1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ExecutionEngine/ExecutionEngine.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ExecutionEngine/GenericValue.h"
20 #include "llvm/ExecutionEngine/JITEventListener.h"
21 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Object/Archive.h"
30 #include "llvm/Object/ObjectFile.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DynamicLibrary.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/Host.h"
35 #include "llvm/Support/MutexGuard.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <cmath>
40 #include <cstring>
41 using namespace llvm;
42
43 #define DEBUG_TYPE "jit"
44
45 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
46 STATISTIC(NumGlobals , "Number of global vars initialized");
47
48 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
49 std::unique_ptr<Module> M, std::string *ErrorStr,
50 std::shared_ptr<MCJITMemoryManager> MemMgr,
51 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
52 std::unique_ptr<TargetMachine> TM) = nullptr;
53
54 ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)(
55 std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr,
56 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
57 std::unique_ptr<TargetMachine> TM) = nullptr;
58
59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
60 std::string *ErrorStr) =nullptr;
61
anchor()62 void JITEventListener::anchor() {}
63
Init(std::unique_ptr<Module> M)64 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
65 CompilingLazily = false;
66 GVCompilationDisabled = false;
67 SymbolSearchingDisabled = false;
68
69 // IR module verification is enabled by default in debug builds, and disabled
70 // by default in release builds.
71 #ifndef NDEBUG
72 VerifyModules = true;
73 #else
74 VerifyModules = false;
75 #endif
76
77 assert(M && "Module is null?");
78 Modules.push_back(std::move(M));
79 }
80
ExecutionEngine(std::unique_ptr<Module> M)81 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
82 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
83 Init(std::move(M));
84 }
85
ExecutionEngine(DataLayout DL,std::unique_ptr<Module> M)86 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
87 : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
88 Init(std::move(M));
89 }
90
~ExecutionEngine()91 ExecutionEngine::~ExecutionEngine() {
92 clearAllGlobalMappings();
93 }
94
95 namespace {
96 /// \brief Helper class which uses a value handler to automatically deletes the
97 /// memory block when the GlobalVariable is destroyed.
98 class GVMemoryBlock final : public CallbackVH {
GVMemoryBlock(const GlobalVariable * GV)99 GVMemoryBlock(const GlobalVariable *GV)
100 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
101
102 public:
103 /// \brief Returns the address the GlobalVariable should be written into. The
104 /// GVMemoryBlock object prefixes that.
Create(const GlobalVariable * GV,const DataLayout & TD)105 static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
106 Type *ElTy = GV->getType()->getElementType();
107 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
108 void *RawMemory = ::operator new(
109 RoundUpToAlignment(sizeof(GVMemoryBlock),
110 TD.getPreferredAlignment(GV))
111 + GVSize);
112 new(RawMemory) GVMemoryBlock(GV);
113 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
114 }
115
deleted()116 void deleted() override {
117 // We allocated with operator new and with some extra memory hanging off the
118 // end, so don't just delete this. I'm not sure if this is actually
119 // required.
120 this->~GVMemoryBlock();
121 ::operator delete(this);
122 }
123 };
124 } // anonymous namespace
125
getMemoryForGV(const GlobalVariable * GV)126 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
127 return GVMemoryBlock::Create(GV, getDataLayout());
128 }
129
addObjectFile(std::unique_ptr<object::ObjectFile> O)130 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
131 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
132 }
133
134 void
addObjectFile(object::OwningBinary<object::ObjectFile> O)135 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
136 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
137 }
138
addArchive(object::OwningBinary<object::Archive> A)139 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
140 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
141 }
142
removeModule(Module * M)143 bool ExecutionEngine::removeModule(Module *M) {
144 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
145 Module *Found = I->get();
146 if (Found == M) {
147 I->release();
148 Modules.erase(I);
149 clearGlobalMappingsFromModule(M);
150 return true;
151 }
152 }
153 return false;
154 }
155
FindFunctionNamed(const char * FnName)156 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
157 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
158 Function *F = Modules[i]->getFunction(FnName);
159 if (F && !F->isDeclaration())
160 return F;
161 }
162 return nullptr;
163 }
164
FindGlobalVariableNamed(const char * Name,bool AllowInternal)165 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) {
166 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
167 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
168 if (GV && !GV->isDeclaration())
169 return GV;
170 }
171 return nullptr;
172 }
173
RemoveMapping(StringRef Name)174 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
175 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
176 uint64_t OldVal;
177
178 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
179 // GlobalAddressMap.
180 if (I == GlobalAddressMap.end())
181 OldVal = 0;
182 else {
183 GlobalAddressReverseMap.erase(I->second);
184 OldVal = I->second;
185 GlobalAddressMap.erase(I);
186 }
187
188 return OldVal;
189 }
190
getMangledName(const GlobalValue * GV)191 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
192 assert(GV->hasName() && "Global must have name.");
193
194 MutexGuard locked(lock);
195 SmallString<128> FullName;
196
197 const DataLayout &DL =
198 GV->getParent()->getDataLayout().isDefault()
199 ? getDataLayout()
200 : GV->getParent()->getDataLayout();
201
202 Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
203 return FullName.str();
204 }
205
addGlobalMapping(const GlobalValue * GV,void * Addr)206 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
207 MutexGuard locked(lock);
208 addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
209 }
210
addGlobalMapping(StringRef Name,uint64_t Addr)211 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
212 MutexGuard locked(lock);
213
214 assert(!Name.empty() && "Empty GlobalMapping symbol name!");
215
216 DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
217 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
218 assert((!CurVal || !Addr) && "GlobalMapping already established!");
219 CurVal = Addr;
220
221 // If we are using the reverse mapping, add it too.
