1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mutex.h"
18
19 #include <errno.h>
20 #include <sys/time.h>
21
22 #include "atomic.h"
23 #include "base/logging.h"
24 #include "base/time_utils.h"
25 #include "base/systrace.h"
26 #include "base/value_object.h"
27 #include "mutex-inl.h"
28 #include "runtime.h"
29 #include "scoped_thread_state_change.h"
30 #include "thread-inl.h"
31
32 namespace art {
33
34 Mutex* Locks::abort_lock_ = nullptr;
35 Mutex* Locks::alloc_tracker_lock_ = nullptr;
36 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
37 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
38 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
39 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
40 Mutex* Locks::deoptimization_lock_ = nullptr;
41 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
42 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
43 Mutex* Locks::intern_table_lock_ = nullptr;
44 Mutex* Locks::interpreter_string_init_map_lock_ = nullptr;
45 Mutex* Locks::jni_libraries_lock_ = nullptr;
46 Mutex* Locks::logging_lock_ = nullptr;
47 Mutex* Locks::mem_maps_lock_ = nullptr;
48 Mutex* Locks::modify_ldt_lock_ = nullptr;
49 MutatorMutex* Locks::mutator_lock_ = nullptr;
50 Mutex* Locks::profiler_lock_ = nullptr;
51 ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
52 Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
53 Mutex* Locks::reference_processor_lock_ = nullptr;
54 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
55 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
56 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
57 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
58 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
59 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
60 Mutex* Locks::thread_list_lock_ = nullptr;
61 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
62 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
63 Mutex* Locks::trace_lock_ = nullptr;
64 Mutex* Locks::unexpected_signal_lock_ = nullptr;
65 Mutex* Locks::lambda_table_lock_ = nullptr;
66 Uninterruptible Roles::uninterruptible_;
67
68 struct AllMutexData {
69 // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
70 Atomic<const BaseMutex*> all_mutexes_guard;
71 // All created mutexes guarded by all_mutexes_guard_.
72 std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData73 AllMutexData() : all_mutexes(nullptr) {}
74 };
75 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
76
77 #if ART_USE_FUTEXES
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)78 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
79 const int32_t one_sec = 1000 * 1000 * 1000; // one second in nanoseconds.
80 result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
81 result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
82 if (result_ts->tv_nsec < 0) {
83 result_ts->tv_sec--;
84 result_ts->tv_nsec += one_sec;
85 } else if (result_ts->tv_nsec > one_sec) {
86 result_ts->tv_sec++;
87 result_ts->tv_nsec -= one_sec;
88 }
89 return result_ts->tv_sec < 0;
90 }
91 #endif
92
93 class ScopedAllMutexesLock FINAL {
94 public:
ScopedAllMutexesLock(const BaseMutex * mutex)95 explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
96 while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakAcquire(0, mutex)) {
97 NanoSleep(100);
98 }
99 }
100
~ScopedAllMutexesLock()101 ~ScopedAllMutexesLock() {
102 #if !defined(__clang__)
103 // TODO: remove this workaround target GCC/libc++/bionic bug "invalid failure memory model".
104 while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakSequentiallyConsistent(mutex_, 0)) {
105 #else
106 while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakRelease(mutex_, 0)) {
107 #endif
108 NanoSleep(100);
109 }
110 }
111
112 private:
113 const BaseMutex* const mutex_;
114 };
115
116 // Scoped class that generates events at the beginning and end of lock contention.
117 class ScopedContentionRecorder FINAL : public ValueObject {
118 public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)119 ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
120 : mutex_(kLogLockContentions ? mutex : nullptr),
121 blocked_tid_(kLogLockContentions ? blocked_tid : 0),
122 owner_tid_(kLogLockContentions ? owner_tid : 0),
123 start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
124 if (ATRACE_ENABLED()) {
125 std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
126 mutex->GetName(), owner_tid);
127 ATRACE_BEGIN(msg.c_str());
128 }
129 }
130
~ScopedContentionRecorder()131 ~ScopedContentionRecorder() {
132 ATRACE_END();
133 if (kLogLockContentions) {
134 uint64_t end_nano_time = NanoTime();
135 mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
136 }
137 }
138
139 private:
140 BaseMutex* const mutex_;
141 const uint64_t blocked_tid_;
142 const uint64_t owner_tid_;
143 const uint64_t start_nano_time_;
144 };
145
BaseMutex(const char * name,LockLevel level)146 BaseMutex::BaseMutex(const char* name, LockLevel level) : level_(level), name_(name) {
147 if (kLogLockContentions) {
148 ScopedAllMutexesLock mu(this);
149 std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
150 if (*all_mutexes_ptr == nullptr) {
151 // We leak the global set of all mutexes to avoid ordering issues in global variable
152 // construction/destruction.
