• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_AST_SCOPES_H_
6 #define V8_AST_SCOPES_H_
7 
8 #include "src/ast/ast.h"
9 #include "src/base/hashmap.h"
10 #include "src/pending-compilation-error-handler.h"
11 #include "src/zone.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 class ParseInfo;
17 
18 // A hash map to support fast variable declaration and lookup.
19 class VariableMap: public ZoneHashMap {
20  public:
21   explicit VariableMap(Zone* zone);
22 
23   virtual ~VariableMap();
24 
25   Variable* Declare(Scope* scope, const AstRawString* name, VariableMode mode,
26                     Variable::Kind kind, InitializationFlag initialization_flag,
27                     MaybeAssignedFlag maybe_assigned_flag = kNotAssigned);
28 
29   Variable* Lookup(const AstRawString* name);
30 
zone()31   Zone* zone() const { return zone_; }
32 
33  private:
34   Zone* zone_;
35 };
36 
37 
38 // The dynamic scope part holds hash maps for the variables that will
39 // be looked up dynamically from within eval and with scopes. The objects
40 // are allocated on-demand from Scope::NonLocal to avoid wasting memory
41 // and setup time for scopes that don't need them.
42 class DynamicScopePart : public ZoneObject {
43  public:
DynamicScopePart(Zone * zone)44   explicit DynamicScopePart(Zone* zone) {
45     for (int i = 0; i < 3; i++)
46       maps_[i] = new(zone->New(sizeof(VariableMap))) VariableMap(zone);
47   }
48 
GetMap(VariableMode mode)49   VariableMap* GetMap(VariableMode mode) {
50     int index = mode - DYNAMIC;
51     DCHECK(index >= 0 && index < 3);
52     return maps_[index];
53   }
54 
55  private:
56   VariableMap *maps_[3];
57 };
58 
59 
60 // Sloppy block-scoped function declarations to var-bind
61 class SloppyBlockFunctionMap : public ZoneHashMap {
62  public:
63   explicit SloppyBlockFunctionMap(Zone* zone);
64 
65   virtual ~SloppyBlockFunctionMap();
66 
67   void Declare(const AstRawString* name,
68                SloppyBlockFunctionStatement* statement);
69 
70   typedef ZoneVector<SloppyBlockFunctionStatement*> Vector;
71 
72  private:
73   Zone* zone_;
74 };
75 
76 
77 // Global invariants after AST construction: Each reference (i.e. identifier)
78 // to a JavaScript variable (including global properties) is represented by a
79 // VariableProxy node. Immediately after AST construction and before variable
80 // allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a
81 // corresponding variable (though some are bound during parse time). Variable
82 // allocation binds each unresolved VariableProxy to one Variable and assigns
83 // a location. Note that many VariableProxy nodes may refer to the same Java-
84 // Script variable.
85 
86 class Scope: public ZoneObject {
87  public:
88   // ---------------------------------------------------------------------------
89   // Construction
90 
91   Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
92         AstValueFactory* value_factory,
93         FunctionKind function_kind = kNormalFunction);
94 
95   // Compute top scope and allocate variables. For lazy compilation the top
96   // scope only contains the single lazily compiled function, so this
97   // doesn't re-allocate variables repeatedly.
98   static bool Analyze(ParseInfo* info);
99 
100   static Scope* DeserializeScopeChain(Isolate* isolate, Zone* zone,
101                                       Context* context, Scope* script_scope);
102 
103   // The scope name is only used for printing/debugging.
SetScopeName(const AstRawString * scope_name)104   void SetScopeName(const AstRawString* scope_name) {
105     scope_name_ = scope_name;
106   }
107 
108   void Initialize();
109 
110   // Checks if the block scope is redundant, i.e. it does not contain any
111   // block scoped declarations. In that case it is removed from the scope
112   // tree and its children are reparented.
113   Scope* FinalizeBlockScope();
114 
115   // Inserts outer_scope into this scope's scope chain (and removes this
116   // from the current outer_scope_'s inner_scopes_).
117   // Assumes outer_scope_ is non-null.
118   void ReplaceOuterScope(Scope* outer_scope);
119 
120   // Propagates any eagerly-gathered scope usage flags (such as calls_eval())
121   // to the passed-in scope.
