• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36 
37 #include "src/arm/assembler-arm.h"
38 
39 #if V8_TARGET_ARCH_ARM
40 
41 #include "src/arm/assembler-arm-inl.h"
42 #include "src/base/bits.h"
43 #include "src/base/cpu.h"
44 #include "src/macro-assembler.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // Get the CPU features enabled by the build. For cross compilation the
50 // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
51 // can be defined to enable ARMv7 and VFPv3 instructions when building the
52 // snapshot.
CpuFeaturesImpliedByCompiler()53 static unsigned CpuFeaturesImpliedByCompiler() {
54   unsigned answer = 0;
55 #ifdef CAN_USE_ARMV8_INSTRUCTIONS
56   if (FLAG_enable_armv8) {
57     answer |= 1u << ARMv8;
58     // ARMv8 always features VFP and NEON.
59     answer |= 1u << ARMv7 | 1u << VFP3 | 1u << NEON | 1u << VFP32DREGS;
60     answer |= 1u << SUDIV;
61   }
62 #endif  // CAN_USE_ARMV8_INSTRUCTIONS
63 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
64   if (FLAG_enable_armv7) answer |= 1u << ARMv7;
65 #endif  // CAN_USE_ARMV7_INSTRUCTIONS
66 #ifdef CAN_USE_VFP3_INSTRUCTIONS
67   if (FLAG_enable_vfp3) answer |= 1u << VFP3 | 1u << ARMv7;
68 #endif  // CAN_USE_VFP3_INSTRUCTIONS
69 #ifdef CAN_USE_VFP32DREGS
70   if (FLAG_enable_32dregs) answer |= 1u << VFP32DREGS;
71 #endif  // CAN_USE_VFP32DREGS
72 #ifdef CAN_USE_NEON
73   if (FLAG_enable_neon) answer |= 1u << NEON;
74 #endif  // CAN_USE_VFP32DREGS
75   if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
76     answer |= 1u << UNALIGNED_ACCESSES;
77   }
78 
79   return answer;
80 }
81 
82 
ProbeImpl(bool cross_compile)83 void CpuFeatures::ProbeImpl(bool cross_compile) {
84   supported_ |= CpuFeaturesImpliedByCompiler();
85   dcache_line_size_ = 64;
86 
87   // Only use statically determined features for cross compile (snapshot).
88   if (cross_compile) return;
89 
90 #ifndef __arm__
91   // For the simulator build, use whatever the flags specify.
92   if (FLAG_enable_armv8) {
93     supported_ |= 1u << ARMv8;
94     // ARMv8 always features VFP and NEON.
95     supported_ |= 1u << ARMv7 | 1u << VFP3 | 1u << NEON | 1u << VFP32DREGS;
96     supported_ |= 1u << SUDIV;
97     if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
98   }
99   if (FLAG_enable_armv7) {
100     supported_ |= 1u << ARMv7;
101     if (FLAG_enable_vfp3) supported_ |= 1u << VFP3;
102     if (FLAG_enable_neon) supported_ |= 1u << NEON | 1u << VFP32DREGS;
103     if (FLAG_enable_sudiv) supported_ |= 1u << SUDIV;
104     if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
105     if (FLAG_enable_32dregs) supported_ |= 1u << VFP32DREGS;
106   }
107   if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
108 
109 #else  // __arm__
110   // Probe for additional features at runtime.
111   base::CPU cpu;
112   if (FLAG_enable_vfp3 && cpu.has_vfp3()) {
113     // This implementation also sets the VFP flags if runtime
114     // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
115     // 0406B, page A1-6.
116     supported_ |= 1u << VFP3 | 1u << ARMv7;
117   }
118 
119   if (FLAG_enable_neon && cpu.has_neon()) supported_ |= 1u << NEON;
120   if (FLAG_enable_sudiv && cpu.has_idiva()) supported_ |= 1u << SUDIV;
121 
122   if (cpu.architecture() >= 7) {
123     if (FLAG_enable_armv7) supported_ |= 1u << ARMv7;
124     if (FLAG_enable_armv8 && cpu.architecture() >= 8) {
125       supported_ |= 1u << ARMv8;
126     }
127     if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
128     // Use movw/movt for QUALCOMM ARMv7 cores.
129     if (FLAG_enable_movw_movt && cpu.implementer() == base::CPU::QUALCOMM) {
130       supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
131     }
132   }
133 
134   // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
135   if (cpu.implementer() == base::CPU::ARM &&
136       (cpu.part() == base::CPU::ARM_CORTEX_A5 ||
137        cpu.part() == base::CPU::ARM_CORTEX_A9)) {
138     dcache_line_size_ = 32;
139   }
140 
141   if (FLAG_enable_32dregs && cpu.has_vfp3_d32()) supported_ |= 1u << VFP32DREGS;
142 #endif
143 
144   DCHECK(!IsSupported(VFP3) || IsSupported(ARMv7));
145 }
146 
147 
PrintTarget()148 void CpuFeatures::PrintTarget() {
149   const char* arm_arch = NULL;
150   const char* arm_target_type = "";
151   const char* arm_no_probe = "";
152   const char* arm_fpu = "";
153   const char* arm_thumb = "";
154   const char* arm_float_abi = NULL;
155 
156 #if !defined __arm__
157   arm_target_type = " simulator";
158 #endif
159 
160 #if defined ARM_TEST_NO_FEATURE_PROBE
161   arm_no_probe = " noprobe";
162 #endif
163 
164 #if defined CAN_USE_ARMV8_INSTRUCTIONS
165   arm_arch = "arm v8";
166 #elif defined CAN_USE_ARMV7_INSTRUCTIONS
167   arm_arch = "arm v7";
168 #else
169   arm_arch = "arm v6";
170 #endif
171 
172 #if defined CAN_USE_NEON
173   arm_fpu = " neon";
174 #elif defined CAN_USE_VFP3_INSTRUCTIONS
175 #  if defined CAN_USE_VFP32DREGS
176   arm_fpu = " vfp3";
177 #  else
178   arm_fpu = " vfp3-d16";
179 #  endif
180 #else
181   arm_fpu = " vfp2";
182 #endif
183 
184 #ifdef __arm__
185   arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp";
186 #elif USE_EABI_HARDFLOAT
187   arm_float_abi = "hard";
188 #else
189   arm_float_abi = "softfp";
190 #endif
191 
192 #if defined __arm__ && (defined __thumb__) || (defined __thumb2__)
193   arm_thumb = " thumb";
194 #endif
195 
196   printf("target%s%s %s%s%s %s\n",
197          arm_target_type, arm_no_probe, arm_arch, arm_fpu, arm_thumb,
198          arm_float_abi);
199 }
200 
201 
PrintFeatures()202 void CpuFeatures::PrintFeatures() {
203   printf(
204       "ARMv8=%d ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d "
205       "UNALIGNED_ACCESSES=%d MOVW_MOVT_IMMEDIATE_LOADS=%d",
206       CpuFeatures::IsSupported(ARMv8), CpuFeatures::IsSupported(ARMv7),
207       CpuFeatures::IsSupported(VFP3), CpuFeatures::IsSupported(VFP32DREGS),
208       CpuFeatures::IsSupported(NEON), CpuFeatures::IsSupported(SUDIV),
209       CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
210       CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS));
211 #ifdef __arm__
212   bool eabi_hardfloat = base::OS::ArmUsingHardFloat();
213 #elif USE_EABI_HARDFLOAT
214   bool eabi_hardfloat = true;
215 #else
216   bool eabi_hardfloat = false;
217 #endif
218     printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
219 }
220 
221 
222 // -----------------------------------------------------------------------------
223 // Implementation of RelocInfo
224 
225 // static
226 const int RelocInfo::kApplyMask = 0;
227 
228 
IsCodedSpecially()229 bool RelocInfo::IsCodedSpecially() {
230   // The deserializer needs to know whether a pointer is specially coded.  Being
231   // specially coded on ARM means that it is a movw/movt instruction, or is an
232   // embedded constant pool entry.  These only occur if
233   // FLAG_enable_embedded_constant_pool is true.
234   return FLAG_enable_embedded_constant_pool;
235 }
236 
237 
IsInConstantPool()238 bool RelocInfo::IsInConstantPool() {
239   return Assembler::is_constant_pool_load(pc_);
240 }
241 
wasm_memory_reference()242 Address RelocInfo::wasm_memory_reference() {
243   DCHECK(IsWasmMemoryReference(rmode_));
244   return Assembler::target_address_at(pc_, host_);
245 }
246 
wasm_memory_size_reference()247 uint32_t RelocInfo::wasm_memory_size_reference() {
248   DCHECK(IsWasmMemorySizeReference(rmode_));
249   return reinterpret_cast<uint32_t>(Assembler::target_address_at(pc_, host_));
250 }
251 
wasm_global_reference()252 Address RelocInfo::wasm_global_reference() {
253   DCHECK(IsWasmGlobalReference(rmode_));
254   return Assembler::target_address_at(pc_, host_);
255 }
256 
unchecked_update_wasm_memory_reference(Address address,ICacheFlushMode flush_mode)257 void RelocInfo::unchecked_update_wasm_memory_reference(
258     Address address, ICacheFlushMode flush_mode) {
259   Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
260 }
261 
unchecked_update_wasm_memory_size(uint32_t size,ICacheFlushMode flush_mode)262 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
263                                                   ICacheFlushMode flush_mode) {
264   Assembler::set_target_address_at(isolate_, pc_, host_,
265                                    reinterpret_cast<Address>(size), flush_mode);
266 }
267 
268 // -----------------------------------------------------------------------------
269 // Implementation of Operand and MemOperand
270 // See assembler-arm-inl.h for inlined constructors
271 
Operand(Handle<Object> handle)272 Operand::Operand(Handle<Object> handle) {
273   AllowDeferredHandleDereference using_raw_address;
274   rm_ = no_reg;
275   // Verify all Objects referred by code are NOT in new space.
276   Object* obj = *handle;
277   if (obj->IsHeapObject()) {
278     DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
279     imm32_ = reinterpret_cast<intptr_t>(handle.location());
280     rmode_ = RelocInfo::EMBEDDED_OBJECT;
281   } else {
282     // no relocation needed
283     imm32_ = reinterpret_cast<intptr_t>(obj);
284     rmode_ = RelocInfo::NONE32;
285   }
286 }
287 
288 
Operand(Register rm,ShiftOp shift_op,int shift_imm)289 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
290   DCHECK(is_uint5(shift_imm));
291 
292   rm_ = rm;
293   rs_ = no_reg;
294   shift_op_ = shift_op;
295   shift_imm_ = shift_imm & 31;
296 
297   if ((shift_op == ROR) && (shift_imm == 0)) {
298     // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode
299     // RRX as ROR #0 (See below).
300     shift_op = LSL;
301   } else if (shift_op == RRX) {
302     // encoded as ROR with shift_imm == 0
303     DCHECK(shift_imm == 0);
304     shift_op_ = ROR;
305     shift_imm_ = 0;
306   }
307 }
308 
309 
Operand(Register rm,ShiftOp shift_op,Register rs)310 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
311   DCHECK(shift_op != RRX);
312   rm_ = rm;
313   rs_ = no_reg;
314   shift_op_ = shift_op;
315   rs_ = rs;
316 }
317 
318 
MemOperand(Register rn,int32_t offset,AddrMode am)319 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
320   rn_ = rn;
321   rm_ = no_reg;
322   offset_ = offset;
323   am_ = am;
324 
325   // Accesses below the stack pointer are not safe, and are prohibited by the
326   // ABI. We can check obvious violations here.
327   if (rn.is(sp)) {
328     if (am == Offset) DCHECK_LE(0, offset);
329     if (am == NegOffset) DCHECK_GE(0, offset);
330   }
331 }
332 
333 
MemOperand(Register rn,Register rm,AddrMode am)334 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
335   rn_ = rn;
336   rm_ = rm;
337   shift_op_ = LSL;
338   shift_imm_ = 0;
339   am_ = am;
340 }
341 
342 
MemOperand(Register rn,Register rm,ShiftOp shift_op,int shift_imm,AddrMode am)343 MemOperand::MemOperand(Register rn, Register rm,
344                        ShiftOp shift_op, int shift_imm, AddrMode am) {
345   DCHECK(is_uint5(shift_imm));
346   rn_ = rn;
347   rm_ = rm;
348   shift_op_ = shift_op;
349   shift_imm_ = shift_imm & 31;
350   am_ = am;
351 }
352 
353 
NeonMemOperand(Register rn,AddrMode am,int align)354 NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
355   DCHECK((am == Offset) || (am == PostIndex));
356   rn_ = rn;
357   rm_ = (am == Offset) ? pc : sp;
358   SetAlignment(align);
359 }
360 
361 
NeonMemOperand(Register rn,Register rm,int align)362 NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
363   rn_ = rn;
364   rm_ = rm;
365   SetAlignment(align);
366 }
367 
368 
SetAlignment(int align)369 void NeonMemOperand::SetAlignment(int align) {
370   switch (align) {
371     case 0:
372       align_ = 0;
373       break;
374     case 64:
375       align_ = 1;
376       break;
377     case 128:
378       align_ = 2;
379       break;
380     case 256:
381       align_ = 3;
382       break;
383     default:
384       UNREACHABLE();
385       align_ = 0;
386       break;
387   }
388 }
389 
390 
NeonListOperand(DoubleRegister base,int registers_count)391 NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
392   base_ = base;
393   switch (registers_count) {
394     case 1:
395       type_ = nlt_1;
396       break;
397     case 2:
398       type_ = nlt_2;
399       break;
400     case 3:
401       type_ = nlt_3;
402       break;
403     case 4:
404       type_ = nlt_4;
405       break;
406     default:
407       UNREACHABLE();
408       type_ = nlt_1;
409       break;
410   }
411 }
412 
413 
414 // -----------------------------------------------------------------------------
415 // Specific instructions, constants, and masks.
416 
417 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
418 // register r is not encoded.
419 const Instr kPushRegPattern =
420     al | B26 | 4 | NegPreIndex | Register::kCode_sp * B16;
421 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
422 // register r is not encoded.
423 const Instr kPopRegPattern =
424     al | B26 | L | 4 | PostIndex | Register::kCode_sp * B16;
425 // ldr rd, [pc, #offset]
426 const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
427 const Instr kLdrPCImmedPattern = 5 * B24 | L | Register::kCode_pc * B16;
428 // ldr rd, [pp, #offset]
429 const Instr kLdrPpImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
430 const Instr kLdrPpImmedPattern = 5 * B24 | L | Register::kCode_r8 * B16;
431 // ldr rd, [pp, rn]
432 const Instr kLdrPpRegMask = 15 * B24 | 7 * B20 | 15 * B16;
433 const Instr kLdrPpRegPattern = 7 * B24 | L | Register::kCode_r8 * B16;
434 // vldr dd, [pc, #offset]
435 const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
436 const Instr kVldrDPCPattern = 13 * B24 | L | Register::kCode_pc * B16 | 11 * B8;
437 // vldr dd, [pp, #offset]
438 const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
439 const Instr kVldrDPpPattern = 13 * B24 | L | Register::kCode_r8 * B16 | 11 * B8;
440 // blxcc rm
441 const Instr kBlxRegMask =
442     15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
443 const Instr kBlxRegPattern =
444     B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
445 const Instr kBlxIp = al | kBlxRegPattern | ip.code();
446 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
447 const Instr kMovMvnPattern = 0xd * B21;
448 const Instr kMovMvnFlip = B22;
449 const Instr kMovLeaveCCMask = 0xdff * B16;
450 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
451 const Instr kMovwPattern = 0x30 * B20;
452 const Instr kMovtPattern = 0x34 * B20;
453 const Instr kMovwLeaveCCFlip = 0x5 * B21;
454 const Instr kMovImmedMask = 0x7f * B21;
455 const Instr kMovImmedPattern = 0x1d * B21;
456 const Instr kOrrImmedMask = 0x7f * B21;
457 const Instr kOrrImmedPattern = 0x1c * B21;
458 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
459 const Instr kCmpCmnPattern = 0x15 * B20;
460 const Instr kCmpCmnFlip = B21;
461 const Instr kAddSubFlip = 0x6 * B21;
462 const Instr kAndBicFlip = 0xe * B21;
463 
464 // A mask for the Rd register for push, pop, ldr, str instructions.
465 const Instr kLdrRegFpOffsetPattern =
466     al | B26 | L | Offset | Register::kCode_fp * B16;
467 const Instr kStrRegFpOffsetPattern =
468     al | B26 | Offset | Register::kCode_fp * B16;
469 const Instr kLdrRegFpNegOffsetPattern =
470     al | B26 | L | NegOffset | Register::kCode_fp * B16;
471 const Instr kStrRegFpNegOffsetPattern =
472     al | B26 | NegOffset | Register::kCode_fp * B16;
473 const Instr kLdrStrInstrTypeMask = 0xffff0000;
474 
Assembler(Isolate * isolate,void * buffer,int buffer_size)475 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
476     : AssemblerBase(isolate, buffer, buffer_size),
477       recorded_ast_id_(TypeFeedbackId::None()),
478       pending_32_bit_constants_(),
479       pending_64_bit_constants_(),
480       constant_pool_builder_(kLdrMaxReachBits, kVldrMaxReachBits),
481       positions_recorder_(this) {
482   pending_32_bit_constants_.reserve(kMinNumPendingConstants);
483   pending_64_bit_constants_.reserve(kMinNumPendingConstants);
484   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
485   next_buffer_check_ = 0;
486   const_pool_blocked_nesting_ = 0;
487   no_const_pool_before_ = 0;
488   first_const_pool_32_use_ = -1;
489   first_const_pool_64_use_ = -1;
490   last_bound_pos_ = 0;
491   ClearRecordedAstId();
492 }
493 
494 
~Assembler()495 Assembler::~Assembler() {
496   DCHECK(const_pool_blocked_nesting_ == 0);
497 }
498 
499 
GetCode(CodeDesc * desc)500 void Assembler::GetCode(CodeDesc* desc) {
501   reloc_info_writer.Finish();
502 
503   // Emit constant pool if necessary.
504   int constant_pool_offset = 0;
505   if (FLAG_enable_embedded_constant_pool) {
506     constant_pool_offset = EmitEmbeddedConstantPool();
507   } else {
508     CheckConstPool(true, false);
509     DCHECK(pending_32_bit_constants_.empty());
510     DCHECK(pending_64_bit_constants_.empty());
511   }
512   // Set up code descriptor.
513   desc->buffer = buffer_;
514   desc->buffer_size = buffer_size_;
515   desc->instr_size = pc_offset();
516   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
517   desc->constant_pool_size =
518       (constant_pool_offset ? desc->instr_size - constant_pool_offset : 0);
519   desc->origin = this;
520   desc->unwinding_info_size = 0;
521   desc->unwinding_info = nullptr;
522 }
523 
524 
Align(int m)525 void Assembler::Align(int m) {
526   DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
527   DCHECK((pc_offset() & (kInstrSize - 1)) == 0);
528   while ((pc_offset() & (m - 1)) != 0) {
529     nop();
530   }
531 }
532 
533 
CodeTargetAlign()534 void Assembler::CodeTargetAlign() {
535   // Preferred alignment of jump targets on some ARM chips.
536   Align(8);
537 }
538 
539 
GetCondition(Instr instr)540 Condition Assembler::GetCondition(Instr instr) {
541   return Instruction::ConditionField(instr);
542 }
543 
544 
IsBranch(Instr instr)545 bool Assembler::IsBranch(Instr instr) {
546   return (instr & (B27 | B25)) == (B27 | B25);
547 }
548 
549 
GetBranchOffset(Instr instr)550 int Assembler::GetBranchOffset(Instr instr) {
551   DCHECK(IsBranch(instr));
552   // Take the jump offset in the lower 24 bits, sign extend it and multiply it
553   // with 4 to get the offset in bytes.
554   return ((instr & kImm24Mask) << 8) >> 6;
555 }
556 
557 
IsLdrRegisterImmediate(Instr instr)558 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
559   return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
560 }
561 
562 
IsVldrDRegisterImmediate(Instr instr)563 bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
564   return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
565 }
566 
567 
GetLdrRegisterImmediateOffset(Instr instr)568 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
569   DCHECK(IsLdrRegisterImmediate(instr));
570   bool positive = (instr & B23) == B23;
571   int offset = instr & kOff12Mask;  // Zero extended offset.
