• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <sys/stat.h>
18 #include <string.h>
19 #include <stdio.h>
20 
21 #ifdef __ANDROID__
22 #include <linux/capability.h>
23 #else
24 #include <private/android_filesystem_capability.h>
25 #endif
26 
27 #define XATTR_SELINUX_SUFFIX "selinux"
28 #define XATTR_CAPS_SUFFIX "capability"
29 
30 #include "ext4_utils.h"
31 #include "make_ext4fs.h"
32 #include "allocate.h"
33 #include "contents.h"
34 #include "extent.h"
35 #include "indirect.h"
36 
37 #ifdef USE_MINGW
38 #define S_IFLNK 0  /* used by make_link, not needed under mingw */
39 #endif
40 
41 static struct block_allocation* saved_allocation_head = NULL;
42 
get_saved_allocation_chain()43 struct block_allocation* get_saved_allocation_chain() {
44 	return saved_allocation_head;
45 }
46 
dentry_size(u32 entries,struct dentry * dentries)47 static u32 dentry_size(u32 entries, struct dentry *dentries)
48 {
49 	u32 len = 24;
50 	unsigned int i;
51 	unsigned int dentry_len;
52 
53 	for (i = 0; i < entries; i++) {
54 		dentry_len = 8 + EXT4_ALIGN(strlen(dentries[i].filename), 4);
55 		if (len % info.block_size + dentry_len > info.block_size)
56 			len += info.block_size - (len % info.block_size);
57 		len += dentry_len;
58 	}
59 
60 	return len;
61 }
62 
add_dentry(u8 * data,u32 * offset,struct ext4_dir_entry_2 * prev,u32 inode,const char * name,u8 file_type)63 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
64 		struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
65 		u8 file_type)
66 {
67 	u8 name_len = strlen(name);
68 	u16 rec_len = 8 + EXT4_ALIGN(name_len, 4);
69 	struct ext4_dir_entry_2 *dentry;
70 
71 	u32 start_block = *offset / info.block_size;
72 	u32 end_block = (*offset + rec_len - 1) / info.block_size;
73 	if (start_block != end_block) {
74 		/* Adding this dentry will cross a block boundary, so pad the previous
75 		   dentry to the block boundary */
76 		if (!prev)
77 			critical_error("no prev");
78 		prev->rec_len += end_block * info.block_size - *offset;
79 		*offset = end_block * info.block_size;
80 	}
81 
82 	dentry = (struct ext4_dir_entry_2 *)(data + *offset);
83 	dentry->inode = inode;
84 	dentry->rec_len = rec_len;
85 	dentry->name_len = name_len;
86 	dentry->file_type = file_type;
87 	memcpy(dentry->name, name, name_len);
88 
89 	*offset += rec_len;
90 	return dentry;
91 }
92 
93 /* Creates a directory structure for an array of directory entries, dentries,
94    and stores the location of the structure in an inode.  The new inode's
95    .. link is set to dir_inode_num.  Stores the location of the inode number
96    of each directory entry into dentries[i].inode, to be filled in later
97    when the inode for the entry is allocated.  Returns the inode number of the
98    new directory */
make_directory(u32 dir_inode_num,u32 entries,struct dentry * dentries,u32 dirs)99 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
100 	u32 dirs)
101 {
102 	struct ext4_inode *inode;
103 	u32 blocks;
104 	u32 len;
105 	u32 offset = 0;
106 	u32 inode_num;
107 	u8 *data;
108 	unsigned int i;
109 	struct ext4_dir_entry_2 *dentry;
110 
111 	blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
112 	len = blocks * info.block_size;
113 
114 	if (dir_inode_num) {
115 		inode_num = allocate_inode(info);
116 	} else {
117 		dir_inode_num = EXT4_ROOT_INO;
118 		inode_num = EXT4_ROOT_INO;
119 	}
120 
121 	if (inode_num == EXT4_ALLOCATE_FAILED) {
122 		error("failed to allocate inode\n");
123 		return EXT4_ALLOCATE_FAILED;
124 	}
125 
126 	add_directory(inode_num);
127 
128 	inode = get_inode(inode_num);
129 	if (inode == NULL) {
130 		error("failed to get inode %u", inode_num);
131 		return EXT4_ALLOCATE_FAILED;
132 	}
133 
134 	data = inode_allocate_data_extents(inode, len, len);
135 	if (data == NULL) {
136 		error("failed to allocate %u extents", len);
