1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_GLOBALS_H_
6 #define V8_GLOBALS_H_
7
8 #include <stddef.h>
9 #include <stdint.h>
10
11 #include <ostream>
12
13 #include "src/base/build_config.h"
14 #include "src/base/logging.h"
15 #include "src/base/macros.h"
16
17 // Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
18 // warning flag and certain versions of GCC due to a bug:
19 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
20 // For now, we use the more involved template-based version from <limits>, but
21 // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
22 #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
23 # include <limits> // NOLINT
24 # define V8_INFINITY std::numeric_limits<double>::infinity()
25 #elif V8_LIBC_MSVCRT
26 # define V8_INFINITY HUGE_VAL
27 #elif V8_OS_AIX
28 #define V8_INFINITY (__builtin_inff())
29 #else
30 # define V8_INFINITY INFINITY
31 #endif
32
33 namespace v8 {
34
35 namespace base {
36 class Mutex;
37 class RecursiveMutex;
38 class VirtualMemory;
39 }
40
41 namespace internal {
42
43 // Determine whether we are running in a simulated environment.
44 // Setting USE_SIMULATOR explicitly from the build script will force
45 // the use of a simulated environment.
46 #if !defined(USE_SIMULATOR)
47 #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
48 #define USE_SIMULATOR 1
49 #endif
50 #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
51 #define USE_SIMULATOR 1
52 #endif
53 #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
54 #define USE_SIMULATOR 1
55 #endif
56 #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
57 #define USE_SIMULATOR 1
58 #endif
59 #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
60 #define USE_SIMULATOR 1
61 #endif
62 #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
63 #define USE_SIMULATOR 1
64 #endif
65 #endif
66
67 // Determine whether the architecture uses an embedded constant pool
68 // (contiguous constant pool embedded in code object).
69 #if V8_TARGET_ARCH_PPC
70 #define V8_EMBEDDED_CONSTANT_POOL 1
71 #else
72 #define V8_EMBEDDED_CONSTANT_POOL 0
73 #endif
74
75 #ifdef V8_TARGET_ARCH_ARM
76 // Set stack limit lower for ARM than for other architectures because
77 // stack allocating MacroAssembler takes 120K bytes.
78 // See issue crbug.com/405338
79 #define V8_DEFAULT_STACK_SIZE_KB 864
80 #else
81 // Slightly less than 1MB, since Windows' default stack size for
82 // the main execution thread is 1MB for both 32 and 64-bit.
83 #define V8_DEFAULT_STACK_SIZE_KB 984
84 #endif
85
86
87 // Determine whether double field unboxing feature is enabled.
88 #if V8_TARGET_ARCH_64_BIT
89 #define V8_DOUBLE_FIELDS_UNBOXING 1
90 #else
91 #define V8_DOUBLE_FIELDS_UNBOXING 0
92 #endif
93
94
95 typedef uint8_t byte;
96 typedef byte* Address;
97
98 // -----------------------------------------------------------------------------
99 // Constants
100
101 const int KB = 1024;
102 const int MB = KB * KB;
103 const int GB = KB * KB * KB;
104 const int kMaxInt = 0x7FFFFFFF;
105 const int kMinInt = -kMaxInt - 1;
106 const int kMaxInt8 = (1 << 7) - 1;
107 const int kMinInt8 = -(1 << 7);
108 const int kMaxUInt8 = (1 << 8) - 1;
109 const int kMinUInt8 = 0;
110 const int kMaxInt16 = (1 << 15) - 1;
111 const int kMinInt16 = -(1 << 15);
112 const int kMaxUInt16 = (1 << 16) - 1;
113 const int kMinUInt16 = 0;
114
115 const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
116 const int kMinUInt32 = 0;
117
118 const int kCharSize = sizeof(char); // NOLINT
119 const int kShortSize = sizeof(short); // NOLINT
120 const int kIntSize = sizeof(int); // NOLINT
121 const int kInt32Size = sizeof(int32_t); // NOLINT
122 const int kInt64Size = sizeof(int64_t); // NOLINT
123 const int kFloatSize = sizeof(float); // NOLINT
124 const int kDoubleSize = sizeof(double); // NOLINT
125 const int kIntptrSize = sizeof(intptr_t); // NOLINT
126 const int kPointerSize = sizeof(void*); // NOLINT
127 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
128 const int kRegisterSize = kPointerSize + kPointerSize;
129 #else
130 const int kRegisterSize = kPointerSize;
131 #endif
132 const int kPCOnStackSize = kRegisterSize;
133 const int kFPOnStackSize = kRegisterSize;
134
135 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
136 const int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
137 #else
138 const int kElidedFrameSlots = 0;
139 #endif
140
141 const int kDoubleSizeLog2 = 3;
142
143 #if V8_HOST_ARCH_64_BIT
144 const int kPointerSizeLog2 = 3;
145 const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
146 const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
147 const bool kRequiresCodeRange = true;
148 #if V8_TARGET_ARCH_MIPS64
149 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit
150 // encoded immediate, the addresses have to be in range of 256MB aligned
151 // region. Used only for large object space.