572   return positive ? offset : -offset;
573 }
574 
575 
GetVldrDRegisterImmediateOffset(Instr instr)576 int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
577   DCHECK(IsVldrDRegisterImmediate(instr));
578   bool positive = (instr & B23) == B23;
579   int offset = instr & kOff8Mask;  // Zero extended offset.
580   offset <<= 2;
581   return positive ? offset : -offset;
582 }
583 
584 
SetLdrRegisterImmediateOffset(Instr instr,int offset)585 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
586   DCHECK(IsLdrRegisterImmediate(instr));
587   bool positive = offset >= 0;
588   if (!positive) offset = -offset;
589   DCHECK(is_uint12(offset));
590   // Set bit indicating whether the offset should be added.
591   instr = (instr & ~B23) | (positive ? B23 : 0);
592   // Set the actual offset.
593   return (instr & ~kOff12Mask) | offset;
594 }
595 
596 
SetVldrDRegisterImmediateOffset(Instr instr,int offset)597 Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
598   DCHECK(IsVldrDRegisterImmediate(instr));
599   DCHECK((offset & ~3) == offset);  // Must be 64-bit aligned.
600   bool positive = offset >= 0;
601   if (!positive) offset = -offset;
602   DCHECK(is_uint10(offset));
603   // Set bit indicating whether the offset should be added.
604   instr = (instr & ~B23) | (positive ? B23 : 0);
605   // Set the actual offset. Its bottom 2 bits are zero.
606   return (instr & ~kOff8Mask) | (offset >> 2);
607 }
608 
609 
IsStrRegisterImmediate(Instr instr)610 bool Assembler::IsStrRegisterImmediate(Instr instr) {
611   return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
612 }
613 
614 
SetStrRegisterImmediateOffset(Instr instr,int offset)615 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
616   DCHECK(IsStrRegisterImmediate(instr));
617   bool positive = offset >= 0;
618   if (!positive) offset = -offset;
619   DCHECK(is_uint12(offset));
620   // Set bit indicating whether the offset should be added.
621   instr = (instr & ~B23) | (positive ? B23 : 0);
622   // Set the actual offset.
623   return (instr & ~kOff12Mask) | offset;
624 }
625 
626 
IsAddRegisterImmediate(Instr instr)627 bool Assembler::IsAddRegisterImmediate(Instr instr) {
628   return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
629 }
630 
631 
SetAddRegisterImmediateOffset(Instr instr,int offset)632 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
633   DCHECK(IsAddRegisterImmediate(instr));
634   DCHECK(offset >= 0);
635   DCHECK(is_uint12(offset));
636   // Set the offset.
637   return (instr & ~kOff12Mask) | offset;
638 }
639 
640 
GetRd(Instr instr)641 Register Assembler::GetRd(Instr instr) {
642   Register reg;
643   reg.reg_code = Instruction::RdValue(instr);
644   return reg;
645 }
646 
647 
GetRn(Instr instr)648 Register Assembler::GetRn(Instr instr) {
649   Register reg;
650   reg.reg_code = Instruction::RnValue(instr);
651   return reg;
652 }
653 
654 
GetRm(Instr instr)655 Register Assembler::GetRm(Instr instr) {
656   Register reg;
657   reg.reg_code = Instruction::RmValue(instr);
658   return reg;
659 }
660 
661 
GetConsantPoolLoadPattern()662 Instr Assembler::GetConsantPoolLoadPattern() {
663   if (FLAG_enable_embedded_constant_pool) {
664     return kLdrPpImmedPattern;
665   } else {
666     return kLdrPCImmedPattern;
667   }
668 }
669 
670 
GetConsantPoolLoadMask()671 Instr Assembler::GetConsantPoolLoadMask() {
672   if (FLAG_enable_embedded_constant_pool) {
673     return kLdrPpImmedMask;
674   } else {
675     return kLdrPCImmedMask;
676   }
677 }
678 
679 
IsPush(Instr instr)680 bool Assembler::IsPush(Instr instr) {
681   return ((instr & ~kRdMask) == kPushRegPattern);
682 }
683 
684 
IsPop(Instr instr)685 bool Assembler::IsPop(Instr instr) {
686   return ((instr & ~kRdMask) == kPopRegPattern);
687 }
688 
689 
IsStrRegFpOffset(Instr instr)690 bool Assembler::IsStrRegFpOffset(Instr instr) {
691   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
692 }
693 
694 
IsLdrRegFpOffset(Instr instr)695 bool Assembler::IsLdrRegFpOffset(Instr instr) {
696   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
697 }
698 
699 
IsStrRegFpNegOffset(Instr instr)700 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
701   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
702 }
703 
704 
IsLdrRegFpNegOffset(Instr instr)705 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
706   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
707 }
708 
709 
IsLdrPcImmediateOffset(Instr instr)710 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
711   // Check the instruction is indeed a
712   // ldr<cond> <Rd>, [pc +/- offset_12].
713   return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern;
714 }
715 
716 
IsLdrPpImmediateOffset(Instr instr)717 bool Assembler::IsLdrPpImmediateOffset(Instr instr) {
718   // Check the instruction is indeed a
719   // ldr<cond> <Rd>, [pp +/- offset_12].
720   return (instr & kLdrPpImmedMask) == kLdrPpImmedPattern;
721 }
722 
723 
IsLdrPpRegOffset(Instr instr)724 bool Assembler::IsLdrPpRegOffset(Instr instr) {
725   // Check the instruction is indeed a
726   // ldr<cond> <Rd>, [pp, +/- <Rm>].
727   return (instr & kLdrPpRegMask) == kLdrPpRegPattern;
728 }
729 
730 
GetLdrPpRegOffsetPattern()731 Instr Assembler::GetLdrPpRegOffsetPattern() { return kLdrPpRegPattern; }
732 
733 
IsVldrDPcImmediateOffset(Instr instr)734 bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
735   // Check the instruction is indeed a
736   // vldr<cond> <Dd>, [pc +/- offset_10].
737   return (instr & kVldrDPCMask) == kVldrDPCPattern;
738 }
739 
740 
IsVldrDPpImmediateOffset(Instr instr)741 bool Assembler::IsVldrDPpImmediateOffset(Instr instr) {
742   // Check the instruction is indeed a
743   // vldr<cond> <Dd>, [pp +/- offset_10].
744   return (instr & kVldrDPpMask) == kVldrDPpPattern;
745 }
746 
747 
IsBlxReg(Instr instr)748 bool Assembler::IsBlxReg(Instr instr) {
749   // Check the instruction is indeed a
750   // blxcc <Rm>
751   return (instr & kBlxRegMask) == kBlxRegPattern;
752 }
753 
754 
IsBlxIp(Instr instr)755 bool Assembler::IsBlxIp(Instr instr) {
756   // Check the instruction is indeed a
757   // blx ip
758   return instr == kBlxIp;
759 }
760 
761 
IsTstImmediate(Instr instr)762 bool Assembler::IsTstImmediate(Instr instr) {
763   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
764       (I | TST | S);
765 }
766 
767 
IsCmpRegister(Instr instr)768 bool Assembler::IsCmpRegister(Instr instr) {
769   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
770       (CMP | S);
771 }
772 
773 
IsCmpImmediate(Instr instr)774 bool Assembler::IsCmpImmediate(Instr instr) {
775   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
776       (I | CMP | S);
777 }
778 
779 
GetCmpImmediateRegister(Instr instr)780 Register Assembler::GetCmpImmediateRegister(Instr instr) {
781   DCHECK(IsCmpImmediate(instr));
782   return GetRn(instr);
783 }
784 
785 
GetCmpImmediateRawImmediate(Instr instr)786 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
787   DCHECK(IsCmpImmediate(instr));
788   return instr & kOff12Mask;
789 }
790 
791 
792 // Labels refer to positions in the (to be) generated code.
793 // There are bound, linked, and unused labels.
794 //
795 // Bound labels refer to known positions in the already
796 // generated code. pos() is the position the label refers to.
797 //
798 // Linked labels refer to unknown positions in the code
799 // to be generated; pos() is the position of the last
800 // instruction using the label.
801 //
802 // The linked labels form a link chain by making the branch offset
803 // in the instruction steam to point to the previous branch
804 // instruction using the same label.
805 //
806 // The link chain is terminated by a branch offset pointing to the
807 // same position.
808 
809 
target_at(int pos)810 int Assembler::target_at(int pos) {
811   Instr instr = instr_at(pos);
812   if (is_uint24(instr)) {
813     // Emitted link to a label, not part of a branch.
814     return instr;
815   }
816   DCHECK_EQ(5 * B25, instr & 7 * B25);  // b, bl, or blx imm24
817   int imm26 = ((instr & kImm24Mask) << 8) >> 6;
818   if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
819       ((instr & B24) != 0)) {
820     // blx uses bit 24 to encode bit 2 of imm26
821     imm26 += 2;
822   }
823   return pos + kPcLoadDelta + imm26;
824 }
825 
826 
target_at_put(int pos,int target_pos)827 void Assembler::target_at_put(int pos, int target_pos) {
828   Instr instr = instr_at(pos);
829   if (is_uint24(instr)) {
830     DCHECK(target_pos == pos || target_pos >= 0);
831     // Emitted link to a label, not part of a branch.
832     // Load the position of the label relative to the generated code object
833     // pointer in a register.
834 
835     // The existing code must be a single 24-bit label chain link, followed by
836     // nops encoding the destination register. See mov_label_offset.
837 
838     // Extract the destination register from the first nop instructions.
839     Register dst =
840         Register::from_code(Instruction::RmValue(instr_at(pos + kInstrSize)));
841     // In addition to the 24-bit label chain link, we expect to find one nop for
842     // ARMv7 and above, or two nops for ARMv6. See mov_label_offset.
843     DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code()));
844     if (!CpuFeatures::IsSupported(ARMv7)) {
845       DCHECK(IsNop(instr_at(pos + 2 * kInstrSize), dst.code()));
846     }
847 
848     // Here are the instructions we need to emit:
849     //   For ARMv7: target24 => target16_1:target16_0
850     //      movw dst, #target16_0
851     //      movt dst, #target16_1
852     //   For ARMv6: target24 => target8_2:target8_1:target8_0
853     //      mov dst, #target8_0
854     //      orr dst, dst, #target8_1 << 8
855     //      orr dst, dst, #target8_2 << 16
856 
857     uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
858     DCHECK(is_uint24(target24));
859     if (is_uint8(target24)) {
860       // If the target fits in a byte then only patch with a mov
861       // instruction.
862       CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos), 1,
863                           CodePatcher::DONT_FLUSH);
864       patcher.masm()->mov(dst, Operand(target24));
865     } else {
866       uint16_t target16_0 = target24 & kImm16Mask;
867       uint16_t target16_1 = target24 >> 16;
868       if (CpuFeatures::IsSupported(ARMv7)) {
869         // Patch with movw/movt.
870         if (target16_1 == 0) {
871           CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
872                               1, CodePatcher::DONT_FLUSH);
873           patcher.masm()->movw(dst, target16_0);
874         } else {
875           CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
876                               2, CodePatcher::DONT_FLUSH);
877           patcher.masm()->movw(dst, target16_0);
878           patcher.masm()->movt(dst, target16_1);
879         }
880       } else {
881         // Patch with a sequence of mov/orr/orr instructions.
882         uint8_t target8_0 = target16_0 & kImm8Mask;
883         uint8_t target8_1 = target16_0 >> 8;
884         uint8_t target8_2 = target16_1 & kImm8Mask;
885         if (target8_2 == 0) {
886           CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
887                               2, CodePatcher::DONT_FLUSH);
888           patcher.masm()->mov(dst, Operand(target8_0));
889           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
890         } else {
891           CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
892                               3, CodePatcher::DONT_FLUSH);
893           patcher.masm()->mov(dst, Operand(target8_0));
894           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
895           patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
896         }
897       }
898     }
899     return;
900   }
901   int imm26 = target_pos - (pos + kPcLoadDelta);
902   DCHECK_EQ(5 * B25, instr & 7 * B25);  // b, bl, or blx imm24
903   if (Instruction::ConditionField(instr) == kSpecialCondition) {
904     // blx uses bit 24 to encode bit 2 of imm26
905     DCHECK_EQ(0, imm26 & 1);
906     instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1) * B24;
907   } else {
908     DCHECK_EQ(0, imm26 & 3);
909     instr &= ~kImm24Mask;
910   }
911   int imm24 = imm26 >> 2;
912   DCHECK(is_int24(imm24));
913   instr_at_put(pos, instr | (imm24 & kImm24Mask));
914 }
915 
916 
print(Label * L)917 void Assembler::print(Label* L) {
918   if (L->is_unused()) {
919     PrintF("unused label\n");
920   } else if (L->is_bound()) {
921     PrintF("bound label to %d\n", L->pos());
922   } else if (L->is_linked()) {
923     Label l = *L;
924     PrintF("unbound label");
925     while (l.is_linked()) {
926       PrintF("@ %d ", l.pos());
927       Instr instr = instr_at(l.pos());
928       if ((instr & ~kImm24Mask) == 0) {
929         PrintF("value\n");
930       } else {
931         DCHECK((instr & 7*B25) == 5*B25);  // b, bl, or blx
932         Condition cond = Instruction::ConditionField(instr);
933         const char* b;
934         const char* c;
935         if (cond == kSpecialCondition) {
936           b = "blx";
937           c = "";
938         } else {
939           if ((instr & B24) != 0)
940             b = "bl";
941           else
942             b = "b";
943 
944           switch (cond) {
945             case eq: c = "eq"; break;
946             case ne: c = "ne"; break;
947             case hs: c = "hs"; break;
948             case lo: c = "lo"; break;
949             case mi: c = "mi"; break;
950             case pl: c = "pl"; break;
951             case vs: c = "vs"; break;
952             case vc: c = "vc"; break;
953             case hi: c = "hi"; break;
954             case ls: c = "ls"; break;
955             case ge: c = "ge"; break;
956             case lt: c = "lt"; break;
957             case gt: c = "gt"; break;
958             case le: c = "le"; break;
959             case al: c = ""; break;
960             default:
961               c = "";
962               UNREACHABLE();
963           }
964         }
965         PrintF("%s%s\n", b, c);
966       }
967       next(&l);
968     }
969   } else {
970     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
971   }
972 }
973 
974 
bind_to(Label * L,int pos)975 void Assembler::bind_to(Label* L, int pos) {
976   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
977   while (L->is_linked()) {
978     int fixup_pos = L->pos();
979     next(L);  // call next before overwriting link with target at fixup_pos
980     target_at_put(fixup_pos, pos);
981   }
982   L->bind_to(pos);
983 
984   // Keep track of the last bound label so we don't eliminate any instructions
985   // before a bound label.
986   if (pos > last_bound_pos_)
987     last_bound_pos_ = pos;
988 }
989 
990 
bind(Label * L)991 void Assembler::bind(Label* L) {
992   DCHECK(!L->is_bound());  // label can only be bound once
993   bind_to(L, pc_offset());
994 }
995 
996 
next(Label * L)997 void Assembler::next(Label* L) {
998   DCHECK(L->is_linked());
999   int link = target_at(L->pos());
1000   if (link == L->pos()) {
1001     // Branch target points to the same instuction. This is the end of the link
1002     // chain.
1003     L->Unuse();
1004   } else {
1005     DCHECK(link >= 0);
1006     L->link_to(link);
1007   }
1008 }
1009 
1010 
1011 // Low-level code emission routines depending on the addressing mode.
1012 // If this returns true then you have to use the rotate_imm and immed_8
1013 // that it returns, because it may have already changed the instruction
1014 // to match them!
fits_shifter(uint32_t imm32,uint32_t * rotate_imm,uint32_t * immed_8,Instr * instr)1015 static bool fits_shifter(uint32_t imm32,
1016                          uint32_t* rotate_imm,
1017                          uint32_t* immed_8,
1018                          Instr* instr) {
1019   // imm32 must be unsigned.
1020   for (int rot = 0; rot < 16; rot++) {
1021     uint32_t imm8 = base::bits::RotateLeft32(imm32, 2 * rot);
1022     if ((imm8 <= 0xff)) {
1023       *rotate_imm = rot;
1024       *immed_8 = imm8;
1025       return true;
1026     }
1027   }
1028   // If the opcode is one with a complementary version and the complementary
1029   // immediate fits, change the opcode.
1030   if (instr != NULL) {
1031     if ((*instr & kMovMvnMask) == kMovMvnPattern) {
1032       if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
1033         *instr ^= kMovMvnFlip;
1034         return true;
1035       } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
1036         if (CpuFeatures::IsSupported(ARMv7)) {
1037           if (imm32 < 0x10000) {
1038             *instr ^= kMovwLeaveCCFlip;
1039             *instr |= Assembler::EncodeMovwImmediate(imm32);
1040             *rotate_imm = *immed_8 = 0;  // Not used for movw.
1041             return true;
1042           }
1043         }
1044       }
1045     } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
1046       if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
1047         *instr ^= kCmpCmnFlip;
1048         return true;
1049       }
1050     } else {
1051       Instr alu_insn = (*instr & kALUMask);
1052       if (alu_insn == ADD ||
1053           alu_insn == SUB) {
1054         if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
1055           *instr ^= kAddSubFlip;
1056           return true;
1057         }
1058       } else if (alu_insn == AND ||
1059                  alu_insn == BIC) {
1060         if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
1061           *instr ^= kAndBicFlip;
1062           return true;
1063         }
1064       }
1065     }
1066   }
1067   return false;
1068 }
1069 
1070 
1071 // We have to use the temporary register for things that can be relocated even
1072 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
1073 // space.  There is no guarantee that the relocated location can be similarly
1074 // encoded.
must_output_reloc_info(const Assembler * assembler) const1075 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
1076   if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
1077     if (assembler != NULL && assembler->predictable_code_size()) return true;
1078     return assembler->serializer_enabled();
1079   } else if (RelocInfo::IsNone(rmode_)) {
1080     return false;
1081   }
1082   return true;
1083 }
1084 
1085 
use_mov_immediate_load(const Operand & x,const Assembler * assembler)1086 static bool use_mov_immediate_load(const Operand& x,
1087                                    const Assembler* assembler) {
1088   if (FLAG_enable_embedded_constant_pool && assembler != NULL &&
1089       !assembler->is_constant_pool_available()) {
1090     return true;
1091   } else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
1092              (assembler == NULL || !assembler->predictable_code_size())) {
1093     // Prefer movw / movt to constant pool if it is more efficient on the CPU.
1094     return true;
1095   } else if (x.must_output_reloc_info(assembler)) {
1096     // Prefer constant pool if data is likely to be patched.
1097     return false;
1098   } else {
1099     // Otherwise, use immediate load if movw / movt is available.
1100     return CpuFeatures::IsSupported(ARMv7);
1101   }
1102 }
1103 
1104 
instructions_required(const Assembler * assembler,Instr instr) const1105 int Operand::instructions_required(const Assembler* assembler,
1106                                    Instr instr) const {
1107   if (rm_.is_valid()) return 1;
1108   uint32_t dummy1, dummy2;
1109   if (must_output_reloc_info(assembler) ||
1110       !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
1111     // The immediate operand cannot be encoded as a shifter operand, or use of
1112     // constant pool is required.  First account for the instructions required
1113     // for the constant pool or immediate load
1114     int instructions;
1115     if (use_mov_immediate_load(*this, assembler)) {
1116       // A movw / movt or mov / orr immediate load.
1117       instructions = CpuFeatures::IsSupported(ARMv7) ? 2 : 4;
1118     } else if (assembler != NULL &&
1119                assembler->ConstantPoolAccessIsInOverflow()) {
1120       // An overflowed constant pool load.
1121       instructions = CpuFeatures::IsSupported(ARMv7) ? 3 : 5;
1122     } else {
1123       // A small constant pool load.
