• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Vector"
18 
19 #include <string.h>
20 #include <stdlib.h>
21 #include <stdio.h>
22 
23 #include <cutils/log.h>
24 #include <safe_iop.h>
25 
26 #include <utils/Errors.h>
27 #include <utils/VectorImpl.h>
28 
29 #include "SharedBuffer.h"
30 
31 /*****************************************************************************/
32 
33 
34 namespace android {
35 
36 // ----------------------------------------------------------------------------
37 
38 const size_t kMinVectorCapacity = 4;
39 
max(size_t a,size_t b)40 static inline size_t max(size_t a, size_t b) {
41     return a>b ? a : b;
42 }
43 
44 // ----------------------------------------------------------------------------
45 
VectorImpl(size_t itemSize,uint32_t flags)46 VectorImpl::VectorImpl(size_t itemSize, uint32_t flags)
47     : mStorage(0), mCount(0), mFlags(flags), mItemSize(itemSize)
48 {
49 }
50 
VectorImpl(const VectorImpl & rhs)51 VectorImpl::VectorImpl(const VectorImpl& rhs)
52     :   mStorage(rhs.mStorage), mCount(rhs.mCount),
53         mFlags(rhs.mFlags), mItemSize(rhs.mItemSize)
54 {
55     if (mStorage) {
56         SharedBuffer::bufferFromData(mStorage)->acquire();
57     }
58 }
59 
~VectorImpl()60 VectorImpl::~VectorImpl()
61 {
62     ALOGW_IF(mCount,
63         "[%p] subclasses of VectorImpl must call finish_vector()"
64         " in their destructor. Leaking %d bytes.",
65         this, (int)(mCount*mItemSize));
66     // We can't call _do_destroy() here because the vtable is already gone.
67 }
68 
operator =(const VectorImpl & rhs)69 VectorImpl& VectorImpl::operator = (const VectorImpl& rhs)
70 {
71     LOG_ALWAYS_FATAL_IF(mItemSize != rhs.mItemSize,
72         "Vector<> have different types (this=%p, rhs=%p)", this, &rhs);
73     if (this != &rhs) {
74         release_storage();
75         if (rhs.mCount) {
76             mStorage = rhs.mStorage;
77             mCount = rhs.mCount;
78             SharedBuffer::bufferFromData(mStorage)->acquire();
79         } else {
80             mStorage = 0;
81             mCount = 0;
82         }
83     }
84     return *this;
85 }
86 
editArrayImpl()87 void* VectorImpl::editArrayImpl()
88 {
89     if (mStorage) {
90         const SharedBuffer* sb = SharedBuffer::bufferFromData(mStorage);
91         SharedBuffer* editable = sb->attemptEdit();
92         if (editable == 0) {
93             // If we're here, we're not the only owner of the buffer.
94             // We must make a copy of it.
95             editable = SharedBuffer::alloc(sb->size());
96             // Fail instead of returning a pointer to storage that's not
97             // editable. Otherwise we'd be editing the contents of a buffer
98             // for which we're not the only owner, which is undefined behaviour.
