1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/PHITransAddr.h"
25 #include "llvm/Analysis/OrderedBasicBlock.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PredIteratorCache.h"
35 #include "llvm/Support/Debug.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "memdep"
39
40 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
41 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
42 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
43
44 STATISTIC(NumCacheNonLocalPtr,
45 "Number of fully cached non-local ptr responses");
46 STATISTIC(NumCacheDirtyNonLocalPtr,
47 "Number of cached, but dirty, non-local ptr responses");
48 STATISTIC(NumUncacheNonLocalPtr,
49 "Number of uncached non-local ptr responses");
50 STATISTIC(NumCacheCompleteNonLocalPtr,
51 "Number of block queries that were completely cached");
52
53 // Limit for the number of instructions to scan in a block.
54
55 static cl::opt<unsigned> BlockScanLimit(
56 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
57 cl::desc("The number of instructions to scan in a block in memory "
58 "dependency analysis (default = 100)"));
59
60 // Limit on the number of memdep results to process.
61 static const unsigned int NumResultsLimit = 100;
62
63 char MemoryDependenceAnalysis::ID = 0;
64
65 // Register this pass...
66 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
67 "Memory Dependence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)68 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
69 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
71 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
72 "Memory Dependence Analysis", false, true)
73
74 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
75 : FunctionPass(ID) {
76 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
77 }
~MemoryDependenceAnalysis()78 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
79 }
80
81 /// Clean up memory in between runs
releaseMemory()82 void MemoryDependenceAnalysis::releaseMemory() {
83 LocalDeps.clear();
84 NonLocalDeps.clear();
85 NonLocalPointerDeps.clear();
86 ReverseLocalDeps.clear();
87 ReverseNonLocalDeps.clear();
88 ReverseNonLocalPtrDeps.clear();
89 PredCache.clear();
90 }
91
92 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
93 ///
getAnalysisUsage(AnalysisUsage & AU) const94 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.setPreservesAll();
96 AU.addRequired<AssumptionCacheTracker>();
97 AU.addRequiredTransitive<AAResultsWrapperPass>();
98 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
99 }
100
runOnFunction(Function & F)101 bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
102 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
103 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
104 DominatorTreeWrapperPass *DTWP =
105 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
106 DT = DTWP ? &DTWP->getDomTree() : nullptr;
107 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
108 return false;
109 }
110
111 /// RemoveFromReverseMap - This is a helper function that removes Val from
112 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
113 template <typename KeyTy>
RemoveFromReverseMap(DenseMap<Instruction *,SmallPtrSet<KeyTy,4>> & ReverseMap,Instruction * Inst,KeyTy Val)114 static void RemoveFromReverseMap(DenseMap<Instruction*,
115 SmallPtrSet<KeyTy, 4> > &ReverseMap,
116 Instruction *Inst, KeyTy Val) {
117 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
118 InstIt = ReverseMap.find(Inst);
119 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
120 bool Found = InstIt->second.erase(Val);
121 assert(Found && "Invalid reverse map!"); (void)Found;
122 if (InstIt->second.empty())
123 ReverseMap.erase(InstIt);
124 }
125
126 /// GetLocation - If the given instruction references a specific memory
127 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
128 /// Return a ModRefInfo value describing the general behavior of the
129 /// instruction.
GetLocation(const Instruction * Inst,MemoryLocation & Loc,const TargetLibraryInfo & TLI)130 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
131 const TargetLibraryInfo &TLI) {
132 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
133 if (LI->isUnordered()) {
134 Loc = MemoryLocation::get(LI);
135 return MRI_Ref;
136 }
137 if (LI->getOrdering() == Monotonic) {
138 Loc = MemoryLocation::get(LI);
139 return MRI_ModRef;
140 }
141 Loc = MemoryLocation();
142 return MRI_ModRef;
143 }
144
145 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
146 if (SI->isUnordered()) {
147 Loc = MemoryLocation::get(SI);
148 return MRI_Mod;
149 }
150 if (SI->getOrdering() == Monotonic) {
151 Loc = MemoryLocation::get(SI);
152 return MRI_ModRef;
153 }
154 Loc = MemoryLocation();
155 return MRI_ModRef;
156 }
157
158 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
159 Loc = MemoryLocation::get(V);
160 return MRI_ModRef;
161 }
162
163 if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
164 // calls to free() deallocate the entire structure
165 Loc = MemoryLocation(CI->getArgOperand(0));
166 return MRI_Mod;
167 }
168
169 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
170 AAMDNodes AAInfo;
171
172 switch (II->getIntrinsicID()) {
173 case Intrinsic::lifetime_start:
174 case Intrinsic::lifetime_end:
175 case Intrinsic::invariant_start:
176 II->getAAMetadata(AAInfo);
177 Loc = MemoryLocation(
178 II->getArgOperand(1),
179 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(), AAInfo);
180 // These intrinsics don't really modify the memory, but returning Mod
181 // will allow them to be handled conservatively.
182 return MRI_Mod;
183 case Intrinsic::invariant_end:
184 II->getAAMetadata(AAInfo);
185 Loc = MemoryLocation(
186 II->getArgOperand(2),
187 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(), AAInfo);
188 // These intrinsics don't really modify the memory, but returning Mod
189 // will allow them to be handled conservatively.
190 return MRI_Mod;
191 default:
192 break;
193 }
194 }
195
196 // Otherwise, just do the coarse-grained thing that always works.
197 if (Inst->mayWriteToMemory())
198 return MRI_ModRef;
199 if (Inst->mayReadFromMemory())
200 return MRI_Ref;
201 return MRI_NoModRef;
202 }
203
204 /// getCallSiteDependencyFrom - Private helper for finding the local
205 /// dependencies of a call site.
206 MemDepResult MemoryDependenceAnalysis::
getCallSiteDependencyFrom(CallSite CS,bool isReadOnlyCall,BasicBlock::iterator ScanIt,BasicBlock * BB)207 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
208 BasicBlock::iterator ScanIt, BasicBlock *BB) {
209 unsigned Limit = BlockScanLimit;
210
211 // Walk backwards through the block, looking for dependencies
212 while (ScanIt != BB->begin()) {
213 // Limit the amount of scanning we do so we don't end up with quadratic
214 // running time on extreme testcases.
215 --Limit;
216 if (!Limit)
217 return MemDepResult::getUnknown();
218
219 Instruction *Inst = &*--ScanIt;
220
221 // If this inst is a memory op, get the pointer it accessed
222 MemoryLocation Loc;
223 ModRefInfo MR = GetLocation(Inst, Loc, *TLI);
224 if (Loc.Ptr) {
225 // A simple instruction.
226 if (AA->getModRefInfo(CS, Loc) != MRI_NoModRef)
227 return MemDepResult::getClobber(Inst);
228 continue;
229 }
230
231 if (auto InstCS = CallSite(Inst)) {
232 // Debug intrinsics don't cause dependences.
233 if (isa<DbgInfoIntrinsic>(Inst)) continue;
234 // If these two calls do not interfere, look past it.
235 switch (AA->getModRefInfo(CS, InstCS)) {
236 case MRI_NoModRef:
237 // If the two calls are the same, return InstCS as a Def, so that
238 // CS can be found redundant and eliminated.
239 if (isReadOnlyCall && !(MR & MRI_Mod) &&
240 CS.getInstruction()->isIdenticalToWhenDefined(Inst))
241 return MemDepResult::getDef(Inst);
242
243 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
244 // keep scanning.
245 continue;
246 default:
247 return MemDepResult::getClobber(Inst);
248 }
249 }
250
251 // If we could not obtain a pointer for the instruction and the instruction
252 // touches memory then assume that this is a dependency.
253 if (MR != MRI_NoModRef)
254 return MemDepResult::getClobber(Inst);
255 }
256
257 // No dependence found. If this is the entry block of the function, it is
258 // unknown, otherwise it is non-local.
