• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /** @file intel_tris.c
29  *
30  * This file contains functions for managing the vertex buffer and emitting
31  * primitives into it.
32  */
33 
34 #include "main/glheader.h"
35 #include "main/context.h"
36 #include "main/macros.h"
37 #include "main/enums.h"
38 #include "main/texobj.h"
39 #include "main/state.h"
40 #include "main/dd.h"
41 #include "main/fbobject.h"
42 
43 #include "swrast/swrast.h"
44 #include "swrast_setup/swrast_setup.h"
45 #include "tnl/t_context.h"
46 #include "tnl/t_pipeline.h"
47 #include "tnl/t_vertex.h"
48 
49 #include "intel_screen.h"
50 #include "intel_context.h"
51 #include "intel_tris.h"
52 #include "intel_batchbuffer.h"
53 #include "intel_buffers.h"
54 #include "intel_reg.h"
55 #include "intel_span.h"
56 #include "i830_context.h"
57 #include "i830_reg.h"
58 #include "i915_context.h"
59 
60 static void intelRenderPrimitive(struct gl_context * ctx, GLenum prim);
61 static void intelRasterPrimitive(struct gl_context * ctx, GLenum rprim,
62                                  GLuint hwprim);
63 
64 static void
intel_flush_inline_primitive(struct intel_context * intel)65 intel_flush_inline_primitive(struct intel_context *intel)
66 {
67    GLuint used = intel->batch.used - intel->prim.start_ptr;
68 
69    assert(intel->prim.primitive != ~0);
70 
71 /*    printf("/\n"); */
72 
73    if (used < 2)
74       goto do_discard;
75 
76    intel->batch.map[intel->prim.start_ptr] =
77       _3DPRIMITIVE | intel->prim.primitive | (used - 2);
78 
79    goto finished;
80 
81  do_discard:
82    intel->batch.used = intel->prim.start_ptr;
83 
84  finished:
85    intel->prim.primitive = ~0;
86    intel->prim.start_ptr = 0;
87    intel->prim.flush = 0;
88 }
89 
intel_start_inline(struct intel_context * intel,uint32_t prim)90 static void intel_start_inline(struct intel_context *intel, uint32_t prim)
91 {
92    BATCH_LOCALS;
93 
94    intel->vtbl.emit_state(intel);
95 
96    intel->no_batch_wrap = true;
97 
98    /*printf("%s *", __progname);*/
99 
100    /* Emit a slot which will be filled with the inline primitive
101     * command later.
102     */
103    BEGIN_BATCH(1);
104 
105    intel->prim.start_ptr = intel->batch.used;
106    intel->prim.primitive = prim;
107    intel->prim.flush = intel_flush_inline_primitive;
108 
109    OUT_BATCH(0);
110    ADVANCE_BATCH();
111 
112    intel->no_batch_wrap = false;
113 /*    printf(">"); */
114 }
115 
intel_wrap_inline(struct intel_context * intel)116 static void intel_wrap_inline(struct intel_context *intel)
117 {
118    GLuint prim = intel->prim.primitive;
119 
120    intel_flush_inline_primitive(intel);
121    intel_batchbuffer_flush(intel);
122    intel_start_inline(intel, prim);  /* ??? */
123 }
124 
intel_extend_inline(struct intel_context * intel,GLuint dwords)125 static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
126 {
127    GLuint *ptr;
128 
129    assert(intel->prim.flush == intel_flush_inline_primitive);
130 
131    if (intel_batchbuffer_space(intel) < dwords * sizeof(GLuint))
132       intel_wrap_inline(intel);
133 
134 /*    printf("."); */
135 
136    intel->vtbl.assert_not_dirty(intel);
137 
138    ptr = intel->batch.map + intel->batch.used;
139    intel->batch.used += dwords;
140 
141    return ptr;
142 }
143 
144 /** Sets the primitive type for a primitive sequence, flushing as needed. */
intel_set_prim(struct intel_context * intel,uint32_t prim)145 void intel_set_prim(struct intel_context *intel, uint32_t prim)
146 {
147    /* if we have no VBOs */
148 
149    if (intel->intelScreen->no_vbo) {
150       intel_start_inline(intel, prim);
151       return;
152    }
153    if (prim != intel->prim.primitive) {
154       INTEL_FIREVERTICES(intel);
155       intel->prim.primitive = prim;
156    }
157 }
158 
159 /** Returns mapped VB space for the given number of vertices */
intel_get_prim_space(struct intel_context * intel,unsigned int count)160 uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
161 {
162    uint32_t *addr;
163 
164    if (intel->intelScreen->no_vbo) {
165       return intel_extend_inline(intel, count * intel->vertex_size);
166    }
167 
168    /* Check for space in the existing VB */
169    if (intel->prim.vb_bo == NULL ||
170        (intel->prim.current_offset +
171 	count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
172        (intel->prim.count + count) >= (1 << 16)) {
173       /* Flush existing prim if any */
174       INTEL_FIREVERTICES(intel);
175 
176       intel_finish_vb(intel);
177 
178       /* Start a new VB */
179       if (intel->prim.vb == NULL)
180 	 intel->prim.vb = malloc(INTEL_VB_SIZE);
181       intel->prim.vb_bo = drm_intel_bo_alloc(intel->bufmgr, "vb",
182 					     INTEL_VB_SIZE, 4);
183       intel->prim.start_offset = 0;
184       intel->prim.current_offset = 0;
185    }
186 
187    intel->prim.flush = intel_flush_prim;
188 
189    addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
190    intel->prim.current_offset += intel->vertex_size * 4 * count;
191    intel->prim.count += count;
192 
193    return addr;
194 }
195 
196 /** Dispatches the accumulated primitive to the batchbuffer. */
intel_flush_prim(struct intel_context * intel)197 void intel_flush_prim(struct intel_context *intel)
198 {
199    drm_intel_bo *aper_array[2];
200    drm_intel_bo *vb_bo;
201    unsigned int offset, count;
202    BATCH_LOCALS;
203 
204    /* Must be called after an intel_start_prim. */
205    assert(intel->prim.primitive != ~0);
206 
207    if (intel->prim.count == 0)
208       return;
209 
210    /* Clear the current prims out of the context state so that a batch flush
211     * flush triggered by emit_state doesn't loop back to flush_prim again.