222 if (!EEState.getGlobalAddressReverseMap().empty()) {
223 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
224 assert((!V.empty() || !Name.empty()) &&
225 "GlobalMapping already established!");
226 V = Name;
227 }
228 }
229
clearAllGlobalMappings()230 void ExecutionEngine::clearAllGlobalMappings() {
231 MutexGuard locked(lock);
232
233 EEState.getGlobalAddressMap().clear();
234 EEState.getGlobalAddressReverseMap().clear();
235 }
236
clearGlobalMappingsFromModule(Module * M)237 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
238 MutexGuard locked(lock);
239
240 for (Function &FI : *M)
241 EEState.RemoveMapping(getMangledName(&FI));
242 for (GlobalVariable &GI : M->globals())
243 EEState.RemoveMapping(getMangledName(&GI));
244 }
245
updateGlobalMapping(const GlobalValue * GV,void * Addr)246 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
247 void *Addr) {
248 MutexGuard locked(lock);
249 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
250 }
251
updateGlobalMapping(StringRef Name,uint64_t Addr)252 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
253 MutexGuard locked(lock);
254
255 ExecutionEngineState::GlobalAddressMapTy &Map =
256 EEState.getGlobalAddressMap();
257
258 // Deleting from the mapping?
259 if (!Addr)
260 return EEState.RemoveMapping(Name);
261
262 uint64_t &CurVal = Map[Name];
263 uint64_t OldVal = CurVal;
264
265 if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
266 EEState.getGlobalAddressReverseMap().erase(CurVal);
267 CurVal = Addr;
268
269 // If we are using the reverse mapping, add it too.
270 if (!EEState.getGlobalAddressReverseMap().empty()) {
271 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
272 assert((!V.empty() || !Name.empty()) &&
273 "GlobalMapping already established!");
274 V = Name;
275 }
276 return OldVal;
277 }
278
getAddressToGlobalIfAvailable(StringRef S)279 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
280 MutexGuard locked(lock);
281 uint64_t Address = 0;
282 ExecutionEngineState::GlobalAddressMapTy::iterator I =
283 EEState.getGlobalAddressMap().find(S);
284 if (I != EEState.getGlobalAddressMap().end())
285 Address = I->second;
286 return Address;
287 }
288
289
getPointerToGlobalIfAvailable(StringRef S)290 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
291 MutexGuard locked(lock);
292 if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
293 return Address;
294 return nullptr;
295 }
296
getPointerToGlobalIfAvailable(const GlobalValue * GV)297 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
298 MutexGuard locked(lock);
299 return getPointerToGlobalIfAvailable(getMangledName(GV));
300 }
301
getGlobalValueAtAddress(void * Addr)302 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
303 MutexGuard locked(lock);
304
305 // If we haven't computed the reverse mapping yet, do so first.
306 if (EEState.getGlobalAddressReverseMap().empty()) {
307 for (ExecutionEngineState::GlobalAddressMapTy::iterator
308 I = EEState.getGlobalAddressMap().begin(),
309 E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
310 StringRef Name = I->first();
311 uint64_t Addr = I->second;
312 EEState.getGlobalAddressReverseMap().insert(std::make_pair(
313 Addr, Name));
314 }
315 }
316
317 std::map<uint64_t, std::string>::iterator I =
318 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
319
320 if (I != EEState.getGlobalAddressReverseMap().end()) {
321 StringRef Name = I->second;
322 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
323 if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
324 return GV;
325 }
326 return nullptr;
327 }
328
329 namespace {
330 class ArgvArray {
331 std::unique_ptr<char[]> Array;
332 std::vector<std::unique_ptr<char[]>> Values;
333 public:
334 /// Turn a vector of strings into a nice argv style array of pointers to null
335 /// terminated strings.
336 void *reset(LLVMContext &C, ExecutionEngine *EE,
337 const std::vector<std::string> &InputArgv);
338 };
339 } // anonymous namespace
reset(LLVMContext & C,ExecutionEngine * EE,const std::vector<std::string> & InputArgv)340 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
341 const std::vector<std::string> &InputArgv) {
342 Values.clear(); // Free the old contents.
343 Values.reserve(InputArgv.size());
344 unsigned PtrSize = EE->getDataLayout().getPointerSize();
345 Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize);
346
347 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n");
348 Type *SBytePtr = Type::getInt8PtrTy(C);
349
350 for (unsigned i = 0; i != InputArgv.size(); ++i) {
351 unsigned Size = InputArgv[i].size()+1;
352 auto Dest = make_unique<char[]>(Size);
353 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n");
354
355 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
356 Dest[Size-1] = 0;
357
358 // Endian safe: Array[i] = (PointerTy)Dest;
359 EE->StoreValueToMemory(PTOGV(Dest.get()),
360 (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
361 Values.push_back(std::move(Dest));
362 }
363
364 // Null terminate it
365 EE->StoreValueToMemory(PTOGV(nullptr),
366 (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
367 SBytePtr);
368 return Array.get();
369 }
370
runStaticConstructorsDestructors(Module & module,bool isDtors)371 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
372 bool isDtors) {
373 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
374 GlobalVariable *GV = module.getNamedGlobal(Name);
375
376 // If this global has internal linkage, or if it has a use, then it must be
377 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
378 // this is the case, don't execute any of the global ctors, __main will do
379 // it.
