• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <stdio.h>
2 #include <math.h>
3 
4 #include "lfsr.h"
5 #include "../compiler/compiler.h"
6 
7 /*
8  * LFSR taps retrieved from:
9  * http://home1.gte.net/res0658s/electronics/LFSRtaps.html
10  *
11  * The memory overhead of the following tap table should be relatively small,
12  * no more than 400 bytes.
13  */
14 static uint8_t lfsr_taps[64][FIO_MAX_TAPS] =
15 {
16 	{0}, {0}, {0},		//LFSRs with less that 3-bits cannot exist
17 	{3, 2},			//Tap position for 3-bit LFSR
18 	{4, 3},			//Tap position for 4-bit LFSR
19 	{5, 3},			//Tap position for 5-bit LFSR
20 	{6, 5},			//Tap position for 6-bit LFSR
21 	{7, 6},			//Tap position for 7-bit LFSR
22 	{8, 6, 5 ,4},		//Tap position for 8-bit LFSR
23 	{9, 5},			//Tap position for 9-bit LFSR
24 	{10, 7},		//Tap position for 10-bit LFSR
25 	{11, 9},		//Tap position for 11-bit LFSR
26 	{12, 6, 4, 1},		//Tap position for 12-bit LFSR
27 	{13, 4, 3, 1},		//Tap position for 13-bit LFSR
28 	{14, 5, 3, 1},		//Tap position for 14-bit LFSR
29 	{15, 14},		//Tap position for 15-bit LFSR
30 	{16, 15, 13, 4},	//Tap position for 16-bit LFSR
31 	{17, 14},		//Tap position for 17-bit LFSR
32 	{18, 11},		//Tap position for 18-bit LFSR
33 	{19, 6, 2, 1},		//Tap position for 19-bit LFSR
34 	{20, 17},		//Tap position for 20-bit LFSR
35 	{21, 19},		//Tap position for 21-bit LFSR
36 	{22, 21},		//Tap position for 22-bit LFSR
37 	{23, 18},		//Tap position for 23-bit LFSR
38 	{24, 23, 22, 17},	//Tap position for 24-bit LFSR
39 	{25, 22},		//Tap position for 25-bit LFSR
40 	{26, 6, 2, 1},		//Tap position for 26-bit LFSR
41 	{27, 5, 2, 1},		//Tap position for 27-bit LFSR
42 	{28, 25},		//Tap position for 28-bit LFSR
43 	{29, 27},		//Tap position for 29-bit LFSR
44 	{30, 6, 4, 1},		//Tap position for 30-bit LFSR
45 	{31, 28},		//Tap position for 31-bit LFSR
46 	{32, 31, 29, 1},	//Tap position for 32-bit LFSR
47 	{33, 20},		//Tap position for 33-bit LFSR
48 	{34, 27, 2, 1},		//Tap position for 34-bit LFSR
49 	{35, 33},		//Tap position for 35-bit LFSR
50 	{36, 25},		//Tap position for 36-bit LFSR
51 	{37, 5, 4, 3, 2, 1},	//Tap position for 37-bit LFSR
52 	{38, 6, 5, 1},		//Tap position for 38-bit LFSR
53 	{39, 35},		//Tap position for 39-bit LFSR
54 	{40, 38, 21, 19},	//Tap position for 40-bit LFSR
55 	{41, 38},		//Tap position for 41-bit LFSR
56 	{42, 41, 20, 19},	//Tap position for 42-bit LFSR
57 	{43, 42, 38, 37},	//Tap position for 43-bit LFSR
58 	{44, 43, 18, 17},	//Tap position for 44-bit LFSR
59 	{45, 44, 42, 41},	//Tap position for 45-bit LFSR
60 	{46, 45, 26, 25},	//Tap position for 46-bit LFSR
61 	{47, 42},		//Tap position for 47-bit LFSR
62 	{48, 47, 21, 20},	//Tap position for 48-bit LFSR
63 	{49, 40},		//Tap position for 49-bit LFSR
64 	{50, 49, 24, 23},	//Tap position for 50-bit LFSR
65 	{51, 50, 36, 35},	//Tap position for 51-bit LFSR
66 	{52, 49},		//Tap position for 52-bit LFSR
67 	{53, 52, 38, 37},	//Tap position for 53-bit LFSR
68 	{54, 53, 18, 17},	//Tap position for 54-bit LFSR
69 	{55, 31},		//Tap position for 55-bit LFSR
70 	{56, 55, 35, 34},	//Tap position for 56-bit LFSR