153 *all_mutexes_ptr = new std::set<BaseMutex*>();
154 }
155 (*all_mutexes_ptr)->insert(this);
156 }
157 }
158
~BaseMutex()159 BaseMutex::~BaseMutex() {
160 if (kLogLockContentions) {
161 ScopedAllMutexesLock mu(this);
162 gAllMutexData->all_mutexes->erase(this);
163 }
164 }
165
DumpAll(std::ostream & os)166 void BaseMutex::DumpAll(std::ostream& os) {
167 if (kLogLockContentions) {
168 os << "Mutex logging:\n";
169 ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
170 std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
171 if (all_mutexes == nullptr) {
172 // No mutexes have been created yet during at startup.
173 return;
174 }
175 typedef std::set<BaseMutex*>::const_iterator It;
176 os << "(Contended)\n";
177 for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
178 BaseMutex* mutex = *it;
179 if (mutex->HasEverContended()) {
180 mutex->Dump(os);
181 os << "\n";
182 }
183 }
184 os << "(Never contented)\n";
185 for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
186 BaseMutex* mutex = *it;
187 if (!mutex->HasEverContended()) {
188 mutex->Dump(os);
189 os << "\n";
190 }
191 }
192 }
193 }
194
CheckSafeToWait(Thread * self)195 void BaseMutex::CheckSafeToWait(Thread* self) {
196 if (self == nullptr) {
197 CheckUnattachedThread(level_);
198 return;
199 }
200 if (kDebugLocking) {
201 CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
202 << "Waiting on unacquired mutex: " << name_;
203 bool bad_mutexes_held = false;
204 for (int i = kLockLevelCount - 1; i >= 0; --i) {
205 if (i != level_) {
206 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
207 // We expect waits to happen while holding the thread list suspend thread lock.
208 if (held_mutex != nullptr) {
209 LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
210 << "(level " << LockLevel(i) << ") while performing wait on "
211 << "\"" << name_ << "\" (level " << level_ << ")";
212 bad_mutexes_held = true;
213 }
214 }
215 }
216 if (gAborting == 0) { // Avoid recursive aborts.
217 CHECK(!bad_mutexes_held);
218 }
219 }
220 }
221
AddToWaitTime(uint64_t value)222 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
223 if (kLogLockContentions) {
224 // Atomically add value to wait_time.
225 wait_time.FetchAndAddSequentiallyConsistent(value);
226 }
227 }
228
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)229 void BaseMutex::RecordContention(uint64_t blocked_tid,
230 uint64_t owner_tid,
231 uint64_t nano_time_blocked) {
232 if (kLogLockContentions) {
233 ContentionLogData* data = contention_log_data_;
234 ++(data->contention_count);
235 data->AddToWaitTime(nano_time_blocked);
236 ContentionLogEntry* log = data->contention_log;
237 // This code is intentionally racy as it is only used for diagnostics.
238 uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
239 if (log[slot].blocked_tid == blocked_tid &&
240 log[slot].owner_tid == blocked_tid) {
241 ++log[slot].count;
242 } else {
243 uint32_t new_slot;
244 do {
245 slot = data->cur_content_log_entry.LoadRelaxed();
246 new_slot = (slot + 1) % kContentionLogSize;
247 } while (!data->cur_content_log_entry.CompareExchangeWeakRelaxed(slot, new_slot));
248 log[new_slot].blocked_tid = blocked_tid;
249 log[new_slot].owner_tid = owner_tid;
250 log[new_slot].count.StoreRelaxed(1);
251 }
252 }
253 }
254
DumpContention(std::ostream & os) const255 void BaseMutex::DumpContention(std::ostream& os) const {
256 if (kLogLockContentions) {
257 const ContentionLogData* data = contention_log_data_;
258 const ContentionLogEntry* log = data->contention_log;
259 uint64_t wait_time = data->wait_time.LoadRelaxed();
260 uint32_t contention_count = data->contention_count.LoadRelaxed();
261 if (contention_count == 0) {
262 os << "never contended";
263 } else {
264 os << "contended " << contention_count