259 if (BB != &BB->getParent()->getEntryBlock())
260 return MemDepResult::getNonLocal();
261 return MemDepResult::getNonFuncLocal();
262 }
263
264 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
265 /// would fully overlap MemLoc if done as a wider legal integer load.
266 ///
267 /// MemLocBase, MemLocOffset are lazily computed here the first time the
268 /// base/offs of memloc is needed.
isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation & MemLoc,const Value * & MemLocBase,int64_t & MemLocOffs,const LoadInst * LI)269 static bool isLoadLoadClobberIfExtendedToFullWidth(const MemoryLocation &MemLoc,
270 const Value *&MemLocBase,
271 int64_t &MemLocOffs,
272 const LoadInst *LI) {
273 const DataLayout &DL = LI->getModule()->getDataLayout();
274
275 // If we haven't already computed the base/offset of MemLoc, do so now.
276 if (!MemLocBase)
277 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
278
279 unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
280 MemLocBase, MemLocOffs, MemLoc.Size, LI);
281 return Size != 0;
282 }
283
284 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
285 /// looks at a memory location for a load (specified by MemLocBase, Offs,
286 /// and Size) and compares it against a load. If the specified load could
287 /// be safely widened to a larger integer load that is 1) still efficient,
288 /// 2) safe for the target, and 3) would provide the specified memory
289 /// location value, then this function returns the size in bytes of the
290 /// load width to use. If not, this returns zero.
getLoadLoadClobberFullWidthSize(const Value * MemLocBase,int64_t MemLocOffs,unsigned MemLocSize,const LoadInst * LI)291 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
292 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
293 const LoadInst *LI) {
294 // We can only extend simple integer loads.
295 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
296
297 // Load widening is hostile to ThreadSanitizer: it may cause false positives
298 // or make the reports more cryptic (access sizes are wrong).
299 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
300 return 0;
301
302 const DataLayout &DL = LI->getModule()->getDataLayout();
303
304 // Get the base of this load.
305 int64_t LIOffs = 0;
306 const Value *LIBase =
307 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
308
309 // If the two pointers are not based on the same pointer, we can't tell that
310 // they are related.
311 if (LIBase != MemLocBase) return 0;
312
313 // Okay, the two values are based on the same pointer, but returned as
314 // no-alias. This happens when we have things like two byte loads at "P+1"
315 // and "P+3". Check to see if increasing the size of the "LI" load up to its
316 // alignment (or the largest native integer type) will allow us to load all
317 // the bits required by MemLoc.
318
319 // If MemLoc is before LI, then no widening of LI will help us out.
320 if (MemLocOffs < LIOffs) return 0;
321
322 // Get the alignment of the load in bytes. We assume that it is safe to load
323 // any legal integer up to this size without a problem. For example, if we're
324 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
325 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
326 // to i16.
327 unsigned LoadAlign = LI->getAlignment();
328
329 int64_t MemLocEnd = MemLocOffs+MemLocSize;
330
331 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
332 if (LIOffs+LoadAlign < MemLocEnd) return 0;
333
334 // This is the size of the load to try. Start with the next larger power of
335 // two.
336 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
337 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
338
339 while (1) {
340 // If this load size is bigger than our known alignment or would not fit
341 // into a native integer register, then we fail.
342 if (NewLoadByteSize > LoadAlign ||
343 !DL.fitsInLegalInteger(NewLoadByteSize*8))
344 return 0;
345
346 if (LIOffs + NewLoadByteSize > MemLocEnd &&
347 LI->getParent()->getParent()->hasFnAttribute(
348 Attribute::SanitizeAddress))
349 // We will be reading past the location accessed by the original program.
350 // While this is safe in a regular build, Address Safety analysis tools
351 // may start reporting false warnings. So, don't do widening.
352 return 0;
353
354 // If a load of this width would include all of MemLoc, then we succeed.
355 if (LIOffs+NewLoadByteSize >= MemLocEnd)
356 return NewLoadByteSize;
357
358 NewLoadByteSize <<= 1;
359 }
360 }
361
isVolatile(Instruction * Inst)362 static bool isVolatile(Instruction *Inst) {
363 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
364 return LI->isVolatile();
365 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
366 return SI->isVolatile();
367 else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
368 return AI->isVolatile();
369 return false;
370 }
371
372
373 /// getPointerDependencyFrom - Return the instruction on which a memory
374 /// location depends. If isLoad is true, this routine ignores may-aliases with
375 /// read-only operations. If isLoad is false, this routine ignores may-aliases
376 /// with reads from read-only locations. If possible, pass the query
377 /// instruction as well; this function may take advantage of the metadata
378 /// annotated to the query instruction to refine the result.
getPointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst)379 MemDepResult MemoryDependenceAnalysis::getPointerDependencyFrom(
380 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
381 BasicBlock *BB, Instruction *QueryInst) {
382
383 if (QueryInst != nullptr) {
384 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
385 MemDepResult invariantGroupDependency =
386 getInvariantGroupPointerDependency(LI, BB);
387
388 if (invariantGroupDependency.isDef())
389 return invariantGroupDependency;
390 }
391 }
392 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst);
393 }
394
395 MemDepResult
getInvariantGroupPointerDependency(LoadInst * LI,BasicBlock * BB)396 MemoryDependenceAnalysis::getInvariantGroupPointerDependency(LoadInst *LI,
397 BasicBlock *BB) {
398 Value *LoadOperand = LI->getPointerOperand();
399 // It's is not safe to walk the use list of global value, because function
400 // passes aren't allowed to look outside their functions.
401 if (isa<GlobalValue>(LoadOperand))
402 return MemDepResult::getUnknown();
403
404 auto *InvariantGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group);
405 if (!InvariantGroupMD)
406 return MemDepResult::getUnknown();
407
408 MemDepResult Result = MemDepResult::getUnknown();
409 llvm::SmallSet<Value *, 14> Seen;
410 // Queue to process all pointers that are equivalent to load operand.
411 llvm::SmallVector<Value *, 8> LoadOperandsQueue;
412 LoadOperandsQueue.push_back(LoadOperand);
413 while (!LoadOperandsQueue.empty()) {
414 Value *Ptr = LoadOperandsQueue.pop_back_val();
415 if (isa<GlobalValue>(Ptr))
416 continue;
417
418 if (auto *BCI = dyn_cast<BitCastInst>(Ptr)) {
419 if (!Seen.count(BCI->getOperand(0))) {
420 LoadOperandsQueue.push_back(BCI->getOperand(0));
421 Seen.insert(BCI->getOperand(0));
422 }
423 }
424
425 for (Use &Us : Ptr->uses()) {
426 auto *U = dyn_cast<Instruction>(Us.getUser());
427 if (!U || U == LI || !DT->dominates(U, LI))
428 continue;
429
430 if (auto *BCI = dyn_cast<BitCastInst>(U)) {
431 if (!Seen.count(BCI)) {
432 LoadOperandsQueue.push_back(BCI);
433 Seen.insert(BCI);
434 }
435 continue;
436 }
437 // If we hit load/store with the same invariant.group metadata (and the
438 // same pointer operand) we can assume that value pointed by pointer
439 // operand didn't change.
440 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && U->getParent() == BB &&
441 U->getMetadata(LLVMContext::MD_invariant_group) == InvariantGroupMD)
442 return MemDepResult::getDef(U);
443 }
444 }
445 return Result;
446 }
447
getSimplePointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst)448 MemDepResult MemoryDependenceAnalysis::getSimplePointerDependencyFrom(
449 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
450 BasicBlock *BB, Instruction *QueryInst) {
451
452 const Value *MemLocBase = nullptr;
453 int64_t MemLocOffset = 0;
454 unsigned Limit = BlockScanLimit;
455 bool isInvariantLoad = false;
456
457 // We must be careful with atomic accesses, as they may allow another thread
458 // to touch this location, cloberring it. We are conservative: if the
459 // QueryInst is not a simple (non-atomic) memory access, we automatically
460 // return getClobber.
