1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2014 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data. An IEEE-695 file doesn't contain raw data in
69 sections, but data and relocation expressions intermixed, so
70 the data area has to be parsed to get out the data and
71 relocations.
72
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75
76 SUBSECTION
77 Section output
78
79 To write a new object style BFD, the various sections to be
80 written have to be created. They are attached to the BFD in
81 the same way as input sections; data is written to the
82 sections using <<bfd_set_section_contents>>.
83
84 Any program that creates or combines sections (e.g., the assembler
85 and linker) must use the <<asection>> fields <<output_section>> and
86 <<output_offset>> to indicate the file sections to which each
87 section must be written. (If the section is being created from
88 scratch, <<output_section>> should probably point to the section
89 itself and <<output_offset>> should probably be zero.)
90
91 The data to be written comes from input sections attached
92 (via <<output_section>> pointers) to
93 the output sections. The output section structure can be
94 considered a filter for the input section: the output section
95 determines the vma of the output data and the name, but the
96 input section determines the offset into the output section of
97 the data to be written.
98
99 E.g., to create a section "O", starting at 0x100, 0x123 long,
100 containing two subsections, "A" at offset 0x0 (i.e., at vma
101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 structures would look like:
103
104 | section name "A"
105 | output_offset 0x00
106 | size 0x20
107 | output_section -----------> section name "O"
108 | | vma 0x100
109 | section name "B" | size 0x123
110 | output_offset 0x20 |
111 | size 0x103 |
112 | output_section --------|
113
114 SUBSECTION
115 Link orders
116
117 The data within a section is stored in a @dfn{link_order}.
118 These are much like the fixups in <<gas>>. The link_order
119 abstraction allows a section to grow and shrink within itself.
120
121 A link_order knows how big it is, and which is the next
122 link_order and where the raw data for it is; it also points to
123 a list of relocations which apply to it.
124
125 The link_order is used by the linker to perform relaxing on
126 final code. The compiler creates code which is as big as
127 necessary to make it work without relaxing, and the user can
128 select whether to relax. Sometimes relaxing takes a lot of
129 time. The linker runs around the relocations to see if any
130 are attached to data which can be shrunk, if so it does it on
131 a link_order by link_order basis.
132
133 */
134
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 typedef asection
146
147 Here is the section structure:
148
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 . {* The name of the section; the name isn't a copy, the pointer is
154 . the same as that passed to bfd_make_section. *}
155 . const char *name;
156 .
157 . {* A unique sequence number. *}
158 . int id;
159 .
160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
161 . int index;
162 .
163 . {* The next section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *next;
165 .
166 . {* The previous section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *prev;
168 .
169 . {* The field flags contains attributes of the section. Some
170 . flags are read in from the object file, and some are
171 . synthesized from other information. *}
172 . flagword flags;
173 .
174 .#define SEC_NO_FLAGS 0x000
175 .
176 . {* Tells the OS to allocate space for this section when loading.
177 . This is clear for a section containing debug information only. *}
178 .#define SEC_ALLOC 0x001
179 .
180 . {* Tells the OS to load the section from the file when loading.
181 . This is clear for a .bss section. *}
182 .#define SEC_LOAD 0x002
183 .
184 . {* The section contains data still to be relocated, so there is
185 . some relocation information too. *}
186 .#define SEC_RELOC 0x004
187 .
188 . {* A signal to the OS that the section contains read only data. *}
189 .#define SEC_READONLY 0x008
190 .
191 . {* The section contains code only. *}
192 .#define SEC_CODE 0x010
193 .
194 . {* The section contains data only. *}
195 .#define SEC_DATA 0x020
196 .
197 . {* The section will reside in ROM. *}
198 .#define SEC_ROM 0x040
199 .
200 . {* The section contains constructor information. This section
201 . type is used by the linker to create lists of constructors and
202 . destructors used by <<g++>>. When a back end sees a symbol
203 . which should be used in a constructor list, it creates a new
204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 . the symbol to it, and builds a relocation. To build the lists
206 . of constructors, all the linker has to do is catenate all the
207 . sections called <<__CTOR_LIST__>> and relocate the data
208 . contained within - exactly the operations it would peform on
209 . standard data. *}
210 .#define SEC_CONSTRUCTOR 0x080
211 .
212 . {* The section has contents - a data section could be
213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 . <<SEC_HAS_CONTENTS>> *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 . {* An instruction to the linker to not output the section
218 . even if it has information which would normally be written. *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 . {* The section contains thread local data. *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 . {* The section has GOT references. This flag is only for the
225 . linker, and is currently only used by the elf32-hppa back end.
226 . It will be set if global offset table references were detected
227 . in this section, which indicate to the linker that the section
228 . contains PIC code, and must be handled specially when doing a
229 . static link. *}
230 .#define SEC_HAS_GOT_REF 0x800
231 .
232 . {* The section contains common symbols (symbols may be defined
233 . multiple times, the value of a symbol is the amount of
234 . space it requires, and the largest symbol value is the one
235 . used). Most targets have exactly one of these (which we
236 . translate to bfd_com_section_ptr), but ECOFF has two. *}
237 .#define SEC_IS_COMMON 0x1000
238 .
239 . {* The section contains only debugging information. For
240 . example, this is set for ELF .debug and .stab sections.
241 . strip tests this flag to see if a section can be
242 . discarded. *}
243 .#define SEC_DEBUGGING 0x2000
244 .
245 . {* The contents of this section are held in memory pointed to
246 . by the contents field. This is checked by bfd_get_section_contents,
247 . and the data is retrieved from memory if appropriate. *}
248 .#define SEC_IN_MEMORY 0x4000
249 .
250 . {* The contents of this section are to be excluded by the
251 . linker for executable and shared objects unless those
252 . objects are to be further relocated. *}
253 .#define SEC_EXCLUDE 0x8000
254 .
255 . {* The contents of this section are to be sorted based on the sum of
256 . the symbol and addend values specified by the associated relocation
257 . entries. Entries without associated relocation entries will be
258 . appended to the end of the section in an unspecified order. *}
259 .#define SEC_SORT_ENTRIES 0x10000
260 .
