• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
12 #define WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
13 
14 // MSVC++ requires this to be set before any other includes to get M_PI.
15 #define _USE_MATH_DEFINES
16 
17 #include <math.h>
18 #include <stddef.h>  // size_t
19 #include <stdio.h>  // FILE
20 #include <vector>
21 
22 #include "webrtc/base/arraysize.h"
23 #include "webrtc/base/platform_file.h"
24 #include "webrtc/common.h"
25 #include "webrtc/modules/audio_processing/beamformer/array_util.h"
26 #include "webrtc/typedefs.h"
27 
28 struct AecCore;
29 
30 namespace webrtc {
31 
32 class AudioFrame;
33 
34 template<typename T>
35 class Beamformer;
36 
37 class StreamConfig;
38 class ProcessingConfig;
39 
40 class EchoCancellation;
41 class EchoControlMobile;
42 class GainControl;
43 class HighPassFilter;
44 class LevelEstimator;
45 class NoiseSuppression;
46 class VoiceDetection;
47 
48 // Use to enable the extended filter mode in the AEC, along with robustness
49 // measures around the reported system delays. It comes with a significant
50 // increase in AEC complexity, but is much more robust to unreliable reported
51 // delays.
52 //
53 // Detailed changes to the algorithm:
54 // - The filter length is changed from 48 to 128 ms. This comes with tuning of
55 //   several parameters: i) filter adaptation stepsize and error threshold;
56 //   ii) non-linear processing smoothing and overdrive.
57 // - Option to ignore the reported delays on platforms which we deem
58 //   sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c.
59 // - Faster startup times by removing the excessive "startup phase" processing
60 //   of reported delays.
61 // - Much more conservative adjustments to the far-end read pointer. We smooth
62 //   the delay difference more heavily, and back off from the difference more.
63 //   Adjustments force a readaptation of the filter, so they should be avoided
64 //   except when really necessary.
65 struct ExtendedFilter {
ExtendedFilterExtendedFilter66   ExtendedFilter() : enabled(false) {}
ExtendedFilterExtendedFilter67   explicit ExtendedFilter(bool enabled) : enabled(enabled) {}
68   static const ConfigOptionID identifier = ConfigOptionID::kExtendedFilter;
69   bool enabled;
70 };
71 
72 // Enables delay-agnostic echo cancellation. This feature relies on internally
73 // estimated delays between the process and reverse streams, thus not relying
74 // on reported system delays. This configuration only applies to
75 // EchoCancellation and not EchoControlMobile. It can be set in the constructor
76 // or using AudioProcessing::SetExtraOptions().
77 struct DelayAgnostic {
DelayAgnosticDelayAgnostic78   DelayAgnostic() : enabled(false) {}
DelayAgnosticDelayAgnostic79   explicit DelayAgnostic(bool enabled) : enabled(enabled) {}
80   static const ConfigOptionID identifier = ConfigOptionID::kDelayAgnostic;
81   bool enabled;
82 };
83 
84 // Use to enable experimental gain control (AGC). At startup the experimental
85 // AGC moves the microphone volume up to |startup_min_volume| if the current
86 // microphone volume is set too low. The value is clamped to its operating range
87 // [12, 255]. Here, 255 maps to 100%.
88 //
89 // Must be provided through AudioProcessing::Create(Confg&).
90 #if defined(WEBRTC_CHROMIUM_BUILD)
91 static const int kAgcStartupMinVolume = 85;
92 #else
93 static const int kAgcStartupMinVolume = 0;
94 #endif  // defined(WEBRTC_CHROMIUM_BUILD)
95 struct ExperimentalAgc {
ExperimentalAgcExperimentalAgc96   ExperimentalAgc() : enabled(true), startup_min_volume(kAgcStartupMinVolume) {}
ExperimentalAgcExperimentalAgc97   explicit ExperimentalAgc(bool enabled)
98       : enabled(enabled), startup_min_volume(kAgcStartupMinVolume) {}
ExperimentalAgcExperimentalAgc99   ExperimentalAgc(bool enabled, int startup_min_volume)
100       : enabled(enabled), startup_min_volume(startup_min_volume) {}
101   static const ConfigOptionID identifier = ConfigOptionID::kExperimentalAgc;
102   bool enabled;
103   int startup_min_volume;
104 };
105 
106 // Use to enable experimental noise suppression. It can be set in the
107 // constructor or using AudioProcessing::SetExtraOptions().
108 struct ExperimentalNs {
ExperimentalNsExperimentalNs109   ExperimentalNs() : enabled(false) {}
ExperimentalNsExperimentalNs110   explicit ExperimentalNs(bool enabled) : enabled(enabled) {}
111   static const ConfigOptionID identifier = ConfigOptionID::kExperimentalNs;
112   bool enabled;
113 };
114 
115 // Use to enable beamforming. Must be provided through the constructor. It will
116 // have no impact if used with AudioProcessing::SetExtraOptions().