122   void PropagateUsageFlagsToScope(Scope* other);
123 
zone()124   Zone* zone() const { return zone_; }
125 
126   // ---------------------------------------------------------------------------
127   // Declarations
128 
129   // Lookup a variable in this scope. Returns the variable or NULL if not found.
130   Variable* LookupLocal(const AstRawString* name);
131 
132   // This lookup corresponds to a lookup in the "intermediate" scope sitting
133   // between this scope and the outer scope. (ECMA-262, 3rd., requires that
134   // the name of named function literal is kept in an intermediate scope
135   // in between this scope and the next outer scope.)
136   Variable* LookupFunctionVar(const AstRawString* name,
137                               AstNodeFactory* factory);
138 
139   // Lookup a variable in this scope or outer scopes.
140   // Returns the variable or NULL if not found.
141   Variable* Lookup(const AstRawString* name);
142 
143   // Declare the function variable for a function literal. This variable
144   // is in an intermediate scope between this function scope and the the
145   // outer scope. Only possible for function scopes; at most one variable.
DeclareFunctionVar(VariableDeclaration * declaration)146   void DeclareFunctionVar(VariableDeclaration* declaration) {
147     DCHECK(is_function_scope());
148     // Handle implicit declaration of the function name in named function
149     // expressions before other declarations.
150     decls_.InsertAt(0, declaration, zone());
151     function_ = declaration;
152   }
153 
154   // Declare a parameter in this scope.  When there are duplicated
155   // parameters the rightmost one 'wins'.  However, the implementation
156   // expects all parameters to be declared and from left to right.
157   Variable* DeclareParameter(
158       const AstRawString* name, VariableMode mode,
159       bool is_optional, bool is_rest, bool* is_duplicate);
160 
161   // Declare a local variable in this scope. If the variable has been
162   // declared before, the previously declared variable is returned.
163   Variable* DeclareLocal(const AstRawString* name, VariableMode mode,
164                          InitializationFlag init_flag, Variable::Kind kind,
165                          MaybeAssignedFlag maybe_assigned_flag = kNotAssigned);
166 
167   // Declare an implicit global variable in this scope which must be a
168   // script scope.  The variable was introduced (possibly from an inner
169   // scope) by a reference to an unresolved variable with no intervening
170   // with statements or eval calls.
171   Variable* DeclareDynamicGlobal(const AstRawString* name);
172 
173   // Create a new unresolved variable.
174   VariableProxy* NewUnresolved(AstNodeFactory* factory,
175                                const AstRawString* name,
176                                Variable::Kind kind = Variable::NORMAL,
177                                int start_position = RelocInfo::kNoPosition,
178                                int end_position = RelocInfo::kNoPosition) {
179     // Note that we must not share the unresolved variables with
180     // the same name because they may be removed selectively via
181     // RemoveUnresolved().
182     DCHECK(!already_resolved());
183     VariableProxy* proxy =
184         factory->NewVariableProxy(name, kind, start_position, end_position);
185     unresolved_.Add(proxy, zone_);
186     return proxy;
187   }
188 
AddUnresolved(VariableProxy * proxy)189   void AddUnresolved(VariableProxy* proxy) {
190     DCHECK(!already_resolved());
191     DCHECK(!proxy->is_resolved());
192     unresolved_.Add(proxy, zone_);
193   }
194 
195   // Remove a unresolved variable. During parsing, an unresolved variable
196   // may have been added optimistically, but then only the variable name
197   // was used (typically for labels). If the variable was not declared, the
198   // addition introduced a new unresolved variable which may end up being
199   // allocated globally as a "ghost" variable. RemoveUnresolved removes
200   // such a variable again if it was added; otherwise this is a no-op.
201   bool RemoveUnresolved(VariableProxy* var);
202 
203   // Creates a new temporary variable in this scope's TemporaryScope.  The
204   // name is only used for printing and cannot be used to find the variable.
205   // In particular, the only way to get hold of the temporary is by keeping the
206   // Variable* around.  The name should not clash with a legitimate variable
207   // names.
208   Variable* NewTemporary(const AstRawString* name);
209 
210   // Remove a temporary variable. This is for adjusting the scope of
211   // temporaries used when desugaring parameter initializers.
212   // Returns the index at which it was found in this scope, or -1 if
213   // it was not found.