137 		return EXT4_ALLOCATE_FAILED;
138 	}
139 
140 	inode->i_mode = S_IFDIR;
141 	inode->i_links_count = dirs + 2;
142 	inode->i_flags |= aux_info.default_i_flags;
143 
144 	dentry = NULL;
145 
146 	dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
147 	if (!dentry) {
148 		error("failed to add . directory");
149 		return EXT4_ALLOCATE_FAILED;
150 	}
151 
152 	dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
153 	if (!dentry) {
154 		error("failed to add .. directory");
155 		return EXT4_ALLOCATE_FAILED;
156 	}
157 
158 	for (i = 0; i < entries; i++) {
159 		dentry = add_dentry(data, &offset, dentry, 0,
160 				dentries[i].filename, dentries[i].file_type);
161 		if (offset > len || (offset == len && i != entries - 1))
162 			critical_error("internal error: dentry for %s ends at %d, past %d\n",
163 				dentries[i].filename, offset, len);
164 		dentries[i].inode = &dentry->inode;
165 		if (!dentry) {
166 			error("failed to add directory");
167 			return EXT4_ALLOCATE_FAILED;
168 		}
169 	}
170 
171 	/* pad the last dentry out to the end of the block */
172 	dentry->rec_len += len - offset;
173 
174 	return inode_num;
175 }
176 
177 /* Creates a file on disk.  Returns the inode number of the new file */
make_file(const char * filename,u64 len)178 u32 make_file(const char *filename, u64 len)
179 {
180 	struct ext4_inode *inode;
181 	u32 inode_num;
182 
183 	inode_num = allocate_inode(info);
184 	if (inode_num == EXT4_ALLOCATE_FAILED) {
185 		error("failed to allocate inode\n");
186 		return EXT4_ALLOCATE_FAILED;
187 	}
188 
189 	inode = get_inode(inode_num);
190 	if (inode == NULL) {
191 		error("failed to get inode %u", inode_num);
192 		return EXT4_ALLOCATE_FAILED;
193 	}
194 
195 	if (len > 0) {
196 		struct block_allocation* alloc = inode_allocate_file_extents(inode, len, filename);
197 		if (alloc) {
198 			alloc->filename = strdup(filename);
199 			alloc->next = saved_allocation_head;
200 			saved_allocation_head = alloc;
201 		}
202 	}
203 
204 	inode->i_mode = S_IFREG;
205 	inode->i_links_count = 1;
206 	inode->i_flags |= aux_info.default_i_flags;
207 
208 	return inode_num;
209 }
210 
211 /* Creates a file on disk.  Returns the inode number of the new file */
make_link(const char * link)212 u32 make_link(const char *link)
213 {
214 	struct ext4_inode *inode;
215 	u32 inode_num;
216 	u32 len = strlen(link);
217 
218 	inode_num = allocate_inode(info);
219 	if (inode_num == EXT4_ALLOCATE_FAILED) {
220 		error("failed to allocate inode\n");
221 		return EXT4_ALLOCATE_FAILED;
222 	}
223 
224 	inode = get_inode(inode_num);
225 	if (inode == NULL) {
226 		error("failed to get inode %u", inode_num);
227 		return EXT4_ALLOCATE_FAILED;
228 	}
229 
230 	inode->i_mode = S_IFLNK;
231 	inode->i_links_count = 1;
232 	inode->i_flags |= aux_info.default_i_flags;
233 	inode->i_size_lo = len;
234 
235 	if (len + 1 <= sizeof(inode->i_block)) {
236 		/* Fast symlink */
237 		memcpy((char*)inode->i_block, link, len);
238 	} else {
239 		u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
240 		memcpy(data, link, len);
241 		inode->i_blocks_lo = info.block_size / 512;
242 	}
243 
244 	return inode_num;
245 }
246 
inode_set_permissions(u32 inode_num,u16 mode,u16 uid,u16 gid,u32 mtime)247 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
248 {
249 	struct ext4_inode *inode = get_inode(inode_num);
250 
251 	if (!inode)
252 		return -1;
253 
254 	inode->i_mode |= mode;
255 	inode->i_uid = uid;
256 	inode->i_gid = gid;
257 	inode->i_mtime = mtime;
258 	inode->i_atime = mtime;
259 	inode->i_ctime = mtime;
260 
261 	return 0;
262 }
263 
264 /*
265  * Returns the amount of free space available in the specified
266  * xattr region
267  */
xattr_free_space(struct ext4_xattr_entry * entry,char * end)268 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
269 {