261 . {* When linking, duplicate sections of the same name should be
262 . discarded, rather than being combined into a single section as
263 . is usually done. This is similar to how common symbols are
264 . handled. See SEC_LINK_DUPLICATES below. *}
265 .#define SEC_LINK_ONCE 0x20000
266 .
267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
268 . should handle duplicate sections. *}
269 .#define SEC_LINK_DUPLICATES 0xc0000
270 .
271 . {* This value for SEC_LINK_DUPLICATES means that duplicate
272 . sections with the same name should simply be discarded. *}
273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
274 .
275 . {* This value for SEC_LINK_DUPLICATES means that the linker
276 . should warn if there are any duplicate sections, although
277 . it should still only link one copy. *}
278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
279 .
280 . {* This value for SEC_LINK_DUPLICATES means that the linker
281 . should warn if any duplicate sections are a different size. *}
282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
283 .
284 . {* This value for SEC_LINK_DUPLICATES means that the linker
285 . should warn if any duplicate sections contain different
286 . contents. *}
287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
289 .
290 . {* This section was created by the linker as part of dynamic
291 . relocation or other arcane processing. It is skipped when
292 . going through the first-pass output, trusting that someone
293 . else up the line will take care of it later. *}
294 .#define SEC_LINKER_CREATED 0x100000
295 .
296 . {* This section should not be subject to garbage collection.
297 . Also set to inform the linker that this section should not be
298 . listed in the link map as discarded. *}
299 .#define SEC_KEEP 0x200000
300 .
301 . {* This section contains "short" data, and should be placed
302 . "near" the GP. *}
303 .#define SEC_SMALL_DATA 0x400000
304 .
305 . {* Attempt to merge identical entities in the section.
306 . Entity size is given in the entsize field. *}
307 .#define SEC_MERGE 0x800000
308 .
309 . {* If given with SEC_MERGE, entities to merge are zero terminated
310 . strings where entsize specifies character size instead of fixed
311 . size entries. *}
312 .#define SEC_STRINGS 0x1000000
313 .
314 . {* This section contains data about section groups. *}
315 .#define SEC_GROUP 0x2000000
316 .
317 . {* The section is a COFF shared library section. This flag is
318 . only for the linker. If this type of section appears in
319 . the input file, the linker must copy it to the output file
320 . without changing the vma or size. FIXME: Although this
321 . was originally intended to be general, it really is COFF
322 . specific (and the flag was renamed to indicate this). It
323 . might be cleaner to have some more general mechanism to
324 . allow the back end to control what the linker does with
325 . sections. *}
326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
327 .
328 . {* This input section should be copied to output in reverse order
329 . as an array of pointers. This is for ELF linker internal use
330 . only. *}
331 .#define SEC_ELF_REVERSE_COPY 0x4000000
332 .
333 . {* This section contains data which may be shared with other
334 . executables or shared objects. This is for COFF only. *}
335 .#define SEC_COFF_SHARED 0x8000000
336 .
337 . {* When a section with this flag is being linked, then if the size of
338 . the input section is less than a page, it should not cross a page
339 . boundary. If the size of the input section is one page or more,
340 . it should be aligned on a page boundary. This is for TI
341 . TMS320C54X only. *}
342 .#define SEC_TIC54X_BLOCK 0x10000000
343 .
344 . {* Conditionally link this section; do not link if there are no
345 . references found to any symbol in the section. This is for TI
346 . TMS320C54X only. *}
347 .#define SEC_TIC54X_CLINK 0x20000000
348 .
349 . {* Indicate that section has the no read flag set. This happens
350 . when memory read flag isn't set. *}
351 .#define SEC_COFF_NOREAD 0x40000000
352 .
353 . {* End of section flags. *}
354 .
355 . {* Some internal packed boolean fields. *}
356 .
357 . {* See the vma field. *}
358 . unsigned int user_set_vma : 1;
359 .
360 . {* A mark flag used by some of the linker backends. *}
361 . unsigned int linker_mark : 1;
362 .
363 . {* Another mark flag used by some of the linker backends. Set for
364 . output sections that have an input section. *}
365 . unsigned int linker_has_input : 1;
366 .
367 . {* Mark flag used by some linker backends for garbage collection. *}
368 . unsigned int gc_mark : 1;
369 .
370 . {* Section compression status. *}
371 . unsigned int compress_status : 2;
372 .#define COMPRESS_SECTION_NONE 0
373 .#define COMPRESS_SECTION_DONE 1
374 .#define DECOMPRESS_SECTION_SIZED 2
375 .
376 . {* The following flags are used by the ELF linker. *}
377 .
378 . {* Mark sections which have been allocated to segments. *}
379 . unsigned int segment_mark : 1;
380 .
381 . {* Type of sec_info information. *}
382 . unsigned int sec_info_type:3;
383 .#define SEC_INFO_TYPE_NONE 0
384 .#define SEC_INFO_TYPE_STABS 1
385 .#define SEC_INFO_TYPE_MERGE 2
386 .#define SEC_INFO_TYPE_EH_FRAME 3
387 .#define SEC_INFO_TYPE_JUST_SYMS 4
388 .#define SEC_INFO_TYPE_TARGET 5
389 .
390 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
391 . unsigned int use_rela_p:1;
392 .
393 . {* Bits used by various backends. The generic code doesn't touch
394 . these fields. *}
395 .
396 . unsigned int sec_flg0:1;
397 . unsigned int sec_flg1:1;
398 . unsigned int sec_flg2:1;
399 . unsigned int sec_flg3:1;
400 . unsigned int sec_flg4:1;
401 . unsigned int sec_flg5:1;
402 .
403 . {* End of internal packed boolean fields. *}
404 .
405 . {* The virtual memory address of the section - where it will be
406 . at run time. The symbols are relocated against this. The
407 . user_set_vma flag is maintained by bfd; if it's not set, the
408 . backend can assign addresses (for example, in <<a.out>>, where
409 . the default address for <<.data>> is dependent on the specific
410 . target and various flags). *}
411 . bfd_vma vma;
412 .
413 . {* The load address of the section - where it would be in a
414 . rom image; really only used for writing section header
415 . information. *}
416 . bfd_vma lma;
417 .
418 . {* The size of the section in octets, as it will be output.
419 . Contains a value even if the section has no contents (e.g., the
420 . size of <<.bss>>). *}
421 . bfd_size_type size;
422 .