152 const size_t kMaximalCodeRangeSize = 256 * MB;
153 const size_t kCodeRangeAreaAlignment = 256 * MB;
154 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
155 const size_t kMaximalCodeRangeSize = 512 * MB;
156 const size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux
157 #else
158 const size_t kMaximalCodeRangeSize = 512 * MB;
159 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
160 #endif
161 #if V8_OS_WIN
162 const size_t kMinimumCodeRangeSize = 4 * MB;
163 const size_t kReservedCodeRangePages = 1;
164 // On PPC Linux PageSize is 4MB
165 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
166 const size_t kMinimumCodeRangeSize = 12 * MB;
167 const size_t kReservedCodeRangePages = 0;
168 #else
169 const size_t kMinimumCodeRangeSize = 3 * MB;
170 const size_t kReservedCodeRangePages = 0;
171 #endif
172 #else
173 const int kPointerSizeLog2 = 2;
174 const intptr_t kIntptrSignBit = 0x80000000;
175 const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
176 #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
177 // x32 port also requires code range.
178 const bool kRequiresCodeRange = true;
179 const size_t kMaximalCodeRangeSize = 256 * MB;
180 const size_t kMinimumCodeRangeSize = 3 * MB;
181 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
182 #elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
183 const bool kRequiresCodeRange = false;
184 const size_t kMaximalCodeRangeSize = 0 * MB;
185 const size_t kMinimumCodeRangeSize = 0 * MB;
186 const size_t kCodeRangeAreaAlignment = 64 * KB; // OS page on PPC Linux
187 #else
188 const bool kRequiresCodeRange = false;
189 const size_t kMaximalCodeRangeSize = 0 * MB;
190 const size_t kMinimumCodeRangeSize = 0 * MB;
191 const size_t kCodeRangeAreaAlignment = 4 * KB; // OS page.
192 #endif
193 const size_t kReservedCodeRangePages = 0;
194 #endif
195
196 // The external allocation limit should be below 256 MB on all architectures
197 // to avoid that resource-constrained embedders run low on memory.
198 const int kExternalAllocationLimit = 192 * 1024 * 1024;
199
200 STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
201
202 const int kBitsPerByte = 8;
203 const int kBitsPerByteLog2 = 3;
204 const int kBitsPerPointer = kPointerSize * kBitsPerByte;
205 const int kBitsPerInt = kIntSize * kBitsPerByte;
206
207 // IEEE 754 single precision floating point number bit layout.
208 const uint32_t kBinary32SignMask = 0x80000000u;
209 const uint32_t kBinary32ExponentMask = 0x7f800000u;
210 const uint32_t kBinary32MantissaMask = 0x007fffffu;
211 const int kBinary32ExponentBias = 127;
212 const int kBinary32MaxExponent = 0xFE;
213 const int kBinary32MinExponent = 0x01;
214 const int kBinary32MantissaBits = 23;
215 const int kBinary32ExponentShift = 23;
216
217 // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
218 // other bits set.
219 const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
220
221 // Latin1/UTF-16 constants
222 // Code-point values in Unicode 4.0 are 21 bits wide.
223 // Code units in UTF-16 are 16 bits wide.
224 typedef uint16_t uc16;
225 typedef int32_t uc32;
226 const int kOneByteSize = kCharSize;
227 const int kUC16Size = sizeof(uc16); // NOLINT
228
229 // 128 bit SIMD value size.
230 const int kSimd128Size = 16;
231
232 // Round up n to be a multiple of sz, where sz is a power of 2.
233 #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
234
235
236 // FUNCTION_ADDR(f) gets the address of a C function f.
237 #define FUNCTION_ADDR(f) \
238 (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
239
240
241 // FUNCTION_CAST<F>(addr) casts an address into a function
242 // of type F. Used to invoke generated code from within C.
243 template <typename F>
FUNCTION_CAST(Address addr)244 F FUNCTION_CAST(Address addr) {
245 return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
246 }
247
248
249 // Determine whether the architecture uses function descriptors
250 // which provide a level of indirection between the function pointer
251 // and the function entrypoint.
252 #if V8_HOST_ARCH_PPC && \
253 (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
254 #define USES_FUNCTION_DESCRIPTORS 1
255 #define FUNCTION_ENTRYPOINT_ADDRESS(f) \
256 (reinterpret_cast<v8::internal::Address*>( \
257 &(reinterpret_cast<intptr_t*>(f)[0])))
258 #else
259 #define USES_FUNCTION_DESCRIPTORS 0
260 #endif
261
262
263 // -----------------------------------------------------------------------------
264 // Forward declarations for frequently used classes
265 // (sorted alphabetically)
266
267 class FreeStoreAllocationPolicy;
268 template <typename T, class P = FreeStoreAllocationPolicy> class List;
269
270 // -----------------------------------------------------------------------------
271 // Declarations for use in both the preparser and the rest of V8.