212     */
213    vb_bo = intel->prim.vb_bo;
214    drm_intel_bo_reference(vb_bo);
215    count = intel->prim.count;
216    intel->prim.count = 0;
217    offset = intel->prim.start_offset;
218    intel->prim.start_offset = intel->prim.current_offset;
219    if (intel->gen < 3)
220       intel->prim.current_offset = intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
221    intel->prim.flush = NULL;
222 
223    intel->vtbl.emit_state(intel);
224 
225    aper_array[0] = intel->batch.bo;
226    aper_array[1] = vb_bo;
227    if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
228       intel_batchbuffer_flush(intel);
229       intel->vtbl.emit_state(intel);
230    }
231 
232    /* Ensure that we don't start a new batch for the following emit, which
233     * depends on the state just emitted. emit_state should be making sure we
234     * have the space for this.
235     */
236    intel->no_batch_wrap = true;
237 
238    if (intel->always_flush_cache) {
239       intel_batchbuffer_emit_mi_flush(intel);
240    }
241 
242 #if 0
243    printf("emitting %d..%d=%d vertices size %d\n", offset,
244 	  intel->prim.current_offset, count,
245 	  intel->vertex_size * 4);
246 #endif
247 
248    if (intel->gen >= 3) {
249       struct i915_context *i915 = i915_context(&intel->ctx);
250       unsigned int cmd = 0, len = 0;
251 
252       if (vb_bo != i915->current_vb_bo) {
253 	 cmd |= I1_LOAD_S(0);
254 	 len++;
255       }
256 
257       if (intel->vertex_size != i915->current_vertex_size) {
258 	 cmd |= I1_LOAD_S(1);
259 	 len++;
260       }
261       if (len)
262 	 len++;
263 
264       BEGIN_BATCH(2+len);
265       if (cmd)
266 	 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | cmd | (len - 2));
267       if (vb_bo != i915->current_vb_bo) {
268 	 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, 0);
269 	 i915->current_vb_bo = vb_bo;
270       }
271       if (intel->vertex_size != i915->current_vertex_size) {
272 	 OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
273 		   (intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
274 	 i915->current_vertex_size = intel->vertex_size;
275       }
276       OUT_BATCH(_3DPRIMITIVE |
277 		PRIM_INDIRECT |
278 		PRIM_INDIRECT_SEQUENTIAL |
279 		intel->prim.primitive |
280 		count);
281       OUT_BATCH(offset / (intel->vertex_size * 4));
282       ADVANCE_BATCH();
283    } else {
284       struct i830_context *i830 = i830_context(&intel->ctx);
285 
286       BEGIN_BATCH(5);
287       OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
288 		I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
289       /* S0 */
290       assert((offset & ~S0_VB_OFFSET_MASK_830) == 0);
291       OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
292 		offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
293 		S0_VB_ENABLE_830);
294       /* S2
295        * This is somewhat unfortunate -- VB width is tied up with
296        * vertex format data that we've already uploaded through
297        * _3DSTATE_VFT[01]_CMD.  We may want to replace emits of VFT state with
298        * STATE_IMMEDIATE_1 like this to avoid duplication.
299        */
300       OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
301 		VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
302 		(i830->state.Ctx[I830_CTXREG_VF2] << 16) |
303 		intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
304 
305       OUT_BATCH(_3DPRIMITIVE |
306 		PRIM_INDIRECT |
307 		PRIM_INDIRECT_SEQUENTIAL |
308 		intel->prim.primitive |
309 		count);
310       OUT_BATCH(0); /* Beginning vertex index */
311       ADVANCE_BATCH();
312    }
313 
314    if (intel->always_flush_cache) {
315       intel_batchbuffer_emit_mi_flush(intel);
316    }
317 
318    intel->no_batch_wrap = false;
319 
320    drm_intel_bo_unreference(vb_bo);
321 }
322 
323 /**
324  * Uploads the locally-accumulated VB into the buffer object.
325  *
326  * This avoids us thrashing the cachelines in and out as the buffer gets
327  * filled, dispatched, then reused as the hardware completes rendering from it,
328  * and also lets us clflush less if we dispatch with a partially-filled VB.
329  *
330  * This is called normally from get_space when we're finishing a BO, but also
331  * at batch flush time so that we don't try accessing the contents of a
332  * just-dispatched buffer.
