• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkMatrix_DEFINED
11 #define SkMatrix_DEFINED
12 
13 #include "SkRect.h"
14 
15 struct SkRSXform;
16 class SkString;
17 
18 /** \class SkMatrix
19 
20     The SkMatrix class holds a 3x3 matrix for transforming coordinates.
21     SkMatrix does not have a constructor, so it must be explicitly initialized
22     using either reset() - to construct an identity matrix, or one of the set
23     functions (e.g. setTranslate, setRotate, etc.).
24 */
25 SK_BEGIN_REQUIRE_DENSE
26 class SK_API SkMatrix {
27 public:
MakeScale(SkScalar sx,SkScalar sy)28     static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) {
29         SkMatrix m;
30         m.setScale(sx, sy);
31         return m;
32     }
33 
MakeScale(SkScalar scale)34     static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) {
35         SkMatrix m;
36         m.setScale(scale, scale);
37         return m;
38     }
39 
MakeTrans(SkScalar dx,SkScalar dy)40     static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) {
41         SkMatrix m;
42         m.setTranslate(dx, dy);
43         return m;
44     }
45 
46     /** Enum of bit fields for the mask return by getType().
47         Use this to identify the complexity of the matrix.
48     */
49     enum TypeMask {
50         kIdentity_Mask      = 0,
51         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
52         kScale_Mask         = 0x02,  //!< set if the matrix has X or Y scale
53         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
54         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
55     };
56 
57     /** Returns a bitfield describing the transformations the matrix may
58         perform. The bitfield is computed conservatively, so it may include
59         false positives. For example, when kPerspective_Mask is true, all
60         other bits may be set to true even in the case of a pure perspective
61         transform.
62    */
getType()63     TypeMask getType() const {
64         if (fTypeMask & kUnknown_Mask) {
65             fTypeMask = this->computeTypeMask();
66         }
67         // only return the public masks
68         return (TypeMask)(fTypeMask & 0xF);
69     }
70 
71     /** Returns true if the matrix is identity.
72     */
isIdentity()73     bool isIdentity() const {
74         return this->getType() == 0;
75     }
76 
isScaleTranslate()77     bool isScaleTranslate() const {
78         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
79     }
80 
81     /** Returns true if will map a rectangle to another rectangle. This can be
82         true if the matrix is identity, scale-only, or rotates a multiple of
83         90 degrees.
84     */
rectStaysRect()85     bool rectStaysRect() const {
86         if (fTypeMask & kUnknown_Mask) {
87             fTypeMask = this->computeTypeMask();
88         }
89         return (fTypeMask & kRectStaysRect_Mask) != 0;
90     }
91     // alias for rectStaysRect()
preservesAxisAlignment()92     bool preservesAxisAlignment() const { return this->rectStaysRect(); }
93 
94     /**
95      *  Returns true if the matrix contains perspective elements.
96      */
hasPerspective()97     bool hasPerspective() const {
98         return SkToBool(this->getPerspectiveTypeMaskOnly() &
99                         kPerspective_Mask);
100     }
101 
102     /** Returns true if the matrix contains only translation, rotation/reflection or uniform scale
103         Returns false if other transformation types are included or is degenerate
104      */
105     bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const;
106 
107     /** Returns true if the matrix contains only translation, rotation/reflection or scale
108         (non-uniform scale is allowed).
109         Returns false if other transformation types are included or is degenerate
110      */
111     bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const;
112 
113     enum {
114         kMScaleX,
115         kMSkewX,
116         kMTransX,
117         kMSkewY,
118         kMScaleY,
119         kMTransY,
120         kMPersp0,
121         kMPersp1,
122         kMPersp2
123     };
124 
125     /** Affine arrays are in column major order
126         because that's how PDF and XPS like it.
