• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_GLOBALS_H_
6 #define V8_GLOBALS_H_
7 
8 #include <stddef.h>
9 #include <stdint.h>
10 
11 #include <ostream>
12 
13 #include "src/base/build_config.h"
14 #include "src/base/logging.h"
15 #include "src/base/macros.h"
16 
17 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
18 // warning flag and certain versions of GCC due to a bug:
19 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
20 // For now, we use the more involved template-based version from <limits>, but
21 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
22 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
23 # include <limits>  // NOLINT
24 # define V8_INFINITY std::numeric_limits<double>::infinity()
25 #elif V8_LIBC_MSVCRT
26 # define V8_INFINITY HUGE_VAL
27 #elif V8_OS_AIX
28 #define V8_INFINITY (__builtin_inff())
29 #else
30 # define V8_INFINITY INFINITY
31 #endif
32 
33 namespace v8 {
34 
35 namespace base {
36 class Mutex;
37 class RecursiveMutex;
38 class VirtualMemory;
39 }
40 
41 namespace internal {
42 
43 // Determine whether we are running in a simulated environment.
44 // Setting USE_SIMULATOR explicitly from the build script will force
45 // the use of a simulated environment.
46 #if !defined(USE_SIMULATOR)
47 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
48 #define USE_SIMULATOR 1
49 #endif
50 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
51 #define USE_SIMULATOR 1
52 #endif
53 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
54 #define USE_SIMULATOR 1
55 #endif
56 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
57 #define USE_SIMULATOR 1
58 #endif
59 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
60 #define USE_SIMULATOR 1
61 #endif
62 #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
63 #define USE_SIMULATOR 1
64 #endif
65 #endif
66 
67 // Determine whether the architecture uses an embedded constant pool
68 // (contiguous constant pool embedded in code object).
69 #if V8_TARGET_ARCH_PPC
70 #define V8_EMBEDDED_CONSTANT_POOL 1
71 #else
72 #define V8_EMBEDDED_CONSTANT_POOL 0
73 #endif
74 
75 #ifdef V8_TARGET_ARCH_ARM
76 // Set stack limit lower for ARM than for other architectures because
77 // stack allocating MacroAssembler takes 120K bytes.
78 // See issue crbug.com/405338
79 #define V8_DEFAULT_STACK_SIZE_KB 864
80 #else
81 // Slightly less than 1MB, since Windows' default stack size for
82 // the main execution thread is 1MB for both 32 and 64-bit.
83 #define V8_DEFAULT_STACK_SIZE_KB 984
84 #endif
85 
86 
87 // Determine whether double field unboxing feature is enabled.
88 #if V8_TARGET_ARCH_64_BIT
89 #define V8_DOUBLE_FIELDS_UNBOXING 1
90 #else
91 #define V8_DOUBLE_FIELDS_UNBOXING 0
92 #endif
93 
94 
95 typedef uint8_t byte;
96 typedef byte* Address;
97 
98 // -----------------------------------------------------------------------------
99 // Constants
100 
101 const int KB = 1024;
102 const int MB = KB * KB;
103 const int GB = KB * KB * KB;
104 const int kMaxInt = 0x7FFFFFFF;
105 const int kMinInt = -kMaxInt - 1;
106 const int kMaxInt8 = (1 << 7) - 1;
107 const int kMinInt8 = -(1 << 7);
108 const int kMaxUInt8 = (1 << 8) - 1;
109 const int kMinUInt8 = 0;
110 const int kMaxInt16 = (1 << 15) - 1;
111 const int kMinInt16 = -(1 << 15);
112 const int kMaxUInt16 = (1 << 16) - 1;
113 const int kMinUInt16 = 0;
114 
115 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
116 const int kMinUInt32 = 0;
117 
118 const int kCharSize      = sizeof(char);      // NOLINT
119 const int kShortSize     = sizeof(short);     // NOLINT
120 const int kIntSize       = sizeof(int);       // NOLINT
121 const int kInt32Size     = sizeof(int32_t);   // NOLINT
122 const int kInt64Size     = sizeof(int64_t);   // NOLINT
123 const int kFloatSize     = sizeof(float);     // NOLINT
124 const int kDoubleSize    = sizeof(double);    // NOLINT
125 const int kIntptrSize    = sizeof(intptr_t);  // NOLINT
126 const int kPointerSize   = sizeof(void*);     // NOLINT
127 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
128 const int kRegisterSize  = kPointerSize + kPointerSize;
129 #else
130 const int kRegisterSize  = kPointerSize;
131 #endif
132 const int kPCOnStackSize = kRegisterSize;
133 const int kFPOnStackSize = kRegisterSize;
134 
135 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
136 const int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
137 #else
138 const int kElidedFrameSlots = 0;
139 #endif
140 
141 const int kDoubleSizeLog2 = 3;
142 
143 #if V8_HOST_ARCH_64_BIT
144 const int kPointerSizeLog2 = 3;
145 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
146 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
147 const bool kRequiresCodeRange = true;
148 #if V8_TARGET_ARCH_MIPS64
149 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit
150 // encoded immediate, the addresses have to be in range of 256MB aligned
151 // region. Used only for large object space.