214   int RemoveTemporary(Variable* var);
215 
216   // Adds a temporary variable in this scope's TemporaryScope. This is for
217   // adjusting the scope of temporaries used when desugaring parameter
218   // initializers.
AddTemporary(Variable * var)219   void AddTemporary(Variable* var) {
220     // Temporaries are only placed in ClosureScopes.
221     DCHECK_EQ(ClosureScope(), this);
222     temps_.Add(var, zone());
223   }
224 
225   // Adds the specific declaration node to the list of declarations in
226   // this scope. The declarations are processed as part of entering
227   // the scope; see codegen.cc:ProcessDeclarations.
228   void AddDeclaration(Declaration* declaration);
229 
230   // ---------------------------------------------------------------------------
231   // Illegal redeclaration support.
232 
233   // Check if the scope has conflicting var
234   // declarations, i.e. a var declaration that has been hoisted from a nested
235   // scope over a let binding of the same name.
236   Declaration* CheckConflictingVarDeclarations();
237 
238   // ---------------------------------------------------------------------------
239   // Scope-specific info.
240 
241   // Inform the scope that the corresponding code contains an eval call.
RecordEvalCall()242   void RecordEvalCall() { scope_calls_eval_ = true; }
243 
244   // Inform the scope that the corresponding code uses "arguments".
RecordArgumentsUsage()245   void RecordArgumentsUsage() { scope_uses_arguments_ = true; }
246 
247   // Inform the scope that the corresponding code uses "super".
RecordSuperPropertyUsage()248   void RecordSuperPropertyUsage() { scope_uses_super_property_ = true; }
249 
250   // Set the language mode flag (unless disabled by a global flag).
SetLanguageMode(LanguageMode language_mode)251   void SetLanguageMode(LanguageMode language_mode) {
252     DCHECK(!is_module_scope() || is_strict(language_mode));
253     language_mode_ = language_mode;
254   }
255 
256   // Set the ASM module flag.
SetAsmModule()257   void SetAsmModule() { asm_module_ = true; }
258 
259   // Inform the scope that the scope may execute declarations nonlinearly.
260   // Currently, the only nonlinear scope is a switch statement. The name is
261   // more general in case something else comes up with similar control flow,
262   // for example the ability to break out of something which does not have
263   // its own lexical scope.
264   // The bit does not need to be stored on the ScopeInfo because none of
265   // the three compilers will perform hole check elimination on a variable
266   // located in VariableLocation::CONTEXT. So, direct eval and closures
267   // will not expose holes.
SetNonlinear()268   void SetNonlinear() { scope_nonlinear_ = true; }
269 
270   // Position in the source where this scope begins and ends.
271   //
272   // * For the scope of a with statement
273   //     with (obj) stmt
274   //   start position: start position of first token of 'stmt'
275   //   end position: end position of last token of 'stmt'
276   // * For the scope of a block
277   //     { stmts }
278   //   start position: start position of '{'
279   //   end position: end position of '}'
280   // * For the scope of a function literal or decalaration
281   //     function fun(a,b) { stmts }
282   //   start position: start position of '('
283   //   end position: end position of '}'
284   // * For the scope of a catch block
285   //     try { stms } catch(e) { stmts }
286   //   start position: start position of '('
287   //   end position: end position of ')'
288   // * For the scope of a for-statement
289   //     for (let x ...) stmt
290   //   start position: start position of '('
291   //   end position: end position of last token of 'stmt'
292   // * For the scope of a switch statement
293   //     switch (tag) { cases }
294   //   start position: start position of '{'
295   //   end position: end position of '}'
start_position()296   int start_position() const { return start_position_; }
set_start_position(int statement_pos)297   void set_start_position(int statement_pos) {
298     start_position_ = statement_pos;
299   }
end_position()300   int end_position() const { return end_position_; }
set_end_position(int statement_pos)301   void set_end_position(int statement_pos) {
302     end_position_ = statement_pos;
303   }
304 
305   // Scopes created for desugaring are hidden. I.e. not visible to the debugger.
is_hidden()306   bool is_hidden() const { return is_hidden_; }
set_is_hidden()307   void set_is_hidden() { is_hidden_ = true; }
308 
309   // In some cases we want to force context allocation for a whole scope.
ForceContextAllocation()310   void ForceContextAllocation() {
311     DCHECK(!already_resolved());
312     force_context_allocation_ = true;
313   }
has_forced_context_allocation()314   bool has_forced_context_allocation() const {
315     return force_context_allocation_;
316   }
317 
318   // ---------------------------------------------------------------------------
319   // Predicates.