1124       instructions = 1;
1125     }
1126 
1127     if ((instr & ~kCondMask) != 13 * B21) {  // mov, S not set
1128       // For a mov or mvn instruction which doesn't set the condition
1129       // code, the constant pool or immediate load is enough, otherwise we need
1130       // to account for the actual instruction being requested.
1131       instructions += 1;
1132     }
1133     return instructions;
1134   } else {
1135     // No use of constant pool and the immediate operand can be encoded as a
1136     // shifter operand.
1137     return 1;
1138   }
1139 }
1140 
1141 
move_32_bit_immediate(Register rd,const Operand & x,Condition cond)1142 void Assembler::move_32_bit_immediate(Register rd,
1143                                       const Operand& x,
1144                                       Condition cond) {
1145   uint32_t imm32 = static_cast<uint32_t>(x.imm32_);
1146   if (x.must_output_reloc_info(this)) {
1147     RecordRelocInfo(x.rmode_);
1148   }
1149 
1150   if (use_mov_immediate_load(x, this)) {
1151     Register target = rd.code() == pc.code() ? ip : rd;
1152     if (CpuFeatures::IsSupported(ARMv7)) {
1153       if (!FLAG_enable_embedded_constant_pool &&
1154           x.must_output_reloc_info(this)) {
1155         // Make sure the movw/movt doesn't get separated.
1156         BlockConstPoolFor(2);
1157       }
1158       movw(target, imm32 & 0xffff, cond);
1159       movt(target, imm32 >> 16, cond);
1160     } else {
1161       DCHECK(FLAG_enable_embedded_constant_pool);
1162       mov(target, Operand(imm32 & kImm8Mask), LeaveCC, cond);
1163       orr(target, target, Operand(imm32 & (kImm8Mask << 8)), LeaveCC, cond);
1164       orr(target, target, Operand(imm32 & (kImm8Mask << 16)), LeaveCC, cond);
1165       orr(target, target, Operand(imm32 & (kImm8Mask << 24)), LeaveCC, cond);
1166     }
1167     if (target.code() != rd.code()) {
1168       mov(rd, target, LeaveCC, cond);
1169     }
1170   } else {
1171     DCHECK(!FLAG_enable_embedded_constant_pool || is_constant_pool_available());
1172     ConstantPoolEntry::Access access =
1173         ConstantPoolAddEntry(pc_offset(), x.rmode_, x.imm32_);
1174     if (access == ConstantPoolEntry::OVERFLOWED) {
1175       DCHECK(FLAG_enable_embedded_constant_pool);
1176       Register target = rd.code() == pc.code() ? ip : rd;
1177       // Emit instructions to load constant pool offset.
1178       if (CpuFeatures::IsSupported(ARMv7)) {
1179         movw(target, 0, cond);
1180         movt(target, 0, cond);
1181       } else {
1182         mov(target, Operand(0), LeaveCC, cond);
1183         orr(target, target, Operand(0), LeaveCC, cond);
1184         orr(target, target, Operand(0), LeaveCC, cond);
1185         orr(target, target, Operand(0), LeaveCC, cond);
1186       }
1187       // Load from constant pool at offset.
1188       ldr(rd, MemOperand(pp, target), cond);
1189     } else {
1190       DCHECK(access == ConstantPoolEntry::REGULAR);
1191       ldr(rd, MemOperand(FLAG_enable_embedded_constant_pool ? pp : pc, 0),
1192           cond);
1193     }
1194   }
1195 }
1196 
1197 
addrmod1(Instr instr,Register rn,Register rd,const Operand & x)1198 void Assembler::addrmod1(Instr instr,
1199                          Register rn,
1200                          Register rd,
1201                          const Operand& x) {
1202   CheckBuffer();
1203   DCHECK((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
1204   if (!x.rm_.is_valid()) {
1205     // Immediate.
1206     uint32_t rotate_imm;
1207     uint32_t immed_8;
1208     if (x.must_output_reloc_info(this) ||
1209         !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
1210       // The immediate operand cannot be encoded as a shifter operand, so load
1211       // it first to register ip and change the original instruction to use ip.
1212       // However, if the original instruction is a 'mov rd, x' (not setting the
1213       // condition code), then replace it with a 'ldr rd, [pc]'.
1214       CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
1215       Condition cond = Instruction::ConditionField(instr);
1216       if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
1217         move_32_bit_immediate(rd, x, cond);
1218       } else {
1219         mov(ip, x, LeaveCC, cond);
1220         addrmod1(instr, rn, rd, Operand(ip));
1221       }
1222       return;
1223     }
1224     instr |= I | rotate_imm*B8 | immed_8;
1225   } else if (!x.rs_.is_valid()) {
1226     // Immediate shift.
1227     instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
1228   } else {
1229     // Register shift.
1230     DCHECK(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
1231     instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
1232   }
1233   emit(instr | rn.code()*B16 | rd.code()*B12);
1234   if (rn.is(pc) || x.rm_.is(pc)) {
1235     // Block constant pool emission for one instruction after reading pc.
1236     BlockConstPoolFor(1);
1237   }
1238 }
1239 
1240 
addrmod2(Instr instr,Register rd,const MemOperand & x)1241 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
1242   DCHECK((instr & ~(kCondMask | B | L)) == B26);
1243   int am = x.am_;
1244   if (!x.rm_.is_valid()) {
1245     // Immediate offset.
1246     int offset_12 = x.offset_;
1247     if (offset_12 < 0) {
1248       offset_12 = -offset_12;
1249       am ^= U;
1250     }
1251     if (!is_uint12(offset_12)) {
1252       // Immediate offset cannot be encoded, load it first to register ip
1253       // rn (and rd in a load) should never be ip, or will be trashed.
1254       DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1255       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
1256       addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
1257       return;
1258     }
1259     DCHECK(offset_12 >= 0);  // no masking needed
1260     instr |= offset_12;
1261   } else {
1262     // Register offset (shift_imm_ and shift_op_ are 0) or scaled
1263     // register offset the constructors make sure than both shift_imm_
1264     // and shift_op_ are initialized.
1265     DCHECK(!x.rm_.is(pc));
1266     instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
1267   }
1268   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
1269   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
1270 }
1271 
1272 
addrmod3(Instr instr,Register rd,const MemOperand & x)1273 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
1274   DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
1275   DCHECK(x.rn_.is_valid());
1276   int am = x.am_;
1277   if (!x.rm_.is_valid()) {
1278     // Immediate offset.
1279     int offset_8 = x.offset_;
1280     if (offset_8 < 0) {
1281       offset_8 = -offset_8;
1282       am ^= U;
1283     }
1284     if (!is_uint8(offset_8)) {
1285       // Immediate offset cannot be encoded, load it first to register ip
1286       // rn (and rd in a load) should never be ip, or will be trashed.
1287       DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1288       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
1289       addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
1290       return;
1291     }
1292     DCHECK(offset_8 >= 0);  // no masking needed
1293     instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
1294   } else if (x.shift_imm_ != 0) {
1295     // Scaled register offset not supported, load index first
1296     // rn (and rd in a load) should never be ip, or will be trashed.
1297     DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1298     mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
1299         Instruction::ConditionField(instr));
1300     addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
1301     return;
1302   } else {
1303     // Register offset.
1304     DCHECK((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
1305     instr |= x.rm_.code();
1306   }
1307   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
1308   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
1309 }
1310 
1311 
addrmod4(Instr instr,Register rn,RegList rl)1312 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
1313   DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27);
1314   DCHECK(rl != 0);
1315   DCHECK(!rn.is(pc));
1316   emit(instr | rn.code()*B16 | rl);
1317 }
1318 
1319 
addrmod5(Instr instr,CRegister crd,const MemOperand & x)1320 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
1321   // Unindexed addressing is not encoded by this function.
1322   DCHECK_EQ((B27 | B26),
1323             (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
1324   DCHECK(x.rn_.is_valid() && !x.rm_.is_valid());
1325   int am = x.am_;
1326   int offset_8 = x.offset_;
1327   DCHECK((offset_8 & 3) == 0);  // offset must be an aligned word offset
1328   offset_8 >>= 2;
1329   if (offset_8 < 0) {
1330     offset_8 = -offset_8;
1331     am ^= U;
1332   }
1333   DCHECK(is_uint8(offset_8));  // unsigned word offset must fit in a byte
1334   DCHECK((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
1335 
1336   // Post-indexed addressing requires W == 1; different than in addrmod2/3.
1337   if ((am & P) == 0)
1338     am |= W;
1339 
1340   DCHECK(offset_8 >= 0);  // no masking needed
1341   emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
1342 }
1343 
1344 
branch_offset(Label * L)1345 int Assembler::branch_offset(Label* L) {
1346   int target_pos;
1347   if (L->is_bound()) {
1348     target_pos = L->pos();
1349   } else {
1350     if (L->is_linked()) {
1351       // Point to previous instruction that uses the link.
1352       target_pos = L->pos();
1353     } else {
1354       // First entry of the link chain points to itself.
1355       target_pos = pc_offset();
1356     }
1357     L->link_to(pc_offset());
1358   }
1359 
1360   // Block the emission of the constant pool, since the branch instruction must
1361   // be emitted at the pc offset recorded by the label.
1362   if (!is_const_pool_blocked()) BlockConstPoolFor(1);
1363 
1364   return target_pos - (pc_offset() + kPcLoadDelta);
1365 }
1366 
1367 
1368 // Branch instructions.
b(int branch_offset,Condition cond)1369 void Assembler::b(int branch_offset, Condition cond) {
1370   DCHECK((branch_offset & 3) == 0);
1371   int imm24 = branch_offset >> 2;
1372   CHECK(is_int24(imm24));
1373   emit(cond | B27 | B25 | (imm24 & kImm24Mask));
1374 
1375   if (cond == al) {
1376     // Dead code is a good location to emit the constant pool.
1377     CheckConstPool(false, false);
1378   }
1379 }
1380 
1381 
bl(int branch_offset,Condition cond)1382 void Assembler::bl(int branch_offset, Condition cond) {
1383   DCHECK((branch_offset & 3) == 0);
1384   int imm24 = branch_offset >> 2;
1385   CHECK(is_int24(imm24));
1386   emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
1387 }
1388 
1389 
blx(int branch_offset)1390 void Assembler::blx(int branch_offset) {  // v5 and above
1391   DCHECK((branch_offset & 1) == 0);
1392   int h = ((branch_offset & 2) >> 1)*B24;
1393   int imm24 = branch_offset >> 2;
1394   CHECK(is_int24(imm24));
1395   emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
1396 }
1397 
1398 
blx(Register target,Condition cond)1399 void Assembler::blx(Register target, Condition cond) {  // v5 and above
1400   DCHECK(!target.is(pc));
1401   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
1402 }
1403 
1404 
bx(Register target,Condition cond)1405 void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
1406   DCHECK(!target.is(pc));  // use of pc is actually allowed, but discouraged
1407   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
1408 }
1409 
1410 
b(Label * L,Condition cond)1411 void Assembler::b(Label* L, Condition cond) {
1412   CheckBuffer();
1413   b(branch_offset(L), cond);
1414 }
1415 
1416 
bl(Label * L,Condition cond)1417 void Assembler::bl(Label* L, Condition cond) {
1418   CheckBuffer();
1419   bl(branch_offset(L), cond);
1420 }
1421 
1422 
blx(Label * L)1423 void Assembler::blx(Label* L) {
1424   CheckBuffer();
1425   blx(branch_offset(L));
1426 }
1427 
1428 
1429 // Data-processing instructions.
1430 
and_(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1431 void Assembler::and_(Register dst, Register src1, const Operand& src2,
1432                      SBit s, Condition cond) {
1433   addrmod1(cond | AND | s, src1, dst, src2);
1434 }
1435 
1436 
eor(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1437 void Assembler::eor(Register dst, Register src1, const Operand& src2,
1438                     SBit s, Condition cond) {
1439   addrmod1(cond | EOR | s, src1, dst, src2);
1440 }
1441 
1442 
sub(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1443 void Assembler::sub(Register dst, Register src1, const Operand& src2,
1444                     SBit s, Condition cond) {
1445   addrmod1(cond | SUB | s, src1, dst, src2);
1446 }
1447 
1448 
rsb(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1449 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
1450                     SBit s, Condition cond) {
1451   addrmod1(cond | RSB | s, src1, dst, src2);
1452 }
1453 
1454 
add(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1455 void Assembler::add(Register dst, Register src1, const Operand& src2,
1456                     SBit s, Condition cond) {
1457   addrmod1(cond | ADD | s, src1, dst, src2);
1458 }
1459 
1460 
adc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1461 void Assembler::adc(Register dst, Register src1, const Operand& src2,
1462                     SBit s, Condition cond) {
1463   addrmod1(cond | ADC | s, src1, dst, src2);
1464 }
1465 
1466 
sbc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1467 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
1468                     SBit s, Condition cond) {
1469   addrmod1(cond | SBC | s, src1, dst, src2);
1470 }
1471 
1472 
rsc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1473 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
1474                     SBit s, Condition cond) {
1475   addrmod1(cond | RSC | s, src1, dst, src2);
1476 }
1477 
1478 
tst(Register src1,const Operand & src2,Condition cond)1479 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
1480   addrmod1(cond | TST | S, src1, r0, src2);
1481 }
1482 
1483 
teq(Register src1,const Operand & src2,Condition cond)1484 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
1485   addrmod1(cond | TEQ | S, src1, r0, src2);
1486 }
1487 
1488 
cmp(Register src1,const Operand & src2,Condition cond)1489 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
1490   addrmod1(cond | CMP | S, src1, r0, src2);
1491 }
1492 
1493 
cmp_raw_immediate(Register src,int raw_immediate,Condition cond)1494 void Assembler::cmp_raw_immediate(
1495     Register src, int raw_immediate, Condition cond) {
1496   DCHECK(is_uint12(raw_immediate));
1497   emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
1498 }
1499 
1500 
cmn(Register src1,const Operand & src2,Condition cond)1501 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
1502   addrmod1(cond | CMN | S, src1, r0, src2);
1503 }
1504 
1505 
orr(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1506 void Assembler::orr(Register dst, Register src1, const Operand& src2,
1507                     SBit s, Condition cond) {
1508   addrmod1(cond | ORR | s, src1, dst, src2);
1509 }
1510 
1511 
mov(Register dst,const Operand & src,SBit s,Condition cond)1512 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
1513   // Don't allow nop instructions in the form mov rn, rn to be generated using
1514   // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
1515   // or MarkCode(int/NopMarkerTypes) pseudo instructions.
1516   DCHECK(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
1517   addrmod1(cond | MOV | s, r0, dst, src);
1518 }
1519 
1520 
mov_label_offset(Register dst,Label * label)1521 void Assembler::mov_label_offset(Register dst, Label* label) {
1522   if (label->is_bound()) {
1523     mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
1524   } else {
1525     // Emit the link to the label in the code stream followed by extra nop
1526     // instructions.
1527     // If the label is not linked, then start a new link chain by linking it to
1528     // itself, emitting pc_offset().
1529     int link = label->is_linked() ? label->pos() : pc_offset();
1530     label->link_to(pc_offset());
1531 
1532     // When the label is bound, these instructions will be patched with a
1533     // sequence of movw/movt or mov/orr/orr instructions. They will load the
1534     // destination register with the position of the label from the beginning
1535     // of the code.
1536     //
1537     // The link will be extracted from the first instruction and the destination
1538     // register from the second.
1539     //   For ARMv7:
1540     //      link
1541     //      mov dst, dst
1542     //   For ARMv6:
1543     //      link
1544     //      mov dst, dst
1545     //      mov dst, dst
1546     //
1547     // When the label gets bound: target_at extracts the link and target_at_put
1548     // patches the instructions.
1549     CHECK(is_uint24(link));
1550     BlockConstPoolScope block_const_pool(this);
1551     emit(link);
1552     nop(dst.code());
1553     if (!CpuFeatures::IsSupported(ARMv7)) {
1554       nop(dst.code());
1555     }
1556   }
1557 }
1558 
1559 
movw(Register reg,uint32_t immediate,Condition cond)1560 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
1561   DCHECK(CpuFeatures::IsSupported(ARMv7));
1562   emit(cond | 0x30*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1563 }
1564 
1565 
movt(Register reg,uint32_t immediate,Condition cond)1566 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
1567   DCHECK(CpuFeatures::IsSupported(ARMv7));
1568   emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1569 }
1570 
1571 
bic(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1572 void Assembler::bic(Register dst, Register src1, const Operand& src2,
1573                     SBit s, Condition cond) {
1574   addrmod1(cond | BIC | s, src1, dst, src2);
1575 }
1576 
1577 
mvn(Register dst,const Operand & src,SBit s,Condition cond)1578 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
1579   addrmod1(cond | MVN | s, r0, dst, src);
1580 }
1581 
1582 
1583 // Multiply instructions.
mla(Register dst,Register src1,Register src2,Register srcA,SBit s,Condition cond)1584 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1585                     SBit s, Condition cond) {
1586   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1587   emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1588        src2.code()*B8 | B7 | B4 | src1.code());
1589 }
1590 
1591 
mls(Register dst,Register src1,Register src2,Register srcA,Condition cond)1592 void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
1593                     Condition cond) {
1594   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1595   DCHECK(IsEnabled(ARMv7));
1596   emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
1597        src2.code()*B8 | B7 | B4 | src1.code());
1598 }
1599 
1600 
sdiv(Register dst,Register src1,Register src2,Condition cond)1601 void Assembler::sdiv(Register dst, Register src1, Register src2,
1602                      Condition cond) {
1603   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1604   DCHECK(IsEnabled(SUDIV));
1605   emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
1606        src2.code()*B8 | B4 | src1.code());
1607 }
1608 
1609 
udiv(Register dst,Register src1,Register src2,Condition cond)1610 void Assembler::udiv(Register dst, Register src1, Register src2,
1611                      Condition cond) {
1612   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1613   DCHECK(IsEnabled(SUDIV));
1614   emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xf * B12 |
1615        src2.code() * B8 | B4 | src1.code());
1616 }
1617 
1618 
mul(Register dst,Register src1,Register src2,SBit s,Condition cond)1619 void Assembler::mul(Register dst, Register src1, Register src2, SBit s,
1620                     Condition cond) {
1621   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1622   // dst goes in bits 16-19 for this instruction!
1623   emit(cond | s | dst.code() * B16 | src2.code() * B8 | B7 | B4 | src1.code());
1624 }
1625 
1626 
smmla(Register dst,Register src1,Register src2,Register srcA,Condition cond)1627 void Assembler::smmla(Register dst, Register src1, Register src2, Register srcA,
1628                       Condition cond) {
1629   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1630   emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 |
1631        srcA.code() * B12 | src2.code() * B8 | B4 | src1.code());
1632 }
1633 
1634 
smmul(Register dst,Register src1,Register src2,Condition cond)1635 void Assembler::smmul(Register dst, Register src1, Register src2,
1636                       Condition cond) {
1637   DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1638   emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | 0xf * B12 |
1639        src2.code() * B8 | B4 | src1.code());
1640 }
1641 
1642 
smlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1643 void Assembler::smlal(Register dstL,
1644                       Register dstH,
1645                       Register src1,
1646                       Register src2,
1647                       SBit s,
1648                       Condition cond) {
1649   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1650   DCHECK(!dstL.is(dstH));
1651   emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1652        src2.code()*B8 | B7 | B4 | src1.code());
1653 }
1654 
1655 
smull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1656 void Assembler::smull(Register dstL,
1657                       Register dstH,
1658                       Register src1,
1659                       Register src2,
1660                       SBit s,
1661                       Condition cond) {
1662   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1663   DCHECK(!dstL.is(dstH));
1664   emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1665        src2.code()*B8 | B7 | B4 | src1.code());
1666 }
1667 
1668 
umlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1669 void Assembler::umlal(Register dstL,
1670                       Register dstH,
1671                       Register src1,
1672                       Register src2,
1673                       SBit s,
1674                       Condition cond) {
1675   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1676   DCHECK(!dstL.is(dstH));
1677   emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1678        src2.code()*B8 | B7 | B4 | src1.code());
1679 }
1680 
1681 
umull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1682 void Assembler::umull(Register dstL,
1683                       Register dstH,
1684                       Register src1,
1685                       Register src2,
1686                       SBit s,
1687                       Condition cond) {
1688   DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1689   DCHECK(!dstL.is(dstH));
1690   emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1691        src2.code()*B8 | B7 | B4 | src1.code());
1692 }
1693 
1694 
1695 // Miscellaneous arithmetic instructions.
clz(Register dst,Register src,Condition cond)1696 void Assembler::clz(Register dst, Register src, Condition cond) {
1697   // v5 and above.
