• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_PARCEL_H
18 #define ANDROID_PARCEL_H
19 
20 #include <string>
21 #include <vector>
22 
23 #include <cutils/native_handle.h>
24 #include <nativehelper/ScopedFd.h>
25 #include <utils/Errors.h>
26 #include <utils/RefBase.h>
27 #include <utils/String16.h>
28 #include <utils/Vector.h>
29 #include <utils/Flattenable.h>
30 #include <linux/binder.h>
31 
32 #include <binder/IInterface.h>
33 #include <binder/Parcelable.h>
34 
35 // ---------------------------------------------------------------------------
36 namespace android {
37 
38 template <typename T> class Flattenable;
39 template <typename T> class LightFlattenable;
40 class IBinder;
41 class IPCThreadState;
42 class ProcessState;
43 class String8;
44 class TextOutput;
45 
46 class Parcel {
47     friend class IPCThreadState;
48 public:
49     class ReadableBlob;
50     class WritableBlob;
51 
52                         Parcel();
53                         ~Parcel();
54 
55     const uint8_t*      data() const;
56     size_t              dataSize() const;
57     size_t              dataAvail() const;
58     size_t              dataPosition() const;
59     size_t              dataCapacity() const;
60 
61     status_t            setDataSize(size_t size);
62     void                setDataPosition(size_t pos) const;
63     status_t            setDataCapacity(size_t size);
64 
65     status_t            setData(const uint8_t* buffer, size_t len);
66 
67     status_t            appendFrom(const Parcel *parcel,
68                                    size_t start, size_t len);
69 
70     bool                allowFds() const;
71     bool                pushAllowFds(bool allowFds);
72     void                restoreAllowFds(bool lastValue);
73 
74     bool                hasFileDescriptors() const;
75 
76     // Writes the RPC header.
77     status_t            writeInterfaceToken(const String16& interface);
78 
79     // Parses the RPC header, returning true if the interface name
80     // in the header matches the expected interface from the caller.
81     //
82     // Additionally, enforceInterface does part of the work of
83     // propagating the StrictMode policy mask, populating the current
84     // IPCThreadState, which as an optimization may optionally be
85     // passed in.
86     bool                enforceInterface(const String16& interface,
87                                          IPCThreadState* threadState = NULL) const;
88     bool                checkInterface(IBinder*) const;
89 
90     void                freeData();
91 
92 private:
93     const binder_size_t* objects() const;
94 
95 public:
96     size_t              objectsCount() const;
97 
98     status_t            errorCheck() const;
99     void                setError(status_t err);
100 
101     status_t            write(const void* data, size_t len);
102     void*               writeInplace(size_t len);
103     status_t            writeUnpadded(const void* data, size_t len);
104     status_t            writeInt32(int32_t val);
105     status_t            writeUint32(uint32_t val);
106     status_t            writeInt64(int64_t val);
107     status_t            writeUint64(uint64_t val);
108     status_t            writeFloat(float val);
109     status_t            writeDouble(double val);
110     status_t            writeCString(const char* str);
111     status_t            writeString8(const String8& str);
112     status_t            writeString16(const String16& str);
113     status_t            writeString16(const std::unique_ptr<String16>& str);
114     status_t            writeString16(const char16_t* str, size_t len);
115     status_t            writeStrongBinder(const sp<IBinder>& val);
116     status_t            writeWeakBinder(const wp<IBinder>& val);
117     status_t            writeInt32Array(size_t len, const int32_t *val);
118     status_t            writeByteArray(size_t len, const uint8_t *val);
119     status_t            writeBool(bool val);
120     status_t            writeChar(char16_t val);
121     status_t            writeByte(int8_t val);
122 
123     // Take a UTF8 encoded string, convert to UTF16, write it to the parcel.