320 
321   // Specific scope types.
is_eval_scope()322   bool is_eval_scope() const { return scope_type_ == EVAL_SCOPE; }
is_function_scope()323   bool is_function_scope() const { return scope_type_ == FUNCTION_SCOPE; }
is_module_scope()324   bool is_module_scope() const { return scope_type_ == MODULE_SCOPE; }
is_script_scope()325   bool is_script_scope() const { return scope_type_ == SCRIPT_SCOPE; }
is_catch_scope()326   bool is_catch_scope() const { return scope_type_ == CATCH_SCOPE; }
is_block_scope()327   bool is_block_scope() const { return scope_type_ == BLOCK_SCOPE; }
is_with_scope()328   bool is_with_scope() const { return scope_type_ == WITH_SCOPE; }
is_arrow_scope()329   bool is_arrow_scope() const {
330     return is_function_scope() && IsArrowFunction(function_kind_);
331   }
is_declaration_scope()332   bool is_declaration_scope() const { return is_declaration_scope_; }
333 
set_is_declaration_scope()334   void set_is_declaration_scope() { is_declaration_scope_ = true; }
335 
336   // Information about which scopes calls eval.
calls_eval()337   bool calls_eval() const { return scope_calls_eval_; }
calls_sloppy_eval()338   bool calls_sloppy_eval() const {
339     return scope_calls_eval_ && is_sloppy(language_mode_);
340   }
outer_scope_calls_sloppy_eval()341   bool outer_scope_calls_sloppy_eval() const {
342     return outer_scope_calls_sloppy_eval_;
343   }
asm_module()344   bool asm_module() const { return asm_module_; }
asm_function()345   bool asm_function() const { return asm_function_; }
346 
347   // Is this scope inside a with statement.
inside_with()348   bool inside_with() const { return scope_inside_with_; }
349 
350   // Does this scope access "arguments".
uses_arguments()351   bool uses_arguments() const { return scope_uses_arguments_; }
352   // Does this scope access "super" property (super.foo).
uses_super_property()353   bool uses_super_property() const { return scope_uses_super_property_; }
354   // Does this scope have the potential to execute declarations non-linearly?
is_nonlinear()355   bool is_nonlinear() const { return scope_nonlinear_; }
356 
357   // Whether this needs to be represented by a runtime context.
NeedsContext()358   bool NeedsContext() const {
359     // Catch and module scopes always have heap slots.
360     DCHECK(!is_catch_scope() || num_heap_slots() > 0);
361     DCHECK(!is_module_scope() || num_heap_slots() > 0);
362     return is_with_scope() || num_heap_slots() > 0;
363   }
364 
NeedsHomeObject()365   bool NeedsHomeObject() const {
366     return scope_uses_super_property_ ||
367            ((scope_calls_eval_ || inner_scope_calls_eval_) &&
368             (IsConciseMethod(function_kind()) ||
369              IsAccessorFunction(function_kind()) ||
370              IsClassConstructor(function_kind())));
371   }
372 
373   // ---------------------------------------------------------------------------
374   // Accessors.
375 
376   // The type of this scope.
scope_type()377   ScopeType scope_type() const { return scope_type_; }
378 
function_kind()379   FunctionKind function_kind() const { return function_kind_; }
380 
381   // The language mode of this scope.
language_mode()382   LanguageMode language_mode() const { return language_mode_; }
383 
384   // The variable corresponding to the 'this' value.
receiver()385   Variable* receiver() {
386     DCHECK(has_this_declaration());
387     DCHECK_NOT_NULL(receiver_);
388     return receiver_;
389   }
390 
391   // TODO(wingo): Add a GLOBAL_SCOPE scope type which will lexically allocate
392   // "this" (and no other variable) on the native context.  Script scopes then
393   // will not have a "this" declaration.
has_this_declaration()394   bool has_this_declaration() const {
395     return (is_function_scope() && !is_arrow_scope()) || is_module_scope();
396   }
397 
398   // The variable corresponding to the 'new.target' value.
new_target_var()399   Variable* new_target_var() { return new_target_; }
400 
401   // The variable holding the function literal for named function
402   // literals, or NULL.  Only valid for function scopes.
function()403   VariableDeclaration* function() const {
404     DCHECK(is_function_scope());
405     return function_;
406   }
407 
408   // Parameters. The left-most parameter has index 0.
