1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15
16 #ifndef BT_SOLVER_BODY_H
17 #define BT_SOLVER_BODY_H
18
19 class btRigidBody;
20 #include "LinearMath/btVector3.h"
21 #include "LinearMath/btMatrix3x3.h"
22
23 #include "LinearMath/btAlignedAllocator.h"
24 #include "LinearMath/btTransformUtil.h"
25
26 ///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
27 #ifdef BT_USE_SSE
28 #define USE_SIMD 1
29 #endif //
30
31
32 #ifdef USE_SIMD
33
34 struct btSimdScalar
35 {
btSimdScalarbtSimdScalar36 SIMD_FORCE_INLINE btSimdScalar()
37 {
38
39 }
40
btSimdScalarbtSimdScalar41 SIMD_FORCE_INLINE btSimdScalar(float fl)
42 :m_vec128 (_mm_set1_ps(fl))
43 {
44 }
45
btSimdScalarbtSimdScalar46 SIMD_FORCE_INLINE btSimdScalar(__m128 v128)
47 :m_vec128(v128)
48 {
49 }
50 union
51 {
52 __m128 m_vec128;
53 float m_floats[4];
54 int m_ints[4];
55 btScalar m_unusedPadding;
56 };
get128btSimdScalar57 SIMD_FORCE_INLINE __m128 get128()
58 {
59 return m_vec128;
60 }
61
get128btSimdScalar62 SIMD_FORCE_INLINE const __m128 get128() const
63 {
64 return m_vec128;
65 }
66
set128btSimdScalar67 SIMD_FORCE_INLINE void set128(__m128 v128)
68 {
69 m_vec128 = v128;
70 }
71
__m128btSimdScalar72 SIMD_FORCE_INLINE operator __m128()
73 {
74 return m_vec128;
75 }
__m128btSimdScalar76 SIMD_FORCE_INLINE operator const __m128() const
77 {
78 return m_vec128;
79 }
80
81 SIMD_FORCE_INLINE operator float() const
82 {
83 return m_floats[0];
84 }
85
86 };
87
88 ///@brief Return the elementwise product of two btSimdScalar
89 SIMD_FORCE_INLINE btSimdScalar
90 operator*(const btSimdScalar& v1, const btSimdScalar& v2)
91 {
92 return btSimdScalar(_mm_mul_ps(v1.get128(),v2.get128()));
93 }
94
95 ///@brief Return the elementwise product of two btSimdScalar
96 SIMD_FORCE_INLINE btSimdScalar
97 operator+(const btSimdScalar& v1, const btSimdScalar& v2)
98 {
99 return btSimdScalar(_mm_add_ps(v1.get128(),v2.get128()));
100 }
101
102
103 #else
104 #define btSimdScalar btScalar
105 #endif
106
107 ///The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
ATTRIBUTE_ALIGNED16(struct)108 ATTRIBUTE_ALIGNED16 (struct) btSolverBody
109 {
110 BT_DECLARE_ALIGNED_ALLOCATOR();
111 btTransform m_worldTransform;
112 btVector3 m_deltaLinearVelocity;
113 btVector3 m_deltaAngularVelocity;
114 btVector3 m_angularFactor;
115 btVector3 m_linearFactor;
116 btVector3 m_invMass;
117 btVector3 m_pushVelocity;
118 btVector3 m_turnVelocity;
119 btVector3 m_linearVelocity;
120 btVector3 m_angularVelocity;
121 btVector3 m_externalForceImpulse;
122 btVector3 m_externalTorqueImpulse;
123
124 btRigidBody* m_originalBody;
125 void setWorldTransform(const btTransform& worldTransform)
126 {
127 m_worldTransform = worldTransform;
128 }
129
130 const btTransform& getWorldTransform() const
131 {
132 return m_worldTransform;
133 }
134
135
136
137 SIMD_FORCE_INLINE void getVelocityInLocalPointNoDelta(const btVector3& rel_pos, btVector3& velocity ) const
138 {
139 if (m_originalBody)
140 velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity+m_externalTorqueImpulse).cross(rel_pos);
141 else
142 velocity.setValue(0,0,0);
143 }
144
145
146 SIMD_FORCE_INLINE void getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
147 {
148 if (m_originalBody)
149 velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
150 else
151 velocity.setValue(0,0,0);
152 }
153
154 SIMD_FORCE_INLINE void getAngularVelocity(btVector3& angVel) const
155 {