461 // If it is simple, we know based on the results of
462 // "Compiler testing via a theory of sound optimisations in the C11/C++11
463 // memory model" in PLDI 2013, that a non-atomic location can only be
464 // clobbered between a pair of a release and an acquire action, with no
465 // access to the location in between.
466 // Here is an example for giving the general intuition behind this rule.
467 // In the following code:
468 // store x 0;
469 // release action; [1]
470 // acquire action; [4]
471 // %val = load x;
472 // It is unsafe to replace %val by 0 because another thread may be running:
473 // acquire action; [2]
474 // store x 42;
475 // release action; [3]
476 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
477 // being 42. A key property of this program however is that if either
478 // 1 or 4 were missing, there would be a race between the store of 42
479 // either the store of 0 or the load (making the whole progam racy).
480 // The paper mentionned above shows that the same property is respected
481 // by every program that can detect any optimisation of that kind: either
482 // it is racy (undefined) or there is a release followed by an acquire
483 // between the pair of accesses under consideration.
484
485 // If the load is invariant, we "know" that it doesn't alias *any* write. We
486 // do want to respect mustalias results since defs are useful for value
487 // forwarding, but any mayalias write can be assumed to be noalias.
488 // Arguably, this logic should be pushed inside AliasAnalysis itself.
489 if (isLoad && QueryInst) {
490 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
491 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
492 isInvariantLoad = true;
493 }
494
495 const DataLayout &DL = BB->getModule()->getDataLayout();
496
497 // Create a numbered basic block to lazily compute and cache instruction
498 // positions inside a BB. This is used to provide fast queries for relative
499 // position between two instructions in a BB and can be used by
500 // AliasAnalysis::callCapturesBefore.
501 OrderedBasicBlock OBB(BB);
502
503 // Walk backwards through the basic block, looking for dependencies.
504 while (ScanIt != BB->begin()) {
505 Instruction *Inst = &*--ScanIt;
506
507 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
508 // Debug intrinsics don't (and can't) cause dependencies.
509 if (isa<DbgInfoIntrinsic>(II)) continue;
510
511 // Limit the amount of scanning we do so we don't end up with quadratic
512 // running time on extreme testcases.
513 --Limit;
514 if (!Limit)
515 return MemDepResult::getUnknown();
516
517 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
518 // If we reach a lifetime begin or end marker, then the query ends here
519 // because the value is undefined.
520 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
521 // FIXME: This only considers queries directly on the invariant-tagged
522 // pointer, not on query pointers that are indexed off of them. It'd
523 // be nice to handle that at some point (the right approach is to use
524 // GetPointerBaseWithConstantOffset).
525 if (AA->isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
526 return MemDepResult::getDef(II);
527 continue;
528 }
529 }
530
531 // Values depend on loads if the pointers are must aliased. This means that
532 // a load depends on another must aliased load from the same value.
533 // One exception is atomic loads: a value can depend on an atomic load that it
534 // does not alias with when this atomic load indicates that another thread may
535 // be accessing the location.
536 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
537
538 // While volatile access cannot be eliminated, they do not have to clobber
539 // non-aliasing locations, as normal accesses, for example, can be safely
540 // reordered with volatile accesses.
541 if (LI->isVolatile()) {
542 if (!QueryInst)
543 // Original QueryInst *may* be volatile
544 return MemDepResult::getClobber(LI);
545 if (isVolatile(QueryInst))
546 // Ordering required if QueryInst is itself volatile
547 return MemDepResult::getClobber(LI);
548 // Otherwise, volatile doesn't imply any special ordering
549 }
550
551 // Atomic loads have complications involved.
552 // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
553 // FIXME: This is overly conservative.
554 if (LI->isAtomic() && LI->getOrdering() > Unordered) {
555 if (!QueryInst)
556 return MemDepResult::getClobber(LI);
557 if (LI->getOrdering() != Monotonic)
558 return MemDepResult::getClobber(LI);
559 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
560 if (!QueryLI->isSimple())
561 return MemDepResult::getClobber(LI);
562 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
563 if (!QuerySI->isSimple())
564 return MemDepResult::getClobber(LI);
565 } else if (QueryInst->mayReadOrWriteMemory()) {
566 return MemDepResult::getClobber(LI);
567 }
568 }
569
570 MemoryLocation LoadLoc = MemoryLocation::get(LI);
571
572 // If we found a pointer, check if it could be the same as our pointer.
573 AliasResult R = AA->alias(LoadLoc, MemLoc);
574
575 if (isLoad) {
576 if (R == NoAlias) {
577 // If this is an over-aligned integer load (for example,
578 // "load i8* %P, align 4") see if it would obviously overlap with the
579 // queried location if widened to a larger load (e.g. if the queried
580 // location is 1 byte at P+1). If so, return it as a load/load
581 // clobber result, allowing the client to decide to widen the load if
582 // it wants to.
583 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
584 if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() &&
585 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
586 MemLocOffset, LI))
587 return MemDepResult::getClobber(Inst);
588 }
589 continue;
590 }
591
592 // Must aliased loads are defs of each other.
593 if (R == MustAlias)
594 return MemDepResult::getDef(Inst);
595
596 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
597 // in terms of clobbering loads, but since it does this by looking
598 // at the clobbering load directly, it doesn't know about any
599 // phi translation that may have happened along the way.
600
601 // If we have a partial alias, then return this as a clobber for the
602 // client to handle.
603 if (R == PartialAlias)
604 return MemDepResult::getClobber(Inst);
605 #endif
606
607 // Random may-alias loads don't depend on each other without a
608 // dependence.
609 continue;
610 }
611
612 // Stores don't depend on other no-aliased accesses.
613 if (R == NoAlias)
614 continue;
615
616 // Stores don't alias loads from read-only memory.
617 if (AA->pointsToConstantMemory(LoadLoc))
618 continue;
619
620 // Stores depend on may/must aliased loads.
621 return MemDepResult::getDef(Inst);
622 }
623
624 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
625 // Atomic stores have complications involved.
626 // A Monotonic store is OK if the query inst is itself not atomic.
627 // FIXME: This is overly conservative.
628 if (!SI->isUnordered()) {
629 if (!QueryInst)
630 return MemDepResult::getClobber(SI);
631 if (SI->getOrdering() != Monotonic)
632 return MemDepResult::getClobber(SI);
633 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
634 if (!QueryLI->isSimple())
635 return MemDepResult::getClobber(SI);
636 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
637 if (!QuerySI->isSimple())
638 return MemDepResult::getClobber(SI);
639 } else if (QueryInst->mayReadOrWriteMemory()) {
640 return MemDepResult::getClobber(SI);
641 }
642 }
643
644 // FIXME: this is overly conservative.
645 // While volatile access cannot be eliminated, they do not have to clobber
646 // non-aliasing locations, as normal accesses can for example be reordered
647 // with volatile accesses.
648 if (SI->isVolatile())
649 return MemDepResult::getClobber(SI);
650
651 // If alias analysis can tell that this store is guaranteed to not modify
652 // the query pointer, ignore it. Use getModRefInfo to handle cases where
653 // the query pointer points to constant memory etc.
654 if (AA->getModRefInfo(SI, MemLoc) == MRI_NoModRef)
655 continue;
656
657 // Ok, this store might clobber the query pointer. Check to see if it is
658 // a must alias: in this case, we want to return this as a def.
659 MemoryLocation StoreLoc = MemoryLocation::get(SI);
660
661 // If we found a pointer, check if it could be the same as our pointer.
662 AliasResult R = AA->alias(StoreLoc, MemLoc);
663
664 if (R == NoAlias)
665 continue;
666 if (R == MustAlias)
667 return MemDepResult::getDef(Inst);
668 if (isInvariantLoad)
669 continue;
670 return MemDepResult::getClobber(Inst);
671 }
672
673 // If this is an allocation, and if we know that the accessed pointer is to
674 // the allocation, return Def. This means that there is no dependence and
675 // the access can be optimized based on that. For example, a load could
676 // turn into undef.