99             LOG_ALWAYS_FATAL_IF(editable == NULL);
100             _do_copy(editable->data(), mStorage, mCount);
101             release_storage();
102             mStorage = editable->data();
103         }
104     }
105     return mStorage;
106 }
107 
capacity() const108 size_t VectorImpl::capacity() const
109 {
110     if (mStorage) {
111         return SharedBuffer::bufferFromData(mStorage)->size() / mItemSize;
112     }
113     return 0;
114 }
115 
insertVectorAt(const VectorImpl & vector,size_t index)116 ssize_t VectorImpl::insertVectorAt(const VectorImpl& vector, size_t index)
117 {
118     return insertArrayAt(vector.arrayImpl(), index, vector.size());
119 }
120 
appendVector(const VectorImpl & vector)121 ssize_t VectorImpl::appendVector(const VectorImpl& vector)
122 {
123     return insertVectorAt(vector, size());
124 }
125 
insertArrayAt(const void * array,size_t index,size_t length)126 ssize_t VectorImpl::insertArrayAt(const void* array, size_t index, size_t length)
127 {
128     if (index > size())
129         return BAD_INDEX;
130     void* where = _grow(index, length);
131     if (where) {
132         _do_copy(where, array, length);
133     }
134     return where ? index : (ssize_t)NO_MEMORY;
135 }
136 
appendArray(const void * array,size_t length)137 ssize_t VectorImpl::appendArray(const void* array, size_t length)
138 {
139     return insertArrayAt(array, size(), length);
140 }
141 
insertAt(size_t index,size_t numItems)142 ssize_t VectorImpl::insertAt(size_t index, size_t numItems)
143 {
144     return insertAt(0, index, numItems);
145 }
146 
insertAt(const void * item,size_t index,size_t numItems)147 ssize_t VectorImpl::insertAt(const void* item, size_t index, size_t numItems)
148 {
149     if (index > size())
150         return BAD_INDEX;
151     void* where = _grow(index, numItems);
152     if (where) {
153         if (item) {
154             _do_splat(where, item, numItems);
155         } else {
156             _do_construct(where, numItems);
157         }
158     }
159     return where ? index : (ssize_t)NO_MEMORY;
160 }
161 
sortProxy(const void * lhs,const void * rhs,void * func)162 static int sortProxy(const void* lhs, const void* rhs, void* func)
163 {
164     return (*(VectorImpl::compar_t)func)(lhs, rhs);
165 }
166 
sort(VectorImpl::compar_t cmp)167 status_t VectorImpl::sort(VectorImpl::compar_t cmp)
168 {
169     return sort(sortProxy, (void*)cmp);
170 }
171 
sort(VectorImpl::compar_r_t cmp,void * state)172 status_t VectorImpl::sort(VectorImpl::compar_r_t cmp, void* state)
173 {
174     // the sort must be stable. we're using insertion sort which
175     // is well suited for small and already sorted arrays
176     // for big arrays, it could be better to use mergesort
177     const ssize_t count = size();
178     if (count > 1) {
179         void* array = const_cast<void*>(arrayImpl());
180         void* temp = 0;
181         ssize_t i = 1;
182         while (i < count) {
183             void* item = reinterpret_cast<char*>(array) + mItemSize*(i);
184             void* curr = reinterpret_cast<char*>(array) + mItemSize*(i-1);
185             if (cmp(curr, item, state) > 0) {
186 
187                 if (!temp) {
188                     // we're going to have to modify the array...
189                     array = editArrayImpl();
190                     if (!array) return NO_MEMORY;
191                     temp = malloc(mItemSize);
192                     if (!temp) return NO_MEMORY;
193                     item = reinterpret_cast<char*>(array) + mItemSize*(i);
194                     curr = reinterpret_cast<char*>(array) + mItemSize*(i-1);
195                 } else {
196                     _do_destroy(temp, 1);
197                 }
198 
199                 _do_copy(temp, item, 1);
200 
201                 ssize_t j = i-1;
202                 void* next = reinterpret_cast<char*>(array) + mItemSize*(i);
203                 do {
204                     _do_destroy(next, 1);
205                     _do_copy(next, curr, 1);
206                     next = curr;
207                     --j;
208                     curr = NULL;
209                     if (j >= 0) {
210                         curr = reinterpret_cast<char*>(array) + mItemSize*(j);
211                     }
212                 } while (j>=0 && (cmp(curr, temp, state) > 0));
213 
214                 _do_destroy(next, 1);
215                 _do_copy(next, temp, 1);
216             }
217             i++;
218         }
219 
220         if (temp) {
221             _do_destroy(temp, 1);
222             free(temp);
223         }
224     }
225     return NO_ERROR;
226 }
227 
pop()228 void VectorImpl::pop()
229 {
230     if (size())
231         removeItemsAt(size()-1, 1);
232 }
233 
push()234 void VectorImpl::push()
235 {
236     push(0);
237 }
238 
push(const void * item)239 void VectorImpl::push(const void* item)
240 {
241     insertAt(item, size());
242 }
243 
add()244 ssize_t VectorImpl::add()
245 {
246     return add(0);
