• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HEAP_HEAP_H_
6 #define V8_HEAP_HEAP_H_
7 
8 #include <cmath>
9 #include <map>
10 
11 // Clients of this interface shouldn't depend on lots of heap internals.
12 // Do not include anything from src/heap here!
13 #include "include/v8.h"
14 #include "src/allocation.h"
15 #include "src/assert-scope.h"
16 #include "src/base/atomic-utils.h"
17 #include "src/globals.h"
18 #include "src/heap-symbols.h"
19 // TODO(mstarzinger): Two more includes to kill!
20 #include "src/heap/spaces.h"
21 #include "src/heap/store-buffer.h"
22 #include "src/list.h"
23 
24 namespace v8 {
25 namespace internal {
26 
27 using v8::MemoryPressureLevel;
28 
29 // Defines all the roots in Heap.
30 #define STRONG_ROOT_LIST(V)                                                    \
31   /* Cluster the most popular ones in a few cache lines here at the top.    */ \
32   /* The first 32 entries are most often used in the startup snapshot and   */ \
33   /* can use a shorter representation in the serialization format.          */ \
34   V(Map, free_space_map, FreeSpaceMap)                                         \
35   V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
36   V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
37   V(Oddball, uninitialized_value, UninitializedValue)                          \
38   V(Oddball, undefined_value, UndefinedValue)                                  \
39   V(Oddball, the_hole_value, TheHoleValue)                                     \
40   V(Oddball, null_value, NullValue)                                            \
41   V(Oddball, true_value, TrueValue)                                            \
42   V(Oddball, false_value, FalseValue)                                          \
43   V(String, empty_string, empty_string)                                        \
44   V(Map, meta_map, MetaMap)                                                    \
45   V(Map, byte_array_map, ByteArrayMap)                                         \
46   V(Map, fixed_array_map, FixedArrayMap)                                       \
47   V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
48   V(Map, hash_table_map, HashTableMap)                                         \
49   V(Map, symbol_map, SymbolMap)                                                \
50   V(Map, one_byte_string_map, OneByteStringMap)                                \
51   V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap)       \
52   V(Map, scope_info_map, ScopeInfoMap)                                         \
53   V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
54   V(Map, code_map, CodeMap)                                                    \
55   V(Map, function_context_map, FunctionContextMap)                             \
56   V(Map, cell_map, CellMap)                                                    \
57   V(Map, weak_cell_map, WeakCellMap)                                           \
58   V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
59   V(Map, foreign_map, ForeignMap)                                              \
60   V(Map, heap_number_map, HeapNumberMap)                                       \
61   V(Map, transition_array_map, TransitionArrayMap)                             \
62   V(FixedArray, empty_literals_array, EmptyLiteralsArray)                      \
63   V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
64   V(FixedArray, cleared_optimized_code_map, ClearedOptimizedCodeMap)           \
65   V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
66   /* Entries beyond the first 32                                            */ \
67   /* The roots above this line should be boring from a GC point of view.    */ \
68   /* This means they are never in new space and never on a page that is     */ \
69   /* being compacted.                                                       */ \
70   /* Oddballs */                                                               \
71   V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
72   V(Oddball, arguments_marker, ArgumentsMarker)                                \
73   V(Oddball, exception, Exception)                                             \
74   V(Oddball, termination_exception, TerminationException)                      \
75   V(Oddball, optimized_out, OptimizedOut)                                      \
76   V(Oddball, stale_register, StaleRegister)                                    \
77   /* Context maps */                                                           \
78   V(Map, native_context_map, NativeContextMap)                                 \
79   V(Map, module_context_map, ModuleContextMap)                                 \
80   V(Map, script_context_map, ScriptContextMap)                                 \
81   V(Map, block_context_map, BlockContextMap)                                   \
82   V(Map, catch_context_map, CatchContextMap)                                   \
83   V(Map, with_context_map, WithContextMap)                                     \
84   V(Map, debug_evaluate_context_map, DebugEvaluateContextMap)                  \
85   V(Map, script_context_table_map, ScriptContextTableMap)                      \
86   /* Maps */                                                                   \
87   V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
88   V(Map, mutable_heap_number_map, MutableHeapNumberMap)                        \
89   V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
90   V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
91   V(Map, message_object_map, JSMessageObjectMap)                               \
92   V(Map, neander_map, NeanderMap)                                              \
93   V(Map, external_map, ExternalMap)                                            \
94   V(Map, bytecode_array_map, BytecodeArrayMap)                                 \
95   /* String maps */                                                            \
96   V(Map, native_source_string_map, NativeSourceStringMap)                      \
97   V(Map, string_map, StringMap)                                                \
98   V(Map, cons_one_byte_string_map, ConsOneByteStringMap)                       \
99   V(Map, cons_string_map, ConsStringMap)                                       \
100   V(Map, sliced_string_map, SlicedStringMap)                                   \
101   V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap)                   \
102   V(Map, external_string_map, ExternalStringMap)                               \
103   V(Map, external_string_with_one_byte_data_map,                               \
104     ExternalStringWithOneByteDataMap)                                          \
105   V(Map, external_one_byte_string_map, ExternalOneByteStringMap)               \
106   V(Map, short_external_string_map, ShortExternalStringMap)                    \
107   V(Map, short_external_string_with_one_byte_data_map,                         \
108     ShortExternalStringWithOneByteDataMap)                                     \
109   V(Map, internalized_string_map, InternalizedStringMap)                       \
110   V(Map, external_internalized_string_map, ExternalInternalizedStringMap)      \
111   V(Map, external_internalized_string_with_one_byte_data_map,                  \
112     ExternalInternalizedStringWithOneByteDataMap)                              \
113   V(Map, external_one_byte_internalized_string_map,                            \
114     ExternalOneByteInternalizedStringMap)                                      \
115   V(Map, short_external_internalized_string_map,                               \
116     ShortExternalInternalizedStringMap)                                        \
117   V(Map, short_external_internalized_string_with_one_byte_data_map,            \
118     ShortExternalInternalizedStringWithOneByteDataMap)                         \
119   V(Map, short_external_one_byte_internalized_string_map,                      \
120     ShortExternalOneByteInternalizedStringMap)                                 \
121   V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap)    \
122   /* Array element maps */                                                     \
123   V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
124   V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
125   V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
126   V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
127   V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
128   V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
129   V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
130   V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
131   V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
132   V(Map, float32x4_map, Float32x4Map)                                          \
133   V(Map, int32x4_map, Int32x4Map)                                              \
134   V(Map, uint32x4_map, Uint32x4Map)                                            \
135   V(Map, bool32x4_map, Bool32x4Map)                                            \
136   V(Map, int16x8_map, Int16x8Map)                                              \
137   V(Map, uint16x8_map, Uint16x8Map)                                            \
138   V(Map, bool16x8_map, Bool16x8Map)                                            \
139   V(Map, int8x16_map, Int8x16Map)                                              \
140   V(Map, uint8x16_map, Uint8x16Map)                                            \
141   V(Map, bool8x16_map, Bool8x16Map)                                            \
142   /* Canonical empty values */                                                 \
143   V(ByteArray, empty_byte_array, EmptyByteArray)                               \
144   V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
145   V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
146   V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
147   V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
148   V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
149   V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
150   V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
151   V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
152   V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
153     EmptyFixedUint8ClampedArray)                                               \
154   V(Script, empty_script, EmptyScript)                                         \
155   V(Cell, undefined_cell, UndefinedCell)                                       \
156   V(FixedArray, empty_sloppy_arguments_elements, EmptySloppyArgumentsElements) \
157   V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
158     EmptySlowElementDictionary)                                                \
159   V(TypeFeedbackVector, dummy_vector, DummyVector)                             \
160   V(PropertyCell, empty_property_cell, EmptyPropertyCell)                      \
161   V(WeakCell, empty_weak_cell, EmptyWeakCell)                                  \
162   /* Protectors */                                                             \
163   V(PropertyCell, array_protector, ArrayProtector)                             \
164   V(Cell, is_concat_spreadable_protector, IsConcatSpreadableProtector)         \
165   V(PropertyCell, has_instance_protector, HasInstanceProtector)                \
166   V(Cell, species_protector, SpeciesProtector)                                 \
167   /* Special numbers */                                                        \
168   V(HeapNumber, nan_value, NanValue)                                           \
169   V(HeapNumber, infinity_value, InfinityValue)                                 \
170   V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
171   V(HeapNumber, minus_infinity_value, MinusInfinityValue)                      \
172   /* Caches */                                                                 \
173   V(FixedArray, number_string_cache, NumberStringCache)                        \
174   V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
175   V(FixedArray, string_split_cache, StringSplitCache)                          \
176   V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
177   V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
178   V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
179   V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
180   V(FixedArray, natives_source_cache, NativesSourceCache)                      \
181   V(FixedArray, experimental_natives_source_cache,                             \
182     ExperimentalNativesSourceCache)                                            \
183   V(FixedArray, extra_natives_source_cache, ExtraNativesSourceCache)           \
184   V(FixedArray, experimental_extra_natives_source_cache,                       \
185     ExperimentalExtraNativesSourceCache)                                       \
186   /* Lists and dictionaries */                                                 \
187   V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames)          \
188   V(NameDictionary, empty_properties_dictionary, EmptyPropertiesDictionary)    \
189   V(Object, symbol_registry, SymbolRegistry)                                   \
190   V(Object, script_list, ScriptList)                                           \
191   V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
192   V(FixedArray, materialized_objects, MaterializedObjects)                     \
193   V(FixedArray, microtask_queue, MicrotaskQueue)                               \
194   V(FixedArray, detached_contexts, DetachedContexts)                           \
195   V(ArrayList, retained_maps, RetainedMaps)                                    \
196   V(WeakHashTable, weak_object_to_code_table, WeakObjectToCodeTable)           \
197   V(Object, weak_stack_trace_list, WeakStackTraceList)                         \
198   V(Object, noscript_shared_function_infos, NoScriptSharedFunctionInfos)       \
199   V(FixedArray, serialized_templates, SerializedTemplates)                     \
200   /* Configured values */                                                      \
201   V(JSObject, message_listeners, MessageListeners)                             \
202   V(Code, js_entry_code, JsEntryCode)                                          \
203   V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
204   /* Oddball maps */                                                           \
205   V(Map, undefined_map, UndefinedMap)                                          \
206   V(Map, the_hole_map, TheHoleMap)                                             \
207   V(Map, null_map, NullMap)                                                    \
208   V(Map, boolean_map, BooleanMap)                                              \
209   V(Map, uninitialized_map, UninitializedMap)                                  \
210   V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
211   V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
212   V(Map, exception_map, ExceptionMap)                                          \
213   V(Map, termination_exception_map, TerminationExceptionMap)                   \
214   V(Map, optimized_out_map, OptimizedOutMap)                                   \
215   V(Map, stale_register_map, StaleRegisterMap)
216 
217 // Entries in this list are limited to Smis and are not visited during GC.
218 #define SMI_ROOT_LIST(V)                                                       \
219   V(Smi, stack_limit, StackLimit)                                              \
220   V(Smi, real_stack_limit, RealStackLimit)                                     \
221   V(Smi, last_script_id, LastScriptId)                                         \
222   V(Smi, hash_seed, HashSeed)                                                  \
223   /* To distinguish the function templates, so that we can find them in the */ \
224   /* function cache of the native context. */                                  \
225   V(Smi, next_template_serial_number, NextTemplateSerialNumber)                \
226   V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset)     \
227   V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)           \
228   V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)                 \
229   V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)                 \
230   V(Smi, interpreter_entry_return_pc_offset, InterpreterEntryReturnPCOffset)
231 
232 #define ROOT_LIST(V)  \
233   STRONG_ROOT_LIST(V) \
234   SMI_ROOT_LIST(V)    \
235   V(StringTable, string_table, StringTable)
236 
237 
238 // Heap roots that are known to be immortal immovable, for which we can safely
239 // skip write barriers. This list is not complete and has omissions.