677 // Note: Only determine this to be a malloc if Inst is the malloc call, not
678 // a subsequent bitcast of the malloc call result. There can be stores to
679 // the malloced memory between the malloc call and its bitcast uses, and we
680 // need to continue scanning until the malloc call.
681 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
682 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
683
684 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
685 return MemDepResult::getDef(Inst);
686 if (isInvariantLoad)
687 continue;
688 // Be conservative if the accessed pointer may alias the allocation.
689 if (AA->alias(Inst, AccessPtr) != NoAlias)
690 return MemDepResult::getClobber(Inst);
691 // If the allocation is not aliased and does not read memory (like
692 // strdup), it is safe to ignore.
693 if (isa<AllocaInst>(Inst) ||
694 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
695 continue;
696 }
697
698 if (isInvariantLoad)
699 continue;
700
701 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
702 ModRefInfo MR = AA->getModRefInfo(Inst, MemLoc);
703 // If necessary, perform additional analysis.
704 if (MR == MRI_ModRef)
705 MR = AA->callCapturesBefore(Inst, MemLoc, DT, &OBB);
706 switch (MR) {
707 case MRI_NoModRef:
708 // If the call has no effect on the queried pointer, just ignore it.
709 continue;
710 case MRI_Mod:
711 return MemDepResult::getClobber(Inst);
712 case MRI_Ref:
713 // If the call is known to never store to the pointer, and if this is a
714 // load query, we can safely ignore it (scan past it).
715 if (isLoad)
716 continue;
717 default:
718 // Otherwise, there is a potential dependence. Return a clobber.
719 return MemDepResult::getClobber(Inst);
720 }
721 }
722
723 // No dependence found. If this is the entry block of the function, it is
724 // unknown, otherwise it is non-local.
725 if (BB != &BB->getParent()->getEntryBlock())
726 return MemDepResult::getNonLocal();
727 return MemDepResult::getNonFuncLocal();
728 }
729
730 /// getDependency - Return the instruction on which a memory operation
731 /// depends.
getDependency(Instruction * QueryInst)732 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
733 Instruction *ScanPos = QueryInst;
734
735 // Check for a cached result
736 MemDepResult &LocalCache = LocalDeps[QueryInst];
737
738 // If the cached entry is non-dirty, just return it. Note that this depends
739 // on MemDepResult's default constructing to 'dirty'.
740 if (!LocalCache.isDirty())
741 return LocalCache;
742
743 // Otherwise, if we have a dirty entry, we know we can start the scan at that
744 // instruction, which may save us some work.
745 if (Instruction *Inst = LocalCache.getInst()) {
746 ScanPos = Inst;
747
748 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
749 }
750
751 BasicBlock *QueryParent = QueryInst->getParent();
752
753 // Do the scan.
754 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
755 // No dependence found. If this is the entry block of the function, it is
756 // unknown, otherwise it is non-local.
757 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
758 LocalCache = MemDepResult::getNonLocal();
759 else
760 LocalCache = MemDepResult::getNonFuncLocal();
761 } else {
762 MemoryLocation MemLoc;
763 ModRefInfo MR = GetLocation(QueryInst, MemLoc, *TLI);
764 if (MemLoc.Ptr) {
765 // If we can do a pointer scan, make it happen.
766 bool isLoad = !(MR & MRI_Mod);
767 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
768 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
769
770 LocalCache = getPointerDependencyFrom(
771 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
772 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
773 CallSite QueryCS(QueryInst);
774 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
775 LocalCache = getCallSiteDependencyFrom(
776 QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent);
777 } else
778 // Non-memory instruction.
779 LocalCache = MemDepResult::getUnknown();
780 }
781
782 // Remember the result!
783 if (Instruction *I = LocalCache.getInst())
784 ReverseLocalDeps[I].insert(QueryInst);
785
786 return LocalCache;
787 }
788
789 #ifndef NDEBUG
790 /// AssertSorted - This method is used when -debug is specified to verify that
791 /// cache arrays are properly kept sorted.
AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo & Cache,int Count=-1)792 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
793 int Count = -1) {
794 if (Count == -1) Count = Cache.size();
795 if (Count == 0) return;
796
797 for (unsigned i = 1; i != unsigned(Count); ++i)
798 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
799 }
800 #endif
801
802 /// getNonLocalCallDependency - Perform a full dependency query for the
803 /// specified call, returning the set of blocks that the value is
804 /// potentially live across. The returned set of results will include a
805 /// "NonLocal" result for all blocks where the value is live across.
806 ///
807 /// This method assumes the instruction returns a "NonLocal" dependency
808 /// within its own block.
809 ///
810 /// This returns a reference to an internal data structure that may be
811 /// invalidated on the next non-local query or when an instruction is
812 /// removed. Clients must copy this data if they want it around longer than
813 /// that.
814 const MemoryDependenceAnalysis::NonLocalDepInfo &
getNonLocalCallDependency(CallSite QueryCS)815 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
816 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
817 "getNonLocalCallDependency should only be used on calls with non-local deps!");
818 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
819 NonLocalDepInfo &Cache = CacheP.first;
820
821 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
822 /// the cached case, this can happen due to instructions being deleted etc. In
823 /// the uncached case, this starts out as the set of predecessors we care
824 /// about.
825 SmallVector<BasicBlock*, 32> DirtyBlocks;
826
827 if (!Cache.empty()) {
828 // Okay, we have a cache entry. If we know it is not dirty, just return it
829 // with no computation.
830 if (!CacheP.second) {
831 ++NumCacheNonLocal;
832 return Cache;
833 }
834
835 // If we already have a partially computed set of results, scan them to
836 // determine what is dirty, seeding our initial DirtyBlocks worklist.
837 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
838 I != E; ++I)
839 if (I->getResult().isDirty())
840 DirtyBlocks.push_back(I->getBB());
841
842 // Sort the cache so that we can do fast binary search lookups below.
843 std::sort(Cache.begin(), Cache.end());
844
845 ++NumCacheDirtyNonLocal;
846 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
847 // << Cache.size() << " cached: " << *QueryInst;
848 } else {
849 // Seed DirtyBlocks with each of the preds of QueryInst's block.
850 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
851 for (BasicBlock *Pred : PredCache.get(QueryBB))
852 DirtyBlocks.push_back(Pred);
853 ++NumUncacheNonLocal;
854 }
855
856 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
857 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
858
859 SmallPtrSet<BasicBlock*, 64> Visited;
860
861 unsigned NumSortedEntries = Cache.size();
862 DEBUG(AssertSorted(Cache));
863
864 // Iterate while we still have blocks to update.
865 while (!DirtyBlocks.empty()) {
866 BasicBlock *DirtyBB = DirtyBlocks.back();
867 DirtyBlocks.pop_back();
868
869 // Already processed this block?
870 if (!Visited.insert(DirtyBB).second)
871 continue;
872
873 // Do a binary search to see if we already have an entry for this block in
874 // the cache set. If so, find it.
875 DEBUG(AssertSorted(Cache, NumSortedEntries));
876 NonLocalDepInfo::iterator Entry =
877 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
878 NonLocalDepEntry(DirtyBB));
879 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
880 --Entry;
881
882 NonLocalDepEntry *ExistingResult = nullptr;
883 if (Entry != Cache.begin()+NumSortedEntries &&
884 Entry->getBB() == DirtyBB) {
885 // If we already have an entry, and if it isn't already dirty, the block
886 // is done.
887 if (!Entry->getResult().isDirty())
888 continue;
889
890 // Otherwise, remember this slot so we can update the value.