380 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
381
382 // Should be an array of '{ i32, void ()* }' structs. The first value is
383 // the init priority, which we ignore.
384 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
385 if (!InitList)
386 return;
387 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
388 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
389 if (!CS) continue;
390
391 Constant *FP = CS->getOperand(1);
392 if (FP->isNullValue())
393 continue; // Found a sentinal value, ignore.
394
395 // Strip off constant expression casts.
396 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
397 if (CE->isCast())
398 FP = CE->getOperand(0);
399
400 // Execute the ctor/dtor function!
401 if (Function *F = dyn_cast<Function>(FP))
402 runFunction(F, None);
403
404 // FIXME: It is marginally lame that we just do nothing here if we see an
405 // entry we don't recognize. It might not be unreasonable for the verifier
406 // to not even allow this and just assert here.
407 }
408 }
409
runStaticConstructorsDestructors(bool isDtors)410 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
411 // Execute global ctors/dtors for each module in the program.
412 for (std::unique_ptr<Module> &M : Modules)
413 runStaticConstructorsDestructors(*M, isDtors);
414 }
415
416 #ifndef NDEBUG
417 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
isTargetNullPtr(ExecutionEngine * EE,void * Loc)418 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
419 unsigned PtrSize = EE->getDataLayout().getPointerSize();
420 for (unsigned i = 0; i < PtrSize; ++i)
421 if (*(i + (uint8_t*)Loc))
422 return false;
423 return true;
424 }
425 #endif
426
runFunctionAsMain(Function * Fn,const std::vector<std::string> & argv,const char * const * envp)427 int ExecutionEngine::runFunctionAsMain(Function *Fn,
428 const std::vector<std::string> &argv,
429 const char * const * envp) {
430 std::vector<GenericValue> GVArgs;
431 GenericValue GVArgc;
432 GVArgc.IntVal = APInt(32, argv.size());
433
434 // Check main() type
435 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
436 FunctionType *FTy = Fn->getFunctionType();
437 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
438
439 // Check the argument types.
440 if (NumArgs > 3)
441 report_fatal_error("Invalid number of arguments of main() supplied");
442 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
443 report_fatal_error("Invalid type for third argument of main() supplied");
444 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
445 report_fatal_error("Invalid type for second argument of main() supplied");
446 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
447 report_fatal_error("Invalid type for first argument of main() supplied");
448 if (!FTy->getReturnType()->isIntegerTy() &&
449 !FTy->getReturnType()->isVoidTy())
450 report_fatal_error("Invalid return type of main() supplied");
451
452 ArgvArray CArgv;
453 ArgvArray CEnv;
454 if (NumArgs) {
455 GVArgs.push_back(GVArgc); // Arg #0 = argc.
456 if (NumArgs > 1) {
457 // Arg #1 = argv.
458 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
459 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
460 "argv[0] was null after CreateArgv");
461 if (NumArgs > 2) {
462 std::vector<std::string> EnvVars;
463 for (unsigned i = 0; envp[i]; ++i)
464 EnvVars.emplace_back(envp[i]);
465 // Arg #2 = envp.
466 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
467 }
468 }
469 }
470
471 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
472 }
473
EngineBuilder()474 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
475
EngineBuilder(std::unique_ptr<Module> M)476 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
477 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
478 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr),
479 RelocModel(Reloc::Default), CMModel(CodeModel::JITDefault),
480 UseOrcMCJITReplacement(false) {
481 // IR module verification is enabled by default in debug builds, and disabled
482 // by default in release builds.
483 #ifndef NDEBUG
484 VerifyModules = true;
485 #else
486 VerifyModules = false;
487 #endif
488 }
489
490 EngineBuilder::~EngineBuilder() = default;
491
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm)492 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
493 std::unique_ptr<RTDyldMemoryManager> mcjmm) {
494 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
495 MemMgr = SharedMM;
496 Resolver = SharedMM;
497 return *this;
498 }
499
500 EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM)501 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
502 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
503 return *this;
504 }
505
506 EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR)507 EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) {
508 Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR));
509 return *this;
510 }
511
create(TargetMachine * TM)512 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
513 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
514
515 // Make sure we can resolve symbols in the program as well. The zero arg
516 // to the function tells DynamicLibrary to load the program, not a library.
517 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
518 return nullptr;
519
520 // If the user specified a memory manager but didn't specify which engine to
521 // create, we assume they only want the JIT, and we fail if they only want
522 // the interpreter.
523 if (MemMgr) {
524 if (WhichEngine & EngineKind::JIT)
525 WhichEngine = EngineKind::JIT;
526 else {
527 if (ErrorStr)
528 *ErrorStr = "Cannot create an interpreter with a memory manager.";
529 return nullptr;
530 }
531 }
532
533 // Unless the interpreter was explicitly selected or the JIT is not linked,
534 // try making a JIT.