240 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
241   V(ByteArrayMap)                       \
242   V(BytecodeArrayMap)                   \
243   V(FreeSpaceMap)                       \
244   V(OnePointerFillerMap)                \
245   V(TwoPointerFillerMap)                \
246   V(UndefinedValue)                     \
247   V(TheHoleValue)                       \
248   V(NullValue)                          \
249   V(TrueValue)                          \
250   V(FalseValue)                         \
251   V(UninitializedValue)                 \
252   V(CellMap)                            \
253   V(GlobalPropertyCellMap)              \
254   V(SharedFunctionInfoMap)              \
255   V(MetaMap)                            \
256   V(HeapNumberMap)                      \
257   V(MutableHeapNumberMap)               \
258   V(Float32x4Map)                       \
259   V(Int32x4Map)                         \
260   V(Uint32x4Map)                        \
261   V(Bool32x4Map)                        \
262   V(Int16x8Map)                         \
263   V(Uint16x8Map)                        \
264   V(Bool16x8Map)                        \
265   V(Int8x16Map)                         \
266   V(Uint8x16Map)                        \
267   V(Bool8x16Map)                        \
268   V(NativeContextMap)                   \
269   V(FixedArrayMap)                      \
270   V(CodeMap)                            \
271   V(ScopeInfoMap)                       \
272   V(FixedCOWArrayMap)                   \
273   V(FixedDoubleArrayMap)                \
274   V(WeakCellMap)                        \
275   V(TransitionArrayMap)                 \
276   V(NoInterceptorResultSentinel)        \
277   V(HashTableMap)                       \
278   V(OrderedHashTableMap)                \
279   V(EmptyFixedArray)                    \
280   V(EmptyByteArray)                     \
281   V(EmptyDescriptorArray)               \
282   V(ArgumentsMarker)                    \
283   V(SymbolMap)                          \
284   V(SloppyArgumentsElementsMap)         \
285   V(FunctionContextMap)                 \
286   V(CatchContextMap)                    \
287   V(WithContextMap)                     \
288   V(BlockContextMap)                    \
289   V(ModuleContextMap)                   \
290   V(ScriptContextMap)                   \
291   V(UndefinedMap)                       \
292   V(TheHoleMap)                         \
293   V(NullMap)                            \
294   V(BooleanMap)                         \
295   V(UninitializedMap)                   \
296   V(ArgumentsMarkerMap)                 \
297   V(JSMessageObjectMap)                 \
298   V(ForeignMap)                         \
299   V(NeanderMap)                         \
300   V(NanValue)                           \
301   V(InfinityValue)                      \
302   V(MinusZeroValue)                     \
303   V(MinusInfinityValue)                 \
304   V(EmptyWeakCell)                      \
305   V(empty_string)                       \
306   PRIVATE_SYMBOL_LIST(V)
307 
308 // Forward declarations.
309 class AllocationObserver;
310 class ArrayBufferTracker;
311 class GCIdleTimeAction;
312 class GCIdleTimeHandler;
313 class GCIdleTimeHeapState;
314 class GCTracer;
315 class HeapObjectsFilter;
316 class HeapStats;
317 class HistogramTimer;
318 class Isolate;
319 class MemoryReducer;
320 class ObjectStats;
321 class Scavenger;
322 class ScavengeJob;
323 class WeakObjectRetainer;
324 
325 enum PromotionMode { PROMOTE_MARKED, DEFAULT_PROMOTION };
326 
327 typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to);
328 
329 // A queue of objects promoted during scavenge. Each object is accompanied
330 // by it's size to avoid dereferencing a map pointer for scanning.
331 // The last page in to-space is used for the promotion queue. On conflict
332 // during scavenge, the promotion queue is allocated externally and all
333 // entries are copied to the external queue.
334 class PromotionQueue {
335  public:
PromotionQueue(Heap * heap)336   explicit PromotionQueue(Heap* heap)
337       : front_(NULL),
338         rear_(NULL),
339         limit_(NULL),
340         emergency_stack_(0),
341         heap_(heap) {}
342 
343   void Initialize();
344 
Destroy()345   void Destroy() {
346     DCHECK(is_empty());
347     delete emergency_stack_;
348     emergency_stack_ = NULL;
349   }
350 
GetHeadPage()351   Page* GetHeadPage() {
352     return Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_));
353   }
354 
SetNewLimit(Address limit)355   void SetNewLimit(Address limit) {
356     // If we are already using an emergency stack, we can ignore it.
357     if (emergency_stack_) return;
358 
359     // If the limit is not on the same page, we can ignore it.
360     if (Page::FromAllocationAreaAddress(limit) != GetHeadPage()) return;
361 
362     limit_ = reinterpret_cast<struct Entry*>(limit);
363 
364     if (limit_ <= rear_) {
365       return;
366     }
367 
368     RelocateQueueHead();
369   }
370 
IsBelowPromotionQueue(Address to_space_top)371   bool IsBelowPromotionQueue(Address to_space_top) {
372     // If an emergency stack is used, the to-space address cannot interfere
373     // with the promotion queue.
374     if (emergency_stack_) return true;
375 
376     // If the given to-space top pointer and the head of the promotion queue
377     // are not on the same page, then the to-space objects are below the
378     // promotion queue.
379     if (GetHeadPage() != Page::FromAddress(to_space_top)) {
380       return true;
381     }
382     // If the to space top pointer is smaller or equal than the promotion
383     // queue head, then the to-space objects are below the promotion queue.
384     return reinterpret_cast<struct Entry*>(to_space_top) <= rear_;
385   }
386 
is_empty()387   bool is_empty() {
388     return (front_ == rear_) &&
389            (emergency_stack_ == NULL || emergency_stack_->length() == 0);
390   }
391 
392   inline void insert(HeapObject* target, int32_t size, bool was_marked_black);
393 
remove(HeapObject ** target,int32_t * size,bool * was_marked_black)394   void remove(HeapObject** target, int32_t* size, bool* was_marked_black) {
395     DCHECK(!is_empty());
396     if (front_ == rear_) {
397       Entry e = emergency_stack_->RemoveLast();
398       *target = e.obj_;
399       *size = e.size_;
400       *was_marked_black = e.was_marked_black_;
401       return;
402     }
403 
404     struct Entry* entry = reinterpret_cast<struct Entry*>(--front_);
405     *target = entry->obj_;
406     *size = entry->size_;
407     *was_marked_black = entry->was_marked_black_;
408 
409     // Assert no underflow.
410     SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
411                                 reinterpret_cast<Address>(front_));
412   }
413 
414  private:
415   struct Entry {
EntryEntry416     Entry(HeapObject* obj, int32_t size, bool was_marked_black)
417         : obj_(obj), size_(size), was_marked_black_(was_marked_black) {}
418 
419     HeapObject* obj_;
420     int32_t size_ : 31;
421     bool was_marked_black_ : 1;
422   };
423 
424   void RelocateQueueHead();
425 
426   // The front of the queue is higher in the memory page chain than the rear.
427   struct Entry* front_;
428   struct Entry* rear_;
429   struct Entry* limit_;
430 
431   List<Entry>* emergency_stack_;
432 
433   Heap* heap_;
434 
435   DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
436 };
437 
438 
439 enum ArrayStorageAllocationMode {
440   DONT_INITIALIZE_ARRAY_ELEMENTS,
441   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
442 };
443 
444 enum class ClearRecordedSlots { kYes, kNo };
445 
446 class Heap {
447  public:
448   // Declare all the root indices.  This defines the root list order.
449   enum RootListIndex {
450 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
451     STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
452 #undef ROOT_INDEX_DECLARATION
453 
454 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
455         INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
456 #undef STRING_DECLARATION
457 
458 #define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
459             PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
460 #undef SYMBOL_INDEX_DECLARATION
461 
462 #define SYMBOL_INDEX_DECLARATION(name, description) k##name##RootIndex,
463                 PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
464                     WELL_KNOWN_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
465 #undef SYMBOL_INDEX_DECLARATION
466 
467 // Utility type maps
468 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
469                         STRUCT_LIST(DECLARE_STRUCT_MAP)
470 #undef DECLARE_STRUCT_MAP
471                             kStringTableRootIndex,
472 
473 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
474     SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
475 #undef ROOT_INDEX_DECLARATION
476         kRootListLength,
477     kStrongRootListLength = kStringTableRootIndex,
478     kSmiRootsStart = kStringTableRootIndex + 1
479   };
480 
481   enum FindMementoMode { kForRuntime, kForGC };
482 
483   enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
484 
485   // Indicates whether live bytes adjustment is triggered
486   // - from within the GC code before sweeping started (SEQUENTIAL_TO_SWEEPER),
487   // - or from within GC (CONCURRENT_TO_SWEEPER),
488   // - or mutator code (CONCURRENT_TO_SWEEPER).
489   enum InvocationMode { SEQUENTIAL_TO_SWEEPER, CONCURRENT_TO_SWEEPER };
490 
491   enum UpdateAllocationSiteMode { kGlobal, kCached };
492 
493   // Taking this lock prevents the GC from entering a phase that relocates
494   // object references.
495   class RelocationLock {
496    public:
RelocationLock(Heap * heap)497     explicit RelocationLock(Heap* heap) : heap_(heap) {
498       heap_->relocation_mutex_.Lock();
499     }
500 
~RelocationLock()501     ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
502 
503    private:
504     Heap* heap_;
505   };
506 
507   // Support for partial snapshots.  After calling this we have a linear
508   // space to write objects in each space.
509   struct Chunk {
510     uint32_t size;
511     Address start;
512     Address end;
513   };
514   typedef List<Chunk> Reservation;
515 
516   static const intptr_t kMinimumOldGenerationAllocationLimit =
517       8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
518 
519   static const int kInitalOldGenerationLimitFactor = 2;
520 
521 #if V8_OS_ANDROID
522   // Don't apply pointer multiplier on Android since it has no swap space and
523   // should instead adapt it's heap size based on available physical memory.
524   static const int kPointerMultiplier = 1;
525 #else
526   static const int kPointerMultiplier = i::kPointerSize / 4;
527 #endif
528 
529   // The new space size has to be a power of 2. Sizes are in MB.
530   static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
531   static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
532   static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
533   static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
534 
535   // The old space size has to be a multiple of Page::kPageSize.
536   // Sizes are in MB.
537   static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
538   static const int kMaxOldSpaceSizeMediumMemoryDevice =
539       256 * kPointerMultiplier;
540   static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
541   static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
542 
543   // The executable size has to be a multiple of Page::kPageSize.
544   // Sizes are in MB.
545   static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
546   static const int kMaxExecutableSizeMediumMemoryDevice =
547       192 * kPointerMultiplier;
548   static const int kMaxExecutableSizeHighMemoryDevice =
549       256 * kPointerMultiplier;
550   static const int kMaxExecutableSizeHugeMemoryDevice =
551       256 * kPointerMultiplier;
552 
553   static const int kTraceRingBufferSize = 512;
554   static const int kStacktraceBufferSize = 512;
555 
556   static const double kMinHeapGrowingFactor;
557   static const double kMaxHeapGrowingFactor;
558   static const double kMaxHeapGrowingFactorMemoryConstrained;
559   static const double kMaxHeapGrowingFactorIdle;
560   static const double kTargetMutatorUtilization;
561 
562   static const int kNoGCFlags = 0;
563   static const int kReduceMemoryFootprintMask = 1;
564   static const int kAbortIncrementalMarkingMask = 2;
565   static const int kFinalizeIncrementalMarkingMask = 4;
566 
567   // Making the heap iterable requires us to abort incremental marking.
568   static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
569 
570   // The roots that have an index less than this are always in old space.
571   static const int kOldSpaceRoots = 0x20;
572 
573   // The minimum size of a HeapObject on the heap.
574   static const int kMinObjectSizeInWords = 2;
575 
576   STATIC_ASSERT(kUndefinedValueRootIndex ==
577                 Internals::kUndefinedValueRootIndex);
578   STATIC_ASSERT(kTheHoleValueRootIndex == Internals::kTheHoleValueRootIndex);
579   STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
580   STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
581   STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
582   STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
583 
584   // Calculates the maximum amount of filler that could be required by the
585   // given alignment.
586   static int GetMaximumFillToAlign(AllocationAlignment alignment);
587   // Calculates the actual amount of filler required for a given address at the
588   // given alignment.
589   static int GetFillToAlign(Address address, AllocationAlignment alignment);
590 
591   template <typename T>
592   static inline bool IsOneByte(T t, int chars);
593 
594   static void FatalProcessOutOfMemory(const char* location,
595                                       bool is_heap_oom = false);
596 
597   static bool RootIsImmortalImmovable(int root_index);
598 
599   // Checks whether the space is valid.
600   static bool IsValidAllocationSpace(AllocationSpace space);
601 
602   // Generated code can embed direct references to non-writable roots if
603   // they are in new space.
604   static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
605 
606   // Zapping is needed for verify heap, and always done in debug builds.
ShouldZapGarbage()607   static inline bool ShouldZapGarbage() {
608 #ifdef DEBUG
609     return true;
610 #else
611 #ifdef VERIFY_HEAP
612     return FLAG_verify_heap;
613 #else
614     return false;
615 #endif
616 #endif
617   }
618 
619   static double HeapGrowingFactor(double gc_speed, double mutator_speed);
620 
621   // Copy block of memory from src to dst. Size of block should be aligned
622   // by pointer size.
623   static inline void CopyBlock(Address dst, Address src, int byte_size);
624 
625   // Determines a static visitor id based on the given {map} that can then be
626   // stored on the map to facilitate fast dispatch for {StaticVisitorBase}.
627   static int GetStaticVisitorIdForMap(Map* map);
628 
629   // We cannot avoid stale handles to left-trimmed objects, but can only make
630   // sure all handles still needed are updated. Filter out a stale pointer
631   // and clear the slot to allow post processing of handles (needed because
632   // the sweeper might actually free the underlying page).
633   inline bool PurgeLeftTrimmedObject(Object** object);
634 
635   // Notifies the heap that is ok to start marking or other activities that
636   // should not happen during deserialization.