117 struct Beamforming {
BeamformingBeamforming118   Beamforming()
119       : enabled(false),
120         array_geometry(),
121         target_direction(
122             SphericalPointf(static_cast<float>(M_PI) / 2.f, 0.f, 1.f)) {}
BeamformingBeamforming123   Beamforming(bool enabled, const std::vector<Point>& array_geometry)
124       : Beamforming(enabled,
125                     array_geometry,
126                     SphericalPointf(static_cast<float>(M_PI) / 2.f, 0.f, 1.f)) {
127   }
BeamformingBeamforming128   Beamforming(bool enabled,
129               const std::vector<Point>& array_geometry,
130               SphericalPointf target_direction)
131       : enabled(enabled),
132         array_geometry(array_geometry),
133         target_direction(target_direction) {}
134   static const ConfigOptionID identifier = ConfigOptionID::kBeamforming;
135   const bool enabled;
136   const std::vector<Point> array_geometry;
137   const SphericalPointf target_direction;
138 };
139 
140 // Use to enable intelligibility enhancer in audio processing. Must be provided
141 // though the constructor. It will have no impact if used with
142 // AudioProcessing::SetExtraOptions().
143 //
144 // Note: If enabled and the reverse stream has more than one output channel,
145 // the reverse stream will become an upmixed mono signal.
146 struct Intelligibility {
IntelligibilityIntelligibility147   Intelligibility() : enabled(false) {}
IntelligibilityIntelligibility148   explicit Intelligibility(bool enabled) : enabled(enabled) {}
149   static const ConfigOptionID identifier = ConfigOptionID::kIntelligibility;
150   bool enabled;
151 };
152 
153 // The Audio Processing Module (APM) provides a collection of voice processing
154 // components designed for real-time communications software.
155 //
156 // APM operates on two audio streams on a frame-by-frame basis. Frames of the
157 // primary stream, on which all processing is applied, are passed to
158 // |ProcessStream()|. Frames of the reverse direction stream, which are used for
159 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the
160 // client-side, this will typically be the near-end (capture) and far-end
161 // (render) streams, respectively. APM should be placed in the signal chain as
162 // close to the audio hardware abstraction layer (HAL) as possible.
163 //
164 // On the server-side, the reverse stream will normally not be used, with
165 // processing occurring on each incoming stream.
166 //
167 // Component interfaces follow a similar pattern and are accessed through
168 // corresponding getters in APM. All components are disabled at create-time,
169 // with default settings that are recommended for most situations. New settings
170 // can be applied without enabling a component. Enabling a component triggers
171 // memory allocation and initialization to allow it to start processing the
172 // streams.
173 //
174 // Thread safety is provided with the following assumptions to reduce locking
175 // overhead:
176 //   1. The stream getters and setters are called from the same thread as
177 //      ProcessStream(). More precisely, stream functions are never called
178 //      concurrently with ProcessStream().
179 //   2. Parameter getters are never called concurrently with the corresponding
180 //      setter.
181 //
182 // APM accepts only linear PCM audio data in chunks of 10 ms. The int16
183 // interfaces use interleaved data, while the float interfaces use deinterleaved
184 // data.
185 //
186 // Usage example, omitting error checking:
187 // AudioProcessing* apm = AudioProcessing::Create(0);
188 //
189 // apm->high_pass_filter()->Enable(true);
190 //
191 // apm->echo_cancellation()->enable_drift_compensation(false);
192 // apm->echo_cancellation()->Enable(true);
193 //
194 // apm->noise_reduction()->set_level(kHighSuppression);
195 // apm->noise_reduction()->Enable(true);
196 //
197 // apm->gain_control()->set_analog_level_limits(0, 255);
198 // apm->gain_control()->set_mode(kAdaptiveAnalog);
199 // apm->gain_control()->Enable(true);
200 //
201 // apm->voice_detection()->Enable(true);
202 //
203 // // Start a voice call...
204 //
205 // // ... Render frame arrives bound for the audio HAL ...
206 // apm->AnalyzeReverseStream(render_frame);
207 //
208 // // ... Capture frame arrives from the audio HAL ...
209 // // Call required set_stream_ functions.
210 // apm->set_stream_delay_ms(delay_ms);
211 // apm->gain_control()->set_stream_analog_level(analog_level);
212 //
213 // apm->ProcessStream(capture_frame);
214 //
215 // // Call required stream_ functions.
216 // analog_level = apm->gain_control()->stream_analog_level();
217 // has_voice = apm->stream_has_voice();
218 //
219 // // Repeate render and capture processing for the duration of the call...
220 // // Start a new call...
221 // apm->Initialize();
222 //
223 // // Close the application...
224 // delete apm;
225 //
226 class AudioProcessing {
227  public:
228   // TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone.
229   enum ChannelLayout {
230     kMono,
231     // Left, right.
232     kStereo,
233     // Mono, keyboard mic.
234     kMonoAndKeyboard,
235     // Left, right, keyboard mic.