535 if ((WhichEngine & EngineKind::JIT) && TheTM) {
536 Triple TT(M->getTargetTriple());
537 if (!TM->getTarget().hasJIT()) {
538 errs() << "WARNING: This target JIT is not designed for the host"
539 << " you are running. If bad things happen, please choose"
540 << " a different -march switch.\n";
541 }
542
543 ExecutionEngine *EE = nullptr;
544 if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) {
545 EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr),
546 std::move(Resolver),
547 std::move(TheTM));
548 EE->addModule(std::move(M));
549 } else if (ExecutionEngine::MCJITCtor)
550 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
551 std::move(Resolver), std::move(TheTM));
552
553 if (EE) {
554 EE->setVerifyModules(VerifyModules);
555 return EE;
556 }
557 }
558
559 // If we can't make a JIT and we didn't request one specifically, try making
560 // an interpreter instead.
561 if (WhichEngine & EngineKind::Interpreter) {
562 if (ExecutionEngine::InterpCtor)
563 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
564 if (ErrorStr)
565 *ErrorStr = "Interpreter has not been linked in.";
566 return nullptr;
567 }
568
569 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
570 if (ErrorStr)
571 *ErrorStr = "JIT has not been linked in.";
572 }
573
574 return nullptr;
575 }
576
getPointerToGlobal(const GlobalValue * GV)577 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
578 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
579 return getPointerToFunction(F);
580
581 MutexGuard locked(lock);
582 if (void* P = getPointerToGlobalIfAvailable(GV))
583 return P;
584
585 // Global variable might have been added since interpreter started.
586 if (GlobalVariable *GVar =
587 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
588 EmitGlobalVariable(GVar);
589 else
590 llvm_unreachable("Global hasn't had an address allocated yet!");
591
592 return getPointerToGlobalIfAvailable(GV);
593 }
594
595 /// \brief Converts a Constant* into a GenericValue, including handling of
596 /// ConstantExpr values.
getConstantValue(const Constant * C)597 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
598 // If its undefined, return the garbage.
599 if (isa<UndefValue>(C)) {
600 GenericValue Result;
601 switch (C->getType()->getTypeID()) {
602 default:
603 break;
604 case Type::IntegerTyID:
605 case Type::X86_FP80TyID:
606 case Type::FP128TyID:
607 case Type::PPC_FP128TyID:
608 // Although the value is undefined, we still have to construct an APInt
609 // with the correct bit width.
610 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
611 break;
612 case Type::StructTyID: {
613 // if the whole struct is 'undef' just reserve memory for the value.
614 if(StructType *STy = dyn_cast<StructType>(C->getType())) {
615 unsigned int elemNum = STy->getNumElements();
616 Result.AggregateVal.resize(elemNum);
617 for (unsigned int i = 0; i < elemNum; ++i) {
618 Type *ElemTy = STy->getElementType(i);
619 if (ElemTy->isIntegerTy())
620 Result.AggregateVal[i].IntVal =
621 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
622 else if (ElemTy->isAggregateType()) {
623 const Constant *ElemUndef = UndefValue::get(ElemTy);
624 Result.AggregateVal[i] = getConstantValue(ElemUndef);
625 }
626 }
627 }
628 }
629 break;
630 case Type::VectorTyID:
631 // if the whole vector is 'undef' just reserve memory for the value.
632 auto* VTy = dyn_cast<VectorType>(C->getType());
633 Type *ElemTy = VTy->getElementType();
634 unsigned int elemNum = VTy->getNumElements();
635 Result.AggregateVal.resize(elemNum);
636 if (ElemTy->isIntegerTy())
637 for (unsigned int i = 0; i < elemNum; ++i)
638 Result.AggregateVal[i].IntVal =
639 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
640 break;
641 }
642 return Result;
643 }
644
645 // Otherwise, if the value is a ConstantExpr...
646 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
647 Constant *Op0 = CE->getOperand(0);
648 switch (CE->getOpcode()) {
649 case Instruction::GetElementPtr: {
650 // Compute the index
651 GenericValue Result = getConstantValue(Op0);
652 APInt Offset(DL.getPointerSizeInBits(), 0);
653 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
654
655 char* tmp = (char*) Result.PointerVal;
656 Result = PTOGV(tmp + Offset.getSExtValue());
657 return Result;
658 }
659 case Instruction::Trunc: {
660 GenericValue GV = getConstantValue(Op0);
661 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
662 GV.IntVal = GV.IntVal.trunc(BitWidth);
663 return GV;
664 }
665 case Instruction::ZExt: {
666 GenericValue GV = getConstantValue(Op0);
667 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
668 GV.IntVal = GV.IntVal.zext(BitWidth);
669 return GV;
670 }
671 case Instruction::SExt: {
672 GenericValue GV = getConstantValue(Op0);
673 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
674 GV.IntVal = GV.IntVal.sext(BitWidth);
675 return GV;
676 }
677 case Instruction::FPTrunc: {
678 // FIXME long double
679 GenericValue GV = getConstantValue(Op0);
680 GV.FloatVal = float(GV.DoubleVal);
681 return GV;
682 }
683 case Instruction::FPExt:{
684 // FIXME long double
685 GenericValue GV = getConstantValue(Op0);
686 GV.DoubleVal = double(GV.FloatVal);
687 return GV;
688 }
689 case Instruction::UIToFP: {
690 GenericValue GV = getConstantValue(Op0);
691 if (CE->getType()->isFloatTy())
692 GV.FloatVal = float(GV.IntVal.roundToDouble());
693 else if (CE->getType()->isDoubleTy())
694 GV.DoubleVal = GV.IntVal.roundToDouble();
695 else if (CE->getType()->isX86_FP80Ty()) {
696 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
697 (void)apf.convertFromAPInt(GV.IntVal,
698 false,
699 APFloat::rmNearestTiesToEven);
700 GV.IntVal = apf.bitcastToAPInt();
701 }
702 return GV;
703 }
704 case Instruction::SIToFP: {
705 GenericValue GV = getConstantValue(Op0);
706 if (CE->getType()->isFloatTy())
707 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
708 else if (CE->getType()->isDoubleTy())
709 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
710 else if (CE->getType()->isX86_FP80Ty()) {
711 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
712 (void)apf.convertFromAPInt(GV.IntVal,
713 true,
714 APFloat::rmNearestTiesToEven);
715 GV.IntVal = apf.bitcastToAPInt();
716 }
717 return GV;
718 }
719 case Instruction::FPToUI: // double->APInt conversion handles sign
720 case Instruction::FPToSI: {
721 GenericValue GV = getConstantValue(Op0);
722 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
723 if (Op0->getType()->isFloatTy())
724 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
725 else if (Op0->getType()->isDoubleTy())
726 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
727 else if (Op0->getType()->isX86_FP80Ty()) {
728 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
729 uint64_t v;
730 bool ignored;