124     status_t            writeUtf8AsUtf16(const std::string& str);
125     status_t            writeUtf8AsUtf16(const std::unique_ptr<std::string>& str);
126 
127     status_t            writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val);
128     status_t            writeByteVector(const std::vector<int8_t>& val);
129     status_t            writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val);
130     status_t            writeByteVector(const std::vector<uint8_t>& val);
131     status_t            writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val);
132     status_t            writeInt32Vector(const std::vector<int32_t>& val);
133     status_t            writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val);
134     status_t            writeInt64Vector(const std::vector<int64_t>& val);
135     status_t            writeFloatVector(const std::unique_ptr<std::vector<float>>& val);
136     status_t            writeFloatVector(const std::vector<float>& val);
137     status_t            writeDoubleVector(const std::unique_ptr<std::vector<double>>& val);
138     status_t            writeDoubleVector(const std::vector<double>& val);
139     status_t            writeBoolVector(const std::unique_ptr<std::vector<bool>>& val);
140     status_t            writeBoolVector(const std::vector<bool>& val);
141     status_t            writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val);
142     status_t            writeCharVector(const std::vector<char16_t>& val);
143     status_t            writeString16Vector(
144                             const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val);
145     status_t            writeString16Vector(const std::vector<String16>& val);
146     status_t            writeUtf8VectorAsUtf16Vector(
147                             const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val);
148     status_t            writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val);
149 
150     status_t            writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val);
151     status_t            writeStrongBinderVector(const std::vector<sp<IBinder>>& val);
152 
153     template<typename T>
154     status_t            writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>>& val);
155     template<typename T>
156     status_t            writeParcelableVector(const std::vector<T>& val);
157 
158     template<typename T>
159     status_t            writeNullableParcelable(const std::unique_ptr<T>& parcelable);
160 
161     status_t            writeParcelable(const Parcelable& parcelable);
162 
163     template<typename T>
164     status_t            write(const Flattenable<T>& val);
165 
166     template<typename T>
167     status_t            write(const LightFlattenable<T>& val);
168 
169 
170     // Place a native_handle into the parcel (the native_handle's file-
171     // descriptors are dup'ed, so it is safe to delete the native_handle
172     // when this function returns).
173     // Doesn't take ownership of the native_handle.
174     status_t            writeNativeHandle(const native_handle* handle);
175 
176     // Place a file descriptor into the parcel.  The given fd must remain
177     // valid for the lifetime of the parcel.
178     // The Parcel does not take ownership of the given fd unless you ask it to.
179     status_t            writeFileDescriptor(int fd, bool takeOwnership = false);
180 
181     // Place a file descriptor into the parcel.  A dup of the fd is made, which
182     // will be closed once the parcel is destroyed.
183     status_t            writeDupFileDescriptor(int fd);
184 
185     // Place a file descriptor into the parcel.  This will not affect the
186     // semantics of the smart file descriptor. A new descriptor will be
187     // created, and will be closed when the parcel is destroyed.
188     status_t            writeUniqueFileDescriptor(
189                             const ScopedFd& fd);
190 
191     // Place a vector of file desciptors into the parcel. Each descriptor is
192     // dup'd as in writeDupFileDescriptor
193     status_t            writeUniqueFileDescriptorVector(
194                             const std::unique_ptr<std::vector<ScopedFd>>& val);
195     status_t            writeUniqueFileDescriptorVector(
196                             const std::vector<ScopedFd>& val);
197 
198     // Writes a blob to the parcel.
199     // If the blob is small, then it is stored in-place, otherwise it is
200     // transferred by way of an anonymous shared memory region.  Prefer sending
201     // immutable blobs if possible since they may be subsequently transferred between
202     // processes without further copying whereas mutable blobs always need to be copied.
203     // The caller should call release() on the blob after writing its contents.
204     status_t            writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob);
205 
206     // Write an existing immutable blob file descriptor to the parcel.
207     // This allows the client to send the same blob to multiple processes
208     // as long as it keeps a dup of the blob file descriptor handy for later.
209     status_t            writeDupImmutableBlobFileDescriptor(int fd);
210 
211     status_t            writeObject(const flat_binder_object& val, bool nullMetaData);
212 
213     // Like Parcel.java's writeNoException().  Just writes a zero int32.
214     // Currently the native implementation doesn't do any of the StrictMode
215     // stack gathering and serialization that the Java implementation does.