333  */
intel_finish_vb(struct intel_context * intel)334 void intel_finish_vb(struct intel_context *intel)
335 {
336    if (intel->prim.vb_bo == NULL)
337       return;
338 
339    drm_intel_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
340 			intel->prim.vb);
341    drm_intel_bo_unreference(intel->prim.vb_bo);
342    intel->prim.vb_bo = NULL;
343 }
344 
345 /***********************************************************************
346  *                    Emit primitives as inline vertices               *
347  ***********************************************************************/
348 
349 #ifdef __i386__
350 #define COPY_DWORDS( j, vb, vertsize, v )			\
351 do {								\
352    int __tmp;							\
353    __asm__ __volatile__( "rep ; movsl"				\
354 			 : "=%c" (j), "=D" (vb), "=S" (__tmp)	\
355 			 : "0" (vertsize),			\
356 			 "D" ((long)vb),			\
357 			 "S" ((long)v) );			\
358 } while (0)
359 #else
360 #define COPY_DWORDS( j, vb, vertsize, v )	\
361 do {						\
362    for ( j = 0 ; j < vertsize ; j++ ) {		\
363       vb[j] = ((GLuint *)v)[j];			\
364    }						\
365    vb += vertsize;				\
366 } while (0)
367 #endif
368 
369 static void
intel_draw_quad(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2,intelVertexPtr v3)370 intel_draw_quad(struct intel_context *intel,
371                 intelVertexPtr v0,
372                 intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
373 {
374    GLuint vertsize = intel->vertex_size;
375    GLuint *vb = intel_get_prim_space(intel, 6);
376    int j;
377 
378    COPY_DWORDS(j, vb, vertsize, v0);
379    COPY_DWORDS(j, vb, vertsize, v1);
380 
381    /* If smooth shading, draw like a trifan which gives better
382     * rasterization.  Otherwise draw as two triangles with provoking
383     * vertex in third position as required for flat shading.
384     */
385    if (intel->ctx.Light.ShadeModel == GL_FLAT) {
386       COPY_DWORDS(j, vb, vertsize, v3);
387       COPY_DWORDS(j, vb, vertsize, v1);
388    }
389    else {
390       COPY_DWORDS(j, vb, vertsize, v2);
391       COPY_DWORDS(j, vb, vertsize, v0);
392    }
393 
394    COPY_DWORDS(j, vb, vertsize, v2);
395    COPY_DWORDS(j, vb, vertsize, v3);
396 }
397 
398 static void
intel_draw_triangle(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2)399 intel_draw_triangle(struct intel_context *intel,
400                     intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
401 {
402    GLuint vertsize = intel->vertex_size;
403    GLuint *vb = intel_get_prim_space(intel, 3);
404    int j;
405 
406    COPY_DWORDS(j, vb, vertsize, v0);
407    COPY_DWORDS(j, vb, vertsize, v1);
408    COPY_DWORDS(j, vb, vertsize, v2);
409 }
410 
411 
412 static void
intel_draw_line(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1)413 intel_draw_line(struct intel_context *intel,
414                 intelVertexPtr v0, intelVertexPtr v1)
415 {
416    GLuint vertsize = intel->vertex_size;
417    GLuint *vb = intel_get_prim_space(intel, 2);
418    int j;
419 
420    COPY_DWORDS(j, vb, vertsize, v0);
421    COPY_DWORDS(j, vb, vertsize, v1);
422 }
423 
424 
425 static void
intel_draw_point(struct intel_context * intel,intelVertexPtr v0)426 intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
427 {
428    GLuint vertsize = intel->vertex_size;
429    GLuint *vb = intel_get_prim_space(intel, 1);
430    int j;
431 
432    /* Adjust for sub pixel position -- still required for conform. */
433    *(float *) &vb[0] = v0->v.x;
434    *(float *) &vb[1] = v0->v.y;
435    for (j = 2; j < vertsize; j++)
436       vb[j] = v0->ui[j];
437 }
438 
439 
440 
441 /***********************************************************************
442  *                Fixup for ARB_point_parameters                       *
443  ***********************************************************************/
444 
445 /* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
446  * represented in the fragment program InputsRead field.
447  */
448 static void
intel_atten_point(struct intel_context * intel,intelVertexPtr v0)449 intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
450 {
451    struct gl_context *ctx = &intel->ctx;
452    GLfloat psz[4], col[4], restore_psz, restore_alpha;
453 
454    _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
455    _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
456 
457    restore_psz = psz[0];
458    restore_alpha = col[3];
459 
460    if (psz[0] >= ctx->Point.Threshold) {
461       psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
462    }
463    else {
464       GLfloat dsize = psz[0] / ctx->Point.Threshold;
465       psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
466       col[3] *= dsize * dsize;
467    }
468 
469    if (psz[0] < 1.0)
470       psz[0] = 1.0;
471 
472    if (restore_psz != psz[0] || restore_alpha != col[3]) {