127      */
128     enum {
129         kAScaleX,
130         kASkewY,
131         kASkewX,
132         kAScaleY,
133         kATransX,
134         kATransY
135     };
136 
137     SkScalar operator[](int index) const {
138         SkASSERT((unsigned)index < 9);
139         return fMat[index];
140     }
141 
get(int index)142     SkScalar get(int index) const {
143         SkASSERT((unsigned)index < 9);
144         return fMat[index];
145     }
146 
getScaleX()147     SkScalar getScaleX() const { return fMat[kMScaleX]; }
getScaleY()148     SkScalar getScaleY() const { return fMat[kMScaleY]; }
getSkewY()149     SkScalar getSkewY() const { return fMat[kMSkewY]; }
getSkewX()150     SkScalar getSkewX() const { return fMat[kMSkewX]; }
getTranslateX()151     SkScalar getTranslateX() const { return fMat[kMTransX]; }
getTranslateY()152     SkScalar getTranslateY() const { return fMat[kMTransY]; }
getPerspX()153     SkScalar getPerspX() const { return fMat[kMPersp0]; }
getPerspY()154     SkScalar getPerspY() const { return fMat[kMPersp1]; }
155 
156     SkScalar& operator[](int index) {
157         SkASSERT((unsigned)index < 9);
158         this->setTypeMask(kUnknown_Mask);
159         return fMat[index];
160     }
161 
set(int index,SkScalar value)162     void set(int index, SkScalar value) {
163         SkASSERT((unsigned)index < 9);
164         fMat[index] = value;
165         this->setTypeMask(kUnknown_Mask);
166     }
167 
setScaleX(SkScalar v)168     void setScaleX(SkScalar v) { this->set(kMScaleX, v); }
setScaleY(SkScalar v)169     void setScaleY(SkScalar v) { this->set(kMScaleY, v); }
setSkewY(SkScalar v)170     void setSkewY(SkScalar v) { this->set(kMSkewY, v); }
setSkewX(SkScalar v)171     void setSkewX(SkScalar v) { this->set(kMSkewX, v); }
setTranslateX(SkScalar v)172     void setTranslateX(SkScalar v) { this->set(kMTransX, v); }
setTranslateY(SkScalar v)173     void setTranslateY(SkScalar v) { this->set(kMTransY, v); }
setPerspX(SkScalar v)174     void setPerspX(SkScalar v) { this->set(kMPersp0, v); }
setPerspY(SkScalar v)175     void setPerspY(SkScalar v) { this->set(kMPersp1, v); }
176 
setAll(SkScalar scaleX,SkScalar skewX,SkScalar transX,SkScalar skewY,SkScalar scaleY,SkScalar transY,SkScalar persp0,SkScalar persp1,SkScalar persp2)177     void setAll(SkScalar scaleX, SkScalar skewX,  SkScalar transX,
178                 SkScalar skewY,  SkScalar scaleY, SkScalar transY,
179                 SkScalar persp0, SkScalar persp1, SkScalar persp2) {
180         fMat[kMScaleX] = scaleX;
181         fMat[kMSkewX]  = skewX;
182         fMat[kMTransX] = transX;
183         fMat[kMSkewY]  = skewY;
184         fMat[kMScaleY] = scaleY;
185         fMat[kMTransY] = transY;
186         fMat[kMPersp0] = persp0;
187         fMat[kMPersp1] = persp1;
188         fMat[kMPersp2] = persp2;
189         this->setTypeMask(kUnknown_Mask);
190     }
191 
192     /**
193      *  Copy the 9 scalars for this matrix into buffer, in the same order as the kMScaleX
194      *  enum... scalex, skewx, transx, skewy, scaley, transy, persp0, persp1, persp2
195      */
get9(SkScalar buffer[9])196     void get9(SkScalar buffer[9]) const {
197         memcpy(buffer, fMat, 9 * sizeof(SkScalar));
198     }
199 
200     /**
201      *  Set this matrix to the 9 scalars from the buffer, in the same order as the kMScaleX
202      *  enum... scalex, skewx, transx, skewy, scaley, transy, persp0, persp1, persp2
203      *
204      *  Note: calling set9 followed by get9 may not return the exact same values. Since the matrix
205      *  is used to map non-homogeneous coordinates, it is free to rescale the 9 values as needed.