423 . {* For input sections, the original size on disk of the section, in
424 . octets. This field should be set for any section whose size is
425 . changed by linker relaxation. It is required for sections where
426 . the linker relaxation scheme doesn't cache altered section and
427 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
428 . targets), and thus the original size needs to be kept to read the
429 . section multiple times. For output sections, rawsize holds the
430 . section size calculated on a previous linker relaxation pass. *}
431 . bfd_size_type rawsize;
432 .
433 . {* The compressed size of the section in octets. *}
434 . bfd_size_type compressed_size;
435 .
436 . {* Relaxation table. *}
437 . struct relax_table *relax;
438 .
439 . {* Count of used relaxation table entries. *}
440 . int relax_count;
441 .
442 .
443 . {* If this section is going to be output, then this value is the
444 . offset in *bytes* into the output section of the first byte in the
445 . input section (byte ==> smallest addressable unit on the
446 . target). In most cases, if this was going to start at the
447 . 100th octet (8-bit quantity) in the output section, this value
448 . would be 100. However, if the target byte size is 16 bits
449 . (bfd_octets_per_byte is "2"), this value would be 50. *}
450 . bfd_vma output_offset;
451 .
452 . {* The output section through which to map on output. *}
453 . struct bfd_section *output_section;
454 .
455 . {* The alignment requirement of the section, as an exponent of 2 -
456 . e.g., 3 aligns to 2^3 (or 8). *}
457 . unsigned int alignment_power;
458 .
459 . {* If an input section, a pointer to a vector of relocation
460 . records for the data in this section. *}
461 . struct reloc_cache_entry *relocation;
462 .
463 . {* If an output section, a pointer to a vector of pointers to
464 . relocation records for the data in this section. *}
465 . struct reloc_cache_entry **orelocation;
466 .
467 . {* The number of relocation records in one of the above. *}
468 . unsigned reloc_count;
469 .
470 . {* Information below is back end specific - and not always used
471 . or updated. *}
472 .
473 . {* File position of section data. *}
474 . file_ptr filepos;
475 .
476 . {* File position of relocation info. *}
477 . file_ptr rel_filepos;
478 .
479 . {* File position of line data. *}
480 . file_ptr line_filepos;
481 .
482 . {* Pointer to data for applications. *}
483 . void *userdata;
484 .
485 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
486 . contents. *}
487 . unsigned char *contents;
488 .
489 . {* Attached line number information. *}
490 . alent *lineno;
491 .
492 . {* Number of line number records. *}
493 . unsigned int lineno_count;
494 .
495 . {* Entity size for merging purposes. *}
496 . unsigned int entsize;
497 .
498 . {* Points to the kept section if this section is a link-once section,
499 . and is discarded. *}
500 . struct bfd_section *kept_section;
501 .
502 . {* When a section is being output, this value changes as more
503 . linenumbers are written out. *}
504 . file_ptr moving_line_filepos;
505 .
506 . {* What the section number is in the target world. *}
507 . int target_index;
508 .
509 . void *used_by_bfd;
510 .
511 . {* If this is a constructor section then here is a list of the
512 . relocations created to relocate items within it. *}
513 . struct relent_chain *constructor_chain;
514 .
515 . {* The BFD which owns the section. *}
516 . bfd *owner;
517 .
518 . {* A symbol which points at this section only. *}
519 . struct bfd_symbol *symbol;
520 . struct bfd_symbol **symbol_ptr_ptr;
521 .
522 . {* Early in the link process, map_head and map_tail are used to build
523 . a list of input sections attached to an output section. Later,
524 . output sections use these fields for a list of bfd_link_order
525 . structs. *}
526 . union {
527 . struct bfd_link_order *link_order;
528 . struct bfd_section *s;
529 . } map_head, map_tail;
530 .} asection;
531 .
532 .{* Relax table contains information about instructions which can
533 . be removed by relaxation -- replacing a long address with a
534 . short address. *}
535 .struct relax_table {
536 . {* Address where bytes may be deleted. *}
537 . bfd_vma addr;
538 .
539 . {* Number of bytes to be deleted. *}
540 . int size;
541 .};
542 .
543 .{* Note: the following are provided as inline functions rather than macros
544 . because not all callers use the return value. A macro implementation
545 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
546 . compilers will complain about comma expressions that have no effect. *}
547 .static inline bfd_boolean
548 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
549 .{
550 . ptr->userdata = val;
551 . return TRUE;
552 .}
553 .
554 .static inline bfd_boolean
555 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
556 .{
557 . ptr->vma = ptr->lma = val;
558 . ptr->user_set_vma = TRUE;
559 . return TRUE;
560 .}
561 .
562 .static inline bfd_boolean
563 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
564 .{
565 . ptr->alignment_power = val;
566 . return TRUE;
567 .}
568 .
569 .{* These sections are global, and are managed by BFD. The application
570 . and target back end are not permitted to change the values in
571 . these sections. *}
572 .extern asection _bfd_std_section[4];
573 .
574 .#define BFD_ABS_SECTION_NAME "*ABS*"
575 .#define BFD_UND_SECTION_NAME "*UND*"
576 .#define BFD_COM_SECTION_NAME "*COM*"
577 .#define BFD_IND_SECTION_NAME "*IND*"
578 .
579 .{* Pointer to the common section. *}
580 .#define bfd_com_section_ptr (&_bfd_std_section[0])
581 .{* Pointer to the undefined section. *}
582 .#define bfd_und_section_ptr (&_bfd_std_section[1])
583 .{* Pointer to the absolute section. *}
584 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
585 .{* Pointer to the indirect section. *}
586 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
587 .
588 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
589 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
590 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
591 .
592 .#define bfd_is_const_section(SEC) \
593 . ( ((SEC) == bfd_abs_section_ptr) \
594 . || ((SEC) == bfd_und_section_ptr) \
595 . || ((SEC) == bfd_com_section_ptr) \
596 . || ((SEC) == bfd_ind_section_ptr))
597 .