265 << " total wait of contender " << PrettyDuration(wait_time)
266 << " average " << PrettyDuration(wait_time / contention_count);
267 SafeMap<uint64_t, size_t> most_common_blocker;
268 SafeMap<uint64_t, size_t> most_common_blocked;
269 for (size_t i = 0; i < kContentionLogSize; ++i) {
270 uint64_t blocked_tid = log[i].blocked_tid;
271 uint64_t owner_tid = log[i].owner_tid;
272 uint32_t count = log[i].count.LoadRelaxed();
273 if (count > 0) {
274 auto it = most_common_blocked.find(blocked_tid);
275 if (it != most_common_blocked.end()) {
276 most_common_blocked.Overwrite(blocked_tid, it->second + count);
277 } else {
278 most_common_blocked.Put(blocked_tid, count);
279 }
280 it = most_common_blocker.find(owner_tid);
281 if (it != most_common_blocker.end()) {
282 most_common_blocker.Overwrite(owner_tid, it->second + count);
283 } else {
284 most_common_blocker.Put(owner_tid, count);
285 }
286 }
287 }
288 uint64_t max_tid = 0;
289 size_t max_tid_count = 0;
290 for (const auto& pair : most_common_blocked) {
291 if (pair.second > max_tid_count) {
292 max_tid = pair.first;
293 max_tid_count = pair.second;
294 }
295 }
296 if (max_tid != 0) {
297 os << " sample shows most blocked tid=" << max_tid;
298 }
299 max_tid = 0;
300 max_tid_count = 0;
301 for (const auto& pair : most_common_blocker) {
302 if (pair.second > max_tid_count) {
303 max_tid = pair.first;
304 max_tid_count = pair.second;
305 }
306 }
307 if (max_tid != 0) {
308 os << " sample shows tid=" << max_tid << " owning during this time";
309 }
310 }
311 }
312 }
313
314
Mutex(const char * name,LockLevel level,bool recursive)315 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
316 : BaseMutex(name, level), recursive_(recursive), recursion_count_(0) {
317 #if ART_USE_FUTEXES
318 DCHECK_EQ(0, state_.LoadRelaxed());
319 DCHECK_EQ(0, num_contenders_.LoadRelaxed());
320 #else
321 CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
322 #endif
323 exclusive_owner_ = 0;
324 }
325
326 // Helper to ignore the lock requirement.
IsShuttingDown()327 static bool IsShuttingDown() NO_THREAD_SAFETY_ANALYSIS {
328 Runtime* runtime = Runtime::Current();
329 return runtime == nullptr || runtime->IsShuttingDownLocked();
330 }
331
~Mutex()332 Mutex::~Mutex() {
333 bool shutting_down = IsShuttingDown();
334 #if ART_USE_FUTEXES
335 if (state_.LoadRelaxed() != 0) {
336 LOG(shutting_down ? WARNING : FATAL) << "destroying mutex with owner: " << exclusive_owner_;
337 } else {
338 if (exclusive_owner_ != 0) {
339 LOG(shutting_down ? WARNING : FATAL) << "unexpectedly found an owner on unlocked mutex "
340 << name_;
341 }
342 if (num_contenders_.LoadSequentiallyConsistent() != 0) {
343 LOG(shutting_down ? WARNING : FATAL) << "unexpectedly found a contender on mutex " << name_;
344 }
345 }
346 #else
347 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
348 // may still be using locks.
349 int rc = pthread_mutex_destroy(&mutex_);
350 if (rc != 0) {
351 errno = rc;
352 // TODO: should we just not log at all if shutting down? this could be the logging mutex!
353 MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
354 PLOG(shutting_down ? WARNING : FATAL) << "pthread_mutex_destroy failed for " << name_;
355 }
356 #endif
357 }
358
ExclusiveLock(Thread * self)359 void Mutex::ExclusiveLock(Thread* self) {
360 DCHECK(self == nullptr || self == Thread::Current());
361 if (kDebugLocking && !recursive_) {
362 AssertNotHeld(self);
363 }
364 if (!recursive_ || !IsExclusiveHeld(self)) {
365 #if ART_USE_FUTEXES
366 bool done = false;
367 do {
368 int32_t cur_state = state_.LoadRelaxed();
369 if (LIKELY(cur_state == 0)) {
370 // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
371 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
372 } else {
373 // Failed to acquire, hang up.
