• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some functions that are useful for math stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
15 #define LLVM_SUPPORT_MATHEXTRAS_H
16 
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/SwapByteOrder.h"
19 #include <cassert>
20 #include <cstring>
21 #include <type_traits>
22 
23 #ifdef _MSC_VER
24 #include <intrin.h>
25 #endif
26 
27 #ifdef __ANDROID_NDK__
28 #include <android/api-level.h>
29 #endif
30 
31 namespace llvm {
32 /// \brief The behavior an operation has on an input of 0.
33 enum ZeroBehavior {
34   /// \brief The returned value is undefined.
35   ZB_Undefined,
36   /// \brief The returned value is numeric_limits<T>::max()
37   ZB_Max,
38   /// \brief The returned value is numeric_limits<T>::digits
39   ZB_Width
40 };
41 
42 namespace detail {
43 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
countTrailingZerosCounter44   static std::size_t count(T Val, ZeroBehavior) {
45     if (!Val)
46       return std::numeric_limits<T>::digits;
47     if (Val & 0x1)
48       return 0;
49 
50     // Bisection method.
51     std::size_t ZeroBits = 0;
52     T Shift = std::numeric_limits<T>::digits >> 1;
53     T Mask = std::numeric_limits<T>::max() >> Shift;
54     while (Shift) {
55       if ((Val & Mask) == 0) {
56         Val >>= Shift;
57         ZeroBits |= Shift;
58       }
59       Shift >>= 1;
60       Mask >>= Shift;
61     }
62     return ZeroBits;
63   }
64 };
65 
66 #if __GNUC__ >= 4 || defined(_MSC_VER)
67 template <typename T> struct TrailingZerosCounter<T, 4> {
68   static std::size_t count(T Val, ZeroBehavior ZB) {
69     if (ZB != ZB_Undefined && Val == 0)
70       return 32;
71 
72 #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
73     return __builtin_ctz(Val);
74 #elif defined(_MSC_VER)
75     unsigned long Index;
76     _BitScanForward(&Index, Val);
77     return Index;
78 #endif
79   }
80 };
81 
82 #if !defined(_MSC_VER) || defined(_M_X64)
83 template <typename T> struct TrailingZerosCounter<T, 8> {
84   static std::size_t count(T Val, ZeroBehavior ZB) {
85     if (ZB != ZB_Undefined && Val == 0)
86       return 64;
87 
88 #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
89     return __builtin_ctzll(Val);
90 #elif defined(_MSC_VER)
91     unsigned long Index;
92     _BitScanForward64(&Index, Val);
93     return Index;
94 #endif
95   }
96 };
97 #endif
98 #endif
99 } // namespace detail
100 
101 /// \brief Count number of 0's from the least significant bit to the most
102 ///   stopping at the first 1.
103 ///
104 /// Only unsigned integral types are allowed.
105 ///
106 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
107 ///   valid arguments.
108 template <typename T>
109 std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
110   static_assert(std::numeric_limits<T>::is_integer &&
111                     !std::numeric_limits<T>::is_signed,
112                 "Only unsigned integral types are allowed.");
113   return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
114 }
115 
116 namespace detail {
117 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
118   static std::size_t count(T Val, ZeroBehavior) {
119     if (!Val)
120       return std::numeric_limits<T>::digits;
121 
122     // Bisection method.