409   // Only valid for function scopes.
parameter(int index)410   Variable* parameter(int index) const {
411     DCHECK(is_function_scope());
412     return params_[index];
413   }
414 
415   // Returns the default function arity excluding default or rest parameters.
default_function_length()416   int default_function_length() const { return arity_; }
417 
418   // Returns the number of formal parameters, up to but not including the
419   // rest parameter index (if the function has rest parameters), i.e. it
420   // says 2 for
421   //
422   //   function foo(a, b) { ... }
423   //
424   // and
425   //
426   //   function foo(a, b, ...c) { ... }
427   //
428   // but for
429   //
430   //   function foo(a, b, c = 1) { ... }
431   //
432   // we return 3 here.
num_parameters()433   int num_parameters() const {
434     return has_rest_parameter() ? params_.length() - 1 : params_.length();
435   }
436 
437   // A function can have at most one rest parameter. Returns Variable* or NULL.
rest_parameter(int * index)438   Variable* rest_parameter(int* index) const {
439     *index = rest_index_;
440     if (rest_index_ < 0) return NULL;
441     return rest_parameter_;
442   }
443 
has_rest_parameter()444   bool has_rest_parameter() const { return rest_index_ >= 0; }
445 
has_simple_parameters()446   bool has_simple_parameters() const {
447     return has_simple_parameters_;
448   }
449 
450   // TODO(caitp): manage this state in a better way. PreParser must be able to
451   // communicate that the scope is non-simple, without allocating any parameters
452   // as the Parser does. This is necessary to ensure that TC39's proposed early
453   // error can be reported consistently regardless of whether lazily parsed or
454   // not.
SetHasNonSimpleParameters()455   void SetHasNonSimpleParameters() {
456     DCHECK(is_function_scope());
457     has_simple_parameters_ = false;
458   }
459 
460   // Retrieve `IsSimpleParameterList` of current or outer function.
HasSimpleParameters()461   bool HasSimpleParameters() {
462     Scope* scope = ClosureScope();
463     return !scope->is_function_scope() || scope->has_simple_parameters();
464   }
465 
466   // The local variable 'arguments' if we need to allocate it; NULL otherwise.
arguments()467   Variable* arguments() const {
468     DCHECK(!is_arrow_scope() || arguments_ == nullptr);
469     return arguments_;
470   }
471 
this_function_var()472   Variable* this_function_var() const {
473     // This is only used in derived constructors atm.
474     DCHECK(this_function_ == nullptr ||
475            (is_function_scope() && (IsClassConstructor(function_kind()) ||
476                                     IsConciseMethod(function_kind()) ||
477                                     IsAccessorFunction(function_kind()))));
478     return this_function_;
479   }
480 
481   // Declarations list.
declarations()482   ZoneList<Declaration*>* declarations() { return &decls_; }
483 
484   // Inner scope list.
inner_scopes()485   ZoneList<Scope*>* inner_scopes() { return &inner_scopes_; }
486 
487   // The scope immediately surrounding this scope, or NULL.
outer_scope()488   Scope* outer_scope() const { return outer_scope_; }
489 
490   // The ModuleDescriptor for this scope; only for module scopes.
module()491   ModuleDescriptor* module() const { return module_descriptor_; }
492 
493   // ---------------------------------------------------------------------------
494   // Variable allocation.
495 
496   // Collect stack and context allocated local variables in this scope. Note
497   // that the function variable - if present - is not collected and should be
498   // handled separately.
499   void CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
500                                     ZoneList<Variable*>* context_locals,
501                                     ZoneList<Variable*>* context_globals);
502 
503   // Current number of var or const locals.
num_var_or_const()504   int num_var_or_const() { return num_var_or_const_; }
505 
506   // Result of variable allocation.
num_stack_slots()507   int num_stack_slots() const { return num_stack_slots_; }
num_heap_slots()508   int num_heap_slots() const { return num_heap_slots_; }
num_global_slots()509   int num_global_slots() const { return num_global_slots_; }
510 
511   int StackLocalCount() const;
512   int ContextLocalCount() const;
513   int ContextGlobalCount() const;
514 
515   // Make sure this scope and all outer scopes are eagerly compiled.