1698   DCHECK(!dst.is(pc) && !src.is(pc));
1699   emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
1700        15*B8 | CLZ | src.code());
1701 }
1702 
1703 
1704 // Saturating instructions.
1705 
1706 // Unsigned saturate.
usat(Register dst,int satpos,const Operand & src,Condition cond)1707 void Assembler::usat(Register dst,
1708                      int satpos,
1709                      const Operand& src,
1710                      Condition cond) {
1711   DCHECK(!dst.is(pc) && !src.rm_.is(pc));
1712   DCHECK((satpos >= 0) && (satpos <= 31));
1713   DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
1714   DCHECK(src.rs_.is(no_reg));
1715 
1716   int sh = 0;
1717   if (src.shift_op_ == ASR) {
1718       sh = 1;
1719   }
1720 
1721   emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
1722        src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
1723 }
1724 
1725 
1726 // Bitfield manipulation instructions.
1727 
1728 // Unsigned bit field extract.
1729 // Extracts #width adjacent bits from position #lsb in a register, and
1730 // writes them to the low bits of a destination register.
1731 //   ubfx dst, src, #lsb, #width
ubfx(Register dst,Register src,int lsb,int width,Condition cond)1732 void Assembler::ubfx(Register dst,
1733                      Register src,
1734                      int lsb,
1735                      int width,
1736                      Condition cond) {
1737   // v7 and above.
1738   DCHECK(CpuFeatures::IsSupported(ARMv7));
1739   DCHECK(!dst.is(pc) && !src.is(pc));
1740   DCHECK((lsb >= 0) && (lsb <= 31));
1741   DCHECK((width >= 1) && (width <= (32 - lsb)));
1742   emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
1743        lsb*B7 | B6 | B4 | src.code());
1744 }
1745 
1746 
1747 // Signed bit field extract.
1748 // Extracts #width adjacent bits from position #lsb in a register, and
1749 // writes them to the low bits of a destination register. The extracted
1750 // value is sign extended to fill the destination register.
1751 //   sbfx dst, src, #lsb, #width
sbfx(Register dst,Register src,int lsb,int width,Condition cond)1752 void Assembler::sbfx(Register dst,
1753                      Register src,
1754                      int lsb,
1755                      int width,
1756                      Condition cond) {
1757   // v7 and above.
1758   DCHECK(CpuFeatures::IsSupported(ARMv7));
1759   DCHECK(!dst.is(pc) && !src.is(pc));
1760   DCHECK((lsb >= 0) && (lsb <= 31));
1761   DCHECK((width >= 1) && (width <= (32 - lsb)));
1762   emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
1763        lsb*B7 | B6 | B4 | src.code());
1764 }
1765 
1766 
1767 // Bit field clear.
1768 // Sets #width adjacent bits at position #lsb in the destination register
1769 // to zero, preserving the value of the other bits.
1770 //   bfc dst, #lsb, #width
bfc(Register dst,int lsb,int width,Condition cond)1771 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
1772   // v7 and above.
1773   DCHECK(CpuFeatures::IsSupported(ARMv7));
1774   DCHECK(!dst.is(pc));
1775   DCHECK((lsb >= 0) && (lsb <= 31));
1776   DCHECK((width >= 1) && (width <= (32 - lsb)));
1777   int msb = lsb + width - 1;
1778   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
1779 }
1780 
1781 
1782 // Bit field insert.
1783 // Inserts #width adjacent bits from the low bits of the source register
1784 // into position #lsb of the destination register.
1785 //   bfi dst, src, #lsb, #width
bfi(Register dst,Register src,int lsb,int width,Condition cond)1786 void Assembler::bfi(Register dst,
1787                     Register src,
1788                     int lsb,
1789                     int width,
1790                     Condition cond) {
1791   // v7 and above.
1792   DCHECK(CpuFeatures::IsSupported(ARMv7));
1793   DCHECK(!dst.is(pc) && !src.is(pc));
1794   DCHECK((lsb >= 0) && (lsb <= 31));
1795   DCHECK((width >= 1) && (width <= (32 - lsb)));
1796   int msb = lsb + width - 1;
1797   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
1798        src.code());
1799 }
1800 
1801 
pkhbt(Register dst,Register src1,const Operand & src2,Condition cond)1802 void Assembler::pkhbt(Register dst,
1803                       Register src1,
1804                       const Operand& src2,
1805                       Condition cond ) {
1806   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
1807   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
1808   // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
1809   DCHECK(!dst.is(pc));
1810   DCHECK(!src1.is(pc));
1811   DCHECK(!src2.rm().is(pc));
1812   DCHECK(!src2.rm().is(no_reg));
1813   DCHECK(src2.rs().is(no_reg));
1814   DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
1815   DCHECK(src2.shift_op() == LSL);
1816   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
1817        src2.shift_imm_*B7 | B4 | src2.rm().code());
1818 }
1819 
1820 
pkhtb(Register dst,Register src1,const Operand & src2,Condition cond)1821 void Assembler::pkhtb(Register dst,
1822                       Register src1,
1823                       const Operand& src2,
1824                       Condition cond) {
1825   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
1826   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
1827   // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
1828   DCHECK(!dst.is(pc));
1829   DCHECK(!src1.is(pc));
1830   DCHECK(!src2.rm().is(pc));
1831   DCHECK(!src2.rm().is(no_reg));
1832   DCHECK(src2.rs().is(no_reg));
1833   DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
1834   DCHECK(src2.shift_op() == ASR);
1835   int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
1836   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
1837        asr*B7 | B6 | B4 | src2.rm().code());
1838 }
1839 
1840 
sxtb(Register dst,Register src,int rotate,Condition cond)1841 void Assembler::sxtb(Register dst, Register src, int rotate, Condition cond) {
1842   // Instruction details available in ARM DDI 0406C.b, A8.8.233.
1843   // cond(31-28) | 01101010(27-20) | 1111(19-16) |
1844   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1845   DCHECK(!dst.is(pc));
1846   DCHECK(!src.is(pc));
1847   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1848   emit(cond | 0x6A * B20 | 0xF * B16 | dst.code() * B12 |
1849        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1850 }
1851 
1852 
sxtab(Register dst,Register src1,Register src2,int rotate,Condition cond)1853 void Assembler::sxtab(Register dst, Register src1, Register src2, int rotate,
1854                       Condition cond) {
1855   // Instruction details available in ARM DDI 0406C.b, A8.8.233.
1856   // cond(31-28) | 01101010(27-20) | Rn(19-16) |
1857   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1858   DCHECK(!dst.is(pc));
1859   DCHECK(!src1.is(pc));
1860   DCHECK(!src2.is(pc));
1861   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1862   emit(cond | 0x6A * B20 | src1.code() * B16 | dst.code() * B12 |
1863        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
1864 }
1865 
1866 
sxth(Register dst,Register src,int rotate,Condition cond)1867 void Assembler::sxth(Register dst, Register src, int rotate, Condition cond) {
1868   // Instruction details available in ARM DDI 0406C.b, A8.8.235.
1869   // cond(31-28) | 01101011(27-20) | 1111(19-16) |
1870   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1871   DCHECK(!dst.is(pc));
1872   DCHECK(!src.is(pc));
1873   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1874   emit(cond | 0x6B * B20 | 0xF * B16 | dst.code() * B12 |
1875        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1876 }
1877 
1878 
sxtah(Register dst,Register src1,Register src2,int rotate,Condition cond)1879 void Assembler::sxtah(Register dst, Register src1, Register src2, int rotate,
1880                       Condition cond) {
1881   // Instruction details available in ARM DDI 0406C.b, A8.8.235.
1882   // cond(31-28) | 01101011(27-20) | Rn(19-16) |
1883   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1884   DCHECK(!dst.is(pc));
1885   DCHECK(!src1.is(pc));
1886   DCHECK(!src2.is(pc));
1887   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1888   emit(cond | 0x6B * B20 | src1.code() * B16 | dst.code() * B12 |
1889        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
1890 }
1891 
1892 
uxtb(Register dst,Register src,int rotate,Condition cond)1893 void Assembler::uxtb(Register dst, Register src, int rotate, Condition cond) {
1894   // Instruction details available in ARM DDI 0406C.b, A8.8.274.
1895   // cond(31-28) | 01101110(27-20) | 1111(19-16) |
1896   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1897   DCHECK(!dst.is(pc));
1898   DCHECK(!src.is(pc));
1899   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1900   emit(cond | 0x6E * B20 | 0xF * B16 | dst.code() * B12 |
1901        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1902 }
1903 
1904 
uxtab(Register dst,Register src1,Register src2,int rotate,Condition cond)1905 void Assembler::uxtab(Register dst, Register src1, Register src2, int rotate,
1906                       Condition cond) {
1907   // Instruction details available in ARM DDI 0406C.b, A8.8.271.
1908   // cond(31-28) | 01101110(27-20) | Rn(19-16) |
1909   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1910   DCHECK(!dst.is(pc));
1911   DCHECK(!src1.is(pc));
1912   DCHECK(!src2.is(pc));
1913   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1914   emit(cond | 0x6E * B20 | src1.code() * B16 | dst.code() * B12 |
1915        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
1916 }
1917 
1918 
uxtb16(Register dst,Register src,int rotate,Condition cond)1919 void Assembler::uxtb16(Register dst, Register src, int rotate, Condition cond) {
1920   // Instruction details available in ARM DDI 0406C.b, A8.8.275.
1921   // cond(31-28) | 01101100(27-20) | 1111(19-16) |
1922   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1923   DCHECK(!dst.is(pc));
1924   DCHECK(!src.is(pc));
1925   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1926   emit(cond | 0x6C * B20 | 0xF * B16 | dst.code() * B12 |
1927        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1928 }
1929 
1930 
uxth(Register dst,Register src,int rotate,Condition cond)1931 void Assembler::uxth(Register dst, Register src, int rotate, Condition cond) {
1932   // Instruction details available in ARM DDI 0406C.b, A8.8.276.
1933   // cond(31-28) | 01101111(27-20) | 1111(19-16) |
1934   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1935   DCHECK(!dst.is(pc));
1936   DCHECK(!src.is(pc));
1937   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1938   emit(cond | 0x6F * B20 | 0xF * B16 | dst.code() * B12 |
1939        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code());
1940 }
1941 
1942 
uxtah(Register dst,Register src1,Register src2,int rotate,Condition cond)1943 void Assembler::uxtah(Register dst, Register src1, Register src2, int rotate,
1944                       Condition cond) {
1945   // Instruction details available in ARM DDI 0406C.b, A8.8.273.
1946   // cond(31-28) | 01101111(27-20) | Rn(19-16) |
1947   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1948   DCHECK(!dst.is(pc));
1949   DCHECK(!src1.is(pc));
1950   DCHECK(!src2.is(pc));
1951   DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24);
1952   emit(cond | 0x6F * B20 | src1.code() * B16 | dst.code() * B12 |
1953        ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code());
1954 }
1955 
1956 
rbit(Register dst,Register src,Condition cond)1957 void Assembler::rbit(Register dst, Register src, Condition cond) {
1958   // Instruction details available in ARM DDI 0406C.b, A8.8.144.
1959   // cond(31-28) | 011011111111(27-16) | Rd(15-12) | 11110011(11-4) | Rm(3-0)
1960   DCHECK(IsEnabled(ARMv7));
1961   DCHECK(!dst.is(pc));
1962   DCHECK(!src.is(pc));
1963   emit(cond | 0x6FF * B16 | dst.code() * B12 | 0xF3 * B4 | src.code());
1964 }
1965 
1966 
1967 // Status register access instructions.
mrs(Register dst,SRegister s,Condition cond)1968 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1969   DCHECK(!dst.is(pc));
1970   emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1971 }
1972 
1973 
msr(SRegisterFieldMask fields,const Operand & src,Condition cond)1974 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1975                     Condition cond) {
1976   DCHECK((fields & 0x000f0000) != 0);  // At least one field must be set.
1977   DCHECK(((fields & 0xfff0ffff) == CPSR) || ((fields & 0xfff0ffff) == SPSR));
1978   Instr instr;
1979   if (!src.rm_.is_valid()) {
1980     // Immediate.
1981     uint32_t rotate_imm;
1982     uint32_t immed_8;
1983     if (src.must_output_reloc_info(this) ||
1984         !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
1985       // Immediate operand cannot be encoded, load it first to register ip.
1986       move_32_bit_immediate(ip, src);
1987       msr(fields, Operand(ip), cond);
1988       return;
1989     }
1990     instr = I | rotate_imm*B8 | immed_8;
1991   } else {
1992     DCHECK(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
1993     instr = src.rm_.code();
1994   }
1995   emit(cond | instr | B24 | B21 | fields | 15*B12);
1996 }
1997 
1998 
1999 // Load/Store instructions.
ldr(Register dst,const MemOperand & src,Condition cond)2000 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
2001   addrmod2(cond | B26 | L, dst, src);
2002 }
2003 
2004 
str(Register src,const MemOperand & dst,Condition cond)2005 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
2006   addrmod2(cond | B26, src, dst);
2007 }
2008 
2009 
ldrb(Register dst,const MemOperand & src,Condition cond)2010 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
2011   addrmod2(cond | B26 | B | L, dst, src);
2012 }
2013 
2014 
strb(Register src,const MemOperand & dst,Condition cond)2015 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
2016   addrmod2(cond | B26 | B, src, dst);
2017 }
2018 
2019 
ldrh(Register dst,const MemOperand & src,Condition cond)2020 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
2021   addrmod3(cond | L | B7 | H | B4, dst, src);
2022 }
2023 
2024 
strh(Register src,const MemOperand & dst,Condition cond)2025 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
2026   addrmod3(cond | B7 | H | B4, src, dst);
2027 }
2028 
2029 
ldrsb(Register dst,const MemOperand & src,Condition cond)2030 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
2031   addrmod3(cond | L | B7 | S6 | B4, dst, src);
2032 }
2033 
2034 
ldrsh(Register dst,const MemOperand & src,Condition cond)2035 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
2036   addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
2037 }
2038 
2039 
ldrd(Register dst1,Register dst2,const MemOperand & src,Condition cond)2040 void Assembler::ldrd(Register dst1, Register dst2,
2041                      const MemOperand& src, Condition cond) {
2042   DCHECK(src.rm().is(no_reg));
2043   DCHECK(!dst1.is(lr));  // r14.
2044   DCHECK_EQ(0, dst1.code() % 2);
2045   DCHECK_EQ(dst1.code() + 1, dst2.code());
2046   addrmod3(cond | B7 | B6 | B4, dst1, src);
2047 }
2048 
2049 
strd(Register src1,Register src2,const MemOperand & dst,Condition cond)2050 void Assembler::strd(Register src1, Register src2,
2051                      const MemOperand& dst, Condition cond) {
2052   DCHECK(dst.rm().is(no_reg));
2053   DCHECK(!src1.is(lr));  // r14.
2054   DCHECK_EQ(0, src1.code() % 2);
2055   DCHECK_EQ(src1.code() + 1, src2.code());
2056   addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
2057 }
2058 
2059 // Load/Store exclusive instructions.
ldrex(Register dst,Register src,Condition cond)2060 void Assembler::ldrex(Register dst, Register src, Condition cond) {
2061   // Instruction details available in ARM DDI 0406C.b, A8.8.75.
2062   // cond(31-28) | 00011001(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0)
2063   emit(cond | B24 | B23 | B20 | src.code() * B16 | dst.code() * B12 | 0xf9f);
2064 }
2065 
strex(Register src1,Register src2,Register dst,Condition cond)2066 void Assembler::strex(Register src1, Register src2, Register dst,
2067                       Condition cond) {
2068   // Instruction details available in ARM DDI 0406C.b, A8.8.212.
2069   // cond(31-28) | 00011000(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) |
2070   // Rt(3-0)
2071   emit(cond | B24 | B23 | dst.code() * B16 | src1.code() * B12 | 0xf9 * B4 |
2072        src2.code());
2073 }
2074 
ldrexb(Register dst,Register src,Condition cond)2075 void Assembler::ldrexb(Register dst, Register src, Condition cond) {
2076   // Instruction details available in ARM DDI 0406C.b, A8.8.76.
2077   // cond(31-28) | 00011101(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0)
2078   emit(cond | B24 | B23 | B22 | B20 | src.code() * B16 | dst.code() * B12 |
2079        0xf9f);
2080 }
2081 
strexb(Register src1,Register src2,Register dst,Condition cond)2082 void Assembler::strexb(Register src1, Register src2, Register dst,
2083                        Condition cond) {
2084   // Instruction details available in ARM DDI 0406C.b, A8.8.213.
2085   // cond(31-28) | 00011100(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) |
2086   // Rt(3-0)
2087   emit(cond | B24 | B23 | B22 | dst.code() * B16 | src1.code() * B12 |
2088        0xf9 * B4 | src2.code());
2089 }
2090 
ldrexh(Register dst,Register src,Condition cond)2091 void Assembler::ldrexh(Register dst, Register src, Condition cond) {
2092   // Instruction details available in ARM DDI 0406C.b, A8.8.78.
2093   // cond(31-28) | 00011111(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0)
2094   emit(cond | B24 | B23 | B22 | B21 | B20 | src.code() * B16 |
2095        dst.code() * B12 | 0xf9f);
2096 }
2097 
strexh(Register src1,Register src2,Register dst,Condition cond)2098 void Assembler::strexh(Register src1, Register src2, Register dst,
2099                        Condition cond) {
2100   // Instruction details available in ARM DDI 0406C.b, A8.8.215.
2101   // cond(31-28) | 00011110(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) |
2102   // Rt(3-0)
2103   emit(cond | B24 | B23 | B22 | B21 | dst.code() * B16 | src1.code() * B12 |
2104        0xf9 * B4 | src2.code());
2105 }
2106 
2107 // Preload instructions.
pld(const MemOperand & address)2108 void Assembler::pld(const MemOperand& address) {
2109   // Instruction details available in ARM DDI 0406C.b, A8.8.128.
2110   // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
2111   // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
2112   DCHECK(address.rm().is(no_reg));
2113   DCHECK(address.am() == Offset);
2114   int U = B23;
2115   int offset = address.offset();
2116   if (offset < 0) {
2117     offset = -offset;
2118     U = 0;
2119   }
2120   DCHECK(offset < 4096);
2121   emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
2122        0xf*B12 | offset);
2123 }
2124 
2125 
2126 // Load/Store multiple instructions.
ldm(BlockAddrMode am,Register base,RegList dst,Condition cond)2127 void Assembler::ldm(BlockAddrMode am,
2128                     Register base,
2129                     RegList dst,
2130                     Condition cond) {
2131   // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
2132   DCHECK(base.is(sp) || (dst & sp.bit()) == 0);
2133 
2134   addrmod4(cond | B27 | am | L, base, dst);
2135 
2136   // Emit the constant pool after a function return implemented by ldm ..{..pc}.
2137   if (cond == al && (dst & pc.bit()) != 0) {
2138     // There is a slight chance that the ldm instruction was actually a call,
2139     // in which case it would be wrong to return into the constant pool; we
2140     // recognize this case by checking if the emission of the pool was blocked
2141     // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
2142     // the case, we emit a jump over the pool.
2143     CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
2144   }
2145 }
2146 
2147 
stm(BlockAddrMode am,Register base,RegList src,Condition cond)2148 void Assembler::stm(BlockAddrMode am,
2149                     Register base,
2150                     RegList src,
2151                     Condition cond) {
2152   addrmod4(cond | B27 | am, base, src);
2153 }
2154 
2155 
2156 // Exception-generating instructions and debugging support.
