• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Object file "section" support for the BFD library.
2    Copyright (C) 1990-2014 Free Software Foundation, Inc.
3    Written by Cygnus Support.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 /*
23 SECTION
24 	Sections
25 
26 	The raw data contained within a BFD is maintained through the
27 	section abstraction.  A single BFD may have any number of
28 	sections.  It keeps hold of them by pointing to the first;
29 	each one points to the next in the list.
30 
31 	Sections are supported in BFD in <<section.c>>.
32 
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39 
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 	Section input
44 
45 	When a BFD is opened for reading, the section structures are
46 	created and attached to the BFD.
47 
48 	Each section has a name which describes the section in the
49 	outside world---for example, <<a.out>> would contain at least
50 	three sections, called <<.text>>, <<.data>> and <<.bss>>.
51 
52 	Names need not be unique; for example a COFF file may have several
53 	sections named <<.data>>.
54 
55 	Sometimes a BFD will contain more than the ``natural'' number of
56 	sections. A back end may attach other sections containing
57 	constructor data, or an application may add a section (using
58 	<<bfd_make_section>>) to the sections attached to an already open
59 	BFD. For example, the linker creates an extra section
60 	<<COMMON>> for each input file's BFD to hold information about
61 	common storage.
62 
63 	The raw data is not necessarily read in when
64 	the section descriptor is created. Some targets may leave the
65 	data in place until a <<bfd_get_section_contents>> call is
66 	made. Other back ends may read in all the data at once.  For
67 	example, an S-record file has to be read once to determine the
68 	size of the data. An IEEE-695 file doesn't contain raw data in
69 	sections, but data and relocation expressions intermixed, so
70 	the data area has to be parsed to get out the data and
71 	relocations.
72 
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75 
76 SUBSECTION
77 	Section output
78 
79 	To write a new object style BFD, the various sections to be
80 	written have to be created. They are attached to the BFD in
81 	the same way as input sections; data is written to the
82 	sections using <<bfd_set_section_contents>>.
83 
84 	Any program that creates or combines sections (e.g., the assembler
85 	and linker) must use the <<asection>> fields <<output_section>> and
86 	<<output_offset>> to indicate the file sections to which each
87 	section must be written.  (If the section is being created from
88 	scratch, <<output_section>> should probably point to the section
89 	itself and <<output_offset>> should probably be zero.)
90 
91 	The data to be written comes from input sections attached
92 	(via <<output_section>> pointers) to
93 	the output sections.  The output section structure can be
94 	considered a filter for the input section: the output section
95 	determines the vma of the output data and the name, but the
96 	input section determines the offset into the output section of
97 	the data to be written.
98 
99 	E.g., to create a section "O", starting at 0x100, 0x123 long,
100 	containing two subsections, "A" at offset 0x0 (i.e., at vma
101 	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 	structures would look like:
103 
104 |   section name          "A"
105 |     output_offset   0x00
106 |     size            0x20
107 |     output_section ----------->  section name    "O"
108 |                             |    vma             0x100
109 |   section name          "B" |    size            0x123
110 |     output_offset   0x20    |
111 |     size            0x103   |
112 |     output_section  --------|
113 
114 SUBSECTION
115 	Link orders
116 
117 	The data within a section is stored in a @dfn{link_order}.
118 	These are much like the fixups in <<gas>>.  The link_order
119 	abstraction allows a section to grow and shrink within itself.
120 
121 	A link_order knows how big it is, and which is the next
122 	link_order and where the raw data for it is; it also points to
123 	a list of relocations which apply to it.
124 
125 	The link_order is used by the linker to perform relaxing on
126 	final code.  The compiler creates code which is as big as
127 	necessary to make it work without relaxing, and the user can
128 	select whether to relax.  Sometimes relaxing takes a lot of
129 	time.  The linker runs around the relocations to see if any
130 	are attached to data which can be shrunk, if so it does it on
131 	a link_order by link_order basis.
132 
133 */
134 
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139 
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 	typedef asection
146 
147 	Here is the section structure:
148 
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 .  {* The name of the section; the name isn't a copy, the pointer is
154 .     the same as that passed to bfd_make_section.  *}
155 .  const char *name;
156 .
157 .  {* A unique sequence number.  *}
158 .  int id;
159 .
160 .  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
161 .  int index;
162 .
163 .  {* The next section in the list belonging to the BFD, or NULL.  *}
164 .  struct bfd_section *next;
165 .
166 .  {* The previous section in the list belonging to the BFD, or NULL.  *}
167 .  struct bfd_section *prev;
168 .
169 .  {* The field flags contains attributes of the section. Some
170 .     flags are read in from the object file, and some are
171 .     synthesized from other information.  *}
172 .  flagword flags;
173 .
174 .#define SEC_NO_FLAGS   0x000
175 .
176 .  {* Tells the OS to allocate space for this section when loading.
177 .     This is clear for a section containing debug information only.  *}
178 .#define SEC_ALLOC      0x001
179 .
180 .  {* Tells the OS to load the section from the file when loading.
181 .     This is clear for a .bss section.  *}
182 .#define SEC_LOAD       0x002
183 .
184 .  {* The section contains data still to be relocated, so there is
185 .     some relocation information too.  *}
186 .#define SEC_RELOC      0x004
187 .
188 .  {* A signal to the OS that the section contains read only data.  *}
189 .#define SEC_READONLY   0x008
190 .
191 .  {* The section contains code only.  *}
192 .#define SEC_CODE       0x010
193 .
194 .  {* The section contains data only.  *}
195 .#define SEC_DATA       0x020
196 .
197 .  {* The section will reside in ROM.  *}
198 .#define SEC_ROM        0x040
199 .
200 .  {* The section contains constructor information. This section
201 .     type is used by the linker to create lists of constructors and
202 .     destructors used by <<g++>>. When a back end sees a symbol
203 .     which should be used in a constructor list, it creates a new
204 .     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 .     the symbol to it, and builds a relocation. To build the lists
206 .     of constructors, all the linker has to do is catenate all the
207 .     sections called <<__CTOR_LIST__>> and relocate the data
208 .     contained within - exactly the operations it would peform on
209 .     standard data.  *}
210 .#define SEC_CONSTRUCTOR 0x080
211 .
212 .  {* The section has contents - a data section could be
213 .     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 .     <<SEC_HAS_CONTENTS>>  *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 .  {* An instruction to the linker to not output the section
218 .     even if it has information which would normally be written.  *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 .  {* The section contains thread local data.  *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 .  {* The section has GOT references.  This flag is only for the
225 .     linker, and is currently only used by the elf32-hppa back end.
226 .     It will be set if global offset table references were detected
227 .     in this section, which indicate to the linker that the section
228 .     contains PIC code, and must be handled specially when doing a
229 .     static link.  *}
230 .#define SEC_HAS_GOT_REF 0x800
231 .