123     std::size_t ZeroBits = 0;
124     for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
125       T Tmp = Val >> Shift;
126       if (Tmp)
127         Val = Tmp;
128       else
129         ZeroBits |= Shift;
130     }
131     return ZeroBits;
132   }
133 };
134 
135 #if __GNUC__ >= 4 || defined(_MSC_VER)
136 template <typename T> struct LeadingZerosCounter<T, 4> {
137   static std::size_t count(T Val, ZeroBehavior ZB) {
138     if (ZB != ZB_Undefined && Val == 0)
139       return 32;
140 
141 #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
142     return __builtin_clz(Val);
143 #elif defined(_MSC_VER)
144     unsigned long Index;
145     _BitScanReverse(&Index, Val);
146     return Index ^ 31;
147 #endif
148   }
149 };
150 
151 #if !defined(_MSC_VER) || defined(_M_X64)
152 template <typename T> struct LeadingZerosCounter<T, 8> {
153   static std::size_t count(T Val, ZeroBehavior ZB) {
154     if (ZB != ZB_Undefined && Val == 0)
155       return 64;
156 
157 #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
158     return __builtin_clzll(Val);
159 #elif defined(_MSC_VER)
160     unsigned long Index;
161     _BitScanReverse64(&Index, Val);
162     return Index ^ 63;
163 #endif
164   }
165 };
166 #endif
167 #endif
168 } // namespace detail
169 
170 /// \brief Count number of 0's from the most significant bit to the least
171 ///   stopping at the first 1.
172 ///
173 /// Only unsigned integral types are allowed.
174 ///
175 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
176 ///   valid arguments.
177 template <typename T>
178 std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
179   static_assert(std::numeric_limits<T>::is_integer &&
180                     !std::numeric_limits<T>::is_signed,
181                 "Only unsigned integral types are allowed.");
182   return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
183 }
184 
185 /// \brief Get the index of the first set bit starting from the least
186 ///   significant bit.
187 ///
188 /// Only unsigned integral types are allowed.
189 ///
190 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
191 ///   valid arguments.
192 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
193   if (ZB == ZB_Max && Val == 0)
194     return std::numeric_limits<T>::max();
195 
196   return countTrailingZeros(Val, ZB_Undefined);
197 }
198 
199 /// \brief Get the index of the last set bit starting from the least
200 ///   significant bit.
201 ///
202 /// Only unsigned integral types are allowed.
203 ///
204 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
205 ///   valid arguments.
206 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
207   if (ZB == ZB_Max && Val == 0)
208     return std::numeric_limits<T>::max();
209 
210   // Use ^ instead of - because both gcc and llvm can remove the associated ^
211   // in the __builtin_clz intrinsic on x86.
212   return countLeadingZeros(Val, ZB_Undefined) ^
213          (std::numeric_limits<T>::digits - 1);
214 }
215 
216 /// \brief Macro compressed bit reversal table for 256 bits.
217 ///
218 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
219 static const unsigned char BitReverseTable256[256] = {
220 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
221 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
222 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
223   R6(0), R6(2), R6(1), R6(3)
224 #undef R2
225 #undef R4
226 #undef R6
227 };
228 
229 /// \brief Reverse the bits in \p Val.
230 template <typename T>
231 T reverseBits(T Val) {
232   unsigned char in[sizeof(Val)];
233   unsigned char out[sizeof(Val)];
234   std::memcpy(in, &Val, sizeof(Val));
235   for (unsigned i = 0; i < sizeof(Val); ++i)
236     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
237   std::memcpy(&Val, out, sizeof(Val));
238   return Val;
239 }
240 
241 // NOTE: The following support functions use the _32/_64 extensions instead of
242 // type overloading so that signed and unsigned integers can be used without
243 // ambiguity.
244 
245 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
246 inline uint32_t Hi_32(uint64_t Value) {
247   return static_cast<uint32_t>(Value >> 32);
248 }
249 
250 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
251 inline uint32_t Lo_32(uint64_t Value) {
252   return static_cast<uint32_t>(Value);
253 }
254 
255 /// Make_64 - This functions makes a 64-bit integer from a high / low pair of
256 ///           32-bit integers.
257 inline uint64_t Make_64(uint32_t High, uint32_t Low) {
258   return ((uint64_t)High << 32) | (uint64_t)Low;
259 }
260 
261 /// isInt - Checks if an integer fits into the given bit width.
262 template<unsigned N>
263 inline bool isInt(int64_t x) {
264   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
265 }
266 // Template specializations to get better code for common cases.
