• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrBicubicEffect.h"
9 #include "GrInvariantOutput.h"
10 #include "glsl/GrGLSLFragmentShaderBuilder.h"
11 #include "glsl/GrGLSLProgramDataManager.h"
12 #include "glsl/GrGLSLUniformHandler.h"
13 
14 #define DS(x) SkDoubleToScalar(x)
15 
16 const SkScalar GrBicubicEffect::gMitchellCoefficients[16] = {
17     DS( 1.0 / 18.0), DS(-9.0 / 18.0), DS( 15.0 / 18.0), DS( -7.0 / 18.0),
18     DS(16.0 / 18.0), DS( 0.0 / 18.0), DS(-36.0 / 18.0), DS( 21.0 / 18.0),
19     DS( 1.0 / 18.0), DS( 9.0 / 18.0), DS( 27.0 / 18.0), DS(-21.0 / 18.0),
20     DS( 0.0 / 18.0), DS( 0.0 / 18.0), DS( -6.0 / 18.0), DS(  7.0 / 18.0),
21 };
22 
23 
24 class GrGLBicubicEffect : public GrGLSLFragmentProcessor {
25 public:
26     void emitCode(EmitArgs&) override;
27 
GenKey(const GrProcessor & effect,const GrGLSLCaps &,GrProcessorKeyBuilder * b)28     static inline void GenKey(const GrProcessor& effect, const GrGLSLCaps&,
29                               GrProcessorKeyBuilder* b) {
30         const GrTextureDomain& domain = effect.cast<GrBicubicEffect>().domain();
31         b->add32(GrTextureDomain::GLDomain::DomainKey(domain));
32     }
33 
34 protected:
35     void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
36 
37 private:
38     typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
39 
40     UniformHandle               fCoefficientsUni;
41     UniformHandle               fImageIncrementUni;
42     GrTextureDomain::GLDomain   fDomain;
43 
44     typedef GrGLSLFragmentProcessor INHERITED;
45 };
46 
emitCode(EmitArgs & args)47 void GrGLBicubicEffect::emitCode(EmitArgs& args) {
48     const GrTextureDomain& domain = args.fFp.cast<GrBicubicEffect>().domain();
49 
50     GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
51     fCoefficientsUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
52                                                   kMat44f_GrSLType, kDefault_GrSLPrecision,
53                                                   "Coefficients");
54     fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
55                                                     kVec2f_GrSLType, kDefault_GrSLPrecision,
56                                                     "ImageIncrement");
57 
58     const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
59     const char* coeff = uniformHandler->getUniformCStr(fCoefficientsUni);
60 
61     SkString cubicBlendName;
62 
63     static const GrGLSLShaderVar gCubicBlendArgs[] = {
64         GrGLSLShaderVar("coefficients",  kMat44f_GrSLType),
65         GrGLSLShaderVar("t",             kFloat_GrSLType),
66         GrGLSLShaderVar("c0",            kVec4f_GrSLType),
67         GrGLSLShaderVar("c1",            kVec4f_GrSLType),
68         GrGLSLShaderVar("c2",            kVec4f_GrSLType),
69         GrGLSLShaderVar("c3",            kVec4f_GrSLType),
70     };
71     GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
72     SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
73     fragBuilder->emitFunction(kVec4f_GrSLType,
74                               "cubicBlend",
75                               SK_ARRAY_COUNT(gCubicBlendArgs),
76                               gCubicBlendArgs,
77                               "\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
78                               "\tvec4 c = coefficients * ts;\n"
79                               "\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
80                               &cubicBlendName);
81     fragBuilder->codeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
82     // We unnormalize the coord in order to determine our fractional offset (f) within the texel
83     // We then snap coord to a texel center and renormalize. The snap prevents cases where the
84     // starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
85     // double hit a texel.
86     fragBuilder->codeAppendf("\tcoord /= %s;\n", imgInc);
87     fragBuilder->codeAppend("\tvec2 f = fract(coord);\n");
88     fragBuilder->codeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
89     fragBuilder->codeAppend("\tvec4 rowColors[4];\n");
90     for (int y = 0; y < 4; ++y) {
91         for (int x = 0; x < 4; ++x) {
92             SkString coord;
93             coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
94             SkString sampleVar;
95             sampleVar.printf("rowColors[%d]", x);
96             fDomain.sampleTexture(fragBuilder,
97                                   args.fUniformHandler,
98                                   args.fGLSLCaps,
99                                   domain,
100                                   sampleVar.c_str(),
101                                   coord,
102                                   args.fSamplers[0]);
103         }
104         fragBuilder->codeAppendf(
105             "\tvec4 s%d = %s(%s, f.x, rowColors[0], rowColors[1], rowColors[2], rowColors[3]);\n",
106             y, cubicBlendName.c_str(), coeff);
107     }
108     SkString bicubicColor;
109     bicubicColor.printf("%s(%s, f.y, s0, s1, s2, s3)", cubicBlendName.c_str(), coeff);
110     fragBuilder->codeAppendf("\t%s = %s;\n",
111                              args.fOutputColor, (GrGLSLExpr4(bicubicColor.c_str()) *
112                                                  GrGLSLExpr4(args.fInputColor)).c_str());
113 }
114 
onSetData(const GrGLSLProgramDataManager & pdman,const GrProcessor & processor)115 void GrGLBicubicEffect::onSetData(const GrGLSLProgramDataManager& pdman,
116                                   const GrProcessor& processor) {