ForceEagerCompilation()516   void ForceEagerCompilation()  { force_eager_compilation_ = true; }
517 
518   // Determine if we can parse a function literal in this scope lazily.
519   bool AllowsLazyParsing() const;
520 
521   // Determine if we can use lazy compilation for this scope.
522   bool AllowsLazyCompilation() const;
523 
524   // Determine if we can use lazy compilation for this scope without a context.
525   bool AllowsLazyCompilationWithoutContext() const;
526 
527   // True if the outer context of this scope is always the native context.
528   bool HasTrivialOuterContext() const;
529 
530   // The number of contexts between this and scope; zero if this == scope.
531   int ContextChainLength(Scope* scope);
532 
533   // The maximum number of nested contexts required for this scope and any inner
534   // scopes.
535   int MaxNestedContextChainLength();
536 
537   // Find the first function, script, eval or (declaration) block scope. This is
538   // the scope where var declarations will be hoisted to in the implementation.
539   Scope* DeclarationScope();
540 
541   // Find the first non-block declaration scope. This should be either a script,
542   // function, or eval scope. Same as DeclarationScope(), but skips
543   // declaration "block" scopes. Used for differentiating associated
544   // function objects (i.e., the scope for which a function prologue allocates
545   // a context) or declaring temporaries.
546   Scope* ClosureScope();
547 
548   // Find the first (non-arrow) function or script scope.  This is where
549   // 'this' is bound, and what determines the function kind.
550   Scope* ReceiverScope();
551 
552   Handle<ScopeInfo> GetScopeInfo(Isolate* isolate);
553 
554   Handle<StringSet> CollectNonLocals(Handle<StringSet> non_locals);
555 
556   // ---------------------------------------------------------------------------
557   // Strict mode support.
IsDeclared(const AstRawString * name)558   bool IsDeclared(const AstRawString* name) {
559     // During formal parameter list parsing the scope only contains
560     // two variables inserted at initialization: "this" and "arguments".
561     // "this" is an invalid parameter name and "arguments" is invalid parameter
562     // name in strict mode. Therefore looking up with the map which includes
563     // "this" and "arguments" in addition to all formal parameters is safe.
564     return variables_.Lookup(name) != NULL;
565   }
566 
IsDeclaredParameter(const AstRawString * name)567   bool IsDeclaredParameter(const AstRawString* name) {
568     // If IsSimpleParameterList is false, duplicate parameters are not allowed,
569     // however `arguments` may be allowed if function is not strict code. Thus,
570     // the assumptions explained above do not hold.
571     return params_.Contains(variables_.Lookup(name));
572   }
573 
sloppy_block_function_map()574   SloppyBlockFunctionMap* sloppy_block_function_map() {
575     return &sloppy_block_function_map_;
576   }
577 
578   // ---------------------------------------------------------------------------
579   // Debugging.
580 
581 #ifdef DEBUG
582   void Print(int n = 0);  // n = indentation; n < 0 => don't print recursively
583 
584   // Check that the scope has positions assigned.
585   void CheckScopePositions();
586 #endif
587 
588   // ---------------------------------------------------------------------------
589   // Implementation.
590  private:
591   // Scope tree.
592   Scope* outer_scope_;  // the immediately enclosing outer scope, or NULL
593   ZoneList<Scope*> inner_scopes_;  // the immediately enclosed inner scopes
594 
595   // The scope type.
596   ScopeType scope_type_;
597   // If the scope is a function scope, this is the function kind.
598   FunctionKind function_kind_;
599 
600   // Debugging support.
601   const AstRawString* scope_name_;
602 
603   // The variables declared in this scope:
604   //
605   // All user-declared variables (incl. parameters).  For script scopes
606   // variables may be implicitly 'declared' by being used (possibly in
607   // an inner scope) with no intervening with statements or eval calls.
608   VariableMap variables_;
609   // Compiler-allocated (user-invisible) temporaries. Due to the implementation
610   // of RemoveTemporary(), may contain nulls, which must be skipped-over during
611   // allocation and printing.
612   ZoneList<Variable*> temps_;
613   // Parameter list in source order.
614   ZoneList<Variable*> params_;
615   // Variables that must be looked up dynamically.
616   DynamicScopePart* dynamics_;
617   // Unresolved variables referred to from this scope.