232 .  {* The section contains common symbols (symbols may be defined
233 .     multiple times, the value of a symbol is the amount of
234 .     space it requires, and the largest symbol value is the one
235 .     used).  Most targets have exactly one of these (which we
236 .     translate to bfd_com_section_ptr), but ECOFF has two.  *}
237 .#define SEC_IS_COMMON 0x1000
238 .
239 .  {* The section contains only debugging information.  For
240 .     example, this is set for ELF .debug and .stab sections.
241 .     strip tests this flag to see if a section can be
242 .     discarded.  *}
243 .#define SEC_DEBUGGING 0x2000
244 .
245 .  {* The contents of this section are held in memory pointed to
246 .     by the contents field.  This is checked by bfd_get_section_contents,
247 .     and the data is retrieved from memory if appropriate.  *}
248 .#define SEC_IN_MEMORY 0x4000
249 .
250 .  {* The contents of this section are to be excluded by the
251 .     linker for executable and shared objects unless those
252 .     objects are to be further relocated.  *}
253 .#define SEC_EXCLUDE 0x8000
254 .
255 .  {* The contents of this section are to be sorted based on the sum of
256 .     the symbol and addend values specified by the associated relocation
257 .     entries.  Entries without associated relocation entries will be
258 .     appended to the end of the section in an unspecified order.  *}
259 .#define SEC_SORT_ENTRIES 0x10000
260 .
261 .  {* When linking, duplicate sections of the same name should be
262 .     discarded, rather than being combined into a single section as
263 .     is usually done.  This is similar to how common symbols are
264 .     handled.  See SEC_LINK_DUPLICATES below.  *}
265 .#define SEC_LINK_ONCE 0x20000
266 .
267 .  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
268 .     should handle duplicate sections.  *}
269 .#define SEC_LINK_DUPLICATES 0xc0000
270 .
271 .  {* This value for SEC_LINK_DUPLICATES means that duplicate
272 .     sections with the same name should simply be discarded.  *}
273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
274 .
275 .  {* This value for SEC_LINK_DUPLICATES means that the linker
276 .     should warn if there are any duplicate sections, although
277 .     it should still only link one copy.  *}
278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
279 .
280 .  {* This value for SEC_LINK_DUPLICATES means that the linker
281 .     should warn if any duplicate sections are a different size.  *}
282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
283 .
284 .  {* This value for SEC_LINK_DUPLICATES means that the linker
285 .     should warn if any duplicate sections contain different
286 .     contents.  *}
287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
288 .  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
289 .
290 .  {* This section was created by the linker as part of dynamic
291 .     relocation or other arcane processing.  It is skipped when
292 .     going through the first-pass output, trusting that someone
293 .     else up the line will take care of it later.  *}
294 .#define SEC_LINKER_CREATED 0x100000
295 .
296 .  {* This section should not be subject to garbage collection.
297 .     Also set to inform the linker that this section should not be
298 .     listed in the link map as discarded.  *}
299 .#define SEC_KEEP 0x200000
300 .
301 .  {* This section contains "short" data, and should be placed
302 .     "near" the GP.  *}
303 .#define SEC_SMALL_DATA 0x400000
304 .
305 .  {* Attempt to merge identical entities in the section.
306 .     Entity size is given in the entsize field.  *}
307 .#define SEC_MERGE 0x800000
308 .
309 .  {* If given with SEC_MERGE, entities to merge are zero terminated
310 .     strings where entsize specifies character size instead of fixed
311 .     size entries.  *}
312 .#define SEC_STRINGS 0x1000000
313 .
314 .  {* This section contains data about section groups.  *}
315 .#define SEC_GROUP 0x2000000
316 .
317 .  {* The section is a COFF shared library section.  This flag is
318 .     only for the linker.  If this type of section appears in
319 .     the input file, the linker must copy it to the output file
320 .     without changing the vma or size.  FIXME: Although this
321 .     was originally intended to be general, it really is COFF
322 .     specific (and the flag was renamed to indicate this).  It
323 .     might be cleaner to have some more general mechanism to
324 .     allow the back end to control what the linker does with
325 .     sections.  *}
326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
327 .
328 .  {* This input section should be copied to output in reverse order
329 .     as an array of pointers.  This is for ELF linker internal use
330 .     only.  *}
331 .#define SEC_ELF_REVERSE_COPY 0x4000000
332 .
333 .  {* This section contains data which may be shared with other
334 .     executables or shared objects. This is for COFF only.  *}
335 .#define SEC_COFF_SHARED 0x8000000
336 .
337 .  {* When a section with this flag is being linked, then if the size of
338 .     the input section is less than a page, it should not cross a page
339 .     boundary.  If the size of the input section is one page or more,
340 .     it should be aligned on a page boundary.  This is for TI
341 .     TMS320C54X only.  *}
342 .#define SEC_TIC54X_BLOCK 0x10000000
343 .
344 .  {* Conditionally link this section; do not link if there are no
345 .     references found to any symbol in the section.  This is for TI
346 .     TMS320C54X only.  *}
347 .#define SEC_TIC54X_CLINK 0x20000000
348 .
349 .  {* Indicate that section has the no read flag set. This happens
350 .     when memory read flag isn't set. *}
351 .#define SEC_COFF_NOREAD 0x40000000
352 .
353 .  {*  End of section flags.  *}
354 .
355 .  {* Some internal packed boolean fields.  *}
356 .
357 .  {* See the vma field.  *}
358 .  unsigned int user_set_vma : 1;
359 .
360 .  {* A mark flag used by some of the linker backends.  *}
361 .  unsigned int linker_mark : 1;
362 .
363 .  {* Another mark flag used by some of the linker backends.  Set for
364 .     output sections that have an input section.  *}
365 .  unsigned int linker_has_input : 1;
366 .
367 .  {* Mark flag used by some linker backends for garbage collection.  *}
368 .  unsigned int gc_mark : 1;
369 .
370 .  {* Section compression status.  *}
371 .  unsigned int compress_status : 2;
372 .#define COMPRESS_SECTION_NONE    0
373 .#define COMPRESS_SECTION_DONE    1
374 .#define DECOMPRESS_SECTION_SIZED 2
375 .
376 .  {* The following flags are used by the ELF linker. *}
377 .
378 .  {* Mark sections which have been allocated to segments.  *}
379 .  unsigned int segment_mark : 1;
380 .
381 .  {* Type of sec_info information.  *}
382 .  unsigned int sec_info_type:3;
383 .#define SEC_INFO_TYPE_NONE      0
384 .#define SEC_INFO_TYPE_STABS     1
385 .#define SEC_INFO_TYPE_MERGE     2
386 .#define SEC_INFO_TYPE_EH_FRAME  3
387 .#define SEC_INFO_TYPE_JUST_SYMS 4
388 .#define SEC_INFO_TYPE_TARGET    5
389 .
390 .  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
391 .  unsigned int use_rela_p:1;
392 .