598 .{* Macros to handle insertion and deletion of a bfd's sections. These
599 . only handle the list pointers, ie. do not adjust section_count,
600 . target_index etc. *}
601 .#define bfd_section_list_remove(ABFD, S) \
602 . do \
603 . { \
604 . asection *_s = S; \
605 . asection *_next = _s->next; \
606 . asection *_prev = _s->prev; \
607 . if (_prev) \
608 . _prev->next = _next; \
609 . else \
610 . (ABFD)->sections = _next; \
611 . if (_next) \
612 . _next->prev = _prev; \
613 . else \
614 . (ABFD)->section_last = _prev; \
615 . } \
616 . while (0)
617 .#define bfd_section_list_append(ABFD, S) \
618 . do \
619 . { \
620 . asection *_s = S; \
621 . bfd *_abfd = ABFD; \
622 . _s->next = NULL; \
623 . if (_abfd->section_last) \
624 . { \
625 . _s->prev = _abfd->section_last; \
626 . _abfd->section_last->next = _s; \
627 . } \
628 . else \
629 . { \
630 . _s->prev = NULL; \
631 . _abfd->sections = _s; \
632 . } \
633 . _abfd->section_last = _s; \
634 . } \
635 . while (0)
636 .#define bfd_section_list_prepend(ABFD, S) \
637 . do \
638 . { \
639 . asection *_s = S; \
640 . bfd *_abfd = ABFD; \
641 . _s->prev = NULL; \
642 . if (_abfd->sections) \
643 . { \
644 . _s->next = _abfd->sections; \
645 . _abfd->sections->prev = _s; \
646 . } \
647 . else \
648 . { \
649 . _s->next = NULL; \
650 . _abfd->section_last = _s; \
651 . } \
652 . _abfd->sections = _s; \
653 . } \
654 . while (0)
655 .#define bfd_section_list_insert_after(ABFD, A, S) \
656 . do \
657 . { \
658 . asection *_a = A; \
659 . asection *_s = S; \
660 . asection *_next = _a->next; \
661 . _s->next = _next; \
662 . _s->prev = _a; \
663 . _a->next = _s; \
664 . if (_next) \
665 . _next->prev = _s; \
666 . else \
667 . (ABFD)->section_last = _s; \
668 . } \
669 . while (0)
670 .#define bfd_section_list_insert_before(ABFD, B, S) \
671 . do \
672 . { \
673 . asection *_b = B; \
674 . asection *_s = S; \
675 . asection *_prev = _b->prev; \
676 . _s->prev = _prev; \
677 . _s->next = _b; \
678 . _b->prev = _s; \
679 . if (_prev) \
680 . _prev->next = _s; \
681 . else \
682 . (ABFD)->sections = _s; \
683 . } \
684 . while (0)
685 .#define bfd_section_removed_from_list(ABFD, S) \
686 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
687 .
688 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
689 . {* name, id, index, next, prev, flags, user_set_vma, *} \
690 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
691 . \
692 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
693 . 0, 0, 1, 0, \
694 . \
695 . {* segment_mark, sec_info_type, use_rela_p, *} \
696 . 0, 0, 0, \
697 . \
698 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
699 . 0, 0, 0, 0, 0, 0, \
700 . \
701 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
702 . 0, 0, 0, 0, 0, 0, 0, \
703 . \
704 . {* output_offset, output_section, alignment_power, *} \
705 . 0, &SEC, 0, \
706 . \
707 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
708 . NULL, NULL, 0, 0, 0, \
709 . \
710 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
711 . 0, NULL, NULL, NULL, 0, \
712 . \
713 . {* entsize, kept_section, moving_line_filepos, *} \
714 . 0, NULL, 0, \
715 . \
716 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
717 . 0, NULL, NULL, NULL, \
718 . \
719 . {* symbol, symbol_ptr_ptr, *} \
720 . (struct bfd_symbol *) SYM, &SEC.symbol, \
721 . \
722 . {* map_head, map_tail *} \
723 . { NULL }, { NULL } \
724 . }
725 .
726 */
727
728 /* We use a macro to initialize the static asymbol structures because
729 traditional C does not permit us to initialize a union member while
730 gcc warns if we don't initialize it. */
731 /* the_bfd, name, value, attr, section [, udata] */
732 #ifdef __STDC__
733 #define GLOBAL_SYM_INIT(NAME, SECTION) \
734 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
735 #else
736 #define GLOBAL_SYM_INIT(NAME, SECTION) \
737 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
738 #endif
739
740 /* These symbols are global, not specific to any BFD. Therefore, anything
741 that tries to change them is broken, and should be repaired. */
742
743 static const asymbol global_syms[] =
744 {
745 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
746 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
747 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
748 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
749 };
750
751 #define STD_SECTION(NAME, IDX, FLAGS) \
752 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
753
754 asection _bfd_std_section[] = {
755 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
756 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
757 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
758 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
759 };
760 #undef STD_SECTION
761
762 /* Initialize an entry in the section hash table. */
763
764 struct bfd_hash_entry *
bfd_section_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)765 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
766 struct bfd_hash_table *table,
767 const char *string)
768 {
769 /* Allocate the structure if it has not already been allocated by a
770 subclass. */
771 if (entry == NULL)
772 {
773 entry = (struct bfd_hash_entry *)
774 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
775 if (entry == NULL)
776 return entry;
777 }
778
779 /* Call the allocation method of the superclass. */
780 entry = bfd_hash_newfunc (entry, table, string);
781 if (entry != NULL)
782 memset (&((struct section_hash_entry *) entry)->section, 0,
783 sizeof (asection));
784
785 return entry;
786 }
787
788 #define section_hash_lookup(table, string, create, copy) \
789 ((struct section_hash_entry *) \
790 bfd_hash_lookup ((table), (string), (create), (copy)))
791
792 /* Create a symbol whose only job is to point to this section. This
793 is useful for things like relocs which are relative to the base
794 of a section. */
795
796 bfd_boolean
_bfd_generic_new_section_hook(bfd * abfd,asection * newsect)797 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
798 {
799 newsect->symbol = bfd_make_empty_symbol (abfd);
800 if (newsect->symbol == NULL)
801 return FALSE;
802
803 newsect->symbol->name = newsect->name;
804 newsect->symbol->value = 0;
805 newsect->symbol->section = newsect;
806 newsect->symbol->flags = BSF_SECTION_SYM;
807
808 newsect->symbol_ptr_ptr = &newsect->symbol;
809 return TRUE;
810 }
811
812 /* Initializes a new section. NEWSECT->NAME is already set. */
813
814 static asection *
bfd_section_init(bfd * abfd,asection * newsect)815 bfd_section_init (bfd *abfd, asection *newsect)
816 {
817 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
818
819 newsect->id = section_id;
820 newsect->index = abfd->section_count;
821 newsect->owner = abfd;
822
823 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
824 return NULL;
825
826 section_id++;
827 abfd->section_count++;
828 bfd_section_list_append (abfd, newsect);
829 return newsect;