272
273 // The Strict Mode (ECMA-262 5th edition, 4.2.2).
274
275 enum LanguageMode { SLOPPY, STRICT, LANGUAGE_END = 3 };
276
277
278 inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
279 switch (mode) {
280 case SLOPPY: return os << "sloppy";
281 case STRICT: return os << "strict";
282 default: UNREACHABLE();
283 }
284 return os;
285 }
286
287
is_sloppy(LanguageMode language_mode)288 inline bool is_sloppy(LanguageMode language_mode) {
289 return language_mode == SLOPPY;
290 }
291
292
is_strict(LanguageMode language_mode)293 inline bool is_strict(LanguageMode language_mode) {
294 return language_mode != SLOPPY;
295 }
296
297
is_valid_language_mode(int language_mode)298 inline bool is_valid_language_mode(int language_mode) {
299 return language_mode == SLOPPY || language_mode == STRICT;
300 }
301
302
construct_language_mode(bool strict_bit)303 inline LanguageMode construct_language_mode(bool strict_bit) {
304 return static_cast<LanguageMode>(strict_bit);
305 }
306
307
308 // Mask for the sign bit in a smi.
309 const intptr_t kSmiSignMask = kIntptrSignBit;
310
311 const int kObjectAlignmentBits = kPointerSizeLog2;
312 const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
313 const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
314
315 // Desired alignment for pointers.
316 const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
317 const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
318
319 // Desired alignment for double values.
320 const intptr_t kDoubleAlignment = 8;
321 const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
322
323 // Desired alignment for 128 bit SIMD values.
324 const intptr_t kSimd128Alignment = 16;
325 const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1;
326
327 // Desired alignment for generated code is 32 bytes (to improve cache line
328 // utilization).
329 const int kCodeAlignmentBits = 5;
330 const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
331 const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
332
333 // The owner field of a page is tagged with the page header tag. We need that
334 // to find out if a slot is part of a large object. If we mask out the lower
335 // 0xfffff bits (1M pages), go to the owner offset, and see that this field
336 // is tagged with the page header tag, we can just look up the owner.
337 // Otherwise, we know that we are somewhere (not within the first 1M) in a
338 // large object.
339 const int kPageHeaderTag = 3;
340 const int kPageHeaderTagSize = 2;
341 const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
342
343
344 // Zap-value: The value used for zapping dead objects.
345 // Should be a recognizable hex value tagged as a failure.
346 #ifdef V8_HOST_ARCH_64_BIT
347 const Address kZapValue =
348 reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
349 const Address kHandleZapValue =
350 reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
351 const Address kGlobalHandleZapValue =
352 reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
353 const Address kFromSpaceZapValue =
354 reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
355 const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
356 const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
357 const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
358 #else
359 const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
360 const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
361 const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
362 const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
363 const uint32_t kSlotsZapValue = 0xbeefdeef;
364 const uint32_t kDebugZapValue = 0xbadbaddb;
365 const uint32_t kFreeListZapValue = 0xfeed1eaf;
366 #endif
367
368 const int kCodeZapValue = 0xbadc0de;
369 const uint32_t kPhantomReferenceZap = 0xca11bac;
370
371 // On Intel architecture, cache line size is 64 bytes.
372 // On ARM it may be less (32 bytes), but as far this constant is
373 // used for aligning data, it doesn't hurt to align on a greater value.
374 #define PROCESSOR_CACHE_LINE_SIZE 64
375
376 // Constants relevant to double precision floating point numbers.
377 // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
378 const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
379
380
381 // -----------------------------------------------------------------------------
382 // Forward declarations for frequently used classes
383
384 class AccessorInfo;
385 class Allocation;
386 class Arguments;
387 class Assembler;
388 class Code;
389 class CodeGenerator;
390 class CodeStub;
391 class Context;
392 class Debug;
393 class DebugInfo;
394 class Descriptor;
395 class DescriptorArray;
396 class TransitionArray;
397 class ExternalReference;
398 class FixedArray;
399 class FunctionTemplateInfo;
400 class MemoryChunk;
401 class SeededNumberDictionary;
402 class UnseededNumberDictionary;
403 class NameDictionary;
404 class GlobalDictionary;
405 template <typename T> class MaybeHandle;
406 template <typename T> class Handle;
407 class Heap;
408 class HeapObject;
409 class IC;
410 class InterceptorInfo;
411 class Isolate;
412 class JSReceiver;
413 class JSArray;
414 class JSFunction;
415 class JSObject;
416 class LargeObjectSpace;
417 class MacroAssembler;
418 class Map;
419 class MapSpace;
420 class MarkCompactCollector;
421 class NewSpace;
422 class Object;
423 class OldSpace;
424 class ParameterCount;
425 class Foreign;
426 class Scope;
427 class ScopeInfo;
428 class Script;
429 class Smi;
430 template <typename Config, class Allocator = FreeStoreAllocationPolicy>
431 class SplayTree;
432 class String;
433 class Symbol;
434 class Name;
435 class Struct;
436 class TypeFeedbackVector;
437 class Variable;
438 class RelocInfo;
439 class Deserializer;
440 class MessageLocation;
441
442 typedef bool (*WeakSlotCallback)(Object** pointer);
443
444 typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
445
446 // -----------------------------------------------------------------------------
447 // Miscellaneous
448
449 // NOTE: SpaceIterator depends on AllocationSpace enumeration values being
450 // consecutive.