247 }
248 
add(const void * item)249 ssize_t VectorImpl::add(const void* item)
250 {
251     return insertAt(item, size());
252 }
253 
replaceAt(size_t index)254 ssize_t VectorImpl::replaceAt(size_t index)
255 {
256     return replaceAt(0, index);
257 }
258 
replaceAt(const void * prototype,size_t index)259 ssize_t VectorImpl::replaceAt(const void* prototype, size_t index)
260 {
261     ALOG_ASSERT(index<size(),
262         "[%p] replace: index=%d, size=%d", this, (int)index, (int)size());
263 
264     if (index >= size()) {
265         return BAD_INDEX;
266     }
267 
268     void* item = editItemLocation(index);
269     if (item != prototype) {
270         if (item == 0)
271             return NO_MEMORY;
272         _do_destroy(item, 1);
273         if (prototype == 0) {
274             _do_construct(item, 1);
275         } else {
276             _do_copy(item, prototype, 1);
277         }
278     }
279     return ssize_t(index);
280 }
281 
removeItemsAt(size_t index,size_t count)282 ssize_t VectorImpl::removeItemsAt(size_t index, size_t count)
283 {
284     ALOG_ASSERT((index+count)<=size(),
285         "[%p] remove: index=%d, count=%d, size=%d",
286                this, (int)index, (int)count, (int)size());
287 
288     if ((index+count) > size())
289         return BAD_VALUE;
290    _shrink(index, count);
291    return index;
292 }
293 
finish_vector()294 void VectorImpl::finish_vector()
295 {
296     release_storage();
297     mStorage = 0;
298     mCount = 0;
299 }
300 
clear()301 void VectorImpl::clear()
302 {
303     _shrink(0, mCount);
304 }
305 
editItemLocation(size_t index)306 void* VectorImpl::editItemLocation(size_t index)
307 {
308     ALOG_ASSERT(index<capacity(),
309         "[%p] editItemLocation: index=%d, capacity=%d, count=%d",
310         this, (int)index, (int)capacity(), (int)mCount);
311 
312     if (index < capacity()) {
313         void* buffer = editArrayImpl();
314         if (buffer) {
315             return reinterpret_cast<char*>(buffer) + index*mItemSize;
316         }
317     }
318     return 0;
319 }
320 
itemLocation(size_t index) const321 const void* VectorImpl::itemLocation(size_t index) const
322 {
323     ALOG_ASSERT(index<capacity(),
324         "[%p] itemLocation: index=%d, capacity=%d, count=%d",
325         this, (int)index, (int)capacity(), (int)mCount);
326 
327     if (index < capacity()) {
328         const  void* buffer = arrayImpl();
329         if (buffer) {
330             return reinterpret_cast<const char*>(buffer) + index*mItemSize;
331         }
332     }
333     return 0;
334 }
335 
setCapacity(size_t new_capacity)336 ssize_t VectorImpl::setCapacity(size_t new_capacity)
337 {
338     // The capacity must always be greater than or equal to the size
339     // of this vector.
340     if (new_capacity <= size()) {
341         return capacity();
342     }
343 
344     size_t new_allocation_size = 0;
345     LOG_ALWAYS_FATAL_IF(!safe_mul(&new_allocation_size, new_capacity, mItemSize));
346     SharedBuffer* sb = SharedBuffer::alloc(new_allocation_size);
347     if (sb) {
348         void* array = sb->data();
349         _do_copy(array, mStorage, size());
350         release_storage();
351         mStorage = const_cast<void*>(array);
352     } else {
353         return NO_MEMORY;
354     }
355     return new_capacity;
356 }
357 
resize(size_t size)358 ssize_t VectorImpl::resize(size_t size) {
359     ssize_t result = NO_ERROR;
360     if (size > mCount) {
361         result = insertAt(mCount, size - mCount);
362     } else if (size < mCount) {
363         result = removeItemsAt(size, mCount - size);
364     }
365     return result < 0 ? result : size;
366 }
367 
release_storage()368 void VectorImpl::release_storage()
369 {
370     if (mStorage) {
371         const SharedBuffer* sb = SharedBuffer::bufferFromData(mStorage);
372         if (sb->release(SharedBuffer::eKeepStorage) == 1) {
373             _do_destroy(mStorage, mCount);
374             SharedBuffer::dealloc(sb);
375         }
376     }
377 }
378 
_grow(size_t where,size_t amount)379 void* VectorImpl::_grow(size_t where, size_t amount)
380 {
381 //    ALOGV("_grow(this=%p, where=%d, amount=%d) count=%d, capacity=%d",
382 //        this, (int)where, (int)amount, (int)mCount, (int)capacity());
383 
384     ALOG_ASSERT(where <= mCount,
385             "[%p] _grow: where=%d, amount=%d, count=%d",
386             this, (int)where, (int)amount, (int)mCount); // caller already checked
387 
388     size_t new_size;
389     LOG_ALWAYS_FATAL_IF(!safe_add(&new_size, mCount, amount), "new_size overflow");
390 
391     if (capacity() < new_size) {
392         // NOTE: This implementation used to resize vectors as per ((3*x + 1) / 2)
393         // (sigh..). Also note, the " + 1" was necessary to handle the special case
394         // where x == 1, where the resized_capacity will be equal to the old
395         // capacity without the +1. The old calculation wouldn't work properly
396         // if x was zero.