152 const size_t kMaximalCodeRangeSize = 256 * MB;
153 const size_t kCodeRangeAreaAlignment = 256 * MB;
154 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
155 const size_t kMaximalCodeRangeSize = 512 * MB;
156 const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
157 #else
158 const size_t kMaximalCodeRangeSize = 512 * MB;
159 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
160 #endif
161 #if V8_OS_WIN
162 const size_t kMinimumCodeRangeSize = 4 * MB;
163 const size_t kReservedCodeRangePages = 1;
164 // On PPC Linux PageSize is 4MB
165 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
166 const size_t kMinimumCodeRangeSize = 12 * MB;
167 const size_t kReservedCodeRangePages = 0;
168 #else
169 const size_t kMinimumCodeRangeSize = 3 * MB;
170 const size_t kReservedCodeRangePages = 0;
171 #endif
172 #else
173 const int kPointerSizeLog2 = 2;
174 const intptr_t kIntptrSignBit = 0x80000000;
175 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
176 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
177 // x32 port also requires code range.
178 const bool kRequiresCodeRange = true;
179 const size_t kMaximalCodeRangeSize = 256 * MB;
180 const size_t kMinimumCodeRangeSize = 3 * MB;
181 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
182 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
183 const bool kRequiresCodeRange = false;
184 const size_t kMaximalCodeRangeSize = 0 * MB;
185 const size_t kMinimumCodeRangeSize = 0 * MB;
186 const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
187 #else
188 const bool kRequiresCodeRange = false;
189 const size_t kMaximalCodeRangeSize = 0 * MB;
190 const size_t kMinimumCodeRangeSize = 0 * MB;
191 const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
192 #endif
193 const size_t kReservedCodeRangePages = 0;
194 #endif
195 
196 // The external allocation limit should be below 256 MB on all architectures
197 // to avoid that resource-constrained embedders run low on memory.
198 const int kExternalAllocationLimit = 192 * 1024 * 1024;
199 
200 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
201 
202 const int kBitsPerByte = 8;
203 const int kBitsPerByteLog2 = 3;
204 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
205 const int kBitsPerInt = kIntSize * kBitsPerByte;
206 
207 // IEEE 754 single precision floating point number bit layout.
208 const uint32_t kBinary32SignMask = 0x80000000u;
209 const uint32_t kBinary32ExponentMask = 0x7f800000u;
210 const uint32_t kBinary32MantissaMask = 0x007fffffu;
211 const int kBinary32ExponentBias = 127;
212 const int kBinary32MaxExponent  = 0xFE;
213 const int kBinary32MinExponent  = 0x01;
214 const int kBinary32MantissaBits = 23;
215 const int kBinary32ExponentShift = 23;
216 
217 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
218 // other bits set.
219 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
220 
221 // Latin1/UTF-16 constants
222 // Code-point values in Unicode 4.0 are 21 bits wide.
223 // Code units in UTF-16 are 16 bits wide.
224 typedef uint16_t uc16;
225 typedef int32_t uc32;
226 const int kOneByteSize    = kCharSize;
227 const int kUC16Size     = sizeof(uc16);      // NOLINT
228 
229 // 128 bit SIMD value size.
230 const int kSimd128Size = 16;
231 
232 // Round up n to be a multiple of sz, where sz is a power of 2.
233 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
234 
235 
236 // FUNCTION_ADDR(f) gets the address of a C function f.
237 #define FUNCTION_ADDR(f)                                        \
238   (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
239 
240 
241 // FUNCTION_CAST<F>(addr) casts an address into a function
242 // of type F. Used to invoke generated code from within C.
243 template <typename F>
FUNCTION_CAST(Address addr)244 F FUNCTION_CAST(Address addr) {
245   return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
246 }
247 
248 
249 // Determine whether the architecture uses function descriptors
250 // which provide a level of indirection between the function pointer
251 // and the function entrypoint.
252 #if V8_HOST_ARCH_PPC && \
253     (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
254 #define USES_FUNCTION_DESCRIPTORS 1
255 #define FUNCTION_ENTRYPOINT_ADDRESS(f)       \
256   (reinterpret_cast<v8::internal::Address*>( \
257       &(reinterpret_cast<intptr_t*>(f)[0])))
258 #else
259 #define USES_FUNCTION_DESCRIPTORS 0
260 #endif
261 
262 
263 // -----------------------------------------------------------------------------
264 // Forward declarations for frequently used classes
265 // (sorted alphabetically)
266 
267 class FreeStoreAllocationPolicy;
268 template <typename T, class P = FreeStoreAllocationPolicy> class List;
269 
270 // -----------------------------------------------------------------------------
271 // Declarations for use in both the preparser and the rest of V8.