830 }
831
832 /*
833 DOCDD
834 INODE
835 section prototypes, , typedef asection, Sections
836 SUBSECTION
837 Section prototypes
838
839 These are the functions exported by the section handling part of BFD.
840 */
841
842 /*
843 FUNCTION
844 bfd_section_list_clear
845
846 SYNOPSIS
847 void bfd_section_list_clear (bfd *);
848
849 DESCRIPTION
850 Clears the section list, and also resets the section count and
851 hash table entries.
852 */
853
854 void
bfd_section_list_clear(bfd * abfd)855 bfd_section_list_clear (bfd *abfd)
856 {
857 abfd->sections = NULL;
858 abfd->section_last = NULL;
859 abfd->section_count = 0;
860 memset (abfd->section_htab.table, 0,
861 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
862 abfd->section_htab.count = 0;
863 }
864
865 /*
866 FUNCTION
867 bfd_get_section_by_name
868
869 SYNOPSIS
870 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
871
872 DESCRIPTION
873 Return the most recently created section attached to @var{abfd}
874 named @var{name}. Return NULL if no such section exists.
875 */
876
877 asection *
bfd_get_section_by_name(bfd * abfd,const char * name)878 bfd_get_section_by_name (bfd *abfd, const char *name)
879 {
880 struct section_hash_entry *sh;
881
882 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
883 if (sh != NULL)
884 return &sh->section;
885
886 return NULL;
887 }
888
889 /*
890 FUNCTION
891 bfd_get_next_section_by_name
892
893 SYNOPSIS
894 asection *bfd_get_next_section_by_name (asection *sec);
895
896 DESCRIPTION
897 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
898 return the next most recently created section attached to the same
899 BFD with the same name. Return NULL if no such section exists.
900 */
901
902 asection *
bfd_get_next_section_by_name(asection * sec)903 bfd_get_next_section_by_name (asection *sec)
904 {
905 struct section_hash_entry *sh;
906 const char *name;
907 unsigned long hash;
908
909 sh = ((struct section_hash_entry *)
910 ((char *) sec - offsetof (struct section_hash_entry, section)));
911
912 hash = sh->root.hash;
913 name = sec->name;
914 for (sh = (struct section_hash_entry *) sh->root.next;
915 sh != NULL;
916 sh = (struct section_hash_entry *) sh->root.next)
917 if (sh->root.hash == hash
918 && strcmp (sh->root.string, name) == 0)
919 return &sh->section;
920
921 return NULL;
922 }
923
924 /*
925 FUNCTION
926 bfd_get_linker_section
927
928 SYNOPSIS
929 asection *bfd_get_linker_section (bfd *abfd, const char *name);
930
931 DESCRIPTION
932 Return the linker created section attached to @var{abfd}
933 named @var{name}. Return NULL if no such section exists.
934 */
935
936 asection *
bfd_get_linker_section(bfd * abfd,const char * name)937 bfd_get_linker_section (bfd *abfd, const char *name)
938 {
939 asection *sec = bfd_get_section_by_name (abfd, name);
940
941 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
942 sec = bfd_get_next_section_by_name (sec);
943 return sec;
944 }
945
946 /*
947 FUNCTION
948 bfd_get_section_by_name_if
949
950 SYNOPSIS
951 asection *bfd_get_section_by_name_if
952 (bfd *abfd,
953 const char *name,
954 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
955 void *obj);
956
957 DESCRIPTION
958 Call the provided function @var{func} for each section
959 attached to the BFD @var{abfd} whose name matches @var{name},
960 passing @var{obj} as an argument. The function will be called
961 as if by
962
963 | func (abfd, the_section, obj);
964
965 It returns the first section for which @var{func} returns true,
966 otherwise <<NULL>>.
967
968 */
969
970 asection *
bfd_get_section_by_name_if(bfd * abfd,const char * name,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)971 bfd_get_section_by_name_if (bfd *abfd, const char *name,
972 bfd_boolean (*operation) (bfd *,
973 asection *,
974 void *),
975 void *user_storage)
976 {
977 struct section_hash_entry *sh;
978 unsigned long hash;
979
980 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
981 if (sh == NULL)
982 return NULL;
983
984 hash = sh->root.hash;
985 do
986 {
987 if ((*operation) (abfd, &sh->section, user_storage))
988 return &sh->section;
989 sh = (struct section_hash_entry *) sh->root.next;
990 }
991 while (sh != NULL && sh->root.hash == hash
992 && strcmp (sh->root.string, name) == 0);
993
994 return NULL;
995 }
996
997 /*
998 FUNCTION
999 bfd_get_unique_section_name
1000
1001 SYNOPSIS
1002 char *bfd_get_unique_section_name
1003 (bfd *abfd, const char *templat, int *count);
1004
1005 DESCRIPTION
1006 Invent a section name that is unique in @var{abfd} by tacking
1007 a dot and a digit suffix onto the original @var{templat}. If
1008 @var{count} is non-NULL, then it specifies the first number
1009 tried as a suffix to generate a unique name. The value
1010 pointed to by @var{count} will be incremented in this case.
1011 */
1012
1013 char *
bfd_get_unique_section_name(bfd * abfd,const char * templat,int * count)1014 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1015 {
1016 int num;
1017 unsigned int len;
1018 char *sname;
1019
1020 len = strlen (templat);
1021 sname = (char *) bfd_malloc (len + 8);
1022 if (sname == NULL)
1023 return NULL;
1024 memcpy (sname, templat, len);
1025 num = 1;
1026 if (count != NULL)
1027 num = *count;
1028
1029 do
1030 {
1031 /* If we have a million sections, something is badly wrong. */
1032 if (num > 999999)
1033 abort ();
1034 sprintf (sname + len, ".%d", num++);
1035 }
1036 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1037
1038 if (count != NULL)
1039 *count = num;
1040 return sname;
1041 }
1042
1043 /*
1044 FUNCTION
1045 bfd_make_section_old_way
1046
1047 SYNOPSIS
1048 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1049
1050 DESCRIPTION
1051 Create a new empty section called @var{name}
1052 and attach it to the end of the chain of sections for the
1053 BFD @var{abfd}. An attempt to create a section with a name which
1054 is already in use returns its pointer without changing the
1055 section chain.