206      */
207     void set9(const SkScalar buffer[9]);
208 
209     /** Set the matrix to identity
210     */
211     void reset();
212     // alias for reset()
setIdentity()213     void setIdentity() { this->reset(); }
214 
215     /** Set the matrix to translate by (dx, dy).
216     */
217     void setTranslate(SkScalar dx, SkScalar dy);
setTranslate(const SkVector & v)218     void setTranslate(const SkVector& v) { this->setTranslate(v.fX, v.fY); }
219 
220     /** Set the matrix to scale by sx and sy, with a pivot point at (px, py).
221         The pivot point is the coordinate that should remain unchanged by the
222         specified transformation.
223     */
224     void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
225     /** Set the matrix to scale by sx and sy.
226     */
227     void setScale(SkScalar sx, SkScalar sy);
228     /** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't
229         touch the matrix if either divx or divy is zero.
230     */
231     bool setIDiv(int divx, int divy);
232     /** Set the matrix to rotate by the specified number of degrees, with a
233         pivot point at (px, py). The pivot point is the coordinate that should
234         remain unchanged by the specified transformation.
235     */
236     void setRotate(SkScalar degrees, SkScalar px, SkScalar py);
237     /** Set the matrix to rotate about (0,0) by the specified number of degrees.
238     */
239     void setRotate(SkScalar degrees);
240     /** Set the matrix to rotate by the specified sine and cosine values, with
241         a pivot point at (px, py). The pivot point is the coordinate that
242         should remain unchanged by the specified transformation.
243     */
244     void setSinCos(SkScalar sinValue, SkScalar cosValue,
245                    SkScalar px, SkScalar py);
246     /** Set the matrix to rotate by the specified sine and cosine values.
247     */
248     void setSinCos(SkScalar sinValue, SkScalar cosValue);
249 
250     SkMatrix& setRSXform(const SkRSXform&);
251 
252     /** Set the matrix to skew by sx and sy, with a pivot point at (px, py).
253         The pivot point is the coordinate that should remain unchanged by the
254         specified transformation.
255     */
256     void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
257     /** Set the matrix to skew by sx and sy.
258     */
259     void setSkew(SkScalar kx, SkScalar ky);
260     /** Set the matrix to the concatenation of the two specified matrices.
261         Either of the two matrices may also be the target matrix.
262         *this = a * b;
263     */
264     void setConcat(const SkMatrix& a, const SkMatrix& b);
265 
266     /** Preconcats the matrix with the specified translation.
267         M' = M * T(dx, dy)
268     */
269     void preTranslate(SkScalar dx, SkScalar dy);
270     /** Preconcats the matrix with the specified scale.
271         M' = M * S(sx, sy, px, py)
272     */
273     void preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
274     /** Preconcats the matrix with the specified scale.
275         M' = M * S(sx, sy)
276     */
277     void preScale(SkScalar sx, SkScalar sy);
278     /** Preconcats the matrix with the specified rotation.
279         M' = M * R(degrees, px, py)
280     */
281     void preRotate(SkScalar degrees, SkScalar px, SkScalar py);
282     /** Preconcats the matrix with the specified rotation.
283         M' = M * R(degrees)
284     */
285     void preRotate(SkScalar degrees);
286     /** Preconcats the matrix with the specified skew.
287         M' = M * K(kx, ky, px, py)
288     */
289     void preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
290     /** Preconcats the matrix with the specified skew.
291         M' = M * K(kx, ky)
292     */
293     void preSkew(SkScalar kx, SkScalar ky);
294     /** Preconcats the matrix with the specified matrix.
295         M' = M * other
296     */
297     void preConcat(const SkMatrix& other);
298 
299     /** Postconcats the matrix with the specified translation.