2157 // Stops with a non-negative code less than kNumOfWatchedStops support
2158 // enabling/disabling and a counter feature. See simulator-arm.h .
stop(const char * msg,Condition cond,int32_t code)2159 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
2160 #ifndef __arm__
2161   DCHECK(code >= kDefaultStopCode);
2162   {
2163     // The Simulator will handle the stop instruction and get the message
2164     // address. It expects to find the address just after the svc instruction.
2165     BlockConstPoolScope block_const_pool(this);
2166     if (code >= 0) {
2167       svc(kStopCode + code, cond);
2168     } else {
2169       svc(kStopCode + kMaxStopCode, cond);
2170     }
2171     emit(reinterpret_cast<Instr>(msg));
2172   }
2173 #else  // def __arm__
2174   if (cond != al) {
2175     Label skip;
2176     b(&skip, NegateCondition(cond));
2177     bkpt(0);
2178     bind(&skip);
2179   } else {
2180     bkpt(0);
2181   }
2182 #endif  // def __arm__
2183 }
2184 
2185 
bkpt(uint32_t imm16)2186 void Assembler::bkpt(uint32_t imm16) {  // v5 and above
2187   DCHECK(is_uint16(imm16));
2188   emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
2189 }
2190 
2191 
svc(uint32_t imm24,Condition cond)2192 void Assembler::svc(uint32_t imm24, Condition cond) {
2193   DCHECK(is_uint24(imm24));
2194   emit(cond | 15*B24 | imm24);
2195 }
2196 
2197 
dmb(BarrierOption option)2198 void Assembler::dmb(BarrierOption option) {
2199   emit(kSpecialCondition | 0x57ff*B12 | 5*B4 | option);
2200 }
2201 
2202 
dsb(BarrierOption option)2203 void Assembler::dsb(BarrierOption option) {
2204   emit(kSpecialCondition | 0x57ff*B12 | 4*B4 | option);
2205 }
2206 
2207 
isb(BarrierOption option)2208 void Assembler::isb(BarrierOption option) {
2209   emit(kSpecialCondition | 0x57ff*B12 | 6*B4 | option);
2210 }
2211 
2212 
2213 // Coprocessor instructions.
cdp(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2214 void Assembler::cdp(Coprocessor coproc,
2215                     int opcode_1,
2216                     CRegister crd,
2217                     CRegister crn,
2218                     CRegister crm,
2219                     int opcode_2,
2220                     Condition cond) {
2221   DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2));
2222   emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
2223        crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
2224 }
2225 
2226 
cdp2(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2)2227 void Assembler::cdp2(Coprocessor coproc,
2228                      int opcode_1,
2229                      CRegister crd,
2230                      CRegister crn,
2231                      CRegister crm,
2232                      int opcode_2) {  // v5 and above
2233   cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
2234 }
2235 
2236 
mcr(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2237 void Assembler::mcr(Coprocessor coproc,
2238                     int opcode_1,
2239                     Register rd,
2240                     CRegister crn,
2241                     CRegister crm,
2242                     int opcode_2,
2243                     Condition cond) {
2244   DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
2245   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
2246        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
2247 }
2248 
2249 
mcr2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)2250 void Assembler::mcr2(Coprocessor coproc,
2251                      int opcode_1,
2252                      Register rd,
2253                      CRegister crn,
2254                      CRegister crm,
2255                      int opcode_2) {  // v5 and above
2256   mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
2257 }
2258 
2259 
mrc(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2260 void Assembler::mrc(Coprocessor coproc,
2261                     int opcode_1,
2262                     Register rd,
2263                     CRegister crn,
2264                     CRegister crm,
2265                     int opcode_2,
2266                     Condition cond) {
2267   DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
2268   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
2269        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
2270 }
2271 
2272 
mrc2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)2273 void Assembler::mrc2(Coprocessor coproc,
2274                      int opcode_1,
2275                      Register rd,
2276                      CRegister crn,
2277                      CRegister crm,
2278                      int opcode_2) {  // v5 and above
2279   mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
2280 }
2281 
2282 
ldc(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l,Condition cond)2283 void Assembler::ldc(Coprocessor coproc,
2284                     CRegister crd,
2285                     const MemOperand& src,
2286                     LFlag l,
2287                     Condition cond) {
2288   addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
2289 }
2290 
2291 
ldc(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l,Condition cond)2292 void Assembler::ldc(Coprocessor coproc,
2293                     CRegister crd,
2294                     Register rn,
2295                     int option,
2296                     LFlag l,
2297                     Condition cond) {
2298   // Unindexed addressing.
2299   DCHECK(is_uint8(option));
2300   emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
2301        coproc*B8 | (option & 255));
2302 }
2303 
2304 
ldc2(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l)2305 void Assembler::ldc2(Coprocessor coproc,
2306                      CRegister crd,
2307                      const MemOperand& src,
2308                      LFlag l) {  // v5 and above
2309   ldc(coproc, crd, src, l, kSpecialCondition);
2310 }
2311 
2312 
ldc2(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l)2313 void Assembler::ldc2(Coprocessor coproc,
2314                      CRegister crd,
2315                      Register rn,
2316                      int option,
2317                      LFlag l) {  // v5 and above
2318   ldc(coproc, crd, rn, option, l, kSpecialCondition);
2319 }
2320 
2321 
2322 // Support for VFP.
2323 
vldr(const DwVfpRegister dst,const Register base,int offset,const Condition cond)2324 void Assembler::vldr(const DwVfpRegister dst,
2325                      const Register base,
2326                      int offset,
2327                      const Condition cond) {
2328   // Ddst = MEM(Rbase + offset).
2329   // Instruction details available in ARM DDI 0406C.b, A8-924.
2330   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
2331   // Vd(15-12) | 1011(11-8) | offset
2332   int u = 1;
2333   if (offset < 0) {
2334     CHECK(offset != kMinInt);
2335     offset = -offset;
2336     u = 0;
2337   }
2338   int vd, d;
2339   dst.split_code(&vd, &d);
2340 
2341   DCHECK(offset >= 0);
2342   if ((offset % 4) == 0 && (offset / 4) < 256) {
2343     emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
2344          0xB*B8 | ((offset / 4) & 255));
2345   } else {
2346     // Larger offsets must be handled by computing the correct address
2347     // in the ip register.
2348     DCHECK(!base.is(ip));
2349     if (u == 1) {
2350       add(ip, base, Operand(offset));
2351     } else {
2352       sub(ip, base, Operand(offset));
2353     }
2354     emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
2355   }
2356 }
2357 
2358 
vldr(const DwVfpRegister dst,const MemOperand & operand,const Condition cond)2359 void Assembler::vldr(const DwVfpRegister dst,
2360                      const MemOperand& operand,
2361                      const Condition cond) {
2362   DCHECK(operand.am_ == Offset);
2363   if (operand.rm().is_valid()) {
2364     add(ip, operand.rn(),
2365         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2366     vldr(dst, ip, 0, cond);
2367   } else {
2368     vldr(dst, operand.rn(), operand.offset(), cond);
2369   }
2370 }
2371 
2372 
vldr(const SwVfpRegister dst,const Register base,int offset,const Condition cond)2373 void Assembler::vldr(const SwVfpRegister dst,
2374                      const Register base,
2375                      int offset,
2376                      const Condition cond) {
2377   // Sdst = MEM(Rbase + offset).
2378   // Instruction details available in ARM DDI 0406A, A8-628.
2379   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
2380   // Vdst(15-12) | 1010(11-8) | offset
2381   int u = 1;
2382   if (offset < 0) {
2383     offset = -offset;
2384     u = 0;
2385   }
2386   int sd, d;
2387   dst.split_code(&sd, &d);
2388   DCHECK(offset >= 0);
2389 
2390   if ((offset % 4) == 0 && (offset / 4) < 256) {
2391   emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
2392        0xA*B8 | ((offset / 4) & 255));
2393   } else {
2394     // Larger offsets must be handled by computing the correct address
2395     // in the ip register.
2396     DCHECK(!base.is(ip));
2397     if (u == 1) {
2398       add(ip, base, Operand(offset));
2399     } else {
2400       sub(ip, base, Operand(offset));
2401     }
2402     emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
2403   }
2404 }
2405 
2406 
vldr(const SwVfpRegister dst,const MemOperand & operand,const Condition cond)2407 void Assembler::vldr(const SwVfpRegister dst,
2408                      const MemOperand& operand,
2409                      const Condition cond) {
2410   DCHECK(operand.am_ == Offset);
2411   if (operand.rm().is_valid()) {
2412     add(ip, operand.rn(),
2413         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2414     vldr(dst, ip, 0, cond);
2415   } else {
2416     vldr(dst, operand.rn(), operand.offset(), cond);
2417   }
2418 }
2419 
2420 
vstr(const DwVfpRegister src,const Register base,int offset,const Condition cond)2421 void Assembler::vstr(const DwVfpRegister src,
2422                      const Register base,
2423                      int offset,
2424                      const Condition cond) {
2425   // MEM(Rbase + offset) = Dsrc.
2426   // Instruction details available in ARM DDI 0406C.b, A8-1082.
2427   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
2428   // Vd(15-12) | 1011(11-8) | (offset/4)
2429   int u = 1;
2430   if (offset < 0) {
2431     CHECK(offset != kMinInt);
2432     offset = -offset;
2433     u = 0;
2434   }
2435   DCHECK(offset >= 0);
2436   int vd, d;
2437   src.split_code(&vd, &d);
2438 
2439   if ((offset % 4) == 0 && (offset / 4) < 256) {
2440     emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
2441          ((offset / 4) & 255));
2442   } else {
2443     // Larger offsets must be handled by computing the correct address
2444     // in the ip register.
2445     DCHECK(!base.is(ip));
2446     if (u == 1) {
2447       add(ip, base, Operand(offset));
2448     } else {
2449       sub(ip, base, Operand(offset));
2450     }
2451     emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
2452   }
2453 }
2454 
2455 
vstr(const DwVfpRegister src,const MemOperand & operand,const Condition cond)2456 void Assembler::vstr(const DwVfpRegister src,
2457                      const MemOperand& operand,
2458                      const Condition cond) {
2459   DCHECK(operand.am_ == Offset);
2460   if (operand.rm().is_valid()) {
2461     add(ip, operand.rn(),
2462         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2463     vstr(src, ip, 0, cond);
2464   } else {
2465     vstr(src, operand.rn(), operand.offset(), cond);
2466   }
2467 }
2468 
2469 
vstr(const SwVfpRegister src,const Register base,int offset,const Condition cond)2470 void Assembler::vstr(const SwVfpRegister src,
2471                      const Register base,
2472                      int offset,
2473                      const Condition cond) {
2474   // MEM(Rbase + offset) = SSrc.
2475   // Instruction details available in ARM DDI 0406A, A8-786.
2476   // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
2477   // Vdst(15-12) | 1010(11-8) | (offset/4)
2478   int u = 1;
2479   if (offset < 0) {
2480     CHECK(offset != kMinInt);
2481     offset = -offset;
2482     u = 0;
2483   }
2484   int sd, d;
2485   src.split_code(&sd, &d);
2486   DCHECK(offset >= 0);
2487   if ((offset % 4) == 0 && (offset / 4) < 256) {
2488     emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
2489          0xA*B8 | ((offset / 4) & 255));
2490   } else {
2491     // Larger offsets must be handled by computing the correct address
2492     // in the ip register.
2493     DCHECK(!base.is(ip));
2494     if (u == 1) {
2495       add(ip, base, Operand(offset));
2496     } else {
2497       sub(ip, base, Operand(offset));
2498     }
2499     emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
2500   }
2501 }
2502 
2503 
vstr(const SwVfpRegister src,const MemOperand & operand,const Condition cond)2504 void Assembler::vstr(const SwVfpRegister src,
2505                      const MemOperand& operand,
2506                      const Condition cond) {
2507   DCHECK(operand.am_ == Offset);
2508   if (operand.rm().is_valid()) {
2509     add(ip, operand.rn(),
2510         Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2511     vstr(src, ip, 0, cond);
2512   } else {
2513     vstr(src, operand.rn(), operand.offset(), cond);
2514   }
2515 }
2516 
2517 
vldm(BlockAddrMode am,Register base,DwVfpRegister first,DwVfpRegister last,Condition cond)2518 void  Assembler::vldm(BlockAddrMode am,
2519                       Register base,
2520                       DwVfpRegister first,
2521                       DwVfpRegister last,
2522                       Condition cond) {
2523   // Instruction details available in ARM DDI 0406C.b, A8-922.
2524   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2525   // first(15-12) | 1011(11-8) | (count * 2)
2526   DCHECK_LE(first.code(), last.code());
2527   DCHECK(am == ia || am == ia_w || am == db_w);
2528   DCHECK(!base.is(pc));
2529 
2530   int sd, d;
2531   first.split_code(&sd, &d);
2532   int count = last.code() - first.code() + 1;
2533   DCHECK(count <= 16);
2534   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2535        0xB*B8 | count*2);
2536 }
2537 
2538 
vstm(BlockAddrMode am,Register base,DwVfpRegister first,DwVfpRegister last,Condition cond)2539 void  Assembler::vstm(BlockAddrMode am,
2540                       Register base,
2541                       DwVfpRegister first,
2542                       DwVfpRegister last,
2543                       Condition cond) {
2544   // Instruction details available in ARM DDI 0406C.b, A8-1080.
2545   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2546   // first(15-12) | 1011(11-8) | (count * 2)
2547   DCHECK_LE(first.code(), last.code());
2548   DCHECK(am == ia || am == ia_w || am == db_w);
2549   DCHECK(!base.is(pc));
2550 
2551   int sd, d;
2552   first.split_code(&sd, &d);
2553   int count = last.code() - first.code() + 1;
2554   DCHECK(count <= 16);
2555   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2556        0xB*B8 | count*2);
2557 }
2558 
vldm(BlockAddrMode am,Register base,SwVfpRegister first,SwVfpRegister last,Condition cond)2559 void  Assembler::vldm(BlockAddrMode am,
2560                       Register base,
2561                       SwVfpRegister first,
2562                       SwVfpRegister last,
2563                       Condition cond) {
2564   // Instruction details available in ARM DDI 0406A, A8-626.
2565   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2566   // first(15-12) | 1010(11-8) | (count/2)
2567   DCHECK_LE(first.code(), last.code());
2568   DCHECK(am == ia || am == ia_w || am == db_w);
2569   DCHECK(!base.is(pc));
2570 
2571   int sd, d;
2572   first.split_code(&sd, &d);
2573   int count = last.code() - first.code() + 1;
2574   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2575        0xA*B8 | count);
2576 }
2577 
2578 
vstm(BlockAddrMode am,Register base,SwVfpRegister first,SwVfpRegister last,Condition cond)2579 void  Assembler::vstm(BlockAddrMode am,
2580                       Register base,
2581                       SwVfpRegister first,
2582                       SwVfpRegister last,
2583                       Condition cond) {
2584   // Instruction details available in ARM DDI 0406A, A8-784.
2585   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2586   // first(15-12) | 1011(11-8) | (count/2)
2587   DCHECK_LE(first.code(), last.code());
2588   DCHECK(am == ia || am == ia_w || am == db_w);
2589   DCHECK(!base.is(pc));
2590 
2591   int sd, d;
2592   first.split_code(&sd, &d);
2593   int count = last.code() - first.code() + 1;
2594   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2595        0xA*B8 | count);
2596 }
2597 
2598 
DoubleAsTwoUInt32(double d,uint32_t * lo,uint32_t * hi)2599 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
2600   uint64_t i;
2601   memcpy(&i, &d, 8);
2602 
2603   *lo = i & 0xffffffff;
2604   *hi = i >> 32;
2605 }
2606 
2607 
2608 // Only works for little endian floating point formats.
2609 // We don't support VFP on the mixed endian floating point platform.
FitsVmovFPImmediate(double d,uint32_t * encoding)2610 static bool FitsVmovFPImmediate(double d, uint32_t* encoding) {
2611   DCHECK(CpuFeatures::IsSupported(VFP3));
2612 
2613   // VMOV can accept an immediate of the form:
2614   //
2615   //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
2616   //
2617   // The immediate is encoded using an 8-bit quantity, comprised of two
2618   // 4-bit fields. For an 8-bit immediate of the form:
2619   //
2620   //  [abcdefgh]
2621   //
2622   // where a is the MSB and h is the LSB, an immediate 64-bit double can be
2623   // created of the form:
2624   //
2625   //  [aBbbbbbb,bbcdefgh,00000000,00000000,
2626   //      00000000,00000000,00000000,00000000]
2627   //
2628   // where B = ~b.
2629   //
2630 
2631   uint32_t lo, hi;
2632   DoubleAsTwoUInt32(d, &lo, &hi);
2633 
2634   // The most obvious constraint is the long block of zeroes.
2635   if ((lo != 0) || ((hi & 0xffff) != 0)) {
2636     return false;
2637   }
2638 
2639   // Bits 61:54 must be all clear or all set.
2640   if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
2641     return false;
2642   }
2643 
2644   // Bit 62 must be NOT bit 61.
2645   if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
2646     return false;
2647   }
2648 
2649   // Create the encoded immediate in the form:
2650   //  [00000000,0000abcd,00000000,0000efgh]
2651   *encoding  = (hi >> 16) & 0xf;      // Low nybble.
2652   *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
2653   *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.
2654 
2655   return true;
2656 }
2657 
2658 
vmov(const SwVfpRegister dst,float imm)2659 void Assembler::vmov(const SwVfpRegister dst, float imm) {
2660   uint32_t enc;
2661   if (CpuFeatures::IsSupported(VFP3) && FitsVmovFPImmediate(imm, &enc)) {
2662     // The float can be encoded in the instruction.
2663     //
2664     // Sd = immediate
2665     // Instruction details available in ARM DDI 0406C.b, A8-936.
2666     // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
2667     // Vd(15-12) | 101(11-9) | sz=0(8) | imm4L(3-0)
2668     int vd, d;
2669     dst.split_code(&vd, &d);
2670     emit(al | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | enc);
2671   } else {
2672     mov(ip, Operand(bit_cast<int32_t>(imm)));
2673     vmov(dst, ip);
2674   }
2675 }
2676 
2677 
vmov(const DwVfpRegister dst,double imm,const Register scratch)2678 void Assembler::vmov(const DwVfpRegister dst,
2679                      double imm,
2680                      const Register scratch) {
2681   uint32_t enc;
2682   // If the embedded constant pool is disabled, we can use the normal, inline
2683   // constant pool. If the embedded constant pool is enabled (via
2684   // FLAG_enable_embedded_constant_pool), we can only use it where the pool
2685   // pointer (pp) is valid.
2686   bool can_use_pool =
2687       !FLAG_enable_embedded_constant_pool || is_constant_pool_available();
2688   if (CpuFeatures::IsSupported(VFP3) && FitsVmovFPImmediate(imm, &enc)) {
2689     // The double can be encoded in the instruction.
2690     //
2691     // Dd = immediate
2692     // Instruction details available in ARM DDI 0406C.b, A8-936.
2693     // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
2694     // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
2695     int vd, d;
2696     dst.split_code(&vd, &d);
2697     emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
2698   } else if (FLAG_enable_vldr_imm && can_use_pool) {
2699     // TODO(jfb) Temporarily turned off until we have constant blinding or
2700     //           some equivalent mitigation: an attacker can otherwise control
2701     //           generated data which also happens to be executable, a Very Bad
2702     //           Thing indeed.
2703     //           Blinding gets tricky because we don't have xor, we probably
2704     //           need to add/subtract without losing precision, which requires a
2705     //           cookie value that Lithium is probably better positioned to
2706     //           choose.
2707     //           We could also add a few peepholes here like detecting 0.0 and
2708     //           -0.0 and doing a vmov from the sequestered d14, forcing denorms
2709     //           to zero (we set flush-to-zero), and normalizing NaN values.
2710     //           We could also detect redundant values.
2711     //           The code could also randomize the order of values, though
2712     //           that's tricky because vldr has a limited reach. Furthermore
2713     //           it breaks load locality.
2714     ConstantPoolEntry::Access access = ConstantPoolAddEntry(pc_offset(), imm);
2715     if (access == ConstantPoolEntry::OVERFLOWED) {
2716       DCHECK(FLAG_enable_embedded_constant_pool);
2717       // Emit instructions to load constant pool offset.