473       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
474       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
475 
476       intel_draw_point(intel, v0);
477 
478       psz[0] = restore_psz;
479       col[3] = restore_alpha;
480 
481       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
482       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
483    }
484    else
485       intel_draw_point(intel, v0);
486 }
487 
488 
489 
490 
491 
492 /***********************************************************************
493  *                Fixup for I915 WPOS texture coordinate                *
494  ***********************************************************************/
495 
496 static void
intel_emit_fragcoord(struct intel_context * intel,intelVertexPtr v)497 intel_emit_fragcoord(struct intel_context *intel, intelVertexPtr v)
498 {
499    struct gl_context *ctx = &intel->ctx;
500    struct gl_framebuffer *fb = ctx->DrawBuffer;
501    GLuint offset = intel->wpos_offset;
502    float *vertex_position = (float *)v;
503    float *fragcoord = (float *)((char *)v + offset);
504 
505    fragcoord[0] = vertex_position[0];
506 
507    if (_mesa_is_user_fbo(fb))
508       fragcoord[1] = vertex_position[1];
509    else
510       fragcoord[1] = fb->Height - vertex_position[1];
511 
512    fragcoord[2] = vertex_position[2];
513    fragcoord[3] = vertex_position[3];
514 }
515 
516 static void
intel_wpos_triangle(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1,intelVertexPtr v2)517 intel_wpos_triangle(struct intel_context *intel,
518                     intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
519 {
520    intel_emit_fragcoord(intel, v0);
521    intel_emit_fragcoord(intel, v1);
522    intel_emit_fragcoord(intel, v2);
523 
524    intel_draw_triangle(intel, v0, v1, v2);
525 }
526 
527 
528 static void
intel_wpos_line(struct intel_context * intel,intelVertexPtr v0,intelVertexPtr v1)529 intel_wpos_line(struct intel_context *intel,
530                 intelVertexPtr v0, intelVertexPtr v1)
531 {
532    intel_emit_fragcoord(intel, v0);
533    intel_emit_fragcoord(intel, v1);
534    intel_draw_line(intel, v0, v1);
535 }
536 
537 
538 static void
intel_wpos_point(struct intel_context * intel,intelVertexPtr v0)539 intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
540 {
541    intel_emit_fragcoord(intel, v0);
542    intel_draw_point(intel, v0);
543 }
544 
545 
546 
547 
548 
549 
550 /***********************************************************************
551  *          Macros for t_dd_tritmp.h to draw basic primitives          *
552  ***********************************************************************/
553 
554 #define TRI( a, b, c )				\
555 do { 						\
556    if (DO_FALLBACK)				\
557       intel->draw_tri( intel, a, b, c );	\
558    else						\
559       intel_draw_triangle( intel, a, b, c );	\
560 } while (0)
561 
562 #define QUAD( a, b, c, d )			\
563 do { 						\
564    if (DO_FALLBACK) {				\
565       intel->draw_tri( intel, a, b, d );	\
566       intel->draw_tri( intel, b, c, d );	\
567    } else					\
568       intel_draw_quad( intel, a, b, c, d );	\
569 } while (0)
570 
571 #define LINE( v0, v1 )				\
572 do { 						\
573    if (DO_FALLBACK)				\
574       intel->draw_line( intel, v0, v1 );	\
575    else						\
576       intel_draw_line( intel, v0, v1 );		\
577 } while (0)
578 
579 #define POINT( v0 )				\
580 do { 						\
581    if (DO_FALLBACK)				\
582       intel->draw_point( intel, v0 );		\
583    else						\
584       intel_draw_point( intel, v0 );		\
585 } while (0)
586 
587 
588 /***********************************************************************
589  *              Build render functions from dd templates               *
590  ***********************************************************************/
591 
592 #define INTEL_OFFSET_BIT 	0x01
593 #define INTEL_TWOSIDE_BIT	0x02
594 #define INTEL_UNFILLED_BIT	0x04
595 #define INTEL_FALLBACK_BIT	0x08
596 #define INTEL_MAX_TRIFUNC	0x10
597 
598 
599 static struct
600 {
601    tnl_points_func points;
602    tnl_line_func line;
603    tnl_triangle_func triangle;
604    tnl_quad_func quad;
605 } rast_tab[INTEL_MAX_TRIFUNC];
606 
607 
608 #define DO_FALLBACK (IND & INTEL_FALLBACK_BIT)
609 #define DO_OFFSET   (IND & INTEL_OFFSET_BIT)
610 #define DO_UNFILLED (IND & INTEL_UNFILLED_BIT)
611 #define DO_TWOSIDE  (IND & INTEL_TWOSIDE_BIT)
612 #define DO_FLAT      0
613 #define DO_TRI       1
614 #define DO_QUAD      1
615 #define DO_LINE      1
616 #define DO_POINTS    1
617 #define DO_FULL_QUAD 1
618 
619 #define HAVE_SPEC         1
620 #define HAVE_BACK_COLORS  0
621 #define HAVE_HW_FLATSHADE 1
622 #define VERTEX            intelVertex
623 #define TAB               rast_tab
624 
625 /* Only used to pull back colors into vertices (ie, we know color is
626  * floating point).