393 .  {* Bits used by various backends.  The generic code doesn't touch
394 .     these fields.  *}
395 .
396 .  unsigned int sec_flg0:1;
397 .  unsigned int sec_flg1:1;
398 .  unsigned int sec_flg2:1;
399 .  unsigned int sec_flg3:1;
400 .  unsigned int sec_flg4:1;
401 .  unsigned int sec_flg5:1;
402 .
403 .  {* End of internal packed boolean fields.  *}
404 .
405 .  {*  The virtual memory address of the section - where it will be
406 .      at run time.  The symbols are relocated against this.  The
407 .      user_set_vma flag is maintained by bfd; if it's not set, the
408 .      backend can assign addresses (for example, in <<a.out>>, where
409 .      the default address for <<.data>> is dependent on the specific
410 .      target and various flags).  *}
411 .  bfd_vma vma;
412 .
413 .  {*  The load address of the section - where it would be in a
414 .      rom image; really only used for writing section header
415 .      information.  *}
416 .  bfd_vma lma;
417 .
418 .  {* The size of the section in octets, as it will be output.
419 .     Contains a value even if the section has no contents (e.g., the
420 .     size of <<.bss>>).  *}
421 .  bfd_size_type size;
422 .
423 .  {* For input sections, the original size on disk of the section, in
424 .     octets.  This field should be set for any section whose size is
425 .     changed by linker relaxation.  It is required for sections where
426 .     the linker relaxation scheme doesn't cache altered section and
427 .     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
428 .     targets), and thus the original size needs to be kept to read the
429 .     section multiple times.  For output sections, rawsize holds the
430 .     section size calculated on a previous linker relaxation pass.  *}
431 .  bfd_size_type rawsize;
432 .
433 .  {* The compressed size of the section in octets.  *}
434 .  bfd_size_type compressed_size;
435 .
436 .  {* Relaxation table. *}
437 .  struct relax_table *relax;
438 .
439 .  {* Count of used relaxation table entries. *}
440 .  int relax_count;
441 .
442 .
443 .  {* If this section is going to be output, then this value is the
444 .     offset in *bytes* into the output section of the first byte in the
445 .     input section (byte ==> smallest addressable unit on the
446 .     target).  In most cases, if this was going to start at the
447 .     100th octet (8-bit quantity) in the output section, this value
448 .     would be 100.  However, if the target byte size is 16 bits
449 .     (bfd_octets_per_byte is "2"), this value would be 50.  *}
450 .  bfd_vma output_offset;
451 .
452 .  {* The output section through which to map on output.  *}
453 .  struct bfd_section *output_section;
454 .
455 .  {* The alignment requirement of the section, as an exponent of 2 -
456 .     e.g., 3 aligns to 2^3 (or 8).  *}
457 .  unsigned int alignment_power;
458 .
459 .  {* If an input section, a pointer to a vector of relocation
460 .     records for the data in this section.  *}
461 .  struct reloc_cache_entry *relocation;
462 .
463 .  {* If an output section, a pointer to a vector of pointers to
464 .     relocation records for the data in this section.  *}
465 .  struct reloc_cache_entry **orelocation;
466 .
467 .  {* The number of relocation records in one of the above.  *}
468 .  unsigned reloc_count;
469 .
470 .  {* Information below is back end specific - and not always used
471 .     or updated.  *}
472 .
473 .  {* File position of section data.  *}
474 .  file_ptr filepos;
475 .
476 .  {* File position of relocation info.  *}
477 .  file_ptr rel_filepos;
478 .
479 .  {* File position of line data.  *}
480 .  file_ptr line_filepos;
481 .
482 .  {* Pointer to data for applications.  *}
483 .  void *userdata;
484 .
485 .  {* If the SEC_IN_MEMORY flag is set, this points to the actual
486 .     contents.  *}
487 .  unsigned char *contents;
488 .
489 .  {* Attached line number information.  *}
490 .  alent *lineno;
491 .
492 .  {* Number of line number records.  *}
493 .  unsigned int lineno_count;
494 .
495 .  {* Entity size for merging purposes.  *}
496 .  unsigned int entsize;
497 .
498 .  {* Points to the kept section if this section is a link-once section,
499 .     and is discarded.  *}
500 .  struct bfd_section *kept_section;
501 .
502 .  {* When a section is being output, this value changes as more
503 .     linenumbers are written out.  *}
504 .  file_ptr moving_line_filepos;
505 .
506 .  {* What the section number is in the target world.  *}
507 .  int target_index;
508 .
509 .  void *used_by_bfd;
510 .
511 .  {* If this is a constructor section then here is a list of the
512 .     relocations created to relocate items within it.  *}
513 .  struct relent_chain *constructor_chain;
514 .
515 .  {* The BFD which owns the section.  *}
516 .  bfd *owner;
517 .
518 .  {* A symbol which points at this section only.  *}
519 .  struct bfd_symbol *symbol;
520 .  struct bfd_symbol **symbol_ptr_ptr;
521 .
522 .  {* Early in the link process, map_head and map_tail are used to build
523 .     a list of input sections attached to an output section.  Later,
524 .     output sections use these fields for a list of bfd_link_order
525 .     structs.  *}
526 .  union {
527 .    struct bfd_link_order *link_order;
528 .    struct bfd_section *s;
529 .  } map_head, map_tail;
530 .} asection;
531 .
532 .{* Relax table contains information about instructions which can
533 .   be removed by relaxation -- replacing a long address with a
534 .   short address.  *}
535 .struct relax_table {
536 .  {* Address where bytes may be deleted. *}
537 .  bfd_vma addr;
538 .
539 .  {* Number of bytes to be deleted.  *}
540 .  int size;
541 .};
542 .
543 .{* Note: the following are provided as inline functions rather than macros
544 .   because not all callers use the return value.  A macro implementation
545 .   would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
546 .   compilers will complain about comma expressions that have no effect.  *}
547 .static inline bfd_boolean
548 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
549 .{
550 .  ptr->userdata = val;
551 .  return TRUE;
552 .}
553 .
554 .static inline bfd_boolean
555 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
556 .{
557 .  ptr->vma = ptr->lma = val;
558 .  ptr->user_set_vma = TRUE;
559 .  return TRUE;
560 .}
561 .
562 .static inline bfd_boolean
563 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
564 .{
565 .  ptr->alignment_power = val;
566 .  return TRUE;
567 .}
568 .
569 .{* These sections are global, and are managed by BFD.  The application
570 .   and target back end are not permitted to change the values in
571 .   these sections.  *}
572 .extern asection _bfd_std_section[4];
573 .
574 .#define BFD_ABS_SECTION_NAME "*ABS*"
575 .#define BFD_UND_SECTION_NAME "*UND*"
576 .#define BFD_COM_SECTION_NAME "*COM*"
577 .#define BFD_IND_SECTION_NAME "*IND*"
578 .