374 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
375 num_contenders_++;
376 if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
377 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
378 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
379 if ((errno != EAGAIN) && (errno != EINTR)) {
380 PLOG(FATAL) << "futex wait failed for " << name_;
381 }
382 }
383 num_contenders_--;
384 }
385 } while (!done);
386 DCHECK_EQ(state_.LoadRelaxed(), 1);
387 #else
388 CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
389 #endif
390 DCHECK_EQ(exclusive_owner_, 0U);
391 exclusive_owner_ = SafeGetTid(self);
392 RegisterAsLocked(self);
393 }
394 recursion_count_++;
395 if (kDebugLocking) {
396 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
397 << name_ << " " << recursion_count_;
398 AssertHeld(self);
399 }
400 }
401
ExclusiveTryLock(Thread * self)402 bool Mutex::ExclusiveTryLock(Thread* self) {
403 DCHECK(self == nullptr || self == Thread::Current());
404 if (kDebugLocking && !recursive_) {
405 AssertNotHeld(self);
406 }
407 if (!recursive_ || !IsExclusiveHeld(self)) {
408 #if ART_USE_FUTEXES
409 bool done = false;
410 do {
411 int32_t cur_state = state_.LoadRelaxed();
412 if (cur_state == 0) {
413 // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
414 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
415 } else {
416 return false;
417 }
418 } while (!done);
419 DCHECK_EQ(state_.LoadRelaxed(), 1);
420 #else
421 int result = pthread_mutex_trylock(&mutex_);
422 if (result == EBUSY) {
423 return false;
424 }
425 if (result != 0) {
426 errno = result;
427 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
428 }
429 #endif
430 DCHECK_EQ(exclusive_owner_, 0U);
431 exclusive_owner_ = SafeGetTid(self);
432 RegisterAsLocked(self);
433 }
434 recursion_count_++;
435 if (kDebugLocking) {
436 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
437 << name_ << " " << recursion_count_;
438 AssertHeld(self);
439 }
440 return true;
441 }
442
ExclusiveUnlock(Thread * self)443 void Mutex::ExclusiveUnlock(Thread* self) {
444 if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
445 std::string name1 = "<null>";
446 std::string name2 = "<null>";
447 if (self != nullptr) {
448 self->GetThreadName(name1);
449 }
450 if (Thread::Current() != nullptr) {
451 Thread::Current()->GetThreadName(name2);
452 }
453 LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
454 << " Thread::Current()=" << name2;
455 }
456 AssertHeld(self);
457 DCHECK_NE(exclusive_owner_, 0U);
458 recursion_count_--;
459 if (!recursive_ || recursion_count_ == 0) {
460 if (kDebugLocking) {
461 CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
462 << name_ << " " << recursion_count_;
463 }
464 RegisterAsUnlocked(self);
465 #if ART_USE_FUTEXES
466 bool done = false;
467 do {
468 int32_t cur_state = state_.LoadRelaxed();
469 if (LIKELY(cur_state == 1)) {
470 // We're no longer the owner.
471 exclusive_owner_ = 0;
472 // Change state to 0 and impose load/store ordering appropriate for lock release.
473 // Note, the relaxed loads below musn't reorder before the CompareExchange.
474 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
475 // a status bit into the state on contention.
476 done = state_.CompareExchangeWeakSequentiallyConsistent(cur_state, 0 /* new state */);
477 if (LIKELY(done)) { // Spurious fail?
478 // Wake a contender.
479 if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
480 futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
481 }
482 }
483 } else {
484 // Logging acquires the logging lock, avoid infinite recursion in that case.
485 if (this != Locks::logging_lock_) {
486 LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
487 } else {
488 LogMessage::LogLine(__FILE__, __LINE__, INTERNAL_FATAL,
489 StringPrintf("Unexpected state_ %d in unlock for %s",
490 cur_state, name_).c_str());
491 _exit(1);
492 }
493 }
494 } while (!done);
495 #else
496 exclusive_owner_ = 0;
497 CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
498 #endif
499 }
500 }
501
Dump(std::ostream & os) const502 void Mutex::Dump(std::ostream& os) const {
503 os << (recursive_ ? "recursive " : "non-recursive ")
504 << name_
505 << " level=" << static_cast<int>(level_)
506 << " rec=" << recursion_count_
507 << " owner=" << GetExclusiveOwnerTid() << " ";
508 DumpContention(os);
509 }
510
operator <<(std::ostream & os,const Mutex & mu)511 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
512 mu.Dump(os);
513 return os;
514 }
515
ReaderWriterMutex(const char * name,LockLevel level)516 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
517 : BaseMutex(name, level)
518 #if ART_USE_FUTEXES
519 , state_(0), num_pending_readers_(0), num_pending_writers_(0)
520 #endif
521 { // NOLINT(whitespace/braces)
522 #if !ART_USE_FUTEXES
523 CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
524 #endif
525 exclusive_owner_ = 0;
526 }
527
~ReaderWriterMutex()528 ReaderWriterMutex::~ReaderWriterMutex() {
529 #if ART_USE_FUTEXES
530 CHECK_EQ(state_.LoadRelaxed(), 0);
531 CHECK_EQ(exclusive_owner_, 0U);
532 CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
533 CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
534 #else
535 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
536 // may still be using locks.
537 int rc = pthread_rwlock_destroy(&rwlock_);
538 if (rc != 0) {
539 errno = rc;
540 // TODO: should we just not log at all if shutting down? this could be the logging mutex!
541 MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
542 Runtime* runtime = Runtime::Current();
543 bool shutting_down = runtime == nullptr || runtime->IsShuttingDownLocked();
544 PLOG(shutting_down ? WARNING : FATAL) << "pthread_rwlock_destroy failed for " << name_;
545 }
546 #endif
547 }
548
ExclusiveLock(Thread * self)549 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
550 DCHECK(self == nullptr || self == Thread::Current());
551 AssertNotExclusiveHeld(self);
552 #if ART_USE_FUTEXES
553 bool done = false;
554 do {
555 int32_t cur_state = state_.LoadRelaxed();
556 if (LIKELY(cur_state == 0)) {
557 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
558 done = state_.CompareExchangeWeakAcquire(0 /* cur_state*/, -1 /* new state */);
559 } else {
560 // Failed to acquire, hang up.