637   void NotifyDeserializationComplete();
638 
old_generation_allocation_limit()639   intptr_t old_generation_allocation_limit() const {
640     return old_generation_allocation_limit_;
641   }
642 
always_allocate()643   bool always_allocate() { return always_allocate_scope_count_.Value() != 0; }
644 
NewSpaceAllocationTopAddress()645   Address* NewSpaceAllocationTopAddress() {
646     return new_space_.allocation_top_address();
647   }
NewSpaceAllocationLimitAddress()648   Address* NewSpaceAllocationLimitAddress() {
649     return new_space_.allocation_limit_address();
650   }
651 
OldSpaceAllocationTopAddress()652   Address* OldSpaceAllocationTopAddress() {
653     return old_space_->allocation_top_address();
654   }
OldSpaceAllocationLimitAddress()655   Address* OldSpaceAllocationLimitAddress() {
656     return old_space_->allocation_limit_address();
657   }
658 
CanExpandOldGeneration(int size)659   bool CanExpandOldGeneration(int size) {
660     if (force_oom_) return false;
661     return (OldGenerationCapacity() + size) < MaxOldGenerationSize();
662   }
663 
664   // Clear the Instanceof cache (used when a prototype changes).
665   inline void ClearInstanceofCache();
666 
667   // FreeSpace objects have a null map after deserialization. Update the map.
668   void RepairFreeListsAfterDeserialization();
669 
670   // Move len elements within a given array from src_index index to dst_index
671   // index.
672   void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
673 
674   // Initialize a filler object to keep the ability to iterate over the heap
675   // when introducing gaps within pages. If slots could have been recorded in
676   // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise,
677   // pass ClearRecordedSlots::kNo.
678   void CreateFillerObjectAt(Address addr, int size, ClearRecordedSlots mode);
679 
680   bool CanMoveObjectStart(HeapObject* object);
681 
682   // Maintain consistency of live bytes during incremental marking.
683   void AdjustLiveBytes(HeapObject* object, int by, InvocationMode mode);
684 
685   // Trim the given array from the left. Note that this relocates the object
686   // start and hence is only valid if there is only a single reference to it.
687   FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
688 
689   // Trim the given array from the right.
690   template<Heap::InvocationMode mode>
691   void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
692 
693   // Converts the given boolean condition to JavaScript boolean value.
694   inline Oddball* ToBoolean(bool condition);
695 
696   // Check whether the heap is currently iterable.
697   bool IsHeapIterable();
698 
699   // Notify the heap that a context has been disposed.
700   int NotifyContextDisposed(bool dependant_context);
701 
set_native_contexts_list(Object * object)702   void set_native_contexts_list(Object* object) {
703     native_contexts_list_ = object;
704   }
native_contexts_list()705   Object* native_contexts_list() const { return native_contexts_list_; }
706 
set_allocation_sites_list(Object * object)707   void set_allocation_sites_list(Object* object) {
708     allocation_sites_list_ = object;
709   }
allocation_sites_list()710   Object* allocation_sites_list() { return allocation_sites_list_; }
711 
712   // Used in CreateAllocationSiteStub and the (de)serializer.
allocation_sites_list_address()713   Object** allocation_sites_list_address() { return &allocation_sites_list_; }
714 
set_encountered_weak_collections(Object * weak_collection)715   void set_encountered_weak_collections(Object* weak_collection) {
716     encountered_weak_collections_ = weak_collection;
717   }
encountered_weak_collections()718   Object* encountered_weak_collections() const {
719     return encountered_weak_collections_;
720   }
721 
set_encountered_weak_cells(Object * weak_cell)722   void set_encountered_weak_cells(Object* weak_cell) {
723     encountered_weak_cells_ = weak_cell;
724   }
encountered_weak_cells()725   Object* encountered_weak_cells() const { return encountered_weak_cells_; }
726 
set_encountered_transition_arrays(Object * transition_array)727   void set_encountered_transition_arrays(Object* transition_array) {
728     encountered_transition_arrays_ = transition_array;
729   }
encountered_transition_arrays()730   Object* encountered_transition_arrays() const {
731     return encountered_transition_arrays_;
732   }
733 
734   // Number of mark-sweeps.
ms_count()735   int ms_count() const { return ms_count_; }
736 
737   // Checks whether the given object is allowed to be migrated from it's
738   // current space into the given destination space. Used for debugging.
739   inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
740 
741   void CheckHandleCount();
742 
743   // Number of "runtime allocations" done so far.
allocations_count()744   uint32_t allocations_count() { return allocations_count_; }
745 
746   // Print short heap statistics.
747   void PrintShortHeapStatistics();
748 
gc_state()749   inline HeapState gc_state() { return gc_state_; }
750 
IsInGCPostProcessing()751   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
752 
753   // If an object has an AllocationMemento trailing it, return it, otherwise
754   // return NULL;
755   template <FindMementoMode mode>
756   inline AllocationMemento* FindAllocationMemento(HeapObject* object);
757 
758   // Returns false if not able to reserve.
759   bool ReserveSpace(Reservation* reservations);
760 
761   void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
762 
763   bool UsingEmbedderHeapTracer();
764 
765   void TracePossibleWrapper(JSObject* js_object);
766 
767   void RegisterExternallyReferencedObject(Object** object);
768 
769   //
770   // Support for the API.
771   //
772 
773   void CreateApiObjects();
774 
775   // Implements the corresponding V8 API function.
776   bool IdleNotification(double deadline_in_seconds);
777   bool IdleNotification(int idle_time_in_ms);
778 
779   void MemoryPressureNotification(MemoryPressureLevel level,
780                                   bool is_isolate_locked);
781   void CheckMemoryPressure();
782 
783   double MonotonicallyIncreasingTimeInMs();
784 
785   void RecordStats(HeapStats* stats, bool take_snapshot = false);
786 
787   // Check new space expansion criteria and expand semispaces if it was hit.
788   void CheckNewSpaceExpansionCriteria();
789 
HeapIsFullEnoughToStartIncrementalMarking(intptr_t limit)790   inline bool HeapIsFullEnoughToStartIncrementalMarking(intptr_t limit) {
791     if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
792 
793     intptr_t adjusted_allocation_limit = limit - new_space_.Capacity();
794 
795     if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
796 
797     if (HighMemoryPressure()) return true;
798 
799     return false;
800   }
801 
802   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
803 
804   // An object should be promoted if the object has survived a
805   // scavenge operation.
806   template <PromotionMode promotion_mode>
807   inline bool ShouldBePromoted(Address old_address, int object_size);
808 
809   inline PromotionMode CurrentPromotionMode();
810 
811   void ClearNormalizedMapCaches();
812 
813   void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
814 
815   inline bool OldGenerationAllocationLimitReached();
816 
817   // Completely clear the Instanceof cache (to stop it keeping objects alive
818   // around a GC).
819   inline void CompletelyClearInstanceofCache();
820 
821   inline uint32_t HashSeed();
822 
823   inline int NextScriptId();
824 
825   inline void SetArgumentsAdaptorDeoptPCOffset(int pc_offset);
826   inline void SetConstructStubDeoptPCOffset(int pc_offset);
827   inline void SetGetterStubDeoptPCOffset(int pc_offset);
828   inline void SetSetterStubDeoptPCOffset(int pc_offset);
829   inline void SetInterpreterEntryReturnPCOffset(int pc_offset);
830   inline int GetNextTemplateSerialNumber();
831 
832   inline void SetSerializedTemplates(FixedArray* templates);
833 
834   // For post mortem debugging.
835   void RememberUnmappedPage(Address page, bool compacted);
836 
837   // Global inline caching age: it is incremented on some GCs after context
838   // disposal. We use it to flush inline caches.
global_ic_age()839   int global_ic_age() { return global_ic_age_; }
840 
AgeInlineCaches()841   void AgeInlineCaches() {
842     global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
843   }
844 
external_memory()845   int64_t external_memory() { return external_memory_; }
update_external_memory(int64_t delta)846   void update_external_memory(int64_t delta) { external_memory_ += delta; }
847 
update_external_memory_concurrently_freed(intptr_t freed)848   void update_external_memory_concurrently_freed(intptr_t freed) {
849     external_memory_concurrently_freed_.Increment(freed);
850   }
851 
account_external_memory_concurrently_freed()852   void account_external_memory_concurrently_freed() {
853     external_memory_ -= external_memory_concurrently_freed_.Value();
854     external_memory_concurrently_freed_.SetValue(0);
855   }
856 
857   void DeoptMarkedAllocationSites();
858 
DeoptMaybeTenuredAllocationSites()859   bool DeoptMaybeTenuredAllocationSites() {
860     return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
861   }
862 
863   void AddWeakObjectToCodeDependency(Handle<HeapObject> obj,
864                                      Handle<DependentCode> dep);
865 
866   DependentCode* LookupWeakObjectToCodeDependency(Handle<HeapObject> obj);
867 
868   void CompactWeakFixedArrays();
869 
870   void AddRetainedMap(Handle<Map> map);
871 
872   // This event is triggered after successful allocation of a new object made
873   // by runtime. Allocations of target space for object evacuation do not
874   // trigger the event. In order to track ALL allocations one must turn off
875   // FLAG_inline_new and FLAG_use_allocation_folding.
876   inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
877 
878   // This event is triggered after object is moved to a new place.
879   inline void OnMoveEvent(HeapObject* target, HeapObject* source,
880                           int size_in_bytes);
881 
deserialization_complete()882   bool deserialization_complete() const { return deserialization_complete_; }
883 
884   bool HasLowAllocationRate();
885   bool HasHighFragmentation();
886   bool HasHighFragmentation(intptr_t used, intptr_t committed);
887 
SetOptimizeForLatency()888   void SetOptimizeForLatency() { optimize_for_memory_usage_ = false; }
889   void SetOptimizeForMemoryUsage();
ShouldOptimizeForMemoryUsage()890   bool ShouldOptimizeForMemoryUsage() {
891     return optimize_for_memory_usage_ || HighMemoryPressure();
892   }
HighMemoryPressure()893   bool HighMemoryPressure() {
894     return memory_pressure_level_.Value() != MemoryPressureLevel::kNone;
895   }
896 
897   // ===========================================================================
898   // Initialization. ===========================================================
899   // ===========================================================================
900 
901   // Configure heap size in MB before setup. Return false if the heap has been
902   // set up already.
903   bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
904                      int max_executable_size, size_t code_range_size);
905   bool ConfigureHeapDefault();
906 
907   // Prepares the heap, setting up memory areas that are needed in the isolate
908   // without actually creating any objects.
909   bool SetUp();
910 
911   // Bootstraps the object heap with the core set of objects required to run.
912   // Returns whether it succeeded.
913   bool CreateHeapObjects();
914 
915   // Destroys all memory allocated by the heap.
916   void TearDown();
917 
918   // Returns whether SetUp has been called.
919   bool HasBeenSetUp();
920 
921   // ===========================================================================
922   // Getters for spaces. =======================================================
923   // ===========================================================================
924 
NewSpaceTop()925   Address NewSpaceTop() { return new_space_.top(); }
926 
new_space()927   NewSpace* new_space() { return &new_space_; }
old_space()928   OldSpace* old_space() { return old_space_; }
code_space()929   OldSpace* code_space() { return code_space_; }
map_space()930   MapSpace* map_space() { return map_space_; }
lo_space()931   LargeObjectSpace* lo_space() { return lo_space_; }
932 
paged_space(int idx)933   PagedSpace* paged_space(int idx) {
934     switch (idx) {
935       case OLD_SPACE:
936         return old_space();
937       case MAP_SPACE:
938         return map_space();
939       case CODE_SPACE:
940         return code_space();
941       case NEW_SPACE:
942       case LO_SPACE:
943         UNREACHABLE();
944     }
945     return NULL;
946   }
947 
space(int idx)948   Space* space(int idx) {
949     switch (idx) {
950       case NEW_SPACE:
951         return new_space();
952       case LO_SPACE:
953         return lo_space();
954       default:
955         return paged_space(idx);
956     }
957   }
958 
959   // Returns name of the space.
960   const char* GetSpaceName(int idx);
961 
962   // ===========================================================================
963   // Getters to other components. ==============================================
964   // ===========================================================================
965 
tracer()966   GCTracer* tracer() { return tracer_; }
967 
memory_allocator()968   MemoryAllocator* memory_allocator() { return memory_allocator_; }
969 
promotion_queue()970   PromotionQueue* promotion_queue() { return &promotion_queue_; }
971 
972   inline Isolate* isolate();
973 
mark_compact_collector()974   MarkCompactCollector* mark_compact_collector() {
975     return mark_compact_collector_;
976   }
977 
978   // ===========================================================================
979   // Root set access. ==========================================================
980   // ===========================================================================
981 
982   // Heap root getters.
983 #define ROOT_ACCESSOR(type, name, camel_name) inline type* name();
984   ROOT_LIST(ROOT_ACCESSOR)
985 #undef ROOT_ACCESSOR
986 
987   // Utility type maps.