216     status_t            writeNoException();
217 
218     void                remove(size_t start, size_t amt);
219 
220     status_t            read(void* outData, size_t len) const;
221     const void*         readInplace(size_t len) const;
222     int32_t             readInt32() const;
223     status_t            readInt32(int32_t *pArg) const;
224     uint32_t            readUint32() const;
225     status_t            readUint32(uint32_t *pArg) const;
226     int64_t             readInt64() const;
227     status_t            readInt64(int64_t *pArg) const;
228     uint64_t            readUint64() const;
229     status_t            readUint64(uint64_t *pArg) const;
230     float               readFloat() const;
231     status_t            readFloat(float *pArg) const;
232     double              readDouble() const;
233     status_t            readDouble(double *pArg) const;
234     intptr_t            readIntPtr() const;
235     status_t            readIntPtr(intptr_t *pArg) const;
236     bool                readBool() const;
237     status_t            readBool(bool *pArg) const;
238     char16_t            readChar() const;
239     status_t            readChar(char16_t *pArg) const;
240     int8_t              readByte() const;
241     status_t            readByte(int8_t *pArg) const;
242 
243     // Read a UTF16 encoded string, convert to UTF8
244     status_t            readUtf8FromUtf16(std::string* str) const;
245     status_t            readUtf8FromUtf16(std::unique_ptr<std::string>* str) const;
246 
247     const char*         readCString() const;
248     String8             readString8() const;
249     String16            readString16() const;
250     status_t            readString16(String16* pArg) const;
251     status_t            readString16(std::unique_ptr<String16>* pArg) const;
252     const char16_t*     readString16Inplace(size_t* outLen) const;
253     sp<IBinder>         readStrongBinder() const;
254     status_t            readStrongBinder(sp<IBinder>* val) const;
255     wp<IBinder>         readWeakBinder() const;
256 
257     template<typename T>
258     status_t            readParcelableVector(
259                             std::unique_ptr<std::vector<std::unique_ptr<T>>>* val) const;
260     template<typename T>
261     status_t            readParcelableVector(std::vector<T>* val) const;
262 
263     status_t            readParcelable(Parcelable* parcelable) const;
264 
265     template<typename T>
266     status_t            readParcelable(std::unique_ptr<T>* parcelable) const;
267 
268     template<typename T>
269     status_t            readStrongBinder(sp<T>* val) const;
270 
271     status_t            readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const;
272     status_t            readStrongBinderVector(std::vector<sp<IBinder>>* val) const;
273 
274     status_t            readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const;
275     status_t            readByteVector(std::vector<int8_t>* val) const;
276     status_t            readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const;
277     status_t            readByteVector(std::vector<uint8_t>* val) const;
278     status_t            readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const;
279     status_t            readInt32Vector(std::vector<int32_t>* val) const;
280     status_t            readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const;
281     status_t            readInt64Vector(std::vector<int64_t>* val) const;
282     status_t            readFloatVector(std::unique_ptr<std::vector<float>>* val) const;
283     status_t            readFloatVector(std::vector<float>* val) const;
284     status_t            readDoubleVector(std::unique_ptr<std::vector<double>>* val) const;
285     status_t            readDoubleVector(std::vector<double>* val) const;
286     status_t            readBoolVector(std::unique_ptr<std::vector<bool>>* val) const;
287     status_t            readBoolVector(std::vector<bool>* val) const;
288     status_t            readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const;
289     status_t            readCharVector(std::vector<char16_t>* val) const;
290     status_t            readString16Vector(
291                             std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const;
292     status_t            readString16Vector(std::vector<String16>* val) const;
293     status_t            readUtf8VectorFromUtf16Vector(
294                             std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const;
295     status_t            readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const;
296 
297     template<typename T>
298     status_t            read(Flattenable<T>& val) const;
299 
300     template<typename T>
301     status_t            read(LightFlattenable<T>& val) const;
302 
303     // Like Parcel.java's readExceptionCode().  Reads the first int32
304     // off of a Parcel's header, returning 0 or the negative error
305     // code on exceptions, but also deals with skipping over rich
306     // response headers.  Callers should use this to read & parse the
307     // response headers rather than doing it by hand.
308     int32_t             readExceptionCode() const;
309 
310     // Retrieve native_handle from the parcel. This returns a copy of the
311     // parcel's native_handle (the caller takes ownership). The caller
312     // must free the native_handle with native_handle_close() and
313     // native_handle_delete().
314     native_handle*     readNativeHandle() const;
315 
316 
317     // Retrieve a file descriptor from the parcel.  This returns the raw fd
318     // in the parcel, which you do not own -- use dup() to get your own copy.