300         M' = T(dx, dy) * M
301     */
302     void postTranslate(SkScalar dx, SkScalar dy);
303     /** Postconcats the matrix with the specified scale.
304         M' = S(sx, sy, px, py) * M
305     */
306     void postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
307     /** Postconcats the matrix with the specified scale.
308         M' = S(sx, sy) * M
309     */
310     void postScale(SkScalar sx, SkScalar sy);
311     /** Postconcats the matrix by dividing it by the specified integers.
312         M' = S(1/divx, 1/divy, 0, 0) * M
313     */
314     bool postIDiv(int divx, int divy);
315     /** Postconcats the matrix with the specified rotation.
316         M' = R(degrees, px, py) * M
317     */
318     void postRotate(SkScalar degrees, SkScalar px, SkScalar py);
319     /** Postconcats the matrix with the specified rotation.
320         M' = R(degrees) * M
321     */
322     void postRotate(SkScalar degrees);
323     /** Postconcats the matrix with the specified skew.
324         M' = K(kx, ky, px, py) * M
325     */
326     void postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
327     /** Postconcats the matrix with the specified skew.
328         M' = K(kx, ky) * M
329     */
330     void postSkew(SkScalar kx, SkScalar ky);
331     /** Postconcats the matrix with the specified matrix.
332         M' = other * M
333     */
334     void postConcat(const SkMatrix& other);
335 
336     enum ScaleToFit {
337         /**
338          * Scale in X and Y independently, so that src matches dst exactly.
339          * This may change the aspect ratio of the src.
340          */
341         kFill_ScaleToFit,
342         /**
343          * Compute a scale that will maintain the original src aspect ratio,
344          * but will also ensure that src fits entirely inside dst. At least one
345          * axis (X or Y) will fit exactly. kStart aligns the result to the
346          * left and top edges of dst.
347          */
348         kStart_ScaleToFit,
349         /**
350          * Compute a scale that will maintain the original src aspect ratio,
351          * but will also ensure that src fits entirely inside dst. At least one
352          * axis (X or Y) will fit exactly. The result is centered inside dst.
353          */
354         kCenter_ScaleToFit,
355         /**
356          * Compute a scale that will maintain the original src aspect ratio,
357          * but will also ensure that src fits entirely inside dst. At least one
358          * axis (X or Y) will fit exactly. kEnd aligns the result to the
359          * right and bottom edges of dst.
360          */
361         kEnd_ScaleToFit
362     };
363 
364     /** Set the matrix to the scale and translate values that map the source
365         rectangle to the destination rectangle, returning true if the the result
366         can be represented.
367         @param src the source rectangle to map from.
368         @param dst the destination rectangle to map to.
369         @param stf the ScaleToFit option
370         @return true if the matrix can be represented by the rectangle mapping.
371     */
372     bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);
MakeRectToRect(const SkRect & src,const SkRect & dst,ScaleToFit stf)373     static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) {
374         SkMatrix m;
375         m.setRectToRect(src, dst, stf);
376         return m;
377     }
378 
379     /** Set the matrix such that the specified src points would map to the
380         specified dst points. count must be within [0..4].
381         @param src  The array of src points
382         @param dst  The array of dst points
383         @param count The number of points to use for the transformation
384         @return true if the matrix was set to the specified transformation
385     */
386     bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);
387 
388     /** If this matrix can be inverted, return true and if inverse is not null,
389         set inverse to be the inverse of this matrix. If this matrix cannot be
390         inverted, ignore inverse and return false
391     */
invert(SkMatrix * inverse)392     bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const {
393         // Allow the trivial case to be inlined.
394         if (this->isIdentity()) {
395             if (inverse) {
396                 inverse->reset();
397             }
398             return true;
399         }
400         return this->invertNonIdentity(inverse);
401     }
402 
403     /** Fills the passed array with affine identity values
404         in column major order.
405         @param affine  The array to fill with affine identity values.
406         Must not be NULL.
407     */
408     static void SetAffineIdentity(SkScalar affine[6]);
409 
410     /** Fills the passed array with the affine values in column major order.