451 // Keep this enum in sync with the ObjectSpace enum in v8.h
452 enum AllocationSpace {
453 NEW_SPACE, // Semispaces collected with copying collector.
454 OLD_SPACE, // May contain pointers to new space.
455 CODE_SPACE, // No pointers to new space, marked executable.
456 MAP_SPACE, // Only and all map objects.
457 LO_SPACE, // Promoted large objects.
458
459 FIRST_SPACE = NEW_SPACE,
460 LAST_SPACE = LO_SPACE,
461 FIRST_PAGED_SPACE = OLD_SPACE,
462 LAST_PAGED_SPACE = MAP_SPACE
463 };
464 const int kSpaceTagSize = 3;
465 const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
466
467 enum AllocationAlignment {
468 kWordAligned,
469 kDoubleAligned,
470 kDoubleUnaligned,
471 kSimd128Unaligned
472 };
473
474 // Possible outcomes for decisions.
475 enum class Decision : uint8_t { kUnknown, kTrue, kFalse };
476
hash_value(Decision decision)477 inline size_t hash_value(Decision decision) {
478 return static_cast<uint8_t>(decision);
479 }
480
481 inline std::ostream& operator<<(std::ostream& os, Decision decision) {
482 switch (decision) {
483 case Decision::kUnknown:
484 return os << "Unknown";
485 case Decision::kTrue:
486 return os << "True";
487 case Decision::kFalse:
488 return os << "False";
489 }
490 UNREACHABLE();
491 return os;
492 }
493
494 // Supported write barrier modes.
495 enum WriteBarrierKind : uint8_t {
496 kNoWriteBarrier,
497 kMapWriteBarrier,
498 kPointerWriteBarrier,
499 kFullWriteBarrier
500 };
501
hash_value(WriteBarrierKind kind)502 inline size_t hash_value(WriteBarrierKind kind) {
503 return static_cast<uint8_t>(kind);
504 }
505
506 inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
507 switch (kind) {
508 case kNoWriteBarrier:
509 return os << "NoWriteBarrier";
510 case kMapWriteBarrier:
511 return os << "MapWriteBarrier";
512 case kPointerWriteBarrier:
513 return os << "PointerWriteBarrier";
514 case kFullWriteBarrier:
515 return os << "FullWriteBarrier";
516 }
517 UNREACHABLE();
518 return os;
519 }
520
521 // A flag that indicates whether objects should be pretenured when
522 // allocated (allocated directly into the old generation) or not
523 // (allocated in the young generation if the object size and type
524 // allows).
525 enum PretenureFlag { NOT_TENURED, TENURED };
526
527 inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
528 switch (flag) {
529 case NOT_TENURED:
530 return os << "NotTenured";
531 case TENURED:
532 return os << "Tenured";
533 }
534 UNREACHABLE();
535 return os;
536 }
537
538 enum MinimumCapacity {
539 USE_DEFAULT_MINIMUM_CAPACITY,
540 USE_CUSTOM_MINIMUM_CAPACITY
541 };
542
543 enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };
544
545 enum Executability { NOT_EXECUTABLE, EXECUTABLE };
546
547 enum VisitMode {
548 VISIT_ALL,
549 VISIT_ALL_IN_SCAVENGE,
550 VISIT_ALL_IN_SWEEP_NEWSPACE,
551 VISIT_ONLY_STRONG,
552 VISIT_ONLY_STRONG_FOR_SERIALIZATION,
553 VISIT_ONLY_STRONG_ROOT_LIST,
554 };
555
556 // Flag indicating whether code is built into the VM (one of the natives files).
557 enum NativesFlag { NOT_NATIVES_CODE, EXTENSION_CODE, NATIVES_CODE };
558
559 // JavaScript defines two kinds of 'nil'.
560 enum NilValue { kNullValue, kUndefinedValue };
561
562 // ParseRestriction is used to restrict the set of valid statements in a
563 // unit of compilation. Restriction violations cause a syntax error.
564 enum ParseRestriction {
565 NO_PARSE_RESTRICTION, // All expressions are allowed.
566 ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
567 };
568
569 // A CodeDesc describes a buffer holding instructions and relocation
570 // information. The instructions start at the beginning of the buffer
571 // and grow forward, the relocation information starts at the end of
572 // the buffer and grows backward. A constant pool may exist at the
573 // end of the instructions.