561 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
562 ++num_pending_writers_;
563 if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
564 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
565 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
566 if ((errno != EAGAIN) && (errno != EINTR)) {
567 PLOG(FATAL) << "futex wait failed for " << name_;
568 }
569 }
570 --num_pending_writers_;
571 }
572 } while (!done);
573 DCHECK_EQ(state_.LoadRelaxed(), -1);
574 #else
575 CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
576 #endif
577 DCHECK_EQ(exclusive_owner_, 0U);
578 exclusive_owner_ = SafeGetTid(self);
579 RegisterAsLocked(self);
580 AssertExclusiveHeld(self);
581 }
582
ExclusiveUnlock(Thread * self)583 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
584 DCHECK(self == nullptr || self == Thread::Current());
585 AssertExclusiveHeld(self);
586 RegisterAsUnlocked(self);
587 DCHECK_NE(exclusive_owner_, 0U);
588 #if ART_USE_FUTEXES
589 bool done = false;
590 do {
591 int32_t cur_state = state_.LoadRelaxed();
592 if (LIKELY(cur_state == -1)) {
593 // We're no longer the owner.
594 exclusive_owner_ = 0;
595 // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
596 // Note, the relaxed loads below musn't reorder before the CompareExchange.
597 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
598 // a status bit into the state on contention.
599 done = state_.CompareExchangeWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
600 if (LIKELY(done)) { // Weak CAS may fail spuriously.
601 // Wake any waiters.
602 if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
603 num_pending_writers_.LoadRelaxed() > 0)) {
604 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
605 }
606 }
607 } else {
608 LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
609 }
610 } while (!done);
611 #else
612 exclusive_owner_ = 0;
613 CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
614 #endif
615 }
616
617 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)618 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
619 DCHECK(self == nullptr || self == Thread::Current());
620 #if ART_USE_FUTEXES
621 bool done = false;
622 timespec end_abs_ts;
623 InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
624 do {
625 int32_t cur_state = state_.LoadRelaxed();
626 if (cur_state == 0) {
627 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
628 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, -1 /* new state */);
629 } else {
630 // Failed to acquire, hang up.
631 timespec now_abs_ts;
632 InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
633 timespec rel_ts;
634 if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
635 return false; // Timed out.
636 }
637 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
638 ++num_pending_writers_;
639 if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
640 if (errno == ETIMEDOUT) {
641 --num_pending_writers_;
642 return false; // Timed out.
643 } else if ((errno != EAGAIN) && (errno != EINTR)) {
644 // EAGAIN and EINTR both indicate a spurious failure,
645 // recompute the relative time out from now and try again.
646 // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
647 PLOG(FATAL) << "timed futex wait failed for " << name_;
648 }
649 }
650 --num_pending_writers_;
651 }
652 } while (!done);
653 #else
654 timespec ts;
655 InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
656 int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
657 if (result == ETIMEDOUT) {
658 return false;
659 }
660 if (result != 0) {
661 errno = result;
662 PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
663 }
664 #endif
665 exclusive_owner_ = SafeGetTid(self);
666 RegisterAsLocked(self);
667 AssertSharedHeld(self);
668 return true;
669 }
670 #endif
671
672 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)673 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
674 // Owner holds it exclusively, hang up.
675 ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self));
676 ++num_pending_readers_;
677 if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
678 if (errno != EAGAIN) {
679 PLOG(FATAL) << "futex wait failed for " << name_;
680 }
681 }
682 --num_pending_readers_;
683 }
684 #endif
685
SharedTryLock(Thread * self)686 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
687 DCHECK(self == nullptr || self == Thread::Current());
688 #if ART_USE_FUTEXES
689 bool done = false;
690 do {
691 int32_t cur_state = state_.LoadRelaxed();
692 if (cur_state >= 0) {
693 // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
694 done = state_.CompareExchangeWeakAcquire(cur_state, cur_state + 1);
695 } else {
696 // Owner holds it exclusively.
697 return false;
698 }
699 } while (!done);
700 #else
701 int result = pthread_rwlock_tryrdlock(&rwlock_);
702 if (result == EBUSY) {
703 return false;
704 }
705 if (result != 0) {
706 errno = result;
707 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
708 }
709 #endif
710 RegisterAsLocked(self);
711 AssertSharedHeld(self);
712 return true;
713 }
714
IsSharedHeld(const Thread * self) const715 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
716 DCHECK(self == nullptr || self == Thread::Current());
717 bool result;
718 if (UNLIKELY(self == nullptr)) { // Handle unattached threads.