891 ExistingResult = &*Entry;
892 }
893
894 // If the dirty entry has a pointer, start scanning from it so we don't have
895 // to rescan the entire block.
896 BasicBlock::iterator ScanPos = DirtyBB->end();
897 if (ExistingResult) {
898 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
899 ScanPos = Inst->getIterator();
900 // We're removing QueryInst's use of Inst.
901 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
902 QueryCS.getInstruction());
903 }
904 }
905
906 // Find out if this block has a local dependency for QueryInst.
907 MemDepResult Dep;
908
909 if (ScanPos != DirtyBB->begin()) {
910 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
911 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
912 // No dependence found. If this is the entry block of the function, it is
913 // a clobber, otherwise it is unknown.
914 Dep = MemDepResult::getNonLocal();
915 } else {
916 Dep = MemDepResult::getNonFuncLocal();
917 }
918
919 // If we had a dirty entry for the block, update it. Otherwise, just add
920 // a new entry.
921 if (ExistingResult)
922 ExistingResult->setResult(Dep);
923 else
924 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
925
926 // If the block has a dependency (i.e. it isn't completely transparent to
927 // the value), remember the association!
928 if (!Dep.isNonLocal()) {
929 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
930 // update this when we remove instructions.
931 if (Instruction *Inst = Dep.getInst())
932 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
933 } else {
934
935 // If the block *is* completely transparent to the load, we need to check
936 // the predecessors of this block. Add them to our worklist.
937 for (BasicBlock *Pred : PredCache.get(DirtyBB))
938 DirtyBlocks.push_back(Pred);
939 }
940 }
941
942 return Cache;
943 }
944
945 /// getNonLocalPointerDependency - Perform a full dependency query for an
946 /// access to the specified (non-volatile) memory location, returning the
947 /// set of instructions that either define or clobber the value.
948 ///
949 /// This method assumes the pointer has a "NonLocal" dependency within its
950 /// own block.
951 ///
952 void MemoryDependenceAnalysis::
getNonLocalPointerDependency(Instruction * QueryInst,SmallVectorImpl<NonLocalDepResult> & Result)953 getNonLocalPointerDependency(Instruction *QueryInst,
954 SmallVectorImpl<NonLocalDepResult> &Result) {
955 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
956 bool isLoad = isa<LoadInst>(QueryInst);
957 BasicBlock *FromBB = QueryInst->getParent();
958 assert(FromBB);
959
960 assert(Loc.Ptr->getType()->isPointerTy() &&
961 "Can't get pointer deps of a non-pointer!");
962 Result.clear();
963
964 // This routine does not expect to deal with volatile instructions.
965 // Doing so would require piping through the QueryInst all the way through.
966 // TODO: volatiles can't be elided, but they can be reordered with other
967 // non-volatile accesses.
968
969 // We currently give up on any instruction which is ordered, but we do handle
970 // atomic instructions which are unordered.
971 // TODO: Handle ordered instructions
972 auto isOrdered = [](Instruction *Inst) {
973 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
974 return !LI->isUnordered();
975 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
976 return !SI->isUnordered();
977 }
978 return false;
979 };
980 if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
981 Result.push_back(NonLocalDepResult(FromBB,
982 MemDepResult::getUnknown(),
983 const_cast<Value *>(Loc.Ptr)));
984 return;
985 }
986 const DataLayout &DL = FromBB->getModule()->getDataLayout();
987 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
988
989 // This is the set of blocks we've inspected, and the pointer we consider in
990 // each block. Because of critical edges, we currently bail out if querying
991 // a block with multiple different pointers. This can happen during PHI
992 // translation.
993 DenseMap<BasicBlock*, Value*> Visited;
994 if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
995 Result, Visited, true))
996 return;
997 Result.clear();
998 Result.push_back(NonLocalDepResult(FromBB,
999 MemDepResult::getUnknown(),
1000 const_cast<Value *>(Loc.Ptr)));
1001 }
1002
1003 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
1004 /// Pointer/PointeeSize using either cached information in Cache or by doing a
1005 /// lookup (which may use dirty cache info if available). If we do a lookup,
1006 /// add the result to the cache.
GetNonLocalInfoForBlock(Instruction * QueryInst,const MemoryLocation & Loc,bool isLoad,BasicBlock * BB,NonLocalDepInfo * Cache,unsigned NumSortedEntries)1007 MemDepResult MemoryDependenceAnalysis::GetNonLocalInfoForBlock(
1008 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
1009 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
1010
1011 // Do a binary search to see if we already have an entry for this block in
1012 // the cache set. If so, find it.
1013 NonLocalDepInfo::iterator Entry =
1014 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
1015 NonLocalDepEntry(BB));
1016 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
1017 --Entry;
1018
1019 NonLocalDepEntry *ExistingResult = nullptr;
1020 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
1021 ExistingResult = &*Entry;
1022
1023 // If we have a cached entry, and it is non-dirty, use it as the value for
1024 // this dependency.
1025 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
1026 ++NumCacheNonLocalPtr;
1027 return ExistingResult->getResult();
1028 }
1029
1030 // Otherwise, we have to scan for the value. If we have a dirty cache
1031 // entry, start scanning from its position, otherwise we scan from the end
1032 // of the block.
1033 BasicBlock::iterator ScanPos = BB->end();
1034 if (ExistingResult && ExistingResult->getResult().getInst()) {
1035 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
1036 "Instruction invalidated?");
1037 ++NumCacheDirtyNonLocalPtr;
1038 ScanPos = ExistingResult->getResult().getInst()->getIterator();
1039
1040 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1041 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1042 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
1043 } else {
1044 ++NumUncacheNonLocalPtr;
1045 }
1046
1047 // Scan the block for the dependency.
1048 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
1049 QueryInst);
1050
1051 // If we had a dirty entry for the block, update it. Otherwise, just add
1052 // a new entry.
1053 if (ExistingResult)
1054 ExistingResult->setResult(Dep);
1055 else
1056 Cache->push_back(NonLocalDepEntry(BB, Dep));
1057
1058 // If the block has a dependency (i.e. it isn't completely transparent to
1059 // the value), remember the reverse association because we just added it
1060 // to Cache!
1061 if (!Dep.isDef() && !Dep.isClobber())
1062 return Dep;
1063
1064 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1065 // update MemDep when we remove instructions.
1066 Instruction *Inst = Dep.getInst();
1067 assert(Inst && "Didn't depend on anything?");
1068 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1069 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1070 return Dep;
1071 }
1072
1073 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
1074 /// number of elements in the array that are already properly ordered. This is
1075 /// optimized for the case when only a few entries are added.
1076 static void
SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo & Cache,unsigned NumSortedEntries)1077 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
1078 unsigned NumSortedEntries) {
1079 switch (Cache.size() - NumSortedEntries) {
1080 case 0:
1081 // done, no new entries.
1082 break;
1083 case 2: {
1084 // Two new entries, insert the last one into place.
1085 NonLocalDepEntry Val = Cache.back();
1086 Cache.pop_back();
1087 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1088 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
1089 Cache.insert(Entry, Val);
1090 // FALL THROUGH.
1091 }
1092 case 1:
1093 // One new entry, Just insert the new value at the appropriate position.
1094 if (Cache.size() != 1) {
1095 NonLocalDepEntry Val = Cache.back();
1096 Cache.pop_back();
1097 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
1098 std::upper_bound(Cache.begin(), Cache.end(), Val);
1099 Cache.insert(Entry, Val);
1100 }
1101 break;
1102 default:
1103 // Added many values, do a full scale sort.
1104 std::sort(Cache.begin(), Cache.end());
1105 break;
1106 }
1107 }
1108
1109 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
1110 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
1111 /// results to the results vector and keep track of which blocks are visited in
1112 /// 'Visited'.
1113 ///
1114 /// This has special behavior for the first block queries (when SkipFirstBlock
1115 /// is true). In this special case, it ignores the contents of the specified
1116 /// block and starts returning dependence info for its predecessors.