71 	{57, 50},		//Tap position for 57-bit LFSR
72 	{58, 39},		//Tap position for 58-bit LFSR
73 	{59, 58, 38, 37},	//Tap position for 59-bit LFSR
74 	{60, 59},		//Tap position for 60-bit LFSR
75 	{61, 60, 46, 45},	//Tap position for 61-bit LFSR
76 	{62, 61, 6, 5},		//Tap position for 62-bit LFSR
77 	{63, 62},		//Tap position for 63-bit LFSR
78 };
79 
80 #define __LFSR_NEXT(__fl, __v)						\
81 	__v = ((__v >> 1) | __fl->cached_bit) ^			\
82 			(((__v & 1UL) - 1UL) & __fl->xormask);
83 
__lfsr_next(struct fio_lfsr * fl,unsigned int spin)84 static inline void __lfsr_next(struct fio_lfsr *fl, unsigned int spin)
85 {
86 	/*
87 	 * This should be O(1) since most compilers will create a jump table for
88 	 * this switch.
89 	 */
90 	switch (spin) {
91 		case 15: __LFSR_NEXT(fl, fl->last_val);
92 		case 14: __LFSR_NEXT(fl, fl->last_val);
93 		case 13: __LFSR_NEXT(fl, fl->last_val);
94 		case 12: __LFSR_NEXT(fl, fl->last_val);
95 		case 11: __LFSR_NEXT(fl, fl->last_val);
96 		case 10: __LFSR_NEXT(fl, fl->last_val);
97 		case  9: __LFSR_NEXT(fl, fl->last_val);
98 		case  8: __LFSR_NEXT(fl, fl->last_val);
99 		case  7: __LFSR_NEXT(fl, fl->last_val);
100 		case  6: __LFSR_NEXT(fl, fl->last_val);
101 		case  5: __LFSR_NEXT(fl, fl->last_val);
102 		case  4: __LFSR_NEXT(fl, fl->last_val);
103 		case  3: __LFSR_NEXT(fl, fl->last_val);
104 		case  2: __LFSR_NEXT(fl, fl->last_val);
105 		case  1: __LFSR_NEXT(fl, fl->last_val);
106 		case  0: __LFSR_NEXT(fl, fl->last_val);
107 		default: break;
108 	}
109 }
110 
111 /*
112  * lfsr_next does the following:
113  *
114  * a. Return if the number of max values has been exceeded.
115  * b. Check if we have a spin value that produces a repeating subsequence.
116  *    This is previously calculated in `prepare_spin` and cycle_length should
117  *    be > 0. If we do have such a spin:
118  *
119  *    i. Decrement the calculated cycle.
120  *    ii. If it reaches zero, add "+1" to the spin and reset the cycle_length
121  *        (we have it cached in the struct fio_lfsr)
122  *
123  *    In either case, continue with the calculation of the next value.
124  * c. Check if the calculated value exceeds the desirable range. In this case,
125  *    go back to b, else return.
126  */
lfsr_next(struct fio_lfsr * fl,uint64_t * off)127 int lfsr_next(struct fio_lfsr *fl, uint64_t *off)
128 {
129 	if (fl->num_vals++ > fl->max_val)
130 		return 1;
131 
132 	do {
133 		if (fl->cycle_length && !--fl->cycle_length) {
134 			__lfsr_next(fl, fl->spin + 1);
135 			fl->cycle_length = fl->cached_cycle_length;
136 		} else
137 			__lfsr_next(fl, fl->spin);
138 	} while (fio_unlikely(fl->last_val > fl->max_val));
139 
140 	*off = fl->last_val;
141 	return 0;
142 }
143 
lfsr_create_xormask(uint8_t * taps)144 static uint64_t lfsr_create_xormask(uint8_t *taps)
145 {
146 	int i;
147 	uint64_t xormask = 0;
148 
149 	for(i = 0; i < FIO_MAX_TAPS && taps[i] != 0; i++)
150 		xormask |= 1UL << (taps[i] - 1);
151 
152 	return xormask;
153 }
154 
find_lfsr(uint64_t size)155 static uint8_t *find_lfsr(uint64_t size)
156 {
157 	int i;
158 
159 	/*
160 	 * For an LFSR, there is always a prohibited state (all ones).