397         //
398         // This approximates the old calculation, using (x + (x/2) + 1) instead.
399         size_t new_capacity = 0;
400         LOG_ALWAYS_FATAL_IF(!safe_add(&new_capacity, new_size, (new_size / 2)),
401                             "new_capacity overflow");
402         LOG_ALWAYS_FATAL_IF(!safe_add(&new_capacity, new_capacity, static_cast<size_t>(1u)),
403                             "new_capacity overflow");
404         new_capacity = max(kMinVectorCapacity, new_capacity);
405 
406         size_t new_alloc_size = 0;
407         LOG_ALWAYS_FATAL_IF(!safe_mul(&new_alloc_size, new_capacity, mItemSize),
408                             "new_alloc_size overflow");
409 
410 //        ALOGV("grow vector %p, new_capacity=%d", this, (int)new_capacity);
411         if ((mStorage) &&
412             (mCount==where) &&
413             (mFlags & HAS_TRIVIAL_COPY) &&
414             (mFlags & HAS_TRIVIAL_DTOR))
415         {
416             const SharedBuffer* cur_sb = SharedBuffer::bufferFromData(mStorage);
417             SharedBuffer* sb = cur_sb->editResize(new_alloc_size);
418             if (sb) {
419                 mStorage = sb->data();
420             } else {
421                 return NULL;
422             }
423         } else {
424             SharedBuffer* sb = SharedBuffer::alloc(new_alloc_size);
425             if (sb) {
426                 void* array = sb->data();
427                 if (where != 0) {
428                     _do_copy(array, mStorage, where);
429                 }
430                 if (where != mCount) {
431                     const void* from = reinterpret_cast<const uint8_t *>(mStorage) + where*mItemSize;
432                     void* dest = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize;
433                     _do_copy(dest, from, mCount-where);
434                 }
435                 release_storage();
436                 mStorage = const_cast<void*>(array);
437             } else {
438                 return NULL;
439             }
440         }
441     } else {
442         void* array = editArrayImpl();
443         if (where != mCount) {
444             const void* from = reinterpret_cast<const uint8_t *>(array) + where*mItemSize;
445             void* to = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize;
446             _do_move_forward(to, from, mCount - where);
447         }
448     }
449     mCount = new_size;
450     void* free_space = const_cast<void*>(itemLocation(where));
451     return free_space;
452 }
453 
_shrink(size_t where,size_t amount)454 void VectorImpl::_shrink(size_t where, size_t amount)
455 {
456     if (!mStorage)
457         return;
458 
459 //    ALOGV("_shrink(this=%p, where=%d, amount=%d) count=%d, capacity=%d",
460 //        this, (int)where, (int)amount, (int)mCount, (int)capacity());
461 
462     ALOG_ASSERT(where + amount <= mCount,
463             "[%p] _shrink: where=%d, amount=%d, count=%d",
464             this, (int)where, (int)amount, (int)mCount); // caller already checked
465 
466     size_t new_size;
467     LOG_ALWAYS_FATAL_IF(!safe_sub(&new_size, mCount, amount));
468 
469     if (new_size < (capacity() / 2)) {
470         // NOTE: (new_size * 2) is safe because capacity didn't overflow and
471         // new_size < (capacity / 2)).