1117 ///
1118 /// This function returns false on success, or true to indicate that it could
1119 /// not compute dependence information for some reason. This should be treated
1120 /// as a clobber dependence on the first instruction in the predecessor block.
getNonLocalPointerDepFromBB(Instruction * QueryInst,const PHITransAddr & Pointer,const MemoryLocation & Loc,bool isLoad,BasicBlock * StartBB,SmallVectorImpl<NonLocalDepResult> & Result,DenseMap<BasicBlock *,Value * > & Visited,bool SkipFirstBlock)1121 bool MemoryDependenceAnalysis::getNonLocalPointerDepFromBB(
1122 Instruction *QueryInst, const PHITransAddr &Pointer,
1123 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1124 SmallVectorImpl<NonLocalDepResult> &Result,
1125 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1126 // Look up the cached info for Pointer.
1127 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1128
1129 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1130 // CacheKey, this value will be inserted as the associated value. Otherwise,
1131 // it'll be ignored, and we'll have to check to see if the cached size and
1132 // aa tags are consistent with the current query.
1133 NonLocalPointerInfo InitialNLPI;
1134 InitialNLPI.Size = Loc.Size;
1135 InitialNLPI.AATags = Loc.AATags;
1136
1137 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1138 // already have one.
1139 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1140 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1141 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1142
1143 // If we already have a cache entry for this CacheKey, we may need to do some
1144 // work to reconcile the cache entry and the current query.
1145 if (!Pair.second) {
1146 if (CacheInfo->Size < Loc.Size) {
1147 // The query's Size is greater than the cached one. Throw out the
1148 // cached data and proceed with the query at the greater size.
1149 CacheInfo->Pair = BBSkipFirstBlockPair();
1150 CacheInfo->Size = Loc.Size;
1151 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1152 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1153 if (Instruction *Inst = DI->getResult().getInst())
1154 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1155 CacheInfo->NonLocalDeps.clear();
1156 } else if (CacheInfo->Size > Loc.Size) {
1157 // This query's Size is less than the cached one. Conservatively restart
1158 // the query using the greater size.
1159 return getNonLocalPointerDepFromBB(QueryInst, Pointer,
1160 Loc.getWithNewSize(CacheInfo->Size),
1161 isLoad, StartBB, Result, Visited,
1162 SkipFirstBlock);
1163 }
1164
1165 // If the query's AATags are inconsistent with the cached one,
1166 // conservatively throw out the cached data and restart the query with
1167 // no tag if needed.
1168 if (CacheInfo->AATags != Loc.AATags) {
1169 if (CacheInfo->AATags) {
1170 CacheInfo->Pair = BBSkipFirstBlockPair();
1171 CacheInfo->AATags = AAMDNodes();
1172 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1173 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1174 if (Instruction *Inst = DI->getResult().getInst())
1175 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1176 CacheInfo->NonLocalDeps.clear();
1177 }
1178 if (Loc.AATags)
1179 return getNonLocalPointerDepFromBB(QueryInst,
1180 Pointer, Loc.getWithoutAATags(),
1181 isLoad, StartBB, Result, Visited,
1182 SkipFirstBlock);
1183 }
1184 }
1185
1186 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1187
1188 // If we have valid cached information for exactly the block we are
1189 // investigating, just return it with no recomputation.
1190 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1191 // We have a fully cached result for this query then we can just return the
1192 // cached results and populate the visited set. However, we have to verify
1193 // that we don't already have conflicting results for these blocks. Check
1194 // to ensure that if a block in the results set is in the visited set that
1195 // it was for the same pointer query.
1196 if (!Visited.empty()) {
1197 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1198 I != E; ++I) {
1199 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
1200 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1201 continue;
1202
1203 // We have a pointer mismatch in a block. Just return clobber, saying
1204 // that something was clobbered in this result. We could also do a
1205 // non-fully cached query, but there is little point in doing this.
1206 return true;
1207 }
1208 }
1209
1210 Value *Addr = Pointer.getAddr();
1211 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1212 I != E; ++I) {
1213 Visited.insert(std::make_pair(I->getBB(), Addr));
1214 if (I->getResult().isNonLocal()) {
1215 continue;
1216 }
1217
1218 if (!DT) {
1219 Result.push_back(NonLocalDepResult(I->getBB(),
1220 MemDepResult::getUnknown(),
1221 Addr));
1222 } else if (DT->isReachableFromEntry(I->getBB())) {
1223 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1224 }
1225 }
1226 ++NumCacheCompleteNonLocalPtr;
1227 return false;
1228 }
1229
1230 // Otherwise, either this is a new block, a block with an invalid cache
1231 // pointer or one that we're about to invalidate by putting more info into it
1232 // than its valid cache info. If empty, the result will be valid cache info,
1233 // otherwise it isn't.
1234 if (Cache->empty())
1235 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1236 else
1237 CacheInfo->Pair = BBSkipFirstBlockPair();
1238
1239 SmallVector<BasicBlock*, 32> Worklist;
1240 Worklist.push_back(StartBB);
1241
1242 // PredList used inside loop.
1243 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1244
1245 // Keep track of the entries that we know are sorted. Previously cached
1246 // entries will all be sorted. The entries we add we only sort on demand (we
1247 // don't insert every element into its sorted position). We know that we
1248 // won't get any reuse from currently inserted values, because we don't
1249 // revisit blocks after we insert info for them.
1250 unsigned NumSortedEntries = Cache->size();
1251 DEBUG(AssertSorted(*Cache));
1252
1253 while (!Worklist.empty()) {
1254 BasicBlock *BB = Worklist.pop_back_val();
1255
1256 // If we do process a large number of blocks it becomes very expensive and
1257 // likely it isn't worth worrying about
1258 if (Result.size() > NumResultsLimit) {
1259 Worklist.clear();
1260 // Sort it now (if needed) so that recursive invocations of
1261 // getNonLocalPointerDepFromBB and other routines that could reuse the
1262 // cache value will only see properly sorted cache arrays.
1263 if (Cache && NumSortedEntries != Cache->size()) {
1264 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1265 }
1266 // Since we bail out, the "Cache" set won't contain all of the
1267 // results for the query. This is ok (we can still use it to accelerate
1268 // specific block queries) but we can't do the fastpath "return all
1269 // results from the set". Clear out the indicator for this.
1270 CacheInfo->Pair = BBSkipFirstBlockPair();
1271 return true;
1272 }
1273
1274 // Skip the first block if we have it.
1275 if (!SkipFirstBlock) {
1276 // Analyze the dependency of *Pointer in FromBB. See if we already have
1277 // been here.
1278 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1279
1280 // Get the dependency info for Pointer in BB. If we have cached
1281 // information, we will use it, otherwise we compute it.
1282 DEBUG(AssertSorted(*Cache, NumSortedEntries));
1283 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst,
1284 Loc, isLoad, BB, Cache,
1285 NumSortedEntries);
1286
1287 // If we got a Def or Clobber, add this to the list of results.
1288 if (!Dep.isNonLocal()) {
1289 if (!DT) {
1290 Result.push_back(NonLocalDepResult(BB,
1291 MemDepResult::getUnknown(),
1292 Pointer.getAddr()));
1293 continue;
1294 } else if (DT->isReachableFromEntry(BB)) {
1295 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1296 continue;
1297 }
1298 }
1299 }
1300
1301 // If 'Pointer' is an instruction defined in this block, then we need to do
1302 // phi translation to change it into a value live in the predecessor block.
1303 // If not, we just add the predecessors to the worklist and scan them with
1304 // the same Pointer.
1305 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1306 SkipFirstBlock = false;
1307 SmallVector<BasicBlock*, 16> NewBlocks;
1308 for (BasicBlock *Pred : PredCache.get(BB)) {
1309 // Verify that we haven't looked at this block yet.