618   ZoneList<VariableProxy*> unresolved_;
619   // Declarations.
620   ZoneList<Declaration*> decls_;
621   // Convenience variable.
622   Variable* receiver_;
623   // Function variable, if any; function scopes only.
624   VariableDeclaration* function_;
625   // new.target variable, function scopes only.
626   Variable* new_target_;
627   // Convenience variable; function scopes only.
628   Variable* arguments_;
629   // Convenience variable; Subclass constructor only
630   Variable* this_function_;
631   // Module descriptor; module scopes only.
632   ModuleDescriptor* module_descriptor_;
633 
634   // Map of function names to lists of functions defined in sloppy blocks
635   SloppyBlockFunctionMap sloppy_block_function_map_;
636 
637   // Scope-specific information computed during parsing.
638   //
639   // This scope is inside a 'with' of some outer scope.
640   bool scope_inside_with_;
641   // This scope or a nested catch scope or with scope contain an 'eval' call. At
642   // the 'eval' call site this scope is the declaration scope.
643   bool scope_calls_eval_;
644   // This scope uses "arguments".
645   bool scope_uses_arguments_;
646   // This scope uses "super" property ('super.foo').
647   bool scope_uses_super_property_;
648   // This scope contains an "use asm" annotation.
649   bool asm_module_;
650   // This scope's outer context is an asm module.
651   bool asm_function_;
652   // This scope's declarations might not be executed in order (e.g., switch).
653   bool scope_nonlinear_;
654   // The language mode of this scope.
655   LanguageMode language_mode_;
656   // Source positions.
657   int start_position_;
658   int end_position_;
659   bool is_hidden_;
660 
661   // Computed via PropagateScopeInfo.
662   bool outer_scope_calls_sloppy_eval_;
663   bool inner_scope_calls_eval_;
664   bool force_eager_compilation_;
665   bool force_context_allocation_;
666 
667   // True if it doesn't need scope resolution (e.g., if the scope was
668   // constructed based on a serialized scope info or a catch context).
669   bool already_resolved_;
670 
671   // True if it holds 'var' declarations.
672   bool is_declaration_scope_;
673 
674   // Computed as variables are declared.
675   int num_var_or_const_;
676 
677   // Computed via AllocateVariables; function, block and catch scopes only.
678   int num_stack_slots_;
679   int num_heap_slots_;
680   int num_global_slots_;
681 
682   // Info about the parameter list of a function.
683   int arity_;
684   bool has_simple_parameters_;
685   Variable* rest_parameter_;
686   int rest_index_;
687 
688   // Serialized scope info support.
689   Handle<ScopeInfo> scope_info_;
already_resolved()690   bool already_resolved() { return already_resolved_; }
691 
692   // Create a non-local variable with a given name.
693   // These variables are looked up dynamically at runtime.
694   Variable* NonLocal(const AstRawString* name, VariableMode mode);
695 
696   // Variable resolution.
697   // Possible results of a recursive variable lookup telling if and how a
698   // variable is bound. These are returned in the output parameter *binding_kind
699   // of the LookupRecursive function.
700   enum BindingKind {
701     // The variable reference could be statically resolved to a variable binding
702     // which is returned. There is no 'with' statement between the reference and
703     // the binding and no scope between the reference scope (inclusive) and
704     // binding scope (exclusive) makes a sloppy 'eval' call.
705     BOUND,
706 
707     // The variable reference could be statically resolved to a variable binding
708     // which is returned. There is no 'with' statement between the reference and
709     // the binding, but some scope between the reference scope (inclusive) and
710     // binding scope (exclusive) makes a sloppy 'eval' call, that might
711     // possibly introduce variable bindings shadowing the found one. Thus the
712     // found variable binding is just a guess.
713     BOUND_EVAL_SHADOWED,
714 
715     // The variable reference could not be statically resolved to any binding
716     // and thus should be considered referencing a global variable. NULL is
717     // returned. The variable reference is not inside any 'with' statement and
718     // no scope between the reference scope (inclusive) and script scope
719     // (exclusive) makes a sloppy 'eval' call.
720     UNBOUND,
721 
722     // The variable reference could not be statically resolved to any binding
723     // NULL is returned. The variable reference is not inside any 'with'
724     // statement, but some scope between the reference scope (inclusive) and
725     // script scope (exclusive) makes a sloppy 'eval' call, that might
726     // possibly introduce a variable binding. Thus the reference should be
727     // considered referencing a global variable unless it is shadowed by an
728     // 'eval' introduced binding.