731 (void)apf.convertToInteger(&v, BitWidth,
732 CE->getOpcode()==Instruction::FPToSI,
733 APFloat::rmTowardZero, &ignored);
734 GV.IntVal = v; // endian?
735 }
736 return GV;
737 }
738 case Instruction::PtrToInt: {
739 GenericValue GV = getConstantValue(Op0);
740 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
741 assert(PtrWidth <= 64 && "Bad pointer width");
742 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
743 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
744 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
745 return GV;
746 }
747 case Instruction::IntToPtr: {
748 GenericValue GV = getConstantValue(Op0);
749 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
750 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
751 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
752 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
753 return GV;
754 }
755 case Instruction::BitCast: {
756 GenericValue GV = getConstantValue(Op0);
757 Type* DestTy = CE->getType();
758 switch (Op0->getType()->getTypeID()) {
759 default: llvm_unreachable("Invalid bitcast operand");
760 case Type::IntegerTyID:
761 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
762 if (DestTy->isFloatTy())
763 GV.FloatVal = GV.IntVal.bitsToFloat();
764 else if (DestTy->isDoubleTy())
765 GV.DoubleVal = GV.IntVal.bitsToDouble();
766 break;
767 case Type::FloatTyID:
768 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
769 GV.IntVal = APInt::floatToBits(GV.FloatVal);
770 break;
771 case Type::DoubleTyID:
772 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
773 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
774 break;
775 case Type::PointerTyID:
776 assert(DestTy->isPointerTy() && "Invalid bitcast");
777 break; // getConstantValue(Op0) above already converted it
778 }
779 return GV;
780 }
781 case Instruction::Add:
782 case Instruction::FAdd:
783 case Instruction::Sub:
784 case Instruction::FSub:
785 case Instruction::Mul:
786 case Instruction::FMul:
787 case Instruction::UDiv:
788 case Instruction::SDiv:
789 case Instruction::URem:
790 case Instruction::SRem:
791 case Instruction::And:
792 case Instruction::Or:
793 case Instruction::Xor: {
794 GenericValue LHS = getConstantValue(Op0);
795 GenericValue RHS = getConstantValue(CE->getOperand(1));
796 GenericValue GV;
797 switch (CE->getOperand(0)->getType()->getTypeID()) {
798 default: llvm_unreachable("Bad add type!");
799 case Type::IntegerTyID:
800 switch (CE->getOpcode()) {
801 default: llvm_unreachable("Invalid integer opcode");
802 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
803 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
804 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
805 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
806 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
807 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
808 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
809 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
810 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
811 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
812 }
813 break;
814 case Type::FloatTyID:
815 switch (CE->getOpcode()) {
816 default: llvm_unreachable("Invalid float opcode");
817 case Instruction::FAdd:
818 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
819 case Instruction::FSub:
820 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
821 case Instruction::FMul:
822 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
823 case Instruction::FDiv:
824 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
825 case Instruction::FRem:
826 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
827 }
828 break;
829 case Type::DoubleTyID:
830 switch (CE->getOpcode()) {
831 default: llvm_unreachable("Invalid double opcode");
832 case Instruction::FAdd:
833 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
834 case Instruction::FSub:
835 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
836 case Instruction::FMul:
837 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
838 case Instruction::FDiv:
839 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
840 case Instruction::FRem:
841 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
842 }
843 break;
844 case Type::X86_FP80TyID:
845 case Type::PPC_FP128TyID:
846 case Type::FP128TyID: {
847 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
848 APFloat apfLHS = APFloat(Sem, LHS.IntVal);
849 switch (CE->getOpcode()) {
850 default: llvm_unreachable("Invalid long double opcode");
851 case Instruction::FAdd:
852 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
853 GV.IntVal = apfLHS.bitcastToAPInt();
854 break;
855 case Instruction::FSub:
856 apfLHS.subtract(APFloat(Sem, RHS.IntVal),
857 APFloat::rmNearestTiesToEven);
858 GV.IntVal = apfLHS.bitcastToAPInt();
859 break;
860 case Instruction::FMul:
861 apfLHS.multiply(APFloat(Sem, RHS.IntVal),
862 APFloat::rmNearestTiesToEven);
863 GV.IntVal = apfLHS.bitcastToAPInt();
864 break;
865 case Instruction::FDiv:
866 apfLHS.divide(APFloat(Sem, RHS.IntVal),
867 APFloat::rmNearestTiesToEven);
868 GV.IntVal = apfLHS.bitcastToAPInt();
869 break;
870 case Instruction::FRem:
871 apfLHS.mod(APFloat(Sem, RHS.IntVal));
872 GV.IntVal = apfLHS.bitcastToAPInt();
873 break;
874 }
875 }
876 break;
877 }
878 return GV;
879 }
880 default:
881 break;
882 }
883
884 SmallString<256> Msg;
885 raw_svector_ostream OS(Msg);
886 OS << "ConstantExpr not handled: " << *CE;
887 report_fatal_error(OS.str());
888 }
889
890 // Otherwise, we have a simple constant.