236     kStereoAndKeyboard
237   };
238 
239   // Creates an APM instance. Use one instance for every primary audio stream
240   // requiring processing. On the client-side, this would typically be one
241   // instance for the near-end stream, and additional instances for each far-end
242   // stream which requires processing. On the server-side, this would typically
243   // be one instance for every incoming stream.
244   static AudioProcessing* Create();
245   // Allows passing in an optional configuration at create-time.
246   static AudioProcessing* Create(const Config& config);
247   // Only for testing.
248   static AudioProcessing* Create(const Config& config,
249                                  Beamformer<float>* beamformer);
~AudioProcessing()250   virtual ~AudioProcessing() {}
251 
252   // Initializes internal states, while retaining all user settings. This
253   // should be called before beginning to process a new audio stream. However,
254   // it is not necessary to call before processing the first stream after
255   // creation.
256   //
257   // It is also not necessary to call if the audio parameters (sample
258   // rate and number of channels) have changed. Passing updated parameters
259   // directly to |ProcessStream()| and |AnalyzeReverseStream()| is permissible.
260   // If the parameters are known at init-time though, they may be provided.
261   virtual int Initialize() = 0;
262 
263   // The int16 interfaces require:
264   //   - only |NativeRate|s be used
265   //   - that the input, output and reverse rates must match
266   //   - that |processing_config.output_stream()| matches
267   //     |processing_config.input_stream()|.
268   //
269   // The float interfaces accept arbitrary rates and support differing input and
270   // output layouts, but the output must have either one channel or the same
271   // number of channels as the input.
272   virtual int Initialize(const ProcessingConfig& processing_config) = 0;
273 
274   // Initialize with unpacked parameters. See Initialize() above for details.
275   //
276   // TODO(mgraczyk): Remove once clients are updated to use the new interface.
277   virtual int Initialize(int input_sample_rate_hz,
278                          int output_sample_rate_hz,
279                          int reverse_sample_rate_hz,
280                          ChannelLayout input_layout,
281                          ChannelLayout output_layout,
282                          ChannelLayout reverse_layout) = 0;
283 
284   // Pass down additional options which don't have explicit setters. This
285   // ensures the options are applied immediately.
286   virtual void SetExtraOptions(const Config& config) = 0;
287 
288   // TODO(peah): Remove after voice engine no longer requires it to resample
289   // the reverse stream to the forward rate.
290   virtual int input_sample_rate_hz() const = 0;
291 
292   // TODO(ajm): Only intended for internal use. Make private and friend the
293   // necessary classes?
294   virtual int proc_sample_rate_hz() const = 0;
295   virtual int proc_split_sample_rate_hz() const = 0;
296   virtual size_t num_input_channels() const = 0;
297   virtual size_t num_proc_channels() const = 0;
298   virtual size_t num_output_channels() const = 0;
299   virtual size_t num_reverse_channels() const = 0;
300 
301   // Set to true when the output of AudioProcessing will be muted or in some
302   // other way not used. Ideally, the captured audio would still be processed,
303   // but some components may change behavior based on this information.
304   // Default false.
305   virtual void set_output_will_be_muted(bool muted) = 0;
306 
307   // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
308   // this is the near-end (or captured) audio.
309   //
310   // If needed for enabled functionality, any function with the set_stream_ tag
311   // must be called prior to processing the current frame. Any getter function
312   // with the stream_ tag which is needed should be called after processing.
313   //
314   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
315   // members of |frame| must be valid. If changed from the previous call to this
316   // method, it will trigger an initialization.
317   virtual int ProcessStream(AudioFrame* frame) = 0;
318 
319   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
320   // of |src| points to a channel buffer, arranged according to
321   // |input_layout|. At output, the channels will be arranged according to
322   // |output_layout| at |output_sample_rate_hz| in |dest|.
323   //
324   // The output layout must have one channel or as many channels as the input.
325   // |src| and |dest| may use the same memory, if desired.
326   //
327   // TODO(mgraczyk): Remove once clients are updated to use the new interface.
328   virtual int ProcessStream(const float* const* src,
329                             size_t samples_per_channel,
330                             int input_sample_rate_hz,
331                             ChannelLayout input_layout,
332                             int output_sample_rate_hz,
333                             ChannelLayout output_layout,
334                             float* const* dest) = 0;
335 
336   // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
337   // |src| points to a channel buffer, arranged according to |input_stream|. At
338   // output, the channels will be arranged according to |output_stream| in
339   // |dest|.
340   //
341   // The output must have one channel or as many channels as the input. |src|
342   // and |dest| may use the same memory, if desired.
343   virtual int ProcessStream(const float* const* src,
344                             const StreamConfig& input_config,
345                             const StreamConfig& output_config,
346                             float* const* dest) = 0;
347 
348   // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame
349   // will not be modified. On the client-side, this is the far-end (or to be
350   // rendered) audio.
351   //
352   // It is only necessary to provide this if echo processing is enabled, as the
353   // reverse stream forms the echo reference signal. It is recommended, but not
354   // necessary, to provide if gain control is enabled. On the server-side this
355   // typically will not be used. If you're not sure what to pass in here,
356   // chances are you don't need to use it.