411         If the matrix is a perspective transform, returns false
412         and does not change the passed array.
413         @param affine  The array to fill with affine values. Ignored if NULL.
414     */
415     bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const;
416 
417     /** Set the matrix to the specified affine values.
418      *  Note: these are passed in column major order.
419      */
420     void setAffine(const SkScalar affine[6]);
421 
422     /** Apply this matrix to the array of points specified by src, and write
423         the transformed points into the array of points specified by dst.
424         dst[] = M * src[]
425         @param dst  Where the transformed coordinates are written. It must
426                     contain at least count entries
427         @param src  The original coordinates that are to be transformed. It
428                     must contain at least count entries
429         @param count The number of points in src to read, and then transform
430                      into dst.
431     */
mapPoints(SkPoint dst[],const SkPoint src[],int count)432     void mapPoints(SkPoint dst[], const SkPoint src[], int count) const {
433         SkASSERT((dst && src && count > 0) || 0 == count);
434         // no partial overlap
435         SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
436         this->getMapPtsProc()(*this, dst, src, count);
437     }
438 
439     /** Apply this matrix to the array of points, overwriting it with the
440         transformed values.
441         dst[] = M * pts[]
442         @param pts  The points to be transformed. It must contain at least
443                     count entries
444         @param count The number of points in pts.
445     */
mapPoints(SkPoint pts[],int count)446     void mapPoints(SkPoint pts[], int count) const {
447         this->mapPoints(pts, pts, count);
448     }
449 
450     /** Like mapPoints but with custom byte stride between the points. Stride
451      *  should be a multiple of sizeof(SkScalar).
452      */
mapPointsWithStride(SkPoint pts[],size_t stride,int count)453     void mapPointsWithStride(SkPoint pts[], size_t stride, int count) const {
454         SkASSERT(stride >= sizeof(SkPoint));
455         SkASSERT(0 == stride % sizeof(SkScalar));
456         for (int i = 0; i < count; ++i) {
457             this->mapPoints(pts, pts, 1);
458             pts = (SkPoint*)((intptr_t)pts + stride);
459         }
460     }
461 
462     /** Like mapPoints but with custom byte stride between the points.
463     */
mapPointsWithStride(SkPoint dst[],SkPoint src[],size_t stride,int count)464     void mapPointsWithStride(SkPoint dst[], SkPoint src[],
465                              size_t stride, int count) const {
466         SkASSERT(stride >= sizeof(SkPoint));
467         SkASSERT(0 == stride % sizeof(SkScalar));
468         for (int i = 0; i < count; ++i) {
469             this->mapPoints(dst, src, 1);
470             src = (SkPoint*)((intptr_t)src + stride);
471             dst = (SkPoint*)((intptr_t)dst + stride);
472         }
473     }
474 
475     /** Apply this matrix to the array of homogeneous points, specified by src,
476         where a homogeneous point is defined by 3 contiguous scalar values,
477         and write the transformed points into the array of scalars specified by dst.
478         dst[] = M * src[]
479         @param dst  Where the transformed coordinates are written. It must
480                     contain at least 3 * count entries
481         @param src  The original coordinates that are to be transformed. It
482                     must contain at least 3 * count entries
483         @param count The number of triples (homogeneous points) in src to read,
484                      and then transform into dst.
485     */
486     void mapHomogeneousPoints(SkScalar dst[], const SkScalar src[], int count) const;
487 
mapXY(SkScalar x,SkScalar y,SkPoint * result)488     void mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
489         SkASSERT(result);
490         this->getMapXYProc()(*this, x, y, result);
491     }
492 
mapXY(SkScalar x,SkScalar y)493     SkPoint mapXY(SkScalar x, SkScalar y) const {
494         SkPoint result;
495         this->getMapXYProc()(*this, x, y, &result);
496         return result;
497     }
498 
499     /** Apply this matrix to the array of vectors specified by src, and write
500         the transformed vectors into the array of vectors specified by dst.