117     const GrBicubicEffect& bicubicEffect = processor.cast<GrBicubicEffect>();
118     const GrTexture& texture = *processor.texture(0);
119     float imageIncrement[2];
120     imageIncrement[0] = 1.0f / texture.width();
121     imageIncrement[1] = 1.0f / texture.height();
122     pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
123     pdman.setMatrix4f(fCoefficientsUni, bicubicEffect.coefficients());
124     fDomain.setData(pdman, bicubicEffect.domain(), texture.origin());
125 }
126 
convert_row_major_scalar_coeffs_to_column_major_floats(float dst[16],const SkScalar src[16])127 static inline void convert_row_major_scalar_coeffs_to_column_major_floats(float dst[16],
128                                                                           const SkScalar src[16]) {
129     for (int y = 0; y < 4; y++) {
130         for (int x = 0; x < 4; x++) {
131             dst[x * 4 + y] = SkScalarToFloat(src[y * 4 + x]);
132         }
133     }
134 }
135 
GrBicubicEffect(GrTexture * texture,const SkScalar coefficients[16],const SkMatrix & matrix,const SkShader::TileMode tileModes[2])136 GrBicubicEffect::GrBicubicEffect(GrTexture* texture,
137                                  const SkScalar coefficients[16],
138                                  const SkMatrix &matrix,
139                                  const SkShader::TileMode tileModes[2])
140   : INHERITED(texture, matrix, GrTextureParams(tileModes, GrTextureParams::kNone_FilterMode))
141   , fDomain(GrTextureDomain::IgnoredDomain()) {
142     this->initClassID<GrBicubicEffect>();
143     convert_row_major_scalar_coeffs_to_column_major_floats(fCoefficients, coefficients);
144 }
145 
GrBicubicEffect(GrTexture * texture,const SkScalar coefficients[16],const SkMatrix & matrix,const SkRect & domain)146 GrBicubicEffect::GrBicubicEffect(GrTexture* texture,
147                                  const SkScalar coefficients[16],
148                                  const SkMatrix &matrix,
149                                  const SkRect& domain)
150   : INHERITED(texture, matrix,
151               GrTextureParams(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode))
152   , fDomain(domain, GrTextureDomain::kClamp_Mode) {
153     this->initClassID<GrBicubicEffect>();
154     convert_row_major_scalar_coeffs_to_column_major_floats(fCoefficients, coefficients);
155 }
156 
~GrBicubicEffect()157 GrBicubicEffect::~GrBicubicEffect() {
158 }
159 
onGetGLSLProcessorKey(const GrGLSLCaps & caps,GrProcessorKeyBuilder * b) const160 void GrBicubicEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
161                                             GrProcessorKeyBuilder* b) const {
162     GrGLBicubicEffect::GenKey(*this, caps, b);
163 }
164 
onCreateGLSLInstance() const165 GrGLSLFragmentProcessor* GrBicubicEffect::onCreateGLSLInstance() const  {
166     return new GrGLBicubicEffect;
167 }
168 
onIsEqual(const GrFragmentProcessor & sBase) const169 bool GrBicubicEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
170     const GrBicubicEffect& s = sBase.cast<GrBicubicEffect>();
171     return !memcmp(fCoefficients, s.coefficients(), 16) &&
172            fDomain == s.fDomain;
173 }
174 
onComputeInvariantOutput(GrInvariantOutput * inout) const175 void GrBicubicEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
176     // FIXME: Perhaps we can do better.
177     inout->mulByUnknownSingleComponent();
178 }
179 
180 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrBicubicEffect);
181 
TestCreate(GrProcessorTestData * d)182 const GrFragmentProcessor* GrBicubicEffect::TestCreate(GrProcessorTestData* d) {
183     int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx :
184                                           GrProcessorUnitTest::kAlphaTextureIdx;
185     SkScalar coefficients[16];
186     for (int i = 0; i < 16; i++) {
187         coefficients[i] = d->fRandom->nextSScalar1();
188     }
189     return GrBicubicEffect::Create(d->fTextures[texIdx], coefficients);
190 }
191 
192 //////////////////////////////////////////////////////////////////////////////
193 
ShouldUseBicubic(const SkMatrix & matrix,GrTextureParams::FilterMode * filterMode)194 bool GrBicubicEffect::ShouldUseBicubic(const SkMatrix& matrix,
195                                        GrTextureParams::FilterMode* filterMode) {
196     if (matrix.isIdentity()) {
197         *filterMode = GrTextureParams::kNone_FilterMode;
198         return false;
199     }
200 
201     SkScalar scales[2];
202     if (!matrix.getMinMaxScales(scales) || scales[0] < SK_Scalar1) {
203         // Bicubic doesn't handle arbitrary minimization well, as src texels can be skipped
204         // entirely,
205         *filterMode = GrTextureParams::kMipMap_FilterMode;
206         return false;
207     }
208     // At this point if scales[1] == SK_Scalar1 then the matrix doesn't do any scaling.
209     if (scales[1] == SK_Scalar1) {
210         if (matrix.rectStaysRect() && SkScalarIsInt(matrix.getTranslateX()) &&
211             SkScalarIsInt(matrix.getTranslateY())) {
212             *filterMode = GrTextureParams::kNone_FilterMode;
213         } else {
214             // Use bilerp to handle rotation or fractional translation.
215             *filterMode = GrTextureParams::kBilerp_FilterMode;
216         }
217         return false;
218     }
219     // When we use the bicubic filtering effect each sample is read from the texture using
220     // nearest neighbor sampling.
221     *filterMode = GrTextureParams::kNone_FilterMode;
222     return true;
223 }
224