2718       movw(ip, 0);
2719       movt(ip, 0);
2720       // Load from constant pool at offset.
2721       vldr(dst, MemOperand(pp, ip));
2722     } else {
2723       DCHECK(access == ConstantPoolEntry::REGULAR);
2724       vldr(dst, MemOperand(FLAG_enable_embedded_constant_pool ? pp : pc, 0));
2725     }
2726   } else {
2727     // Synthesise the double from ARM immediates.
2728     uint32_t lo, hi;
2729     DoubleAsTwoUInt32(imm, &lo, &hi);
2730 
2731     if (lo == hi) {
2732       // Move the low and high parts of the double to a D register in one
2733       // instruction.
2734       mov(ip, Operand(lo));
2735       vmov(dst, ip, ip);
2736     } else if (scratch.is(no_reg)) {
2737       mov(ip, Operand(lo));
2738       vmov(dst, VmovIndexLo, ip);
2739       if (((lo & 0xffff) == (hi & 0xffff)) &&
2740           CpuFeatures::IsSupported(ARMv7)) {
2741         movt(ip, hi >> 16);
2742       } else {
2743         mov(ip, Operand(hi));
2744       }
2745       vmov(dst, VmovIndexHi, ip);
2746     } else {
2747       // Move the low and high parts of the double to a D register in one
2748       // instruction.
2749       mov(ip, Operand(lo));
2750       mov(scratch, Operand(hi));
2751       vmov(dst, ip, scratch);
2752     }
2753   }
2754 }
2755 
2756 
vmov(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)2757 void Assembler::vmov(const SwVfpRegister dst,
2758                      const SwVfpRegister src,
2759                      const Condition cond) {
2760   // Sd = Sm
2761   // Instruction details available in ARM DDI 0406B, A8-642.
2762   int sd, d, sm, m;
2763   dst.split_code(&sd, &d);
2764   src.split_code(&sm, &m);
2765   emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
2766 }
2767 
2768 
vmov(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2769 void Assembler::vmov(const DwVfpRegister dst,
2770                      const DwVfpRegister src,
2771                      const Condition cond) {
2772   // Dd = Dm
2773   // Instruction details available in ARM DDI 0406C.b, A8-938.
2774   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
2775   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2776   int vd, d;
2777   dst.split_code(&vd, &d);
2778   int vm, m;
2779   src.split_code(&vm, &m);
2780   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
2781        vm);
2782 }
2783 
2784 
vmov(const DwVfpRegister dst,const VmovIndex index,const Register src,const Condition cond)2785 void Assembler::vmov(const DwVfpRegister dst,
2786                      const VmovIndex index,
2787                      const Register src,
2788                      const Condition cond) {
2789   // Dd[index] = Rt
2790   // Instruction details available in ARM DDI 0406C.b, A8-940.
2791   // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
2792   // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
2793   DCHECK(index.index == 0 || index.index == 1);
2794   int vd, d;
2795   dst.split_code(&vd, &d);
2796   emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
2797        d*B7 | B4);
2798 }
2799 
2800 
vmov(const Register dst,const VmovIndex index,const DwVfpRegister src,const Condition cond)2801 void Assembler::vmov(const Register dst,
2802                      const VmovIndex index,
2803                      const DwVfpRegister src,
2804                      const Condition cond) {
2805   // Dd[index] = Rt
2806   // Instruction details available in ARM DDI 0406C.b, A8.8.342.
2807   // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
2808   // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
2809   DCHECK(index.index == 0 || index.index == 1);
2810   int vn, n;
2811   src.split_code(&vn, &n);
2812   emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
2813        0xB*B8 | n*B7 | B4);
2814 }
2815 
2816 
vmov(const DwVfpRegister dst,const Register src1,const Register src2,const Condition cond)2817 void Assembler::vmov(const DwVfpRegister dst,
2818                      const Register src1,
2819                      const Register src2,
2820                      const Condition cond) {
2821   // Dm = <Rt,Rt2>.
2822   // Instruction details available in ARM DDI 0406C.b, A8-948.
2823   // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
2824   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2825   DCHECK(!src1.is(pc) && !src2.is(pc));
2826   int vm, m;
2827   dst.split_code(&vm, &m);
2828   emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
2829        src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
2830 }
2831 
2832 
vmov(const Register dst1,const Register dst2,const DwVfpRegister src,const Condition cond)2833 void Assembler::vmov(const Register dst1,
2834                      const Register dst2,
2835                      const DwVfpRegister src,
2836                      const Condition cond) {
2837   // <Rt,Rt2> = Dm.
2838   // Instruction details available in ARM DDI 0406C.b, A8-948.
2839   // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
2840   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2841   DCHECK(!dst1.is(pc) && !dst2.is(pc));
2842   int vm, m;
2843   src.split_code(&vm, &m);
2844   emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
2845        dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
2846 }
2847 
2848 
vmov(const SwVfpRegister dst,const Register src,const Condition cond)2849 void Assembler::vmov(const SwVfpRegister dst,
2850                      const Register src,
2851                      const Condition cond) {
2852   // Sn = Rt.
2853   // Instruction details available in ARM DDI 0406A, A8-642.
2854   // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
2855   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2856   DCHECK(!src.is(pc));
2857   int sn, n;
2858   dst.split_code(&sn, &n);
2859   emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
2860 }
2861 
2862 
vmov(const Register dst,const SwVfpRegister src,const Condition cond)2863 void Assembler::vmov(const Register dst,
2864                      const SwVfpRegister src,
2865                      const Condition cond) {
2866   // Rt = Sn.
2867   // Instruction details available in ARM DDI 0406A, A8-642.
2868   // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
2869   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2870   DCHECK(!dst.is(pc));
2871   int sn, n;
2872   src.split_code(&sn, &n);
2873   emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
2874 }
2875 
2876 
2877 // Type of data to read from or write to VFP register.
2878 // Used as specifier in generic vcvt instruction.
2879 enum VFPType { S32, U32, F32, F64 };
2880 
2881 
IsSignedVFPType(VFPType type)2882 static bool IsSignedVFPType(VFPType type) {
2883   switch (type) {
2884     case S32:
2885       return true;
2886     case U32:
2887       return false;
2888     default:
2889       UNREACHABLE();
2890       return false;
2891   }
2892 }
2893 
2894 
IsIntegerVFPType(VFPType type)2895 static bool IsIntegerVFPType(VFPType type) {
2896   switch (type) {
2897     case S32:
2898     case U32:
2899       return true;
2900     case F32:
2901     case F64:
2902       return false;
2903     default:
2904       UNREACHABLE();
2905       return false;
2906   }
2907 }
2908 
2909 
IsDoubleVFPType(VFPType type)2910 static bool IsDoubleVFPType(VFPType type) {
2911   switch (type) {
2912     case F32:
2913       return false;
2914     case F64:
2915       return true;
2916     default:
2917       UNREACHABLE();
2918       return false;
2919   }
2920 }
2921 
2922 
2923 // Split five bit reg_code based on size of reg_type.
2924 //  32-bit register codes are Vm:M
2925 //  64-bit register codes are M:Vm
2926 // where Vm is four bits, and M is a single bit.
SplitRegCode(VFPType reg_type,int reg_code,int * vm,int * m)2927 static void SplitRegCode(VFPType reg_type,
2928                          int reg_code,
2929                          int* vm,
2930                          int* m) {
2931   DCHECK((reg_code >= 0) && (reg_code <= 31));
2932   if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
2933     // 32 bit type.
2934     *m  = reg_code & 0x1;
2935     *vm = reg_code >> 1;
2936   } else {
2937     // 64 bit type.
2938     *m  = (reg_code & 0x10) >> 4;
2939     *vm = reg_code & 0x0F;
2940   }
2941 }
2942 
2943 
2944 // Encode vcvt.src_type.dst_type instruction.
EncodeVCVT(const VFPType dst_type,const int dst_code,const VFPType src_type,const int src_code,VFPConversionMode mode,const Condition cond)2945 static Instr EncodeVCVT(const VFPType dst_type,
2946                         const int dst_code,
2947                         const VFPType src_type,
2948                         const int src_code,
2949                         VFPConversionMode mode,
2950                         const Condition cond) {
2951   DCHECK(src_type != dst_type);
2952   int D, Vd, M, Vm;
2953   SplitRegCode(src_type, src_code, &Vm, &M);
2954   SplitRegCode(dst_type, dst_code, &Vd, &D);
2955 
2956   if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
2957     // Conversion between IEEE floating point and 32-bit integer.
2958     // Instruction details available in ARM DDI 0406B, A8.6.295.
2959     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
2960     // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2961     DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
2962 
2963     int sz, opc2, op;
2964 
2965     if (IsIntegerVFPType(dst_type)) {
2966       opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
2967       sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2968       op = mode;
2969     } else {
2970       DCHECK(IsIntegerVFPType(src_type));
2971       opc2 = 0x0;
2972       sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
2973       op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
2974     }
2975 
2976     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
2977             Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
2978   } else {
2979     // Conversion between IEEE double and single precision.
2980     // Instruction details available in ARM DDI 0406B, A8.6.298.
2981     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
2982     // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2983     int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2984     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
2985             Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
2986   }
2987 }
2988 
2989 
vcvt_f64_s32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2990 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2991                              const SwVfpRegister src,
2992                              VFPConversionMode mode,
2993                              const Condition cond) {
2994   emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
2995 }
2996 
2997 
vcvt_f32_s32(const SwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2998 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
2999                              const SwVfpRegister src,
3000                              VFPConversionMode mode,
3001                              const Condition cond) {
3002   emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
3003 }
3004 
3005 
vcvt_f64_u32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)3006 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
3007                              const SwVfpRegister src,
3008                              VFPConversionMode mode,
3009                              const Condition cond) {
3010   emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
3011 }
3012 
3013 
vcvt_f32_u32(const SwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)3014 void Assembler::vcvt_f32_u32(const SwVfpRegister dst, const SwVfpRegister src,
3015                              VFPConversionMode mode, const Condition cond) {
3016   emit(EncodeVCVT(F32, dst.code(), U32, src.code(), mode, cond));
3017 }
3018 
3019 
vcvt_s32_f32(const SwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)3020 void Assembler::vcvt_s32_f32(const SwVfpRegister dst, const SwVfpRegister src,
3021                              VFPConversionMode mode, const Condition cond) {
3022   emit(EncodeVCVT(S32, dst.code(), F32, src.code(), mode, cond));
3023 }
3024 
3025 
vcvt_u32_f32(const SwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)3026 void Assembler::vcvt_u32_f32(const SwVfpRegister dst, const SwVfpRegister src,
3027                              VFPConversionMode mode, const Condition cond) {
3028   emit(EncodeVCVT(U32, dst.code(), F32, src.code(), mode, cond));
3029 }
3030 
3031 
vcvt_s32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)3032 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
3033                              const DwVfpRegister src,
3034                              VFPConversionMode mode,
3035                              const Condition cond) {
3036   emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
3037 }
3038 
3039 
vcvt_u32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)3040 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
3041                              const DwVfpRegister src,
3042                              VFPConversionMode mode,
3043                              const Condition cond) {
3044   emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
3045 }
3046 
3047 
vcvt_f64_f32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)3048 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
3049                              const SwVfpRegister src,
3050                              VFPConversionMode mode,
3051                              const Condition cond) {
3052   emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
3053 }
3054 
3055 
vcvt_f32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)3056 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
3057                              const DwVfpRegister src,
3058                              VFPConversionMode mode,
3059                              const Condition cond) {
3060   emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
3061 }
3062 
3063 
vcvt_f64_s32(const DwVfpRegister dst,int fraction_bits,const Condition cond)3064 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
3065                              int fraction_bits,
3066                              const Condition cond) {
3067   // Instruction details available in ARM DDI 0406C.b, A8-874.
3068   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
3069   // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
3070   DCHECK(fraction_bits > 0 && fraction_bits <= 32);
3071   DCHECK(CpuFeatures::IsSupported(VFP3));
3072   int vd, d;
3073   dst.split_code(&vd, &d);
3074   int imm5 = 32 - fraction_bits;
3075   int i = imm5 & 1;
3076   int imm4 = (imm5 >> 1) & 0xf;
3077   emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
3078        vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
3079 }
3080 
3081 
vneg(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)3082 void Assembler::vneg(const DwVfpRegister dst,
3083                      const DwVfpRegister src,
3084                      const Condition cond) {
3085   // Instruction details available in ARM DDI 0406C.b, A8-968.
3086   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
3087   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3088   int vd, d;
3089   dst.split_code(&vd, &d);
3090   int vm, m;
3091   src.split_code(&vm, &m);
3092 
3093   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
3094        m*B5 | vm);
3095 }
3096 
3097 
vneg(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)3098 void Assembler::vneg(const SwVfpRegister dst, const SwVfpRegister src,
3099                      const Condition cond) {
3100   // Instruction details available in ARM DDI 0406C.b, A8-968.
3101   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
3102   // 101(11-9) | sz=0(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3103   int vd, d;
3104   dst.split_code(&vd, &d);
3105   int vm, m;
3106   src.split_code(&vm, &m);
3107 
3108   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 |
3109        B6 | m * B5 | vm);
3110 }
3111 
3112 
vabs(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)3113 void Assembler::vabs(const DwVfpRegister dst,
3114                      const DwVfpRegister src,
3115                      const Condition cond) {
3116   // Instruction details available in ARM DDI 0406C.b, A8-524.
3117   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
3118   // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3119   int vd, d;
3120   dst.split_code(&vd, &d);
3121   int vm, m;
3122   src.split_code(&vm, &m);
3123   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
3124        m*B5 | vm);
3125 }
3126 
3127 
vabs(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)3128 void Assembler::vabs(const SwVfpRegister dst, const SwVfpRegister src,
3129                      const Condition cond) {
3130   // Instruction details available in ARM DDI 0406C.b, A8-524.
3131   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
3132   // 101(11-9) | sz=0(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3133   int vd, d;
3134   dst.split_code(&vd, &d);
3135   int vm, m;
3136   src.split_code(&vm, &m);
3137   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B7 | B6 |
3138        m * B5 | vm);
3139 }
3140 
3141 
vadd(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3142 void Assembler::vadd(const DwVfpRegister dst,
3143                      const DwVfpRegister src1,
3144                      const DwVfpRegister src2,
3145                      const Condition cond) {
3146   // Dd = vadd(Dn, Dm) double precision floating point addition.
3147   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3148   // Instruction details available in ARM DDI 0406C.b, A8-830.
3149   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
3150   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3151   int vd, d;
3152   dst.split_code(&vd, &d);
3153   int vn, n;
3154   src1.split_code(&vn, &n);
3155   int vm, m;
3156   src2.split_code(&vm, &m);
3157   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
3158        n*B7 | m*B5 | vm);
3159 }
3160 
3161 
vadd(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3162 void Assembler::vadd(const SwVfpRegister dst, const SwVfpRegister src1,
3163                      const SwVfpRegister src2, const Condition cond) {
3164   // Sd = vadd(Sn, Sm) single precision floating point addition.
3165   // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
3166   // Instruction details available in ARM DDI 0406C.b, A8-830.
3167   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
3168   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3169   int vd, d;
3170   dst.split_code(&vd, &d);
3171   int vn, n;
3172   src1.split_code(&vn, &n);
3173   int vm, m;
3174   src2.split_code(&vm, &m);
3175   emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 |
3176        0x5 * B9 | n * B7 | m * B5 | vm);
3177 }
3178 
3179 
vsub(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3180 void Assembler::vsub(const DwVfpRegister dst,
3181                      const DwVfpRegister src1,
3182                      const DwVfpRegister src2,
3183                      const Condition cond) {
3184   // Dd = vsub(Dn, Dm) double precision floating point subtraction.
3185   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3186   // Instruction details available in ARM DDI 0406C.b, A8-1086.
3187   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
3188   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3189   int vd, d;
3190   dst.split_code(&vd, &d);
3191   int vn, n;
3192   src1.split_code(&vn, &n);
3193   int vm, m;
3194   src2.split_code(&vm, &m);
3195   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
3196        n*B7 | B6 | m*B5 | vm);
3197 }
3198 
3199 
vsub(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3200 void Assembler::vsub(const SwVfpRegister dst, const SwVfpRegister src1,
3201                      const SwVfpRegister src2, const Condition cond) {
3202   // Sd = vsub(Sn, Sm) single precision floating point subtraction.
3203   // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
3204   // Instruction details available in ARM DDI 0406C.b, A8-1086.
3205   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
3206   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3207   int vd, d;
3208   dst.split_code(&vd, &d);
3209   int vn, n;
3210   src1.split_code(&vn, &n);
3211   int vm, m;
3212   src2.split_code(&vm, &m);
3213   emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 |
3214        0x5 * B9 | n * B7 | B6 | m * B5 | vm);
3215 }
3216 
3217 
vmul(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3218 void Assembler::vmul(const DwVfpRegister dst,
3219                      const DwVfpRegister src1,
3220                      const DwVfpRegister src2,
3221                      const Condition cond) {
3222   // Dd = vmul(Dn, Dm) double precision floating point multiplication.
3223   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3224   // Instruction details available in ARM DDI 0406C.b, A8-960.
3225   // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
3226   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3227   int vd, d;
3228   dst.split_code(&vd, &d);
3229   int vn, n;
3230   src1.split_code(&vn, &n);
3231   int vm, m;
3232   src2.split_code(&vm, &m);
3233   emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
3234        n*B7 | m*B5 | vm);
3235 }
3236 
3237 
vmul(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3238 void Assembler::vmul(const SwVfpRegister dst, const SwVfpRegister src1,
3239                      const SwVfpRegister src2, const Condition cond) {
3240   // Sd = vmul(Sn, Sm) single precision floating point multiplication.
3241   // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
3242   // Instruction details available in ARM DDI 0406C.b, A8-960.
3243   // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
3244   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3245   int vd, d;
3246   dst.split_code(&vd, &d);
3247   int vn, n;
3248   src1.split_code(&vn, &n);
3249   int vm, m;
3250   src2.split_code(&vm, &m);
3251   emit(cond | 0x1C * B23 | d * B22 | 0x2 * B20 | vn * B16 | vd * B12 |
3252        0x5 * B9 | n * B7 | m * B5 | vm);
3253 }
3254 
3255 
vmla(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3256 void Assembler::vmla(const DwVfpRegister dst,
3257                      const DwVfpRegister src1,
3258                      const DwVfpRegister src2,
3259                      const Condition cond) {
3260   // Instruction details available in ARM DDI 0406C.b, A8-932.
3261   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
3262   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
3263   int vd, d;
3264   dst.split_code(&vd, &d);
3265   int vn, n;
3266   src1.split_code(&vn, &n);
3267   int vm, m;
3268   src2.split_code(&vm, &m);
3269   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
3270        vm);
3271 }
3272 
3273 
vmla(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3274 void Assembler::vmla(const SwVfpRegister dst, const SwVfpRegister src1,
3275                      const SwVfpRegister src2, const Condition cond) {
3276   // Instruction details available in ARM DDI 0406C.b, A8-932.
3277   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
3278   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
3279   int vd, d;
3280   dst.split_code(&vd, &d);
3281   int vn, n;
3282   src1.split_code(&vn, &n);
3283   int vm, m;
3284   src2.split_code(&vm, &m);
3285   emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
3286        m * B5 | vm);
3287 }
3288 
3289 
vmls(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3290 void Assembler::vmls(const DwVfpRegister dst,
3291                      const DwVfpRegister src1,
3292                      const DwVfpRegister src2,
3293                      const Condition cond) {
3294   // Instruction details available in ARM DDI 0406C.b, A8-932.
3295   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
3296   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
3297   int vd, d;
3298   dst.split_code(&vd, &d);
3299   int vn, n;
3300   src1.split_code(&vn, &n);
3301   int vm, m;
3302   src2.split_code(&vm, &m);
3303   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
3304        m*B5 | vm);
3305 }
3306 
3307 
vmls(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3308 void Assembler::vmls(const SwVfpRegister dst, const SwVfpRegister src1,
3309                      const SwVfpRegister src2, const Condition cond) {
3310   // Instruction details available in ARM DDI 0406C.b, A8-932.