574 //
575 // |<--------------- buffer_size ----------------------------------->|
576 // |<------------- instr_size ---------->| |<-- reloc_size -->|
577 // | |<- const_pool_size ->| |
578 // +=====================================+========+==================+
579 // | instructions | data | free | reloc info |
580 // +=====================================+========+==================+
581 // ^
582 // |
583 // buffer
584
585 struct CodeDesc {
586 byte* buffer;
587 int buffer_size;
588 int instr_size;
589 int reloc_size;
590 int constant_pool_size;
591 byte* unwinding_info;
592 int unwinding_info_size;
593 Assembler* origin;
594 };
595
596
597 // Callback function used for checking constraints when copying/relocating
598 // objects. Returns true if an object can be copied/relocated from its
599 // old_addr to a new_addr.
600 typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
601
602
603 // Callback function on inline caches, used for iterating over inline caches
604 // in compiled code.
605 typedef void (*InlineCacheCallback)(Code* code, Address ic);
606
607
608 // State for inline cache call sites. Aliased as IC::State.
609 enum InlineCacheState {
610 // Has never been executed.
611 UNINITIALIZED,
612 // Has been executed but monomorhic state has been delayed.
613 PREMONOMORPHIC,
614 // Has been executed and only one receiver type has been seen.
615 MONOMORPHIC,
616 // Check failed due to prototype (or map deprecation).
617 RECOMPUTE_HANDLER,
618 // Multiple receiver types have been seen.
619 POLYMORPHIC,
620 // Many receiver types have been seen.
621 MEGAMORPHIC,
622 // A generic handler is installed and no extra typefeedback is recorded.
623 GENERIC,
624 };
625
626 enum CacheHolderFlag {
627 kCacheOnPrototype,
628 kCacheOnPrototypeReceiverIsDictionary,
629 kCacheOnPrototypeReceiverIsPrimitive,
630 kCacheOnReceiver
631 };
632
633 enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
634
635 // The Store Buffer (GC).
636 typedef enum {
637 kStoreBufferFullEvent,
638 kStoreBufferStartScanningPagesEvent,
639 kStoreBufferScanningPageEvent
640 } StoreBufferEvent;
641
642
643 typedef void (*StoreBufferCallback)(Heap* heap,
644 MemoryChunk* page,
645 StoreBufferEvent event);
646
647
648 // Union used for fast testing of specific double values.
649 union DoubleRepresentation {
650 double value;
651 int64_t bits;
DoubleRepresentation(double x)652 DoubleRepresentation(double x) { value = x; }
653 bool operator==(const DoubleRepresentation& other) const {
654 return bits == other.bits;
655 }
656 };
657
658
659 // Union used for customized checking of the IEEE double types
660 // inlined within v8 runtime, rather than going to the underlying
661 // platform headers and libraries
662 union IeeeDoubleLittleEndianArchType {
663 double d;
664 struct {
665 unsigned int man_low :32;
666 unsigned int man_high :20;
667 unsigned int exp :11;
668 unsigned int sign :1;
669 } bits;
670 };
671
672
673 union IeeeDoubleBigEndianArchType {
674 double d;
675 struct {
676 unsigned int sign :1;
677 unsigned int exp :11;
678 unsigned int man_high :20;
679 unsigned int man_low :32;
680 } bits;
681 };
682
683 #if V8_TARGET_LITTLE_ENDIAN
684 typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
685 const int kIeeeDoubleMantissaWordOffset = 0;
686 const int kIeeeDoubleExponentWordOffset = 4;
687 #else
688 typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
689 const int kIeeeDoubleMantissaWordOffset = 4;
690 const int kIeeeDoubleExponentWordOffset = 0;
691 #endif
692
693 // AccessorCallback
694 struct AccessorDescriptor {
695 Object* (*getter)(Isolate* isolate, Object* object, void* data);
696 Object* (*setter)(
697 Isolate* isolate, JSObject* object, Object* value, void* data);
698 void* data;
699 };
700
701
702 // -----------------------------------------------------------------------------
703 // Macros
704
705 // Testers for test.
706
707 #define HAS_SMI_TAG(value) \
708 ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
709
710 // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
711 #define OBJECT_POINTER_ALIGN(value) \
712 (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
713
714 // POINTER_SIZE_ALIGN returns the value aligned as a pointer.
715 #define POINTER_SIZE_ALIGN(value) \
716 (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
717
718 // CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
719 #define CODE_POINTER_ALIGN(value) \
720 (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
721
722 // DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
723 #define DOUBLE_POINTER_ALIGN(value) \
724 (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
725
726
727 // CPU feature flags.
728 enum CpuFeature {
729 // x86
730 SSE4_1,
731 SSE3,
732 SAHF,
733 AVX,
734 FMA3,
735 BMI1,
736 BMI2,
737 LZCNT,
738 POPCNT,
739 ATOM,
740 // ARM
741 VFP3,
742 ARMv7,
743 ARMv8,
744 SUDIV,
745 UNALIGNED_ACCESSES,
746 MOVW_MOVT_IMMEDIATE_LOADS,
747 VFP32DREGS,
748 NEON,
749 // MIPS, MIPS64
750 FPU,
751 FP64FPU,
752 MIPSr1,
753 MIPSr2,
754 MIPSr6,
755 // ARM64
756 ALWAYS_ALIGN_CSP,
757 // PPC
758 FPR_GPR_MOV,
759 LWSYNC,
760 ISELECT,
761 // S390
762 DISTINCT_OPS,
763 GENERAL_INSTR_EXT,
764 FLOATING_POINT_EXT,
765 NUMBER_OF_CPU_FEATURES
766 };
767
768 // Defines hints about receiver values based on structural knowledge.