357   //
358   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
359   // members of |frame| must be valid. |sample_rate_hz_| must correspond to
360   // |input_sample_rate_hz()|
361   //
362   // TODO(ajm): add const to input; requires an implementation fix.
363   // DEPRECATED: Use |ProcessReverseStream| instead.
364   // TODO(ekm): Remove once all users have updated to |ProcessReverseStream|.
365   virtual int AnalyzeReverseStream(AudioFrame* frame) = 0;
366 
367   // Same as |AnalyzeReverseStream|, but may modify |frame| if intelligibility
368   // is enabled.
369   virtual int ProcessReverseStream(AudioFrame* frame) = 0;
370 
371   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
372   // of |data| points to a channel buffer, arranged according to |layout|.
373   // TODO(mgraczyk): Remove once clients are updated to use the new interface.
374   virtual int AnalyzeReverseStream(const float* const* data,
375                                    size_t samples_per_channel,
376                                    int rev_sample_rate_hz,
377                                    ChannelLayout layout) = 0;
378 
379   // Accepts deinterleaved float audio with the range [-1, 1]. Each element of
380   // |data| points to a channel buffer, arranged according to |reverse_config|.
381   virtual int ProcessReverseStream(const float* const* src,
382                                    const StreamConfig& reverse_input_config,
383                                    const StreamConfig& reverse_output_config,
384                                    float* const* dest) = 0;
385 
386   // This must be called if and only if echo processing is enabled.
387   //
388   // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end
389   // frame and ProcessStream() receiving a near-end frame containing the
390   // corresponding echo. On the client-side this can be expressed as
391   //   delay = (t_render - t_analyze) + (t_process - t_capture)
392   // where,
393   //   - t_analyze is the time a frame is passed to AnalyzeReverseStream() and
394   //     t_render is the time the first sample of the same frame is rendered by
395   //     the audio hardware.
396   //   - t_capture is the time the first sample of a frame is captured by the
397   //     audio hardware and t_pull is the time the same frame is passed to
398   //     ProcessStream().
399   virtual int set_stream_delay_ms(int delay) = 0;
400   virtual int stream_delay_ms() const = 0;
401   virtual bool was_stream_delay_set() const = 0;
402 
403   // Call to signal that a key press occurred (true) or did not occur (false)
404   // with this chunk of audio.
405   virtual void set_stream_key_pressed(bool key_pressed) = 0;
406 
407   // Sets a delay |offset| in ms to add to the values passed in through
408   // set_stream_delay_ms(). May be positive or negative.
409   //
410   // Note that this could cause an otherwise valid value passed to
411   // set_stream_delay_ms() to return an error.
412   virtual void set_delay_offset_ms(int offset) = 0;
413   virtual int delay_offset_ms() const = 0;
414 
415   // Starts recording debugging information to a file specified by |filename|,
416   // a NULL-terminated string. If there is an ongoing recording, the old file
417   // will be closed, and recording will continue in the newly specified file.
418   // An already existing file will be overwritten without warning.
419   static const size_t kMaxFilenameSize = 1024;
420   virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0;
421 
422   // Same as above but uses an existing file handle. Takes ownership
423   // of |handle| and closes it at StopDebugRecording().
424   virtual int StartDebugRecording(FILE* handle) = 0;
425 
426   // Same as above but uses an existing PlatformFile handle. Takes ownership
427   // of |handle| and closes it at StopDebugRecording().
428   // TODO(xians): Make this interface pure virtual.
StartDebugRecordingForPlatformFile(rtc::PlatformFile handle)429   virtual int StartDebugRecordingForPlatformFile(rtc::PlatformFile handle) {
430       return -1;
431   }
432 
433   // Stops recording debugging information, and closes the file. Recording
434   // cannot be resumed in the same file (without overwriting it).
435   virtual int StopDebugRecording() = 0;
436 
437   // Use to send UMA histograms at end of a call. Note that all histogram
438   // specific member variables are reset.
439   virtual void UpdateHistogramsOnCallEnd() = 0;
440 
441   // These provide access to the component interfaces and should never return
442   // NULL. The pointers will be valid for the lifetime of the APM instance.
443   // The memory for these objects is entirely managed internally.
444   virtual EchoCancellation* echo_cancellation() const = 0;
445   virtual EchoControlMobile* echo_control_mobile() const = 0;
446   virtual GainControl* gain_control() const = 0;
447   virtual HighPassFilter* high_pass_filter() const = 0;
448   virtual LevelEstimator* level_estimator() const = 0;
449   virtual NoiseSuppression* noise_suppression() const = 0;
450   virtual VoiceDetection* voice_detection() const = 0;
451 
452   struct Statistic {
453     int instant;  // Instantaneous value.
454     int average;  // Long-term average.
455     int maximum;  // Long-term maximum.
456     int minimum;  // Long-term minimum.
457   };
458 
459   enum Error {
460     // Fatal errors.