472         const size_t new_capacity = max(kMinVectorCapacity, new_size * 2);
473 
474         // NOTE: (new_capacity * mItemSize), (where * mItemSize) and
475         // ((where + amount) * mItemSize) beyond this point are safe because
476         // we are always reducing the capacity of the underlying SharedBuffer.
477         // In other words, (old_capacity * mItemSize) did not overflow, and
478         // where < (where + amount) < new_capacity < old_capacity.
479         if ((where == new_size) &&
480             (mFlags & HAS_TRIVIAL_COPY) &&
481             (mFlags & HAS_TRIVIAL_DTOR))
482         {
483             const SharedBuffer* cur_sb = SharedBuffer::bufferFromData(mStorage);
484             SharedBuffer* sb = cur_sb->editResize(new_capacity * mItemSize);
485             if (sb) {
486                 mStorage = sb->data();
487             } else {
488                 return;
489             }
490         } else {
491             SharedBuffer* sb = SharedBuffer::alloc(new_capacity * mItemSize);
492             if (sb) {
493                 void* array = sb->data();
494                 if (where != 0) {
495                     _do_copy(array, mStorage, where);
496                 }
497                 if (where != new_size) {
498                     const void* from = reinterpret_cast<const uint8_t *>(mStorage) + (where+amount)*mItemSize;
499                     void* dest = reinterpret_cast<uint8_t *>(array) + where*mItemSize;
500                     _do_copy(dest, from, new_size - where);
501                 }
502                 release_storage();
503                 mStorage = const_cast<void*>(array);
504             } else{
505                 return;
506             }
507         }
508     } else {
509         void* array = editArrayImpl();
510         void* to = reinterpret_cast<uint8_t *>(array) + where*mItemSize;
511         _do_destroy(to, amount);
512         if (where != new_size) {
513             const void* from = reinterpret_cast<uint8_t *>(array) + (where+amount)*mItemSize;
514             _do_move_backward(to, from, new_size - where);
515         }
516     }
517     mCount = new_size;
518 }
519 
itemSize() const520 size_t VectorImpl::itemSize() const {
521     return mItemSize;
522 }
523 
_do_construct(void * storage,size_t num) const524 void VectorImpl::_do_construct(void* storage, size_t num) const
525 {
526     if (!(mFlags & HAS_TRIVIAL_CTOR)) {
527         do_construct(storage, num);
528     }
529 }
530 
_do_destroy(void * storage,size_t num) const531 void VectorImpl::_do_destroy(void* storage, size_t num) const
532 {
533     if (!(mFlags & HAS_TRIVIAL_DTOR)) {
534         do_destroy(storage, num);
535     }
536 }
537 
_do_copy(void * dest,const void * from,size_t num) const538 void VectorImpl::_do_copy(void* dest, const void* from, size_t num) const
539 {
540     if (!(mFlags & HAS_TRIVIAL_COPY)) {
541         do_copy(dest, from, num);
542     } else {
543         memcpy(dest, from, num*itemSize());
544     }
545 }
546 
_do_splat(void * dest,const void * item,size_t num) const547 void VectorImpl::_do_splat(void* dest, const void* item, size_t num) const {
548     do_splat(dest, item, num);
549 }
550 
_do_move_forward(void * dest,const void * from,size_t num) const551 void VectorImpl::_do_move_forward(void* dest, const void* from, size_t num) const {
552     do_move_forward(dest, from, num);
553 }
554 
_do_move_backward(void * dest,const void * from,size_t num) const555 void VectorImpl::_do_move_backward(void* dest, const void* from, size_t num) const {
556     do_move_backward(dest, from, num);
557 }
558 
559 /*****************************************************************************/
560 
SortedVectorImpl(size_t itemSize,uint32_t flags)561 SortedVectorImpl::SortedVectorImpl(size_t itemSize, uint32_t flags)
562     : VectorImpl(itemSize, flags)