319     int                 readFileDescriptor() const;
320 
321     // Retrieve a smart file descriptor from the parcel.
322     status_t            readUniqueFileDescriptor(
323                             ScopedFd* val) const;
324 
325 
326     // Retrieve a vector of smart file descriptors from the parcel.
327     status_t            readUniqueFileDescriptorVector(
328                             std::unique_ptr<std::vector<ScopedFd>>* val) const;
329     status_t            readUniqueFileDescriptorVector(
330                             std::vector<ScopedFd>* val) const;
331 
332     // Reads a blob from the parcel.
333     // The caller should call release() on the blob after reading its contents.
334     status_t            readBlob(size_t len, ReadableBlob* outBlob) const;
335 
336     const flat_binder_object* readObject(bool nullMetaData) const;
337 
338     // Explicitly close all file descriptors in the parcel.
339     void                closeFileDescriptors();
340 
341     // Debugging: get metrics on current allocations.
342     static size_t       getGlobalAllocSize();
343     static size_t       getGlobalAllocCount();
344 
345 private:
346     typedef void        (*release_func)(Parcel* parcel,
347                                         const uint8_t* data, size_t dataSize,
348                                         const binder_size_t* objects, size_t objectsSize,
349                                         void* cookie);
350 
351     uintptr_t           ipcData() const;
352     size_t              ipcDataSize() const;
353     uintptr_t           ipcObjects() const;
354     size_t              ipcObjectsCount() const;
355     void                ipcSetDataReference(const uint8_t* data, size_t dataSize,
356                                             const binder_size_t* objects, size_t objectsCount,
357                                             release_func relFunc, void* relCookie);
358 
359 public:
360     void                print(TextOutput& to, uint32_t flags = 0) const;
361 
362 private:
363                         Parcel(const Parcel& o);
364     Parcel&             operator=(const Parcel& o);
365 
366     status_t            finishWrite(size_t len);
367     void                releaseObjects();
368     void                acquireObjects();
369     status_t            growData(size_t len);
370     status_t            restartWrite(size_t desired);
371     status_t            continueWrite(size_t desired);
372     status_t            writePointer(uintptr_t val);
373     status_t            readPointer(uintptr_t *pArg) const;
374     uintptr_t           readPointer() const;
375     void                freeDataNoInit();
376     void                initState();
377     void                scanForFds() const;
378 
379     template<class T>
380     status_t            readAligned(T *pArg) const;
381 
382     template<class T>   T readAligned() const;
383 
384     template<class T>
385     status_t            writeAligned(T val);
386 
387     status_t            writeRawNullableParcelable(const Parcelable*
388                                                    parcelable);
389 
390     template<typename T, typename U>
391     status_t            unsafeReadTypedVector(std::vector<T>* val,
392                                               status_t(Parcel::*read_func)(U*) const) const;
393     template<typename T>
394     status_t            readNullableTypedVector(std::unique_ptr<std::vector<T>>* val,
395                                                 status_t(Parcel::*read_func)(T*) const) const;
396     template<typename T>
397     status_t            readTypedVector(std::vector<T>* val,
398                                         status_t(Parcel::*read_func)(T*) const) const;
399     template<typename T, typename U>
400     status_t            unsafeWriteTypedVector(const std::vector<T>& val,
401                                                status_t(Parcel::*write_func)(U));
402     template<typename T>
403     status_t            writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
404                                                  status_t(Parcel::*write_func)(const T&));
405     template<typename T>
406     status_t            writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
407                                                  status_t(Parcel::*write_func)(T));
408     template<typename T>
409     status_t            writeTypedVector(const std::vector<T>& val,
410                                          status_t(Parcel::*write_func)(const T&));