769 enum class ConvertReceiverMode : unsigned {
770 kNullOrUndefined, // Guaranteed to be null or undefined.
771 kNotNullOrUndefined, // Guaranteed to never be null or undefined.
772 kAny // No specific knowledge about receiver.
773 };
774
hash_value(ConvertReceiverMode mode)775 inline size_t hash_value(ConvertReceiverMode mode) {
776 return bit_cast<unsigned>(mode);
777 }
778
779 inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
780 switch (mode) {
781 case ConvertReceiverMode::kNullOrUndefined:
782 return os << "NULL_OR_UNDEFINED";
783 case ConvertReceiverMode::kNotNullOrUndefined:
784 return os << "NOT_NULL_OR_UNDEFINED";
785 case ConvertReceiverMode::kAny:
786 return os << "ANY";
787 }
788 UNREACHABLE();
789 return os;
790 }
791
792 // Defines whether tail call optimization is allowed.
793 enum class TailCallMode : unsigned { kAllow, kDisallow };
794
hash_value(TailCallMode mode)795 inline size_t hash_value(TailCallMode mode) { return bit_cast<unsigned>(mode); }
796
797 inline std::ostream& operator<<(std::ostream& os, TailCallMode mode) {
798 switch (mode) {
799 case TailCallMode::kAllow:
800 return os << "ALLOW_TAIL_CALLS";
801 case TailCallMode::kDisallow:
802 return os << "DISALLOW_TAIL_CALLS";
803 }
804 UNREACHABLE();
805 return os;
806 }
807
808 // Defines specifics about arguments object or rest parameter creation.
809 enum class CreateArgumentsType : uint8_t {
810 kMappedArguments,
811 kUnmappedArguments,
812 kRestParameter
813 };
814
hash_value(CreateArgumentsType type)815 inline size_t hash_value(CreateArgumentsType type) {
816 return bit_cast<uint8_t>(type);
817 }
818
819 inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
820 switch (type) {
821 case CreateArgumentsType::kMappedArguments:
822 return os << "MAPPED_ARGUMENTS";
823 case CreateArgumentsType::kUnmappedArguments:
824 return os << "UNMAPPED_ARGUMENTS";
825 case CreateArgumentsType::kRestParameter:
826 return os << "REST_PARAMETER";
827 }
828 UNREACHABLE();
829 return os;
830 }
831
832 // Used to specify if a macro instruction must perform a smi check on tagged
833 // values.
834 enum SmiCheckType {
835 DONT_DO_SMI_CHECK,
836 DO_SMI_CHECK
837 };
838
839
840 enum ScopeType {
841 EVAL_SCOPE, // The top-level scope for an eval source.
842 FUNCTION_SCOPE, // The top-level scope for a function.
843 MODULE_SCOPE, // The scope introduced by a module literal
844 SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval.
845 CATCH_SCOPE, // The scope introduced by catch.
846 BLOCK_SCOPE, // The scope introduced by a new block.
847 WITH_SCOPE // The scope introduced by with.
848 };
849
850 // The mips architecture prior to revision 5 has inverted encoding for sNaN.
851 // The x87 FPU convert the sNaN to qNaN automatically when loading sNaN from
852 // memmory.
853 // Use mips sNaN which is a not used qNaN in x87 port as sNaN to workaround this
854 // issue
855 // for some test cases.
856 #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6)) || \
857 (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6)) || \
858 (V8_TARGET_ARCH_X87)
859 const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
860 const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
861 #else
862 const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
863 const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
864 #endif
865
866 const uint64_t kHoleNanInt64 =
867 (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
868
869
870 // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
871 const double kMaxSafeInteger = 9007199254740991.0; // 2^53-1
872
873
874 // The order of this enum has to be kept in sync with the predicates below.