891 GenericValue Result;
892 switch (C->getType()->getTypeID()) {
893 case Type::FloatTyID:
894 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
895 break;
896 case Type::DoubleTyID:
897 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
898 break;
899 case Type::X86_FP80TyID:
900 case Type::FP128TyID:
901 case Type::PPC_FP128TyID:
902 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
903 break;
904 case Type::IntegerTyID:
905 Result.IntVal = cast<ConstantInt>(C)->getValue();
906 break;
907 case Type::PointerTyID:
908 if (isa<ConstantPointerNull>(C))
909 Result.PointerVal = nullptr;
910 else if (const Function *F = dyn_cast<Function>(C))
911 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
912 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
913 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
914 else
915 llvm_unreachable("Unknown constant pointer type!");
916 break;
917 case Type::VectorTyID: {
918 unsigned elemNum;
919 Type* ElemTy;
920 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
921 const ConstantVector *CV = dyn_cast<ConstantVector>(C);
922 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
923
924 if (CDV) {
925 elemNum = CDV->getNumElements();
926 ElemTy = CDV->getElementType();
927 } else if (CV || CAZ) {
928 VectorType* VTy = dyn_cast<VectorType>(C->getType());
929 elemNum = VTy->getNumElements();
930 ElemTy = VTy->getElementType();
931 } else {
932 llvm_unreachable("Unknown constant vector type!");
933 }
934
935 Result.AggregateVal.resize(elemNum);
936 // Check if vector holds floats.
937 if(ElemTy->isFloatTy()) {
938 if (CAZ) {
939 GenericValue floatZero;
940 floatZero.FloatVal = 0.f;
941 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
942 floatZero);
943 break;
944 }
945 if(CV) {
946 for (unsigned i = 0; i < elemNum; ++i)
947 if (!isa<UndefValue>(CV->getOperand(i)))
948 Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
949 CV->getOperand(i))->getValueAPF().convertToFloat();
950 break;
951 }
952 if(CDV)
953 for (unsigned i = 0; i < elemNum; ++i)
954 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
955
956 break;
957 }
958 // Check if vector holds doubles.
959 if (ElemTy->isDoubleTy()) {
960 if (CAZ) {
961 GenericValue doubleZero;
962 doubleZero.DoubleVal = 0.0;
963 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
964 doubleZero);
965 break;
966 }
967 if(CV) {
968 for (unsigned i = 0; i < elemNum; ++i)
969 if (!isa<UndefValue>(CV->getOperand(i)))
970 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
971 CV->getOperand(i))->getValueAPF().convertToDouble();
972 break;
973 }
974 if(CDV)
975 for (unsigned i = 0; i < elemNum; ++i)
976 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
977
978 break;
979 }
980 // Check if vector holds integers.
981 if (ElemTy->isIntegerTy()) {
982 if (CAZ) {
983 GenericValue intZero;
984 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
985 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
986 intZero);
987 break;
988 }
989 if(CV) {
990 for (unsigned i = 0; i < elemNum; ++i)
991 if (!isa<UndefValue>(CV->getOperand(i)))
992 Result.AggregateVal[i].IntVal = cast<ConstantInt>(
993 CV->getOperand(i))->getValue();
994 else {
995 Result.AggregateVal[i].IntVal =
996 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
997 }
998 break;
999 }
1000 if(CDV)
1001 for (unsigned i = 0; i < elemNum; ++i)
1002 Result.AggregateVal[i].IntVal = APInt(
1003 CDV->getElementType()->getPrimitiveSizeInBits(),
1004 CDV->getElementAsInteger(i));
1005
1006 break;
1007 }
1008 llvm_unreachable("Unknown constant pointer type!");
1009 }
1010 break;
1011
1012 default:
1013 SmallString<256> Msg;
1014 raw_svector_ostream OS(Msg);
1015 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1016 report_fatal_error(OS.str());
1017 }
1018
1019 return Result;
1020 }
1021
1022 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
1023 /// with the integer held in IntVal.
StoreIntToMemory(const APInt & IntVal,uint8_t * Dst,unsigned StoreBytes)1024 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
1025 unsigned StoreBytes) {
1026 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
1027 const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
1028
1029 if (sys::IsLittleEndianHost) {
1030 // Little-endian host - the source is ordered from LSB to MSB. Order the
1031 // destination from LSB to MSB: Do a straight copy.