272 
273 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
274 
275 enum LanguageMode { SLOPPY, STRICT, LANGUAGE_END = 3 };
276 
277 
278 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
279   switch (mode) {
280     case SLOPPY: return os << "sloppy";
281     case STRICT: return os << "strict";
282     default: UNREACHABLE();
283   }
284   return os;
285 }
286 
287 
is_sloppy(LanguageMode language_mode)288 inline bool is_sloppy(LanguageMode language_mode) {
289   return language_mode == SLOPPY;
290 }
291 
292 
is_strict(LanguageMode language_mode)293 inline bool is_strict(LanguageMode language_mode) {
294   return language_mode != SLOPPY;
295 }
296 
297 
is_valid_language_mode(int language_mode)298 inline bool is_valid_language_mode(int language_mode) {
299   return language_mode == SLOPPY || language_mode == STRICT;
300 }
301 
302 
construct_language_mode(bool strict_bit)303 inline LanguageMode construct_language_mode(bool strict_bit) {
304   return static_cast<LanguageMode>(strict_bit);
305 }
306 
307 
308 // Mask for the sign bit in a smi.
309 const intptr_t kSmiSignMask = kIntptrSignBit;
310 
311 const int kObjectAlignmentBits = kPointerSizeLog2;
312 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
313 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
314 
315 // Desired alignment for pointers.
316 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
317 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
318 
319 // Desired alignment for double values.
320 const intptr_t kDoubleAlignment = 8;
321 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
322 
323 // Desired alignment for 128 bit SIMD values.
324 const intptr_t kSimd128Alignment = 16;
325 const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1;
326 
327 // Desired alignment for generated code is 32 bytes (to improve cache line
328 // utilization).
329 const int kCodeAlignmentBits = 5;
330 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
331 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
332 
333 // The owner field of a page is tagged with the page header tag. We need that
334 // to find out if a slot is part of a large object. If we mask out the lower
335 // 0xfffff bits (1M pages), go to the owner offset, and see that this field
336 // is tagged with the page header tag, we can just look up the owner.
337 // Otherwise, we know that we are somewhere (not within the first 1M) in a
338 // large object.
339 const int kPageHeaderTag = 3;
340 const int kPageHeaderTagSize = 2;
341 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
342 
343 
344 // Zap-value: The value used for zapping dead objects.
345 // Should be a recognizable hex value tagged as a failure.
346 #ifdef V8_HOST_ARCH_64_BIT
347 const Address kZapValue =
348     reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
349 const Address kHandleZapValue =
350     reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
351 const Address kGlobalHandleZapValue =
352     reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
353 const Address kFromSpaceZapValue =
354     reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
355 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
356 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
357 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
358 #else
359 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
360 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
361 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
362 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
363 const uint32_t kSlotsZapValue = 0xbeefdeef;
364 const uint32_t kDebugZapValue = 0xbadbaddb;
365 const uint32_t kFreeListZapValue = 0xfeed1eaf;
366 #endif
367 
368 const int kCodeZapValue = 0xbadc0de;
369 const uint32_t kPhantomReferenceZap = 0xca11bac;
370 
371 // On Intel architecture, cache line size is 64 bytes.
372 // On ARM it may be less (32 bytes), but as far this constant is
373 // used for aligning data, it doesn't hurt to align on a greater value.
374 #define PROCESSOR_CACHE_LINE_SIZE 64
375 
376 // Constants relevant to double precision floating point numbers.
377 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
378 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
379 
380 
381 // -----------------------------------------------------------------------------
382 // Forward declarations for frequently used classes
383 
384 class AccessorInfo;
385 class Allocation;
386 class Arguments;
387 class Assembler;
388 class Code;
389 class CodeGenerator;
390 class CodeStub;
391 class Context;
392 class Debug;
393 class DebugInfo;
394 class Descriptor;
395 class DescriptorArray;
396 class TransitionArray;
397 class ExternalReference;
398 class FixedArray;
399 class FunctionTemplateInfo;
400 class MemoryChunk;
401 class SeededNumberDictionary;
402 class UnseededNumberDictionary;
403 class NameDictionary;
404 class GlobalDictionary;
405 template <typename T> class MaybeHandle;
406 template <typename T> class Handle;
407 class Heap;
408 class HeapObject;
409 class IC;
410 class InterceptorInfo;
411 class Isolate;
412 class JSReceiver;
413 class JSArray;
414 class JSFunction;
415 class JSObject;
416 class LargeObjectSpace;
417 class MacroAssembler;
418 class Map;
419 class MapSpace;
420 class MarkCompactCollector;
421 class NewSpace;
422 class Object;
423 class OldSpace;
424 class ParameterCount;
425 class Foreign;
426 class Scope;
427 class ScopeInfo;
428 class Script;
429 class Smi;
430 template <typename Config, class Allocator = FreeStoreAllocationPolicy>
431 class SplayTree;
432 class String;
433 class Symbol;
434 class Name;
435 class Struct;
436 class TypeFeedbackVector;
437 class Variable;
438 class RelocInfo;
439 class Deserializer;
440 class MessageLocation;
441 
442 typedef bool (*WeakSlotCallback)(Object** pointer);
443 
444 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
445 
446 // -----------------------------------------------------------------------------
447 // Miscellaneous
448 
449 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being
450 // consecutive.