579 .{* Pointer to the common section.  *}
580 .#define bfd_com_section_ptr (&_bfd_std_section[0])
581 .{* Pointer to the undefined section.  *}
582 .#define bfd_und_section_ptr (&_bfd_std_section[1])
583 .{* Pointer to the absolute section.  *}
584 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
585 .{* Pointer to the indirect section.  *}
586 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
587 .
588 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
589 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
590 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
591 .
592 .#define bfd_is_const_section(SEC)		\
593 . (   ((SEC) == bfd_abs_section_ptr)		\
594 .  || ((SEC) == bfd_und_section_ptr)		\
595 .  || ((SEC) == bfd_com_section_ptr)		\
596 .  || ((SEC) == bfd_ind_section_ptr))
597 .
598 .{* Macros to handle insertion and deletion of a bfd's sections.  These
599 .   only handle the list pointers, ie. do not adjust section_count,
600 .   target_index etc.  *}
601 .#define bfd_section_list_remove(ABFD, S) \
602 .  do							\
603 .    {							\
604 .      asection *_s = S;				\
605 .      asection *_next = _s->next;			\
606 .      asection *_prev = _s->prev;			\
607 .      if (_prev)					\
608 .        _prev->next = _next;				\
609 .      else						\
610 .        (ABFD)->sections = _next;			\
611 .      if (_next)					\
612 .        _next->prev = _prev;				\
613 .      else						\
614 .        (ABFD)->section_last = _prev;			\
615 .    }							\
616 .  while (0)
617 .#define bfd_section_list_append(ABFD, S) \
618 .  do							\
619 .    {							\
620 .      asection *_s = S;				\
621 .      bfd *_abfd = ABFD;				\
622 .      _s->next = NULL;					\
623 .      if (_abfd->section_last)				\
624 .        {						\
625 .          _s->prev = _abfd->section_last;		\
626 .          _abfd->section_last->next = _s;		\
627 .        }						\
628 .      else						\
629 .        {						\
630 .          _s->prev = NULL;				\
631 .          _abfd->sections = _s;			\
632 .        }						\
633 .      _abfd->section_last = _s;			\
634 .    }							\
635 .  while (0)
636 .#define bfd_section_list_prepend(ABFD, S) \
637 .  do							\
638 .    {							\
639 .      asection *_s = S;				\
640 .      bfd *_abfd = ABFD;				\
641 .      _s->prev = NULL;					\
642 .      if (_abfd->sections)				\
643 .        {						\
644 .          _s->next = _abfd->sections;			\
645 .          _abfd->sections->prev = _s;			\
646 .        }						\
647 .      else						\
648 .        {						\
649 .          _s->next = NULL;				\
650 .          _abfd->section_last = _s;			\
651 .        }						\
652 .      _abfd->sections = _s;				\
653 .    }							\
654 .  while (0)
655 .#define bfd_section_list_insert_after(ABFD, A, S) \
656 .  do							\
657 .    {							\
658 .      asection *_a = A;				\
659 .      asection *_s = S;				\
660 .      asection *_next = _a->next;			\
661 .      _s->next = _next;				\
662 .      _s->prev = _a;					\
663 .      _a->next = _s;					\
664 .      if (_next)					\
665 .        _next->prev = _s;				\
666 .      else						\
667 .        (ABFD)->section_last = _s;			\
668 .    }							\
669 .  while (0)
670 .#define bfd_section_list_insert_before(ABFD, B, S) \
671 .  do							\
672 .    {							\
673 .      asection *_b = B;				\
674 .      asection *_s = S;				\
675 .      asection *_prev = _b->prev;			\
676 .      _s->prev = _prev;				\
677 .      _s->next = _b;					\
678 .      _b->prev = _s;					\
679 .      if (_prev)					\
680 .        _prev->next = _s;				\
681 .      else						\
682 .        (ABFD)->sections = _s;				\
683 .    }							\
684 .  while (0)
685 .#define bfd_section_removed_from_list(ABFD, S) \
686 .  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
687 .
688 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)			\
689 .  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
690 .  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
691 .									\
692 .  {* linker_mark, linker_has_input, gc_mark, decompress_status,    *}	\
693 .     0,           0,                1,       0,			\
694 .									\
695 .  {* segment_mark, sec_info_type, use_rela_p,                      *}	\
696 .     0,            0,             0,					\
697 .									\
698 .  {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,   *}	\
699 .     0,        0,        0,        0,        0,        0,		\
700 .									\
701 .  {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *}	\
702 .     0,   0,   0,    0,       0,               0,     0,		\
703 .									\
704 .  {* output_offset, output_section, alignment_power,               *}	\
705 .     0,             &SEC,           0,					\
706 .									\
707 .  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
708 .     NULL,       NULL,        0,           0,       0,			\
709 .									\
710 .  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
711 .     0,            NULL,     NULL,     NULL,   0,			\
712 .									\
713 .  {* entsize, kept_section, moving_line_filepos,		     *}	\
714 .     0,       NULL,	      0,					\
715 .									\
716 .  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
717 .     0,            NULL,        NULL,              NULL,		\
718 .									\
719 .  {* symbol,                    symbol_ptr_ptr,                    *}	\
720 .     (struct bfd_symbol *) SYM, &SEC.symbol,				\
721 .									\
722 .  {* map_head, map_tail                                            *}	\
723 .     { NULL }, { NULL }						\
724 .    }
725 .