1310 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1311 InsertRes = Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1312 if (InsertRes.second) {
1313 // First time we've looked at *PI.
1314 NewBlocks.push_back(Pred);
1315 continue;
1316 }
1317
1318 // If we have seen this block before, but it was with a different
1319 // pointer then we have a phi translation failure and we have to treat
1320 // this as a clobber.
1321 if (InsertRes.first->second != Pointer.getAddr()) {
1322 // Make sure to clean up the Visited map before continuing on to
1323 // PredTranslationFailure.
1324 for (unsigned i = 0; i < NewBlocks.size(); i++)
1325 Visited.erase(NewBlocks[i]);
1326 goto PredTranslationFailure;
1327 }
1328 }
1329 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1330 continue;
1331 }
1332
1333 // We do need to do phi translation, if we know ahead of time we can't phi
1334 // translate this value, don't even try.
1335 if (!Pointer.IsPotentiallyPHITranslatable())
1336 goto PredTranslationFailure;
1337
1338 // We may have added values to the cache list before this PHI translation.
1339 // If so, we haven't done anything to ensure that the cache remains sorted.
1340 // Sort it now (if needed) so that recursive invocations of
1341 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1342 // value will only see properly sorted cache arrays.
1343 if (Cache && NumSortedEntries != Cache->size()) {
1344 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1345 NumSortedEntries = Cache->size();
1346 }
1347 Cache = nullptr;
1348
1349 PredList.clear();
1350 for (BasicBlock *Pred : PredCache.get(BB)) {
1351 PredList.push_back(std::make_pair(Pred, Pointer));
1352
1353 // Get the PHI translated pointer in this predecessor. This can fail if
1354 // not translatable, in which case the getAddr() returns null.
1355 PHITransAddr &PredPointer = PredList.back().second;
1356 PredPointer.PHITranslateValue(BB, Pred, DT, /*MustDominate=*/false);
1357 Value *PredPtrVal = PredPointer.getAddr();
1358
1359 // Check to see if we have already visited this pred block with another
1360 // pointer. If so, we can't do this lookup. This failure can occur
1361 // with PHI translation when a critical edge exists and the PHI node in
1362 // the successor translates to a pointer value different than the
1363 // pointer the block was first analyzed with.
1364 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1365 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1366
1367 if (!InsertRes.second) {
1368 // We found the pred; take it off the list of preds to visit.
1369 PredList.pop_back();
1370
1371 // If the predecessor was visited with PredPtr, then we already did
1372 // the analysis and can ignore it.
1373 if (InsertRes.first->second == PredPtrVal)
1374 continue;
1375
1376 // Otherwise, the block was previously analyzed with a different
1377 // pointer. We can't represent the result of this case, so we just
1378 // treat this as a phi translation failure.
1379
1380 // Make sure to clean up the Visited map before continuing on to
1381 // PredTranslationFailure.
1382 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1383 Visited.erase(PredList[i].first);
1384
1385 goto PredTranslationFailure;
1386 }
1387 }
1388
1389 // Actually process results here; this need to be a separate loop to avoid
1390 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1391 // any results for. (getNonLocalPointerDepFromBB will modify our
1392 // datastructures in ways the code after the PredTranslationFailure label
1393 // doesn't expect.)
1394 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1395 BasicBlock *Pred = PredList[i].first;
1396 PHITransAddr &PredPointer = PredList[i].second;
1397 Value *PredPtrVal = PredPointer.getAddr();
1398
1399 bool CanTranslate = true;
1400 // If PHI translation was unable to find an available pointer in this
1401 // predecessor, then we have to assume that the pointer is clobbered in
1402 // that predecessor. We can still do PRE of the load, which would insert
1403 // a computation of the pointer in this predecessor.
1404 if (!PredPtrVal)
1405 CanTranslate = false;
1406
1407 // FIXME: it is entirely possible that PHI translating will end up with
1408 // the same value. Consider PHI translating something like:
1409 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1410 // to recurse here, pedantically speaking.
1411
1412 // If getNonLocalPointerDepFromBB fails here, that means the cached
1413 // result conflicted with the Visited list; we have to conservatively
1414 // assume it is unknown, but this also does not block PRE of the load.
1415 if (!CanTranslate ||
1416 getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1417 Loc.getWithNewPtr(PredPtrVal),
1418 isLoad, Pred,
1419 Result, Visited)) {
1420 // Add the entry to the Result list.
1421 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1422 Result.push_back(Entry);
1423
1424 // Since we had a phi translation failure, the cache for CacheKey won't
1425 // include all of the entries that we need to immediately satisfy future
1426 // queries. Mark this in NonLocalPointerDeps by setting the
1427 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1428 // cached value to do more work but not miss the phi trans failure.
1429 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1430 NLPI.Pair = BBSkipFirstBlockPair();
1431 continue;
1432 }
1433 }
1434
1435 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1436 CacheInfo = &NonLocalPointerDeps[CacheKey];
1437 Cache = &CacheInfo->NonLocalDeps;
1438 NumSortedEntries = Cache->size();
1439
1440 // Since we did phi translation, the "Cache" set won't contain all of the
1441 // results for the query. This is ok (we can still use it to accelerate
1442 // specific block queries) but we can't do the fastpath "return all
1443 // results from the set" Clear out the indicator for this.
1444 CacheInfo->Pair = BBSkipFirstBlockPair();
1445 SkipFirstBlock = false;
1446 continue;
1447
1448 PredTranslationFailure:
1449 // The following code is "failure"; we can't produce a sane translation
1450 // for the given block. It assumes that we haven't modified any of
1451 // our datastructures while processing the current block.
1452
1453 if (!Cache) {
1454 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1455 CacheInfo = &NonLocalPointerDeps[CacheKey];
1456 Cache = &CacheInfo->NonLocalDeps;
1457 NumSortedEntries = Cache->size();
1458 }
1459
1460 // Since we failed phi translation, the "Cache" set won't contain all of the
1461 // results for the query. This is ok (we can still use it to accelerate
1462 // specific block queries) but we can't do the fastpath "return all
1463 // results from the set". Clear out the indicator for this.
1464 CacheInfo->Pair = BBSkipFirstBlockPair();
1465
1466 // If *nothing* works, mark the pointer as unknown.
1467 //
1468 // If this is the magic first block, return this as a clobber of the whole
1469 // incoming value. Since we can't phi translate to one of the predecessors,
1470 // we have to bail out.
1471 if (SkipFirstBlock)
1472 return true;
1473
1474 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1475 assert(I != Cache->rend() && "Didn't find current block??");
1476 if (I->getBB() != BB)
1477 continue;
1478
1479 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&
1480 "Should only be here with transparent block");
1481 I->setResult(MemDepResult::getUnknown());
1482 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1483 Pointer.getAddr()));
1484 break;
1485 }
1486 }
1487
1488 // Okay, we're done now. If we added new values to the cache, re-sort it.
1489 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1490 DEBUG(AssertSorted(*Cache));
1491 return false;
1492 }
1493
1494 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1495 /// CachedNonLocalPointerInfo, remove it.
1496 void MemoryDependenceAnalysis::
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P)1497 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1498 CachedNonLocalPointerInfo::iterator It =
1499 NonLocalPointerDeps.find(P);
1500 if (It == NonLocalPointerDeps.end()) return;
1501
1502 // Remove all of the entries in the BB->val map. This involves removing
1503 // instructions from the reverse map.
1504 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1505
1506 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1507 Instruction *Target = PInfo[i].getResult().getInst();
1508 if (!Target) continue; // Ignore non-local dep results.
1509 assert(Target->getParent() == PInfo[i].getBB());
1510
1511 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1512 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1513 }
1514
1515 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1516 NonLocalPointerDeps.erase(It);
1517 }
1518
1519
1520 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1521 /// information about the specified pointer, because it may be too
1522 /// conservative in memdep. This is an optional call that can be used when
1523 /// the client detects an equivalence between the pointer and some other
1524 /// value and replaces the other value with ptr. This can make Ptr available
1525 /// in more places that cached info does not necessarily keep.
invalidateCachedPointerInfo(Value * Ptr)1526 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1527 // If Ptr isn't really a pointer, just ignore it.