461     kNoError = 0,
462     kUnspecifiedError = -1,
463     kCreationFailedError = -2,
464     kUnsupportedComponentError = -3,
465     kUnsupportedFunctionError = -4,
466     kNullPointerError = -5,
467     kBadParameterError = -6,
468     kBadSampleRateError = -7,
469     kBadDataLengthError = -8,
470     kBadNumberChannelsError = -9,
471     kFileError = -10,
472     kStreamParameterNotSetError = -11,
473     kNotEnabledError = -12,
474 
475     // Warnings are non-fatal.
476     // This results when a set_stream_ parameter is out of range. Processing
477     // will continue, but the parameter may have been truncated.
478     kBadStreamParameterWarning = -13
479   };
480 
481   enum NativeRate {
482     kSampleRate8kHz = 8000,
483     kSampleRate16kHz = 16000,
484     kSampleRate32kHz = 32000,
485     kSampleRate48kHz = 48000
486   };
487 
488   static const int kNativeSampleRatesHz[];
489   static const size_t kNumNativeSampleRates;
490   static const int kMaxNativeSampleRateHz;
491   static const int kMaxAECMSampleRateHz;
492 
493   static const int kChunkSizeMs = 10;
494 };
495 
496 class StreamConfig {
497  public:
498   // sample_rate_hz: The sampling rate of the stream.
499   //
500   // num_channels: The number of audio channels in the stream, excluding the
501   //               keyboard channel if it is present. When passing a
502   //               StreamConfig with an array of arrays T*[N],
503   //
504   //                N == {num_channels + 1  if  has_keyboard
505   //                     {num_channels      if  !has_keyboard
506   //
507   // has_keyboard: True if the stream has a keyboard channel. When has_keyboard
508   //               is true, the last channel in any corresponding list of
509   //               channels is the keyboard channel.
510   StreamConfig(int sample_rate_hz = 0,
511                size_t num_channels = 0,
512                bool has_keyboard = false)
sample_rate_hz_(sample_rate_hz)513       : sample_rate_hz_(sample_rate_hz),
514         num_channels_(num_channels),
515         has_keyboard_(has_keyboard),
516         num_frames_(calculate_frames(sample_rate_hz)) {}
517 
set_sample_rate_hz(int value)518   void set_sample_rate_hz(int value) {
519     sample_rate_hz_ = value;
520     num_frames_ = calculate_frames(value);
521   }
set_num_channels(size_t value)522   void set_num_channels(size_t value) { num_channels_ = value; }
set_has_keyboard(bool value)523   void set_has_keyboard(bool value) { has_keyboard_ = value; }
524 
sample_rate_hz()525   int sample_rate_hz() const { return sample_rate_hz_; }
526 
527   // The number of channels in the stream, not including the keyboard channel if
528   // present.
num_channels()529   size_t num_channels() const { return num_channels_; }
530 
has_keyboard()531   bool has_keyboard() const { return has_keyboard_; }
num_frames()532   size_t num_frames() const { return num_frames_; }
num_samples()533   size_t num_samples() const { return num_channels_ * num_frames_; }
534 
535   bool operator==(const StreamConfig& other) const {
536     return sample_rate_hz_ == other.sample_rate_hz_ &&
537            num_channels_ == other.num_channels_ &&
538            has_keyboard_ == other.has_keyboard_;
539   }
540 
541   bool operator!=(const StreamConfig& other) const { return !(*this == other); }
542 
543  private:
calculate_frames(int sample_rate_hz)544   static size_t calculate_frames(int sample_rate_hz) {
545     return static_cast<size_t>(
546         AudioProcessing::kChunkSizeMs * sample_rate_hz / 1000);
547   }
548 
549   int sample_rate_hz_;
550   size_t num_channels_;
551   bool has_keyboard_;
552   size_t num_frames_;
553 };
554 
555 class ProcessingConfig {
556  public:
557   enum StreamName {
558     kInputStream,
559     kOutputStream,
560     kReverseInputStream,
561     kReverseOutputStream,
562     kNumStreamNames,
563   };
564 
input_stream()565   const StreamConfig& input_stream() const {
566     return streams[StreamName::kInputStream];
567   }
output_stream()568   const StreamConfig& output_stream() const {
569     return streams[StreamName::kOutputStream];
570   }
reverse_input_stream()571   const StreamConfig& reverse_input_stream() const {
572     return streams[StreamName::kReverseInputStream];
573   }
reverse_output_stream()574   const StreamConfig& reverse_output_stream() const {
575     return streams[StreamName::kReverseOutputStream];
576   }
577 
input_stream()578   StreamConfig& input_stream() { return streams[StreamName::kInputStream]; }
output_stream()579   StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; }
reverse_input_stream()580   StreamConfig& reverse_input_stream() {
581     return streams[StreamName::kReverseInputStream];
582   }
reverse_output_stream()583   StreamConfig& reverse_output_stream() {
584     return streams[StreamName::kReverseOutputStream];
585   }
586 
587   bool operator==(const ProcessingConfig& other) const {
588     for (int i = 0; i < StreamName::kNumStreamNames; ++i) {
589       if (this->streams[i] != other.streams[i]) {
590         return false;
591       }
592     }
593     return true;
594   }
595 
596   bool operator!=(const ProcessingConfig& other) const {
597     return !(*this == other);
598   }
599 
600   StreamConfig streams[StreamName::kNumStreamNames];
601 };
602 
603 // The acoustic echo cancellation (AEC) component provides better performance
604 // than AECM but also requires more processing power and is dependent on delay
605 // stability and reporting accuracy. As such it is well-suited and recommended
606 // for PC and IP phone applications.