501         This is similar to mapPoints, but ignores any translation in the matrix.
502         @param dst  Where the transformed coordinates are written. It must
503                     contain at least count entries
504         @param src  The original coordinates that are to be transformed. It
505                     must contain at least count entries
506         @param count The number of vectors in src to read, and then transform
507                      into dst.
508     */
509     void mapVectors(SkVector dst[], const SkVector src[], int count) const;
510 
511     /** Apply this matrix to the array of vectors specified by src, and write
512         the transformed vectors into the array of vectors specified by dst.
513         This is similar to mapPoints, but ignores any translation in the matrix.
514         @param vecs The vectors to be transformed. It must contain at least
515                     count entries
516         @param count The number of vectors in vecs.
517     */
mapVectors(SkVector vecs[],int count)518     void mapVectors(SkVector vecs[], int count) const {
519         this->mapVectors(vecs, vecs, count);
520     }
521 
mapVector(SkScalar dx,SkScalar dy,SkVector * result)522     void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const {
523         SkVector vec = { dx, dy };
524         this->mapVectors(result, &vec, 1);
525     }
526 
mapVector(SkScalar dx,SkScalar dy)527     SkVector mapVector(SkScalar dx, SkScalar dy) const {
528         SkVector vec = { dx, dy };
529         this->mapVectors(&vec, &vec, 1);
530         return vec;
531     }
532 
533     /** Apply this matrix to the src rectangle, and write the transformed
534         rectangle into dst. This is accomplished by transforming the 4 corners
535         of src, and then setting dst to the bounds of those points.
536         @param dst  Where the transformed rectangle is written.
537         @param src  The original rectangle to be transformed.
538         @return the result of calling rectStaysRect()
539     */
540     bool mapRect(SkRect* dst, const SkRect& src) const;
541 
542     /** Apply this matrix to the rectangle, and write the transformed rectangle
543         back into it. This is accomplished by transforming the 4 corners of
544         rect, and then setting it to the bounds of those points
545         @param rect The rectangle to transform.
546         @return the result of calling rectStaysRect()
547     */
mapRect(SkRect * rect)548     bool mapRect(SkRect* rect) const {
549         return this->mapRect(rect, *rect);
550     }
551 
552     /** Apply this matrix to the src rectangle, and write the four transformed
553         points into dst. The points written to dst will be the original top-left, top-right,
554         bottom-right, and bottom-left points transformed by the matrix.
555         @param dst  Where the transformed quad is written.
556         @param rect The original rectangle to be transformed.
557     */
mapRectToQuad(SkPoint dst[4],const SkRect & rect)558     void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const {
559         // This could potentially be faster if we only transformed each x and y of the rect once.
560         rect.toQuad(dst);
561         this->mapPoints(dst, 4);
562     }
563 
564     /** Return the mean radius of a circle after it has been mapped by
565         this matrix. NOTE: in perspective this value assumes the circle
566         has its center at the origin.
567     */
568     SkScalar mapRadius(SkScalar radius) const;
569 
570     typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
571                                  SkPoint* result);
572 
GetMapXYProc(TypeMask mask)573     static MapXYProc GetMapXYProc(TypeMask mask) {
574         SkASSERT((mask & ~kAllMasks) == 0);
575         return gMapXYProcs[mask & kAllMasks];
576     }
577 
getMapXYProc()578     MapXYProc getMapXYProc() const {
579         return GetMapXYProc(this->getType());
580     }
581 
582     typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
583                                   const SkPoint src[], int count);
584 
GetMapPtsProc(TypeMask mask)585     static MapPtsProc GetMapPtsProc(TypeMask mask) {
586         SkASSERT((mask & ~kAllMasks) == 0);
587         return gMapPtsProcs[mask & kAllMasks];
588     }
589 
getMapPtsProc()590     MapPtsProc getMapPtsProc() const {
591         return GetMapPtsProc(this->getType());
592     }
593 
594     /** Returns true if the matrix can be stepped in X (not complex
595         perspective).