451 // Keep this enum in sync with the ObjectSpace enum in v8.h
452 enum AllocationSpace {
453   NEW_SPACE,   // Semispaces collected with copying collector.
454   OLD_SPACE,   // May contain pointers to new space.
455   CODE_SPACE,  // No pointers to new space, marked executable.
456   MAP_SPACE,   // Only and all map objects.
457   LO_SPACE,    // Promoted large objects.
458 
459   FIRST_SPACE = NEW_SPACE,
460   LAST_SPACE = LO_SPACE,
461   FIRST_PAGED_SPACE = OLD_SPACE,
462   LAST_PAGED_SPACE = MAP_SPACE
463 };
464 const int kSpaceTagSize = 3;
465 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
466 
467 enum AllocationAlignment {
468   kWordAligned,
469   kDoubleAligned,
470   kDoubleUnaligned,
471   kSimd128Unaligned
472 };
473 
474 // Possible outcomes for decisions.
475 enum class Decision : uint8_t { kUnknown, kTrue, kFalse };
476 
hash_value(Decision decision)477 inline size_t hash_value(Decision decision) {
478   return static_cast<uint8_t>(decision);
479 }
480 
481 inline std::ostream& operator<<(std::ostream& os, Decision decision) {
482   switch (decision) {
483     case Decision::kUnknown:
484       return os << "Unknown";
485     case Decision::kTrue:
486       return os << "True";
487     case Decision::kFalse:
488       return os << "False";
489   }
490   UNREACHABLE();
491   return os;
492 }
493 
494 // Supported write barrier modes.
495 enum WriteBarrierKind : uint8_t {
496   kNoWriteBarrier,
497   kMapWriteBarrier,
498   kPointerWriteBarrier,
499   kFullWriteBarrier
500 };
501 
hash_value(WriteBarrierKind kind)502 inline size_t hash_value(WriteBarrierKind kind) {
503   return static_cast<uint8_t>(kind);
504 }
505 
506 inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
507   switch (kind) {
508     case kNoWriteBarrier:
509       return os << "NoWriteBarrier";
510     case kMapWriteBarrier:
511       return os << "MapWriteBarrier";
512     case kPointerWriteBarrier:
513       return os << "PointerWriteBarrier";
514     case kFullWriteBarrier:
515       return os << "FullWriteBarrier";
516   }
517   UNREACHABLE();
518   return os;
519 }
520 
521 // A flag that indicates whether objects should be pretenured when
522 // allocated (allocated directly into the old generation) or not
523 // (allocated in the young generation if the object size and type
524 // allows).
525 enum PretenureFlag { NOT_TENURED, TENURED };
526 
527 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
528   switch (flag) {
529     case NOT_TENURED:
530       return os << "NotTenured";
531     case TENURED:
532       return os << "Tenured";
533   }
534   UNREACHABLE();
535   return os;
536 }
537 
538 enum MinimumCapacity {
539   USE_DEFAULT_MINIMUM_CAPACITY,
540   USE_CUSTOM_MINIMUM_CAPACITY
541 };
542 
543 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };
544 
545 enum Executability { NOT_EXECUTABLE, EXECUTABLE };
546 
547 enum VisitMode {
548   VISIT_ALL,
549   VISIT_ALL_IN_SCAVENGE,
550   VISIT_ALL_IN_SWEEP_NEWSPACE,
551   VISIT_ONLY_STRONG,
552   VISIT_ONLY_STRONG_FOR_SERIALIZATION,
553   VISIT_ONLY_STRONG_ROOT_LIST,
554 };
555 
556 // Flag indicating whether code is built into the VM (one of the natives files).
557 enum NativesFlag { NOT_NATIVES_CODE, EXTENSION_CODE, NATIVES_CODE };
558 
559 // JavaScript defines two kinds of 'nil'.
560 enum NilValue { kNullValue, kUndefinedValue };
561 
562 // ParseRestriction is used to restrict the set of valid statements in a
563 // unit of compilation.  Restriction violations cause a syntax error.
564 enum ParseRestriction {
565   NO_PARSE_RESTRICTION,         // All expressions are allowed.
566   ONLY_SINGLE_FUNCTION_LITERAL  // Only a single FunctionLiteral expression.
567 };
568 
569 // A CodeDesc describes a buffer holding instructions and relocation
570 // information. The instructions start at the beginning of the buffer
571 // and grow forward, the relocation information starts at the end of
572 // the buffer and grows backward.  A constant pool may exist at the
573 // end of the instructions.
574 //
575 //  |<--------------- buffer_size ----------------------------------->|
576 //  |<------------- instr_size ---------->|        |<-- reloc_size -->|
577 //  |               |<- const_pool_size ->|                           |
578 //  +=====================================+========+==================+
579 //  |  instructions |        data         |  free  |    reloc info    |
580 //  +=====================================+========+==================+
581 //  ^
582 //  |
583 //  buffer
584 
585 struct CodeDesc {
586   byte* buffer;
587   int buffer_size;
588   int instr_size;
589   int reloc_size;
590   int constant_pool_size;
591   byte* unwinding_info;
592   int unwinding_info_size;
593   Assembler* origin;
594 };
595 
596 
597 // Callback function used for checking constraints when copying/relocating
598 // objects. Returns true if an object can be copied/relocated from its
599 // old_addr to a new_addr.