729     UNBOUND_EVAL_SHADOWED,
730 
731     // The variable could not be statically resolved and needs to be looked up
732     // dynamically. NULL is returned. There are two possible reasons:
733     // * A 'with' statement has been encountered and there is no variable
734     //   binding for the name between the variable reference and the 'with'.
735     //   The variable potentially references a property of the 'with' object.
736     // * The code is being executed as part of a call to 'eval' and the calling
737     //   context chain contains either a variable binding for the name or it
738     //   contains a 'with' context.
739     DYNAMIC_LOOKUP
740   };
741 
742   // Lookup a variable reference given by name recursively starting with this
743   // scope. If the code is executed because of a call to 'eval', the context
744   // parameter should be set to the calling context of 'eval'.
745   Variable* LookupRecursive(VariableProxy* proxy, BindingKind* binding_kind,
746                             AstNodeFactory* factory);
747   MUST_USE_RESULT
748   bool ResolveVariable(ParseInfo* info, VariableProxy* proxy,
749                        AstNodeFactory* factory);
750   MUST_USE_RESULT
751   bool ResolveVariablesRecursively(ParseInfo* info, AstNodeFactory* factory);
752 
753   // Scope analysis.
754   void PropagateScopeInfo(bool outer_scope_calls_sloppy_eval);
755   bool HasTrivialContext() const;
756 
757   // Predicates.
758   bool MustAllocate(Variable* var);
759   bool MustAllocateInContext(Variable* var);
760   bool HasArgumentsParameter(Isolate* isolate);
761 
762   // Variable allocation.
763   void AllocateStackSlot(Variable* var);
764   void AllocateHeapSlot(Variable* var);
765   void AllocateParameterLocals(Isolate* isolate);
766   void AllocateNonParameterLocal(Isolate* isolate, Variable* var);
767   void AllocateDeclaredGlobal(Isolate* isolate, Variable* var);
768   void AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate);
769   void AllocateVariablesRecursively(Isolate* isolate);
770   void AllocateParameter(Variable* var, int index);
771   void AllocateReceiver();
772 
773   // Resolve and fill in the allocation information for all variables
774   // in this scopes. Must be called *after* all scopes have been
775   // processed (parsed) to ensure that unresolved variables can be
776   // resolved properly.
777   //
778   // In the case of code compiled and run using 'eval', the context
779   // parameter is the context in which eval was called.  In all other
780   // cases the context parameter is an empty handle.
781   MUST_USE_RESULT
782   bool AllocateVariables(ParseInfo* info, AstNodeFactory* factory);
783 
784   // Construct a scope based on the scope info.
785   Scope(Zone* zone, Scope* inner_scope, ScopeType type,
786         Handle<ScopeInfo> scope_info, AstValueFactory* value_factory);
787 
788   // Construct a catch scope with a binding for the name.
789   Scope(Zone* zone, Scope* inner_scope, const AstRawString* catch_variable_name,
790         AstValueFactory* value_factory);
791 
AddInnerScope(Scope * inner_scope)792   void AddInnerScope(Scope* inner_scope) {
793     if (inner_scope != NULL) {
794       inner_scopes_.Add(inner_scope, zone_);
795       inner_scope->outer_scope_ = this;
796     }
797   }
798 
RemoveInnerScope(Scope * inner_scope)799   void RemoveInnerScope(Scope* inner_scope) {
800     DCHECK_NOT_NULL(inner_scope);
801     for (int i = 0; i < inner_scopes_.length(); i++) {
802       if (inner_scopes_[i] == inner_scope) {
803         inner_scopes_.Remove(i);
804         break;
805       }
806     }
807   }
808 
809   void SetDefaults(ScopeType type, Scope* outer_scope,
810                    Handle<ScopeInfo> scope_info,
811                    FunctionKind function_kind = kNormalFunction);
812 
813   AstValueFactory* ast_value_factory_;
814   Zone* zone_;
815 
816   PendingCompilationErrorHandler pending_error_handler_;
817 };
818 
819 }  // namespace internal
820 }  // namespace v8
821 
822 #endif  // V8_AST_SCOPES_H_
823