726 */
727 
728 /* We use a macro to initialize the static asymbol structures because
729    traditional C does not permit us to initialize a union member while
730    gcc warns if we don't initialize it.  */
731  /* the_bfd, name, value, attr, section [, udata] */
732 #ifdef __STDC__
733 #define GLOBAL_SYM_INIT(NAME, SECTION) \
734   { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
735 #else
736 #define GLOBAL_SYM_INIT(NAME, SECTION) \
737   { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
738 #endif
739 
740 /* These symbols are global, not specific to any BFD.  Therefore, anything
741    that tries to change them is broken, and should be repaired.  */
742 
743 static const asymbol global_syms[] =
744 {
745   GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
746   GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
747   GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
748   GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
749 };
750 
751 #define STD_SECTION(NAME, IDX, FLAGS) \
752   BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
753 
754 asection _bfd_std_section[] = {
755   STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
756   STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
757   STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
758   STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
759 };
760 #undef STD_SECTION
761 
762 /* Initialize an entry in the section hash table.  */
763 
764 struct bfd_hash_entry *
bfd_section_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)765 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
766 			  struct bfd_hash_table *table,
767 			  const char *string)
768 {
769   /* Allocate the structure if it has not already been allocated by a
770      subclass.  */
771   if (entry == NULL)
772     {
773       entry = (struct bfd_hash_entry *)
774 	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
775       if (entry == NULL)
776 	return entry;
777     }
778 
779   /* Call the allocation method of the superclass.  */
780   entry = bfd_hash_newfunc (entry, table, string);
781   if (entry != NULL)
782     memset (&((struct section_hash_entry *) entry)->section, 0,
783 	    sizeof (asection));
784 
785   return entry;
786 }
787 
788 #define section_hash_lookup(table, string, create, copy) \
789   ((struct section_hash_entry *) \
790    bfd_hash_lookup ((table), (string), (create), (copy)))
791 
792 /* Create a symbol whose only job is to point to this section.  This
793    is useful for things like relocs which are relative to the base
794    of a section.  */
795 
796 bfd_boolean
_bfd_generic_new_section_hook(bfd * abfd,asection * newsect)797 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
798 {
799   newsect->symbol = bfd_make_empty_symbol (abfd);
800   if (newsect->symbol == NULL)
801     return FALSE;
802 
803   newsect->symbol->name = newsect->name;
804   newsect->symbol->value = 0;
805   newsect->symbol->section = newsect;
806   newsect->symbol->flags = BSF_SECTION_SYM;
807 
808   newsect->symbol_ptr_ptr = &newsect->symbol;
809   return TRUE;
810 }
811 
812 /* Initializes a new section.  NEWSECT->NAME is already set.  */
813 
814 static asection *
bfd_section_init(bfd * abfd,asection * newsect)815 bfd_section_init (bfd *abfd, asection *newsect)
816 {
817   static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
818 
819   newsect->id = section_id;
820   newsect->index = abfd->section_count;
821   newsect->owner = abfd;
822 
823   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
824     return NULL;
825 
826   section_id++;
827   abfd->section_count++;
828   bfd_section_list_append (abfd, newsect);
829   return newsect;
830 }
831 
832 /*
833 DOCDD
834 INODE
835 section prototypes,  , typedef asection, Sections
836 SUBSECTION
837 	Section prototypes
838 
839 These are the functions exported by the section handling part of BFD.
840 */
841 
842 /*
843 FUNCTION
844 	bfd_section_list_clear
845 
846 SYNOPSIS
847 	void bfd_section_list_clear (bfd *);
848 
849 DESCRIPTION
850 	Clears the section list, and also resets the section count and
851 	hash table entries.
852 */
853 
854 void
bfd_section_list_clear(bfd * abfd)855 bfd_section_list_clear (bfd *abfd)
856 {
857   abfd->sections = NULL;
858   abfd->section_last = NULL;
859   abfd->section_count = 0;
860   memset (abfd->section_htab.table, 0,
861 	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
862   abfd->section_htab.count = 0;
863 }
864 
865 /*
866 FUNCTION
867 	bfd_get_section_by_name
868 
869 SYNOPSIS
870 	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
871 
872 DESCRIPTION
873 	Return the most recently created section attached to @var{abfd}
874 	named @var{name}.  Return NULL if no such section exists.
875 */
876 
877 asection *
bfd_get_section_by_name(bfd * abfd,const char * name)878 bfd_get_section_by_name (bfd *abfd, const char *name)
879 {
880   struct section_hash_entry *sh;
881 
882   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
883   if (sh != NULL)
884     return &sh->section;
885 
886   return NULL;
887 }
888 
889 /*
890 FUNCTION
891        bfd_get_next_section_by_name
892 
893 SYNOPSIS
894        asection *bfd_get_next_section_by_name (asection *sec);
895 
896 DESCRIPTION
897        Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
898        return the next most recently created section attached to the same
899        BFD with the same name.  Return NULL if no such section exists.
900 */
901 
902 asection *
bfd_get_next_section_by_name(asection * sec)903 bfd_get_next_section_by_name (asection *sec)
904 {
905   struct section_hash_entry *sh;
906   const char *name;
907   unsigned long hash;
908 
909   sh = ((struct section_hash_entry *)
910 	((char *) sec - offsetof (struct section_hash_entry, section)));
911 
912   hash = sh->root.hash;
913   name = sec->name;
914   for (sh = (struct section_hash_entry *) sh->root.next;
915        sh != NULL;
916        sh = (struct section_hash_entry *) sh->root.next)
917     if (sh->root.hash == hash
918        && strcmp (sh->root.string, name) == 0)
919       return &sh->section;
920 
921   return NULL;
922 }
923 
924 /*
925 FUNCTION
926 	bfd_get_linker_section
927 
928 SYNOPSIS
929 	asection *bfd_get_linker_section (bfd *abfd, const char *name);
930 
931 DESCRIPTION
932 	Return the linker created section attached to @var{abfd}
933 	named @var{name}.  Return NULL if no such section exists.
934 */
935 
936 asection *
bfd_get_linker_section(bfd * abfd,const char * name)937 bfd_get_linker_section (bfd *abfd, const char *name)
938 {
939   asection *sec = bfd_get_section_by_name (abfd, name);
940 
941   while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
942     sec = bfd_get_next_section_by_name (sec);
943   return sec;
944 }
945 
946 /*
947 FUNCTION
948 	bfd_get_section_by_name_if
949 
950 SYNOPSIS
951 	asection *bfd_get_section_by_name_if
952 	  (bfd *abfd,
953 	   const char *name,
954 	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
955 	   void *obj);
956 
957 DESCRIPTION
958 	Call the provided function @var{func} for each section
959 	attached to the BFD @var{abfd} whose name matches @var{name},
960 	passing @var{obj} as an argument. The function will be called
961 	as if by
962 
963 |	func (abfd, the_section, obj);
964 
965 	It returns the first section for which @var{func} returns true,
966 	otherwise <<NULL>>.
967 
968 */
969 
970 asection *
bfd_get_section_by_name_if(bfd * abfd,const char * name,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)971 bfd_get_section_by_name_if (bfd *abfd, const char *name,
972 			    bfd_boolean (*operation) (bfd *,
973 						      asection *,
974 						      void *),
975 			    void *user_storage)
976 {
977   struct section_hash_entry *sh;
978   unsigned long hash;
979 
980   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
981   if (sh == NULL)
982     return NULL;
983 
984   hash = sh->root.hash;
985   do
986     {
987       if ((*operation) (abfd, &sh->section, user_storage))
988 	return &sh->section;
989       sh = (struct section_hash_entry *) sh->root.next;
990     }
991   while (sh != NULL && sh->root.hash == hash
992 	 && strcmp (sh->root.string, name) == 0);
993 
994   return NULL;
995 }
996 
997 /*
998 FUNCTION
999 	bfd_get_unique_section_name
1000 
1001 SYNOPSIS
1002 	char *bfd_get_unique_section_name
1003 	  (bfd *abfd, const char *templat, int *count);
1004 
1005 DESCRIPTION
1006 	Invent a section name that is unique in @var{abfd} by tacking
1007 	a dot and a digit suffix onto the original @var{templat}.  If
1008 	@var{count} is non-NULL, then it specifies the first number
1009 	tried as a suffix to generate a unique name.  The value
1010 	pointed to by @var{count} will be incremented in this case.