411     template<typename T>
412     status_t            writeTypedVector(const std::vector<T>& val,
413                                          status_t(Parcel::*write_func)(T));
414 
415     status_t            mError;
416     uint8_t*            mData;
417     size_t              mDataSize;
418     size_t              mDataCapacity;
419     mutable size_t      mDataPos;
420     binder_size_t*      mObjects;
421     size_t              mObjectsSize;
422     size_t              mObjectsCapacity;
423     mutable size_t      mNextObjectHint;
424 
425     mutable bool        mFdsKnown;
426     mutable bool        mHasFds;
427     bool                mAllowFds;
428 
429     release_func        mOwner;
430     void*               mOwnerCookie;
431 
432     class Blob {
433     public:
434         Blob();
435         ~Blob();
436 
437         void clear();
438         void release();
size()439         inline size_t size() const { return mSize; }
fd()440         inline int fd() const { return mFd; };
isMutable()441         inline bool isMutable() const { return mMutable; }
442 
443     protected:
444         void init(int fd, void* data, size_t size, bool isMutable);
445 
446         int mFd; // owned by parcel so not closed when released
447         void* mData;
448         size_t mSize;
449         bool mMutable;
450     };
451 
452     class FlattenableHelperInterface {
453     protected:
~FlattenableHelperInterface()454         ~FlattenableHelperInterface() { }
455     public:
456         virtual size_t getFlattenedSize() const = 0;
457         virtual size_t getFdCount() const = 0;
458         virtual status_t flatten(void* buffer, size_t size, int* fds, size_t count) const = 0;
459         virtual status_t unflatten(void const* buffer, size_t size, int const* fds, size_t count) = 0;
460     };
461 
462     template<typename T>
463     class FlattenableHelper : public FlattenableHelperInterface {
464         friend class Parcel;
465         const Flattenable<T>& val;
FlattenableHelper(const Flattenable<T> & val)466         explicit FlattenableHelper(const Flattenable<T>& val) : val(val) { }
467 
468     public:
getFlattenedSize()469         virtual size_t getFlattenedSize() const {
470             return val.getFlattenedSize();
471         }
getFdCount()472         virtual size_t getFdCount() const {
473             return val.getFdCount();
474         }
flatten(void * buffer,size_t size,int * fds,size_t count)475         virtual status_t flatten(void* buffer, size_t size, int* fds, size_t count) const {
476             return val.flatten(buffer, size, fds, count);
477         }
unflatten(void const * buffer,size_t size,int const * fds,size_t count)478         virtual status_t unflatten(void const* buffer, size_t size, int const* fds, size_t count) {
479             return const_cast<Flattenable<T>&>(val).unflatten(buffer, size, fds, count);
480         }
481     };
482     status_t write(const FlattenableHelperInterface& val);
483     status_t read(FlattenableHelperInterface& val) const;
484 
485 public:
486     class ReadableBlob : public Blob {
487         friend class Parcel;
488     public:
data()489         inline const void* data() const { return mData; }
mutableData()490         inline void* mutableData() { return isMutable() ? mData : NULL; }
491     };
492 
493     class WritableBlob : public Blob {
494         friend class Parcel;
495     public:
data()496         inline void* data() { return mData; }
497     };
498 
499 private:
500     size_t mOpenAshmemSize;
501 
502 public:
503     // TODO: Remove once ABI can be changed.
504     size_t getBlobAshmemSize() const;
505     size_t getOpenAshmemSize() const;
506 };
507 
508 // ---------------------------------------------------------------------------
509 
510 template<typename T>
write(const Flattenable<T> & val)511 status_t Parcel::write(const Flattenable<T>& val) {
512     const FlattenableHelper<T> helper(val);
513     return write(helper);
514 }
515 
516 template<typename T>
write(const LightFlattenable<T> & val)517 status_t Parcel::write(const LightFlattenable<T>& val) {
518     size_t size(val.getFlattenedSize());
519     if (!val.isFixedSize()) {
520         status_t err = writeInt32(size);
521         if (err != NO_ERROR) {
522             return err;
523         }
524     }
525     if (size) {
526         void* buffer = writeInplace(size);
527         if (buffer == NULL)
528             return NO_MEMORY;
529         return val.flatten(buffer, size);
530     }
531     return NO_ERROR;
532 }
533 
534 template<typename T>