596     */
597     bool isFixedStepInX() const;
598 
599     /** If the matrix can be stepped in X (not complex perspective)
600         then return the step value.
601         If it cannot, behavior is undefined.
602     */
603     SkVector fixedStepInX(SkScalar y) const;
604 
605     /** Efficient comparison of two matrices. It distinguishes between zero and
606      *  negative zero. It will return false when the sign of zero values is the
607      *  only difference between the two matrices. It considers NaN values to be
608      *  equal to themselves. So a matrix full of NaNs is "cheap equal" to
609      *  another matrix full of NaNs iff the NaN values are bitwise identical
610      *  while according to strict the strict == test a matrix with a NaN value
611      *  is equal to nothing, including itself.
612      */
cheapEqualTo(const SkMatrix & m)613     bool cheapEqualTo(const SkMatrix& m) const {
614         return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
615     }
616 
617     friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b);
618     friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) {
619         return !(a == b);
620     }
621 
622     enum {
623         // writeTo/readFromMemory will never return a value larger than this
624         kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t)
625     };
626     // return the number of bytes written, whether or not buffer is null
627     size_t writeToMemory(void* buffer) const;
628     /**
629      * Reads data from the buffer parameter
630      *
631      * @param buffer Memory to read from
632      * @param length Amount of memory available in the buffer
633      * @return number of bytes read (must be a multiple of 4) or
634      *         0 if there was not enough memory available
635      */
636     size_t readFromMemory(const void* buffer, size_t length);
637 
638     void dump() const;
639     void toString(SkString*) const;
640 
641     /**
642      * Calculates the minimum scaling factor of the matrix as computed from the SVD of the upper
643      * left 2x2. If the max scale factor cannot be computed (for example overflow or perspective)
644      * -1 is returned.
645      *
646      * @return minimum scale factor
647      */
648     SkScalar getMinScale() const;
649 
650     /**
651      * Calculates the maximum scaling factor of the matrix as computed from the SVD of the upper
652      * left 2x2. If the max scale factor cannot be computed (for example overflow or perspective)
653      * -1 is returned.
654      *
655      * @return maximum scale factor
656      */
657     SkScalar getMaxScale() const;
658 
659     /**
660      * Gets both the min and max scale factors. The min scale factor is scaleFactors[0] and the max
661      * is scaleFactors[1]. If the min/max scale factors cannot be computed false is returned and the
662      * values of scaleFactors[] are undefined.
663      */
664     bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const;
665 
666     /**
667      *  Attempt to decompose this matrix into a scale-only component and whatever remains, where
668      *  the scale component is to be applied first.
669      *
670      *  M -> Remaining * Scale
671      *
672      *  On success, return true and assign the scale and remaining components (assuming their
673      *  respective parameters are not null). On failure return false and ignore the parameters.
674      *
675      *  Possible reasons to fail: perspective, one or more scale factors are zero.
676      */
677     bool decomposeScale(SkSize* scale, SkMatrix* remaining = NULL) const;
678 
679     /**
680      *  Return a reference to a const identity matrix
681      */
682     static const SkMatrix& I();
683 
684     /**
685      *  Return a reference to a const matrix that is "invalid", one that could
686      *  never be used.
687      */
688     static const SkMatrix& InvalidMatrix();
689 
690     /**
691      * Return the concatenation of two matrices, a * b.
692      */
Concat(const SkMatrix & a,const SkMatrix & b)693     static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) {
694         SkMatrix result;
695         result.setConcat(a, b);
696         return result;
697     }
698 
699     /**
700      * Testing routine; the matrix's type cache should never need to be
701      * manually invalidated during normal use.
702      */
dirtyMatrixTypeCache()703     void dirtyMatrixTypeCache() {
704         this->setTypeMask(kUnknown_Mask);
705     }
706 
707 private:
708     enum {
709         /** Set if the matrix will map a rectangle to another rectangle. This
710             can be true if the matrix is scale-only, or rotates a multiple of
711             90 degrees.