1011 */
1012 
1013 char *
bfd_get_unique_section_name(bfd * abfd,const char * templat,int * count)1014 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1015 {
1016   int num;
1017   unsigned int len;
1018   char *sname;
1019 
1020   len = strlen (templat);
1021   sname = (char *) bfd_malloc (len + 8);
1022   if (sname == NULL)
1023     return NULL;
1024   memcpy (sname, templat, len);
1025   num = 1;
1026   if (count != NULL)
1027     num = *count;
1028 
1029   do
1030     {
1031       /* If we have a million sections, something is badly wrong.  */
1032       if (num > 999999)
1033 	abort ();
1034       sprintf (sname + len, ".%d", num++);
1035     }
1036   while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1037 
1038   if (count != NULL)
1039     *count = num;
1040   return sname;
1041 }
1042 
1043 /*
1044 FUNCTION
1045 	bfd_make_section_old_way
1046 
1047 SYNOPSIS
1048 	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1049 
1050 DESCRIPTION
1051 	Create a new empty section called @var{name}
1052 	and attach it to the end of the chain of sections for the
1053 	BFD @var{abfd}. An attempt to create a section with a name which
1054 	is already in use returns its pointer without changing the
1055 	section chain.
1056 
1057 	It has the funny name since this is the way it used to be
1058 	before it was rewritten....
1059 
1060 	Possible errors are:
1061 	o <<bfd_error_invalid_operation>> -
1062 	If output has already started for this BFD.
1063 	o <<bfd_error_no_memory>> -
1064 	If memory allocation fails.
1065 
1066 */
1067 
1068 asection *
bfd_make_section_old_way(bfd * abfd,const char * name)1069 bfd_make_section_old_way (bfd *abfd, const char *name)
1070 {
1071   asection *newsect;
1072 
1073   if (abfd->output_has_begun)
1074     {
1075       bfd_set_error (bfd_error_invalid_operation);
1076       return NULL;
1077     }
1078 
1079   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1080     newsect = bfd_abs_section_ptr;
1081   else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1082     newsect = bfd_com_section_ptr;
1083   else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1084     newsect = bfd_und_section_ptr;
1085   else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1086     newsect = bfd_ind_section_ptr;
1087   else
1088     {
1089       struct section_hash_entry *sh;
1090 
1091       sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1092       if (sh == NULL)
1093 	return NULL;
1094 
1095       newsect = &sh->section;
1096       if (newsect->name != NULL)
1097 	{
1098 	  /* Section already exists.  */
1099 	  return newsect;
1100 	}
1101 
1102       newsect->name = name;
1103       return bfd_section_init (abfd, newsect);
1104     }
1105 
1106   /* Call new_section_hook when "creating" the standard abs, com, und
1107      and ind sections to tack on format specific section data.
1108      Also, create a proper section symbol.  */
1109   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1110     return NULL;
1111   return newsect;
1112 }
1113 
1114 /*
1115 FUNCTION
1116 	bfd_make_section_anyway_with_flags
1117 
1118 SYNOPSIS
1119 	asection *bfd_make_section_anyway_with_flags
1120 	  (bfd *abfd, const char *name, flagword flags);
1121 
1122 DESCRIPTION
1123    Create a new empty section called @var{name} and attach it to the end of
1124    the chain of sections for @var{abfd}.  Create a new section even if there
1125    is already a section with that name.  Also set the attributes of the
1126    new section to the value @var{flags}.
1127 
1128    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1129    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1130    o <<bfd_error_no_memory>> - If memory allocation fails.
1131 */
1132 
1133 sec_ptr
bfd_make_section_anyway_with_flags(bfd * abfd,const char * name,flagword flags)1134 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1135 				    flagword flags)
1136 {
1137   struct section_hash_entry *sh;
1138   asection *newsect;
1139 
1140   if (abfd->output_has_begun)
1141     {
1142       bfd_set_error (bfd_error_invalid_operation);
1143       return NULL;
1144     }
1145 
1146   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1147   if (sh == NULL)
1148     return NULL;
1149 
1150   newsect = &sh->section;
1151   if (newsect->name != NULL)
1152     {
1153       /* We are making a section of the same name.  Put it in the
1154 	 section hash table.  Even though we can't find it directly by a
1155 	 hash lookup, we'll be able to find the section by traversing
1156 	 sh->root.next quicker than looking at all the bfd sections.  */
1157       struct section_hash_entry *new_sh;
1158       new_sh = (struct section_hash_entry *)
1159 	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1160       if (new_sh == NULL)
1161 	return NULL;
1162 
1163       new_sh->root = sh->root;
1164       sh->root.next = &new_sh->root;
1165       newsect = &new_sh->section;
1166     }
1167 
1168   newsect->flags = flags;
1169   newsect->name = name;
1170   return bfd_section_init (abfd, newsect);
1171 }
1172 
1173 /*
1174 FUNCTION
1175 	bfd_make_section_anyway
1176 
1177 SYNOPSIS
1178 	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1179 
1180 DESCRIPTION
1181    Create a new empty section called @var{name} and attach it to the end of
1182    the chain of sections for @var{abfd}.  Create a new section even if there
1183    is already a section with that name.
1184 
1185    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1186    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1187    o <<bfd_error_no_memory>> - If memory allocation fails.
1188 */
1189 
1190 sec_ptr
bfd_make_section_anyway(bfd * abfd,const char * name)1191 bfd_make_section_anyway (bfd *abfd, const char *name)
1192 {
1193   return bfd_make_section_anyway_with_flags (abfd, name, 0);
1194 }
1195 
1196 /*
1197 FUNCTION
1198 	bfd_make_section_with_flags
1199 
1200 SYNOPSIS
1201 	asection *bfd_make_section_with_flags
1202 	  (bfd *, const char *name, flagword flags);
1203 
1204 DESCRIPTION
1205    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1206    bfd_set_error ()) without changing the section chain if there is already a
1207    section named @var{name}.  Also set the attributes of the new section to
1208    the value @var{flags}.  If there is an error, return <<NULL>> and set
1209    <<bfd_error>>.
