let the GC know the class loader's
8248     // class table was modified.
8249     Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
8250   }
8251 }
8252 
CleanupClassLoaders()8253 void ClassLinker::CleanupClassLoaders() {
8254   Thread* const self = Thread::Current();
8255   std::vector<ClassLoaderData> to_delete;
8256   // Do the delete outside the lock to avoid lock violation in jit code cache.
8257   {
8258     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8259     for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) {
8260       const ClassLoaderData& data = *it;
8261       // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8262       auto* const class_loader =
8263           down_cast<mirror::ClassLoader*>(self->DecodeJObject(data.weak_root));
8264       if (class_loader != nullptr) {
8265         ++it;
8266       } else {
8267         VLOG(class_linker) << "Freeing class loader";
8268         to_delete.push_back(data);
8269         it = class_loaders_.erase(it);
8270       }
8271     }
8272   }
8273   for (ClassLoaderData& data : to_delete) {
8274     DeleteClassLoader(self, data);
8275   }
8276 }
8277 
GetResolvedClasses(bool ignore_boot_classes)8278 std::set<DexCacheResolvedClasses> ClassLinker::GetResolvedClasses(bool ignore_boot_classes) {
8279   ScopedTrace trace(__PRETTY_FUNCTION__);
8280   ScopedObjectAccess soa(Thread::Current());
8281   ScopedAssertNoThreadSuspension ants(soa.Self(), __FUNCTION__);
8282   std::set<DexCacheResolvedClasses> ret;
8283   VLOG(class_linker) << "Collecting resolved classes";
8284   const uint64_t start_time = NanoTime();
8285   ReaderMutexLock mu(soa.Self(), *DexLock());
8286   // Loop through all the dex caches and inspect resolved classes.
8287   for (const ClassLinker::DexCacheData& data : GetDexCachesData()) {
8288     if (soa.Self()->IsJWeakCleared(data.weak_root)) {
8289       continue;
8290     }
8291     mirror::DexCache* dex_cache =
8292         down_cast<mirror::DexCache*>(soa.Self()->DecodeJObject(data.weak_root));
8293     if (dex_cache == nullptr) {
8294       continue;
8295     }
8296     const DexFile* dex_file = dex_cache->GetDexFile();
8297     const std::string& location = dex_file->GetLocation();
8298     const size_t num_class_defs = dex_file->NumClassDefs();
8299     // Use the resolved types, this will miss array classes.
8300     const size_t num_types = dex_file->NumTypeIds();
8301     VLOG(class_linker) << "Collecting class profile for dex file " << location
8302                        << " types=" << num_types << " class_defs=" << num_class_defs;
8303     DexCacheResolvedClasses resolved_classes(dex_file->GetLocation(),
8304                                              dex_file->GetBaseLocation(),
8305                                              dex_file->GetLocationChecksum());
8306     size_t num_resolved = 0;
8307     std::unordered_set<uint16_t> class_set;
8308     CHECK_EQ(num_types, dex_cache->NumResolvedTypes());
8309     for (size_t i = 0; i < num_types; ++i) {
8310       mirror::Class* klass = dex_cache->GetResolvedType(i);
8311       // Filter out null class loader since that is the boot class loader.
8312       if (klass == nullptr || (ignore_boot_classes && klass->GetClassLoader() == nullptr)) {
8313         continue;
8314       }
8315       ++num_resolved;
8316       DCHECK(!klass->IsProxyClass());
8317       if (!klass->IsResolved()) {
8318         DCHECK(klass->IsErroneous());
8319         continue;
8320       }
8321       mirror::DexCache* klass_dex_cache = klass->GetDexCache();
8322       if (klass_dex_cache == dex_cache) {
8323         const size_t class_def_idx = klass->GetDexClassDefIndex();
8324         DCHECK(klass->IsResolved());
8325         CHECK_LT(class_def_idx, num_class_defs);
8326         class_set.insert(class_def_idx);
8327       }
8328     }
8329 
8330     if (!class_set.empty()) {
8331       auto it = ret.find(resolved_classes);
8332       if (it != ret.end()) {
8333         // Already have the key, union the class def idxs.