1056
1057 It has the funny name since this is the way it used to be
1058 before it was rewritten....
1059
1060 Possible errors are:
1061 o <<bfd_error_invalid_operation>> -
1062 If output has already started for this BFD.
1063 o <<bfd_error_no_memory>> -
1064 If memory allocation fails.
1065
1066 */
1067
1068 asection *
bfd_make_section_old_way(bfd * abfd,const char * name)1069 bfd_make_section_old_way (bfd *abfd, const char *name)
1070 {
1071 asection *newsect;
1072
1073 if (abfd->output_has_begun)
1074 {
1075 bfd_set_error (bfd_error_invalid_operation);
1076 return NULL;
1077 }
1078
1079 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1080 newsect = bfd_abs_section_ptr;
1081 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1082 newsect = bfd_com_section_ptr;
1083 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1084 newsect = bfd_und_section_ptr;
1085 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1086 newsect = bfd_ind_section_ptr;
1087 else
1088 {
1089 struct section_hash_entry *sh;
1090
1091 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1092 if (sh == NULL)
1093 return NULL;
1094
1095 newsect = &sh->section;
1096 if (newsect->name != NULL)
1097 {
1098 /* Section already exists. */
1099 return newsect;
1100 }
1101
1102 newsect->name = name;
1103 return bfd_section_init (abfd, newsect);
1104 }
1105
1106 /* Call new_section_hook when "creating" the standard abs, com, und
1107 and ind sections to tack on format specific section data.
1108 Also, create a proper section symbol. */
1109 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1110 return NULL;
1111 return newsect;
1112 }
1113
1114 /*
1115 FUNCTION
1116 bfd_make_section_anyway_with_flags
1117
1118 SYNOPSIS
1119 asection *bfd_make_section_anyway_with_flags
1120 (bfd *abfd, const char *name, flagword flags);
1121
1122 DESCRIPTION
1123 Create a new empty section called @var{name} and attach it to the end of
1124 the chain of sections for @var{abfd}. Create a new section even if there
1125 is already a section with that name. Also set the attributes of the
1126 new section to the value @var{flags}.
1127
1128 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1129 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1130 o <<bfd_error_no_memory>> - If memory allocation fails.
1131 */
1132
1133 sec_ptr
bfd_make_section_anyway_with_flags(bfd * abfd,const char * name,flagword flags)1134 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1135 flagword flags)
1136 {
1137 struct section_hash_entry *sh;
1138 asection *newsect;
1139
1140 if (abfd->output_has_begun)
1141 {
1142 bfd_set_error (bfd_error_invalid_operation);
1143 return NULL;
1144 }
1145
1146 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1147 if (sh == NULL)
1148 return NULL;
1149
1150 newsect = &sh->section;
1151 if (newsect->name != NULL)
1152 {
1153 /* We are making a section of the same name. Put it in the
1154 section hash table. Even though we can't find it directly by a
1155 hash lookup, we'll be able to find the section by traversing
1156 sh->root.next quicker than looking at all the bfd sections. */
1157 struct section_hash_entry *new_sh;
1158 new_sh = (struct section_hash_entry *)
1159 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1160 if (new_sh == NULL)
1161 return NULL;
1162
1163 new_sh->root = sh->root;
1164 sh->root.next = &new_sh->root;
1165 newsect = &new_sh->section;
1166 }
1167
1168 newsect->flags = flags;
1169 newsect->name = name;
1170 return bfd_section_init (abfd, newsect);
1171 }
1172
1173 /*
1174 FUNCTION
1175 bfd_make_section_anyway
1176
1177 SYNOPSIS
1178 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1179
1180 DESCRIPTION
1181 Create a new empty section called @var{name} and attach it to the end of
1182 the chain of sections for @var{abfd}. Create a new section even if there
1183 is already a section with that name.
1184
1185 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1186 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1187 o <<bfd_error_no_memory>> - If memory allocation fails.
1188 */
1189
1190 sec_ptr
bfd_make_section_anyway(bfd * abfd,const char * name)1191 bfd_make_section_anyway (bfd *abfd, const char *name)
1192 {
1193 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1194 }
1195
1196 /*
1197 FUNCTION
1198 bfd_make_section_with_flags
1199
1200 SYNOPSIS
1201 asection *bfd_make_section_with_flags
1202 (bfd *, const char *name, flagword flags);
1203
1204 DESCRIPTION
1205 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1206 bfd_set_error ()) without changing the section chain if there is already a
1207 section named @var{name}. Also set the attributes of the new section to
1208 the value @var{flags}. If there is an error, return <<NULL>> and set
1209 <<bfd_error>>.
1210 */
1211
1212 asection *
bfd_make_section_with_flags(bfd * abfd,const char * name,flagword flags)1213 bfd_make_section_with_flags (bfd *abfd, const char *name,
1214 flagword flags)
1215 {
1216 struct section_hash_entry *sh;
1217 asection *newsect;
1218
1219 if (abfd->output_has_begun)
1220 {
1221 bfd_set_error (bfd_error_invalid_operation);
1222 return NULL;
1223 }
1224
1225 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1226 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1227 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1228 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1229 return NULL;
1230
1231 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1232 if (sh == NULL)
1233 return NULL;
1234
1235 newsect = &sh->section;
1236 if (newsect->name != NULL)
1237 {
1238 /* Section already exists. */
1239 return NULL;
1240 }
1241
1242 newsect->name = name;
1243 newsect->flags = flags;
1244 return bfd_section_init (abfd, newsect);
1245 }
1246
1247 /*
1248 FUNCTION
1249 bfd_make_section
1250
1251 SYNOPSIS
1252 asection *bfd_make_section (bfd *, const char *name);
1253
1254 DESCRIPTION
1255 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1256 bfd_set_error ()) without changing the section chain if there is already a
1257 section named @var{name}. If there is an error, return <<NULL>> and set
1258 <<bfd_error>>.