875 enum VariableMode {
876 // User declared variables:
877 VAR, // declared via 'var', and 'function' declarations
878
879 CONST_LEGACY, // declared via legacy 'const' declarations
880
881 LET, // declared via 'let' declarations (first lexical)
882
883 CONST, // declared via 'const' declarations (last lexical)
884
885 // Variables introduced by the compiler:
886 TEMPORARY, // temporary variables (not user-visible), stack-allocated
887 // unless the scope as a whole has forced context allocation
888
889 DYNAMIC, // always require dynamic lookup (we don't know
890 // the declaration)
891
892 DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the
893 // variable is global unless it has been shadowed
894 // by an eval-introduced variable
895
896 DYNAMIC_LOCAL // requires dynamic lookup, but we know that the
897 // variable is local and where it is unless it
898 // has been shadowed by an eval-introduced
899 // variable
900 };
901
IsDynamicVariableMode(VariableMode mode)902 inline bool IsDynamicVariableMode(VariableMode mode) {
903 return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
904 }
905
906
IsDeclaredVariableMode(VariableMode mode)907 inline bool IsDeclaredVariableMode(VariableMode mode) {
908 return mode >= VAR && mode <= CONST;
909 }
910
911
IsLexicalVariableMode(VariableMode mode)912 inline bool IsLexicalVariableMode(VariableMode mode) {
913 return mode >= LET && mode <= CONST;
914 }
915
916
IsImmutableVariableMode(VariableMode mode)917 inline bool IsImmutableVariableMode(VariableMode mode) {
918 return mode == CONST || mode == CONST_LEGACY;
919 }
920
921
922 enum class VariableLocation {
923 // Before and during variable allocation, a variable whose location is
924 // not yet determined. After allocation, a variable looked up as a
925 // property on the global object (and possibly absent). name() is the
926 // variable name, index() is invalid.
927 UNALLOCATED,
928
929 // A slot in the parameter section on the stack. index() is the
930 // parameter index, counting left-to-right. The receiver is index -1;
931 // the first parameter is index 0.
932 PARAMETER,
933
934 // A slot in the local section on the stack. index() is the variable
935 // index in the stack frame, starting at 0.
936 LOCAL,
937
938 // An indexed slot in a heap context. index() is the variable index in
939 // the context object on the heap, starting at 0. scope() is the
940 // corresponding scope.
941 CONTEXT,
942
943 // An indexed slot in a script context that contains a respective global
944 // property cell. name() is the variable name, index() is the variable
945 // index in the context object on the heap, starting at 0. scope() is the
946 // corresponding script scope.
947 GLOBAL,
948
949 // A named slot in a heap context. name() is the variable name in the
950 // context object on the heap, with lookup starting at the current
951 // context. index() is invalid.
952 LOOKUP
953 };
954
955
956 // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
957 // and immutable bindings that can be in two states: initialized and
958 // uninitialized. In ES5 only immutable bindings have these two states. When
959 // accessing a binding, it needs to be checked for initialization. However in
960 // the following cases the binding is initialized immediately after creation
961 // so the initialization check can always be skipped:
962 // 1. Var declared local variables.
963 // var foo;
964 // 2. A local variable introduced by a function declaration.
965 // function foo() {}
966 // 3. Parameters
967 // function x(foo) {}
968 // 4. Catch bound variables.
969 // try {} catch (foo) {}
970 // 6. Function variables of named function expressions.
971 // var x = function foo() {}
972 // 7. Implicit binding of 'this'.
973 // 8. Implicit binding of 'arguments' in functions.
974 //
975 // ES5 specified object environment records which are introduced by ES elements
976 // such as Program and WithStatement that associate identifier bindings with the
977 // properties of some object. In the specification only mutable bindings exist
978 // (which may be non-writable) and have no distinct initialization step. However
979 // V8 allows const declarations in global code with distinct creation and
980 // initialization steps which are represented by non-writable properties in the
981 // global object. As a result also these bindings need to be checked for
982 // initialization.
983 //
984 // The following enum specifies a flag that indicates if the binding needs a
985 // distinct initialization step (kNeedsInitialization) or if the binding is
986 // immediately initialized upon creation (kCreatedInitialized).
987 enum InitializationFlag {
988 kNeedsInitialization,
989 kCreatedInitialized
990 };
991
992
993 enum MaybeAssignedFlag { kNotAssigned, kMaybeAssigned };
994
995
996 // Serialized in PreparseData, so numeric values should not be changed.