3311   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
3312   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
3313   int vd, d;
3314   dst.split_code(&vd, &d);
3315   int vn, n;
3316   src1.split_code(&vn, &n);
3317   int vm, m;
3318   src2.split_code(&vm, &m);
3319   emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
3320        B6 | m * B5 | vm);
3321 }
3322 
3323 
vdiv(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3324 void Assembler::vdiv(const DwVfpRegister dst,
3325                      const DwVfpRegister src1,
3326                      const DwVfpRegister src2,
3327                      const Condition cond) {
3328   // Dd = vdiv(Dn, Dm) double precision floating point division.
3329   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3330   // Instruction details available in ARM DDI 0406C.b, A8-882.
3331   // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
3332   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3333   int vd, d;
3334   dst.split_code(&vd, &d);
3335   int vn, n;
3336   src1.split_code(&vn, &n);
3337   int vm, m;
3338   src2.split_code(&vm, &m);
3339   emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
3340        vm);
3341 }
3342 
3343 
vdiv(const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3344 void Assembler::vdiv(const SwVfpRegister dst, const SwVfpRegister src1,
3345                      const SwVfpRegister src2, const Condition cond) {
3346   // Sd = vdiv(Sn, Sm) single precision floating point division.
3347   // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm.
3348   // Instruction details available in ARM DDI 0406C.b, A8-882.
3349   // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
3350   // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3351   int vd, d;
3352   dst.split_code(&vd, &d);
3353   int vn, n;
3354   src1.split_code(&vn, &n);
3355   int vm, m;
3356   src2.split_code(&vm, &m);
3357   emit(cond | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 |
3358        m * B5 | vm);
3359 }
3360 
3361 
vcmp(const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3362 void Assembler::vcmp(const DwVfpRegister src1,
3363                      const DwVfpRegister src2,
3364                      const Condition cond) {
3365   // vcmp(Dd, Dm) double precision floating point comparison.
3366   // Instruction details available in ARM DDI 0406C.b, A8-864.
3367   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
3368   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3369   int vd, d;
3370   src1.split_code(&vd, &d);
3371   int vm, m;
3372   src2.split_code(&vm, &m);
3373   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
3374        m*B5 | vm);
3375 }
3376 
3377 
vcmp(const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)3378 void Assembler::vcmp(const SwVfpRegister src1, const SwVfpRegister src2,
3379                      const Condition cond) {
3380   // vcmp(Sd, Sm) single precision floating point comparison.
3381   // Instruction details available in ARM DDI 0406C.b, A8-864.
3382   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
3383   // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3384   int vd, d;
3385   src1.split_code(&vd, &d);
3386   int vm, m;
3387   src2.split_code(&vm, &m);
3388   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x4 * B16 | vd * B12 |
3389        0x5 * B9 | B6 | m * B5 | vm);
3390 }
3391 
3392 
vcmp(const DwVfpRegister src1,const double src2,const Condition cond)3393 void Assembler::vcmp(const DwVfpRegister src1,
3394                      const double src2,
3395                      const Condition cond) {
3396   // vcmp(Dd, #0.0) double precision floating point comparison.
3397   // Instruction details available in ARM DDI 0406C.b, A8-864.
3398   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
3399   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
3400   DCHECK(src2 == 0.0);
3401   int vd, d;
3402   src1.split_code(&vd, &d);
3403   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
3404 }
3405 
3406 
vcmp(const SwVfpRegister src1,const float src2,const Condition cond)3407 void Assembler::vcmp(const SwVfpRegister src1, const float src2,
3408                      const Condition cond) {
3409   // vcmp(Sd, #0.0) single precision floating point comparison.
3410   // Instruction details available in ARM DDI 0406C.b, A8-864.
3411   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
3412   // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
3413   DCHECK(src2 == 0.0);
3414   int vd, d;
3415   src1.split_code(&vd, &d);
3416   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x5 * B16 | vd * B12 |
3417        0x5 * B9 | B6);
3418 }
3419 
vsel(Condition cond,const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2)3420 void Assembler::vsel(Condition cond, const DwVfpRegister dst,
3421                      const DwVfpRegister src1, const DwVfpRegister src2) {
3422   // cond=kSpecialCondition(31-28) | 11100(27-23) | D(22) |
3423   // vsel_cond=XX(21-20) | Vn(19-16) | Vd(15-12) | 101(11-9) | sz=1(8) | N(7) |
3424   // 0(6) | M(5) | 0(4) | Vm(3-0)
3425   DCHECK(CpuFeatures::IsSupported(ARMv8));
3426   int vd, d;
3427   dst.split_code(&vd, &d);
3428   int vn, n;
3429   src1.split_code(&vn, &n);
3430   int vm, m;
3431   src2.split_code(&vm, &m);
3432   int sz = 1;
3433 
3434   // VSEL has a special (restricted) condition encoding.
3435   //   eq(0b0000)... -> 0b00
3436   //   ge(0b1010)... -> 0b10
3437   //   gt(0b1100)... -> 0b11
3438   //   vs(0b0110)... -> 0b01
3439   // No other conditions are supported.
3440   int vsel_cond = (cond >> 30) & 0x3;
3441   if ((cond != eq) && (cond != ge) && (cond != gt) && (cond != vs)) {
3442     // We can implement some other conditions by swapping the inputs.
3443     DCHECK((cond == ne) | (cond == lt) | (cond == le) | (cond == vc));
3444     std::swap(vn, vm);
3445     std::swap(n, m);
3446   }
3447 
3448   emit(kSpecialCondition | 0x1C * B23 | d * B22 | vsel_cond * B20 | vn * B16 |
3449        vd * B12 | 0x5 * B9 | sz * B8 | n * B7 | m * B5 | vm);
3450 }
3451 
vsel(Condition cond,const SwVfpRegister dst,const SwVfpRegister src1,const SwVfpRegister src2)3452 void Assembler::vsel(Condition cond, const SwVfpRegister dst,
3453                      const SwVfpRegister src1, const SwVfpRegister src2) {
3454   // cond=kSpecialCondition(31-28) | 11100(27-23) | D(22) |
3455   // vsel_cond=XX(21-20) | Vn(19-16) | Vd(15-12) | 101(11-9) | sz=0(8) | N(7) |
3456   // 0(6) | M(5) | 0(4) | Vm(3-0)
3457   DCHECK(CpuFeatures::IsSupported(ARMv8));
3458   int vd, d;
3459   dst.split_code(&vd, &d);
3460   int vn, n;
3461   src1.split_code(&vn, &n);
3462   int vm, m;
3463   src2.split_code(&vm, &m);
3464   int sz = 0;
3465 
3466   // VSEL has a special (restricted) condition encoding.
3467   //   eq(0b0000)... -> 0b00
3468   //   ge(0b1010)... -> 0b10
3469   //   gt(0b1100)... -> 0b11
3470   //   vs(0b0110)... -> 0b01
3471   // No other conditions are supported.
3472   int vsel_cond = (cond >> 30) & 0x3;
3473   if ((cond != eq) && (cond != ge) && (cond != gt) && (cond != vs)) {
3474     // We can implement some other conditions by swapping the inputs.
3475     DCHECK((cond == ne) | (cond == lt) | (cond == le) | (cond == vc));
3476     std::swap(vn, vm);
3477     std::swap(n, m);
3478   }
3479 
3480   emit(kSpecialCondition | 0x1C * B23 | d * B22 | vsel_cond * B20 | vn * B16 |
3481        vd * B12 | 0x5 * B9 | sz * B8 | n * B7 | m * B5 | vm);
3482 }
3483 
vsqrt(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)3484 void Assembler::vsqrt(const DwVfpRegister dst,
3485                       const DwVfpRegister src,
3486                       const Condition cond) {
3487   // Instruction details available in ARM DDI 0406C.b, A8-1058.
3488   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
3489   // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
3490   int vd, d;
3491   dst.split_code(&vd, &d);
3492   int vm, m;
3493   src.split_code(&vm, &m);
3494   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
3495        m*B5 | vm);
3496 }
3497 
3498 
vsqrt(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)3499 void Assembler::vsqrt(const SwVfpRegister dst, const SwVfpRegister src,
3500                       const Condition cond) {
3501   // Instruction details available in ARM DDI 0406C.b, A8-1058.
3502   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
3503   // Vd(15-12) | 101(11-9) | sz=0(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
3504   int vd, d;
3505   dst.split_code(&vd, &d);
3506   int vm, m;
3507   src.split_code(&vm, &m);
3508   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 |
3509        0x3 * B6 | m * B5 | vm);
3510 }
3511 
3512 
vmsr(Register dst,Condition cond)3513 void Assembler::vmsr(Register dst, Condition cond) {
3514   // Instruction details available in ARM DDI 0406A, A8-652.
3515   // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
3516   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
3517   emit(cond | 0xE * B24 | 0xE * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4);
3518 }
3519 
3520 
vmrs(Register dst,Condition cond)3521 void Assembler::vmrs(Register dst, Condition cond) {
3522   // Instruction details available in ARM DDI 0406A, A8-652.
3523   // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
3524   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
3525   emit(cond | 0xE * B24 | 0xF * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4);
3526 }
3527 
3528 
vrinta(const SwVfpRegister dst,const SwVfpRegister src)3529 void Assembler::vrinta(const SwVfpRegister dst, const SwVfpRegister src) {
3530   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3531   // 10(19-18) | RM=00(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
3532   // M(5) | 0(4) | Vm(3-0)
3533   DCHECK(CpuFeatures::IsSupported(ARMv8));
3534   int vd, d;
3535   dst.split_code(&vd, &d);
3536   int vm, m;
3537   src.split_code(&vm, &m);
3538   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 |
3539        0x5 * B9 | B6 | m * B5 | vm);
3540 }
3541 
3542 
vrinta(const DwVfpRegister dst,const DwVfpRegister src)3543 void Assembler::vrinta(const DwVfpRegister dst, const DwVfpRegister src) {
3544   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3545   // 10(19-18) | RM=00(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
3546   // M(5) | 0(4) | Vm(3-0)
3547   DCHECK(CpuFeatures::IsSupported(ARMv8));
3548   int vd, d;
3549   dst.split_code(&vd, &d);
3550   int vm, m;
3551   src.split_code(&vm, &m);
3552   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 |
3553        0x5 * B9 | B8 | B6 | m * B5 | vm);
3554 }
3555 
3556 
vrintn(const SwVfpRegister dst,const SwVfpRegister src)3557 void Assembler::vrintn(const SwVfpRegister dst, const SwVfpRegister src) {
3558   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3559   // 10(19-18) | RM=01(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
3560   // M(5) | 0(4) | Vm(3-0)
3561   DCHECK(CpuFeatures::IsSupported(ARMv8));
3562   int vd, d;
3563   dst.split_code(&vd, &d);
3564   int vm, m;
3565   src.split_code(&vm, &m);
3566   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 |
3567        vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
3568 }
3569 
3570 
vrintn(const DwVfpRegister dst,const DwVfpRegister src)3571 void Assembler::vrintn(const DwVfpRegister dst, const DwVfpRegister src) {
3572   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3573   // 10(19-18) | RM=01(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
3574   // M(5) | 0(4) | Vm(3-0)
3575   DCHECK(CpuFeatures::IsSupported(ARMv8));
3576   int vd, d;
3577   dst.split_code(&vd, &d);
3578   int vm, m;
3579   src.split_code(&vm, &m);
3580   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 |
3581        vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
3582 }
3583 
3584 
vrintp(const SwVfpRegister dst,const SwVfpRegister src)3585 void Assembler::vrintp(const SwVfpRegister dst, const SwVfpRegister src) {
3586   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3587   // 10(19-18) | RM=10(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
3588   // M(5) | 0(4) | Vm(3-0)
3589   DCHECK(CpuFeatures::IsSupported(ARMv8));
3590   int vd, d;
3591   dst.split_code(&vd, &d);
3592   int vm, m;
3593   src.split_code(&vm, &m);
3594   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 |
3595        vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
3596 }
3597 
3598 
vrintp(const DwVfpRegister dst,const DwVfpRegister src)3599 void Assembler::vrintp(const DwVfpRegister dst, const DwVfpRegister src) {
3600   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3601   // 10(19-18) | RM=10(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
3602   // M(5) | 0(4) | Vm(3-0)
3603   DCHECK(CpuFeatures::IsSupported(ARMv8));
3604   int vd, d;
3605   dst.split_code(&vd, &d);
3606   int vm, m;
3607   src.split_code(&vm, &m);
3608   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 |
3609        vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
3610 }
3611 
3612 
vrintm(const SwVfpRegister dst,const SwVfpRegister src)3613 void Assembler::vrintm(const SwVfpRegister dst, const SwVfpRegister src) {
3614   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3615   // 10(19-18) | RM=11(17-16) |  Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) |
3616   // M(5) | 0(4) | Vm(3-0)
3617   DCHECK(CpuFeatures::IsSupported(ARMv8));
3618   int vd, d;
3619   dst.split_code(&vd, &d);
3620   int vm, m;
3621   src.split_code(&vm, &m);
3622   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 |
3623        vd * B12 | 0x5 * B9 | B6 | m * B5 | vm);
3624 }
3625 
3626 
vrintm(const DwVfpRegister dst,const DwVfpRegister src)3627 void Assembler::vrintm(const DwVfpRegister dst, const DwVfpRegister src) {
3628   // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) |
3629   // 10(19-18) | RM=11(17-16) |  Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) |
3630   // M(5) | 0(4) | Vm(3-0)
3631   DCHECK(CpuFeatures::IsSupported(ARMv8));
3632   int vd, d;
3633   dst.split_code(&vd, &d);
3634   int vm, m;
3635   src.split_code(&vm, &m);
3636   emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 |
3637        vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm);
3638 }
3639 
3640 
vrintz(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)3641 void Assembler::vrintz(const SwVfpRegister dst, const SwVfpRegister src,
3642                        const Condition cond) {
3643   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) |
3644   // Vd(15-12) | 101(11-9) | sz=0(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3645   DCHECK(CpuFeatures::IsSupported(ARMv8));
3646   int vd, d;
3647   dst.split_code(&vd, &d);
3648   int vm, m;
3649   src.split_code(&vm, &m);
3650   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 |
3651        0x5 * B9 | B7 | B6 | m * B5 | vm);
3652 }
3653 
3654 
vrintz(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)3655 void Assembler::vrintz(const DwVfpRegister dst, const DwVfpRegister src,
3656                        const Condition cond) {
3657   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) |
3658   // Vd(15-12) | 101(11-9) | sz=1(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3659   DCHECK(CpuFeatures::IsSupported(ARMv8));
3660   int vd, d;
3661   dst.split_code(&vd, &d);
3662   int vm, m;
3663   src.split_code(&vm, &m);
3664   emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 |
3665        0x5 * B9 | B8 | B7 | B6 | m * B5 | vm);
3666 }
3667 
3668 
3669 // Support for NEON.
3670 
vld1(NeonSize size,const NeonListOperand & dst,const NeonMemOperand & src)3671 void Assembler::vld1(NeonSize size,
3672                      const NeonListOperand& dst,
3673                      const NeonMemOperand& src) {
3674   // Instruction details available in ARM DDI 0406C.b, A8.8.320.
3675   // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
3676   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
3677   DCHECK(CpuFeatures::IsSupported(NEON));
3678   int vd, d;
3679   dst.base().split_code(&vd, &d);
3680   emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
3681        dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
3682 }
3683 
3684 
vst1(NeonSize size,const NeonListOperand & src,const NeonMemOperand & dst)3685 void Assembler::vst1(NeonSize size,
3686                      const NeonListOperand& src,
3687                      const NeonMemOperand& dst) {
3688   // Instruction details available in ARM DDI 0406C.b, A8.8.404.
3689   // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
3690   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
3691   DCHECK(CpuFeatures::IsSupported(NEON));
3692   int vd, d;
3693   src.base().split_code(&vd, &d);
3694   emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
3695        size*B6 | dst.align()*B4 | dst.rm().code());
3696 }
3697 
3698 
vmovl(NeonDataType dt,QwNeonRegister dst,DwVfpRegister src)3699 void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
3700   // Instruction details available in ARM DDI 0406C.b, A8.8.346.
3701   // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
3702   // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
3703   DCHECK(CpuFeatures::IsSupported(NEON));
3704   int vd, d;
3705   dst.split_code(&vd, &d);
3706   int vm, m;
3707   src.split_code(&vm, &m);
3708   emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
3709         (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
3710 }
3711 
3712 
3713 // Pseudo instructions.
nop(int type)3714 void Assembler::nop(int type) {
3715   // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
3716   // some of the CPU's pipeline and has to issue. Older ARM chips simply used
3717   // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
3718   // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
3719   // a type.
3720   DCHECK(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
3721   emit(al | 13*B21 | type*B12 | type);
3722 }
3723 
3724 
IsMovT(Instr instr)3725 bool Assembler::IsMovT(Instr instr) {
3726   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
3727              ((kNumRegisters-1)*B12) |            // mask out register
3728              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
3729   return instr == kMovtPattern;
3730 }
3731 
3732 
IsMovW(Instr instr)3733 bool Assembler::IsMovW(Instr instr) {
3734   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
3735              ((kNumRegisters-1)*B12) |            // mask out destination
3736              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
3737   return instr == kMovwPattern;
3738 }
3739 
3740 
GetMovTPattern()3741 Instr Assembler::GetMovTPattern() { return kMovtPattern; }
3742 
3743 
GetMovWPattern()3744 Instr Assembler::GetMovWPattern() { return kMovwPattern; }
3745 
3746 
EncodeMovwImmediate(uint32_t immediate)3747 Instr Assembler::EncodeMovwImmediate(uint32_t immediate) {
3748   DCHECK(immediate < 0x10000);
3749   return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
3750 }
3751 
3752 
PatchMovwImmediate(Instr instruction,uint32_t immediate)3753 Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) {
3754   instruction &= ~EncodeMovwImmediate(0xffff);
3755   return instruction | EncodeMovwImmediate(immediate);
3756 }
3757 
3758 
DecodeShiftImm(Instr instr)3759 int Assembler::DecodeShiftImm(Instr instr) {
3760   int rotate = Instruction::RotateValue(instr) * 2;
3761   int immed8 = Instruction::Immed8Value(instr);
3762   return base::bits::RotateRight32(immed8, rotate);
3763 }
3764 
3765 
PatchShiftImm(Instr instr,int immed)3766 Instr Assembler::PatchShiftImm(Instr instr, int immed) {
3767   uint32_t rotate_imm = 0;
3768   uint32_t immed_8 = 0;
3769   bool immed_fits = fits_shifter(immed, &rotate_imm, &immed_8, NULL);
3770   DCHECK(immed_fits);
3771   USE(immed_fits);
3772   return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8;
3773 }
3774 
3775 
IsNop(Instr instr,int type)3776 bool Assembler::IsNop(Instr instr, int type) {
3777   DCHECK(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
3778   // Check for mov rx, rx where x = type.
3779   return instr == (al | 13*B21 | type*B12 | type);
3780 }
3781 
3782 
IsMovImmed(Instr instr)3783 bool Assembler::IsMovImmed(Instr instr) {
3784   return (instr & kMovImmedMask) == kMovImmedPattern;
3785 }
3786 
3787 
IsOrrImmed(Instr instr)3788 bool Assembler::IsOrrImmed(Instr instr) {
3789   return (instr & kOrrImmedMask) == kOrrImmedPattern;
3790 }
3791 
3792 
3793 // static
ImmediateFitsAddrMode1Instruction(int32_t imm32)3794 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
3795   uint32_t dummy1;
3796   uint32_t dummy2;
3797   return fits_shifter(imm32, &dummy1, &dummy2, NULL);
3798 }
3799 
3800 
ImmediateFitsAddrMode2Instruction(int32_t imm32)3801 bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) {
3802   return is_uint12(abs(imm32));
3803 }
3804 
3805 
3806 // Debugging.
RecordConstPool(int size)3807 void Assembler::RecordConstPool(int size) {
3808   // We only need this for debugger support, to correctly compute offsets in the
3809   // code.
3810   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3811 }
3812 
3813 
GrowBuffer()3814 void Assembler::GrowBuffer() {
3815   if (!own_buffer_) FATAL("external code buffer is too small");
3816 
3817   // Compute new buffer size.