627  */
628 #define INTEL_COLOR( dst, src )				\
629 do {							\
630    UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
631    UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
632    UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
633    UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]);	\
634 } while (0)
635 
636 #define INTEL_SPEC( dst, src )				\
637 do {							\
638    UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
639    UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
640    UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
641 } while (0)
642 
643 
644 #define DEPTH_SCALE intel->polygon_offset_scale
645 #define UNFILLED_TRI unfilled_tri
646 #define UNFILLED_QUAD unfilled_quad
647 #define VERT_X(_v) _v->v.x
648 #define VERT_Y(_v) _v->v.y
649 #define VERT_Z(_v) _v->v.z
650 #define AREA_IS_CCW( a ) (a > 0)
651 #define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
652 
653 #define VERT_SET_RGBA( v, c )    if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
654 #define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
655 #define VERT_SAVE_RGBA( idx )    if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
656 #define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
657 
658 #define VERT_SET_SPEC( v, c )    if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
659 #define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
660 #define VERT_SAVE_SPEC( idx )    if (specoffset) spec[idx] = v[idx]->ui[specoffset]
661 #define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
662 
663 #define LOCAL_VARS(n)							\
664    struct intel_context *intel = intel_context(ctx);			\
665    GLuint color[n] = { 0, }, spec[n] = { 0, };				\
666    GLuint coloroffset = intel->coloroffset;				\
667    GLuint specoffset = intel->specoffset;				\
668    (void) color; (void) spec; (void) coloroffset; (void) specoffset;
669 
670 
671 /***********************************************************************
672  *                Helpers for rendering unfilled primitives            *
673  ***********************************************************************/
674 
675 static const GLuint hw_prim[GL_POLYGON + 1] = {
676    PRIM3D_POINTLIST,
677    PRIM3D_LINELIST,
678    PRIM3D_LINELIST,
679    PRIM3D_LINELIST,
680    PRIM3D_TRILIST,
681    PRIM3D_TRILIST,
682    PRIM3D_TRILIST,
683    PRIM3D_TRILIST,
684    PRIM3D_TRILIST,
685    PRIM3D_TRILIST
686 };
687 
688 #define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
689 #define RENDER_PRIMITIVE intel->render_primitive
690 #define TAG(x) x
691 #define IND INTEL_FALLBACK_BIT
692 #include "tnl_dd/t_dd_unfilled.h"
693 #undef IND
694 
695 /***********************************************************************
696  *                      Generate GL render functions                   *
697  ***********************************************************************/
698 
699 #define IND (0)
700 #define TAG(x) x
701 #include "tnl_dd/t_dd_tritmp.h"
702 
703 #define IND (INTEL_OFFSET_BIT)
704 #define TAG(x) x##_offset
705 #include "tnl_dd/t_dd_tritmp.h"
706 
707 #define IND (INTEL_TWOSIDE_BIT)
708 #define TAG(x) x##_twoside
709 #include "tnl_dd/t_dd_tritmp.h"
710 
711 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
712 #define TAG(x) x##_twoside_offset
713 #include "tnl_dd/t_dd_tritmp.h"
714 
715 #define IND (INTEL_UNFILLED_BIT)
716 #define TAG(x) x##_unfilled
717 #include "tnl_dd/t_dd_tritmp.h"
718 
719 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
720 #define TAG(x) x##_offset_unfilled
721 #include "tnl_dd/t_dd_tritmp.h"
722 
723 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
724 #define TAG(x) x##_twoside_unfilled
725 #include "tnl_dd/t_dd_tritmp.h"
726 
727 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
728 #define TAG(x) x##_twoside_offset_unfilled
729 #include "tnl_dd/t_dd_tritmp.h"
730 
731 #define IND (INTEL_FALLBACK_BIT)
732 #define TAG(x) x##_fallback
733 #include "tnl_dd/t_dd_tritmp.h"
734 
735 #define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
736 #define TAG(x) x##_offset_fallback
737 #include "tnl_dd/t_dd_tritmp.h"
738 
739 #define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
740 #define TAG(x) x##_twoside_fallback
741 #include "tnl_dd/t_dd_tritmp.h"
742 
743 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
744 #define TAG(x) x##_twoside_offset_fallback
745 #include "tnl_dd/t_dd_tritmp.h"
746 
747 #define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
748 #define TAG(x) x##_unfilled_fallback
749 #include "tnl_dd/t_dd_tritmp.h"
750 
751 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
752 #define TAG(x) x##_offset_unfilled_fallback
753 #include "tnl_dd/t_dd_tritmp.h"
754 
755 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
756 #define TAG(x) x##_twoside_unfilled_fallback
757 #include "tnl_dd/t_dd_tritmp.h"
758 
759 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
760 	     INTEL_FALLBACK_BIT)
761 #define TAG(x) x##_twoside_offset_unfilled_fallback
762 #include "tnl_dd/t_dd_tritmp.h"
763 
764 
765 static void
init_rast_tab(void)766 init_rast_tab(void)
767 {
768    init();
769    init_offset();
770    init_twoside();
771    init_twoside_offset();
772    init_unfilled();
773    init_offset_unfilled();
774    init_twoside_unfilled();
775    init_twoside_offset_unfilled();
776    init_fallback();
777    init_offset_fallback();
778    init_twoside_fallback();
779    init_twoside_offset_fallback();
780    init_unfilled_fallback();
781    init_offset_unfilled_fallback();
782    init_twoside_unfilled_fallback();
783    init_twoside_offset_unfilled_fallback();
784 }
785 
786 
787 /***********************************************************************
788  *                    Rasterization fallback helpers                   *
789  ***********************************************************************/
790 
791 
792 /* This code is hit only when a mix of accelerated and unaccelerated
793  * primitives are being drawn, and only for the unaccelerated
794  * primitives.