988 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) inline Map* name##_map();
STRUCT_LIST(STRUCT_MAP_ACCESSOR)989   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
990 #undef STRUCT_MAP_ACCESSOR
991 
992 #define STRING_ACCESSOR(name, str) inline String* name();
993   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
994 #undef STRING_ACCESSOR
995 
996 #define SYMBOL_ACCESSOR(name) inline Symbol* name();
997   PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
998 #undef SYMBOL_ACCESSOR
999 
1000 #define SYMBOL_ACCESSOR(name, description) inline Symbol* name();
1001   PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
1002   WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
1003 #undef SYMBOL_ACCESSOR
1004 
1005   Object* root(RootListIndex index) { return roots_[index]; }
root_handle(RootListIndex index)1006   Handle<Object> root_handle(RootListIndex index) {
1007     return Handle<Object>(&roots_[index]);
1008   }
1009 
1010   // Generated code can embed this address to get access to the roots.
roots_array_start()1011   Object** roots_array_start() { return roots_; }
1012 
1013   // Sets the stub_cache_ (only used when expanding the dictionary).
SetRootCodeStubs(UnseededNumberDictionary * value)1014   void SetRootCodeStubs(UnseededNumberDictionary* value) {
1015     roots_[kCodeStubsRootIndex] = value;
1016   }
1017 
SetRootMaterializedObjects(FixedArray * objects)1018   void SetRootMaterializedObjects(FixedArray* objects) {
1019     roots_[kMaterializedObjectsRootIndex] = objects;
1020   }
1021 
SetRootScriptList(Object * value)1022   void SetRootScriptList(Object* value) {
1023     roots_[kScriptListRootIndex] = value;
1024   }
1025 
SetRootStringTable(StringTable * value)1026   void SetRootStringTable(StringTable* value) {
1027     roots_[kStringTableRootIndex] = value;
1028   }
1029 
SetRootNoScriptSharedFunctionInfos(Object * value)1030   void SetRootNoScriptSharedFunctionInfos(Object* value) {
1031     roots_[kNoScriptSharedFunctionInfosRootIndex] = value;
1032   }
1033 
1034   // Set the stack limit in the roots_ array.  Some architectures generate
1035   // code that looks here, because it is faster than loading from the static
1036   // jslimit_/real_jslimit_ variable in the StackGuard.
1037   void SetStackLimits();
1038 
1039   // The stack limit is thread-dependent. To be able to reproduce the same
1040   // snapshot blob, we need to reset it before serializing.
1041   void ClearStackLimits();
1042 
1043   // Generated code can treat direct references to this root as constant.
1044   bool RootCanBeTreatedAsConstant(RootListIndex root_index);
1045 
1046   Map* MapForFixedTypedArray(ExternalArrayType array_type);
1047   RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
1048 
1049   RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
1050   FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
1051 
1052   void RegisterStrongRoots(Object** start, Object** end);
1053   void UnregisterStrongRoots(Object** start);
1054 
1055   // ===========================================================================
1056   // Inline allocation. ========================================================
1057   // ===========================================================================
1058 
1059   // Indicates whether inline bump-pointer allocation has been disabled.
inline_allocation_disabled()1060   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
1061 
1062   // Switch whether inline bump-pointer allocation should be used.
1063   void EnableInlineAllocation();
1064   void DisableInlineAllocation();
1065 
1066   // ===========================================================================
1067   // Methods triggering GCs. ===================================================
1068   // ===========================================================================
1069 
1070   // Performs garbage collection operation.
1071   // Returns whether there is a chance that another major GC could
1072   // collect more garbage.
1073   inline bool CollectGarbage(
1074       AllocationSpace space, const char* gc_reason = NULL,
1075       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1076 
1077   // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
1078   // non-zero, then the slower precise sweeper is used, which leaves the heap
1079   // in a state where we can iterate over the heap visiting all objects.
1080   void CollectAllGarbage(
1081       int flags = kFinalizeIncrementalMarkingMask, const char* gc_reason = NULL,
1082       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1083 
1084   // Last hope GC, should try to squeeze as much as possible.
1085   void CollectAllAvailableGarbage(const char* gc_reason = NULL);
1086 
1087   // Reports and external memory pressure event, either performs a major GC or
1088   // completes incremental marking in order to free external resources.
1089   void ReportExternalMemoryPressure(const char* gc_reason = NULL);
1090 
1091   // Invoked when GC was requested via the stack guard.
1092   void HandleGCRequest();
1093 
1094   // ===========================================================================
1095   // Iterators. ================================================================
1096   // ===========================================================================
1097 
1098   // Iterates over all roots in the heap.
1099   void IterateRoots(ObjectVisitor* v, VisitMode mode);
1100   // Iterates over all strong roots in the heap.
1101   void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
1102   // Iterates over entries in the smi roots list.  Only interesting to the
1103   // serializer/deserializer, since GC does not care about smis.
1104   void IterateSmiRoots(ObjectVisitor* v);
1105   // Iterates over all the other roots in the heap.
1106   void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
1107 
1108   // Iterate pointers of promoted objects.
1109   void IteratePromotedObject(HeapObject* target, int size,
1110                              bool was_marked_black,
1111                              ObjectSlotCallback callback);
1112 
1113   void IteratePromotedObjectPointers(HeapObject* object, Address start,
1114                                      Address end, bool record_slots,
1115                                      ObjectSlotCallback callback);
1116 
1117   // ===========================================================================
1118   // Store buffer API. =========================================================
1119   // ===========================================================================
1120 
1121   // Write barrier support for object[offset] = o;
1122   inline void RecordWrite(Object* object, int offset, Object* o);
1123   inline void RecordFixedArrayElements(FixedArray* array, int offset,
1124                                        int length);
1125 
store_buffer_top_address()1126   Address* store_buffer_top_address() { return store_buffer()->top_address(); }
1127 
1128   void ClearRecordedSlot(HeapObject* object, Object** slot);
1129   void ClearRecordedSlotRange(Address start, Address end);
1130 
1131   // ===========================================================================
1132   // Incremental marking API. ==================================================
1133   // ===========================================================================
1134 
1135   // Start incremental marking and ensure that idle time handler can perform
1136   // incremental steps.
1137   void StartIdleIncrementalMarking();
1138 
1139   // Starts incremental marking assuming incremental marking is currently
1140   // stopped.
1141   void StartIncrementalMarking(int gc_flags = kNoGCFlags,
1142                                const GCCallbackFlags gc_callback_flags =
1143                                    GCCallbackFlags::kNoGCCallbackFlags,
1144                                const char* reason = nullptr);
1145 
1146   void FinalizeIncrementalMarkingIfComplete(const char* comment);
1147 
1148   bool TryFinalizeIdleIncrementalMarking(double idle_time_in_ms);
1149 
1150   void RegisterReservationsForBlackAllocation(Reservation* reservations);
1151 
incremental_marking()1152   IncrementalMarking* incremental_marking() { return incremental_marking_; }
1153 
1154   // ===========================================================================
1155   // External string table API. ================================================
1156   // ===========================================================================
1157 
1158   // Registers an external string.
1159   inline void RegisterExternalString(String* string);
1160 
1161   // Finalizes an external string by deleting the associated external
1162   // data and clearing the resource pointer.
1163   inline void FinalizeExternalString(String* string);
1164 
1165   // ===========================================================================
1166   // Methods checking/returning the space of a given object/address. ===========
1167   // ===========================================================================
1168 
1169   // Returns whether the object resides in new space.
1170   inline bool InNewSpace(Object* object);
1171   inline bool InFromSpace(Object* object);
1172   inline bool InToSpace(Object* object);
1173 
1174   // Returns whether the object resides in old space.
1175   inline bool InOldSpace(Object* object);
1176 
1177   // Checks whether an address/object in the heap (including auxiliary
1178   // area and unused area).
1179   bool Contains(HeapObject* value);
1180 
1181   // Checks whether an address/object in a space.
1182   // Currently used by tests, serialization and heap verification only.
1183   bool InSpace(HeapObject* value, AllocationSpace space);
1184 
1185   // Slow methods that can be used for verification as they can also be used
1186   // with off-heap Addresses.
1187   bool ContainsSlow(Address addr);
1188   bool InSpaceSlow(Address addr, AllocationSpace space);
1189   inline bool InNewSpaceSlow(Address address);
1190   inline bool InOldSpaceSlow(Address address);
1191 
1192   // ===========================================================================
1193   // Object statistics tracking. ===============================================
1194   // ===========================================================================
1195 
1196   // Returns the number of buckets used by object statistics tracking during a
1197   // major GC. Note that the following methods fail gracefully when the bounds
1198   // are exceeded though.
1199   size_t NumberOfTrackedHeapObjectTypes();
1200 
1201   // Returns object statistics about count and size at the last major GC.
1202   // Objects are being grouped into buckets that roughly resemble existing
1203   // instance types.
1204   size_t ObjectCountAtLastGC(size_t index);
1205   size_t ObjectSizeAtLastGC(size_t index);
1206 
1207   // Retrieves names of buckets used by object statistics tracking.
1208   bool GetObjectTypeName(size_t index, const char** object_type,
1209                          const char** object_sub_type);
1210 
1211   // ===========================================================================
1212   // Code statistics. ==========================================================
1213   // ===========================================================================
1214 
1215   // Collect code (Code and BytecodeArray objects) statistics.
1216   void CollectCodeStatistics();
1217 
1218   // ===========================================================================
1219   // GC statistics. ============================================================
1220   // ===========================================================================
1221 
1222   // Returns the maximum amount of memory reserved for the heap.
MaxReserved()1223   intptr_t MaxReserved() {
1224     return 2 * max_semi_space_size_ + max_old_generation_size_;
1225   }
MaxSemiSpaceSize()1226   int MaxSemiSpaceSize() { return max_semi_space_size_; }
InitialSemiSpaceSize()1227   int InitialSemiSpaceSize() { return initial_semispace_size_; }
MaxOldGenerationSize()1228   intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
MaxExecutableSize()1229   intptr_t MaxExecutableSize() { return max_executable_size_; }
1230 
1231   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
1232   // more spaces are needed until it reaches the limit.
1233   intptr_t Capacity();
1234 
1235   // Returns the capacity of the old generation.
1236   intptr_t OldGenerationCapacity();
1237 
1238   // Returns the amount of memory currently committed for the heap.
1239   intptr_t CommittedMemory();
1240 
1241   // Returns the amount of memory currently committed for the old space.
1242   intptr_t CommittedOldGenerationMemory();
1243 
1244   // Returns the amount of executable memory currently committed for the heap.
1245   intptr_t CommittedMemoryExecutable();
1246 
1247   // Returns the amount of phyical memory currently committed for the heap.
1248   size_t CommittedPhysicalMemory();
1249 
1250   // Returns the maximum amount of memory ever committed for the heap.
MaximumCommittedMemory()1251   intptr_t MaximumCommittedMemory() { return maximum_committed_; }
1252 
1253   // Updates the maximum committed memory for the heap. Should be called
1254   // whenever a space grows.
1255   void UpdateMaximumCommitted();
1256 
1257   // Returns the available bytes in space w/o growing.
1258   // Heap doesn't guarantee that it can allocate an object that requires
1259   // all available bytes. Check MaxHeapObjectSize() instead.
1260   intptr_t Available();
1261 
1262   // Returns of size of all objects residing in the heap.
1263   intptr_t SizeOfObjects();
1264 
1265   void UpdateSurvivalStatistics(int start_new_space_size);
1266 
IncrementPromotedObjectsSize(intptr_t object_size)1267   inline void IncrementPromotedObjectsSize(intptr_t object_size) {
1268     DCHECK_GE(object_size, 0);
1269     promoted_objects_size_ += object_size;
1270   }
promoted_objects_size()1271   inline intptr_t promoted_objects_size() { return promoted_objects_size_; }
1272 
IncrementSemiSpaceCopiedObjectSize(intptr_t object_size)1273   inline void IncrementSemiSpaceCopiedObjectSize(intptr_t object_size) {
1274     DCHECK_GE(object_size, 0);
1275     semi_space_copied_object_size_ += object_size;
1276   }
semi_space_copied_object_size()1277   inline intptr_t semi_space_copied_object_size() {
1278     return semi_space_copied_object_size_;
1279   }
1280 
SurvivedNewSpaceObjectSize()1281   inline intptr_t SurvivedNewSpaceObjectSize() {
1282     return promoted_objects_size_ + semi_space_copied_object_size_;
1283   }
1284 
IncrementNodesDiedInNewSpace()1285   inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
1286 
IncrementNodesCopiedInNewSpace()1287   inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
1288 
IncrementNodesPromoted()1289   inline void IncrementNodesPromoted() { nodes_promoted_++; }
1290 
IncrementYoungSurvivorsCounter(intptr_t survived)1291   inline void IncrementYoungSurvivorsCounter(intptr_t survived) {
1292     DCHECK_GE(survived, 0);
1293     survived_last_scavenge_ = survived;
1294     survived_since_last_expansion_ += survived;
1295   }
1296 
PromotedTotalSize()1297   inline intptr_t PromotedTotalSize() {
1298     int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
1299     if (total > std::numeric_limits<intptr_t>::max()) {
1300       // TODO(erikcorry): Use uintptr_t everywhere we do heap size calculations.