1259 */
1260
1261 asection *
bfd_make_section(bfd * abfd,const char * name)1262 bfd_make_section (bfd *abfd, const char *name)
1263 {
1264 return bfd_make_section_with_flags (abfd, name, 0);
1265 }
1266
1267 /*
1268 FUNCTION
1269 bfd_set_section_flags
1270
1271 SYNOPSIS
1272 bfd_boolean bfd_set_section_flags
1273 (bfd *abfd, asection *sec, flagword flags);
1274
1275 DESCRIPTION
1276 Set the attributes of the section @var{sec} in the BFD
1277 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1278 <<FALSE>> on error. Possible error returns are:
1279
1280 o <<bfd_error_invalid_operation>> -
1281 The section cannot have one or more of the attributes
1282 requested. For example, a .bss section in <<a.out>> may not
1283 have the <<SEC_HAS_CONTENTS>> field set.
1284
1285 */
1286
1287 bfd_boolean
bfd_set_section_flags(bfd * abfd ATTRIBUTE_UNUSED,sec_ptr section,flagword flags)1288 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1289 sec_ptr section,
1290 flagword flags)
1291 {
1292 section->flags = flags;
1293 return TRUE;
1294 }
1295
1296 /*
1297 FUNCTION
1298 bfd_rename_section
1299
1300 SYNOPSIS
1301 void bfd_rename_section
1302 (bfd *abfd, asection *sec, const char *newname);
1303
1304 DESCRIPTION
1305 Rename section @var{sec} in @var{abfd} to @var{newname}.
1306 */
1307
1308 void
bfd_rename_section(bfd * abfd,sec_ptr sec,const char * newname)1309 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1310 {
1311 struct section_hash_entry *sh;
1312
1313 sh = (struct section_hash_entry *)
1314 ((char *) sec - offsetof (struct section_hash_entry, section));
1315 sh->section.name = newname;
1316 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1317 }
1318
1319 /*
1320 FUNCTION
1321 bfd_map_over_sections
1322
1323 SYNOPSIS
1324 void bfd_map_over_sections
1325 (bfd *abfd,
1326 void (*func) (bfd *abfd, asection *sect, void *obj),
1327 void *obj);
1328
1329 DESCRIPTION
1330 Call the provided function @var{func} for each section
1331 attached to the BFD @var{abfd}, passing @var{obj} as an
1332 argument. The function will be called as if by
1333
1334 | func (abfd, the_section, obj);
1335
1336 This is the preferred method for iterating over sections; an
1337 alternative would be to use a loop:
1338
1339 | asection *p;
1340 | for (p = abfd->sections; p != NULL; p = p->next)
1341 | func (abfd, p, ...)
1342
1343 */
1344
1345 void
bfd_map_over_sections(bfd * abfd,void (* operation)(bfd *,asection *,void *),void * user_storage)1346 bfd_map_over_sections (bfd *abfd,
1347 void (*operation) (bfd *, asection *, void *),
1348 void *user_storage)
1349 {
1350 asection *sect;
1351 unsigned int i = 0;
1352
1353 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1354 (*operation) (abfd, sect, user_storage);
1355
1356 if (i != abfd->section_count) /* Debugging */
1357 abort ();
1358 }
1359
1360 /*
1361 FUNCTION
1362 bfd_sections_find_if
1363
1364 SYNOPSIS
1365 asection *bfd_sections_find_if
1366 (bfd *abfd,
1367 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1368 void *obj);
1369
1370 DESCRIPTION
1371 Call the provided function @var{operation} for each section
1372 attached to the BFD @var{abfd}, passing @var{obj} as an
1373 argument. The function will be called as if by
1374
1375 | operation (abfd, the_section, obj);
1376
1377 It returns the first section for which @var{operation} returns true.
1378
1379 */
1380
1381 asection *
bfd_sections_find_if(bfd * abfd,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)1382 bfd_sections_find_if (bfd *abfd,
1383 bfd_boolean (*operation) (bfd *, asection *, void *),
1384 void *user_storage)
1385 {
1386 asection *sect;
1387
1388 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1389 if ((*operation) (abfd, sect, user_storage))
1390 break;
1391
1392 return sect;
1393 }
1394
1395 /*
1396 FUNCTION
1397 bfd_set_section_size
1398
1399 SYNOPSIS
1400 bfd_boolean bfd_set_section_size
1401 (bfd *abfd, asection *sec, bfd_size_type val);
1402
1403 DESCRIPTION
1404 Set @var{sec} to the size @var{val}. If the operation is
1405 ok, then <<TRUE>> is returned, else <<FALSE>>.
1406
1407 Possible error returns:
1408 o <<bfd_error_invalid_operation>> -
1409 Writing has started to the BFD, so setting the size is invalid.
1410
1411 */
1412
1413 bfd_boolean
bfd_set_section_size(bfd * abfd,sec_ptr ptr,bfd_size_type val)1414 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1415 {
1416 /* Once you've started writing to any section you cannot create or change
1417 the size of any others. */
1418
1419 if (abfd->output_has_begun)
1420 {
1421 bfd_set_error (bfd_error_invalid_operation);
1422 return FALSE;
1423 }
1424
1425 ptr->size = val;
1426 return TRUE;
1427 }
1428
1429 /*
1430 FUNCTION
1431 bfd_set_section_contents
1432
1433 SYNOPSIS
1434 bfd_boolean bfd_set_section_contents
1435 (bfd *abfd, asection *section, const void *data,
1436 file_ptr offset, bfd_size_type count);
1437
1438 DESCRIPTION
1439 Sets the contents of the section @var{section} in BFD
1440 @var{abfd} to the data starting in memory at @var{data}. The
1441 data is written to the output section starting at offset
1442 @var{offset} for @var{count} octets.
1443
1444 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1445 returns are:
1446 o <<bfd_error_no_contents>> -
1447 The output section does not have the <<SEC_HAS_CONTENTS>>
1448 attribute, so nothing can be written to it.
1449 o and some more too
1450
1451 This routine is front end to the back end function
1452 <<_bfd_set_section_contents>>.