600 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
601 
602 
603 // Callback function on inline caches, used for iterating over inline caches
604 // in compiled code.
605 typedef void (*InlineCacheCallback)(Code* code, Address ic);
606 
607 
608 // State for inline cache call sites. Aliased as IC::State.
609 enum InlineCacheState {
610   // Has never been executed.
611   UNINITIALIZED,
612   // Has been executed but monomorhic state has been delayed.
613   PREMONOMORPHIC,
614   // Has been executed and only one receiver type has been seen.
615   MONOMORPHIC,
616   // Check failed due to prototype (or map deprecation).
617   RECOMPUTE_HANDLER,
618   // Multiple receiver types have been seen.
619   POLYMORPHIC,
620   // Many receiver types have been seen.
621   MEGAMORPHIC,
622   // A generic handler is installed and no extra typefeedback is recorded.
623   GENERIC,
624 };
625 
626 enum CacheHolderFlag {
627   kCacheOnPrototype,
628   kCacheOnPrototypeReceiverIsDictionary,
629   kCacheOnPrototypeReceiverIsPrimitive,
630   kCacheOnReceiver
631 };
632 
633 enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
634 
635 // The Store Buffer (GC).
636 typedef enum {
637   kStoreBufferFullEvent,
638   kStoreBufferStartScanningPagesEvent,
639   kStoreBufferScanningPageEvent
640 } StoreBufferEvent;
641 
642 
643 typedef void (*StoreBufferCallback)(Heap* heap,
644                                     MemoryChunk* page,
645                                     StoreBufferEvent event);
646 
647 
648 // Union used for fast testing of specific double values.
649 union DoubleRepresentation {
650   double  value;
651   int64_t bits;
DoubleRepresentation(double x)652   DoubleRepresentation(double x) { value = x; }
653   bool operator==(const DoubleRepresentation& other) const {
654     return bits == other.bits;
655   }
656 };
657 
658 
659 // Union used for customized checking of the IEEE double types
660 // inlined within v8 runtime, rather than going to the underlying
661 // platform headers and libraries
662 union IeeeDoubleLittleEndianArchType {
663   double d;
664   struct {
665     unsigned int man_low  :32;
666     unsigned int man_high :20;
667     unsigned int exp      :11;
668     unsigned int sign     :1;
669   } bits;
670 };
671 
672 
673 union IeeeDoubleBigEndianArchType {
674   double d;
675   struct {
676     unsigned int sign     :1;
677     unsigned int exp      :11;
678     unsigned int man_high :20;
679     unsigned int man_low  :32;
680   } bits;
681 };
682 
683 #if V8_TARGET_LITTLE_ENDIAN
684 typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
685 const int kIeeeDoubleMantissaWordOffset = 0;
686 const int kIeeeDoubleExponentWordOffset = 4;
687 #else
688 typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
689 const int kIeeeDoubleMantissaWordOffset = 4;
690 const int kIeeeDoubleExponentWordOffset = 0;
691 #endif
692 
693 // AccessorCallback
694 struct AccessorDescriptor {
695   Object* (*getter)(Isolate* isolate, Object* object, void* data);
696   Object* (*setter)(
697       Isolate* isolate, JSObject* object, Object* value, void* data);
698   void* data;
699 };
700 
701 
702 // -----------------------------------------------------------------------------
703 // Macros
704 
705 // Testers for test.
706 
707 #define HAS_SMI_TAG(value) \
708   ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
709 
710 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
711 #define OBJECT_POINTER_ALIGN(value)                             \
712   (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
713 
714 // POINTER_SIZE_ALIGN returns the value aligned as a pointer.
715 #define POINTER_SIZE_ALIGN(value)                               \
716   (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
717 
718 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
719 #define CODE_POINTER_ALIGN(value)                               \
720   (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
721 
722 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
723 #define DOUBLE_POINTER_ALIGN(value) \
724   (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
725 
726 
727 // CPU feature flags.
728 enum CpuFeature {
729   // x86
730   SSE4_1,
731   SSE3,
732   SAHF,
733   AVX,
734   FMA3,
735   BMI1,
736   BMI2,
737   LZCNT,
738   POPCNT,
739   ATOM,
740   // ARM
741   VFP3,
742   ARMv7,
743   ARMv8,
744   SUDIV,
745   UNALIGNED_ACCESSES,
746   MOVW_MOVT_IMMEDIATE_LOADS,
747   VFP32DREGS,
748   NEON,
749   // MIPS, MIPS64
750   FPU,
751   FP64FPU,
752   MIPSr1,
753   MIPSr2,
754   MIPSr6,
755   // ARM64
756   ALWAYS_ALIGN_CSP,
757   // PPC
758   FPR_GPR_MOV,
759   LWSYNC,
760   ISELECT,
761   // S390
762   DISTINCT_OPS,
763   GENERAL_INSTR_EXT,
764   FLOATING_POINT_EXT,
765   NUMBER_OF_CPU_FEATURES
766 };
767 
768 // Defines hints about receiver values based on structural knowledge.