3818   CodeDesc desc;  // the new buffer
3819   if (buffer_size_ < 1 * MB) {
3820     desc.buffer_size = 2*buffer_size_;
3821   } else {
3822     desc.buffer_size = buffer_size_ + 1*MB;
3823   }
3824   CHECK_GT(desc.buffer_size, 0);  // no overflow
3825 
3826   // Set up new buffer.
3827   desc.buffer = NewArray<byte>(desc.buffer_size);
3828 
3829   desc.instr_size = pc_offset();
3830   desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
3831   desc.origin = this;
3832 
3833   // Copy the data.
3834   int pc_delta = desc.buffer - buffer_;
3835   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
3836   MemMove(desc.buffer, buffer_, desc.instr_size);
3837   MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3838           desc.reloc_size);
3839 
3840   // Switch buffers.
3841   DeleteArray(buffer_);
3842   buffer_ = desc.buffer;
3843   buffer_size_ = desc.buffer_size;
3844   pc_ += pc_delta;
3845   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3846                                reloc_info_writer.last_pc() + pc_delta);
3847 
3848   // None of our relocation types are pc relative pointing outside the code
3849   // buffer nor pc absolute pointing inside the code buffer, so there is no need
3850   // to relocate any emitted relocation entries.
3851 }
3852 
3853 
db(uint8_t data)3854 void Assembler::db(uint8_t data) {
3855   // db is used to write raw data. The constant pool should be emitted or
3856   // blocked before using db.
3857   DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty());
3858   DCHECK(is_const_pool_blocked() || pending_64_bit_constants_.empty());
3859   CheckBuffer();
3860   *reinterpret_cast<uint8_t*>(pc_) = data;
3861   pc_ += sizeof(uint8_t);
3862 }
3863 
3864 
dd(uint32_t data)3865 void Assembler::dd(uint32_t data) {
3866   // dd is used to write raw data. The constant pool should be emitted or
3867   // blocked before using dd.
3868   DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty());
3869   DCHECK(is_const_pool_blocked() || pending_64_bit_constants_.empty());
3870   CheckBuffer();
3871   *reinterpret_cast<uint32_t*>(pc_) = data;
3872   pc_ += sizeof(uint32_t);
3873 }
3874 
3875 
dq(uint64_t value)3876 void Assembler::dq(uint64_t value) {
3877   // dq is used to write raw data. The constant pool should be emitted or
3878   // blocked before using dq.
3879   DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty());
3880   DCHECK(is_const_pool_blocked() || pending_64_bit_constants_.empty());
3881   CheckBuffer();
3882   *reinterpret_cast<uint64_t*>(pc_) = value;
3883   pc_ += sizeof(uint64_t);
3884 }
3885 
3886 
emit_code_stub_address(Code * stub)3887 void Assembler::emit_code_stub_address(Code* stub) {
3888   CheckBuffer();
3889   *reinterpret_cast<uint32_t*>(pc_) =
3890       reinterpret_cast<uint32_t>(stub->instruction_start());
3891   pc_ += sizeof(uint32_t);
3892 }
3893 
3894 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3895 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3896   if (RelocInfo::IsNone(rmode) ||
3897       // Don't record external references unless the heap will be serialized.
3898       (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
3899        !emit_debug_code())) {
3900     return;
3901   }
3902   DCHECK(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
3903   if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
3904     data = RecordedAstId().ToInt();
3905     ClearRecordedAstId();
3906   }
3907   RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
3908   reloc_info_writer.Write(&rinfo);
3909 }
3910 
3911 
ConstantPoolAddEntry(int position,RelocInfo::Mode rmode,intptr_t value)3912 ConstantPoolEntry::Access Assembler::ConstantPoolAddEntry(int position,
3913                                                           RelocInfo::Mode rmode,
3914                                                           intptr_t value) {
3915   DCHECK(rmode != RelocInfo::COMMENT && rmode != RelocInfo::POSITION &&
3916          rmode != RelocInfo::STATEMENT_POSITION &&
3917          rmode != RelocInfo::CONST_POOL && rmode != RelocInfo::NONE64);
3918   bool sharing_ok = RelocInfo::IsNone(rmode) ||
3919                     !(serializer_enabled() || rmode < RelocInfo::CELL);
3920   if (FLAG_enable_embedded_constant_pool) {
3921     return constant_pool_builder_.AddEntry(position, value, sharing_ok);
3922   } else {
3923     DCHECK(pending_32_bit_constants_.size() < kMaxNumPending32Constants);
3924     if (pending_32_bit_constants_.empty()) {
3925       first_const_pool_32_use_ = position;
3926     }
3927     ConstantPoolEntry entry(position, value, sharing_ok);
3928     pending_32_bit_constants_.push_back(entry);
3929 
3930     // Make sure the constant pool is not emitted in place of the next
3931     // instruction for which we just recorded relocation info.
3932     BlockConstPoolFor(1);
3933     return ConstantPoolEntry::REGULAR;
3934   }
3935 }
3936 
3937 
ConstantPoolAddEntry(int position,double value)3938 ConstantPoolEntry::Access Assembler::ConstantPoolAddEntry(int position,
3939                                                           double value) {
3940   if (FLAG_enable_embedded_constant_pool) {
3941     return constant_pool_builder_.AddEntry(position, value);
3942   } else {
3943     DCHECK(pending_64_bit_constants_.size() < kMaxNumPending64Constants);
3944     if (pending_64_bit_constants_.empty()) {
3945       first_const_pool_64_use_ = position;
3946     }
3947     ConstantPoolEntry entry(position, value);
3948     pending_64_bit_constants_.push_back(entry);
3949 
3950     // Make sure the constant pool is not emitted in place of the next
3951     // instruction for which we just recorded relocation info.
3952     BlockConstPoolFor(1);
3953     return ConstantPoolEntry::REGULAR;
3954   }
3955 }
3956 
3957 
BlockConstPoolFor(int instructions)3958 void Assembler::BlockConstPoolFor(int instructions) {
3959   if (FLAG_enable_embedded_constant_pool) {
3960     // Should be a no-op if using an embedded constant pool.
3961     DCHECK(pending_32_bit_constants_.empty());
3962     DCHECK(pending_64_bit_constants_.empty());
3963     return;
3964   }
3965 
3966   int pc_limit = pc_offset() + instructions * kInstrSize;
3967   if (no_const_pool_before_ < pc_limit) {
3968     // Max pool start (if we need a jump and an alignment).
3969 #ifdef DEBUG
3970     int start = pc_limit + kInstrSize + 2 * kPointerSize;
3971     DCHECK(pending_32_bit_constants_.empty() ||
3972            (start - first_const_pool_32_use_ +
3973                 pending_64_bit_constants_.size() * kDoubleSize <
3974             kMaxDistToIntPool));
3975     DCHECK(pending_64_bit_constants_.empty() ||
3976            (start - first_const_pool_64_use_ < kMaxDistToFPPool));
3977 #endif
3978     no_const_pool_before_ = pc_limit;
3979   }
3980 
3981   if (next_buffer_check_ < no_const_pool_before_) {
3982     next_buffer_check_ = no_const_pool_before_;
3983   }
3984 }
3985 
3986 
CheckConstPool(bool force_emit,bool require_jump)3987 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
3988   if (FLAG_enable_embedded_constant_pool) {
3989     // Should be a no-op if using an embedded constant pool.
3990     DCHECK(pending_32_bit_constants_.empty());
3991     DCHECK(pending_64_bit_constants_.empty());
3992     return;
3993   }
3994 
3995   // Some short sequence of instruction mustn't be broken up by constant pool
3996   // emission, such sequences are protected by calls to BlockConstPoolFor and
3997   // BlockConstPoolScope.
3998   if (is_const_pool_blocked()) {
3999     // Something is wrong if emission is forced and blocked at the same time.
4000     DCHECK(!force_emit);
4001     return;
4002   }
4003 
4004   // There is nothing to do if there are no pending constant pool entries.
4005   if (pending_32_bit_constants_.empty() && pending_64_bit_constants_.empty()) {
4006     // Calculate the offset of the next check.
4007     next_buffer_check_ = pc_offset() + kCheckPoolInterval;
4008     return;
4009   }
4010 
4011   // Check that the code buffer is large enough before emitting the constant
4012   // pool (include the jump over the pool and the constant pool marker and
4013   // the gap to the relocation information).
4014   int jump_instr = require_jump ? kInstrSize : 0;
4015   int size_up_to_marker = jump_instr + kInstrSize;
4016   int estimated_size_after_marker =
4017       pending_32_bit_constants_.size() * kPointerSize;
4018   bool has_int_values = !pending_32_bit_constants_.empty();
4019   bool has_fp_values = !pending_64_bit_constants_.empty();
4020   bool require_64_bit_align = false;
4021   if (has_fp_values) {
4022     require_64_bit_align =
4023         !IsAligned(reinterpret_cast<intptr_t>(pc_ + size_up_to_marker),
4024                    kDoubleAlignment);
4025     if (require_64_bit_align) {
4026       estimated_size_after_marker += kInstrSize;
4027     }
4028     estimated_size_after_marker +=
4029         pending_64_bit_constants_.size() * kDoubleSize;
4030   }
4031   int estimated_size = size_up_to_marker + estimated_size_after_marker;
4032 
4033   // We emit a constant pool when:
4034   //  * requested to do so by parameter force_emit (e.g. after each function).
4035   //  * the distance from the first instruction accessing the constant pool to
4036   //    any of the constant pool entries will exceed its limit the next
4037   //    time the pool is checked. This is overly restrictive, but we don't emit
4038   //    constant pool entries in-order so it's conservatively correct.
4039   //  * the instruction doesn't require a jump after itself to jump over the
4040   //    constant pool, and we're getting close to running out of range.
4041   if (!force_emit) {
4042     DCHECK(has_fp_values || has_int_values);
4043     bool need_emit = false;
4044     if (has_fp_values) {
4045       // The 64-bit constants are always emitted before the 32-bit constants, so
4046       // we can ignore the effect of the 32-bit constants on estimated_size.
4047       int dist64 = pc_offset() + estimated_size -
4048                    pending_32_bit_constants_.size() * kPointerSize -
4049                    first_const_pool_64_use_;
4050       if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) ||
4051           (!require_jump && (dist64 >= kMaxDistToFPPool / 2))) {
4052         need_emit = true;
4053       }
4054     }
4055     if (has_int_values) {
4056       int dist32 = pc_offset() + estimated_size - first_const_pool_32_use_;
4057       if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) ||
4058           (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) {
4059         need_emit = true;
4060       }
4061     }
4062     if (!need_emit) return;
4063   }
4064 
4065   // Deduplicate constants.
4066   int size_after_marker = estimated_size_after_marker;
4067   for (int i = 0; i < pending_64_bit_constants_.size(); i++) {
4068     ConstantPoolEntry& entry = pending_64_bit_constants_[i];
4069     DCHECK(!entry.is_merged());
4070     for (int j = 0; j < i; j++) {
4071       if (entry.value64() == pending_64_bit_constants_[j].value64()) {
4072         DCHECK(!pending_64_bit_constants_[j].is_merged());
4073         entry.set_merged_index(j);
4074         size_after_marker -= kDoubleSize;
4075         break;
4076       }
4077     }
4078   }
4079 
4080   for (int i = 0; i < pending_32_bit_constants_.size(); i++) {
4081     ConstantPoolEntry& entry = pending_32_bit_constants_[i];
4082     DCHECK(!entry.is_merged());
4083     if (!entry.sharing_ok()) continue;
4084     for (int j = 0; j < i; j++) {
4085       if (entry.value() == pending_32_bit_constants_[j].value()) {
4086         DCHECK(!pending_32_bit_constants_[j].is_merged());
4087         entry.set_merged_index(j);
4088         size_after_marker -= kPointerSize;
4089         break;
4090       }
4091     }
4092   }
4093 
4094   int size = size_up_to_marker + size_after_marker;
4095 
4096   int needed_space = size + kGap;
4097   while (buffer_space() <= needed_space) GrowBuffer();
4098 
4099   {
4100     // Block recursive calls to CheckConstPool.
4101     BlockConstPoolScope block_const_pool(this);
4102     RecordComment("[ Constant Pool");
4103     RecordConstPool(size);
4104 
4105     Label size_check;
4106     bind(&size_check);
4107 
4108     // Emit jump over constant pool if necessary.
4109     Label after_pool;
4110     if (require_jump) {
4111       b(&after_pool);
4112     }
4113 
4114     // Put down constant pool marker "Undefined instruction".
4115     // The data size helps disassembly know what to print.
4116     emit(kConstantPoolMarker |
4117          EncodeConstantPoolLength(size_after_marker / kPointerSize));
4118 
4119     if (require_64_bit_align) {
4120       emit(kConstantPoolMarker);
4121     }
4122 
4123     // Emit 64-bit constant pool entries first: their range is smaller than
4124     // 32-bit entries.
4125     for (int i = 0; i < pending_64_bit_constants_.size(); i++) {
4126       ConstantPoolEntry& entry = pending_64_bit_constants_[i];
4127 
4128       Instr instr = instr_at(entry.position());
4129       // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
4130       DCHECK((IsVldrDPcImmediateOffset(instr) &&
4131               GetVldrDRegisterImmediateOffset(instr) == 0));
4132 
4133       int delta = pc_offset() - entry.position() - kPcLoadDelta;
4134       DCHECK(is_uint10(delta));
4135 
4136       if (entry.is_merged()) {
4137         ConstantPoolEntry& merged =
4138             pending_64_bit_constants_[entry.merged_index()];
4139         DCHECK(entry.value64() == merged.value64());
4140         Instr merged_instr = instr_at(merged.position());
4141         DCHECK(IsVldrDPcImmediateOffset(merged_instr));
4142         delta = GetVldrDRegisterImmediateOffset(merged_instr);
4143         delta += merged.position() - entry.position();
4144       }
4145       instr_at_put(entry.position(),
4146                    SetVldrDRegisterImmediateOffset(instr, delta));
4147       if (!entry.is_merged()) {
4148         DCHECK(IsAligned(reinterpret_cast<intptr_t>(pc_), kDoubleAlignment));
4149         dq(entry.value64());
4150       }
4151     }
4152 
4153     // Emit 32-bit constant pool entries.
4154     for (int i = 0; i < pending_32_bit_constants_.size(); i++) {
4155       ConstantPoolEntry& entry = pending_32_bit_constants_[i];
4156       Instr instr = instr_at(entry.position());
4157 
4158       // 64-bit loads shouldn't get here.
4159       DCHECK(!IsVldrDPcImmediateOffset(instr));
4160       DCHECK(!IsMovW(instr));
4161       DCHECK(IsLdrPcImmediateOffset(instr) &&
4162              GetLdrRegisterImmediateOffset(instr) == 0);
4163 
4164       int delta = pc_offset() - entry.position() - kPcLoadDelta;
4165       DCHECK(is_uint12(delta));
4166       // 0 is the smallest delta:
4167       //   ldr rd, [pc, #0]
4168       //   constant pool marker
4169       //   data
4170 
4171       if (entry.is_merged()) {
4172         DCHECK(entry.sharing_ok());
4173         ConstantPoolEntry& merged =
4174             pending_32_bit_constants_[entry.merged_index()];
4175         DCHECK(entry.value() == merged.value());
4176         Instr merged_instr = instr_at(merged.position());
4177         DCHECK(IsLdrPcImmediateOffset(merged_instr));
4178         delta = GetLdrRegisterImmediateOffset(merged_instr);
4179         delta += merged.position() - entry.position();
4180       }
4181       instr_at_put(entry.position(),
4182                    SetLdrRegisterImmediateOffset(instr, delta));
4183       if (!entry.is_merged()) {
4184         emit(entry.value());
4185       }
4186     }
4187 
4188     pending_32_bit_constants_.clear();
4189     pending_64_bit_constants_.clear();
4190     first_const_pool_32_use_ = -1;
4191     first_const_pool_64_use_ = -1;
4192 
4193     RecordComment("]");
4194 
4195     DCHECK_EQ(size, SizeOfCodeGeneratedSince(&size_check));
4196 
4197     if (after_pool.is_linked()) {
4198       bind(&after_pool);
4199     }
4200   }
4201 
4202   // Since a constant pool was just emitted, move the check offset forward by
4203   // the standard interval.
4204   next_buffer_check_ = pc_offset() + kCheckPoolInterval;
4205 }
4206 
4207 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)4208 void Assembler::PatchConstantPoolAccessInstruction(
4209     int pc_offset, int offset, ConstantPoolEntry::Access access,
4210     ConstantPoolEntry::Type type) {
4211   DCHECK(FLAG_enable_embedded_constant_pool);
4212   Address pc = buffer_ + pc_offset;
4213 
4214   // Patch vldr/ldr instruction with correct offset.
4215   Instr instr = instr_at(pc);
4216   if (access == ConstantPoolEntry::OVERFLOWED) {
4217     if (CpuFeatures::IsSupported(ARMv7)) {
4218       // Instructions to patch must be 'movw rd, [#0]' and 'movt rd, [#0].
4219       Instr next_instr = instr_at(pc + kInstrSize);
4220       DCHECK((IsMovW(instr) && Instruction::ImmedMovwMovtValue(instr) == 0));
4221       DCHECK((IsMovT(next_instr) &&
4222               Instruction::ImmedMovwMovtValue(next_instr) == 0));
4223       instr_at_put(pc, PatchMovwImmediate(instr, offset & 0xffff));
4224       instr_at_put(pc + kInstrSize,
4225                    PatchMovwImmediate(next_instr, offset >> 16));
4226     } else {
4227       // Instructions to patch must be 'mov rd, [#0]' and 'orr rd, rd, [#0].
4228       Instr instr_2 = instr_at(pc + kInstrSize);
4229       Instr instr_3 = instr_at(pc + 2 * kInstrSize);
4230       Instr instr_4 = instr_at(pc + 3 * kInstrSize);
4231       DCHECK((IsMovImmed(instr) && Instruction::Immed8Value(instr) == 0));
4232       DCHECK((IsOrrImmed(instr_2) && Instruction::Immed8Value(instr_2) == 0) &&
4233              GetRn(instr_2).is(GetRd(instr_2)));
4234       DCHECK((IsOrrImmed(instr_3) && Instruction::Immed8Value(instr_3) == 0) &&
4235              GetRn(instr_3).is(GetRd(instr_3)));
4236       DCHECK((IsOrrImmed(instr_4) && Instruction::Immed8Value(instr_4) == 0) &&
4237              GetRn(instr_4).is(GetRd(instr_4)));
4238       instr_at_put(pc, PatchShiftImm(instr, (offset & kImm8Mask)));
4239       instr_at_put(pc + kInstrSize,
4240                    PatchShiftImm(instr_2, (offset & (kImm8Mask << 8))));
4241       instr_at_put(pc + 2 * kInstrSize,
4242                    PatchShiftImm(instr_3, (offset & (kImm8Mask << 16))));
4243       instr_at_put(pc + 3 * kInstrSize,
4244                    PatchShiftImm(instr_4, (offset & (kImm8Mask << 24))));
4245     }
4246   } else if (type == ConstantPoolEntry::DOUBLE) {
4247     // Instruction to patch must be 'vldr rd, [pp, #0]'.
4248     DCHECK((IsVldrDPpImmediateOffset(instr) &&
4249             GetVldrDRegisterImmediateOffset(instr) == 0));
4250     DCHECK(is_uint10(offset));
4251     instr_at_put(pc, SetVldrDRegisterImmediateOffset(instr, offset));
4252   } else {
4253     // Instruction to patch must be 'ldr rd, [pp, #0]'.
4254     DCHECK((IsLdrPpImmediateOffset(instr) &&
4255             GetLdrRegisterImmediateOffset(instr) == 0));
4256     DCHECK(is_uint12(offset));
4257     instr_at_put(pc, SetLdrRegisterImmediateOffset(instr, offset));
4258   }
4259 }
4260 
4261 
4262 }  // namespace internal
4263 }  // namespace v8
4264 
4265 #endif  // V8_TARGET_ARCH_ARM
4266