1453
1454 */
1455
1456 bfd_boolean
bfd_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)1457 bfd_set_section_contents (bfd *abfd,
1458 sec_ptr section,
1459 const void *location,
1460 file_ptr offset,
1461 bfd_size_type count)
1462 {
1463 bfd_size_type sz;
1464
1465 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1466 {
1467 bfd_set_error (bfd_error_no_contents);
1468 return FALSE;
1469 }
1470
1471 sz = section->size;
1472 if ((bfd_size_type) offset > sz
1473 || count > sz
1474 || offset + count > sz
1475 || count != (size_t) count)
1476 {
1477 bfd_set_error (bfd_error_bad_value);
1478 return FALSE;
1479 }
1480
1481 if (!bfd_write_p (abfd))
1482 {
1483 bfd_set_error (bfd_error_invalid_operation);
1484 return FALSE;
1485 }
1486
1487 /* Record a copy of the data in memory if desired. */
1488 if (section->contents
1489 && location != section->contents + offset)
1490 memcpy (section->contents + offset, location, (size_t) count);
1491
1492 if (BFD_SEND (abfd, _bfd_set_section_contents,
1493 (abfd, section, location, offset, count)))
1494 {
1495 abfd->output_has_begun = TRUE;
1496 return TRUE;
1497 }
1498
1499 return FALSE;
1500 }
1501
1502 /*
1503 FUNCTION
1504 bfd_get_section_contents
1505
1506 SYNOPSIS
1507 bfd_boolean bfd_get_section_contents
1508 (bfd *abfd, asection *section, void *location, file_ptr offset,
1509 bfd_size_type count);
1510
1511 DESCRIPTION
1512 Read data from @var{section} in BFD @var{abfd}
1513 into memory starting at @var{location}. The data is read at an
1514 offset of @var{offset} from the start of the input section,
1515 and is read for @var{count} bytes.
1516
1517 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1518 flag set are requested or if the section does not have the
1519 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1520 with zeroes. If no errors occur, <<TRUE>> is returned, else
1521 <<FALSE>>.
1522
1523 */
1524 bfd_boolean
bfd_get_section_contents(bfd * abfd,sec_ptr section,void * location,file_ptr offset,bfd_size_type count)1525 bfd_get_section_contents (bfd *abfd,
1526 sec_ptr section,
1527 void *location,
1528 file_ptr offset,
1529 bfd_size_type count)
1530 {
1531 bfd_size_type sz;
1532
1533 if (section->flags & SEC_CONSTRUCTOR)
1534 {
1535 memset (location, 0, (size_t) count);
1536 return TRUE;
1537 }
1538
1539 if (abfd->direction != write_direction && section->rawsize != 0)
1540 sz = section->rawsize;
1541 else
1542 sz = section->size;
1543 if ((bfd_size_type) offset > sz
1544 || count > sz
1545 || offset + count > sz
1546 || count != (size_t) count)
1547 {
1548 bfd_set_error (bfd_error_bad_value);
1549 return FALSE;
1550 }
1551
1552 if (count == 0)
1553 /* Don't bother. */
1554 return TRUE;
1555
1556 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1557 {
1558 memset (location, 0, (size_t) count);
1559 return TRUE;
1560 }
1561
1562 if ((section->flags & SEC_IN_MEMORY) != 0)
1563 {
1564 if (section->contents == NULL)
1565 {
1566 /* This can happen because of errors earlier on in the linking process.
1567 We do not want to seg-fault here, so clear the flag and return an
1568 error code. */
1569 section->flags &= ~ SEC_IN_MEMORY;
1570 bfd_set_error (bfd_error_invalid_operation);
1571 return FALSE;
1572 }
1573
1574 memmove (location, section->contents + offset, (size_t) count);
1575 return TRUE;
1576 }
1577
1578 return BFD_SEND (abfd, _bfd_get_section_contents,
1579 (abfd, section, location, offset, count));
1580 }
1581
1582 /*
1583 FUNCTION
1584 bfd_malloc_and_get_section
1585
1586 SYNOPSIS
1587 bfd_boolean bfd_malloc_and_get_section
1588 (bfd *abfd, asection *section, bfd_byte **buf);
1589
1590 DESCRIPTION
1591 Read all data from @var{section} in BFD @var{abfd}
1592 into a buffer, *@var{buf}, malloc'd by this function.
1593 */
1594
1595 bfd_boolean
bfd_malloc_and_get_section(bfd * abfd,sec_ptr sec,bfd_byte ** buf)1596 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1597 {
1598 *buf = NULL;
1599 return bfd_get_full_section_contents (abfd, sec, buf);
1600 }
1601 /*
1602 FUNCTION
1603 bfd_copy_private_section_data
1604
1605 SYNOPSIS
1606 bfd_boolean bfd_copy_private_section_data
1607 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1608
1609 DESCRIPTION
1610 Copy private section information from @var{isec} in the BFD
1611 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1612 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1613 returns are:
1614
1615 o <<bfd_error_no_memory>> -
1616 Not enough memory exists to create private data for @var{osec}.
1617
1618 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1619 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1620 . (ibfd, isection, obfd, osection))
1621 */
1622
1623 /*
1624 FUNCTION
1625 bfd_generic_is_group_section
1626
1627 SYNOPSIS
1628 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1629
1630 DESCRIPTION
1631 Returns TRUE if @var{sec} is a member of a group.
1632 */
1633
1634 bfd_boolean
bfd_generic_is_group_section(bfd * abfd ATTRIBUTE_UNUSED,const asection * sec ATTRIBUTE_UNUSED)1635 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1636 const asection *sec ATTRIBUTE_UNUSED)
1637 {
1638 return FALSE;
1639 }
1640
1641 /*
1642 FUNCTION
1643 bfd_generic_discard_group
1644
1645 SYNOPSIS
1646 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1647
1648 DESCRIPTION
1649 Remove all members of @var{group} from the output.
1650 */
1651
1652 bfd_boolean
bfd_generic_discard_group(bfd * abfd ATTRIBUTE_UNUSED,asection * group ATTRIBUTE_UNUSED)1653 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1654 asection *group ATTRIBUTE_UNUSED)
1655 {
1656 return TRUE;
1657 }
1658