769 enum class ConvertReceiverMode : unsigned {
770   kNullOrUndefined,     // Guaranteed to be null or undefined.
771   kNotNullOrUndefined,  // Guaranteed to never be null or undefined.
772   kAny                  // No specific knowledge about receiver.
773 };
774 
hash_value(ConvertReceiverMode mode)775 inline size_t hash_value(ConvertReceiverMode mode) {
776   return bit_cast<unsigned>(mode);
777 }
778 
779 inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
780   switch (mode) {
781     case ConvertReceiverMode::kNullOrUndefined:
782       return os << "NULL_OR_UNDEFINED";
783     case ConvertReceiverMode::kNotNullOrUndefined:
784       return os << "NOT_NULL_OR_UNDEFINED";
785     case ConvertReceiverMode::kAny:
786       return os << "ANY";
787   }
788   UNREACHABLE();
789   return os;
790 }
791 
792 // Defines whether tail call optimization is allowed.
793 enum class TailCallMode : unsigned { kAllow, kDisallow };
794 
hash_value(TailCallMode mode)795 inline size_t hash_value(TailCallMode mode) { return bit_cast<unsigned>(mode); }
796 
797 inline std::ostream& operator<<(std::ostream& os, TailCallMode mode) {
798   switch (mode) {
799     case TailCallMode::kAllow:
800       return os << "ALLOW_TAIL_CALLS";
801     case TailCallMode::kDisallow:
802       return os << "DISALLOW_TAIL_CALLS";
803   }
804   UNREACHABLE();
805   return os;
806 }
807 
808 // Defines specifics about arguments object or rest parameter creation.
809 enum class CreateArgumentsType : uint8_t {
810   kMappedArguments,
811   kUnmappedArguments,
812   kRestParameter
813 };
814 
hash_value(CreateArgumentsType type)815 inline size_t hash_value(CreateArgumentsType type) {
816   return bit_cast<uint8_t>(type);
817 }
818 
819 inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
820   switch (type) {
821     case CreateArgumentsType::kMappedArguments:
822       return os << "MAPPED_ARGUMENTS";
823     case CreateArgumentsType::kUnmappedArguments:
824       return os << "UNMAPPED_ARGUMENTS";
825     case CreateArgumentsType::kRestParameter:
826       return os << "REST_PARAMETER";
827   }
828   UNREACHABLE();
829   return os;
830 }
831 
832 // Used to specify if a macro instruction must perform a smi check on tagged
833 // values.
834 enum SmiCheckType {
835   DONT_DO_SMI_CHECK,
836   DO_SMI_CHECK
837 };
838 
839 
840 enum ScopeType {
841   EVAL_SCOPE,      // The top-level scope for an eval source.
842   FUNCTION_SCOPE,  // The top-level scope for a function.
843   MODULE_SCOPE,    // The scope introduced by a module literal
844   SCRIPT_SCOPE,    // The top-level scope for a script or a top-level eval.
845   CATCH_SCOPE,     // The scope introduced by catch.
846   BLOCK_SCOPE,     // The scope introduced by a new block.
847   WITH_SCOPE       // The scope introduced by with.
848 };
849 
850 // The mips architecture prior to revision 5 has inverted encoding for sNaN.
851 // The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from
852 // memmory.
853 // Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this
854 // issue
855 // for some test cases.
856 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6)) ||   \
857     (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6)) || \
858     (V8_TARGET_ARCH_X87)
859 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
860 const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
861 #else
862 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
863 const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
864 #endif
865 
866 const uint64_t kHoleNanInt64 =
867     (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
868 
869 
870 // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
871 const double kMaxSafeInteger = 9007199254740991.0;  // 2^53-1
872 
873 
874 // The order of this enum has to be kept in sync with the predicates below.