1301       return std::numeric_limits<intptr_t>::max();
1302     }
1303     if (total < 0) return 0;
1304     return static_cast<intptr_t>(total);
1305   }
1306 
UpdateNewSpaceAllocationCounter()1307   void UpdateNewSpaceAllocationCounter() {
1308     new_space_allocation_counter_ = NewSpaceAllocationCounter();
1309   }
1310 
NewSpaceAllocationCounter()1311   size_t NewSpaceAllocationCounter() {
1312     return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
1313   }
1314 
1315   // This should be used only for testing.
set_new_space_allocation_counter(size_t new_value)1316   void set_new_space_allocation_counter(size_t new_value) {
1317     new_space_allocation_counter_ = new_value;
1318   }
1319 
UpdateOldGenerationAllocationCounter()1320   void UpdateOldGenerationAllocationCounter() {
1321     old_generation_allocation_counter_ = OldGenerationAllocationCounter();
1322   }
1323 
OldGenerationAllocationCounter()1324   size_t OldGenerationAllocationCounter() {
1325     return old_generation_allocation_counter_ + PromotedSinceLastGC();
1326   }
1327 
1328   // This should be used only for testing.
set_old_generation_allocation_counter(size_t new_value)1329   void set_old_generation_allocation_counter(size_t new_value) {
1330     old_generation_allocation_counter_ = new_value;
1331   }
1332 
PromotedSinceLastGC()1333   size_t PromotedSinceLastGC() {
1334     return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_;
1335   }
1336 
gc_count()1337   int gc_count() const { return gc_count_; }
1338 
1339   // Returns the size of objects residing in non new spaces.
1340   intptr_t PromotedSpaceSizeOfObjects();
1341 
total_regexp_code_generated()1342   double total_regexp_code_generated() { return total_regexp_code_generated_; }
IncreaseTotalRegexpCodeGenerated(int size)1343   void IncreaseTotalRegexpCodeGenerated(int size) {
1344     total_regexp_code_generated_ += size;
1345   }
1346 
IncrementCodeGeneratedBytes(bool is_crankshafted,int size)1347   void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
1348     if (is_crankshafted) {
1349       crankshaft_codegen_bytes_generated_ += size;
1350     } else {
1351       full_codegen_bytes_generated_ += size;
1352     }
1353   }
1354 
1355   // ===========================================================================
1356   // Prologue/epilogue callback methods.========================================
1357   // ===========================================================================
1358 
1359   void AddGCPrologueCallback(v8::Isolate::GCCallback callback,
1360                              GCType gc_type_filter, bool pass_isolate = true);
1361   void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback);
1362 
1363   void AddGCEpilogueCallback(v8::Isolate::GCCallback callback,
1364                              GCType gc_type_filter, bool pass_isolate = true);
1365   void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback);
1366 
1367   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
1368   void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
1369 
1370   // ===========================================================================
1371   // Allocation methods. =======================================================
1372   // ===========================================================================
1373 
1374   // Creates a filler object and returns a heap object immediately after it.
1375   MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
1376                                                 int filler_size);
1377 
1378   // Creates a filler object if needed for alignment and returns a heap object
1379   // immediately after it. If any space is left after the returned object,
1380   // another filler object is created so the over allocated memory is iterable.
1381   MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object,
1382                                               int object_size,
1383                                               int allocation_size,
1384                                               AllocationAlignment alignment);
1385 
1386   // ===========================================================================
1387   // ArrayBuffer tracking. =====================================================
1388   // ===========================================================================
1389 
1390   void RegisterNewArrayBuffer(JSArrayBuffer* buffer);
1391   void UnregisterArrayBuffer(JSArrayBuffer* buffer);
1392 
1393   // ===========================================================================
1394   // Allocation site tracking. =================================================
1395   // ===========================================================================
1396 
1397   // Updates the AllocationSite of a given {object}. If the global prenuring
1398   // storage is passed as {pretenuring_feedback} the memento found count on
1399   // the corresponding allocation site is immediately updated and an entry
1400   // in the hash map is created. Otherwise the entry (including a the count
1401   // value) is cached on the local pretenuring feedback.
1402   template <UpdateAllocationSiteMode mode>
1403   inline void UpdateAllocationSite(HeapObject* object,
1404                                    base::HashMap* pretenuring_feedback);
1405 
1406   // Removes an entry from the global pretenuring storage.
1407   inline void RemoveAllocationSitePretenuringFeedback(AllocationSite* site);
1408 
1409   // Merges local pretenuring feedback into the global one. Note that this
1410   // method needs to be called after evacuation, as allocation sites may be
1411   // evacuated and this method resolves forward pointers accordingly.
1412   void MergeAllocationSitePretenuringFeedback(
1413       const base::HashMap& local_pretenuring_feedback);
1414 
1415 // =============================================================================
1416 
1417 #ifdef VERIFY_HEAP
1418   // Verify the heap is in its normal state before or after a GC.
1419   void Verify();
1420 #endif
1421 
1422 #ifdef DEBUG
set_allocation_timeout(int timeout)1423   void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
1424 
1425   void TracePathToObjectFrom(Object* target, Object* root);
1426   void TracePathToObject(Object* target);
1427   void TracePathToGlobal();
1428 
1429   void Print();
1430   void PrintHandles();
1431 
1432   // Report heap statistics.
1433   void ReportHeapStatistics(const char* title);
1434   void ReportCodeStatistics(const char* title);
1435 #endif
1436 
1437  private:
1438   class PretenuringScope;
1439 
1440   // External strings table is a place where all external strings are
1441   // registered.  We need to keep track of such strings to properly
1442   // finalize them.
1443   class ExternalStringTable {
1444    public:
1445     // Registers an external string.
1446     inline void AddString(String* string);
1447 
1448     inline void Iterate(ObjectVisitor* v);
1449 
1450     // Restores internal invariant and gets rid of collected strings.
1451     // Must be called after each Iterate() that modified the strings.
1452     void CleanUp();
1453 
1454     // Destroys all allocated memory.
1455     void TearDown();
1456 
1457    private:
ExternalStringTable(Heap * heap)1458     explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
1459 
1460     inline void Verify();
1461 
1462     inline void AddOldString(String* string);
1463 
1464     // Notifies the table that only a prefix of the new list is valid.
1465     inline void ShrinkNewStrings(int position);
1466 
1467     // To speed up scavenge collections new space string are kept
1468     // separate from old space strings.
1469     List<Object*> new_space_strings_;
1470     List<Object*> old_space_strings_;
1471 
1472     Heap* heap_;
1473 
1474     friend class Heap;
1475 
1476     DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
1477   };
1478 
1479   struct StrongRootsList;
1480 
1481   struct StringTypeTable {
1482     InstanceType type;
1483     int size;
1484     RootListIndex index;
1485   };
1486 
1487   struct ConstantStringTable {
1488     const char* contents;
1489     RootListIndex index;
1490   };
1491 
1492   struct StructTable {
1493     InstanceType type;
1494     int size;
1495     RootListIndex index;
1496   };
1497 
1498   struct GCCallbackPair {
GCCallbackPairGCCallbackPair1499     GCCallbackPair(v8::Isolate::GCCallback callback, GCType gc_type,
1500                    bool pass_isolate)
1501         : callback(callback), gc_type(gc_type), pass_isolate(pass_isolate) {}
1502 
1503     bool operator==(const GCCallbackPair& other) const {
1504       return other.callback == callback;
1505     }
1506 
1507     v8::Isolate::GCCallback callback;
1508     GCType gc_type;
1509     bool pass_isolate;
1510   };
1511 
1512   typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
1513                                                         Object** pointer);
1514 
1515   static const int kInitialStringTableSize = 2048;
1516   static const int kInitialEvalCacheSize = 64;
1517   static const int kInitialNumberStringCacheSize = 256;
1518 
1519   static const int kRememberedUnmappedPages = 128;
1520 
1521   static const StringTypeTable string_type_table[];
1522   static const ConstantStringTable constant_string_table[];
1523   static const StructTable struct_table[];
1524 
1525   static const int kYoungSurvivalRateHighThreshold = 90;
1526   static const int kYoungSurvivalRateAllowedDeviation = 15;
1527   static const int kOldSurvivalRateLowThreshold = 10;
1528 
1529   static const int kMaxMarkCompactsInIdleRound = 7;
1530   static const int kIdleScavengeThreshold = 5;
1531 
1532   static const int kInitialFeedbackCapacity = 256;
1533 
1534   Heap();
1535 
1536   static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
1537       Heap* heap, Object** pointer);
1538 
1539   // Selects the proper allocation space based on the pretenuring decision.
SelectSpace(PretenureFlag pretenure)1540   static AllocationSpace SelectSpace(PretenureFlag pretenure) {
1541     return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE;
1542   }
1543 
1544 #define ROOT_ACCESSOR(type, name, camel_name) \
1545   inline void set_##name(type* value);
ROOT_LIST(ROOT_ACCESSOR)1546   ROOT_LIST(ROOT_ACCESSOR)
1547 #undef ROOT_ACCESSOR
1548 
1549   StoreBuffer* store_buffer() { return &store_buffer_; }
1550 
set_current_gc_flags(int flags)1551   void set_current_gc_flags(int flags) {
1552     current_gc_flags_ = flags;
1553     DCHECK(!ShouldFinalizeIncrementalMarking() ||
1554            !ShouldAbortIncrementalMarking());
1555   }
1556 
ShouldReduceMemory()1557   inline bool ShouldReduceMemory() const {
1558     return current_gc_flags_ & kReduceMemoryFootprintMask;
1559   }
1560 
ShouldAbortIncrementalMarking()1561   inline bool ShouldAbortIncrementalMarking() const {
1562     return current_gc_flags_ & kAbortIncrementalMarkingMask;
1563   }
1564 
ShouldFinalizeIncrementalMarking()1565   inline bool ShouldFinalizeIncrementalMarking() const {
1566     return current_gc_flags_ & kFinalizeIncrementalMarkingMask;
1567   }
1568 
1569   void PreprocessStackTraces();
1570 
1571   // Checks whether a global GC is necessary
1572   GarbageCollector SelectGarbageCollector(AllocationSpace space,
1573                                           const char** reason);
1574 
1575   // Make sure there is a filler value behind the top of the new space
1576   // so that the GC does not confuse some unintialized/stale memory
1577   // with the allocation memento of the object at the top
1578   void EnsureFillerObjectAtTop();
1579 
1580   // Ensure that we have swept all spaces in such a way that we can iterate
1581   // over all objects.  May cause a GC.
1582   void MakeHeapIterable();
1583 
1584   // Performs garbage collection operation.
1585   // Returns whether there is a chance that another major GC could
1586   // collect more garbage.
1587   bool CollectGarbage(
1588       GarbageCollector collector, const char* gc_reason,
1589       const char* collector_reason,
1590       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1591 
1592   // Performs garbage collection
1593   // Returns whether there is a chance another major GC could
1594   // collect more garbage.
1595   bool PerformGarbageCollection(
1596       GarbageCollector collector,
1597       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1598 
1599   inline void UpdateOldSpaceLimits();
1600 
1601   // Initializes a JSObject based on its map.
1602   void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
1603                                  Map* map);
1604 
1605   // Initializes JSObject body starting at given offset.
1606   void InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset);
1607 
1608   void InitializeAllocationMemento(AllocationMemento* memento,
1609                                    AllocationSite* allocation_site);
1610 
1611   bool CreateInitialMaps();
1612   void CreateInitialObjects();
1613 
1614   // These five Create*EntryStub functions are here and forced to not be inlined
1615   // because of a gcc-4.4 bug that assigns wrong vtable entries.
1616   NO_INLINE(void CreateJSEntryStub());
1617   NO_INLINE(void CreateJSConstructEntryStub());
1618 
1619   void CreateFixedStubs();
1620 
1621   HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size);
1622 
1623   // Commits from space if it is uncommitted.
1624   void EnsureFromSpaceIsCommitted();
1625 
1626   // Uncommit unused semi space.
UncommitFromSpace()1627   bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
1628 
1629   // Fill in bogus values in from space
1630   void ZapFromSpace();
1631 
1632   // Deopts all code that contains allocation instruction which are tenured or
1633   // not tenured. Moreover it clears the pretenuring allocation site statistics.
1634   void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
1635 
1636   // Evaluates local pretenuring for the old space and calls
1637   // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
1638   // the old space.
1639   void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
1640 
1641   // Record statistics before and after garbage collection.
1642   void ReportStatisticsBeforeGC();
1643   void ReportStatisticsAfterGC();
1644 
1645   // Creates and installs the full-sized number string cache.
1646   int FullSizeNumberStringCacheLength();
1647   // Flush the number to string cache.
1648   void FlushNumberStringCache();
1649 
1650   // TODO(hpayer): Allocation site pretenuring may make this method obsolete.
1651   // Re-visit incremental marking heuristics.