795  */
796 static void
intel_fallback_tri(struct intel_context * intel,intelVertex * v0,intelVertex * v1,intelVertex * v2)797 intel_fallback_tri(struct intel_context *intel,
798                    intelVertex * v0, intelVertex * v1, intelVertex * v2)
799 {
800    struct gl_context *ctx = &intel->ctx;
801    SWvertex v[3];
802 
803    if (0)
804       fprintf(stderr, "\n%s\n", __FUNCTION__);
805 
806    INTEL_FIREVERTICES(intel);
807 
808    _swsetup_Translate(ctx, v0, &v[0]);
809    _swsetup_Translate(ctx, v1, &v[1]);
810    _swsetup_Translate(ctx, v2, &v[2]);
811    intelSpanRenderStart(ctx);
812    _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
813    intelSpanRenderFinish(ctx);
814 }
815 
816 
817 static void
intel_fallback_line(struct intel_context * intel,intelVertex * v0,intelVertex * v1)818 intel_fallback_line(struct intel_context *intel,
819                     intelVertex * v0, intelVertex * v1)
820 {
821    struct gl_context *ctx = &intel->ctx;
822    SWvertex v[2];
823 
824    if (0)
825       fprintf(stderr, "\n%s\n", __FUNCTION__);
826 
827    INTEL_FIREVERTICES(intel);
828 
829    _swsetup_Translate(ctx, v0, &v[0]);
830    _swsetup_Translate(ctx, v1, &v[1]);
831    intelSpanRenderStart(ctx);
832    _swrast_Line(ctx, &v[0], &v[1]);
833    intelSpanRenderFinish(ctx);
834 }
835 
836 static void
intel_fallback_point(struct intel_context * intel,intelVertex * v0)837 intel_fallback_point(struct intel_context *intel,
838 		     intelVertex * v0)
839 {
840    struct gl_context *ctx = &intel->ctx;
841    SWvertex v[1];
842 
843    if (0)
844       fprintf(stderr, "\n%s\n", __FUNCTION__);
845 
846    INTEL_FIREVERTICES(intel);
847 
848    _swsetup_Translate(ctx, v0, &v[0]);
849    intelSpanRenderStart(ctx);
850    _swrast_Point(ctx, &v[0]);
851    intelSpanRenderFinish(ctx);
852 }
853 
854 
855 /**********************************************************************/
856 /*               Render unclipped begin/end objects                   */
857 /**********************************************************************/
858 
859 #define IND 0
860 #define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
861 #define RENDER_POINTS( start, count )	\
862    for ( ; start < count ; start++) POINT( V(ELT(start)) );
863 #define RENDER_LINE( v0, v1 )         LINE( V(v0), V(v1) )
864 #define RENDER_TRI(  v0, v1, v2 )     TRI(  V(v0), V(v1), V(v2) )
865 #define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
866 #define INIT(x) intelRenderPrimitive( ctx, x )
867 #undef LOCAL_VARS
868 #define LOCAL_VARS						\
869     struct intel_context *intel = intel_context(ctx);			\
870     GLubyte *vertptr = (GLubyte *)intel->verts;			\
871     const GLuint vertsize = intel->vertex_size;       	\
872     const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts;	\
873     (void) elt;
874 #define RESET_STIPPLE
875 #define RESET_OCCLUSION
876 #define PRESERVE_VB_DEFS
877 #define ELT(x) x
878 #define TAG(x) intel_##x##_verts
879 #include "tnl/t_vb_rendertmp.h"
880 #undef ELT
881 #undef TAG
882 #define TAG(x) intel_##x##_elts
883 #define ELT(x) elt[x]
884 #include "tnl/t_vb_rendertmp.h"
885 
886 /**********************************************************************/
887 /*                   Render clipped primitives                        */
888 /**********************************************************************/
889 
890 
891 
892 static void
intelRenderClippedPoly(struct gl_context * ctx,const GLuint * elts,GLuint n)893 intelRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
894 {
895    struct intel_context *intel = intel_context(ctx);
896    TNLcontext *tnl = TNL_CONTEXT(ctx);
897    struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb;
898    GLuint prim = intel->render_primitive;
899 
900    /* Render the new vertices as an unclipped polygon.
901     */
902    {
903       GLuint *tmp = VB->Elts;
904       VB->Elts = (GLuint *) elts;
905       tnl->Driver.Render.PrimTabElts[GL_POLYGON] (ctx, 0, n,
906                                                   PRIM_BEGIN | PRIM_END);
907       VB->Elts = tmp;
908    }
909 
910    /* Restore the render primitive
911     */
912    if (prim != GL_POLYGON)
913       tnl->Driver.Render.PrimitiveNotify(ctx, prim);
914 }
915 
916 static void
intelRenderClippedLine(struct gl_context * ctx,GLuint ii,GLuint jj)917 intelRenderClippedLine(struct gl_context * ctx, GLuint ii, GLuint jj)
918 {
919    TNLcontext *tnl = TNL_CONTEXT(ctx);
920 
921    tnl->Driver.Render.Line(ctx, ii, jj);
922 }
923 
924 static void
intelFastRenderClippedPoly(struct gl_context * ctx,const GLuint * elts,GLuint n)925 intelFastRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
926 {
927    struct intel_context *intel = intel_context(ctx);
928    const GLuint vertsize = intel->vertex_size;
929    GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
930    GLubyte *vertptr = (GLubyte *) intel->verts;
931    const GLuint *start = (const GLuint *) V(elts[0]);
932    int i, j;
933 
934    for (i = 2; i < n; i++) {
935       COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
936       COPY_DWORDS(j, vb, vertsize, V(elts[i]));
937       COPY_DWORDS(j, vb, vertsize, start);
938    }
939 }
940 
941 /**********************************************************************/
942 /*                    Choose render functions                         */
943 /**********************************************************************/
944 
945 
946 
947 
948 #define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN)
949 #define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
950 
951 void
intelChooseRenderState(struct gl_context * ctx)952 intelChooseRenderState(struct gl_context * ctx)
953 {
954    TNLcontext *tnl = TNL_CONTEXT(ctx);
955    struct intel_context *intel = intel_context(ctx);
956    GLuint flags = ctx->_TriangleCaps;
957    const struct gl_fragment_program *fprog = ctx->FragmentProgram._Current;
958    bool have_wpos = (fprog && (fprog->Base.InputsRead & FRAG_BIT_WPOS));
959    GLuint index = 0;
960 
961    if (INTEL_DEBUG & DEBUG_STATE)
962       fprintf(stderr, "\n%s\n", __FUNCTION__);
963 
964    if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
965 
966       if (flags & ANY_RASTER_FLAGS) {
967          if (flags & DD_TRI_LIGHT_TWOSIDE)
968             index |= INTEL_TWOSIDE_BIT;
969          if (flags & DD_TRI_OFFSET)
970             index |= INTEL_OFFSET_BIT;
971          if (flags & DD_TRI_UNFILLED)
972             index |= INTEL_UNFILLED_BIT;
973       }
974 
975       if (have_wpos) {
976          intel->draw_point = intel_wpos_point;
977          intel->draw_line = intel_wpos_line;
978          intel->draw_tri = intel_wpos_triangle;
979 
980          /* Make sure these get called:
981           */
982          index |= INTEL_FALLBACK_BIT;
983       }
984       else {
985          intel->draw_point = intel_draw_point;
986          intel->draw_line = intel_draw_line;
987          intel->draw_tri = intel_draw_triangle;
988       }
989 
990       /* Hook in fallbacks for specific primitives.