875 enum VariableMode {
876   // User declared variables:
877   VAR,  // declared via 'var', and 'function' declarations
878 
879   CONST_LEGACY,  // declared via legacy 'const' declarations
880 
881   LET,  // declared via 'let' declarations (first lexical)
882 
883   CONST,  // declared via 'const' declarations (last lexical)
884 
885   // Variables introduced by the compiler:
886   TEMPORARY,  // temporary variables (not user-visible), stack-allocated
887               // unless the scope as a whole has forced context allocation
888 
889   DYNAMIC,  // always require dynamic lookup (we don't know
890             // the declaration)
891 
892   DYNAMIC_GLOBAL,  // requires dynamic lookup, but we know that the
893                    // variable is global unless it has been shadowed
894                    // by an eval-introduced variable
895 
896   DYNAMIC_LOCAL  // requires dynamic lookup, but we know that the
897                  // variable is local and where it is unless it
898                  // has been shadowed by an eval-introduced
899                  // variable
900 };
901 
IsDynamicVariableMode(VariableMode mode)902 inline bool IsDynamicVariableMode(VariableMode mode) {
903   return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
904 }
905 
906 
IsDeclaredVariableMode(VariableMode mode)907 inline bool IsDeclaredVariableMode(VariableMode mode) {
908   return mode >= VAR && mode <= CONST;
909 }
910 
911 
IsLexicalVariableMode(VariableMode mode)912 inline bool IsLexicalVariableMode(VariableMode mode) {
913   return mode >= LET && mode <= CONST;
914 }
915 
916 
IsImmutableVariableMode(VariableMode mode)917 inline bool IsImmutableVariableMode(VariableMode mode) {
918   return mode == CONST || mode == CONST_LEGACY;
919 }
920 
921 
922 enum class VariableLocation {
923   // Before and during variable allocation, a variable whose location is
924   // not yet determined.  After allocation, a variable looked up as a
925   // property on the global object (and possibly absent).  name() is the
926   // variable name, index() is invalid.
927   UNALLOCATED,
928 
929   // A slot in the parameter section on the stack.  index() is the
930   // parameter index, counting left-to-right.  The receiver is index -1;
931   // the first parameter is index 0.
932   PARAMETER,
933 
934   // A slot in the local section on the stack.  index() is the variable
935   // index in the stack frame, starting at 0.
936   LOCAL,
937 
938   // An indexed slot in a heap context.  index() is the variable index in
939   // the context object on the heap, starting at 0.  scope() is the
940   // corresponding scope.
941   CONTEXT,
942 
943   // An indexed slot in a script context that contains a respective global
944   // property cell.  name() is the variable name, index() is the variable
945   // index in the context object on the heap, starting at 0.  scope() is the
946   // corresponding script scope.
947   GLOBAL,
948 
949   // A named slot in a heap context.  name() is the variable name in the
950   // context object on the heap, with lookup starting at the current
951   // context.  index() is invalid.
952   LOOKUP
953 };
954 
955 
956 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
957 // and immutable bindings that can be in two states: initialized and
958 // uninitialized. In ES5 only immutable bindings have these two states. When
959 // accessing a binding, it needs to be checked for initialization. However in
960 // the following cases the binding is initialized immediately after creation
961 // so the initialization check can always be skipped:
962 // 1. Var declared local variables.
963 //      var foo;
964 // 2. A local variable introduced by a function declaration.
965 //      function foo() {}
966 // 3. Parameters
967 //      function x(foo) {}
968 // 4. Catch bound variables.
969 //      try {} catch (foo) {}
970 // 6. Function variables of named function expressions.
971 //      var x = function foo() {}
972 // 7. Implicit binding of 'this'.
973 // 8. Implicit binding of 'arguments' in functions.
974 //
975 // ES5 specified object environment records which are introduced by ES elements
976 // such as Program and WithStatement that associate identifier bindings with the
977 // properties of some object. In the specification only mutable bindings exist
978 // (which may be non-writable) and have no distinct initialization step. However
979 // V8 allows const declarations in global code with distinct creation and
980 // initialization steps which are represented by non-writable properties in the
981 // global object. As a result also these bindings need to be checked for
982 // initialization.
983 //
984 // The following enum specifies a flag that indicates if the binding needs a
985 // distinct initialization step (kNeedsInitialization) or if the binding is
986 // immediately initialized upon creation (kCreatedInitialized).
987 enum InitializationFlag {
988   kNeedsInitialization,
989   kCreatedInitialized
990 };
991 
992 
993 enum MaybeAssignedFlag { kNotAssigned, kMaybeAssigned };
994 
995 
996 // Serialized in PreparseData, so numeric values should not be changed.