161 	 * Thus, if we need to find the proper LFSR for our size, we must
162 	 * take that into account.
163 	 */
164 	for (i = 3; i < 64; i++)
165 		if ((1UL << i) > size)
166 			return lfsr_taps[i];
167 
168 	return NULL;
169 }
170 
171 /*
172  * It is well-known that all maximal n-bit LFSRs will start repeating
173  * themselves after their 2^n iteration. The introduction of spins however, is
174  * possible to create a repetition of a sub-sequence before we hit that mark.
175  * This happens if:
176  *
177  * [1]: ((2^n - 1) * i) % (spin + 1) == 0,
178  * where "n" is LFSR's bits and "i" any number within the range [1,spin]
179  *
180  * It is important to know beforehand if a spin can cause a repetition of a
181  * sub-sequence (cycle) and its length. However, calculating (2^n - 1) * i may
182  * produce a buffer overflow for "n" close to 64, so we expand the above to:
183  *
184  * [2]: (2^n - 1) -> (x * (spin + 1) + y), where x >= 0 and 0 <= y <= spin
185  *
186  * Thus, [1] is equivalent to (y * i) % (spin + 1) == 0;
187  * Also, the cycle's length will be (x * i) + (y * i) / (spin + 1)
188  */
prepare_spin(struct fio_lfsr * fl,unsigned int spin)189 static int prepare_spin(struct fio_lfsr *fl, unsigned int spin)
190 {
191 	uint64_t max = (fl->cached_bit << 1) - 1;
192 	uint64_t x, y;
193 	int i;
194 
195 	if (spin > 15)
196 		return 1;
197 
198 	x = max / (spin + 1);
199 	y = max % (spin + 1);
200 	fl->cycle_length = 0;	/* No cycle occurs, other than the expected */
201 	fl->spin = spin;
202 
203 	for (i = 1; i <= spin; i++) {
204 		if ((y * i) % (spin + 1) == 0) {
205 			fl->cycle_length = (x * i) + (y * i) / (spin + 1);
206 			break;
207 		}
208 	}
209 	fl->cached_cycle_length = fl->cycle_length;
210 
211 	/*
212 	 * Increment cycle length for the first time only since the stored value
213 	 * will not be printed otherwise.
214 	 */
215 	fl->cycle_length++;
216 
217 	return 0;
218 }
219 
lfsr_reset(struct fio_lfsr * fl,unsigned long seed)220 int lfsr_reset(struct fio_lfsr *fl, unsigned long seed)
221 {
222 	uint64_t bitmask = (fl->cached_bit << 1) - 1;
223 
224 	fl->num_vals = 0;
225 	fl->last_val = seed & bitmask;
226 
227 	/* All-ones state is illegal for XNOR LFSRs */
228 	if (fl->last_val == bitmask)
229 		return 1;
230 
231 	return 0;
232 }
233 
lfsr_init(struct fio_lfsr * fl,uint64_t nums,unsigned long seed,unsigned int spin)234 int lfsr_init(struct fio_lfsr *fl, uint64_t nums, unsigned long seed,
235 		unsigned int spin)
236 {
237 	uint8_t *taps;
238 
239 	taps = find_lfsr(nums);
240 	if (!taps)
241 		return 1;
242 
243 	fl->max_val = nums - 1;
244 	fl->xormask = lfsr_create_xormask(taps);
245 	fl->cached_bit = 1UL << (taps[0] - 1);
246 
247 	if (prepare_spin(fl, spin))
248 		return 1;
249 
250 	if (lfsr_reset(fl, seed))
251 		return 1;
252 
253 	return 0;
254 }
255