607 //
608 // Not recommended to be enabled on the server-side.
609 class EchoCancellation {
610  public:
611   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
612   // Enabling one will disable the other.
613   virtual int Enable(bool enable) = 0;
614   virtual bool is_enabled() const = 0;
615 
616   // Differences in clock speed on the primary and reverse streams can impact
617   // the AEC performance. On the client-side, this could be seen when different
618   // render and capture devices are used, particularly with webcams.
619   //
620   // This enables a compensation mechanism, and requires that
621   // set_stream_drift_samples() be called.
622   virtual int enable_drift_compensation(bool enable) = 0;
623   virtual bool is_drift_compensation_enabled() const = 0;
624 
625   // Sets the difference between the number of samples rendered and captured by
626   // the audio devices since the last call to |ProcessStream()|. Must be called
627   // if drift compensation is enabled, prior to |ProcessStream()|.
628   virtual void set_stream_drift_samples(int drift) = 0;
629   virtual int stream_drift_samples() const = 0;
630 
631   enum SuppressionLevel {
632     kLowSuppression,
633     kModerateSuppression,
634     kHighSuppression
635   };
636 
637   // Sets the aggressiveness of the suppressor. A higher level trades off
638   // double-talk performance for increased echo suppression.
639   virtual int set_suppression_level(SuppressionLevel level) = 0;
640   virtual SuppressionLevel suppression_level() const = 0;
641 
642   // Returns false if the current frame almost certainly contains no echo
643   // and true if it _might_ contain echo.
644   virtual bool stream_has_echo() const = 0;
645 
646   // Enables the computation of various echo metrics. These are obtained
647   // through |GetMetrics()|.
648   virtual int enable_metrics(bool enable) = 0;
649   virtual bool are_metrics_enabled() const = 0;
650 
651   // Each statistic is reported in dB.
652   // P_far:  Far-end (render) signal power.
653   // P_echo: Near-end (capture) echo signal power.
654   // P_out:  Signal power at the output of the AEC.
655   // P_a:    Internal signal power at the point before the AEC's non-linear
656   //         processor.
657   struct Metrics {
658     // RERL = ERL + ERLE
659     AudioProcessing::Statistic residual_echo_return_loss;
660 
661     // ERL = 10log_10(P_far / P_echo)
662     AudioProcessing::Statistic echo_return_loss;
663 
664     // ERLE = 10log_10(P_echo / P_out)
665     AudioProcessing::Statistic echo_return_loss_enhancement;
666 
667     // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
668     AudioProcessing::Statistic a_nlp;
669   };
670 
671   // TODO(ajm): discuss the metrics update period.
672   virtual int GetMetrics(Metrics* metrics) = 0;
673 
674   // Enables computation and logging of delay values. Statistics are obtained
675   // through |GetDelayMetrics()|.
676   virtual int enable_delay_logging(bool enable) = 0;
677   virtual bool is_delay_logging_enabled() const = 0;
678 
679   // The delay metrics consists of the delay |median| and the delay standard
680   // deviation |std|. It also consists of the fraction of delay estimates
681   // |fraction_poor_delays| that can make the echo cancellation perform poorly.
682   // The values are aggregated until the first call to |GetDelayMetrics()| and
683   // afterwards aggregated and updated every second.
684   // Note that if there are several clients pulling metrics from
685   // |GetDelayMetrics()| during a session the first call from any of them will
686   // change to one second aggregation window for all.
687   // TODO(bjornv): Deprecated, remove.
688   virtual int GetDelayMetrics(int* median, int* std) = 0;
689   virtual int GetDelayMetrics(int* median, int* std,
690                               float* fraction_poor_delays) = 0;
691 
692   // Returns a pointer to the low level AEC component.  In case of multiple
693   // channels, the pointer to the first one is returned.  A NULL pointer is
694   // returned when the AEC component is disabled or has not been initialized
695   // successfully.
696   virtual struct AecCore* aec_core() const = 0;
697 
698  protected:
~EchoCancellation()699   virtual ~EchoCancellation() {}
700 };
701 
702 // The acoustic echo control for mobile (AECM) component is a low complexity
703 // robust option intended for use on mobile devices.
704 //
705 // Not recommended to be enabled on the server-side.
706 class EchoControlMobile {
707  public:
708   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
709   // Enabling one will disable the other.