997 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
998 
999 
1000 enum MinusZeroMode {
1001   TREAT_MINUS_ZERO_AS_ZERO,
1002   FAIL_ON_MINUS_ZERO
1003 };
1004 
1005 
1006 enum Signedness { kSigned, kUnsigned };
1007 
1008 enum FunctionKind {
1009   kNormalFunction = 0,
1010   kArrowFunction = 1 << 0,
1011   kGeneratorFunction = 1 << 1,
1012   kConciseMethod = 1 << 2,
1013   kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
1014   kDefaultConstructor = 1 << 3,
1015   kSubclassConstructor = 1 << 4,
1016   kBaseConstructor = 1 << 5,
1017   kGetterFunction = 1 << 6,
1018   kSetterFunction = 1 << 7,
1019   kAsyncFunction = 1 << 8,
1020   kAccessorFunction = kGetterFunction | kSetterFunction,
1021   kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
1022   kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor,
1023   kClassConstructor =
1024       kBaseConstructor | kSubclassConstructor | kDefaultConstructor,
1025   kAsyncArrowFunction = kArrowFunction | kAsyncFunction,
1026   kAsyncConciseMethod = kAsyncFunction | kConciseMethod
1027 };
1028 
IsValidFunctionKind(FunctionKind kind)1029 inline bool IsValidFunctionKind(FunctionKind kind) {
1030   return kind == FunctionKind::kNormalFunction ||
1031          kind == FunctionKind::kArrowFunction ||
1032          kind == FunctionKind::kGeneratorFunction ||
1033          kind == FunctionKind::kConciseMethod ||
1034          kind == FunctionKind::kConciseGeneratorMethod ||
1035          kind == FunctionKind::kGetterFunction ||
1036          kind == FunctionKind::kSetterFunction ||
1037          kind == FunctionKind::kAccessorFunction ||
1038          kind == FunctionKind::kDefaultBaseConstructor ||
1039          kind == FunctionKind::kDefaultSubclassConstructor ||
1040          kind == FunctionKind::kBaseConstructor ||
1041          kind == FunctionKind::kSubclassConstructor ||
1042          kind == FunctionKind::kAsyncFunction ||
1043          kind == FunctionKind::kAsyncArrowFunction ||
1044          kind == FunctionKind::kAsyncConciseMethod;
1045 }
1046 
1047 
IsArrowFunction(FunctionKind kind)1048 inline bool IsArrowFunction(FunctionKind kind) {
1049   DCHECK(IsValidFunctionKind(kind));
1050   return kind & FunctionKind::kArrowFunction;
1051 }
1052 
1053 
IsGeneratorFunction(FunctionKind kind)1054 inline bool IsGeneratorFunction(FunctionKind kind) {
1055   DCHECK(IsValidFunctionKind(kind));
1056   return kind & FunctionKind::kGeneratorFunction;
1057 }
1058 
IsAsyncFunction(FunctionKind kind)1059 inline bool IsAsyncFunction(FunctionKind kind) {
1060   DCHECK(IsValidFunctionKind(kind));
1061   return kind & FunctionKind::kAsyncFunction;
1062 }
1063 
IsResumableFunction(FunctionKind kind)1064 inline bool IsResumableFunction(FunctionKind kind) {
1065   return IsGeneratorFunction(kind) || IsAsyncFunction(kind);
1066 }
1067 
IsConciseMethod(FunctionKind kind)1068 inline bool IsConciseMethod(FunctionKind kind) {
1069   DCHECK(IsValidFunctionKind(kind));
1070   return kind & FunctionKind::kConciseMethod;
1071 }
1072 
IsGetterFunction(FunctionKind kind)1073 inline bool IsGetterFunction(FunctionKind kind) {
1074   DCHECK(IsValidFunctionKind(kind));
1075   return kind & FunctionKind::kGetterFunction;
1076 }
1077 
IsSetterFunction(FunctionKind kind)1078 inline bool IsSetterFunction(FunctionKind kind) {
1079   DCHECK(IsValidFunctionKind(kind));
1080   return kind & FunctionKind::kSetterFunction;
1081 }
1082 
IsAccessorFunction(FunctionKind kind)1083 inline bool IsAccessorFunction(FunctionKind kind) {
1084   DCHECK(IsValidFunctionKind(kind));
1085   return kind & FunctionKind::kAccessorFunction;
1086 }
1087 
1088 
IsDefaultConstructor(FunctionKind kind)1089 inline bool IsDefaultConstructor(FunctionKind kind) {
1090   DCHECK(IsValidFunctionKind(kind));
1091   return kind & FunctionKind::kDefaultConstructor;
1092 }
1093 
1094 
IsBaseConstructor(FunctionKind kind)1095 inline bool IsBaseConstructor(FunctionKind kind) {
1096   DCHECK(IsValidFunctionKind(kind));
1097   return kind & FunctionKind::kBaseConstructor;
1098 }
1099 
1100 
IsSubclassConstructor(FunctionKind kind)1101 inline bool IsSubclassConstructor(FunctionKind kind) {
1102   DCHECK(IsValidFunctionKind(kind));
1103   return kind & FunctionKind::kSubclassConstructor;
1104 }
1105 
1106 
IsClassConstructor(FunctionKind kind)1107 inline bool IsClassConstructor(FunctionKind kind) {
1108   DCHECK(IsValidFunctionKind(kind));
1109   return kind & FunctionKind::kClassConstructor;
1110 }
1111 
1112 
IsConstructable(FunctionKind kind,LanguageMode mode)1113 inline bool IsConstructable(FunctionKind kind, LanguageMode mode) {
1114   if (IsAccessorFunction(kind)) return false;
1115   if (IsConciseMethod(kind)) return false;
1116   if (IsArrowFunction(kind)) return false;
1117   if (IsGeneratorFunction(kind)) return false;
1118   if (IsAsyncFunction(kind)) return false;
1119   return true;
1120 }
1121 
1122 
ObjectHash(Address address)1123 inline uint32_t ObjectHash(Address address) {
1124   // All objects are at least pointer aligned, so we can remove the trailing
1125   // zeros.
1126   return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >>
1127                                kPointerSizeLog2);
1128 }
1129 
1130 }  // namespace internal
1131 }  // namespace v8
1132 
1133 namespace i = v8::internal;
1134 
1135 #endif  // V8_GLOBALS_H_
1136