712 
713             This bit will be set on identity matrices
714         */
715         kRectStaysRect_Mask = 0x10,
716 
717         /** Set if the perspective bit is valid even though the rest of
718             the matrix is Unknown.
719         */
720         kOnlyPerspectiveValid_Mask = 0x40,
721 
722         kUnknown_Mask = 0x80,
723 
724         kORableMasks =  kTranslate_Mask |
725                         kScale_Mask |
726                         kAffine_Mask |
727                         kPerspective_Mask,
728 
729         kAllMasks = kTranslate_Mask |
730                     kScale_Mask |
731                     kAffine_Mask |
732                     kPerspective_Mask |
733                     kRectStaysRect_Mask
734     };
735 
736     SkScalar         fMat[9];
737     mutable uint32_t fTypeMask;
738 
739     /** Are all elements of the matrix finite?
740      */
isFinite()741     bool isFinite() const { return SkScalarsAreFinite(fMat, 9); }
742 
743     static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp);
744 
setScaleTranslate(SkScalar sx,SkScalar sy,SkScalar tx,SkScalar ty)745     void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) {
746         fMat[kMScaleX] = sx;
747         fMat[kMSkewX]  = 0;
748         fMat[kMTransX] = tx;
749 
750         fMat[kMSkewY]  = 0;
751         fMat[kMScaleY] = sy;
752         fMat[kMTransY] = ty;
753 
754         fMat[kMPersp0] = 0;
755         fMat[kMPersp1] = 0;
756         fMat[kMPersp2] = 1;
757 
758         unsigned mask = 0;
759         if (sx != 1 || sy != 1) {
760             mask |= kScale_Mask;
761         }
762         if (tx || ty) {
763             mask |= kTranslate_Mask;
764         }
765         this->setTypeMask(mask | kRectStaysRect_Mask);
766     }
767 
768     uint8_t computeTypeMask() const;
769     uint8_t computePerspectiveTypeMask() const;
770 
setTypeMask(int mask)771     void setTypeMask(int mask) {
772         // allow kUnknown or a valid mask
773         SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
774                  ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask)
775                  == (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
776         fTypeMask = SkToU8(mask);
777     }
778 
orTypeMask(int mask)779     void orTypeMask(int mask) {
780         SkASSERT((mask & kORableMasks) == mask);
781         fTypeMask = SkToU8(fTypeMask | mask);
782     }
783 
clearTypeMask(int mask)784     void clearTypeMask(int mask) {
785         // only allow a valid mask
786         SkASSERT((mask & kAllMasks) == mask);
787         fTypeMask = fTypeMask & ~mask;
788     }
789 
getPerspectiveTypeMaskOnly()790     TypeMask getPerspectiveTypeMaskOnly() const {
791         if ((fTypeMask & kUnknown_Mask) &&
792             !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
793             fTypeMask = this->computePerspectiveTypeMask();
794         }
795         return (TypeMask)(fTypeMask & 0xF);
796     }
797 
798     /** Returns true if we already know that the matrix is identity;
799         false otherwise.
800     */
isTriviallyIdentity()801     bool isTriviallyIdentity() const {
802         if (fTypeMask & kUnknown_Mask) {
803             return false;
804         }
805         return ((fTypeMask & 0xF) == 0);
806     }
807 
808     bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const;
809 
810     static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
811     static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
812     static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
813 
814     static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
815     static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
816     static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
817     static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
818     static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
819     static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
820     static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
821 
822     static const MapXYProc gMapXYProcs[];
823 
824     static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
825     static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
826     static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
827     static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
828                                int count);
829     static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
830 
831     static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
832 
833     static const MapPtsProc gMapPtsProcs[];
834 
835     friend class SkPerspIter;
836 };
837 SK_END_REQUIRE_DENSE
838 
839 #endif
840