IsHighSurvivalRate()1652   bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
1653 
1654   void ConfigureInitialOldGenerationSize();
1655 
1656   bool HasLowYoungGenerationAllocationRate();
1657   bool HasLowOldGenerationAllocationRate();
1658   double YoungGenerationMutatorUtilization();
1659   double OldGenerationMutatorUtilization();
1660 
1661   void ReduceNewSpaceSize();
1662 
1663   bool TryFinalizeIdleIncrementalMarking(
1664       double idle_time_in_ms, size_t size_of_objects,
1665       size_t mark_compact_speed_in_bytes_per_ms);
1666 
1667   GCIdleTimeHeapState ComputeHeapState();
1668 
1669   bool PerformIdleTimeAction(GCIdleTimeAction action,
1670                              GCIdleTimeHeapState heap_state,
1671                              double deadline_in_ms);
1672 
1673   void IdleNotificationEpilogue(GCIdleTimeAction action,
1674                                 GCIdleTimeHeapState heap_state, double start_ms,
1675                                 double deadline_in_ms);
1676 
1677   inline void UpdateAllocationsHash(HeapObject* object);
1678   inline void UpdateAllocationsHash(uint32_t value);
1679   void PrintAlloctionsHash();
1680 
1681   void AddToRingBuffer(const char* string);
1682   void GetFromRingBuffer(char* buffer);
1683 
1684   void CompactRetainedMaps(ArrayList* retained_maps);
1685 
1686   void CollectGarbageOnMemoryPressure(const char* source);
1687 
1688   // Attempt to over-approximate the weak closure by marking object groups and
1689   // implicit references from global handles, but don't atomically complete
1690   // marking. If we continue to mark incrementally, we might have marked
1691   // objects that die later.
1692   void FinalizeIncrementalMarking(const char* gc_reason);
1693 
1694   // Returns the timer used for a given GC type.
1695   // - GCScavenger: young generation GC
1696   // - GCCompactor: full GC
1697   // - GCFinalzeMC: finalization of incremental full GC
1698   // - GCFinalizeMCReduceMemory: finalization of incremental full GC with
1699   // memory reduction
1700   HistogramTimer* GCTypeTimer(GarbageCollector collector);
1701 
1702   // ===========================================================================
1703   // Pretenuring. ==============================================================
1704   // ===========================================================================
1705 
1706   // Pretenuring decisions are made based on feedback collected during new space
1707   // evacuation. Note that between feedback collection and calling this method
1708   // object in old space must not move.
1709   void ProcessPretenuringFeedback();
1710 
1711   // ===========================================================================
1712   // Actual GC. ================================================================
1713   // ===========================================================================
1714 
1715   // Code that should be run before and after each GC.  Includes some
1716   // reporting/verification activities when compiled with DEBUG set.
1717   void GarbageCollectionPrologue();
1718   void GarbageCollectionEpilogue();
1719 
1720   // Performs a major collection in the whole heap.
1721   void MarkCompact();
1722 
1723   // Code to be run before and after mark-compact.
1724   void MarkCompactPrologue();
1725   void MarkCompactEpilogue();
1726 
1727   // Performs a minor collection in new generation.
1728   void Scavenge();
1729 
1730   Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front,
1731                      PromotionMode promotion_mode);
1732 
1733   void UpdateNewSpaceReferencesInExternalStringTable(
1734       ExternalStringTableUpdaterCallback updater_func);
1735 
1736   void UpdateReferencesInExternalStringTable(
1737       ExternalStringTableUpdaterCallback updater_func);
1738 
1739   void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
1740   void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
1741   void ProcessNativeContexts(WeakObjectRetainer* retainer);
1742   void ProcessAllocationSites(WeakObjectRetainer* retainer);
1743   void ProcessWeakListRoots(WeakObjectRetainer* retainer);
1744 
1745   // ===========================================================================
1746   // GC statistics. ============================================================
1747   // ===========================================================================
1748 
OldGenerationSpaceAvailable()1749   inline intptr_t OldGenerationSpaceAvailable() {
1750     return old_generation_allocation_limit_ - PromotedTotalSize();
1751   }
1752 
1753   // Returns maximum GC pause.
get_max_gc_pause()1754   double get_max_gc_pause() { return max_gc_pause_; }
1755 
1756   // Returns maximum size of objects alive after GC.
get_max_alive_after_gc()1757   intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
1758 
1759   // Returns minimal interval between two subsequent collections.
get_min_in_mutator()1760   double get_min_in_mutator() { return min_in_mutator_; }
1761 
1762   // Update GC statistics that are tracked on the Heap.
1763   void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
1764                                     double marking_time);
1765 
MaximumSizeScavenge()1766   bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
1767 
1768   // ===========================================================================
1769   // Growing strategy. =========================================================
1770   // ===========================================================================
1771 
1772   // Decrease the allocation limit if the new limit based on the given
1773   // parameters is lower than the current limit.
1774   void DampenOldGenerationAllocationLimit(intptr_t old_gen_size,
1775                                           double gc_speed,
1776                                           double mutator_speed);
1777 
1778 
1779   // Calculates the allocation limit based on a given growing factor and a
1780   // given old generation size.
1781   intptr_t CalculateOldGenerationAllocationLimit(double factor,
1782                                                  intptr_t old_gen_size);
1783 
1784   // Sets the allocation limit to trigger the next full garbage collection.
1785   void SetOldGenerationAllocationLimit(intptr_t old_gen_size, double gc_speed,
1786                                        double mutator_speed);
1787 
1788   // ===========================================================================
1789   // Idle notification. ========================================================
1790   // ===========================================================================
1791 
1792   bool RecentIdleNotificationHappened();
1793   void ScheduleIdleScavengeIfNeeded(int bytes_allocated);
1794 
1795   // ===========================================================================
1796   // HeapIterator helpers. =====================================================
1797   // ===========================================================================
1798 
heap_iterator_start()1799   void heap_iterator_start() { heap_iterator_depth_++; }
1800 
heap_iterator_end()1801   void heap_iterator_end() { heap_iterator_depth_--; }
1802 
in_heap_iterator()1803   bool in_heap_iterator() { return heap_iterator_depth_ > 0; }
1804 
1805   // ===========================================================================
1806   // Allocation methods. =======================================================
1807   // ===========================================================================
1808 
1809   // Returns a deep copy of the JavaScript object.
1810   // Properties and elements are copied too.
1811   // Optionally takes an AllocationSite to be appended in an AllocationMemento.
1812   MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source,
1813                                                 AllocationSite* site = NULL);
1814 
1815   // Allocates a JS Map in the heap.
1816   MUST_USE_RESULT AllocationResult
1817   AllocateMap(InstanceType instance_type, int instance_size,
1818               ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
1819 
1820   // Allocates and initializes a new JavaScript object based on a
1821   // constructor.
1822   // If allocation_site is non-null, then a memento is emitted after the object
1823   // that points to the site.
1824   MUST_USE_RESULT AllocationResult AllocateJSObject(
1825       JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED,
1826       AllocationSite* allocation_site = NULL);
1827 
1828   // Allocates and initializes a new JavaScript object based on a map.
1829   // Passing an allocation site means that a memento will be created that
1830   // points to the site.
1831   MUST_USE_RESULT AllocationResult
1832   AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
1833                           AllocationSite* allocation_site = NULL);
1834 
1835   // Allocates a HeapNumber from value.
1836   MUST_USE_RESULT AllocationResult
1837   AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
1838                      PretenureFlag pretenure = NOT_TENURED);
1839 
1840 // Allocates SIMD values from the given lane values.
1841 #define SIMD_ALLOCATE_DECLARATION(TYPE, Type, type, lane_count, lane_type) \
1842   AllocationResult Allocate##Type(lane_type lanes[lane_count],             \
1843                                   PretenureFlag pretenure = NOT_TENURED);
1844   SIMD128_TYPES(SIMD_ALLOCATE_DECLARATION)
1845 #undef SIMD_ALLOCATE_DECLARATION
1846 
1847   // Allocates a byte array of the specified length
1848   MUST_USE_RESULT AllocationResult
1849   AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
1850 
1851   // Allocates a bytecode array with given contents.
1852   MUST_USE_RESULT AllocationResult
1853   AllocateBytecodeArray(int length, const byte* raw_bytecodes, int frame_size,
1854                         int parameter_count, FixedArray* constant_pool);
1855 
1856   MUST_USE_RESULT AllocationResult CopyCode(Code* code);
1857 
1858   MUST_USE_RESULT AllocationResult
1859   CopyBytecodeArray(BytecodeArray* bytecode_array);
1860 
1861   // Allocates a fixed array initialized with undefined values
1862   MUST_USE_RESULT AllocationResult
1863   AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
1864 
1865   // Allocate an uninitialized object.  The memory is non-executable if the
1866   // hardware and OS allow.  This is the single choke-point for allocations
1867   // performed by the runtime and should not be bypassed (to extend this to
1868   // inlined allocations, use the Heap::DisableInlineAllocation() support).
1869   MUST_USE_RESULT inline AllocationResult AllocateRaw(
1870       int size_in_bytes, AllocationSpace space,
1871       AllocationAlignment aligment = kWordAligned);
1872 
1873   // Allocates a heap object based on the map.
1874   MUST_USE_RESULT AllocationResult
1875       Allocate(Map* map, AllocationSpace space,
1876                AllocationSite* allocation_site = NULL);
1877 
1878   // Allocates a partial map for bootstrapping.
1879   MUST_USE_RESULT AllocationResult
1880       AllocatePartialMap(InstanceType instance_type, int instance_size);
1881 
1882   // Allocate a block of memory in the given space (filled with a filler).
1883   // Used as a fall-back for generated code when the space is full.
1884   MUST_USE_RESULT AllocationResult
1885       AllocateFillerObject(int size, bool double_align, AllocationSpace space);
1886 
1887   // Allocate an uninitialized fixed array.
1888   MUST_USE_RESULT AllocationResult
1889       AllocateRawFixedArray(int length, PretenureFlag pretenure);
1890 
1891   // Allocate an uninitialized fixed double array.
1892   MUST_USE_RESULT AllocationResult
1893       AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
1894 
1895   // Allocate an initialized fixed array with the given filler value.
1896   MUST_USE_RESULT AllocationResult
1897       AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
1898                                    Object* filler);
1899 
1900   // Allocate and partially initializes a String.  There are two String
1901   // encodings: one-byte and two-byte.  These functions allocate a string of
1902   // the given length and set its map and length fields.  The characters of
1903   // the string are uninitialized.
1904   MUST_USE_RESULT AllocationResult
1905       AllocateRawOneByteString(int length, PretenureFlag pretenure);
1906   MUST_USE_RESULT AllocationResult
1907       AllocateRawTwoByteString(int length, PretenureFlag pretenure);
1908 
1909   // Allocates an internalized string in old space based on the character
1910   // stream.
1911   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
1912       Vector<const char> str, int chars, uint32_t hash_field);
1913 
1914   MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
1915       Vector<const uint8_t> str, uint32_t hash_field);
1916 
1917   MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
1918       Vector<const uc16> str, uint32_t hash_field);
1919 
1920   template <bool is_one_byte, typename T>
1921   MUST_USE_RESULT AllocationResult
1922       AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
1923 
1924   template <typename T>
1925   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
1926       T t, int chars, uint32_t hash_field);
1927 
1928   // Allocates an uninitialized fixed array. It must be filled by the caller.
1929   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
1930 
1931   // Make a copy of src and return it.
1932   MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
1933 
1934   // Make a copy of src, also grow the copy, and return the copy.
1935   MUST_USE_RESULT AllocationResult
1936   CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure);
1937 
1938   // Make a copy of src, also grow the copy, and return the copy.
1939   MUST_USE_RESULT AllocationResult CopyFixedArrayUpTo(FixedArray* src,
1940                                                       int new_len,
1941                                                       PretenureFlag pretenure);
1942 
1943   // Make a copy of src, set the map, and return the copy.
1944   MUST_USE_RESULT AllocationResult
1945       CopyFixedArrayWithMap(FixedArray* src, Map* map);
1946 
1947   // Make a copy of src and return it.
1948   MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
1949       FixedDoubleArray* src);
1950 
1951   // Computes a single character string where the character has code.
1952   // A cache is used for one-byte (Latin1) codes.
1953   MUST_USE_RESULT AllocationResult
1954       LookupSingleCharacterStringFromCode(uint16_t code);
1955 
1956   // Allocate a symbol in old space.
1957   MUST_USE_RESULT AllocationResult AllocateSymbol();
1958 
1959   // Allocates an external array of the specified length and type.
1960   MUST_USE_RESULT AllocationResult AllocateFixedTypedArrayWithExternalPointer(
1961       int length, ExternalArrayType array_type, void* external_pointer,
1962       PretenureFlag pretenure);
1963 
1964   // Allocates a fixed typed array of the specified length and type.
1965   MUST_USE_RESULT AllocationResult
1966   AllocateFixedTypedArray(int length, ExternalArrayType array_type,
1967                           bool initialize, PretenureFlag pretenure);
1968 
1969   // Make a copy of src and return it.
1970   MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
1971 
1972   // Make a copy of src, set the map, and return the copy.