991        */
992       if (flags & ANY_FALLBACK_FLAGS) {
993          if (flags & DD_LINE_STIPPLE)
994             intel->draw_line = intel_fallback_line;
995 
996          if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
997             intel->draw_tri = intel_fallback_tri;
998 
999          if (flags & DD_POINT_ATTEN) {
1000 	    if (0)
1001 	       intel->draw_point = intel_atten_point;
1002 	    else
1003 	       intel->draw_point = intel_fallback_point;
1004 	 }
1005 
1006          index |= INTEL_FALLBACK_BIT;
1007       }
1008    }
1009 
1010    if (intel->RenderIndex != index) {
1011       intel->RenderIndex = index;
1012 
1013       tnl->Driver.Render.Points = rast_tab[index].points;
1014       tnl->Driver.Render.Line = rast_tab[index].line;
1015       tnl->Driver.Render.Triangle = rast_tab[index].triangle;
1016       tnl->Driver.Render.Quad = rast_tab[index].quad;
1017 
1018       if (index == 0) {
1019          tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
1020          tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
1021          tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
1022          tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
1023       }
1024       else {
1025          tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
1026          tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
1027          tnl->Driver.Render.ClippedLine = intelRenderClippedLine;
1028          tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
1029       }
1030    }
1031 }
1032 
1033 static const GLenum reduced_prim[GL_POLYGON + 1] = {
1034    GL_POINTS,
1035    GL_LINES,
1036    GL_LINES,
1037    GL_LINES,
1038    GL_TRIANGLES,
1039    GL_TRIANGLES,
1040    GL_TRIANGLES,
1041    GL_TRIANGLES,
1042    GL_TRIANGLES,
1043    GL_TRIANGLES
1044 };
1045 
1046 
1047 /**********************************************************************/
1048 /*                 High level hooks for t_vb_render.c                 */
1049 /**********************************************************************/
1050 
1051 
1052 
1053 
1054 static void
intelRunPipeline(struct gl_context * ctx)1055 intelRunPipeline(struct gl_context * ctx)
1056 {
1057    struct intel_context *intel = intel_context(ctx);
1058 
1059    _mesa_lock_context_textures(ctx);
1060 
1061    if (ctx->NewState)
1062       _mesa_update_state_locked(ctx);
1063 
1064    /* We need to get this done before we start the pipeline, or a
1065     * change in the INTEL_FALLBACK() of its intel_draw_buffers() call
1066     * while the pipeline is running will result in mismatched swrast
1067     * map/unmaps, and later assertion failures.
1068     */
1069    intel_prepare_render(intel);
1070 
1071    if (intel->NewGLState) {
1072       if (intel->NewGLState & _NEW_TEXTURE) {
1073          intel->vtbl.update_texture_state(intel);
1074       }
1075 
1076       if (!intel->Fallback) {
1077          if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
1078             intelChooseRenderState(ctx);
1079       }
1080 
1081       intel->NewGLState = 0;
1082    }
1083 
1084    intel_map_vertex_shader_textures(ctx);
1085    intel->tnl_pipeline_running = true;
1086    _tnl_run_pipeline(ctx);
1087    intel->tnl_pipeline_running = false;
1088    intel_unmap_vertex_shader_textures(ctx);
1089 
1090    _mesa_unlock_context_textures(ctx);
1091 }
1092 
1093 static void
intelRenderStart(struct gl_context * ctx)1094 intelRenderStart(struct gl_context * ctx)
1095 {
1096    struct intel_context *intel = intel_context(ctx);
1097 
1098    intel_check_front_buffer_rendering(intel);
1099    intel->vtbl.render_start(intel_context(ctx));
1100    intel->vtbl.emit_state(intel);
1101 }
1102 
1103 static void
intelRenderFinish(struct gl_context * ctx)1104 intelRenderFinish(struct gl_context * ctx)
1105 {
1106    struct intel_context *intel = intel_context(ctx);
1107 
1108    if (intel->RenderIndex & INTEL_FALLBACK_BIT)
1109       _swrast_flush(ctx);
1110 
1111    INTEL_FIREVERTICES(intel);
1112 }
1113 
1114 
1115 
1116 
1117  /* System to flush dma and emit state changes based on the rasterized
1118   * primitive.
1119   */
1120 static void
intelRasterPrimitive(struct gl_context * ctx,GLenum rprim,GLuint hwprim)1121 intelRasterPrimitive(struct gl_context * ctx, GLenum rprim, GLuint hwprim)
1122 {
1123    struct intel_context *intel = intel_context(ctx);
1124 
1125    if (0)
1126       fprintf(stderr, "%s %s %x\n", __FUNCTION__,
1127               _mesa_lookup_enum_by_nr(rprim), hwprim);
1128 
1129    intel->vtbl.reduced_primitive_state(intel, rprim);
1130 
1131    /* Start a new primitive.  Arrange to have it flushed later on.