563 {
564 }
565 
SortedVectorImpl(const VectorImpl & rhs)566 SortedVectorImpl::SortedVectorImpl(const VectorImpl& rhs)
567 : VectorImpl(rhs)
568 {
569 }
570 
~SortedVectorImpl()571 SortedVectorImpl::~SortedVectorImpl()
572 {
573 }
574 
operator =(const SortedVectorImpl & rhs)575 SortedVectorImpl& SortedVectorImpl::operator = (const SortedVectorImpl& rhs)
576 {
577     return static_cast<SortedVectorImpl&>( VectorImpl::operator = (static_cast<const VectorImpl&>(rhs)) );
578 }
579 
indexOf(const void * item) const580 ssize_t SortedVectorImpl::indexOf(const void* item) const
581 {
582     return _indexOrderOf(item);
583 }
584 
orderOf(const void * item) const585 size_t SortedVectorImpl::orderOf(const void* item) const
586 {
587     size_t o;
588     _indexOrderOf(item, &o);
589     return o;
590 }
591 
_indexOrderOf(const void * item,size_t * order) const592 ssize_t SortedVectorImpl::_indexOrderOf(const void* item, size_t* order) const
593 {
594     if (order) *order = 0;
595     if (isEmpty()) {
596         return NAME_NOT_FOUND;
597     }
598     // binary search
599     ssize_t err = NAME_NOT_FOUND;
600     ssize_t l = 0;
601     ssize_t h = size()-1;
602     ssize_t mid;
603     const void* a = arrayImpl();
604     const size_t s = itemSize();
605     while (l <= h) {
606         mid = l + (h - l)/2;
607         const void* const curr = reinterpret_cast<const char *>(a) + (mid*s);
608         const int c = do_compare(curr, item);
609         if (c == 0) {
610             err = l = mid;
611             break;
612         } else if (c < 0) {
613             l = mid + 1;
614         } else {
615             h = mid - 1;
616         }
617     }
618     if (order) *order = l;
619     return err;
620 }
621 
add(const void * item)622 ssize_t SortedVectorImpl::add(const void* item)
623 {
624     size_t order;
625     ssize_t index = _indexOrderOf(item, &order);
626     if (index < 0) {
627         index = VectorImpl::insertAt(item, order, 1);
628     } else {
629         index = VectorImpl::replaceAt(item, index);
630     }
631     return index;
632 }
633 
merge(const VectorImpl & vector)634 ssize_t SortedVectorImpl::merge(const VectorImpl& vector)
635 {
636     // naive merge...
637     if (!vector.isEmpty()) {
638         const void* buffer = vector.arrayImpl();
639         const size_t is = itemSize();
640         size_t s = vector.size();
641         for (size_t i=0 ; i<s ; i++) {
642             ssize_t err = add( reinterpret_cast<const char*>(buffer) + i*is );
643             if (err<0) {
644                 return err;
645             }
646         }
647     }
648     return NO_ERROR;
649 }
650 
merge(const SortedVectorImpl & vector)651 ssize_t SortedVectorImpl::merge(const SortedVectorImpl& vector)
652 {
653     // we've merging a sorted vector... nice!
654     ssize_t err = NO_ERROR;
655     if (!vector.isEmpty()) {
656         // first take care of the case where the vectors are sorted together
657         if (do_compare(vector.itemLocation(vector.size()-1), arrayImpl()) <= 0) {
658             err = VectorImpl::insertVectorAt(static_cast<const VectorImpl&>(vector), 0);
659         } else if (do_compare(vector.arrayImpl(), itemLocation(size()-1)) >= 0) {
660             err = VectorImpl::appendVector(static_cast<const VectorImpl&>(vector));
661         } else {
662             // this could be made a little better
663             err = merge(static_cast<const VectorImpl&>(vector));
664         }
665     }
666     return err;
667 }
668 
remove(const void * item)669 ssize_t SortedVectorImpl::remove(const void* item)
670 {
671     ssize_t i = indexOf(item);
672     if (i>=0) {
673         VectorImpl::removeItemsAt(i, 1);
674     }
675     return i;
676 }
677 
678 /*****************************************************************************/
679 
680 }; // namespace android
681 
682