267 template<>
268 inline bool isInt<8>(int64_t x) {
269   return static_cast<int8_t>(x) == x;
270 }
271 template<>
272 inline bool isInt<16>(int64_t x) {
273   return static_cast<int16_t>(x) == x;
274 }
275 template<>
276 inline bool isInt<32>(int64_t x) {
277   return static_cast<int32_t>(x) == x;
278 }
279 
280 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
281 ///                     left by S.
282 template<unsigned N, unsigned S>
283 inline bool isShiftedInt(int64_t x) {
284   return isInt<N+S>(x) && (x % (1<<S) == 0);
285 }
286 
287 /// isUInt - Checks if an unsigned integer fits into the given bit width.
288 template<unsigned N>
289 inline bool isUInt(uint64_t x) {
290   return N >= 64 || x < (UINT64_C(1)<<(N));
291 }
292 // Template specializations to get better code for common cases.
293 template<>
294 inline bool isUInt<8>(uint64_t x) {
295   return static_cast<uint8_t>(x) == x;
296 }
297 template<>
298 inline bool isUInt<16>(uint64_t x) {
299   return static_cast<uint16_t>(x) == x;
300 }
301 template<>
302 inline bool isUInt<32>(uint64_t x) {
303   return static_cast<uint32_t>(x) == x;
304 }
305 
306 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
307 ///                     left by S.
308 template<unsigned N, unsigned S>
309 inline bool isShiftedUInt(uint64_t x) {
310   return isUInt<N+S>(x) && (x % (1<<S) == 0);
311 }
312 
313 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
314 /// bit width.
315 inline bool isUIntN(unsigned N, uint64_t x) {
316   return N >= 64 || x < (UINT64_C(1)<<(N));
317 }
318 
319 /// isIntN - Checks if an signed integer fits into the given (dynamic)
320 /// bit width.
321 inline bool isIntN(unsigned N, int64_t x) {
322   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
323 }
324 
325 /// isMask_32 - This function returns true if the argument is a non-empty
326 /// sequence of ones starting at the least significant bit with the remainder
327 /// zero (32 bit version).  Ex. isMask_32(0x0000FFFFU) == true.
328 inline bool isMask_32(uint32_t Value) {
329   return Value && ((Value + 1) & Value) == 0;
330 }
331 
332 /// isMask_64 - This function returns true if the argument is a non-empty
333 /// sequence of ones starting at the least significant bit with the remainder
334 /// zero (64 bit version).
335 inline bool isMask_64(uint64_t Value) {
336   return Value && ((Value + 1) & Value) == 0;
337 }
338 
339 /// isShiftedMask_32 - This function returns true if the argument contains a
340 /// non-empty sequence of ones with the remainder zero (32 bit version.)
341 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
342 inline bool isShiftedMask_32(uint32_t Value) {
343   return Value && isMask_32((Value - 1) | Value);
344 }
345 
346 /// isShiftedMask_64 - This function returns true if the argument contains a
347 /// non-empty sequence of ones with the remainder zero (64 bit version.)
348 inline bool isShiftedMask_64(uint64_t Value) {
349   return Value && isMask_64((Value - 1) | Value);
350 }
351 
352 /// isPowerOf2_32 - This function returns true if the argument is a power of
353 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
354 inline bool isPowerOf2_32(uint32_t Value) {
355   return Value && !(Value & (Value - 1));
356 }
357 
358 /// isPowerOf2_64 - This function returns true if the argument is a power of two
359 /// > 0 (64 bit edition.)
360 inline bool isPowerOf2_64(uint64_t Value) {
361   return Value && !(Value & (Value - int64_t(1L)));
362 }
363 
364 /// ByteSwap_16 - This function returns a byte-swapped representation of the
365 /// 16-bit argument, Value.