997 enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
998
999
1000 enum MinusZeroMode {
1001 TREAT_MINUS_ZERO_AS_ZERO,
1002 FAIL_ON_MINUS_ZERO
1003 };
1004
1005
1006 enum Signedness { kSigned, kUnsigned };
1007
1008 enum FunctionKind {
1009 kNormalFunction = 0,
1010 kArrowFunction = 1 << 0,
1011 kGeneratorFunction = 1 << 1,
1012 kConciseMethod = 1 << 2,
1013 kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
1014 kDefaultConstructor = 1 << 3,
1015 kSubclassConstructor = 1 << 4,
1016 kBaseConstructor = 1 << 5,
1017 kGetterFunction = 1 << 6,
1018 kSetterFunction = 1 << 7,
1019 kAsyncFunction = 1 << 8,
1020 kAccessorFunction = kGetterFunction | kSetterFunction,
1021 kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
1022 kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor,
1023 kClassConstructor =
1024 kBaseConstructor | kSubclassConstructor | kDefaultConstructor,
1025 kAsyncArrowFunction = kArrowFunction | kAsyncFunction,
1026 kAsyncConciseMethod = kAsyncFunction | kConciseMethod
1027 };
1028
IsValidFunctionKind(FunctionKind kind)1029 inline bool IsValidFunctionKind(FunctionKind kind) {
1030 return kind == FunctionKind::kNormalFunction ||
1031 kind == FunctionKind::kArrowFunction ||
1032 kind == FunctionKind::kGeneratorFunction ||
1033 kind == FunctionKind::kConciseMethod ||
1034 kind == FunctionKind::kConciseGeneratorMethod ||
1035 kind == FunctionKind::kGetterFunction ||
1036 kind == FunctionKind::kSetterFunction ||
1037 kind == FunctionKind::kAccessorFunction ||
1038 kind == FunctionKind::kDefaultBaseConstructor ||
1039 kind == FunctionKind::kDefaultSubclassConstructor ||
1040 kind == FunctionKind::kBaseConstructor ||
1041 kind == FunctionKind::kSubclassConstructor ||
1042 kind == FunctionKind::kAsyncFunction ||
1043 kind == FunctionKind::kAsyncArrowFunction ||
1044 kind == FunctionKind::kAsyncConciseMethod;
1045 }
1046
1047
IsArrowFunction(FunctionKind kind)1048 inline bool IsArrowFunction(FunctionKind kind) {
1049 DCHECK(IsValidFunctionKind(kind));
1050 return kind & FunctionKind::kArrowFunction;
1051 }
1052
1053
IsGeneratorFunction(FunctionKind kind)1054 inline bool IsGeneratorFunction(FunctionKind kind) {
1055 DCHECK(IsValidFunctionKind(kind));
1056 return kind & FunctionKind::kGeneratorFunction;
1057 }
1058
IsAsyncFunction(FunctionKind kind)1059 inline bool IsAsyncFunction(FunctionKind kind) {
1060 DCHECK(IsValidFunctionKind(kind));
1061 return kind & FunctionKind::kAsyncFunction;
1062 }
1063
IsResumableFunction(FunctionKind kind)1064 inline bool IsResumableFunction(FunctionKind kind) {
1065 return IsGeneratorFunction(kind) || IsAsyncFunction(kind);
1066 }
1067
IsConciseMethod(FunctionKind kind)1068 inline bool IsConciseMethod(FunctionKind kind) {
1069 DCHECK(IsValidFunctionKind(kind));
1070 return kind & FunctionKind::kConciseMethod;
1071 }
1072
IsGetterFunction(FunctionKind kind)1073 inline bool IsGetterFunction(FunctionKind kind) {
1074 DCHECK(IsValidFunctionKind(kind));
1075 return kind & FunctionKind::kGetterFunction;
1076 }
1077
IsSetterFunction(FunctionKind kind)1078 inline bool IsSetterFunction(FunctionKind kind) {
1079 DCHECK(IsValidFunctionKind(kind));
1080 return kind & FunctionKind::kSetterFunction;
1081 }
1082
IsAccessorFunction(FunctionKind kind)1083 inline bool IsAccessorFunction(FunctionKind kind) {
1084 DCHECK(IsValidFunctionKind(kind));
1085 return kind & FunctionKind::kAccessorFunction;
1086 }
1087
1088
IsDefaultConstructor(FunctionKind kind)1089 inline bool IsDefaultConstructor(FunctionKind kind) {
1090 DCHECK(IsValidFunctionKind(kind));
1091 return kind & FunctionKind::kDefaultConstructor;
1092 }
1093
1094
IsBaseConstructor(FunctionKind kind)1095 inline bool IsBaseConstructor(FunctionKind kind) {
1096 DCHECK(IsValidFunctionKind(kind));
1097 return kind & FunctionKind::kBaseConstructor;
1098 }
1099
1100
IsSubclassConstructor(FunctionKind kind)1101 inline bool IsSubclassConstructor(FunctionKind kind) {
1102 DCHECK(IsValidFunctionKind(kind));
1103 return kind & FunctionKind::kSubclassConstructor;
1104 }
1105
1106
IsClassConstructor(FunctionKind kind)1107 inline bool IsClassConstructor(FunctionKind kind) {
1108 DCHECK(IsValidFunctionKind(kind));
1109 return kind & FunctionKind::kClassConstructor;
1110 }
1111
1112
IsConstructable(FunctionKind kind,LanguageMode mode)1113 inline bool IsConstructable(FunctionKind kind, LanguageMode mode) {
1114 if (IsAccessorFunction(kind)) return false;
1115 if (IsConciseMethod(kind)) return false;
1116 if (IsArrowFunction(kind)) return false;
1117 if (IsGeneratorFunction(kind)) return false;
1118 if (IsAsyncFunction(kind)) return false;
1119 return true;
1120 }
1121
1122
ObjectHash(Address address)1123 inline uint32_t ObjectHash(Address address) {
1124 // All objects are at least pointer aligned, so we can remove the trailing
1125 // zeros.
1126 return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >>
1127 kPointerSizeLog2);
1128 }
1129
1130 } // namespace internal
1131 } // namespace v8
1132
1133 namespace i = v8::internal;
1134
1135 #endif // V8_GLOBALS_H_
1136