1528 if (!Ptr->getType()->isPointerTy()) return;
1529 // Flush store info for the pointer.
1530 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1531 // Flush load info for the pointer.
1532 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1533 }
1534
1535 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1536 /// This needs to be done when the CFG changes, e.g., due to splitting
1537 /// critical edges.
invalidateCachedPredecessors()1538 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1539 PredCache.clear();
1540 }
1541
1542 /// removeInstruction - Remove an instruction from the dependence analysis,
1543 /// updating the dependence of instructions that previously depended on it.
1544 /// This method attempts to keep the cache coherent using the reverse map.
removeInstruction(Instruction * RemInst)1545 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1546 // Walk through the Non-local dependencies, removing this one as the value
1547 // for any cached queries.
1548 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1549 if (NLDI != NonLocalDeps.end()) {
1550 NonLocalDepInfo &BlockMap = NLDI->second.first;
1551 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1552 DI != DE; ++DI)
1553 if (Instruction *Inst = DI->getResult().getInst())
1554 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1555 NonLocalDeps.erase(NLDI);
1556 }
1557
1558 // If we have a cached local dependence query for this instruction, remove it.
1559 //
1560 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1561 if (LocalDepEntry != LocalDeps.end()) {
1562 // Remove us from DepInst's reverse set now that the local dep info is gone.
1563 if (Instruction *Inst = LocalDepEntry->second.getInst())
1564 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1565
1566 // Remove this local dependency info.
1567 LocalDeps.erase(LocalDepEntry);
1568 }
1569
1570 // If we have any cached pointer dependencies on this instruction, remove
1571 // them. If the instruction has non-pointer type, then it can't be a pointer
1572 // base.
1573
1574 // Remove it from both the load info and the store info. The instruction
1575 // can't be in either of these maps if it is non-pointer.
1576 if (RemInst->getType()->isPointerTy()) {
1577 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1578 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1579 }
1580
1581 // Loop over all of the things that depend on the instruction we're removing.
1582 //
1583 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1584
1585 // If we find RemInst as a clobber or Def in any of the maps for other values,
1586 // we need to replace its entry with a dirty version of the instruction after
1587 // it. If RemInst is a terminator, we use a null dirty value.
1588 //
1589 // Using a dirty version of the instruction after RemInst saves having to scan
1590 // the entire block to get to this point.
1591 MemDepResult NewDirtyVal;
1592 if (!RemInst->isTerminator())
1593 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1594
1595 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1596 if (ReverseDepIt != ReverseLocalDeps.end()) {
1597 // RemInst can't be the terminator if it has local stuff depending on it.
1598 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
1599 "Nothing can locally depend on a terminator");
1600
1601 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1602 assert(InstDependingOnRemInst != RemInst &&
1603 "Already removed our local dep info");
1604
1605 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1606
1607 // Make sure to remember that new things depend on NewDepInst.
1608 assert(NewDirtyVal.getInst() && "There is no way something else can have "
1609 "a local dep on this if it is a terminator!");
1610 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1611 InstDependingOnRemInst));
1612 }
1613
1614 ReverseLocalDeps.erase(ReverseDepIt);
1615
1616 // Add new reverse deps after scanning the set, to avoid invalidating the
1617 // 'ReverseDeps' reference.
1618 while (!ReverseDepsToAdd.empty()) {
1619 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1620 .insert(ReverseDepsToAdd.back().second);
1621 ReverseDepsToAdd.pop_back();
1622 }
1623 }
1624
1625 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1626 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1627 for (Instruction *I : ReverseDepIt->second) {
1628 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1629
1630 PerInstNLInfo &INLD = NonLocalDeps[I];
1631 // The information is now dirty!
1632 INLD.second = true;
1633
1634 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1635 DE = INLD.first.end(); DI != DE; ++DI) {
1636 if (DI->getResult().getInst() != RemInst) continue;
1637
1638 // Convert to a dirty entry for the subsequent instruction.
1639 DI->setResult(NewDirtyVal);
1640
1641 if (Instruction *NextI = NewDirtyVal.getInst())
1642 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1643 }
1644 }
1645
1646 ReverseNonLocalDeps.erase(ReverseDepIt);
1647
1648 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1649 while (!ReverseDepsToAdd.empty()) {
1650 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1651 .insert(ReverseDepsToAdd.back().second);
1652 ReverseDepsToAdd.pop_back();
1653 }
1654 }
1655
1656 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1657 // value in the NonLocalPointerDeps info.
1658 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1659 ReverseNonLocalPtrDeps.find(RemInst);
1660 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1661 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1662
1663 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1664 assert(P.getPointer() != RemInst &&
1665 "Already removed NonLocalPointerDeps info for RemInst");
1666
1667 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1668
1669 // The cache is not valid for any specific block anymore.
1670 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1671
1672 // Update any entries for RemInst to use the instruction after it.
1673 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1674 DI != DE; ++DI) {
1675 if (DI->getResult().getInst() != RemInst) continue;
1676
1677 // Convert to a dirty entry for the subsequent instruction.
1678 DI->setResult(NewDirtyVal);
1679
1680 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1681 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1682 }
1683
1684 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1685 // subsequent value may invalidate the sortedness.
1686 std::sort(NLPDI.begin(), NLPDI.end());
1687 }
1688
1689 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1690
1691 while (!ReversePtrDepsToAdd.empty()) {
1692 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1693 .insert(ReversePtrDepsToAdd.back().second);
1694 ReversePtrDepsToAdd.pop_back();
1695 }
1696 }
1697
1698
1699 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1700 DEBUG(verifyRemoved(RemInst));
1701 }
1702 /// verifyRemoved - Verify that the specified instruction does not occur
1703 /// in our internal data structures. This function verifies by asserting in
1704 /// debug builds.
verifyRemoved(Instruction * D) const1705 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1706 #ifndef NDEBUG
1707 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1708 E = LocalDeps.end(); I != E; ++I) {
1709 assert(I->first != D && "Inst occurs in data structures");
1710 assert(I->second.getInst() != D &&
1711 "Inst occurs in data structures");
1712 }
1713
1714 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1715 E = NonLocalPointerDeps.end(); I != E; ++I) {
1716 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1717 const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1718 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1719 II != E; ++II)
1720 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1721 }
1722
1723 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1724 E = NonLocalDeps.end(); I != E; ++I) {
1725 assert(I->first != D && "Inst occurs in data structures");
1726 const PerInstNLInfo &INLD = I->second;
1727 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1728 EE = INLD.first.end(); II != EE; ++II)
1729 assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1730 }
1731
1732 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1733 E = ReverseLocalDeps.end(); I != E; ++I) {
1734 assert(I->first != D && "Inst occurs in data structures");
1735 for (Instruction *Inst : I->second)
1736 assert(Inst != D && "Inst occurs in data structures");
1737 }
1738
1739 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1740 E = ReverseNonLocalDeps.end();
1741 I != E; ++I) {
1742 assert(I->first != D && "Inst occurs in data structures");
1743 for (Instruction *Inst : I->second)
1744 assert(Inst != D && "Inst occurs in data structures");
1745 }
1746
1747 for (ReverseNonLocalPtrDepTy::const_iterator
1748 I = ReverseNonLocalPtrDeps.begin(),
1749 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1750 assert(I->first != D && "Inst occurs in rev NLPD map");
1751
1752 for (ValueIsLoadPair P : I->second)
1753 assert(P != ValueIsLoadPair(D, false) &&
1754 P != ValueIsLoadPair(D, true) &&
1755 "Inst occurs in ReverseNonLocalPtrDeps map");
1756 }
1757 #endif
1758 }
1759