270         end -= sizeof(uint32_t); /* Required four null bytes */
271 	while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
272 		end   -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
273 		entry  = EXT4_XATTR_NEXT(entry);
274 	}
275 
276 	if (((char *) entry) > end) {
277 		error("unexpected read beyond end of xattr space");
278 		return 0;
279 	}
280 
281 	return end - ((char *) entry);
282 }
283 
284 /*
285  * Returns a pointer to the free space immediately after the
286  * last xattr element
287  */
xattr_get_last(struct ext4_xattr_entry * entry)288 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
289 {
290 	for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
291 		// skip entry
292 	}
293 	return entry;
294 }
295 
296 /*
297  * assert that the elements in the ext4 xattr section are in sorted order
298  *
299  * The ext4 filesystem requires extended attributes to be sorted when
300  * they're not stored in the inode. The kernel ext4 code uses the following
301  * sorting algorithm:
302  *
303  * 1) First sort extended attributes by their name_index. For example,
304  *    EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
305  * 2) If the name_indexes are equal, then sorting is based on the length
306  *    of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
307  *    XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
308  * 3) If the name_index and name_length are equal, then memcmp() is used to determine
309  *    which name comes first. For example, "selinux" would come before "yelinux".
310  *
311  * This method is intended to implement the sorting function defined in
312  * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
313  */
xattr_assert_sane(struct ext4_xattr_entry * entry)314 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
315 {
316 	for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
317 		struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
318 		if (IS_LAST_ENTRY(next)) {
319 			return;
320 		}
321 
322 		int cmp = next->e_name_index - entry->e_name_index;
323 		if (cmp == 0)
324 			cmp = next->e_name_len - entry->e_name_len;
325 		if (cmp == 0)
326 			cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
327 		if (cmp < 0) {
328 			error("BUG: extended attributes are not sorted\n");
329 			return;
330 		}
331 		if (cmp == 0) {
332 			error("BUG: duplicate extended attributes detected\n");
333 			return;
334 		}
335 	}
336 }
337 
338 #define NAME_HASH_SHIFT 5
339 #define VALUE_HASH_SHIFT 16
340 
ext4_xattr_hash_entry(struct ext4_xattr_header * header,struct ext4_xattr_entry * entry)341 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
342 		struct ext4_xattr_entry *entry)
343 {
344 	u32 hash = 0;
345 	char *name = entry->e_name;
346 	int n;
347 
348 	for (n = 0; n < entry->e_name_len; n++) {
349 		hash = (hash << NAME_HASH_SHIFT) ^
350 			(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
351 			*name++;
352 	}
353 
354 	if (entry->e_value_block == 0 && entry->e_value_size != 0) {
355 		u32 *value = (u32 *)((char *)header +
356 			le16_to_cpu(entry->e_value_offs));
357 		for (n = (le32_to_cpu(entry->e_value_size) +
358 			EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
359 			hash = (hash << VALUE_HASH_SHIFT) ^
360 				(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
361 				le32_to_cpu(*value++);
362 		}
363 	}
364 	entry->e_hash = cpu_to_le32(hash);
365 }
366 
367 #undef NAME_HASH_SHIFT
368 #undef VALUE_HASH_SHIFT
369 
xattr_addto_range(void * block_start,void * block_end,struct ext4_xattr_entry * first,int name_index,const char * name,const void * value,size_t value_len)370 static struct ext4_xattr_entry* xattr_addto_range(
371 		void *block_start,
372 		void *block_end,
373 		struct ext4_xattr_entry *first,
374 		int name_index,
375 		const char *name,
376 		const void *value,