366 inline uint16_t ByteSwap_16(uint16_t Value) {
367   return sys::SwapByteOrder_16(Value);
368 }
369 
370 /// ByteSwap_32 - This function returns a byte-swapped representation of the
371 /// 32-bit argument, Value.
372 inline uint32_t ByteSwap_32(uint32_t Value) {
373   return sys::SwapByteOrder_32(Value);
374 }
375 
376 /// ByteSwap_64 - This function returns a byte-swapped representation of the
377 /// 64-bit argument, Value.
378 inline uint64_t ByteSwap_64(uint64_t Value) {
379   return sys::SwapByteOrder_64(Value);
380 }
381 
382 /// \brief Count the number of ones from the most significant bit to the first
383 /// zero bit.
384 ///
385 /// Ex. CountLeadingOnes(0xFF0FFF00) == 8.
386 /// Only unsigned integral types are allowed.
387 ///
388 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
389 /// ZB_Undefined are valid arguments.
390 template <typename T>
391 std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
392   static_assert(std::numeric_limits<T>::is_integer &&
393                     !std::numeric_limits<T>::is_signed,
394                 "Only unsigned integral types are allowed.");
395   return countLeadingZeros(~Value, ZB);
396 }
397 
398 /// \brief Count the number of ones from the least significant bit to the first
399 /// zero bit.
400 ///
401 /// Ex. countTrailingOnes(0x00FF00FF) == 8.
402 /// Only unsigned integral types are allowed.
403 ///
404 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
405 /// ZB_Undefined are valid arguments.
406 template <typename T>
407 std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
408   static_assert(std::numeric_limits<T>::is_integer &&
409                     !std::numeric_limits<T>::is_signed,
410                 "Only unsigned integral types are allowed.");
411   return countTrailingZeros(~Value, ZB);
412 }
413 
414 namespace detail {
415 template <typename T, std::size_t SizeOfT> struct PopulationCounter {
416   static unsigned count(T Value) {
417     // Generic version, forward to 32 bits.
418     static_assert(SizeOfT <= 4, "Not implemented!");
419 #if __GNUC__ >= 4
420     return __builtin_popcount(Value);
421 #else
422     uint32_t v = Value;
423     v = v - ((v >> 1) & 0x55555555);
424     v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
425     return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
426 #endif
427   }
428 };
429 
430 template <typename T> struct PopulationCounter<T, 8> {
431   static unsigned count(T Value) {
432 #if __GNUC__ >= 4
433     return __builtin_popcountll(Value);
434 #else
435     uint64_t v = Value;
436     v = v - ((v >> 1) & 0x5555555555555555ULL);
437     v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
438     v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
439     return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
440 #endif
441   }
442 };
443 } // namespace detail
444 
445 /// \brief Count the number of set bits in a value.
446 /// Ex. countPopulation(0xF000F000) = 8
447 /// Returns 0 if the word is zero.
448 template <typename T>
449 inline unsigned countPopulation(T Value) {
450   static_assert(std::numeric_limits<T>::is_integer &&
451                     !std::numeric_limits<T>::is_signed,
452                 "Only unsigned integral types are allowed.");
453   return detail::PopulationCounter<T, sizeof(T)>::count(Value);
454 }
455 
456 /// Log2 - This function returns the log base 2 of the specified value
457 inline double Log2(double Value) {
458 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
459   return __builtin_log(Value) / __builtin_log(2.0);
460 #else
461   return log2(Value);
462 #endif
463 }
464 
465 /// Log2_32 - This function returns the floor log base 2 of the specified value,
466 /// -1 if the value is zero. (32 bit edition.)
467 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
468 inline unsigned Log2_32(uint32_t Value) {
469   return 31 - countLeadingZeros(Value);
470 }
471 
472 /// Log2_64 - This function returns the floor log base 2 of the specified value,
473 /// -1 if the value is zero. (64 bit edition.)
474 inline unsigned Log2_64(uint64_t Value) {
475   return 63 - countLeadingZeros(Value);
476 }
477 
478 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
479 /// value, 32 if the value is zero. (32 bit edition).