156 if (m_originalBody)
157 angVel =m_angularVelocity+m_deltaAngularVelocity;
158 else
159 angVel.setValue(0,0,0);
160 }
161
162
163 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
164 SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
165 {
166 if (m_originalBody)
167 {
168 m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
169 m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
170 }
171 }
172
173 SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
174 {
175 if (m_originalBody)
176 {
177 m_pushVelocity += linearComponent*impulseMagnitude*m_linearFactor;
178 m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
179 }
180 }
181
182
183
184 const btVector3& getDeltaLinearVelocity() const
185 {
186 return m_deltaLinearVelocity;
187 }
188
189 const btVector3& getDeltaAngularVelocity() const
190 {
191 return m_deltaAngularVelocity;
192 }
193
194 const btVector3& getPushVelocity() const
195 {
196 return m_pushVelocity;
197 }
198
199 const btVector3& getTurnVelocity() const
200 {
201 return m_turnVelocity;
202 }
203
204
205 ////////////////////////////////////////////////
206 ///some internal methods, don't use them
207
208 btVector3& internalGetDeltaLinearVelocity()
209 {
210 return m_deltaLinearVelocity;
211 }
212
213 btVector3& internalGetDeltaAngularVelocity()
214 {
215 return m_deltaAngularVelocity;
216 }
217
218 const btVector3& internalGetAngularFactor() const
219 {
220 return m_angularFactor;
221 }
222
223 const btVector3& internalGetInvMass() const
224 {
225 return m_invMass;
226 }
227
228 void internalSetInvMass(const btVector3& invMass)
229 {
230 m_invMass = invMass;
231 }
232
233 btVector3& internalGetPushVelocity()
234 {
235 return m_pushVelocity;
236 }
237
238 btVector3& internalGetTurnVelocity()
239 {
240 return m_turnVelocity;
241 }
242
243 SIMD_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
244 {
245 velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
246 }
247
248 SIMD_FORCE_INLINE void internalGetAngularVelocity(btVector3& angVel) const
249 {
250 angVel = m_angularVelocity+m_deltaAngularVelocity;
251 }
252
253
254 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
255 SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
256 {
257 if (m_originalBody)
258 {
259 m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
260 m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
261 }
262 }
263
264
265
266
267 void writebackVelocity()
268 {
269 if (m_originalBody)
270 {
271 m_linearVelocity +=m_deltaLinearVelocity;
272 m_angularVelocity += m_deltaAngularVelocity;
273
274 //m_originalBody->setCompanionId(-1);
275 }
276 }
277
278
279 void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
280 {
281 (void) timeStep;
282 if (m_originalBody)
283 {
284 m_linearVelocity += m_deltaLinearVelocity;
285 m_angularVelocity += m_deltaAngularVelocity;
286
287 //correct the position/orientation based on push/turn recovery
288 btTransform newTransform;
289 if (m_pushVelocity[0]!=0.f || m_pushVelocity[1]!=0 || m_pushVelocity[2]!=0 || m_turnVelocity[0]!=0.f || m_turnVelocity[1]!=0 || m_turnVelocity[2]!=0)
290 {
291 // btQuaternion orn = m_worldTransform.getRotation();
292 btTransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform);
293 m_worldTransform = newTransform;
294 }
295 //m_worldTransform.setRotation(orn);
296 //m_originalBody->setCompanionId(-1);
297 }
298 }
299
300
301
302 };
303
304 #endif //BT_SOLVER_BODY_H
305
306
307