1032 memcpy(Dst, Src, StoreBytes);
1033 } else {
1034 // Big-endian host - the source is an array of 64 bit words ordered from
1035 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
1036 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
1037 while (StoreBytes > sizeof(uint64_t)) {
1038 StoreBytes -= sizeof(uint64_t);
1039 // May not be aligned so use memcpy.
1040 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
1041 Src += sizeof(uint64_t);
1042 }
1043
1044 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
1045 }
1046 }
1047
StoreValueToMemory(const GenericValue & Val,GenericValue * Ptr,Type * Ty)1048 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1049 GenericValue *Ptr, Type *Ty) {
1050 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1051
1052 switch (Ty->getTypeID()) {
1053 default:
1054 dbgs() << "Cannot store value of type " << *Ty << "!\n";
1055 break;
1056 case Type::IntegerTyID:
1057 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1058 break;
1059 case Type::FloatTyID:
1060 *((float*)Ptr) = Val.FloatVal;
1061 break;
1062 case Type::DoubleTyID:
1063 *((double*)Ptr) = Val.DoubleVal;
1064 break;
1065 case Type::X86_FP80TyID:
1066 memcpy(Ptr, Val.IntVal.getRawData(), 10);
1067 break;
1068 case Type::PointerTyID:
1069 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1070 if (StoreBytes != sizeof(PointerTy))
1071 memset(&(Ptr->PointerVal), 0, StoreBytes);
1072
1073 *((PointerTy*)Ptr) = Val.PointerVal;
1074 break;
1075 case Type::VectorTyID:
1076 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1077 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1078 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1079 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1080 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1081 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1082 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1083 StoreIntToMemory(Val.AggregateVal[i].IntVal,
1084 (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1085 }
1086 }
1087 break;
1088 }
1089
1090 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1091 // Host and target are different endian - reverse the stored bytes.
1092 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1093 }
1094
1095 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
1096 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
LoadIntFromMemory(APInt & IntVal,uint8_t * Src,unsigned LoadBytes)1097 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
1098 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
1099 uint8_t *Dst = reinterpret_cast<uint8_t *>(
1100 const_cast<uint64_t *>(IntVal.getRawData()));
1101
1102 if (sys::IsLittleEndianHost)
1103 // Little-endian host - the destination must be ordered from LSB to MSB.
1104 // The source is ordered from LSB to MSB: Do a straight copy.
1105 memcpy(Dst, Src, LoadBytes);
1106 else {
1107 // Big-endian - the destination is an array of 64 bit words ordered from
1108 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
1109 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
1110 // a word.
1111 while (LoadBytes > sizeof(uint64_t)) {
1112 LoadBytes -= sizeof(uint64_t);
1113 // May not be aligned so use memcpy.
1114 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
1115 Dst += sizeof(uint64_t);
1116 }
1117
1118 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
1119 }
1120 }
1121
1122 /// FIXME: document
1123 ///
LoadValueFromMemory(GenericValue & Result,GenericValue * Ptr,Type * Ty)1124 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1125 GenericValue *Ptr,
1126 Type *Ty) {
1127 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1128
1129 switch (Ty->getTypeID()) {
1130 case Type::IntegerTyID:
1131 // An APInt with all words initially zero.
1132 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1133 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1134 break;
1135 case Type::FloatTyID:
1136 Result.FloatVal = *((float*)Ptr);
1137 break;
1138 case Type::DoubleTyID:
1139 Result.DoubleVal = *((double*)Ptr);
1140 break;
1141 case Type::PointerTyID:
1142 Result.PointerVal = *((PointerTy*)Ptr);
1143 break;
1144 case Type::X86_FP80TyID: {
1145 // This is endian dependent, but it will only work on x86 anyway.
1146 // FIXME: Will not trap if loading a signaling NaN.
1147 uint64_t y[2];
1148 memcpy(y, Ptr, 10);
1149 Result.IntVal = APInt(80, y);
1150 break;
1151 }
1152 case Type::VectorTyID: {
1153 auto *VT = cast<VectorType>(Ty);
1154 Type *ElemT = VT->getElementType();
1155 const unsigned numElems = VT->getNumElements();
1156 if (ElemT->isFloatTy()) {
1157 Result.AggregateVal.resize(numElems);
1158 for (unsigned i = 0; i < numElems; ++i)
1159 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1160 }
1161 if (ElemT->isDoubleTy()) {
1162 Result.AggregateVal.resize(numElems);
1163 for (unsigned i = 0; i < numElems; ++i)
1164 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1165 }
1166 if (ElemT->isIntegerTy()) {
1167 GenericValue intZero;
1168 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1169 intZero.IntVal = APInt(elemBitWidth, 0);
1170 Result.AggregateVal.resize(numElems, intZero);
1171 for (unsigned i = 0; i < numElems; ++i)
1172 LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1173 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1174 }
1175 break;
1176 }
1177 default:
1178 SmallString<256> Msg;
1179 raw_svector_ostream OS(Msg);
1180 OS << "Cannot load value of type " << *Ty << "!";
1181 report_fatal_error(OS.str());
1182 }
1183 }
1184
InitializeMemory(const Constant * Init,void * Addr)1185 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1186 DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1187 DEBUG(Init->dump());
1188 if (isa<UndefValue>(Init))
1189 return;
1190
1191 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1192 unsigned ElementSize =
1193 getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1194 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1195 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1196 return;
1197 }
1198
1199 if (isa<ConstantAggregateZero>(Init)) {
1200 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1201 return;
1202 }
1203
1204 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1205 unsigned ElementSize =
1206 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1207 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1208 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1209 return;
1210 }
1211
1212 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1213 const StructLayout *SL =
1214 getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1215 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1216 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1217 return;
1218 }
1219
1220 if (const ConstantDataSequential *CDS =
1221 dyn_cast<ConstantDataSequential>(Init)) {
1222 // CDS is already laid out in host memory order.