480 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
481 inline unsigned Log2_32_Ceil(uint32_t Value) {
482   return 32 - countLeadingZeros(Value - 1);
483 }
484 
485 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
486 /// value, 64 if the value is zero. (64 bit edition.)
487 inline unsigned Log2_64_Ceil(uint64_t Value) {
488   return 64 - countLeadingZeros(Value - 1);
489 }
490 
491 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
492 /// values using Euclid's algorithm.
493 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
494   while (B) {
495     uint64_t T = B;
496     B = A % B;
497     A = T;
498   }
499   return A;
500 }
501 
502 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
503 /// equivalent double.
504 inline double BitsToDouble(uint64_t Bits) {
505   union {
506     uint64_t L;
507     double D;
508   } T;
509   T.L = Bits;
510   return T.D;
511 }
512 
513 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
514 /// equivalent float.
515 inline float BitsToFloat(uint32_t Bits) {
516   union {
517     uint32_t I;
518     float F;
519   } T;
520   T.I = Bits;
521   return T.F;
522 }
523 
524 /// DoubleToBits - This function takes a double and returns the bit
525 /// equivalent 64-bit integer.  Note that copying doubles around
526 /// changes the bits of NaNs on some hosts, notably x86, so this
527 /// routine cannot be used if these bits are needed.
528 inline uint64_t DoubleToBits(double Double) {
529   union {
530     uint64_t L;
531     double D;
532   } T;
533   T.D = Double;
534   return T.L;
535 }
536 
537 /// FloatToBits - This function takes a float and returns the bit
538 /// equivalent 32-bit integer.  Note that copying floats around
539 /// changes the bits of NaNs on some hosts, notably x86, so this
540 /// routine cannot be used if these bits are needed.
541 inline uint32_t FloatToBits(float Float) {
542   union {
543     uint32_t I;
544     float F;
545   } T;
546   T.F = Float;
547   return T.I;
548 }
549 
550 /// MinAlign - A and B are either alignments or offsets.  Return the minimum
551 /// alignment that may be assumed after adding the two together.
552 inline uint64_t MinAlign(uint64_t A, uint64_t B) {
553   // The largest power of 2 that divides both A and B.
554   //
555   // Replace "-Value" by "1+~Value" in the following commented code to avoid
556   // MSVC warning C4146
557   //    return (A | B) & -(A | B);
558   return (A | B) & (1 + ~(A | B));
559 }
560 
561 /// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
562 ///
563 /// Alignment should be a power of two.  This method rounds up, so
564 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
565 inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
566   assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
567          "Alignment is not a power of two!");
568 
569   assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
570 
571   return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
572 }
573 
574 /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
575 /// bytes, rounding up.
576 inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
577   return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
578 }
579 
580 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
581 /// that is strictly greater than A.  Returns zero on overflow.
582 inline uint64_t NextPowerOf2(uint64_t A) {
583   A |= (A >> 1);
584   A |= (A >> 2);
585   A |= (A >> 4);
586   A |= (A >> 8);
587   A |= (A >> 16);
588   A |= (A >> 32);
589   return A + 1;
590 }
591 
592 /// Returns the power of two which is less than or equal to the given value.
593 /// Essentially, it is a floor operation across the domain of powers of two.