1210 */
1211 
1212 asection *
bfd_make_section_with_flags(bfd * abfd,const char * name,flagword flags)1213 bfd_make_section_with_flags (bfd *abfd, const char *name,
1214 			     flagword flags)
1215 {
1216   struct section_hash_entry *sh;
1217   asection *newsect;
1218 
1219   if (abfd->output_has_begun)
1220     {
1221       bfd_set_error (bfd_error_invalid_operation);
1222       return NULL;
1223     }
1224 
1225   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1226       || strcmp (name, BFD_COM_SECTION_NAME) == 0
1227       || strcmp (name, BFD_UND_SECTION_NAME) == 0
1228       || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1229     return NULL;
1230 
1231   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1232   if (sh == NULL)
1233     return NULL;
1234 
1235   newsect = &sh->section;
1236   if (newsect->name != NULL)
1237     {
1238       /* Section already exists.  */
1239       return NULL;
1240     }
1241 
1242   newsect->name = name;
1243   newsect->flags = flags;
1244   return bfd_section_init (abfd, newsect);
1245 }
1246 
1247 /*
1248 FUNCTION
1249 	bfd_make_section
1250 
1251 SYNOPSIS
1252 	asection *bfd_make_section (bfd *, const char *name);
1253 
1254 DESCRIPTION
1255    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1256    bfd_set_error ()) without changing the section chain if there is already a
1257    section named @var{name}.  If there is an error, return <<NULL>> and set
1258    <<bfd_error>>.
1259 */
1260 
1261 asection *
bfd_make_section(bfd * abfd,const char * name)1262 bfd_make_section (bfd *abfd, const char *name)
1263 {
1264   return bfd_make_section_with_flags (abfd, name, 0);
1265 }
1266 
1267 /*
1268 FUNCTION
1269 	bfd_set_section_flags
1270 
1271 SYNOPSIS
1272 	bfd_boolean bfd_set_section_flags
1273 	  (bfd *abfd, asection *sec, flagword flags);
1274 
1275 DESCRIPTION
1276 	Set the attributes of the section @var{sec} in the BFD
1277 	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1278 	<<FALSE>> on error. Possible error returns are:
1279 
1280 	o <<bfd_error_invalid_operation>> -
1281 	The section cannot have one or more of the attributes
1282 	requested. For example, a .bss section in <<a.out>> may not
1283 	have the <<SEC_HAS_CONTENTS>> field set.
1284 
1285 */
1286 
1287 bfd_boolean
bfd_set_section_flags(bfd * abfd ATTRIBUTE_UNUSED,sec_ptr section,flagword flags)1288 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1289 		       sec_ptr section,
1290 		       flagword flags)
1291 {
1292   section->flags = flags;
1293   return TRUE;
1294 }
1295 
1296 /*
1297 FUNCTION
1298 	bfd_rename_section
1299 
1300 SYNOPSIS
1301 	void bfd_rename_section
1302 	  (bfd *abfd, asection *sec, const char *newname);
1303 
1304 DESCRIPTION
1305 	Rename section @var{sec} in @var{abfd} to @var{newname}.
1306 */
1307 
1308 void
bfd_rename_section(bfd * abfd,sec_ptr sec,const char * newname)1309 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1310 {
1311   struct section_hash_entry *sh;
1312 
1313   sh = (struct section_hash_entry *)
1314     ((char *) sec - offsetof (struct section_hash_entry, section));
1315   sh->section.name = newname;
1316   bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1317 }
1318 
1319 /*
1320 FUNCTION
1321 	bfd_map_over_sections
1322 
1323 SYNOPSIS
1324 	void bfd_map_over_sections
1325 	  (bfd *abfd,
1326 	   void (*func) (bfd *abfd, asection *sect, void *obj),
1327 	   void *obj);
1328 
1329 DESCRIPTION
1330 	Call the provided function @var{func} for each section
1331 	attached to the BFD @var{abfd}, passing @var{obj} as an
1332 	argument. The function will be called as if by
1333 
1334 |	func (abfd, the_section, obj);
1335 
1336 	This is the preferred method for iterating over sections; an
1337 	alternative would be to use a loop:
1338 
1339 |	   asection *p;
1340 |	   for (p = abfd->sections; p != NULL; p = p->next)
1341 |	      func (abfd, p, ...)
1342 
1343 */
1344 
1345 void
bfd_map_over_sections(bfd * abfd,void (* operation)(bfd *,asection *,void *),void * user_storage)1346 bfd_map_over_sections (bfd *abfd,
1347 		       void (*operation) (bfd *, asection *, void *),
1348 		       void *user_storage)
1349 {
1350   asection *sect;
1351   unsigned int i = 0;
1352 
1353   for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1354     (*operation) (abfd, sect, user_storage);
1355 
1356   if (i != abfd->section_count)	/* Debugging */
1357     abort ();
1358 }
1359 
1360 /*
1361 FUNCTION
1362 	bfd_sections_find_if
1363 
1364 SYNOPSIS
1365 	asection *bfd_sections_find_if
1366 	  (bfd *abfd,
1367 	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1368 	   void *obj);
1369 
1370 DESCRIPTION
1371 	Call the provided function @var{operation} for each section
1372 	attached to the BFD @var{abfd}, passing @var{obj} as an
1373 	argument. The function will be called as if by
1374 
1375 |	operation (abfd, the_section, obj);
1376 
1377 	It returns the first section for which @var{operation} returns true.
1378 
1379 */
1380 
1381 asection *
bfd_sections_find_if(bfd * abfd,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)1382 bfd_sections_find_if (bfd *abfd,
1383 		      bfd_boolean (*operation) (bfd *, asection *, void *),
1384 		      void *user_storage)
1385 {
1386   asection *sect;
1387 
1388   for (sect = abfd->sections; sect != NULL; sect = sect->next)
1389     if ((*operation) (abfd, sect, user_storage))
1390       break;
1391 
1392   return sect;
1393 }
1394 
1395 /*
1396 FUNCTION
1397 	bfd_set_section_size
1398 
1399 SYNOPSIS
1400 	bfd_boolean bfd_set_section_size
1401 	  (bfd *abfd, asection *sec, bfd_size_type val);
1402 
1403 DESCRIPTION
1404 	Set @var{sec} to the size @var{val}. If the operation is
1405 	ok, then <<TRUE>> is returned, else <<FALSE>>.
1406 
1407 	Possible error returns:
1408 	o <<bfd_error_invalid_operation>> -
1409 	Writing has started to the BFD, so setting the size is invalid.
1410 
1411 */
1412 
1413 bfd_boolean
bfd_set_section_size(bfd * abfd,sec_ptr ptr,bfd_size_type val)1414 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1415 {
1416   /* Once you've started writing to any section you cannot create or change
1417      the size of any others.  */
1418 
1419   if (abfd->output_has_begun)
1420     {
1421       bfd_set_error (bfd_error_invalid_operation);
1422       return FALSE;
1423     }
1424 
1425   ptr->size = val;
1426   return TRUE;
1427 }
1428 
1429 /*
1430 FUNCTION
1431 	bfd_set_section_contents
1432 
1433 SYNOPSIS
1434 	bfd_boolean bfd_set_section_contents
1435 	  (bfd *abfd, asection *section, const void *data,
1436 	   file_ptr offset, bfd_size_type count);
1437 
1438 DESCRIPTION
1439 	Sets the contents of the section @var{section} in BFD
1440 	@var{abfd} to the data starting in memory at @var{data}. The
1441 	data is written to the output section starting at offset
1442 	@var{offset} for @var{count} octets.