1973   MUST_USE_RESULT AllocationResult
1974       CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
1975 
1976   // Allocates a fixed double array with uninitialized values. Returns
1977   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
1978       int length, PretenureFlag pretenure = NOT_TENURED);
1979 
1980   // Allocate empty fixed array.
1981   MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
1982 
1983   // Allocate empty fixed typed array of given type.
1984   MUST_USE_RESULT AllocationResult
1985       AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
1986 
1987   // Allocate a tenured simple cell.
1988   MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
1989 
1990   // Allocate a tenured JS global property cell initialized with the hole.
1991   MUST_USE_RESULT AllocationResult AllocatePropertyCell();
1992 
1993   MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value);
1994 
1995   MUST_USE_RESULT AllocationResult AllocateTransitionArray(int capacity);
1996 
1997   // Allocates a new utility object in the old generation.
1998   MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
1999 
2000   // Allocates a new foreign object.
2001   MUST_USE_RESULT AllocationResult
2002       AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
2003 
2004   MUST_USE_RESULT AllocationResult
2005       AllocateCode(int object_size, bool immovable);
2006 
2007   MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
2008 
2009   MUST_USE_RESULT AllocationResult InternalizeString(String* str);
2010 
2011   // ===========================================================================
2012 
set_force_oom(bool value)2013   void set_force_oom(bool value) { force_oom_ = value; }
2014 
2015   // The amount of external memory registered through the API.
2016   int64_t external_memory_;
2017 
2018   // The limit when to trigger memory pressure from the API.
2019   int64_t external_memory_limit_;
2020 
2021   // Caches the amount of external memory registered at the last MC.
2022   int64_t external_memory_at_last_mark_compact_;
2023 
2024   // The amount of memory that has been freed concurrently.
2025   base::AtomicNumber<intptr_t> external_memory_concurrently_freed_;
2026 
2027   // This can be calculated directly from a pointer to the heap; however, it is
2028   // more expedient to get at the isolate directly from within Heap methods.
2029   Isolate* isolate_;
2030 
2031   Object* roots_[kRootListLength];
2032 
2033   size_t code_range_size_;
2034   int max_semi_space_size_;
2035   int initial_semispace_size_;
2036   intptr_t max_old_generation_size_;
2037   intptr_t initial_old_generation_size_;
2038   bool old_generation_size_configured_;
2039   intptr_t max_executable_size_;
2040   intptr_t maximum_committed_;
2041 
2042   // For keeping track of how much data has survived
2043   // scavenge since last new space expansion.
2044   intptr_t survived_since_last_expansion_;
2045 
2046   // ... and since the last scavenge.
2047   intptr_t survived_last_scavenge_;
2048 
2049   // This is not the depth of nested AlwaysAllocateScope's but rather a single
2050   // count, as scopes can be acquired from multiple tasks (read: threads).
2051   base::AtomicNumber<size_t> always_allocate_scope_count_;
2052 
2053   // Stores the memory pressure level that set by MemoryPressureNotification
2054   // and reset by a mark-compact garbage collection.
2055   base::AtomicValue<MemoryPressureLevel> memory_pressure_level_;
2056 
2057   // For keeping track of context disposals.
2058   int contexts_disposed_;
2059 
2060   // The length of the retained_maps array at the time of context disposal.
2061   // This separates maps in the retained_maps array that were created before
2062   // and after context disposal.
2063   int number_of_disposed_maps_;
2064 
2065   int global_ic_age_;
2066 
2067   NewSpace new_space_;
2068   OldSpace* old_space_;
2069   OldSpace* code_space_;
2070   MapSpace* map_space_;
2071   LargeObjectSpace* lo_space_;
2072   HeapState gc_state_;
2073   int gc_post_processing_depth_;
2074   Address new_space_top_after_last_gc_;
2075 
2076   // Returns the amount of external memory registered since last global gc.
2077   int64_t PromotedExternalMemorySize();
2078 
2079   // How many "runtime allocations" happened.
2080   uint32_t allocations_count_;
2081 
2082   // Running hash over allocations performed.
2083   uint32_t raw_allocations_hash_;
2084 
2085   // How many mark-sweep collections happened.
2086   unsigned int ms_count_;
2087 
2088   // How many gc happened.
2089   unsigned int gc_count_;
2090 
2091   // For post mortem debugging.
2092   int remembered_unmapped_pages_index_;
2093   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
2094 
2095 #ifdef DEBUG
2096   // If the --gc-interval flag is set to a positive value, this
2097   // variable holds the value indicating the number of allocations
2098   // remain until the next failure and garbage collection.
2099   int allocation_timeout_;
2100 #endif  // DEBUG
2101 
2102   // Limit that triggers a global GC on the next (normally caused) GC.  This
2103   // is checked when we have already decided to do a GC to help determine
2104   // which collector to invoke, before expanding a paged space in the old
2105   // generation and on every allocation in large object space.
2106   intptr_t old_generation_allocation_limit_;
2107 
2108   // Indicates that an allocation has failed in the old generation since the
2109   // last GC.
2110   bool old_gen_exhausted_;
2111 
2112   // Indicates that memory usage is more important than latency.
2113   // TODO(ulan): Merge it with memory reducer once chromium:490559 is fixed.
2114   bool optimize_for_memory_usage_;
2115 
2116   // Indicates that inline bump-pointer allocation has been globally disabled
2117   // for all spaces. This is used to disable allocations in generated code.
2118   bool inline_allocation_disabled_;
2119 
2120   // Weak list heads, threaded through the objects.
2121   // List heads are initialized lazily and contain the undefined_value at start.
2122   Object* native_contexts_list_;
2123   Object* allocation_sites_list_;
2124 
2125   // List of encountered weak collections (JSWeakMap and JSWeakSet) during
2126   // marking. It is initialized during marking, destroyed after marking and
2127   // contains Smi(0) while marking is not active.
2128   Object* encountered_weak_collections_;
2129 
2130   Object* encountered_weak_cells_;
2131 
2132   Object* encountered_transition_arrays_;
2133 
2134   List<GCCallbackPair> gc_epilogue_callbacks_;
2135   List<GCCallbackPair> gc_prologue_callbacks_;
2136 
2137   // Total RegExp code ever generated
2138   double total_regexp_code_generated_;
2139 
2140   int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
2141 
2142   GCTracer* tracer_;
2143 
2144   int high_survival_rate_period_length_;
2145   intptr_t promoted_objects_size_;
2146   double promotion_ratio_;
2147   double promotion_rate_;
2148   intptr_t semi_space_copied_object_size_;
2149   intptr_t previous_semi_space_copied_object_size_;
2150   double semi_space_copied_rate_;
2151   int nodes_died_in_new_space_;
2152   int nodes_copied_in_new_space_;
2153   int nodes_promoted_;
2154 
2155   // This is the pretenuring trigger for allocation sites that are in maybe
2156   // tenure state. When we switched to the maximum new space size we deoptimize
2157   // the code that belongs to the allocation site and derive the lifetime
2158   // of the allocation site.
2159   unsigned int maximum_size_scavenges_;
2160 
2161   // Maximum GC pause.
2162   double max_gc_pause_;
2163 
2164   // Total time spent in GC.
2165   double total_gc_time_ms_;
2166 
2167   // Maximum size of objects alive after GC.
2168   intptr_t max_alive_after_gc_;
2169 
2170   // Minimal interval between two subsequent collections.
2171   double min_in_mutator_;
2172 
2173   // Cumulative GC time spent in marking.
2174   double marking_time_;
2175 
2176   // Cumulative GC time spent in sweeping.
2177   double sweeping_time_;
2178 
2179   // Last time an idle notification happened.
2180   double last_idle_notification_time_;
2181 
2182   // Last time a garbage collection happened.
2183   double last_gc_time_;
2184 
2185   Scavenger* scavenge_collector_;
2186 
2187   MarkCompactCollector* mark_compact_collector_;
2188 
2189   MemoryAllocator* memory_allocator_;
2190 
2191   StoreBuffer store_buffer_;
2192 
2193   IncrementalMarking* incremental_marking_;
2194 
2195   GCIdleTimeHandler* gc_idle_time_handler_;
2196 
2197   MemoryReducer* memory_reducer_;
2198 
2199   ObjectStats* object_stats_;
2200 
2201   ScavengeJob* scavenge_job_;
2202 
2203   AllocationObserver* idle_scavenge_observer_;
2204 
2205   // These two counters are monotomically increasing and never reset.
2206   size_t full_codegen_bytes_generated_;
2207   size_t crankshaft_codegen_bytes_generated_;
2208 
2209   // This counter is increased before each GC and never reset.
2210   // To account for the bytes allocated since the last GC, use the
2211   // NewSpaceAllocationCounter() function.
2212   size_t new_space_allocation_counter_;
2213 
2214   // This counter is increased before each GC and never reset. To
2215   // account for the bytes allocated since the last GC, use the
2216   // OldGenerationAllocationCounter() function.
2217   size_t old_generation_allocation_counter_;
2218 
2219   // The size of objects in old generation after the last MarkCompact GC.
2220   size_t old_generation_size_at_last_gc_;
2221 
2222   // If the --deopt_every_n_garbage_collections flag is set to a positive value,
2223   // this variable holds the number of garbage collections since the last
2224   // deoptimization triggered by garbage collection.
2225   int gcs_since_last_deopt_;
2226 
2227   // The feedback storage is used to store allocation sites (keys) and how often
2228   // they have been visited (values) by finding a memento behind an object. The
2229   // storage is only alive temporary during a GC. The invariant is that all
2230   // pointers in this map are already fixed, i.e., they do not point to
2231   // forwarding pointers.
2232   base::HashMap* global_pretenuring_feedback_;
2233 
2234   char trace_ring_buffer_[kTraceRingBufferSize];
2235   // If it's not full then the data is from 0 to ring_buffer_end_.  If it's
2236   // full then the data is from ring_buffer_end_ to the end of the buffer and
2237   // from 0 to ring_buffer_end_.
2238   bool ring_buffer_full_;
2239   size_t ring_buffer_end_;
2240 
2241   // Shared state read by the scavenge collector and set by ScavengeObject.
2242   PromotionQueue promotion_queue_;
2243 
2244   // Flag is set when the heap has been configured.  The heap can be repeatedly
2245   // configured through the API until it is set up.
2246   bool configured_;
2247 
2248   // Currently set GC flags that are respected by all GC components.
2249   int current_gc_flags_;
2250 
2251   // Currently set GC callback flags that are used to pass information between
2252   // the embedder and V8's GC.
2253   GCCallbackFlags current_gc_callback_flags_;
2254 
2255   ExternalStringTable external_string_table_;
2256 
2257   base::Mutex relocation_mutex_;
2258 
2259   int gc_callbacks_depth_;
2260 
2261   bool deserialization_complete_;
2262 
2263   StrongRootsList* strong_roots_list_;
2264 
2265   // The depth of HeapIterator nestings.
2266   int heap_iterator_depth_;
2267 
2268   // Used for testing purposes.
2269   bool force_oom_;
2270 
2271   // Classes in "heap" can be friends.
2272   friend class AlwaysAllocateScope;
2273   friend class GCCallbacksScope;
2274   friend class GCTracer;
2275   friend class HeapIterator;
2276   friend class IdleScavengeObserver;
2277   friend class IncrementalMarking;
2278   friend class IteratePromotedObjectsVisitor;
2279   friend class MarkCompactCollector;
2280   friend class MarkCompactMarkingVisitor;
2281   friend class NewSpace;
2282   friend class ObjectStatsCollector;
2283   friend class Page;
2284   friend class Scavenger;
2285   friend class StoreBuffer;
2286   friend class TestMemoryAllocatorScope;
2287 
2288   // The allocator interface.
2289   friend class Factory;
2290 
2291   // The Isolate constructs us.
2292   friend class Isolate;
2293 
2294   // Used in cctest.
2295   friend class HeapTester;
2296 
2297   DISALLOW_COPY_AND_ASSIGN(Heap);
2298 };
2299 
2300 
2301 class HeapStats {
2302  public:
2303   static const int kStartMarker = 0xDECADE00;
2304   static const int kEndMarker = 0xDECADE01;
2305 
2306   int* start_marker;                       //  0
2307   int* new_space_size;                     //  1
2308   int* new_space_capacity;                 //  2
2309   intptr_t* old_space_size;                //  3
2310   intptr_t* old_space_capacity;            //  4
2311   intptr_t* code_space_size;               //  5
2312   intptr_t* code_space_capacity;           //  6
2313   intptr_t* map_space_size;                //  7
2314   intptr_t* map_space_capacity;            //  8
2315   intptr_t* lo_space_size;                 //  9
2316   int* global_handle_count;                // 10
2317   int* weak_global_handle_count;           // 11
2318   int* pending_global_handle_count;        // 12
2319   int* near_death_global_handle_count;     // 13
2320   int* free_global_handle_count;           // 14
2321   intptr_t* memory_allocator_size;         // 15
2322   intptr_t* memory_allocator_capacity;     // 16
2323   int* objects_per_type;                   // 17
2324   int* size_per_type;                      // 18
2325   int* os_error;                           // 19
2326   char* last_few_messages;                 // 20
2327   char* js_stacktrace;                     // 21
2328   int* end_marker;                         // 22
2329 };
2330 
2331 
2332 class AlwaysAllocateScope {
2333  public:
2334   explicit inline AlwaysAllocateScope(Isolate* isolate);
2335   inline ~AlwaysAllocateScope();
2336 
2337  private:
2338   Heap* heap_;
2339 };
2340 
2341 
2342 // Visitor class to verify interior pointers in spaces that do not contain
2343 // or care about intergenerational references. All heap object pointers have to
2344 // point into the heap to a location that has a map pointer at its first word.