719 result = IsExclusiveHeld(self); // TODO: a better best effort here.
720 } else {
721 result = (self->GetHeldMutex(level_) == this);
722 }
723 return result;
724 }
725
Dump(std::ostream & os) const726 void ReaderWriterMutex::Dump(std::ostream& os) const {
727 os << name_
728 << " level=" << static_cast<int>(level_)
729 << " owner=" << GetExclusiveOwnerTid()
730 #if ART_USE_FUTEXES
731 << " state=" << state_.LoadSequentiallyConsistent()
732 << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
733 << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
734 #endif
735 << " ";
736 DumpContention(os);
737 }
738
operator <<(std::ostream & os,const ReaderWriterMutex & mu)739 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
740 mu.Dump(os);
741 return os;
742 }
743
operator <<(std::ostream & os,const MutatorMutex & mu)744 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
745 mu.Dump(os);
746 return os;
747 }
748
ConditionVariable(const char * name,Mutex & guard)749 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
750 : name_(name), guard_(guard) {
751 #if ART_USE_FUTEXES
752 DCHECK_EQ(0, sequence_.LoadRelaxed());
753 num_waiters_ = 0;
754 #else
755 pthread_condattr_t cond_attrs;
756 CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
757 #if !defined(__APPLE__)
758 // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
759 CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
760 #endif
761 CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
762 #endif
763 }
764
~ConditionVariable()765 ConditionVariable::~ConditionVariable() {
766 #if ART_USE_FUTEXES
767 if (num_waiters_!= 0) {
768 Runtime* runtime = Runtime::Current();
769 bool shutting_down = runtime == nullptr || runtime->IsShuttingDown(Thread::Current());
770 LOG(shutting_down ? WARNING : FATAL) << "ConditionVariable::~ConditionVariable for " << name_
771 << " called with " << num_waiters_ << " waiters.";
772 }
773 #else
774 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
775 // may still be using condition variables.
776 int rc = pthread_cond_destroy(&cond_);
777 if (rc != 0) {
778 errno = rc;
779 MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
780 Runtime* runtime = Runtime::Current();
781 bool shutting_down = (runtime == nullptr) || runtime->IsShuttingDownLocked();
782 PLOG(shutting_down ? WARNING : FATAL) << "pthread_cond_destroy failed for " << name_;
783 }
784 #endif
785 }
786
Broadcast(Thread * self)787 void ConditionVariable::Broadcast(Thread* self) {
788 DCHECK(self == nullptr || self == Thread::Current());
789 // TODO: enable below, there's a race in thread creation that causes false failures currently.
790 // guard_.AssertExclusiveHeld(self);
791 DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
792 #if ART_USE_FUTEXES
793 if (num_waiters_ > 0) {
794 sequence_++; // Indicate the broadcast occurred.
795 bool done = false;
796 do {
797 int32_t cur_sequence = sequence_.LoadRelaxed();
798 // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
799 // mutex unlocks will awaken the requeued waiter thread.
800 done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
801 reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
802 guard_.state_.Address(), cur_sequence) != -1;
803 if (!done) {
804 if (errno != EAGAIN) {
805 PLOG(FATAL) << "futex cmp requeue failed for " << name_;
806 }
807 }
808 } while (!done);
809 }
810 #else
811 CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
812 #endif
813 }
814
Signal(Thread * self)815 void ConditionVariable::Signal(Thread* self) {
816 DCHECK(self == nullptr || self == Thread::Current());
817 guard_.AssertExclusiveHeld(self);
818 #if ART_USE_FUTEXES
819 if (num_waiters_ > 0) {
820 sequence_++; // Indicate a signal occurred.
821 // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
822 // to avoid this, however, requeueing can only move all waiters.
823 int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
824 // Check something was woken or else we changed sequence_ before they had chance to wait.
825 CHECK((num_woken == 0) || (num_woken == 1));
826 }
827 #else
828 CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
829 #endif
830 }
831
Wait(Thread * self)832 void ConditionVariable::Wait(Thread* self) {
833 guard_.CheckSafeToWait(self);
834 WaitHoldingLocks(self);
835 }
836
WaitHoldingLocks(Thread * self)837 void ConditionVariable::WaitHoldingLocks(Thread* self) {
838 DCHECK(self == nullptr || self == Thread::Current());
839 guard_.AssertExclusiveHeld(self);
840 unsigned int old_recursion_count = guard_.recursion_count_;
841 #if ART_USE_FUTEXES
842 num_waiters_++;
843 // Ensure the Mutex is contended so that requeued threads are awoken.
844 guard_.num_contenders_++;
845 guard_.recursion_count_ = 1;
846 int32_t cur_sequence = sequence_.LoadRelaxed();
847 guard_.ExclusiveUnlock(self);
848 if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
849 // Futex failed, check it is an expected error.