594 inline uint64_t PowerOf2Floor(uint64_t A) {
595   if (!A) return 0;
596   return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
597 }
598 
599 /// Returns the next integer (mod 2**64) that is greater than or equal to
600 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
601 ///
602 /// If non-zero \p Skew is specified, the return value will be a minimal
603 /// integer that is greater than or equal to \p Value and equal to
604 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
605 /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
606 ///
607 /// Examples:
608 /// \code
609 ///   RoundUpToAlignment(5, 8) = 8
610 ///   RoundUpToAlignment(17, 8) = 24
611 ///   RoundUpToAlignment(~0LL, 8) = 0
612 ///   RoundUpToAlignment(321, 255) = 510
613 ///
614 ///   RoundUpToAlignment(5, 8, 7) = 7
615 ///   RoundUpToAlignment(17, 8, 1) = 17
616 ///   RoundUpToAlignment(~0LL, 8, 3) = 3
617 ///   RoundUpToAlignment(321, 255, 42) = 552
618 /// \endcode
619 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align,
620                                    uint64_t Skew = 0) {
621   Skew %= Align;
622   return (Value + Align - 1 - Skew) / Align * Align + Skew;
623 }
624 
625 /// Returns the offset to the next integer (mod 2**64) that is greater than
626 /// or equal to \p Value and is a multiple of \p Align. \p Align must be
627 /// non-zero.
628 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
629   return RoundUpToAlignment(Value, Align) - Value;
630 }
631 
632 /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
633 /// Usage int32_t r = SignExtend32<5>(x);
634 template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
635   return int32_t(x << (32 - B)) >> (32 - B);
636 }
637 
638 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
639 /// Requires 0 < B <= 32.
640 inline int32_t SignExtend32(uint32_t X, unsigned B) {
641   return int32_t(X << (32 - B)) >> (32 - B);
642 }
643 
644 /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
645 /// Usage int64_t r = SignExtend64<5>(x);
646 template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
647   return int64_t(x << (64 - B)) >> (64 - B);
648 }
649 
650 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
651 /// Requires 0 < B <= 64.
652 inline int64_t SignExtend64(uint64_t X, unsigned B) {
653   return int64_t(X << (64 - B)) >> (64 - B);
654 }
655 
656 /// \brief Add two unsigned integers, X and Y, of type T.
657 /// Clamp the result to the maximum representable value of T on overflow.
658 /// ResultOverflowed indicates if the result is larger than the maximum
659 /// representable value of type T.
660 template <typename T>
661 typename std::enable_if<std::is_unsigned<T>::value, T>::type
662 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
663   bool Dummy;
664   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
665   // Hacker's Delight, p. 29
666   T Z = X + Y;
667   Overflowed = (Z < X || Z < Y);
668   if (Overflowed)
669     return std::numeric_limits<T>::max();
670   else
671     return Z;
672 }
673 
674 /// \brief Multiply two unsigned integers, X and Y, of type T.
675 /// Clamp the result to the maximum representable value of T on overflow.
676 /// ResultOverflowed indicates if the result is larger than the maximum
677 /// representable value of type T.
678 template <typename T>
679 typename std::enable_if<std::is_unsigned<T>::value, T>::type
680 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
681   bool Dummy;
682   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
683 
684   // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
685   // because it fails for uint16_t (where multiplication can have undefined
686   // behavior due to promotion to int), and requires a division in addition
687   // to the multiplication.
688 
689   Overflowed = false;
690 
691   // Log2(Z) would be either Log2Z or Log2Z + 1.
692   // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
693   // will necessarily be less than Log2Max as desired.
694   int Log2Z = Log2_64(X) + Log2_64(Y);
695   const T Max = std::numeric_limits<T>::max();
696   int Log2Max = Log2_64(Max);
697   if (Log2Z < Log2Max) {
698     return X * Y;
699   }
700   if (Log2Z > Log2Max) {
701     Overflowed = true;
702     return Max;
703   }
704 
705   // We're going to use the top bit, and maybe overflow one
706   // bit past it. Multiply all but the bottom bit then add
707   // that on at the end.
708   T Z = (X >> 1) * Y;
709   if (Z & ~(Max >> 1)) {
710     Overflowed = true;
711     return Max;
712   }
713   Z <<= 1;
714   if (X & 1)
715     return SaturatingAdd(Z, Y, ResultOverflowed);
716 
717   return Z;
718 }
719 
720 extern const float huge_valf;
721 } // End llvm namespace
722 
723 #endif
724