1132     */
1133    if (hwprim != intel->prim.primitive) {
1134       INTEL_FIREVERTICES(intel);
1135 
1136       intel_set_prim(intel, hwprim);
1137    }
1138 }
1139 
1140 
1141  /*
1142   */
1143 static void
intelRenderPrimitive(struct gl_context * ctx,GLenum prim)1144 intelRenderPrimitive(struct gl_context * ctx, GLenum prim)
1145 {
1146    struct intel_context *intel = intel_context(ctx);
1147 
1148    if (0)
1149       fprintf(stderr, "%s %s\n", __FUNCTION__, _mesa_lookup_enum_by_nr(prim));
1150 
1151    /* Let some clipping routines know which primitive they're dealing
1152     * with.
1153     */
1154    intel->render_primitive = prim;
1155 
1156    /* Shortcircuit this when called for unfilled triangles.  The rasterized
1157     * primitive will always be reset by lower level functions in that case,
1158     * potentially pingponging the state:
1159     */
1160    if (reduced_prim[prim] == GL_TRIANGLES &&
1161        (ctx->_TriangleCaps & DD_TRI_UNFILLED))
1162       return;
1163 
1164    /* Set some primitive-dependent state and Start? a new primitive.
1165     */
1166    intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
1167 }
1168 
1169 
1170  /**********************************************************************/
1171  /*           Transition to/from hardware rasterization.               */
1172  /**********************************************************************/
1173 
1174 static char *fallbackStrings[] = {
1175    [0] = "Draw buffer",
1176    [1] = "Read buffer",
1177    [2] = "Depth buffer",
1178    [3] = "Stencil buffer",
1179    [4] = "User disable",
1180    [5] = "Render mode",
1181 
1182    [12] = "Texture",
1183    [13] = "Color mask",
1184    [14] = "Stencil",
1185    [15] = "Stipple",
1186    [16] = "Program",
1187    [17] = "Logic op",
1188    [18] = "Smooth polygon",
1189    [19] = "Smooth point",
1190    [20] = "point sprite coord origin",
1191    [21] = "depth/color drawing offset",
1192    [22] = "coord replace(SPRITE POINT ENABLE)",
1193 };
1194 
1195 
1196 static char *
getFallbackString(GLuint bit)1197 getFallbackString(GLuint bit)
1198 {
1199    int i = 0;
1200    while (bit > 1) {
1201       i++;
1202       bit >>= 1;
1203    }
1204    return fallbackStrings[i];
1205 }
1206 
1207 
1208 
1209 /**
1210  * Enable/disable a fallback flag.
1211  * \param bit  one of INTEL_FALLBACK_x flags.
1212  */
1213 void
intelFallback(struct intel_context * intel,GLbitfield bit,bool mode)1214 intelFallback(struct intel_context *intel, GLbitfield bit, bool mode)
1215 {
1216    struct gl_context *ctx = &intel->ctx;
1217    TNLcontext *tnl = TNL_CONTEXT(ctx);
1218    const GLbitfield oldfallback = intel->Fallback;
1219 
1220    if (mode) {
1221       intel->Fallback |= bit;
1222       if (oldfallback == 0) {
1223 	 assert(!intel->tnl_pipeline_running);
1224 
1225          intel_flush(ctx);
1226          if (INTEL_DEBUG & DEBUG_PERF)
1227             fprintf(stderr, "ENTER FALLBACK %x: %s\n",
1228                     bit, getFallbackString(bit));
1229          _swsetup_Wakeup(ctx);
1230          intel->RenderIndex = ~0;
1231       }
1232    }
1233    else {
1234       intel->Fallback &= ~bit;
1235       if (oldfallback == bit) {
1236 	 assert(!intel->tnl_pipeline_running);
1237 
1238          _swrast_flush(ctx);
1239          if (INTEL_DEBUG & DEBUG_PERF)
1240             fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
1241          tnl->Driver.Render.Start = intelRenderStart;
1242          tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1243          tnl->Driver.Render.Finish = intelRenderFinish;
1244          tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1245          tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1246          tnl->Driver.Render.Interp = _tnl_interp;
1247 
1248          _tnl_invalidate_vertex_state(ctx, ~0);
1249          _tnl_invalidate_vertices(ctx, ~0);
1250          _tnl_install_attrs(ctx,
1251                             intel->vertex_attrs,
1252                             intel->vertex_attr_count,
1253                             intel->ViewportMatrix.m, 0);
1254 
1255          intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
1256       }
1257    }
1258 }
1259 
1260 union fi
1261 {
1262    GLfloat f;
1263    GLint i;
1264 };
1265 
1266 /**********************************************************************/
1267 /*                            Initialization.                         */
1268 /**********************************************************************/
1269 
1270 
1271 void
intelInitTriFuncs(struct gl_context * ctx)1272 intelInitTriFuncs(struct gl_context * ctx)
1273 {
1274    TNLcontext *tnl = TNL_CONTEXT(ctx);
1275    static int firsttime = 1;
1276 
1277    if (firsttime) {
1278       init_rast_tab();
1279       firsttime = 0;
1280    }
1281 
1282    tnl->Driver.RunPipeline = intelRunPipeline;
1283    tnl->Driver.Render.Start = intelRenderStart;
1284    tnl->Driver.Render.Finish = intelRenderFinish;
1285    tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
1286    tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
1287    tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
1288    tnl->Driver.Render.CopyPV = _tnl_copy_pv;
1289    tnl->Driver.Render.Interp = _tnl_interp;
1290 }
1291