850 // EAGAIN == EWOULDBLK, so we let the caller try again.
851 // EINTR implies a signal was sent to this thread.
852 if ((errno != EINTR) && (errno != EAGAIN)) {
853 PLOG(FATAL) << "futex wait failed for " << name_;
854 }
855 }
856 if (self != nullptr) {
857 JNIEnvExt* const env = self->GetJniEnv();
858 if (UNLIKELY(env != nullptr && env->runtime_deleted)) {
859 CHECK(self->IsDaemon());
860 // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
861 // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
862 // --host and --gdb.
863 // After we wake up, the runtime may have been shutdown, which means that this condition may
864 // have been deleted. It is not safe to retry the wait.
865 SleepForever();
866 }
867 }
868 guard_.ExclusiveLock(self);
869 CHECK_GE(num_waiters_, 0);
870 num_waiters_--;
871 // We awoke and so no longer require awakes from the guard_'s unlock.
872 CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
873 guard_.num_contenders_--;
874 #else
875 uint64_t old_owner = guard_.exclusive_owner_;
876 guard_.exclusive_owner_ = 0;
877 guard_.recursion_count_ = 0;
878 CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
879 guard_.exclusive_owner_ = old_owner;
880 #endif
881 guard_.recursion_count_ = old_recursion_count;
882 }
883
TimedWait(Thread * self,int64_t ms,int32_t ns)884 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
885 DCHECK(self == nullptr || self == Thread::Current());
886 bool timed_out = false;
887 guard_.AssertExclusiveHeld(self);
888 guard_.CheckSafeToWait(self);
889 unsigned int old_recursion_count = guard_.recursion_count_;
890 #if ART_USE_FUTEXES
891 timespec rel_ts;
892 InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
893 num_waiters_++;
894 // Ensure the Mutex is contended so that requeued threads are awoken.
895 guard_.num_contenders_++;
896 guard_.recursion_count_ = 1;
897 int32_t cur_sequence = sequence_.LoadRelaxed();
898 guard_.ExclusiveUnlock(self);
899 if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
900 if (errno == ETIMEDOUT) {
901 // Timed out we're done.
902 timed_out = true;
903 } else if ((errno == EAGAIN) || (errno == EINTR)) {
904 // A signal or ConditionVariable::Signal/Broadcast has come in.
905 } else {
906 PLOG(FATAL) << "timed futex wait failed for " << name_;
907 }
908 }
909 guard_.ExclusiveLock(self);
910 CHECK_GE(num_waiters_, 0);
911 num_waiters_--;
912 // We awoke and so no longer require awakes from the guard_'s unlock.
913 CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
914 guard_.num_contenders_--;
915 #else
916 #if !defined(__APPLE__)
917 int clock = CLOCK_MONOTONIC;
918 #else
919 int clock = CLOCK_REALTIME;
920 #endif
921 uint64_t old_owner = guard_.exclusive_owner_;
922 guard_.exclusive_owner_ = 0;
923 guard_.recursion_count_ = 0;
924 timespec ts;
925 InitTimeSpec(true, clock, ms, ns, &ts);
926 int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
927 if (rc == ETIMEDOUT) {
928 timed_out = true;
929 } else if (rc != 0) {
930 errno = rc;
931 PLOG(FATAL) << "TimedWait failed for " << name_;
932 }
933 guard_.exclusive_owner_ = old_owner;
934 #endif
935 guard_.recursion_count_ = old_recursion_count;
936 return timed_out;
937 }
938
Init()939 void Locks::Init() {
940 if (logging_lock_ != nullptr) {
941 // Already initialized.
942 if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
943 DCHECK(modify_ldt_lock_ != nullptr);
944 } else {
945 DCHECK(modify_ldt_lock_ == nullptr);
946 }
947 DCHECK(abort_lock_ != nullptr);
948 DCHECK(alloc_tracker_lock_ != nullptr);
949 DCHECK(allocated_monitor_ids_lock_ != nullptr);
950 DCHECK(allocated_thread_ids_lock_ != nullptr);
951 DCHECK(breakpoint_lock_ != nullptr);
952 DCHECK(classlinker_classes_lock_ != nullptr);
953 DCHECK(deoptimization_lock_ != nullptr);
954 DCHECK(heap_bitmap_lock_ != nullptr);
955 DCHECK(oat_file_manager_lock_ != nullptr);
956 DCHECK(host_dlopen_handles_lock_ != nullptr);
957 DCHECK(intern_table_lock_ != nullptr);
958 DCHECK(jni_libraries_lock_ != nullptr);
959 DCHECK(logging_lock_ != nullptr);
960 DCHECK(mutator_lock_ != nullptr);
961 DCHECK(profiler_lock_ != nullptr);
962 DCHECK(thread_list_lock_ != nullptr);
963 DCHECK(thread_suspend_count_lock_ != nullptr);
964 DCHECK(trace_lock_ != nullptr);
965 DCHECK(unexpected_signal_lock_ != nullptr);
966 DCHECK(lambda_table_lock_ != nullptr);
967 } else {
968 // Create global locks in level order from highest lock level to lowest.