read(Flattenable<T> & val)535 status_t Parcel::read(Flattenable<T>& val) const {
536     FlattenableHelper<T> helper(val);
537     return read(helper);
538 }
539 
540 template<typename T>
read(LightFlattenable<T> & val)541 status_t Parcel::read(LightFlattenable<T>& val) const {
542     size_t size;
543     if (val.isFixedSize()) {
544         size = val.getFlattenedSize();
545     } else {
546         int32_t s;
547         status_t err = readInt32(&s);
548         if (err != NO_ERROR) {
549             return err;
550         }
551         size = s;
552     }
553     if (size) {
554         void const* buffer = readInplace(size);
555         return buffer == NULL ? NO_MEMORY :
556                 val.unflatten(buffer, size);
557     }
558     return NO_ERROR;
559 }
560 
561 template<typename T>
readStrongBinder(sp<T> * val)562 status_t Parcel::readStrongBinder(sp<T>* val) const {
563     sp<IBinder> tmp;
564     status_t ret = readStrongBinder(&tmp);
565 
566     if (ret == OK) {
567         *val = interface_cast<T>(tmp);
568 
569         if (val->get() == nullptr) {
570             return UNKNOWN_ERROR;
571         }
572     }
573 
574     return ret;
575 }
576 
577 template<typename T, typename U>
unsafeReadTypedVector(std::vector<T> * val,status_t (Parcel::* read_func)(U *)const)578 status_t Parcel::unsafeReadTypedVector(
579         std::vector<T>* val,
580         status_t(Parcel::*read_func)(U*) const) const {
581     int32_t size;
582     status_t status = this->readInt32(&size);
583 
584     if (status != OK) {
585         return status;
586     }
587 
588     if (size < 0) {
589         return UNEXPECTED_NULL;
590     }
591 
592     if (val->max_size() < size) {
593         return NO_MEMORY;
594     }
595 
596     val->resize(size);
597 
598     if (val->size() < size) {
599         return NO_MEMORY;
600     }
601 
602     for (auto& v: *val) {
603         status = (this->*read_func)(&v);
604 
605         if (status != OK) {
606             return status;
607         }
608     }
609 
610     return OK;
611 }
612 
613 template<typename T>
readTypedVector(std::vector<T> * val,status_t (Parcel::* read_func)(T *)const)614 status_t Parcel::readTypedVector(std::vector<T>* val,
615                                  status_t(Parcel::*read_func)(T*) const) const {
616     return unsafeReadTypedVector(val, read_func);
617 }
618 
619 template<typename T>
readNullableTypedVector(std::unique_ptr<std::vector<T>> * val,status_t (Parcel::* read_func)(T *)const)620 status_t Parcel::readNullableTypedVector(std::unique_ptr<std::vector<T>>* val,
621                                          status_t(Parcel::*read_func)(T*) const) const {
622     const int32_t start = dataPosition();
623     int32_t size;
624     status_t status = readInt32(&size);
625     val->reset();
626 
627     if (status != OK || size < 0) {
628         return status;
629     }
630 
631     setDataPosition(start);
632     val->reset(new std::vector<T>());
633 
634     status = unsafeReadTypedVector(val->get(), read_func);
635 
636     if (status != OK) {
637         val->reset();
638     }
639 
640     return status;
641 }
642 
643 template<typename T, typename U>
unsafeWriteTypedVector(const std::vector<T> & val,status_t (Parcel::* write_func)(U))644 status_t Parcel::unsafeWriteTypedVector(const std::vector<T>& val,
645                                         status_t(Parcel::*write_func)(U)) {
646     if (val.size() > std::numeric_limits<int32_t>::max()) {
647         return BAD_VALUE;
648     }
649 
650     status_t status = this->writeInt32(val.size());
651 
652     if (status != OK) {
653         return status;
654     }
655 
656     for (const auto& item : val) {
657         status = (this->*write_func)(item);
658 
659         if (status != OK) {
660             return status;
661         }
662     }
663 
664     return OK;
665 }
666 
667 template<typename T>
writeTypedVector(const std::vector<T> & val,status_t (Parcel::* write_func)(const T &))668 status_t Parcel::writeTypedVector(const std::vector<T>& val,
669                                   status_t(Parcel::*write_func)(const T&)) {
670     return unsafeWriteTypedVector(val, write_func);
671 }
672 
673 template<typename T>
writeTypedVector(const std::vector<T> & val,status_t (Parcel::* write_func)(T))674 status_t Parcel::writeTypedVector(const std::vector<T>& val,
675                                   status_t(Parcel::*write_func)(T)) {
676     return unsafeWriteTypedVector(val, write_func);
677 }
678 
679 template<typename T>