8334         it->AddClasses(class_set.begin(), class_set.end());
8335       } else {
8336         resolved_classes.AddClasses(class_set.begin(), class_set.end());
8337         ret.insert(resolved_classes);
8338       }
8339     }
8340 
8341     VLOG(class_linker) << "Dex location " << location << " has " << num_resolved << " / "
8342                        << num_class_defs << " resolved classes";
8343   }
8344   VLOG(class_linker) << "Collecting class profile took " << PrettyDuration(NanoTime() - start_time);
8345   return ret;
8346 }
8347 
GetClassDescriptorsForProfileKeys(const std::set<DexCacheResolvedClasses> & classes)8348 std::unordered_set<std::string> ClassLinker::GetClassDescriptorsForProfileKeys(
8349     const std::set<DexCacheResolvedClasses>& classes) {
8350   ScopedTrace trace(__PRETTY_FUNCTION__);
8351   std::unordered_set<std::string> ret;
8352   Thread* const self = Thread::Current();
8353   std::unordered_map<std::string, const DexFile*> location_to_dex_file;
8354   ScopedObjectAccess soa(self);
8355   ScopedAssertNoThreadSuspension ants(soa.Self(), __FUNCTION__);
8356   ReaderMutexLock mu(self, *DexLock());
8357   for (const ClassLinker::DexCacheData& data : GetDexCachesData()) {
8358     if (!self->IsJWeakCleared(data.weak_root)) {
8359       mirror::DexCache* dex_cache =
8360           down_cast<mirror::DexCache*>(soa.Self()->DecodeJObject(data.weak_root));
8361       if (dex_cache != nullptr) {
8362         const DexFile* dex_file = dex_cache->GetDexFile();
8363         // There could be duplicates if two dex files with the same location are mapped.
8364         location_to_dex_file.emplace(
8365             ProfileCompilationInfo::GetProfileDexFileKey(dex_file->GetLocation()), dex_file);
8366       }
8367     }
8368   }
8369   for (const DexCacheResolvedClasses& info : classes) {
8370     const std::string& profile_key = info.GetDexLocation();
8371     auto found = location_to_dex_file.find(profile_key);
8372     if (found != location_to_dex_file.end()) {
8373       const DexFile* dex_file = found->second;
8374       VLOG(profiler) << "Found opened dex file for " << dex_file->GetLocation() << " with "
8375                      << info.GetClasses().size() << " classes";
8376       DCHECK_EQ(dex_file->GetLocationChecksum(), info.GetLocationChecksum());
8377       for (uint16_t class_def_idx : info.GetClasses()) {
8378         if (class_def_idx >= dex_file->NumClassDefs()) {
8379           LOG(WARNING) << "Class def index " << class_def_idx << " >= " << dex_file->NumClassDefs();
8380           continue;
8381         }
8382         const DexFile::TypeId& type_id = dex_file->GetTypeId(
8383             dex_file->GetClassDef(class_def_idx).class_idx_);
8384         const char* descriptor = dex_file->GetTypeDescriptor(type_id);
8385         ret.insert(descriptor);
8386       }
8387     } else {
8388       VLOG(class_linker) << "Failed to find opened dex file for profile key " << profile_key;
8389     }
8390   }
8391   return ret;
8392 }
8393 
8394 class ClassLinker::FindVirtualMethodHolderVisitor : public ClassVisitor {
8395  public:
FindVirtualMethodHolderVisitor(const ArtMethod * method,size_t pointer_size)8396   FindVirtualMethodHolderVisitor(const ArtMethod* method, size_t pointer_size)
8397       : method_(method),
8398         pointer_size_(pointer_size) {}
8399 
operator ()(mirror::Class * klass)8400   bool operator()(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE {
8401     if (klass->GetVirtualMethodsSliceUnchecked(pointer_size_).Contains(method_)) {
8402       holder_ = klass;
8403     }
8404     // Return false to stop searching if holder_ is not null.
8405     return holder_ == nullptr;
8406   }
8407 
8408   mirror::Class* holder_ = nullptr;
8409   const ArtMethod* const method_;
8410   const size_t pointer_size_;
8411 };
8412 
GetHoldingClassOfCopiedMethod(ArtMethod * method)8413 mirror::Class* ClassLinker::GetHoldingClassOfCopiedMethod(ArtMethod* method) {
8414   ScopedTrace trace(__FUNCTION__);  // Since this function is slow, have a trace to notify people.
8415   CHECK(method->IsCopied());
8416   FindVirtualMethodHolderVisitor visitor(method, image_pointer_size_);
8417   VisitClasses(&visitor);
8418   return visitor.holder_;
8419 }
8420 
8421 // Instantiate ResolveMethod.
8422 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kForceICCECheck>(
8423     const DexFile& dex_file,
8424     uint32_t method_idx,
8425     Handle<mirror::DexCache> dex_cache,
8426     Handle<mirror::ClassLoader> class_loader,
8427     ArtMethod* referrer,
8428     InvokeType type);
8429 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kNoICCECheckForCache>(
8430     const DexFile& dex_file,
8431     uint32_t method_idx,
8432     Handle<mirror::DexCache> dex_cache,
8433     Handle<mirror::ClassLoader> class_loader,
8434     ArtMethod* referrer,
8435     InvokeType type);
8436 
8437 }  // namespace art
8438