1443 
1444 	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1445 	returns are:
1446 	o <<bfd_error_no_contents>> -
1447 	The output section does not have the <<SEC_HAS_CONTENTS>>
1448 	attribute, so nothing can be written to it.
1449 	o and some more too
1450 
1451 	This routine is front end to the back end function
1452 	<<_bfd_set_section_contents>>.
1453 
1454 */
1455 
1456 bfd_boolean
bfd_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)1457 bfd_set_section_contents (bfd *abfd,
1458 			  sec_ptr section,
1459 			  const void *location,
1460 			  file_ptr offset,
1461 			  bfd_size_type count)
1462 {
1463   bfd_size_type sz;
1464 
1465   if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1466     {
1467       bfd_set_error (bfd_error_no_contents);
1468       return FALSE;
1469     }
1470 
1471   sz = section->size;
1472   if ((bfd_size_type) offset > sz
1473       || count > sz
1474       || offset + count > sz
1475       || count != (size_t) count)
1476     {
1477       bfd_set_error (bfd_error_bad_value);
1478       return FALSE;
1479     }
1480 
1481   if (!bfd_write_p (abfd))
1482     {
1483       bfd_set_error (bfd_error_invalid_operation);
1484       return FALSE;
1485     }
1486 
1487   /* Record a copy of the data in memory if desired.  */
1488   if (section->contents
1489       && location != section->contents + offset)
1490     memcpy (section->contents + offset, location, (size_t) count);
1491 
1492   if (BFD_SEND (abfd, _bfd_set_section_contents,
1493 		(abfd, section, location, offset, count)))
1494     {
1495       abfd->output_has_begun = TRUE;
1496       return TRUE;
1497     }
1498 
1499   return FALSE;
1500 }
1501 
1502 /*
1503 FUNCTION
1504 	bfd_get_section_contents
1505 
1506 SYNOPSIS
1507 	bfd_boolean bfd_get_section_contents
1508 	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1509 	   bfd_size_type count);
1510 
1511 DESCRIPTION
1512 	Read data from @var{section} in BFD @var{abfd}
1513 	into memory starting at @var{location}. The data is read at an
1514 	offset of @var{offset} from the start of the input section,
1515 	and is read for @var{count} bytes.
1516 
1517 	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1518 	flag set are requested or if the section does not have the
1519 	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1520 	with zeroes. If no errors occur, <<TRUE>> is returned, else
1521 	<<FALSE>>.
1522 
1523 */
1524 bfd_boolean
bfd_get_section_contents(bfd * abfd,sec_ptr section,void * location,file_ptr offset,bfd_size_type count)1525 bfd_get_section_contents (bfd *abfd,
1526 			  sec_ptr section,
1527 			  void *location,
1528 			  file_ptr offset,
1529 			  bfd_size_type count)
1530 {
1531   bfd_size_type sz;
1532 
1533   if (section->flags & SEC_CONSTRUCTOR)
1534     {
1535       memset (location, 0, (size_t) count);
1536       return TRUE;
1537     }
1538 
1539   if (abfd->direction != write_direction && section->rawsize != 0)
1540     sz = section->rawsize;
1541   else
1542     sz = section->size;
1543   if ((bfd_size_type) offset > sz
1544       || count > sz
1545       || offset + count > sz
1546       || count != (size_t) count)
1547     {
1548       bfd_set_error (bfd_error_bad_value);
1549       return FALSE;
1550     }
1551 
1552   if (count == 0)
1553     /* Don't bother.  */
1554     return TRUE;
1555 
1556   if ((section->flags & SEC_HAS_CONTENTS) == 0)
1557     {
1558       memset (location, 0, (size_t) count);
1559       return TRUE;
1560     }
1561 
1562   if ((section->flags & SEC_IN_MEMORY) != 0)
1563     {
1564       if (section->contents == NULL)
1565 	{
1566 	  /* This can happen because of errors earlier on in the linking process.
1567 	     We do not want to seg-fault here, so clear the flag and return an
1568 	     error code.  */
1569 	  section->flags &= ~ SEC_IN_MEMORY;
1570 	  bfd_set_error (bfd_error_invalid_operation);
1571 	  return FALSE;
1572 	}
1573 
1574       memmove (location, section->contents + offset, (size_t) count);
1575       return TRUE;
1576     }
1577 
1578   return BFD_SEND (abfd, _bfd_get_section_contents,
1579 		   (abfd, section, location, offset, count));
1580 }
1581 
1582 /*
1583 FUNCTION
1584 	bfd_malloc_and_get_section
1585 
1586 SYNOPSIS
1587 	bfd_boolean bfd_malloc_and_get_section
1588 	  (bfd *abfd, asection *section, bfd_byte **buf);
1589 
1590 DESCRIPTION
1591 	Read all data from @var{section} in BFD @var{abfd}
1592 	into a buffer, *@var{buf}, malloc'd by this function.
1593 */
1594 
1595 bfd_boolean
bfd_malloc_and_get_section(bfd * abfd,sec_ptr sec,bfd_byte ** buf)1596 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1597 {
1598   *buf = NULL;
1599   return bfd_get_full_section_contents (abfd, sec, buf);
1600 }
1601 /*
1602 FUNCTION
1603 	bfd_copy_private_section_data
1604 
1605 SYNOPSIS
1606 	bfd_boolean bfd_copy_private_section_data
1607 	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1608 
1609 DESCRIPTION
1610 	Copy private section information from @var{isec} in the BFD
1611 	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1612 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1613 	returns are:
1614 
1615 	o <<bfd_error_no_memory>> -
1616 	Not enough memory exists to create private data for @var{osec}.
1617 
1618 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1619 .     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1620 .		(ibfd, isection, obfd, osection))
1621 */
1622 
1623 /*
1624 FUNCTION
1625 	bfd_generic_is_group_section
1626 
1627 SYNOPSIS
1628 	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1629 
1630 DESCRIPTION
1631 	Returns TRUE if @var{sec} is a member of a group.
1632 */
1633 
1634 bfd_boolean
bfd_generic_is_group_section(bfd * abfd ATTRIBUTE_UNUSED,const asection * sec ATTRIBUTE_UNUSED)1635 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1636 			      const asection *sec ATTRIBUTE_UNUSED)
1637 {
1638   return FALSE;
1639 }
1640 
1641 /*
1642 FUNCTION
1643 	bfd_generic_discard_group
1644 
1645 SYNOPSIS
1646 	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1647 
1648 DESCRIPTION
1649 	Remove all members of @var{group} from the output.
1650 */
1651 
1652 bfd_boolean
bfd_generic_discard_group(bfd * abfd ATTRIBUTE_UNUSED,asection * group ATTRIBUTE_UNUSED)1653 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1654 			   asection *group ATTRIBUTE_UNUSED)
1655 {
1656   return TRUE;
1657 }
1658