710   virtual int Enable(bool enable) = 0;
711   virtual bool is_enabled() const = 0;
712 
713   // Recommended settings for particular audio routes. In general, the louder
714   // the echo is expected to be, the higher this value should be set. The
715   // preferred setting may vary from device to device.
716   enum RoutingMode {
717     kQuietEarpieceOrHeadset,
718     kEarpiece,
719     kLoudEarpiece,
720     kSpeakerphone,
721     kLoudSpeakerphone
722   };
723 
724   // Sets echo control appropriate for the audio routing |mode| on the device.
725   // It can and should be updated during a call if the audio routing changes.
726   virtual int set_routing_mode(RoutingMode mode) = 0;
727   virtual RoutingMode routing_mode() const = 0;
728 
729   // Comfort noise replaces suppressed background noise to maintain a
730   // consistent signal level.
731   virtual int enable_comfort_noise(bool enable) = 0;
732   virtual bool is_comfort_noise_enabled() const = 0;
733 
734   // A typical use case is to initialize the component with an echo path from a
735   // previous call. The echo path is retrieved using |GetEchoPath()|, typically
736   // at the end of a call. The data can then be stored for later use as an
737   // initializer before the next call, using |SetEchoPath()|.
738   //
739   // Controlling the echo path this way requires the data |size_bytes| to match
740   // the internal echo path size. This size can be acquired using
741   // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth
742   // noting if it is to be called during an ongoing call.
743   //
744   // It is possible that version incompatibilities may result in a stored echo
745   // path of the incorrect size. In this case, the stored path should be
746   // discarded.
747   virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0;
748   virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0;
749 
750   // The returned path size is guaranteed not to change for the lifetime of
751   // the application.
752   static size_t echo_path_size_bytes();
753 
754  protected:
~EchoControlMobile()755   virtual ~EchoControlMobile() {}
756 };
757 
758 // The automatic gain control (AGC) component brings the signal to an
759 // appropriate range. This is done by applying a digital gain directly and, in
760 // the analog mode, prescribing an analog gain to be applied at the audio HAL.
761 //
762 // Recommended to be enabled on the client-side.
763 class GainControl {
764  public:
765   virtual int Enable(bool enable) = 0;
766   virtual bool is_enabled() const = 0;
767 
768   // When an analog mode is set, this must be called prior to |ProcessStream()|
769   // to pass the current analog level from the audio HAL. Must be within the
770   // range provided to |set_analog_level_limits()|.
771   virtual int set_stream_analog_level(int level) = 0;
772 
773   // When an analog mode is set, this should be called after |ProcessStream()|
774   // to obtain the recommended new analog level for the audio HAL. It is the
775   // users responsibility to apply this level.
776   virtual int stream_analog_level() = 0;
777 
778   enum Mode {
779     // Adaptive mode intended for use if an analog volume control is available
780     // on the capture device. It will require the user to provide coupling
781     // between the OS mixer controls and AGC through the |stream_analog_level()|
782     // functions.
783     //
784     // It consists of an analog gain prescription for the audio device and a
785     // digital compression stage.
786     kAdaptiveAnalog,
787 
788     // Adaptive mode intended for situations in which an analog volume control
789     // is unavailable. It operates in a similar fashion to the adaptive analog
790     // mode, but with scaling instead applied in the digital domain. As with
791     // the analog mode, it additionally uses a digital compression stage.
792     kAdaptiveDigital,
793 
794     // Fixed mode which enables only the digital compression stage also used by
795     // the two adaptive modes.
796     //
797     // It is distinguished from the adaptive modes by considering only a
798     // short time-window of the input signal. It applies a fixed gain through
799     // most of the input level range, and compresses (gradually reduces gain
800     // with increasing level) the input signal at higher levels. This mode is
801     // preferred on embedded devices where the capture signal level is
802     // predictable, so that a known gain can be applied.
803     kFixedDigital
804   };
805 
806   virtual int set_mode(Mode mode) = 0;
807   virtual Mode mode() const = 0;
808 
809   // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels
810   // from digital full-scale). The convention is to use positive values. For
811   // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
812   // level 3 dB below full-scale. Limited to [0, 31].
813   //
814   // TODO(ajm): use a negative value here instead, if/when VoE will similarly
815   //            update its interface.
816   virtual int set_target_level_dbfs(int level) = 0;
817   virtual int target_level_dbfs() const = 0;
818 
819   // Sets the maximum |gain| the digital compression stage may apply, in dB. A
820   // higher number corresponds to greater compression, while a value of 0 will
821   // leave the signal uncompressed. Limited to [0, 90].
822   virtual int set_compression_gain_db(int gain) = 0;
823   virtual int compression_gain_db() const = 0;
824 
825   // When enabled, the compression stage will hard limit the signal to the
826   // target level. Otherwise, the signal will be compressed but not limited
827   // above the target level.
828   virtual int enable_limiter(bool enable) = 0;
829   virtual bool is_limiter_enabled() const = 0;
830 
831   // Sets the |minimum| and |maximum| analog levels of the audio capture device.