writeNullableTypedVector(const std::unique_ptr<std::vector<T>> & val,status_t (Parcel::* write_func)(const T &))680 status_t Parcel::writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
681                                           status_t(Parcel::*write_func)(const T&)) {
682     if (val.get() == nullptr) {
683         return this->writeInt32(-1);
684     }
685 
686     return unsafeWriteTypedVector(*val, write_func);
687 }
688 
689 template<typename T>
writeNullableTypedVector(const std::unique_ptr<std::vector<T>> & val,status_t (Parcel::* write_func)(T))690 status_t Parcel::writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
691                                           status_t(Parcel::*write_func)(T)) {
692     if (val.get() == nullptr) {
693         return this->writeInt32(-1);
694     }
695 
696     return unsafeWriteTypedVector(*val, write_func);
697 }
698 
699 template<typename T>
readParcelableVector(std::vector<T> * val)700 status_t Parcel::readParcelableVector(std::vector<T>* val) const {
701     return unsafeReadTypedVector<T, Parcelable>(val, &Parcel::readParcelable);
702 }
703 
704 template<typename T>
readParcelableVector(std::unique_ptr<std::vector<std::unique_ptr<T>>> * val)705 status_t Parcel::readParcelableVector(std::unique_ptr<std::vector<std::unique_ptr<T>>>* val) const {
706     const int32_t start = dataPosition();
707     int32_t size;
708     status_t status = readInt32(&size);
709     val->reset();
710 
711     if (status != OK || size < 0) {
712         return status;
713     }
714 
715     setDataPosition(start);
716     val->reset(new std::vector<std::unique_ptr<T>>());
717 
718     status = unsafeReadTypedVector(val->get(), &Parcel::readParcelable<T>);
719 
720     if (status != OK) {
721         val->reset();
722     }
723 
724     return status;
725 }
726 
727 template<typename T>
readParcelable(std::unique_ptr<T> * parcelable)728 status_t Parcel::readParcelable(std::unique_ptr<T>* parcelable) const {
729     const int32_t start = dataPosition();
730     int32_t present;
731     status_t status = readInt32(&present);
732     parcelable->reset();
733 
734     if (status != OK || !present) {
735         return status;
736     }
737 
738     setDataPosition(start);
739     parcelable->reset(new T());
740 
741     status = readParcelable(parcelable->get());
742 
743     if (status != OK) {
744         parcelable->reset();
745     }
746 
747     return status;
748 }
749 
750 template<typename T>
writeNullableParcelable(const std::unique_ptr<T> & parcelable)751 status_t Parcel::writeNullableParcelable(const std::unique_ptr<T>& parcelable) {
752     return writeRawNullableParcelable(parcelable.get());
753 }
754 
755 template<typename T>
writeParcelableVector(const std::vector<T> & val)756 status_t Parcel::writeParcelableVector(const std::vector<T>& val) {
757     return unsafeWriteTypedVector<T,const Parcelable&>(val, &Parcel::writeParcelable);
758 }
759 
760 template<typename T>
writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>> & val)761 status_t Parcel::writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>>& val) {
762     if (val.get() == nullptr) {
763         return this->writeInt32(-1);
764     }
765 
766     return unsafeWriteTypedVector(*val, &Parcel::writeParcelable);
767 }
768 
769 // ---------------------------------------------------------------------------
770 
771 inline TextOutput& operator<<(TextOutput& to, const Parcel& parcel)
772 {
773     parcel.print(to);
774     return to;
775 }
776 
777 // ---------------------------------------------------------------------------
778 
779 // Generic acquire and release of objects.
780 void acquire_object(const sp<ProcessState>& proc,
781                     const flat_binder_object& obj, const void* who);
782 void release_object(const sp<ProcessState>& proc,
783                     const flat_binder_object& obj, const void* who);
784 
785 void flatten_binder(const sp<ProcessState>& proc,
786                     const sp<IBinder>& binder, flat_binder_object* out);
787 void flatten_binder(const sp<ProcessState>& proc,
788                     const wp<IBinder>& binder, flat_binder_object* out);
789 status_t unflatten_binder(const sp<ProcessState>& proc,
790                           const flat_binder_object& flat, sp<IBinder>* out);
791 status_t unflatten_binder(const sp<ProcessState>& proc,
792                           const flat_binder_object& flat, wp<IBinder>* out);
793 
794 }; // namespace android
795 
796 // ---------------------------------------------------------------------------
797 
798 #endif // ANDROID_PARCEL_H
799