2345 // Caveat: Heap::Contains is an approximation because it can return true for
2346 // objects in a heap space but above the allocation pointer.
2347 class VerifyPointersVisitor : public ObjectVisitor {
2348  public:
2349   inline void VisitPointers(Object** start, Object** end) override;
2350 };
2351 
2352 
2353 // Verify that all objects are Smis.
2354 class VerifySmisVisitor : public ObjectVisitor {
2355  public:
2356   inline void VisitPointers(Object** start, Object** end) override;
2357 };
2358 
2359 
2360 // Space iterator for iterating over all spaces of the heap.  Returns each space
2361 // in turn, and null when it is done.
2362 class AllSpaces BASE_EMBEDDED {
2363  public:
AllSpaces(Heap * heap)2364   explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
2365   Space* next();
2366 
2367  private:
2368   Heap* heap_;
2369   int counter_;
2370 };
2371 
2372 
2373 // Space iterator for iterating over all old spaces of the heap: Old space
2374 // and code space.  Returns each space in turn, and null when it is done.
2375 class OldSpaces BASE_EMBEDDED {
2376  public:
OldSpaces(Heap * heap)2377   explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
2378   OldSpace* next();
2379 
2380  private:
2381   Heap* heap_;
2382   int counter_;
2383 };
2384 
2385 
2386 // Space iterator for iterating over all the paged spaces of the heap: Map
2387 // space, old space, code space and cell space.  Returns
2388 // each space in turn, and null when it is done.
2389 class PagedSpaces BASE_EMBEDDED {
2390  public:
PagedSpaces(Heap * heap)2391   explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
2392   PagedSpace* next();
2393 
2394  private:
2395   Heap* heap_;
2396   int counter_;
2397 };
2398 
2399 
2400 // Space iterator for iterating over all spaces of the heap.
2401 // For each space an object iterator is provided. The deallocation of the
2402 // returned object iterators is handled by the space iterator.
2403 class SpaceIterator : public Malloced {
2404  public:
2405   explicit SpaceIterator(Heap* heap);
2406   virtual ~SpaceIterator();
2407 
2408   bool has_next();
2409   ObjectIterator* next();
2410 
2411  private:
2412   ObjectIterator* CreateIterator();
2413 
2414   Heap* heap_;
2415   int current_space_;         // from enum AllocationSpace.
2416   ObjectIterator* iterator_;  // object iterator for the current space.
2417 };
2418 
2419 
2420 // A HeapIterator provides iteration over the whole heap. It
2421 // aggregates the specific iterators for the different spaces as
2422 // these can only iterate over one space only.
2423 //
2424 // HeapIterator ensures there is no allocation during its lifetime
2425 // (using an embedded DisallowHeapAllocation instance).
2426 //
2427 // HeapIterator can skip free list nodes (that is, de-allocated heap
2428 // objects that still remain in the heap). As implementation of free
2429 // nodes filtering uses GC marks, it can't be used during MS/MC GC
2430 // phases. Also, it is forbidden to interrupt iteration in this mode,
2431 // as this will leave heap objects marked (and thus, unusable).
2432 class HeapIterator BASE_EMBEDDED {
2433  public:
2434   enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
2435 
2436   explicit HeapIterator(Heap* heap,
2437                         HeapObjectsFiltering filtering = kNoFiltering);
2438   ~HeapIterator();
2439 
2440   HeapObject* next();
2441 
2442  private:
2443   struct MakeHeapIterableHelper {
MakeHeapIterableHelperMakeHeapIterableHelper2444     explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
2445   };
2446 
2447   HeapObject* NextObject();
2448 
2449   // The following two fields need to be declared in this order. Initialization
2450   // order guarantees that we first make the heap iterable (which may involve
2451   // allocations) and only then lock it down by not allowing further
2452   // allocations.
2453   MakeHeapIterableHelper make_heap_iterable_helper_;
2454   DisallowHeapAllocation no_heap_allocation_;
2455 
2456   Heap* heap_;
2457   HeapObjectsFiltering filtering_;
2458   HeapObjectsFilter* filter_;
2459   // Space iterator for iterating all the spaces.
2460   SpaceIterator* space_iterator_;
2461   // Object iterator for the space currently being iterated.
2462   ObjectIterator* object_iterator_;
2463 };
2464 
2465 
2466 // Cache for mapping (map, property name) into field offset.
2467 // Cleared at startup and prior to mark sweep collection.
2468 class KeyedLookupCache {
2469  public:
2470   // Lookup field offset for (map, name). If absent, -1 is returned.
2471   int Lookup(Handle<Map> map, Handle<Name> name);
2472 
2473   // Update an element in the cache.
2474   void Update(Handle<Map> map, Handle<Name> name, int field_offset);
2475 
2476   // Clear the cache.
2477   void Clear();
2478 
2479   static const int kLength = 256;
2480   static const int kCapacityMask = kLength - 1;
2481   static const int kMapHashShift = 5;
2482   static const int kHashMask = -4;  // Zero the last two bits.
2483   static const int kEntriesPerBucket = 4;
2484   static const int kEntryLength = 2;
2485   static const int kMapIndex = 0;
2486   static const int kKeyIndex = 1;
2487   static const int kNotFound = -1;
2488 
2489   // kEntriesPerBucket should be a power of 2.
2490   STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
2491   STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
2492 
2493  private:
KeyedLookupCache()2494   KeyedLookupCache() {
2495     for (int i = 0; i < kLength; ++i) {
2496       keys_[i].map = NULL;
2497       keys_[i].name = NULL;
2498       field_offsets_[i] = kNotFound;
2499     }
2500   }
2501 
2502   static inline int Hash(Handle<Map> map, Handle<Name> name);
2503 
2504   // Get the address of the keys and field_offsets arrays.  Used in
2505   // generated code to perform cache lookups.
keys_address()2506   Address keys_address() { return reinterpret_cast<Address>(&keys_); }
2507 
field_offsets_address()2508   Address field_offsets_address() {
2509     return reinterpret_cast<Address>(&field_offsets_);
2510   }
2511 
2512   struct Key {
2513     Map* map;
2514     Name* name;
2515   };
2516 
2517   Key keys_[kLength];
2518   int field_offsets_[kLength];
2519 
2520   friend class ExternalReference;
2521   friend class Isolate;
2522   DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
2523 };
2524 
2525 
2526 // Cache for mapping (map, property name) into descriptor index.
2527 // The cache contains both positive and negative results.
2528 // Descriptor index equals kNotFound means the property is absent.
2529 // Cleared at startup and prior to any gc.
2530 class DescriptorLookupCache {
2531  public:
2532   // Lookup descriptor index for (map, name).
2533   // If absent, kAbsent is returned.
2534   inline int Lookup(Map* source, Name* name);
2535 
2536   // Update an element in the cache.
2537   inline void Update(Map* source, Name* name, int result);
2538 
2539   // Clear the cache.
2540   void Clear();
2541 
2542   static const int kAbsent = -2;
2543 
2544  private:
DescriptorLookupCache()2545   DescriptorLookupCache() {
2546     for (int i = 0; i < kLength; ++i) {
2547       keys_[i].source = NULL;
2548       keys_[i].name = NULL;
2549       results_[i] = kAbsent;
2550     }
2551   }
2552 
2553   static inline int Hash(Object* source, Name* name);
2554 
2555   static const int kLength = 64;
2556   struct Key {
2557     Map* source;
2558     Name* name;
2559   };
2560 
2561   Key keys_[kLength];
2562   int results_[kLength];
2563 
2564   friend class Isolate;
2565   DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
2566 };
2567 
2568 
2569 // Abstract base class for checking whether a weak object should be retained.
2570 class WeakObjectRetainer {
2571  public:
~WeakObjectRetainer()2572   virtual ~WeakObjectRetainer() {}
2573 
2574   // Return whether this object should be retained. If NULL is returned the
2575   // object has no references. Otherwise the address of the retained object
2576   // should be returned as in some GC situations the object has been moved.
2577   virtual Object* RetainAs(Object* object) = 0;
2578 };
2579 
2580 
2581 #ifdef DEBUG
2582 // Helper class for tracing paths to a search target Object from all roots.
2583 // The TracePathFrom() method can be used to trace paths from a specific
2584 // object to the search target object.
2585 class PathTracer : public ObjectVisitor {
2586  public:
2587   enum WhatToFind {
2588     FIND_ALL,   // Will find all matches.
2589     FIND_FIRST  // Will stop the search after first match.
2590   };
2591 
2592   // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
2593   static const int kMarkTag = 2;
2594 
2595   // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
2596   // after the first match.  If FIND_ALL is specified, then tracing will be
2597   // done for all matches.
PathTracer(Object * search_target,WhatToFind what_to_find,VisitMode visit_mode)2598   PathTracer(Object* search_target, WhatToFind what_to_find,
2599              VisitMode visit_mode)
2600       : search_target_(search_target),
2601         found_target_(false),
2602         found_target_in_trace_(false),
2603         what_to_find_(what_to_find),
2604         visit_mode_(visit_mode),
2605         object_stack_(20),
2606         no_allocation() {}
2607 
2608   void VisitPointers(Object** start, Object** end) override;
2609 
2610   void Reset();
2611   void TracePathFrom(Object** root);
2612 
found()2613   bool found() const { return found_target_; }
2614 
2615   static Object* const kAnyGlobalObject;
2616 
2617  protected:
2618   class MarkVisitor;
2619   class UnmarkVisitor;
2620 
2621   void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
2622   void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
2623   virtual void ProcessResults();
2624 
2625   Object* search_target_;
2626   bool found_target_;
2627   bool found_target_in_trace_;
2628   WhatToFind what_to_find_;
2629   VisitMode visit_mode_;
2630   List<Object*> object_stack_;
2631 
2632   DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
2633 
2634  private:
2635   DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
2636 };
2637 #endif  // DEBUG
2638 
2639 // -----------------------------------------------------------------------------
2640 // Allows observation of allocations.
2641 class AllocationObserver {
2642  public:
AllocationObserver(intptr_t step_size)2643   explicit AllocationObserver(intptr_t step_size)
2644       : step_size_(step_size), bytes_to_next_step_(step_size) {
2645     DCHECK(step_size >= kPointerSize);
2646   }
~AllocationObserver()2647   virtual ~AllocationObserver() {}
2648 
2649   // Called each time the observed space does an allocation step. This may be
2650   // more frequently than the step_size we are monitoring (e.g. when there are
2651   // multiple observers, or when page or space boundary is encountered.)
AllocationStep(int bytes_allocated,Address soon_object,size_t size)2652   void AllocationStep(int bytes_allocated, Address soon_object, size_t size) {
2653     bytes_to_next_step_ -= bytes_allocated;
2654     if (bytes_to_next_step_ <= 0) {
2655       Step(static_cast<int>(step_size_ - bytes_to_next_step_), soon_object,
2656            size);
2657       step_size_ = GetNextStepSize();
2658       bytes_to_next_step_ = step_size_;
2659     }
2660   }
2661 
2662  protected:
step_size()2663   intptr_t step_size() const { return step_size_; }
bytes_to_next_step()2664   intptr_t bytes_to_next_step() const { return bytes_to_next_step_; }
2665 
2666   // Pure virtual method provided by the subclasses that gets called when at
2667   // least step_size bytes have been allocated. soon_object is the address just
2668   // allocated (but not yet initialized.) size is the size of the object as
2669   // requested (i.e. w/o the alignment fillers). Some complexities to be aware
2670   // of:
2671   // 1) soon_object will be nullptr in cases where we end up observing an
2672   //    allocation that happens to be a filler space (e.g. page boundaries.)
2673   // 2) size is the requested size at the time of allocation. Right-trimming
2674   //    may change the object size dynamically.
2675   // 3) soon_object may actually be the first object in an allocation-folding
2676   //    group. In such a case size is the size of the group rather than the
2677   //    first object.
2678   virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0;
2679 
2680   // Subclasses can override this method to make step size dynamic.
GetNextStepSize()2681   virtual intptr_t GetNextStepSize() { return step_size_; }
2682 
2683   intptr_t step_size_;
2684   intptr_t bytes_to_next_step_;
2685 
2686  private:
2687   friend class LargeObjectSpace;
2688   friend class NewSpace;
2689   friend class PagedSpace;
2690   DISALLOW_COPY_AND_ASSIGN(AllocationObserver);
2691 };
2692 
2693 }  // namespace internal
2694 }  // namespace v8
2695 
2696 #endif  // V8_HEAP_HEAP_H_
2697