1223 StringRef Data = CDS->getRawDataValues();
1224 memcpy(Addr, Data.data(), Data.size());
1225 return;
1226 }
1227
1228 if (Init->getType()->isFirstClassType()) {
1229 GenericValue Val = getConstantValue(Init);
1230 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1231 return;
1232 }
1233
1234 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1235 llvm_unreachable("Unknown constant type to initialize memory with!");
1236 }
1237
1238 /// EmitGlobals - Emit all of the global variables to memory, storing their
1239 /// addresses into GlobalAddress. This must make sure to copy the contents of
1240 /// their initializers into the memory.
emitGlobals()1241 void ExecutionEngine::emitGlobals() {
1242 // Loop over all of the global variables in the program, allocating the memory
1243 // to hold them. If there is more than one module, do a prepass over globals
1244 // to figure out how the different modules should link together.
1245 std::map<std::pair<std::string, Type*>,
1246 const GlobalValue*> LinkedGlobalsMap;
1247
1248 if (Modules.size() != 1) {
1249 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1250 Module &M = *Modules[m];
1251 for (const auto &GV : M.globals()) {
1252 if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1253 GV.hasAppendingLinkage() || !GV.hasName())
1254 continue;// Ignore external globals and globals with internal linkage.
1255
1256 const GlobalValue *&GVEntry =
1257 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())];
1258
1259 // If this is the first time we've seen this global, it is the canonical
1260 // version.
1261 if (!GVEntry) {
1262 GVEntry = &GV;
1263 continue;
1264 }
1265
1266 // If the existing global is strong, never replace it.
1267 if (GVEntry->hasExternalLinkage())
1268 continue;
1269
1270 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1271 // symbol. FIXME is this right for common?
1272 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1273 GVEntry = &GV;
1274 }
1275 }
1276 }
1277
1278 std::vector<const GlobalValue*> NonCanonicalGlobals;
1279 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1280 Module &M = *Modules[m];
1281 for (const auto &GV : M.globals()) {
1282 // In the multi-module case, see what this global maps to.
1283 if (!LinkedGlobalsMap.empty()) {
1284 if (const GlobalValue *GVEntry =
1285 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) {
1286 // If something else is the canonical global, ignore this one.
1287 if (GVEntry != &GV) {
1288 NonCanonicalGlobals.push_back(&GV);
1289 continue;
1290 }
1291 }
1292 }
1293
1294 if (!GV.isDeclaration()) {
1295 addGlobalMapping(&GV, getMemoryForGV(&GV));
1296 } else {
1297 // External variable reference. Try to use the dynamic loader to
1298 // get a pointer to it.
1299 if (void *SymAddr =
1300 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName()))
1301 addGlobalMapping(&GV, SymAddr);
1302 else {
1303 report_fatal_error("Could not resolve external global address: "
1304 +GV.getName());
1305 }
1306 }
1307 }
1308
1309 // If there are multiple modules, map the non-canonical globals to their
1310 // canonical location.
1311 if (!NonCanonicalGlobals.empty()) {
1312 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1313 const GlobalValue *GV = NonCanonicalGlobals[i];
1314 const GlobalValue *CGV =
1315 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1316 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1317 assert(Ptr && "Canonical global wasn't codegen'd!");
1318 addGlobalMapping(GV, Ptr);
1319 }
1320 }
1321
1322 // Now that all of the globals are set up in memory, loop through them all
1323 // and initialize their contents.
1324 for (const auto &GV : M.globals()) {
1325 if (!GV.isDeclaration()) {
1326 if (!LinkedGlobalsMap.empty()) {
1327 if (const GlobalValue *GVEntry =
1328 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())])
1329 if (GVEntry != &GV) // Not the canonical variable.
1330 continue;
1331 }
1332 EmitGlobalVariable(&GV);
1333 }
1334 }
1335 }
1336 }
1337
1338 // EmitGlobalVariable - This method emits the specified global variable to the
1339 // address specified in GlobalAddresses, or allocates new memory if it's not
1340 // already in the map.
EmitGlobalVariable(const GlobalVariable * GV)1341 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1342 void *GA = getPointerToGlobalIfAvailable(GV);
1343
1344 if (!GA) {
1345 // If it's not already specified, allocate memory for the global.
1346 GA = getMemoryForGV(GV);
1347
1348 // If we failed to allocate memory for this global, return.
1349 if (!GA) return;
1350
1351 addGlobalMapping(GV, GA);
1352 }
1353
1354 // Don't initialize if it's thread local, let the client do it.
1355 if (!GV->isThreadLocal())
1356 InitializeMemory(GV->getInitializer(), GA);
1357
1358 Type *ElTy = GV->getType()->getElementType();
1359 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1360 NumInitBytes += (unsigned)GVSize;
1361 ++NumGlobals;
1362 }
1363