969 LockLevel current_lock_level = kInstrumentEntrypointsLock;
970 DCHECK(instrument_entrypoints_lock_ == nullptr);
971 instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
972
973 #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
974 if (new_level >= current_lock_level) { \
975 /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
976 fprintf(stderr, "New local level %d is not less than current level %d\n", \
977 new_level, current_lock_level); \
978 exit(1); \
979 } \
980 current_lock_level = new_level;
981
982 UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
983 DCHECK(mutator_lock_ == nullptr);
984 mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
985
986 UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
987 DCHECK(heap_bitmap_lock_ == nullptr);
988 heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
989
990 UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
991 DCHECK(trace_lock_ == nullptr);
992 trace_lock_ = new Mutex("trace lock", current_lock_level);
993
994 UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
995 DCHECK(runtime_shutdown_lock_ == nullptr);
996 runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
997
998 UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
999 DCHECK(profiler_lock_ == nullptr);
1000 profiler_lock_ = new Mutex("profiler lock", current_lock_level);
1001
1002 UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
1003 DCHECK(deoptimization_lock_ == nullptr);
1004 deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
1005
1006 UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
1007 DCHECK(alloc_tracker_lock_ == nullptr);
1008 alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
1009
1010 UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
1011 DCHECK(thread_list_lock_ == nullptr);
1012 thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
1013
1014 UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
1015 DCHECK(jni_libraries_lock_ == nullptr);
1016 jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
1017
1018 UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
1019 DCHECK(breakpoint_lock_ == nullptr);
1020 breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
1021
1022 UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
1023 DCHECK(classlinker_classes_lock_ == nullptr);
1024 classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
1025 current_lock_level);
1026
1027 UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
1028 DCHECK(allocated_monitor_ids_lock_ == nullptr);
1029 allocated_monitor_ids_lock_ = new Mutex("allocated monitor ids lock", current_lock_level);
1030
1031 UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
1032 DCHECK(allocated_thread_ids_lock_ == nullptr);
1033 allocated_thread_ids_lock_ = new Mutex("allocated thread ids lock", current_lock_level);
1034
1035 if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
1036 UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
1037 DCHECK(modify_ldt_lock_ == nullptr);
1038 modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
1039 }
1040
1041 UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
1042 DCHECK(oat_file_manager_lock_ == nullptr);
1043 oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
1044
1045 UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
1046 DCHECK(host_dlopen_handles_lock_ == nullptr);
1047 host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
1048
1049 UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
1050 DCHECK(intern_table_lock_ == nullptr);
1051 intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
1052
1053 UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
1054 DCHECK(reference_processor_lock_ == nullptr);
1055 reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
1056
1057 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
1058 DCHECK(reference_queue_cleared_references_lock_ == nullptr);
1059 reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1060
1061 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
1062 DCHECK(reference_queue_weak_references_lock_ == nullptr);
1063 reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1064
1065 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
1066 DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
1067 reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
1068
1069 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
1070 DCHECK(reference_queue_phantom_references_lock_ == nullptr);
1071 reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
1072
1073 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
1074 DCHECK(reference_queue_soft_references_lock_ == nullptr);
1075 reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
1076
1077 UPDATE_CURRENT_LOCK_LEVEL(kLambdaTableLock);
1078 DCHECK(lambda_table_lock_ == nullptr);
1079 lambda_table_lock_ = new Mutex("lambda table lock", current_lock_level);
1080
1081 UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
1082 DCHECK(abort_lock_ == nullptr);
1083 abort_lock_ = new Mutex("abort lock", current_lock_level, true);
1084
1085 UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
1086 DCHECK(thread_suspend_count_lock_ == nullptr);
1087 thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
1088
1089 UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
1090 DCHECK(unexpected_signal_lock_ == nullptr);
1091 unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
1092
1093 UPDATE_CURRENT_LOCK_LEVEL(kMemMapsLock);
1094 DCHECK(mem_maps_lock_ == nullptr);
1095 mem_maps_lock_ = new Mutex("mem maps lock", current_lock_level);
1096
1097 UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
1098 DCHECK(logging_lock_ == nullptr);
1099 logging_lock_ = new Mutex("logging lock", current_lock_level, true);
1100
1101 #undef UPDATE_CURRENT_LOCK_LEVEL
1102
1103 InitConditions();
1104 }
1105 }
1106
InitConditions()1107 void Locks::InitConditions() {
1108 thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
1109 }
1110
1111 } // namespace art
1112