832   // Must be set if and only if an analog mode is used. Limited to [0, 65535].
833   virtual int set_analog_level_limits(int minimum,
834                                       int maximum) = 0;
835   virtual int analog_level_minimum() const = 0;
836   virtual int analog_level_maximum() const = 0;
837 
838   // Returns true if the AGC has detected a saturation event (period where the
839   // signal reaches digital full-scale) in the current frame and the analog
840   // level cannot be reduced.
841   //
842   // This could be used as an indicator to reduce or disable analog mic gain at
843   // the audio HAL.
844   virtual bool stream_is_saturated() const = 0;
845 
846  protected:
~GainControl()847   virtual ~GainControl() {}
848 };
849 
850 // A filtering component which removes DC offset and low-frequency noise.
851 // Recommended to be enabled on the client-side.
852 class HighPassFilter {
853  public:
854   virtual int Enable(bool enable) = 0;
855   virtual bool is_enabled() const = 0;
856 
857  protected:
~HighPassFilter()858   virtual ~HighPassFilter() {}
859 };
860 
861 // An estimation component used to retrieve level metrics.
862 class LevelEstimator {
863  public:
864   virtual int Enable(bool enable) = 0;
865   virtual bool is_enabled() const = 0;
866 
867   // Returns the root mean square (RMS) level in dBFs (decibels from digital
868   // full-scale), or alternately dBov. It is computed over all primary stream
869   // frames since the last call to RMS(). The returned value is positive but
870   // should be interpreted as negative. It is constrained to [0, 127].
871   //
872   // The computation follows: https://tools.ietf.org/html/rfc6465
873   // with the intent that it can provide the RTP audio level indication.
874   //
875   // Frames passed to ProcessStream() with an |_energy| of zero are considered
876   // to have been muted. The RMS of the frame will be interpreted as -127.
877   virtual int RMS() = 0;
878 
879  protected:
~LevelEstimator()880   virtual ~LevelEstimator() {}
881 };
882 
883 // The noise suppression (NS) component attempts to remove noise while
884 // retaining speech. Recommended to be enabled on the client-side.
885 //
886 // Recommended to be enabled on the client-side.
887 class NoiseSuppression {
888  public:
889   virtual int Enable(bool enable) = 0;
890   virtual bool is_enabled() const = 0;
891 
892   // Determines the aggressiveness of the suppression. Increasing the level
893   // will reduce the noise level at the expense of a higher speech distortion.
894   enum Level {
895     kLow,
896     kModerate,
897     kHigh,
898     kVeryHigh
899   };
900 
901   virtual int set_level(Level level) = 0;
902   virtual Level level() const = 0;
903 
904   // Returns the internally computed prior speech probability of current frame
905   // averaged over output channels. This is not supported in fixed point, for
906   // which |kUnsupportedFunctionError| is returned.
907   virtual float speech_probability() const = 0;
908 
909  protected:
~NoiseSuppression()910   virtual ~NoiseSuppression() {}
911 };
912 
913 // The voice activity detection (VAD) component analyzes the stream to
914 // determine if voice is present. A facility is also provided to pass in an
915 // external VAD decision.
916 //
917 // In addition to |stream_has_voice()| the VAD decision is provided through the
918 // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be
919 // modified to reflect the current decision.
920 class VoiceDetection {
921  public:
922   virtual int Enable(bool enable) = 0;
923   virtual bool is_enabled() const = 0;
924 
925   // Returns true if voice is detected in the current frame. Should be called
926   // after |ProcessStream()|.
927   virtual bool stream_has_voice() const = 0;
928 
929   // Some of the APM functionality requires a VAD decision. In the case that
930   // a decision is externally available for the current frame, it can be passed
931   // in here, before |ProcessStream()| is called.
932   //
933   // VoiceDetection does _not_ need to be enabled to use this. If it happens to
934   // be enabled, detection will be skipped for any frame in which an external
935   // VAD decision is provided.
936   virtual int set_stream_has_voice(bool has_voice) = 0;
937 
938   // Specifies the likelihood that a frame will be declared to contain voice.
939   // A higher value makes it more likely that speech will not be clipped, at
940   // the expense of more noise being detected as voice.
941   enum Likelihood {
942     kVeryLowLikelihood,
943     kLowLikelihood,
944     kModerateLikelihood,
945     kHighLikelihood
946   };
947 
948   virtual int set_likelihood(Likelihood likelihood) = 0;
949   virtual Likelihood likelihood() const = 0;
950 
951   // Sets the |size| of the frames in ms on which the VAD will operate. Larger
952   // frames will improve detection accuracy, but reduce the frequency of
953   // updates.
954   //
955   // This does not impact the size of frames passed to |ProcessStream()|.
956   virtual int set_frame_size_ms(int size) = 0;
957   virtual int frame_size_ms() const = 0;
958 
959  protected:
~VoiceDetection()960   virtual ~VoiceDetection() {}
961 };
962 }  // namespace webrtc
963 
964 #endif  // WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
965