377 		size_t value_len)
378 {
379 	size_t name_len = strlen(name);
380 	if (name_len > 255)
381 		return NULL;
382 
383 	size_t available_size = xattr_free_space(first, block_end);
384 	size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
385 
386 	if (needed_size > available_size)
387 		return NULL;
388 
389 	struct ext4_xattr_entry *new_entry = xattr_get_last(first);
390 	memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
391 
392 	new_entry->e_name_len = name_len;
393 	new_entry->e_name_index = name_index;
394 	memcpy(new_entry->e_name, name, name_len);
395 	new_entry->e_value_block = 0;
396 	new_entry->e_value_size = cpu_to_le32(value_len);
397 
398 	char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
399 	size_t e_value_offs = val - (char *) block_start;
400 
401 	new_entry->e_value_offs = cpu_to_le16(e_value_offs);
402 	memset(val, 0, EXT4_XATTR_SIZE(value_len));
403 	memcpy(val, value, value_len);
404 
405 	xattr_assert_sane(first);
406 	return new_entry;
407 }
408 
xattr_addto_inode(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)409 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
410 		const char *name, const void *value, size_t value_len)
411 {
412 	struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
413 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
414 	char *block_end = ((char *) inode) + info.inode_size;
415 
416 	struct ext4_xattr_entry *result =
417 		xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
418 
419 	if (result == NULL)
420 		return -1;
421 
422 	hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
423 	inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
424 
425 	return 0;
426 }
427 
xattr_addto_block(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)428 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
429 		const char *name, const void *value, size_t value_len)
430 {
431 	struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
432 	if (!header)
433 		return -1;
434 
435 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
436 	char *block_end = ((char *) header) + info.block_size;
437 
438 	struct ext4_xattr_entry *result =
439 		xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
440 
441 	if (result == NULL)
442 		return -1;
443 
444 	ext4_xattr_hash_entry(header, result);
445 	return 0;
446 }
447 
448 
xattr_add(u32 inode_num,int name_index,const char * name,const void * value,size_t value_len)449 static int xattr_add(u32 inode_num, int name_index, const char *name,
450 		const void *value, size_t value_len)
451 {
452 	if (!value)
453 		return 0;
454 
455 	struct ext4_inode *inode = get_inode(inode_num);
456 
457 	if (!inode)
458 		return -1;
459 
460 	int result = xattr_addto_inode(inode, name_index, name, value, value_len);
461 	if (result != 0) {
462 		result = xattr_addto_block(inode, name_index, name, value, value_len);
463 	}
464 	return result;
465 }
466 
inode_set_selinux(u32 inode_num,const char * secon)467 int inode_set_selinux(u32 inode_num, const char *secon)
468 {
469 	if (!secon)
470 		return 0;
471 
472 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
473 		XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
474 }
475 
inode_set_capabilities(u32 inode_num,uint64_t capabilities)476 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
477 	if (capabilities == 0)
478 		return 0;
479 
480 	struct vfs_cap_data cap_data;
481 	memset(&cap_data, 0, sizeof(cap_data));
482 
483 	cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
484 	cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
485 	cap_data.data[0].inheritable = 0;
486 	cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
487 	cap_data.data[1].inheritable = 0;
488 
489 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
490 		XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
491 }
492